3ae097d50b515c2e9a0ae003a7a2c58f4dba1ca4
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         bool do_wakeup = false;
348         unsigned long flags;
349
350         if (hash == NR_STRIPE_HASH_LOCKS) {
351                 size = NR_STRIPE_HASH_LOCKS;
352                 hash = NR_STRIPE_HASH_LOCKS - 1;
353         } else
354                 size = 1;
355         while (size) {
356                 struct list_head *list = &temp_inactive_list[size - 1];
357
358                 /*
359                  * We don't hold any lock here yet, get_active_stripe() might
360                  * remove stripes from the list
361                  */
362                 if (!list_empty_careful(list)) {
363                         spin_lock_irqsave(conf->hash_locks + hash, flags);
364                         if (list_empty(conf->inactive_list + hash) &&
365                             !list_empty(list))
366                                 atomic_dec(&conf->empty_inactive_list_nr);
367                         list_splice_tail_init(list, conf->inactive_list + hash);
368                         do_wakeup = true;
369                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370                 }
371                 size--;
372                 hash--;
373         }
374
375         if (do_wakeup) {
376                 wake_up(&conf->wait_for_stripe);
377                 if (conf->retry_read_aligned)
378                         md_wakeup_thread(conf->mddev->thread);
379         }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384                                struct list_head *temp_inactive_list)
385 {
386         struct stripe_head *sh;
387         int count = 0;
388         struct llist_node *head;
389
390         head = llist_del_all(&conf->released_stripes);
391         head = llist_reverse_order(head);
392         while (head) {
393                 int hash;
394
395                 sh = llist_entry(head, struct stripe_head, release_list);
396                 head = llist_next(head);
397                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398                 smp_mb();
399                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400                 /*
401                  * Don't worry the bit is set here, because if the bit is set
402                  * again, the count is always > 1. This is true for
403                  * STRIPE_ON_UNPLUG_LIST bit too.
404                  */
405                 hash = sh->hash_lock_index;
406                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407                 count++;
408         }
409
410         return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415         struct r5conf *conf = sh->raid_conf;
416         unsigned long flags;
417         struct list_head list;
418         int hash;
419         bool wakeup;
420
421         /* Avoid release_list until the last reference.
422          */
423         if (atomic_add_unless(&sh->count, -1, 1))
424                 return;
425
426         if (unlikely(!conf->mddev->thread) ||
427                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428                 goto slow_path;
429         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430         if (wakeup)
431                 md_wakeup_thread(conf->mddev->thread);
432         return;
433 slow_path:
434         local_irq_save(flags);
435         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437                 INIT_LIST_HEAD(&list);
438                 hash = sh->hash_lock_index;
439                 do_release_stripe(conf, sh, &list);
440                 spin_unlock(&conf->device_lock);
441                 release_inactive_stripe_list(conf, &list, hash);
442         }
443         local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448         pr_debug("remove_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456         struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458         pr_debug("insert_hash(), stripe %llu\n",
459                 (unsigned long long)sh->sector);
460
461         hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467         struct stripe_head *sh = NULL;
468         struct list_head *first;
469
470         if (list_empty(conf->inactive_list + hash))
471                 goto out;
472         first = (conf->inactive_list + hash)->next;
473         sh = list_entry(first, struct stripe_head, lru);
474         list_del_init(first);
475         remove_hash(sh);
476         atomic_inc(&conf->active_stripes);
477         BUG_ON(hash != sh->hash_lock_index);
478         if (list_empty(conf->inactive_list + hash))
479                 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481         return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486         struct page *p;
487         int i;
488         int num = sh->raid_conf->pool_size;
489
490         for (i = 0; i < num ; i++) {
491                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492                 p = sh->dev[i].page;
493                 if (!p)
494                         continue;
495                 sh->dev[i].page = NULL;
496                 put_page(p);
497         }
498 }
499
500 static int grow_buffers(struct stripe_head *sh)
501 {
502         int i;
503         int num = sh->raid_conf->pool_size;
504
505         for (i = 0; i < num; i++) {
506                 struct page *page;
507
508                 if (!(page = alloc_page(GFP_KERNEL))) {
509                         return 1;
510                 }
511                 sh->dev[i].page = page;
512                 sh->dev[i].orig_page = page;
513         }
514         return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519                             struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523         struct r5conf *conf = sh->raid_conf;
524         int i, seq;
525
526         BUG_ON(atomic_read(&sh->count) != 0);
527         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528         BUG_ON(stripe_operations_active(sh));
529         BUG_ON(sh->batch_head);
530
531         pr_debug("init_stripe called, stripe %llu\n",
532                 (unsigned long long)sector);
533 retry:
534         seq = read_seqcount_begin(&conf->gen_lock);
535         sh->generation = conf->generation - previous;
536         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537         sh->sector = sector;
538         stripe_set_idx(sector, conf, previous, sh);
539         sh->state = 0;
540
541         for (i = sh->disks; i--; ) {
542                 struct r5dev *dev = &sh->dev[i];
543
544                 if (dev->toread || dev->read || dev->towrite || dev->written ||
545                     test_bit(R5_LOCKED, &dev->flags)) {
546                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547                                (unsigned long long)sh->sector, i, dev->toread,
548                                dev->read, dev->towrite, dev->written,
549                                test_bit(R5_LOCKED, &dev->flags));
550                         WARN_ON(1);
551                 }
552                 dev->flags = 0;
553                 raid5_build_block(sh, i, previous);
554         }
555         if (read_seqcount_retry(&conf->gen_lock, seq))
556                 goto retry;
557         sh->overwrite_disks = 0;
558         insert_hash(conf, sh);
559         sh->cpu = smp_processor_id();
560         set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564                                          short generation)
565 {
566         struct stripe_head *sh;
567
568         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570                 if (sh->sector == sector && sh->generation == generation)
571                         return sh;
572         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573         return NULL;
574 }
575
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
589 static int calc_degraded(struct r5conf *conf)
590 {
591         int degraded, degraded2;
592         int i;
593
594         rcu_read_lock();
595         degraded = 0;
596         for (i = 0; i < conf->previous_raid_disks; i++) {
597                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = rcu_dereference(conf->disks[i].replacement);
600                 if (!rdev || test_bit(Faulty, &rdev->flags))
601                         degraded++;
602                 else if (test_bit(In_sync, &rdev->flags))
603                         ;
604                 else
605                         /* not in-sync or faulty.
606                          * If the reshape increases the number of devices,
607                          * this is being recovered by the reshape, so
608                          * this 'previous' section is not in_sync.
609                          * If the number of devices is being reduced however,
610                          * the device can only be part of the array if
611                          * we are reverting a reshape, so this section will
612                          * be in-sync.
613                          */
614                         if (conf->raid_disks >= conf->previous_raid_disks)
615                                 degraded++;
616         }
617         rcu_read_unlock();
618         if (conf->raid_disks == conf->previous_raid_disks)
619                 return degraded;
620         rcu_read_lock();
621         degraded2 = 0;
622         for (i = 0; i < conf->raid_disks; i++) {
623                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624                 if (rdev && test_bit(Faulty, &rdev->flags))
625                         rdev = rcu_dereference(conf->disks[i].replacement);
626                 if (!rdev || test_bit(Faulty, &rdev->flags))
627                         degraded2++;
628                 else if (test_bit(In_sync, &rdev->flags))
629                         ;
630                 else
631                         /* not in-sync or faulty.
632                          * If reshape increases the number of devices, this
633                          * section has already been recovered, else it
634                          * almost certainly hasn't.
635                          */
636                         if (conf->raid_disks <= conf->previous_raid_disks)
637                                 degraded2++;
638         }
639         rcu_read_unlock();
640         if (degraded2 > degraded)
641                 return degraded2;
642         return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647         int degraded;
648
649         if (conf->mddev->reshape_position == MaxSector)
650                 return conf->mddev->degraded > conf->max_degraded;
651
652         degraded = calc_degraded(conf);
653         if (degraded > conf->max_degraded)
654                 return 1;
655         return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660                   int previous, int noblock, int noquiesce)
661 {
662         struct stripe_head *sh;
663         int hash = stripe_hash_locks_hash(sector);
664
665         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667         spin_lock_irq(conf->hash_locks + hash);
668
669         do {
670                 wait_event_lock_irq(conf->wait_for_stripe,
671                                     conf->quiesce == 0 || noquiesce,
672                                     *(conf->hash_locks + hash));
673                 sh = __find_stripe(conf, sector, conf->generation - previous);
674                 if (!sh) {
675                         if (!conf->inactive_blocked)
676                                 sh = get_free_stripe(conf, hash);
677                         if (noblock && sh == NULL)
678                                 break;
679                         if (!sh) {
680                                 conf->inactive_blocked = 1;
681                                 wait_event_lock_irq(
682                                         conf->wait_for_stripe,
683                                         !list_empty(conf->inactive_list + hash) &&
684                                         (atomic_read(&conf->active_stripes)
685                                          < (conf->max_nr_stripes * 3 / 4)
686                                          || !conf->inactive_blocked),
687                                         *(conf->hash_locks + hash));
688                                 conf->inactive_blocked = 0;
689                         } else {
690                                 init_stripe(sh, sector, previous);
691                                 atomic_inc(&sh->count);
692                         }
693                 } else if (!atomic_inc_not_zero(&sh->count)) {
694                         spin_lock(&conf->device_lock);
695                         if (!atomic_read(&sh->count)) {
696                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
697                                         atomic_inc(&conf->active_stripes);
698                                 BUG_ON(list_empty(&sh->lru) &&
699                                        !test_bit(STRIPE_EXPANDING, &sh->state));
700                                 list_del_init(&sh->lru);
701                                 if (sh->group) {
702                                         sh->group->stripes_cnt--;
703                                         sh->group = NULL;
704                                 }
705                         }
706                         atomic_inc(&sh->count);
707                         spin_unlock(&conf->device_lock);
708                 }
709         } while (sh == NULL);
710
711         spin_unlock_irq(conf->hash_locks + hash);
712         return sh;
713 }
714
715 static bool is_full_stripe_write(struct stripe_head *sh)
716 {
717         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
718         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
719 }
720
721 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
722 {
723         local_irq_disable();
724         if (sh1 > sh2) {
725                 spin_lock(&sh2->stripe_lock);
726                 spin_lock_nested(&sh1->stripe_lock, 1);
727         } else {
728                 spin_lock(&sh1->stripe_lock);
729                 spin_lock_nested(&sh2->stripe_lock, 1);
730         }
731 }
732
733 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735         spin_unlock(&sh1->stripe_lock);
736         spin_unlock(&sh2->stripe_lock);
737         local_irq_enable();
738 }
739
740 /* Only freshly new full stripe normal write stripe can be added to a batch list */
741 static bool stripe_can_batch(struct stripe_head *sh)
742 {
743         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
744                 is_full_stripe_write(sh);
745 }
746
747 /* we only do back search */
748 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 {
750         struct stripe_head *head;
751         sector_t head_sector, tmp_sec;
752         int hash;
753         int dd_idx;
754
755         if (!stripe_can_batch(sh))
756                 return;
757         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
758         tmp_sec = sh->sector;
759         if (!sector_div(tmp_sec, conf->chunk_sectors))
760                 return;
761         head_sector = sh->sector - STRIPE_SECTORS;
762
763         hash = stripe_hash_locks_hash(head_sector);
764         spin_lock_irq(conf->hash_locks + hash);
765         head = __find_stripe(conf, head_sector, conf->generation);
766         if (head && !atomic_inc_not_zero(&head->count)) {
767                 spin_lock(&conf->device_lock);
768                 if (!atomic_read(&head->count)) {
769                         if (!test_bit(STRIPE_HANDLE, &head->state))
770                                 atomic_inc(&conf->active_stripes);
771                         BUG_ON(list_empty(&head->lru) &&
772                                !test_bit(STRIPE_EXPANDING, &head->state));
773                         list_del_init(&head->lru);
774                         if (head->group) {
775                                 head->group->stripes_cnt--;
776                                 head->group = NULL;
777                         }
778                 }
779                 atomic_inc(&head->count);
780                 spin_unlock(&conf->device_lock);
781         }
782         spin_unlock_irq(conf->hash_locks + hash);
783
784         if (!head)
785                 return;
786         if (!stripe_can_batch(head))
787                 goto out;
788
789         lock_two_stripes(head, sh);
790         /* clear_batch_ready clear the flag */
791         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792                 goto unlock_out;
793
794         if (sh->batch_head)
795                 goto unlock_out;
796
797         dd_idx = 0;
798         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799                 dd_idx++;
800         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
801                 goto unlock_out;
802
803         if (head->batch_head) {
804                 spin_lock(&head->batch_head->batch_lock);
805                 /* This batch list is already running */
806                 if (!stripe_can_batch(head)) {
807                         spin_unlock(&head->batch_head->batch_lock);
808                         goto unlock_out;
809                 }
810
811                 /*
812                  * at this point, head's BATCH_READY could be cleared, but we
813                  * can still add the stripe to batch list
814                  */
815                 list_add(&sh->batch_list, &head->batch_list);
816                 spin_unlock(&head->batch_head->batch_lock);
817
818                 sh->batch_head = head->batch_head;
819         } else {
820                 head->batch_head = head;
821                 sh->batch_head = head->batch_head;
822                 spin_lock(&head->batch_lock);
823                 list_add_tail(&sh->batch_list, &head->batch_list);
824                 spin_unlock(&head->batch_lock);
825         }
826
827         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
828                 if (atomic_dec_return(&conf->preread_active_stripes)
829                     < IO_THRESHOLD)
830                         md_wakeup_thread(conf->mddev->thread);
831
832         atomic_inc(&sh->count);
833 unlock_out:
834         unlock_two_stripes(head, sh);
835 out:
836         release_stripe(head);
837 }
838
839 /* Determine if 'data_offset' or 'new_data_offset' should be used
840  * in this stripe_head.
841  */
842 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
843 {
844         sector_t progress = conf->reshape_progress;
845         /* Need a memory barrier to make sure we see the value
846          * of conf->generation, or ->data_offset that was set before
847          * reshape_progress was updated.
848          */
849         smp_rmb();
850         if (progress == MaxSector)
851                 return 0;
852         if (sh->generation == conf->generation - 1)
853                 return 0;
854         /* We are in a reshape, and this is a new-generation stripe,
855          * so use new_data_offset.
856          */
857         return 1;
858 }
859
860 static void
861 raid5_end_read_request(struct bio *bi, int error);
862 static void
863 raid5_end_write_request(struct bio *bi, int error);
864
865 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
866 {
867         struct r5conf *conf = sh->raid_conf;
868         int i, disks = sh->disks;
869         struct stripe_head *head_sh = sh;
870
871         might_sleep();
872
873         for (i = disks; i--; ) {
874                 int rw;
875                 int replace_only = 0;
876                 struct bio *bi, *rbi;
877                 struct md_rdev *rdev, *rrdev = NULL;
878
879                 sh = head_sh;
880                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
881                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
882                                 rw = WRITE_FUA;
883                         else
884                                 rw = WRITE;
885                         if (test_bit(R5_Discard, &sh->dev[i].flags))
886                                 rw |= REQ_DISCARD;
887                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
888                         rw = READ;
889                 else if (test_and_clear_bit(R5_WantReplace,
890                                             &sh->dev[i].flags)) {
891                         rw = WRITE;
892                         replace_only = 1;
893                 } else
894                         continue;
895                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
896                         rw |= REQ_SYNC;
897
898 again:
899                 bi = &sh->dev[i].req;
900                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
901
902                 rcu_read_lock();
903                 rrdev = rcu_dereference(conf->disks[i].replacement);
904                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
905                 rdev = rcu_dereference(conf->disks[i].rdev);
906                 if (!rdev) {
907                         rdev = rrdev;
908                         rrdev = NULL;
909                 }
910                 if (rw & WRITE) {
911                         if (replace_only)
912                                 rdev = NULL;
913                         if (rdev == rrdev)
914                                 /* We raced and saw duplicates */
915                                 rrdev = NULL;
916                 } else {
917                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
918                                 rdev = rrdev;
919                         rrdev = NULL;
920                 }
921
922                 if (rdev && test_bit(Faulty, &rdev->flags))
923                         rdev = NULL;
924                 if (rdev)
925                         atomic_inc(&rdev->nr_pending);
926                 if (rrdev && test_bit(Faulty, &rrdev->flags))
927                         rrdev = NULL;
928                 if (rrdev)
929                         atomic_inc(&rrdev->nr_pending);
930                 rcu_read_unlock();
931
932                 /* We have already checked bad blocks for reads.  Now
933                  * need to check for writes.  We never accept write errors
934                  * on the replacement, so we don't to check rrdev.
935                  */
936                 while ((rw & WRITE) && rdev &&
937                        test_bit(WriteErrorSeen, &rdev->flags)) {
938                         sector_t first_bad;
939                         int bad_sectors;
940                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
941                                               &first_bad, &bad_sectors);
942                         if (!bad)
943                                 break;
944
945                         if (bad < 0) {
946                                 set_bit(BlockedBadBlocks, &rdev->flags);
947                                 if (!conf->mddev->external &&
948                                     conf->mddev->flags) {
949                                         /* It is very unlikely, but we might
950                                          * still need to write out the
951                                          * bad block log - better give it
952                                          * a chance*/
953                                         md_check_recovery(conf->mddev);
954                                 }
955                                 /*
956                                  * Because md_wait_for_blocked_rdev
957                                  * will dec nr_pending, we must
958                                  * increment it first.
959                                  */
960                                 atomic_inc(&rdev->nr_pending);
961                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
962                         } else {
963                                 /* Acknowledged bad block - skip the write */
964                                 rdev_dec_pending(rdev, conf->mddev);
965                                 rdev = NULL;
966                         }
967                 }
968
969                 if (rdev) {
970                         if (s->syncing || s->expanding || s->expanded
971                             || s->replacing)
972                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
973
974                         set_bit(STRIPE_IO_STARTED, &sh->state);
975
976                         bio_reset(bi);
977                         bi->bi_bdev = rdev->bdev;
978                         bi->bi_rw = rw;
979                         bi->bi_end_io = (rw & WRITE)
980                                 ? raid5_end_write_request
981                                 : raid5_end_read_request;
982                         bi->bi_private = sh;
983
984                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
985                                 __func__, (unsigned long long)sh->sector,
986                                 bi->bi_rw, i);
987                         atomic_inc(&sh->count);
988                         if (sh != head_sh)
989                                 atomic_inc(&head_sh->count);
990                         if (use_new_offset(conf, sh))
991                                 bi->bi_iter.bi_sector = (sh->sector
992                                                  + rdev->new_data_offset);
993                         else
994                                 bi->bi_iter.bi_sector = (sh->sector
995                                                  + rdev->data_offset);
996                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
997                                 bi->bi_rw |= REQ_NOMERGE;
998
999                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1000                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1001                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1002                         bi->bi_vcnt = 1;
1003                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1004                         bi->bi_io_vec[0].bv_offset = 0;
1005                         bi->bi_iter.bi_size = STRIPE_SIZE;
1006                         /*
1007                          * If this is discard request, set bi_vcnt 0. We don't
1008                          * want to confuse SCSI because SCSI will replace payload
1009                          */
1010                         if (rw & REQ_DISCARD)
1011                                 bi->bi_vcnt = 0;
1012                         if (rrdev)
1013                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1014
1015                         if (conf->mddev->gendisk)
1016                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1017                                                       bi, disk_devt(conf->mddev->gendisk),
1018                                                       sh->dev[i].sector);
1019                         generic_make_request(bi);
1020                 }
1021                 if (rrdev) {
1022                         if (s->syncing || s->expanding || s->expanded
1023                             || s->replacing)
1024                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1025
1026                         set_bit(STRIPE_IO_STARTED, &sh->state);
1027
1028                         bio_reset(rbi);
1029                         rbi->bi_bdev = rrdev->bdev;
1030                         rbi->bi_rw = rw;
1031                         BUG_ON(!(rw & WRITE));
1032                         rbi->bi_end_io = raid5_end_write_request;
1033                         rbi->bi_private = sh;
1034
1035                         pr_debug("%s: for %llu schedule op %ld on "
1036                                  "replacement disc %d\n",
1037                                 __func__, (unsigned long long)sh->sector,
1038                                 rbi->bi_rw, i);
1039                         atomic_inc(&sh->count);
1040                         if (sh != head_sh)
1041                                 atomic_inc(&head_sh->count);
1042                         if (use_new_offset(conf, sh))
1043                                 rbi->bi_iter.bi_sector = (sh->sector
1044                                                   + rrdev->new_data_offset);
1045                         else
1046                                 rbi->bi_iter.bi_sector = (sh->sector
1047                                                   + rrdev->data_offset);
1048                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1049                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1050                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1051                         rbi->bi_vcnt = 1;
1052                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1053                         rbi->bi_io_vec[0].bv_offset = 0;
1054                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1055                         /*
1056                          * If this is discard request, set bi_vcnt 0. We don't
1057                          * want to confuse SCSI because SCSI will replace payload
1058                          */
1059                         if (rw & REQ_DISCARD)
1060                                 rbi->bi_vcnt = 0;
1061                         if (conf->mddev->gendisk)
1062                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1063                                                       rbi, disk_devt(conf->mddev->gendisk),
1064                                                       sh->dev[i].sector);
1065                         generic_make_request(rbi);
1066                 }
1067                 if (!rdev && !rrdev) {
1068                         if (rw & WRITE)
1069                                 set_bit(STRIPE_DEGRADED, &sh->state);
1070                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1071                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1072                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1073                         if (sh->batch_head)
1074                                 set_bit(STRIPE_BATCH_ERR,
1075                                         &sh->batch_head->state);
1076                         set_bit(STRIPE_HANDLE, &sh->state);
1077                 }
1078
1079                 if (!head_sh->batch_head)
1080                         continue;
1081                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1082                                       batch_list);
1083                 if (sh != head_sh)
1084                         goto again;
1085         }
1086 }
1087
1088 static struct dma_async_tx_descriptor *
1089 async_copy_data(int frombio, struct bio *bio, struct page **page,
1090         sector_t sector, struct dma_async_tx_descriptor *tx,
1091         struct stripe_head *sh)
1092 {
1093         struct bio_vec bvl;
1094         struct bvec_iter iter;
1095         struct page *bio_page;
1096         int page_offset;
1097         struct async_submit_ctl submit;
1098         enum async_tx_flags flags = 0;
1099
1100         if (bio->bi_iter.bi_sector >= sector)
1101                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1102         else
1103                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1104
1105         if (frombio)
1106                 flags |= ASYNC_TX_FENCE;
1107         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1108
1109         bio_for_each_segment(bvl, bio, iter) {
1110                 int len = bvl.bv_len;
1111                 int clen;
1112                 int b_offset = 0;
1113
1114                 if (page_offset < 0) {
1115                         b_offset = -page_offset;
1116                         page_offset += b_offset;
1117                         len -= b_offset;
1118                 }
1119
1120                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1121                         clen = STRIPE_SIZE - page_offset;
1122                 else
1123                         clen = len;
1124
1125                 if (clen > 0) {
1126                         b_offset += bvl.bv_offset;
1127                         bio_page = bvl.bv_page;
1128                         if (frombio) {
1129                                 if (sh->raid_conf->skip_copy &&
1130                                     b_offset == 0 && page_offset == 0 &&
1131                                     clen == STRIPE_SIZE)
1132                                         *page = bio_page;
1133                                 else
1134                                         tx = async_memcpy(*page, bio_page, page_offset,
1135                                                   b_offset, clen, &submit);
1136                         } else
1137                                 tx = async_memcpy(bio_page, *page, b_offset,
1138                                                   page_offset, clen, &submit);
1139                 }
1140                 /* chain the operations */
1141                 submit.depend_tx = tx;
1142
1143                 if (clen < len) /* hit end of page */
1144                         break;
1145                 page_offset +=  len;
1146         }
1147
1148         return tx;
1149 }
1150
1151 static void ops_complete_biofill(void *stripe_head_ref)
1152 {
1153         struct stripe_head *sh = stripe_head_ref;
1154         struct bio *return_bi = NULL;
1155         int i;
1156
1157         pr_debug("%s: stripe %llu\n", __func__,
1158                 (unsigned long long)sh->sector);
1159
1160         /* clear completed biofills */
1161         for (i = sh->disks; i--; ) {
1162                 struct r5dev *dev = &sh->dev[i];
1163
1164                 /* acknowledge completion of a biofill operation */
1165                 /* and check if we need to reply to a read request,
1166                  * new R5_Wantfill requests are held off until
1167                  * !STRIPE_BIOFILL_RUN
1168                  */
1169                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1170                         struct bio *rbi, *rbi2;
1171
1172                         BUG_ON(!dev->read);
1173                         rbi = dev->read;
1174                         dev->read = NULL;
1175                         while (rbi && rbi->bi_iter.bi_sector <
1176                                 dev->sector + STRIPE_SECTORS) {
1177                                 rbi2 = r5_next_bio(rbi, dev->sector);
1178                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1179                                         rbi->bi_next = return_bi;
1180                                         return_bi = rbi;
1181                                 }
1182                                 rbi = rbi2;
1183                         }
1184                 }
1185         }
1186         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1187
1188         return_io(return_bi);
1189
1190         set_bit(STRIPE_HANDLE, &sh->state);
1191         release_stripe(sh);
1192 }
1193
1194 static void ops_run_biofill(struct stripe_head *sh)
1195 {
1196         struct dma_async_tx_descriptor *tx = NULL;
1197         struct async_submit_ctl submit;
1198         int i;
1199
1200         BUG_ON(sh->batch_head);
1201         pr_debug("%s: stripe %llu\n", __func__,
1202                 (unsigned long long)sh->sector);
1203
1204         for (i = sh->disks; i--; ) {
1205                 struct r5dev *dev = &sh->dev[i];
1206                 if (test_bit(R5_Wantfill, &dev->flags)) {
1207                         struct bio *rbi;
1208                         spin_lock_irq(&sh->stripe_lock);
1209                         dev->read = rbi = dev->toread;
1210                         dev->toread = NULL;
1211                         spin_unlock_irq(&sh->stripe_lock);
1212                         while (rbi && rbi->bi_iter.bi_sector <
1213                                 dev->sector + STRIPE_SECTORS) {
1214                                 tx = async_copy_data(0, rbi, &dev->page,
1215                                         dev->sector, tx, sh);
1216                                 rbi = r5_next_bio(rbi, dev->sector);
1217                         }
1218                 }
1219         }
1220
1221         atomic_inc(&sh->count);
1222         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1223         async_trigger_callback(&submit);
1224 }
1225
1226 static void mark_target_uptodate(struct stripe_head *sh, int target)
1227 {
1228         struct r5dev *tgt;
1229
1230         if (target < 0)
1231                 return;
1232
1233         tgt = &sh->dev[target];
1234         set_bit(R5_UPTODATE, &tgt->flags);
1235         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1236         clear_bit(R5_Wantcompute, &tgt->flags);
1237 }
1238
1239 static void ops_complete_compute(void *stripe_head_ref)
1240 {
1241         struct stripe_head *sh = stripe_head_ref;
1242
1243         pr_debug("%s: stripe %llu\n", __func__,
1244                 (unsigned long long)sh->sector);
1245
1246         /* mark the computed target(s) as uptodate */
1247         mark_target_uptodate(sh, sh->ops.target);
1248         mark_target_uptodate(sh, sh->ops.target2);
1249
1250         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1251         if (sh->check_state == check_state_compute_run)
1252                 sh->check_state = check_state_compute_result;
1253         set_bit(STRIPE_HANDLE, &sh->state);
1254         release_stripe(sh);
1255 }
1256
1257 /* return a pointer to the address conversion region of the scribble buffer */
1258 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1259                                  struct raid5_percpu *percpu, int i)
1260 {
1261         void *addr;
1262
1263         addr = flex_array_get(percpu->scribble, i);
1264         return addr + sizeof(struct page *) * (sh->disks + 2);
1265 }
1266
1267 /* return a pointer to the address conversion region of the scribble buffer */
1268 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1269 {
1270         void *addr;
1271
1272         addr = flex_array_get(percpu->scribble, i);
1273         return addr;
1274 }
1275
1276 static struct dma_async_tx_descriptor *
1277 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1278 {
1279         int disks = sh->disks;
1280         struct page **xor_srcs = to_addr_page(percpu, 0);
1281         int target = sh->ops.target;
1282         struct r5dev *tgt = &sh->dev[target];
1283         struct page *xor_dest = tgt->page;
1284         int count = 0;
1285         struct dma_async_tx_descriptor *tx;
1286         struct async_submit_ctl submit;
1287         int i;
1288
1289         BUG_ON(sh->batch_head);
1290
1291         pr_debug("%s: stripe %llu block: %d\n",
1292                 __func__, (unsigned long long)sh->sector, target);
1293         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1294
1295         for (i = disks; i--; )
1296                 if (i != target)
1297                         xor_srcs[count++] = sh->dev[i].page;
1298
1299         atomic_inc(&sh->count);
1300
1301         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1302                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1303         if (unlikely(count == 1))
1304                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1305         else
1306                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1307
1308         return tx;
1309 }
1310
1311 /* set_syndrome_sources - populate source buffers for gen_syndrome
1312  * @srcs - (struct page *) array of size sh->disks
1313  * @sh - stripe_head to parse
1314  *
1315  * Populates srcs in proper layout order for the stripe and returns the
1316  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1317  * destination buffer is recorded in srcs[count] and the Q destination
1318  * is recorded in srcs[count+1]].
1319  */
1320 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1321 {
1322         int disks = sh->disks;
1323         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1324         int d0_idx = raid6_d0(sh);
1325         int count;
1326         int i;
1327
1328         for (i = 0; i < disks; i++)
1329                 srcs[i] = NULL;
1330
1331         count = 0;
1332         i = d0_idx;
1333         do {
1334                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1335
1336                 srcs[slot] = sh->dev[i].page;
1337                 i = raid6_next_disk(i, disks);
1338         } while (i != d0_idx);
1339
1340         return syndrome_disks;
1341 }
1342
1343 static struct dma_async_tx_descriptor *
1344 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1345 {
1346         int disks = sh->disks;
1347         struct page **blocks = to_addr_page(percpu, 0);
1348         int target;
1349         int qd_idx = sh->qd_idx;
1350         struct dma_async_tx_descriptor *tx;
1351         struct async_submit_ctl submit;
1352         struct r5dev *tgt;
1353         struct page *dest;
1354         int i;
1355         int count;
1356
1357         BUG_ON(sh->batch_head);
1358         if (sh->ops.target < 0)
1359                 target = sh->ops.target2;
1360         else if (sh->ops.target2 < 0)
1361                 target = sh->ops.target;
1362         else
1363                 /* we should only have one valid target */
1364                 BUG();
1365         BUG_ON(target < 0);
1366         pr_debug("%s: stripe %llu block: %d\n",
1367                 __func__, (unsigned long long)sh->sector, target);
1368
1369         tgt = &sh->dev[target];
1370         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1371         dest = tgt->page;
1372
1373         atomic_inc(&sh->count);
1374
1375         if (target == qd_idx) {
1376                 count = set_syndrome_sources(blocks, sh);
1377                 blocks[count] = NULL; /* regenerating p is not necessary */
1378                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1379                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1380                                   ops_complete_compute, sh,
1381                                   to_addr_conv(sh, percpu, 0));
1382                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1383         } else {
1384                 /* Compute any data- or p-drive using XOR */
1385                 count = 0;
1386                 for (i = disks; i-- ; ) {
1387                         if (i == target || i == qd_idx)
1388                                 continue;
1389                         blocks[count++] = sh->dev[i].page;
1390                 }
1391
1392                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1393                                   NULL, ops_complete_compute, sh,
1394                                   to_addr_conv(sh, percpu, 0));
1395                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1396         }
1397
1398         return tx;
1399 }
1400
1401 static struct dma_async_tx_descriptor *
1402 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1403 {
1404         int i, count, disks = sh->disks;
1405         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1406         int d0_idx = raid6_d0(sh);
1407         int faila = -1, failb = -1;
1408         int target = sh->ops.target;
1409         int target2 = sh->ops.target2;
1410         struct r5dev *tgt = &sh->dev[target];
1411         struct r5dev *tgt2 = &sh->dev[target2];
1412         struct dma_async_tx_descriptor *tx;
1413         struct page **blocks = to_addr_page(percpu, 0);
1414         struct async_submit_ctl submit;
1415
1416         BUG_ON(sh->batch_head);
1417         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1418                  __func__, (unsigned long long)sh->sector, target, target2);
1419         BUG_ON(target < 0 || target2 < 0);
1420         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1421         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1422
1423         /* we need to open-code set_syndrome_sources to handle the
1424          * slot number conversion for 'faila' and 'failb'
1425          */
1426         for (i = 0; i < disks ; i++)
1427                 blocks[i] = NULL;
1428         count = 0;
1429         i = d0_idx;
1430         do {
1431                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1432
1433                 blocks[slot] = sh->dev[i].page;
1434
1435                 if (i == target)
1436                         faila = slot;
1437                 if (i == target2)
1438                         failb = slot;
1439                 i = raid6_next_disk(i, disks);
1440         } while (i != d0_idx);
1441
1442         BUG_ON(faila == failb);
1443         if (failb < faila)
1444                 swap(faila, failb);
1445         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1446                  __func__, (unsigned long long)sh->sector, faila, failb);
1447
1448         atomic_inc(&sh->count);
1449
1450         if (failb == syndrome_disks+1) {
1451                 /* Q disk is one of the missing disks */
1452                 if (faila == syndrome_disks) {
1453                         /* Missing P+Q, just recompute */
1454                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1455                                           ops_complete_compute, sh,
1456                                           to_addr_conv(sh, percpu, 0));
1457                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1458                                                   STRIPE_SIZE, &submit);
1459                 } else {
1460                         struct page *dest;
1461                         int data_target;
1462                         int qd_idx = sh->qd_idx;
1463
1464                         /* Missing D+Q: recompute D from P, then recompute Q */
1465                         if (target == qd_idx)
1466                                 data_target = target2;
1467                         else
1468                                 data_target = target;
1469
1470                         count = 0;
1471                         for (i = disks; i-- ; ) {
1472                                 if (i == data_target || i == qd_idx)
1473                                         continue;
1474                                 blocks[count++] = sh->dev[i].page;
1475                         }
1476                         dest = sh->dev[data_target].page;
1477                         init_async_submit(&submit,
1478                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1479                                           NULL, NULL, NULL,
1480                                           to_addr_conv(sh, percpu, 0));
1481                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1482                                        &submit);
1483
1484                         count = set_syndrome_sources(blocks, sh);
1485                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1486                                           ops_complete_compute, sh,
1487                                           to_addr_conv(sh, percpu, 0));
1488                         return async_gen_syndrome(blocks, 0, count+2,
1489                                                   STRIPE_SIZE, &submit);
1490                 }
1491         } else {
1492                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1493                                   ops_complete_compute, sh,
1494                                   to_addr_conv(sh, percpu, 0));
1495                 if (failb == syndrome_disks) {
1496                         /* We're missing D+P. */
1497                         return async_raid6_datap_recov(syndrome_disks+2,
1498                                                        STRIPE_SIZE, faila,
1499                                                        blocks, &submit);
1500                 } else {
1501                         /* We're missing D+D. */
1502                         return async_raid6_2data_recov(syndrome_disks+2,
1503                                                        STRIPE_SIZE, faila, failb,
1504                                                        blocks, &submit);
1505                 }
1506         }
1507 }
1508
1509 static void ops_complete_prexor(void *stripe_head_ref)
1510 {
1511         struct stripe_head *sh = stripe_head_ref;
1512
1513         pr_debug("%s: stripe %llu\n", __func__,
1514                 (unsigned long long)sh->sector);
1515 }
1516
1517 static struct dma_async_tx_descriptor *
1518 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1519                struct dma_async_tx_descriptor *tx)
1520 {
1521         int disks = sh->disks;
1522         struct page **xor_srcs = to_addr_page(percpu, 0);
1523         int count = 0, pd_idx = sh->pd_idx, i;
1524         struct async_submit_ctl submit;
1525
1526         /* existing parity data subtracted */
1527         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1528
1529         BUG_ON(sh->batch_head);
1530         pr_debug("%s: stripe %llu\n", __func__,
1531                 (unsigned long long)sh->sector);
1532
1533         for (i = disks; i--; ) {
1534                 struct r5dev *dev = &sh->dev[i];
1535                 /* Only process blocks that are known to be uptodate */
1536                 if (test_bit(R5_Wantdrain, &dev->flags))
1537                         xor_srcs[count++] = dev->page;
1538         }
1539
1540         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1541                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1542         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1543
1544         return tx;
1545 }
1546
1547 static struct dma_async_tx_descriptor *
1548 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1549 {
1550         int disks = sh->disks;
1551         int i;
1552         struct stripe_head *head_sh = sh;
1553
1554         pr_debug("%s: stripe %llu\n", __func__,
1555                 (unsigned long long)sh->sector);
1556
1557         for (i = disks; i--; ) {
1558                 struct r5dev *dev;
1559                 struct bio *chosen;
1560
1561                 sh = head_sh;
1562                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1563                         struct bio *wbi;
1564
1565 again:
1566                         dev = &sh->dev[i];
1567                         spin_lock_irq(&sh->stripe_lock);
1568                         chosen = dev->towrite;
1569                         dev->towrite = NULL;
1570                         sh->overwrite_disks = 0;
1571                         BUG_ON(dev->written);
1572                         wbi = dev->written = chosen;
1573                         spin_unlock_irq(&sh->stripe_lock);
1574                         WARN_ON(dev->page != dev->orig_page);
1575
1576                         while (wbi && wbi->bi_iter.bi_sector <
1577                                 dev->sector + STRIPE_SECTORS) {
1578                                 if (wbi->bi_rw & REQ_FUA)
1579                                         set_bit(R5_WantFUA, &dev->flags);
1580                                 if (wbi->bi_rw & REQ_SYNC)
1581                                         set_bit(R5_SyncIO, &dev->flags);
1582                                 if (wbi->bi_rw & REQ_DISCARD)
1583                                         set_bit(R5_Discard, &dev->flags);
1584                                 else {
1585                                         tx = async_copy_data(1, wbi, &dev->page,
1586                                                 dev->sector, tx, sh);
1587                                         if (dev->page != dev->orig_page) {
1588                                                 set_bit(R5_SkipCopy, &dev->flags);
1589                                                 clear_bit(R5_UPTODATE, &dev->flags);
1590                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1591                                         }
1592                                 }
1593                                 wbi = r5_next_bio(wbi, dev->sector);
1594                         }
1595
1596                         if (head_sh->batch_head) {
1597                                 sh = list_first_entry(&sh->batch_list,
1598                                                       struct stripe_head,
1599                                                       batch_list);
1600                                 if (sh == head_sh)
1601                                         continue;
1602                                 goto again;
1603                         }
1604                 }
1605         }
1606
1607         return tx;
1608 }
1609
1610 static void ops_complete_reconstruct(void *stripe_head_ref)
1611 {
1612         struct stripe_head *sh = stripe_head_ref;
1613         int disks = sh->disks;
1614         int pd_idx = sh->pd_idx;
1615         int qd_idx = sh->qd_idx;
1616         int i;
1617         bool fua = false, sync = false, discard = false;
1618
1619         pr_debug("%s: stripe %llu\n", __func__,
1620                 (unsigned long long)sh->sector);
1621
1622         for (i = disks; i--; ) {
1623                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1624                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1625                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1626         }
1627
1628         for (i = disks; i--; ) {
1629                 struct r5dev *dev = &sh->dev[i];
1630
1631                 if (dev->written || i == pd_idx || i == qd_idx) {
1632                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1633                                 set_bit(R5_UPTODATE, &dev->flags);
1634                         if (fua)
1635                                 set_bit(R5_WantFUA, &dev->flags);
1636                         if (sync)
1637                                 set_bit(R5_SyncIO, &dev->flags);
1638                 }
1639         }
1640
1641         if (sh->reconstruct_state == reconstruct_state_drain_run)
1642                 sh->reconstruct_state = reconstruct_state_drain_result;
1643         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1644                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1645         else {
1646                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1647                 sh->reconstruct_state = reconstruct_state_result;
1648         }
1649
1650         set_bit(STRIPE_HANDLE, &sh->state);
1651         release_stripe(sh);
1652 }
1653
1654 static void
1655 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1656                      struct dma_async_tx_descriptor *tx)
1657 {
1658         int disks = sh->disks;
1659         struct page **xor_srcs;
1660         struct async_submit_ctl submit;
1661         int count, pd_idx = sh->pd_idx, i;
1662         struct page *xor_dest;
1663         int prexor = 0;
1664         unsigned long flags;
1665         int j = 0;
1666         struct stripe_head *head_sh = sh;
1667         int last_stripe;
1668
1669         pr_debug("%s: stripe %llu\n", __func__,
1670                 (unsigned long long)sh->sector);
1671
1672         for (i = 0; i < sh->disks; i++) {
1673                 if (pd_idx == i)
1674                         continue;
1675                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1676                         break;
1677         }
1678         if (i >= sh->disks) {
1679                 atomic_inc(&sh->count);
1680                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1681                 ops_complete_reconstruct(sh);
1682                 return;
1683         }
1684 again:
1685         count = 0;
1686         xor_srcs = to_addr_page(percpu, j);
1687         /* check if prexor is active which means only process blocks
1688          * that are part of a read-modify-write (written)
1689          */
1690         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1691                 prexor = 1;
1692                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1693                 for (i = disks; i--; ) {
1694                         struct r5dev *dev = &sh->dev[i];
1695                         if (head_sh->dev[i].written)
1696                                 xor_srcs[count++] = dev->page;
1697                 }
1698         } else {
1699                 xor_dest = sh->dev[pd_idx].page;
1700                 for (i = disks; i--; ) {
1701                         struct r5dev *dev = &sh->dev[i];
1702                         if (i != pd_idx)
1703                                 xor_srcs[count++] = dev->page;
1704                 }
1705         }
1706
1707         /* 1/ if we prexor'd then the dest is reused as a source
1708          * 2/ if we did not prexor then we are redoing the parity
1709          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1710          * for the synchronous xor case
1711          */
1712         last_stripe = !head_sh->batch_head ||
1713                 list_first_entry(&sh->batch_list,
1714                                  struct stripe_head, batch_list) == head_sh;
1715         if (last_stripe) {
1716                 flags = ASYNC_TX_ACK |
1717                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1718
1719                 atomic_inc(&head_sh->count);
1720                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1721                                   to_addr_conv(sh, percpu, j));
1722         } else {
1723                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1724                 init_async_submit(&submit, flags, tx, NULL, NULL,
1725                                   to_addr_conv(sh, percpu, j));
1726         }
1727
1728         if (unlikely(count == 1))
1729                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1730         else
1731                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1732         if (!last_stripe) {
1733                 j++;
1734                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1735                                       batch_list);
1736                 goto again;
1737         }
1738 }
1739
1740 static void
1741 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1742                      struct dma_async_tx_descriptor *tx)
1743 {
1744         struct async_submit_ctl submit;
1745         struct page **blocks;
1746         int count, i, j = 0;
1747         struct stripe_head *head_sh = sh;
1748         int last_stripe;
1749
1750         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1751
1752         for (i = 0; i < sh->disks; i++) {
1753                 if (sh->pd_idx == i || sh->qd_idx == i)
1754                         continue;
1755                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1756                         break;
1757         }
1758         if (i >= sh->disks) {
1759                 atomic_inc(&sh->count);
1760                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1761                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1762                 ops_complete_reconstruct(sh);
1763                 return;
1764         }
1765
1766 again:
1767         blocks = to_addr_page(percpu, j);
1768         count = set_syndrome_sources(blocks, sh);
1769         last_stripe = !head_sh->batch_head ||
1770                 list_first_entry(&sh->batch_list,
1771                                  struct stripe_head, batch_list) == head_sh;
1772
1773         if (last_stripe) {
1774                 atomic_inc(&head_sh->count);
1775                 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1776                                   head_sh, to_addr_conv(sh, percpu, j));
1777         } else
1778                 init_async_submit(&submit, 0, tx, NULL, NULL,
1779                                   to_addr_conv(sh, percpu, j));
1780         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1781         if (!last_stripe) {
1782                 j++;
1783                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1784                                       batch_list);
1785                 goto again;
1786         }
1787 }
1788
1789 static void ops_complete_check(void *stripe_head_ref)
1790 {
1791         struct stripe_head *sh = stripe_head_ref;
1792
1793         pr_debug("%s: stripe %llu\n", __func__,
1794                 (unsigned long long)sh->sector);
1795
1796         sh->check_state = check_state_check_result;
1797         set_bit(STRIPE_HANDLE, &sh->state);
1798         release_stripe(sh);
1799 }
1800
1801 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1802 {
1803         int disks = sh->disks;
1804         int pd_idx = sh->pd_idx;
1805         int qd_idx = sh->qd_idx;
1806         struct page *xor_dest;
1807         struct page **xor_srcs = to_addr_page(percpu, 0);
1808         struct dma_async_tx_descriptor *tx;
1809         struct async_submit_ctl submit;
1810         int count;
1811         int i;
1812
1813         pr_debug("%s: stripe %llu\n", __func__,
1814                 (unsigned long long)sh->sector);
1815
1816         BUG_ON(sh->batch_head);
1817         count = 0;
1818         xor_dest = sh->dev[pd_idx].page;
1819         xor_srcs[count++] = xor_dest;
1820         for (i = disks; i--; ) {
1821                 if (i == pd_idx || i == qd_idx)
1822                         continue;
1823                 xor_srcs[count++] = sh->dev[i].page;
1824         }
1825
1826         init_async_submit(&submit, 0, NULL, NULL, NULL,
1827                           to_addr_conv(sh, percpu, 0));
1828         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1829                            &sh->ops.zero_sum_result, &submit);
1830
1831         atomic_inc(&sh->count);
1832         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1833         tx = async_trigger_callback(&submit);
1834 }
1835
1836 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1837 {
1838         struct page **srcs = to_addr_page(percpu, 0);
1839         struct async_submit_ctl submit;
1840         int count;
1841
1842         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1843                 (unsigned long long)sh->sector, checkp);
1844
1845         BUG_ON(sh->batch_head);
1846         count = set_syndrome_sources(srcs, sh);
1847         if (!checkp)
1848                 srcs[count] = NULL;
1849
1850         atomic_inc(&sh->count);
1851         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1852                           sh, to_addr_conv(sh, percpu, 0));
1853         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1854                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1855 }
1856
1857 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1858 {
1859         int overlap_clear = 0, i, disks = sh->disks;
1860         struct dma_async_tx_descriptor *tx = NULL;
1861         struct r5conf *conf = sh->raid_conf;
1862         int level = conf->level;
1863         struct raid5_percpu *percpu;
1864         unsigned long cpu;
1865
1866         cpu = get_cpu();
1867         percpu = per_cpu_ptr(conf->percpu, cpu);
1868         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1869                 ops_run_biofill(sh);
1870                 overlap_clear++;
1871         }
1872
1873         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1874                 if (level < 6)
1875                         tx = ops_run_compute5(sh, percpu);
1876                 else {
1877                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1878                                 tx = ops_run_compute6_1(sh, percpu);
1879                         else
1880                                 tx = ops_run_compute6_2(sh, percpu);
1881                 }
1882                 /* terminate the chain if reconstruct is not set to be run */
1883                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1884                         async_tx_ack(tx);
1885         }
1886
1887         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1888                 tx = ops_run_prexor(sh, percpu, tx);
1889
1890         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1891                 tx = ops_run_biodrain(sh, tx);
1892                 overlap_clear++;
1893         }
1894
1895         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1896                 if (level < 6)
1897                         ops_run_reconstruct5(sh, percpu, tx);
1898                 else
1899                         ops_run_reconstruct6(sh, percpu, tx);
1900         }
1901
1902         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1903                 if (sh->check_state == check_state_run)
1904                         ops_run_check_p(sh, percpu);
1905                 else if (sh->check_state == check_state_run_q)
1906                         ops_run_check_pq(sh, percpu, 0);
1907                 else if (sh->check_state == check_state_run_pq)
1908                         ops_run_check_pq(sh, percpu, 1);
1909                 else
1910                         BUG();
1911         }
1912
1913         if (overlap_clear && !sh->batch_head)
1914                 for (i = disks; i--; ) {
1915                         struct r5dev *dev = &sh->dev[i];
1916                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1917                                 wake_up(&sh->raid_conf->wait_for_overlap);
1918                 }
1919         put_cpu();
1920 }
1921
1922 static int grow_one_stripe(struct r5conf *conf, int hash)
1923 {
1924         struct stripe_head *sh;
1925         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1926         if (!sh)
1927                 return 0;
1928
1929         sh->raid_conf = conf;
1930
1931         spin_lock_init(&sh->stripe_lock);
1932
1933         if (grow_buffers(sh)) {
1934                 shrink_buffers(sh);
1935                 kmem_cache_free(conf->slab_cache, sh);
1936                 return 0;
1937         }
1938         sh->hash_lock_index = hash;
1939         /* we just created an active stripe so... */
1940         atomic_set(&sh->count, 1);
1941         atomic_inc(&conf->active_stripes);
1942         INIT_LIST_HEAD(&sh->lru);
1943
1944         spin_lock_init(&sh->batch_lock);
1945         INIT_LIST_HEAD(&sh->batch_list);
1946         sh->batch_head = NULL;
1947         release_stripe(sh);
1948         return 1;
1949 }
1950
1951 static int grow_stripes(struct r5conf *conf, int num)
1952 {
1953         struct kmem_cache *sc;
1954         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1955         int hash;
1956
1957         if (conf->mddev->gendisk)
1958                 sprintf(conf->cache_name[0],
1959                         "raid%d-%s", conf->level, mdname(conf->mddev));
1960         else
1961                 sprintf(conf->cache_name[0],
1962                         "raid%d-%p", conf->level, conf->mddev);
1963         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1964
1965         conf->active_name = 0;
1966         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1967                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1968                                0, 0, NULL);
1969         if (!sc)
1970                 return 1;
1971         conf->slab_cache = sc;
1972         conf->pool_size = devs;
1973         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1974         while (num--) {
1975                 if (!grow_one_stripe(conf, hash))
1976                         return 1;
1977                 conf->max_nr_stripes++;
1978                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1979         }
1980         return 0;
1981 }
1982
1983 /**
1984  * scribble_len - return the required size of the scribble region
1985  * @num - total number of disks in the array
1986  *
1987  * The size must be enough to contain:
1988  * 1/ a struct page pointer for each device in the array +2
1989  * 2/ room to convert each entry in (1) to its corresponding dma
1990  *    (dma_map_page()) or page (page_address()) address.
1991  *
1992  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1993  * calculate over all devices (not just the data blocks), using zeros in place
1994  * of the P and Q blocks.
1995  */
1996 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
1997 {
1998         struct flex_array *ret;
1999         size_t len;
2000
2001         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2002         ret = flex_array_alloc(len, cnt, flags);
2003         if (!ret)
2004                 return NULL;
2005         /* always prealloc all elements, so no locking is required */
2006         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2007                 flex_array_free(ret);
2008                 return NULL;
2009         }
2010         return ret;
2011 }
2012
2013 static int resize_stripes(struct r5conf *conf, int newsize)
2014 {
2015         /* Make all the stripes able to hold 'newsize' devices.
2016          * New slots in each stripe get 'page' set to a new page.
2017          *
2018          * This happens in stages:
2019          * 1/ create a new kmem_cache and allocate the required number of
2020          *    stripe_heads.
2021          * 2/ gather all the old stripe_heads and transfer the pages across
2022          *    to the new stripe_heads.  This will have the side effect of
2023          *    freezing the array as once all stripe_heads have been collected,
2024          *    no IO will be possible.  Old stripe heads are freed once their
2025          *    pages have been transferred over, and the old kmem_cache is
2026          *    freed when all stripes are done.
2027          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2028          *    we simple return a failre status - no need to clean anything up.
2029          * 4/ allocate new pages for the new slots in the new stripe_heads.
2030          *    If this fails, we don't bother trying the shrink the
2031          *    stripe_heads down again, we just leave them as they are.
2032          *    As each stripe_head is processed the new one is released into
2033          *    active service.
2034          *
2035          * Once step2 is started, we cannot afford to wait for a write,
2036          * so we use GFP_NOIO allocations.
2037          */
2038         struct stripe_head *osh, *nsh;
2039         LIST_HEAD(newstripes);
2040         struct disk_info *ndisks;
2041         unsigned long cpu;
2042         int err;
2043         struct kmem_cache *sc;
2044         int i;
2045         int hash, cnt;
2046
2047         if (newsize <= conf->pool_size)
2048                 return 0; /* never bother to shrink */
2049
2050         err = md_allow_write(conf->mddev);
2051         if (err)
2052                 return err;
2053
2054         /* Step 1 */
2055         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2056                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2057                                0, 0, NULL);
2058         if (!sc)
2059                 return -ENOMEM;
2060
2061         for (i = conf->max_nr_stripes; i; i--) {
2062                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
2063                 if (!nsh)
2064                         break;
2065
2066                 nsh->raid_conf = conf;
2067                 spin_lock_init(&nsh->stripe_lock);
2068
2069                 list_add(&nsh->lru, &newstripes);
2070         }
2071         if (i) {
2072                 /* didn't get enough, give up */
2073                 while (!list_empty(&newstripes)) {
2074                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2075                         list_del(&nsh->lru);
2076                         kmem_cache_free(sc, nsh);
2077                 }
2078                 kmem_cache_destroy(sc);
2079                 return -ENOMEM;
2080         }
2081         /* Step 2 - Must use GFP_NOIO now.
2082          * OK, we have enough stripes, start collecting inactive
2083          * stripes and copying them over
2084          */
2085         hash = 0;
2086         cnt = 0;
2087         list_for_each_entry(nsh, &newstripes, lru) {
2088                 lock_device_hash_lock(conf, hash);
2089                 wait_event_cmd(conf->wait_for_stripe,
2090                                     !list_empty(conf->inactive_list + hash),
2091                                     unlock_device_hash_lock(conf, hash),
2092                                     lock_device_hash_lock(conf, hash));
2093                 osh = get_free_stripe(conf, hash);
2094                 unlock_device_hash_lock(conf, hash);
2095                 atomic_set(&nsh->count, 1);
2096                 for(i=0; i<conf->pool_size; i++) {
2097                         nsh->dev[i].page = osh->dev[i].page;
2098                         nsh->dev[i].orig_page = osh->dev[i].page;
2099                 }
2100                 for( ; i<newsize; i++)
2101                         nsh->dev[i].page = NULL;
2102                 nsh->hash_lock_index = hash;
2103                 kmem_cache_free(conf->slab_cache, osh);
2104                 cnt++;
2105                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2106                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2107                         hash++;
2108                         cnt = 0;
2109                 }
2110         }
2111         kmem_cache_destroy(conf->slab_cache);
2112
2113         /* Step 3.
2114          * At this point, we are holding all the stripes so the array
2115          * is completely stalled, so now is a good time to resize
2116          * conf->disks and the scribble region
2117          */
2118         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2119         if (ndisks) {
2120                 for (i=0; i<conf->raid_disks; i++)
2121                         ndisks[i] = conf->disks[i];
2122                 kfree(conf->disks);
2123                 conf->disks = ndisks;
2124         } else
2125                 err = -ENOMEM;
2126
2127         get_online_cpus();
2128         for_each_present_cpu(cpu) {
2129                 struct raid5_percpu *percpu;
2130                 struct flex_array *scribble;
2131
2132                 percpu = per_cpu_ptr(conf->percpu, cpu);
2133                 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2134                         STRIPE_SECTORS, GFP_NOIO);
2135
2136                 if (scribble) {
2137                         flex_array_free(percpu->scribble);
2138                         percpu->scribble = scribble;
2139                 } else {
2140                         err = -ENOMEM;
2141                         break;
2142                 }
2143         }
2144         put_online_cpus();
2145
2146         /* Step 4, return new stripes to service */
2147         while(!list_empty(&newstripes)) {
2148                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2149                 list_del_init(&nsh->lru);
2150
2151                 for (i=conf->raid_disks; i < newsize; i++)
2152                         if (nsh->dev[i].page == NULL) {
2153                                 struct page *p = alloc_page(GFP_NOIO);
2154                                 nsh->dev[i].page = p;
2155                                 nsh->dev[i].orig_page = p;
2156                                 if (!p)
2157                                         err = -ENOMEM;
2158                         }
2159                 release_stripe(nsh);
2160         }
2161         /* critical section pass, GFP_NOIO no longer needed */
2162
2163         conf->slab_cache = sc;
2164         conf->active_name = 1-conf->active_name;
2165         conf->pool_size = newsize;
2166         return err;
2167 }
2168
2169 static int drop_one_stripe(struct r5conf *conf, int hash)
2170 {
2171         struct stripe_head *sh;
2172
2173         spin_lock_irq(conf->hash_locks + hash);
2174         sh = get_free_stripe(conf, hash);
2175         spin_unlock_irq(conf->hash_locks + hash);
2176         if (!sh)
2177                 return 0;
2178         BUG_ON(atomic_read(&sh->count));
2179         shrink_buffers(sh);
2180         kmem_cache_free(conf->slab_cache, sh);
2181         atomic_dec(&conf->active_stripes);
2182         return 1;
2183 }
2184
2185 static void shrink_stripes(struct r5conf *conf)
2186 {
2187         int hash;
2188         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
2189                 while (drop_one_stripe(conf, hash))
2190                         ;
2191
2192         if (conf->slab_cache)
2193                 kmem_cache_destroy(conf->slab_cache);
2194         conf->slab_cache = NULL;
2195 }
2196
2197 static void raid5_end_read_request(struct bio * bi, int error)
2198 {
2199         struct stripe_head *sh = bi->bi_private;
2200         struct r5conf *conf = sh->raid_conf;
2201         int disks = sh->disks, i;
2202         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2203         char b[BDEVNAME_SIZE];
2204         struct md_rdev *rdev = NULL;
2205         sector_t s;
2206
2207         for (i=0 ; i<disks; i++)
2208                 if (bi == &sh->dev[i].req)
2209                         break;
2210
2211         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2212                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2213                 uptodate);
2214         if (i == disks) {
2215                 BUG();
2216                 return;
2217         }
2218         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2219                 /* If replacement finished while this request was outstanding,
2220                  * 'replacement' might be NULL already.
2221                  * In that case it moved down to 'rdev'.
2222                  * rdev is not removed until all requests are finished.
2223                  */
2224                 rdev = conf->disks[i].replacement;
2225         if (!rdev)
2226                 rdev = conf->disks[i].rdev;
2227
2228         if (use_new_offset(conf, sh))
2229                 s = sh->sector + rdev->new_data_offset;
2230         else
2231                 s = sh->sector + rdev->data_offset;
2232         if (uptodate) {
2233                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2234                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2235                         /* Note that this cannot happen on a
2236                          * replacement device.  We just fail those on
2237                          * any error
2238                          */
2239                         printk_ratelimited(
2240                                 KERN_INFO
2241                                 "md/raid:%s: read error corrected"
2242                                 " (%lu sectors at %llu on %s)\n",
2243                                 mdname(conf->mddev), STRIPE_SECTORS,
2244                                 (unsigned long long)s,
2245                                 bdevname(rdev->bdev, b));
2246                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2247                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2248                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2249                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2250                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2251
2252                 if (atomic_read(&rdev->read_errors))
2253                         atomic_set(&rdev->read_errors, 0);
2254         } else {
2255                 const char *bdn = bdevname(rdev->bdev, b);
2256                 int retry = 0;
2257                 int set_bad = 0;
2258
2259                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2260                 atomic_inc(&rdev->read_errors);
2261                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2262                         printk_ratelimited(
2263                                 KERN_WARNING
2264                                 "md/raid:%s: read error on replacement device "
2265                                 "(sector %llu on %s).\n",
2266                                 mdname(conf->mddev),
2267                                 (unsigned long long)s,
2268                                 bdn);
2269                 else if (conf->mddev->degraded >= conf->max_degraded) {
2270                         set_bad = 1;
2271                         printk_ratelimited(
2272                                 KERN_WARNING
2273                                 "md/raid:%s: read error not correctable "
2274                                 "(sector %llu on %s).\n",
2275                                 mdname(conf->mddev),
2276                                 (unsigned long long)s,
2277                                 bdn);
2278                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2279                         /* Oh, no!!! */
2280                         set_bad = 1;
2281                         printk_ratelimited(
2282                                 KERN_WARNING
2283                                 "md/raid:%s: read error NOT corrected!! "
2284                                 "(sector %llu on %s).\n",
2285                                 mdname(conf->mddev),
2286                                 (unsigned long long)s,
2287                                 bdn);
2288                 } else if (atomic_read(&rdev->read_errors)
2289                          > conf->max_nr_stripes)
2290                         printk(KERN_WARNING
2291                                "md/raid:%s: Too many read errors, failing device %s.\n",
2292                                mdname(conf->mddev), bdn);
2293                 else
2294                         retry = 1;
2295                 if (set_bad && test_bit(In_sync, &rdev->flags)
2296                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2297                         retry = 1;
2298                 if (retry)
2299                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2300                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2301                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2302                         } else
2303                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2304                 else {
2305                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2306                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2307                         if (!(set_bad
2308                               && test_bit(In_sync, &rdev->flags)
2309                               && rdev_set_badblocks(
2310                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2311                                 md_error(conf->mddev, rdev);
2312                 }
2313         }
2314         rdev_dec_pending(rdev, conf->mddev);
2315         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2316         set_bit(STRIPE_HANDLE, &sh->state);
2317         release_stripe(sh);
2318 }
2319
2320 static void raid5_end_write_request(struct bio *bi, int error)
2321 {
2322         struct stripe_head *sh = bi->bi_private;
2323         struct r5conf *conf = sh->raid_conf;
2324         int disks = sh->disks, i;
2325         struct md_rdev *uninitialized_var(rdev);
2326         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2327         sector_t first_bad;
2328         int bad_sectors;
2329         int replacement = 0;
2330
2331         for (i = 0 ; i < disks; i++) {
2332                 if (bi == &sh->dev[i].req) {
2333                         rdev = conf->disks[i].rdev;
2334                         break;
2335                 }
2336                 if (bi == &sh->dev[i].rreq) {
2337                         rdev = conf->disks[i].replacement;
2338                         if (rdev)
2339                                 replacement = 1;
2340                         else
2341                                 /* rdev was removed and 'replacement'
2342                                  * replaced it.  rdev is not removed
2343                                  * until all requests are finished.
2344                                  */
2345                                 rdev = conf->disks[i].rdev;
2346                         break;
2347                 }
2348         }
2349         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2350                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2351                 uptodate);
2352         if (i == disks) {
2353                 BUG();
2354                 return;
2355         }
2356
2357         if (replacement) {
2358                 if (!uptodate)
2359                         md_error(conf->mddev, rdev);
2360                 else if (is_badblock(rdev, sh->sector,
2361                                      STRIPE_SECTORS,
2362                                      &first_bad, &bad_sectors))
2363                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2364         } else {
2365                 if (!uptodate) {
2366                         set_bit(STRIPE_DEGRADED, &sh->state);
2367                         set_bit(WriteErrorSeen, &rdev->flags);
2368                         set_bit(R5_WriteError, &sh->dev[i].flags);
2369                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2370                                 set_bit(MD_RECOVERY_NEEDED,
2371                                         &rdev->mddev->recovery);
2372                 } else if (is_badblock(rdev, sh->sector,
2373                                        STRIPE_SECTORS,
2374                                        &first_bad, &bad_sectors)) {
2375                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2376                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2377                                 /* That was a successful write so make
2378                                  * sure it looks like we already did
2379                                  * a re-write.
2380                                  */
2381                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2382                 }
2383         }
2384         rdev_dec_pending(rdev, conf->mddev);
2385
2386         if (sh->batch_head && !uptodate)
2387                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2388
2389         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2390                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2391         set_bit(STRIPE_HANDLE, &sh->state);
2392         release_stripe(sh);
2393
2394         if (sh->batch_head && sh != sh->batch_head)
2395                 release_stripe(sh->batch_head);
2396 }
2397
2398 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2399
2400 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2401 {
2402         struct r5dev *dev = &sh->dev[i];
2403
2404         bio_init(&dev->req);
2405         dev->req.bi_io_vec = &dev->vec;
2406         dev->req.bi_max_vecs = 1;
2407         dev->req.bi_private = sh;
2408
2409         bio_init(&dev->rreq);
2410         dev->rreq.bi_io_vec = &dev->rvec;
2411         dev->rreq.bi_max_vecs = 1;
2412         dev->rreq.bi_private = sh;
2413
2414         dev->flags = 0;
2415         dev->sector = compute_blocknr(sh, i, previous);
2416 }
2417
2418 static void error(struct mddev *mddev, struct md_rdev *rdev)
2419 {
2420         char b[BDEVNAME_SIZE];
2421         struct r5conf *conf = mddev->private;
2422         unsigned long flags;
2423         pr_debug("raid456: error called\n");
2424
2425         spin_lock_irqsave(&conf->device_lock, flags);
2426         clear_bit(In_sync, &rdev->flags);
2427         mddev->degraded = calc_degraded(conf);
2428         spin_unlock_irqrestore(&conf->device_lock, flags);
2429         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2430
2431         set_bit(Blocked, &rdev->flags);
2432         set_bit(Faulty, &rdev->flags);
2433         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2434         printk(KERN_ALERT
2435                "md/raid:%s: Disk failure on %s, disabling device.\n"
2436                "md/raid:%s: Operation continuing on %d devices.\n",
2437                mdname(mddev),
2438                bdevname(rdev->bdev, b),
2439                mdname(mddev),
2440                conf->raid_disks - mddev->degraded);
2441 }
2442
2443 /*
2444  * Input: a 'big' sector number,
2445  * Output: index of the data and parity disk, and the sector # in them.
2446  */
2447 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2448                                      int previous, int *dd_idx,
2449                                      struct stripe_head *sh)
2450 {
2451         sector_t stripe, stripe2;
2452         sector_t chunk_number;
2453         unsigned int chunk_offset;
2454         int pd_idx, qd_idx;
2455         int ddf_layout = 0;
2456         sector_t new_sector;
2457         int algorithm = previous ? conf->prev_algo
2458                                  : conf->algorithm;
2459         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2460                                          : conf->chunk_sectors;
2461         int raid_disks = previous ? conf->previous_raid_disks
2462                                   : conf->raid_disks;
2463         int data_disks = raid_disks - conf->max_degraded;
2464
2465         /* First compute the information on this sector */
2466
2467         /*
2468          * Compute the chunk number and the sector offset inside the chunk
2469          */
2470         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2471         chunk_number = r_sector;
2472
2473         /*
2474          * Compute the stripe number
2475          */
2476         stripe = chunk_number;
2477         *dd_idx = sector_div(stripe, data_disks);
2478         stripe2 = stripe;
2479         /*
2480          * Select the parity disk based on the user selected algorithm.
2481          */
2482         pd_idx = qd_idx = -1;
2483         switch(conf->level) {
2484         case 4:
2485                 pd_idx = data_disks;
2486                 break;
2487         case 5:
2488                 switch (algorithm) {
2489                 case ALGORITHM_LEFT_ASYMMETRIC:
2490                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2491                         if (*dd_idx >= pd_idx)
2492                                 (*dd_idx)++;
2493                         break;
2494                 case ALGORITHM_RIGHT_ASYMMETRIC:
2495                         pd_idx = sector_div(stripe2, raid_disks);
2496                         if (*dd_idx >= pd_idx)
2497                                 (*dd_idx)++;
2498                         break;
2499                 case ALGORITHM_LEFT_SYMMETRIC:
2500                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2501                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2502                         break;
2503                 case ALGORITHM_RIGHT_SYMMETRIC:
2504                         pd_idx = sector_div(stripe2, raid_disks);
2505                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2506                         break;
2507                 case ALGORITHM_PARITY_0:
2508                         pd_idx = 0;
2509                         (*dd_idx)++;
2510                         break;
2511                 case ALGORITHM_PARITY_N:
2512                         pd_idx = data_disks;
2513                         break;
2514                 default:
2515                         BUG();
2516                 }
2517                 break;
2518         case 6:
2519
2520                 switch (algorithm) {
2521                 case ALGORITHM_LEFT_ASYMMETRIC:
2522                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2523                         qd_idx = pd_idx + 1;
2524                         if (pd_idx == raid_disks-1) {
2525                                 (*dd_idx)++;    /* Q D D D P */
2526                                 qd_idx = 0;
2527                         } else if (*dd_idx >= pd_idx)
2528                                 (*dd_idx) += 2; /* D D P Q D */
2529                         break;
2530                 case ALGORITHM_RIGHT_ASYMMETRIC:
2531                         pd_idx = sector_div(stripe2, raid_disks);
2532                         qd_idx = pd_idx + 1;
2533                         if (pd_idx == raid_disks-1) {
2534                                 (*dd_idx)++;    /* Q D D D P */
2535                                 qd_idx = 0;
2536                         } else if (*dd_idx >= pd_idx)
2537                                 (*dd_idx) += 2; /* D D P Q D */
2538                         break;
2539                 case ALGORITHM_LEFT_SYMMETRIC:
2540                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2541                         qd_idx = (pd_idx + 1) % raid_disks;
2542                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2543                         break;
2544                 case ALGORITHM_RIGHT_SYMMETRIC:
2545                         pd_idx = sector_div(stripe2, raid_disks);
2546                         qd_idx = (pd_idx + 1) % raid_disks;
2547                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2548                         break;
2549
2550                 case ALGORITHM_PARITY_0:
2551                         pd_idx = 0;
2552                         qd_idx = 1;
2553                         (*dd_idx) += 2;
2554                         break;
2555                 case ALGORITHM_PARITY_N:
2556                         pd_idx = data_disks;
2557                         qd_idx = data_disks + 1;
2558                         break;
2559
2560                 case ALGORITHM_ROTATING_ZERO_RESTART:
2561                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2562                          * of blocks for computing Q is different.
2563                          */
2564                         pd_idx = sector_div(stripe2, raid_disks);
2565                         qd_idx = pd_idx + 1;
2566                         if (pd_idx == raid_disks-1) {
2567                                 (*dd_idx)++;    /* Q D D D P */
2568                                 qd_idx = 0;
2569                         } else if (*dd_idx >= pd_idx)
2570                                 (*dd_idx) += 2; /* D D P Q D */
2571                         ddf_layout = 1;
2572                         break;
2573
2574                 case ALGORITHM_ROTATING_N_RESTART:
2575                         /* Same a left_asymmetric, by first stripe is
2576                          * D D D P Q  rather than
2577                          * Q D D D P
2578                          */
2579                         stripe2 += 1;
2580                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2581                         qd_idx = pd_idx + 1;
2582                         if (pd_idx == raid_disks-1) {
2583                                 (*dd_idx)++;    /* Q D D D P */
2584                                 qd_idx = 0;
2585                         } else if (*dd_idx >= pd_idx)
2586                                 (*dd_idx) += 2; /* D D P Q D */
2587                         ddf_layout = 1;
2588                         break;
2589
2590                 case ALGORITHM_ROTATING_N_CONTINUE:
2591                         /* Same as left_symmetric but Q is before P */
2592                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2593                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2594                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2595                         ddf_layout = 1;
2596                         break;
2597
2598                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2599                         /* RAID5 left_asymmetric, with Q on last device */
2600                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2601                         if (*dd_idx >= pd_idx)
2602                                 (*dd_idx)++;
2603                         qd_idx = raid_disks - 1;
2604                         break;
2605
2606                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2607                         pd_idx = sector_div(stripe2, raid_disks-1);
2608                         if (*dd_idx >= pd_idx)
2609                                 (*dd_idx)++;
2610                         qd_idx = raid_disks - 1;
2611                         break;
2612
2613                 case ALGORITHM_LEFT_SYMMETRIC_6:
2614                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2615                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2616                         qd_idx = raid_disks - 1;
2617                         break;
2618
2619                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2620                         pd_idx = sector_div(stripe2, raid_disks-1);
2621                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2622                         qd_idx = raid_disks - 1;
2623                         break;
2624
2625                 case ALGORITHM_PARITY_0_6:
2626                         pd_idx = 0;
2627                         (*dd_idx)++;
2628                         qd_idx = raid_disks - 1;
2629                         break;
2630
2631                 default:
2632                         BUG();
2633                 }
2634                 break;
2635         }
2636
2637         if (sh) {
2638                 sh->pd_idx = pd_idx;
2639                 sh->qd_idx = qd_idx;
2640                 sh->ddf_layout = ddf_layout;
2641         }
2642         /*
2643          * Finally, compute the new sector number
2644          */
2645         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2646         return new_sector;
2647 }
2648
2649 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2650 {
2651         struct r5conf *conf = sh->raid_conf;
2652         int raid_disks = sh->disks;
2653         int data_disks = raid_disks - conf->max_degraded;
2654         sector_t new_sector = sh->sector, check;
2655         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2656                                          : conf->chunk_sectors;
2657         int algorithm = previous ? conf->prev_algo
2658                                  : conf->algorithm;
2659         sector_t stripe;
2660         int chunk_offset;
2661         sector_t chunk_number;
2662         int dummy1, dd_idx = i;
2663         sector_t r_sector;
2664         struct stripe_head sh2;
2665
2666         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2667         stripe = new_sector;
2668
2669         if (i == sh->pd_idx)
2670                 return 0;
2671         switch(conf->level) {
2672         case 4: break;
2673         case 5:
2674                 switch (algorithm) {
2675                 case ALGORITHM_LEFT_ASYMMETRIC:
2676                 case ALGORITHM_RIGHT_ASYMMETRIC:
2677                         if (i > sh->pd_idx)
2678                                 i--;
2679                         break;
2680                 case ALGORITHM_LEFT_SYMMETRIC:
2681                 case ALGORITHM_RIGHT_SYMMETRIC:
2682                         if (i < sh->pd_idx)
2683                                 i += raid_disks;
2684                         i -= (sh->pd_idx + 1);
2685                         break;
2686                 case ALGORITHM_PARITY_0:
2687                         i -= 1;
2688                         break;
2689                 case ALGORITHM_PARITY_N:
2690                         break;
2691                 default:
2692                         BUG();
2693                 }
2694                 break;
2695         case 6:
2696                 if (i == sh->qd_idx)
2697                         return 0; /* It is the Q disk */
2698                 switch (algorithm) {
2699                 case ALGORITHM_LEFT_ASYMMETRIC:
2700                 case ALGORITHM_RIGHT_ASYMMETRIC:
2701                 case ALGORITHM_ROTATING_ZERO_RESTART:
2702                 case ALGORITHM_ROTATING_N_RESTART:
2703                         if (sh->pd_idx == raid_disks-1)
2704                                 i--;    /* Q D D D P */
2705                         else if (i > sh->pd_idx)
2706                                 i -= 2; /* D D P Q D */
2707                         break;
2708                 case ALGORITHM_LEFT_SYMMETRIC:
2709                 case ALGORITHM_RIGHT_SYMMETRIC:
2710                         if (sh->pd_idx == raid_disks-1)
2711                                 i--; /* Q D D D P */
2712                         else {
2713                                 /* D D P Q D */
2714                                 if (i < sh->pd_idx)
2715                                         i += raid_disks;
2716                                 i -= (sh->pd_idx + 2);
2717                         }
2718                         break;
2719                 case ALGORITHM_PARITY_0:
2720                         i -= 2;
2721                         break;
2722                 case ALGORITHM_PARITY_N:
2723                         break;
2724                 case ALGORITHM_ROTATING_N_CONTINUE:
2725                         /* Like left_symmetric, but P is before Q */
2726                         if (sh->pd_idx == 0)
2727                                 i--;    /* P D D D Q */
2728                         else {
2729                                 /* D D Q P D */
2730                                 if (i < sh->pd_idx)
2731                                         i += raid_disks;
2732                                 i -= (sh->pd_idx + 1);
2733                         }
2734                         break;
2735                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2736                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2737                         if (i > sh->pd_idx)
2738                                 i--;
2739                         break;
2740                 case ALGORITHM_LEFT_SYMMETRIC_6:
2741                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2742                         if (i < sh->pd_idx)
2743                                 i += data_disks + 1;
2744                         i -= (sh->pd_idx + 1);
2745                         break;
2746                 case ALGORITHM_PARITY_0_6:
2747                         i -= 1;
2748                         break;
2749                 default:
2750                         BUG();
2751                 }
2752                 break;
2753         }
2754
2755         chunk_number = stripe * data_disks + i;
2756         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2757
2758         check = raid5_compute_sector(conf, r_sector,
2759                                      previous, &dummy1, &sh2);
2760         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2761                 || sh2.qd_idx != sh->qd_idx) {
2762                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2763                        mdname(conf->mddev));
2764                 return 0;
2765         }
2766         return r_sector;
2767 }
2768
2769 static void
2770 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2771                          int rcw, int expand)
2772 {
2773         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2774         struct r5conf *conf = sh->raid_conf;
2775         int level = conf->level;
2776
2777         if (rcw) {
2778
2779                 for (i = disks; i--; ) {
2780                         struct r5dev *dev = &sh->dev[i];
2781
2782                         if (dev->towrite) {
2783                                 set_bit(R5_LOCKED, &dev->flags);
2784                                 set_bit(R5_Wantdrain, &dev->flags);
2785                                 if (!expand)
2786                                         clear_bit(R5_UPTODATE, &dev->flags);
2787                                 s->locked++;
2788                         }
2789                 }
2790                 /* if we are not expanding this is a proper write request, and
2791                  * there will be bios with new data to be drained into the
2792                  * stripe cache
2793                  */
2794                 if (!expand) {
2795                         if (!s->locked)
2796                                 /* False alarm, nothing to do */
2797                                 return;
2798                         sh->reconstruct_state = reconstruct_state_drain_run;
2799                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2800                 } else
2801                         sh->reconstruct_state = reconstruct_state_run;
2802
2803                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2804
2805                 if (s->locked + conf->max_degraded == disks)
2806                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2807                                 atomic_inc(&conf->pending_full_writes);
2808         } else {
2809                 BUG_ON(level == 6);
2810                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2811                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2812
2813                 for (i = disks; i--; ) {
2814                         struct r5dev *dev = &sh->dev[i];
2815                         if (i == pd_idx)
2816                                 continue;
2817
2818                         if (dev->towrite &&
2819                             (test_bit(R5_UPTODATE, &dev->flags) ||
2820                              test_bit(R5_Wantcompute, &dev->flags))) {
2821                                 set_bit(R5_Wantdrain, &dev->flags);
2822                                 set_bit(R5_LOCKED, &dev->flags);
2823                                 clear_bit(R5_UPTODATE, &dev->flags);
2824                                 s->locked++;
2825                         }
2826                 }
2827                 if (!s->locked)
2828                         /* False alarm - nothing to do */
2829                         return;
2830                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2831                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2832                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2833                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2834         }
2835
2836         /* keep the parity disk(s) locked while asynchronous operations
2837          * are in flight
2838          */
2839         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2840         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2841         s->locked++;
2842
2843         if (level == 6) {
2844                 int qd_idx = sh->qd_idx;
2845                 struct r5dev *dev = &sh->dev[qd_idx];
2846
2847                 set_bit(R5_LOCKED, &dev->flags);
2848                 clear_bit(R5_UPTODATE, &dev->flags);
2849                 s->locked++;
2850         }
2851
2852         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2853                 __func__, (unsigned long long)sh->sector,
2854                 s->locked, s->ops_request);
2855 }
2856
2857 /*
2858  * Each stripe/dev can have one or more bion attached.
2859  * toread/towrite point to the first in a chain.
2860  * The bi_next chain must be in order.
2861  */
2862 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2863                           int forwrite, int previous)
2864 {
2865         struct bio **bip;
2866         struct r5conf *conf = sh->raid_conf;
2867         int firstwrite=0;
2868
2869         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2870                 (unsigned long long)bi->bi_iter.bi_sector,
2871                 (unsigned long long)sh->sector);
2872
2873         /*
2874          * If several bio share a stripe. The bio bi_phys_segments acts as a
2875          * reference count to avoid race. The reference count should already be
2876          * increased before this function is called (for example, in
2877          * make_request()), so other bio sharing this stripe will not free the
2878          * stripe. If a stripe is owned by one stripe, the stripe lock will
2879          * protect it.
2880          */
2881         spin_lock_irq(&sh->stripe_lock);
2882         /* Don't allow new IO added to stripes in batch list */
2883         if (sh->batch_head)
2884                 goto overlap;
2885         if (forwrite) {
2886                 bip = &sh->dev[dd_idx].towrite;
2887                 if (*bip == NULL)
2888                         firstwrite = 1;
2889         } else
2890                 bip = &sh->dev[dd_idx].toread;
2891         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2892                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2893                         goto overlap;
2894                 bip = & (*bip)->bi_next;
2895         }
2896         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2897                 goto overlap;
2898
2899         if (!forwrite || previous)
2900                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2901
2902         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2903         if (*bip)
2904                 bi->bi_next = *bip;
2905         *bip = bi;
2906         raid5_inc_bi_active_stripes(bi);
2907
2908         if (forwrite) {
2909                 /* check if page is covered */
2910                 sector_t sector = sh->dev[dd_idx].sector;
2911                 for (bi=sh->dev[dd_idx].towrite;
2912                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2913                              bi && bi->bi_iter.bi_sector <= sector;
2914                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2915                         if (bio_end_sector(bi) >= sector)
2916                                 sector = bio_end_sector(bi);
2917                 }
2918                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2919                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2920                                 sh->overwrite_disks++;
2921         }
2922
2923         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2924                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2925                 (unsigned long long)sh->sector, dd_idx);
2926         spin_unlock_irq(&sh->stripe_lock);
2927
2928         if (conf->mddev->bitmap && firstwrite) {
2929                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2930                                   STRIPE_SECTORS, 0);
2931                 sh->bm_seq = conf->seq_flush+1;
2932                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2933         }
2934
2935         if (stripe_can_batch(sh))
2936                 stripe_add_to_batch_list(conf, sh);
2937         return 1;
2938
2939  overlap:
2940         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2941         spin_unlock_irq(&sh->stripe_lock);
2942         return 0;
2943 }
2944
2945 static void end_reshape(struct r5conf *conf);
2946
2947 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2948                             struct stripe_head *sh)
2949 {
2950         int sectors_per_chunk =
2951                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2952         int dd_idx;
2953         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2954         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2955
2956         raid5_compute_sector(conf,
2957                              stripe * (disks - conf->max_degraded)
2958                              *sectors_per_chunk + chunk_offset,
2959                              previous,
2960                              &dd_idx, sh);
2961 }
2962
2963 static void
2964 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2965                                 struct stripe_head_state *s, int disks,
2966                                 struct bio **return_bi)
2967 {
2968         int i;
2969         BUG_ON(sh->batch_head);
2970         for (i = disks; i--; ) {
2971                 struct bio *bi;
2972                 int bitmap_end = 0;
2973
2974                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2975                         struct md_rdev *rdev;
2976                         rcu_read_lock();
2977                         rdev = rcu_dereference(conf->disks[i].rdev);
2978                         if (rdev && test_bit(In_sync, &rdev->flags))
2979                                 atomic_inc(&rdev->nr_pending);
2980                         else
2981                                 rdev = NULL;
2982                         rcu_read_unlock();
2983                         if (rdev) {
2984                                 if (!rdev_set_badblocks(
2985                                             rdev,
2986                                             sh->sector,
2987                                             STRIPE_SECTORS, 0))
2988                                         md_error(conf->mddev, rdev);
2989                                 rdev_dec_pending(rdev, conf->mddev);
2990                         }
2991                 }
2992                 spin_lock_irq(&sh->stripe_lock);
2993                 /* fail all writes first */
2994                 bi = sh->dev[i].towrite;
2995                 sh->dev[i].towrite = NULL;
2996                 sh->overwrite_disks = 0;
2997                 spin_unlock_irq(&sh->stripe_lock);
2998                 if (bi)
2999                         bitmap_end = 1;
3000
3001                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3002                         wake_up(&conf->wait_for_overlap);
3003
3004                 while (bi && bi->bi_iter.bi_sector <
3005                         sh->dev[i].sector + STRIPE_SECTORS) {
3006                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3007                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3008                         if (!raid5_dec_bi_active_stripes(bi)) {
3009                                 md_write_end(conf->mddev);
3010                                 bi->bi_next = *return_bi;
3011                                 *return_bi = bi;
3012                         }
3013                         bi = nextbi;
3014                 }
3015                 if (bitmap_end)
3016                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3017                                 STRIPE_SECTORS, 0, 0);
3018                 bitmap_end = 0;
3019                 /* and fail all 'written' */
3020                 bi = sh->dev[i].written;
3021                 sh->dev[i].written = NULL;
3022                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3023                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3024                         sh->dev[i].page = sh->dev[i].orig_page;
3025                 }
3026
3027                 if (bi) bitmap_end = 1;
3028                 while (bi && bi->bi_iter.bi_sector <
3029                        sh->dev[i].sector + STRIPE_SECTORS) {
3030                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3031                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3032                         if (!raid5_dec_bi_active_stripes(bi)) {
3033                                 md_write_end(conf->mddev);
3034                                 bi->bi_next = *return_bi;
3035                                 *return_bi = bi;
3036                         }
3037                         bi = bi2;
3038                 }
3039
3040                 /* fail any reads if this device is non-operational and
3041                  * the data has not reached the cache yet.
3042                  */
3043                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3044                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3045                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3046                         spin_lock_irq(&sh->stripe_lock);
3047                         bi = sh->dev[i].toread;
3048                         sh->dev[i].toread = NULL;
3049                         spin_unlock_irq(&sh->stripe_lock);
3050                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3051                                 wake_up(&conf->wait_for_overlap);
3052                         while (bi && bi->bi_iter.bi_sector <
3053                                sh->dev[i].sector + STRIPE_SECTORS) {
3054                                 struct bio *nextbi =
3055                                         r5_next_bio(bi, sh->dev[i].sector);
3056                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3057                                 if (!raid5_dec_bi_active_stripes(bi)) {
3058                                         bi->bi_next = *return_bi;
3059                                         *return_bi = bi;
3060                                 }
3061                                 bi = nextbi;
3062                         }
3063                 }
3064                 if (bitmap_end)
3065                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3066                                         STRIPE_SECTORS, 0, 0);
3067                 /* If we were in the middle of a write the parity block might
3068                  * still be locked - so just clear all R5_LOCKED flags
3069                  */
3070                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3071         }
3072
3073         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3074                 if (atomic_dec_and_test(&conf->pending_full_writes))
3075                         md_wakeup_thread(conf->mddev->thread);
3076 }
3077
3078 static void
3079 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3080                    struct stripe_head_state *s)
3081 {
3082         int abort = 0;
3083         int i;
3084
3085         BUG_ON(sh->batch_head);
3086         clear_bit(STRIPE_SYNCING, &sh->state);
3087         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3088                 wake_up(&conf->wait_for_overlap);
3089         s->syncing = 0;
3090         s->replacing = 0;
3091         /* There is nothing more to do for sync/check/repair.
3092          * Don't even need to abort as that is handled elsewhere
3093          * if needed, and not always wanted e.g. if there is a known
3094          * bad block here.
3095          * For recover/replace we need to record a bad block on all
3096          * non-sync devices, or abort the recovery
3097          */
3098         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3099                 /* During recovery devices cannot be removed, so
3100                  * locking and refcounting of rdevs is not needed
3101                  */
3102                 for (i = 0; i < conf->raid_disks; i++) {
3103                         struct md_rdev *rdev = conf->disks[i].rdev;
3104                         if (rdev
3105                             && !test_bit(Faulty, &rdev->flags)
3106                             && !test_bit(In_sync, &rdev->flags)
3107                             && !rdev_set_badblocks(rdev, sh->sector,
3108                                                    STRIPE_SECTORS, 0))
3109                                 abort = 1;
3110                         rdev = conf->disks[i].replacement;
3111                         if (rdev
3112                             && !test_bit(Faulty, &rdev->flags)
3113                             && !test_bit(In_sync, &rdev->flags)
3114                             && !rdev_set_badblocks(rdev, sh->sector,
3115                                                    STRIPE_SECTORS, 0))
3116                                 abort = 1;
3117                 }
3118                 if (abort)
3119                         conf->recovery_disabled =
3120                                 conf->mddev->recovery_disabled;
3121         }
3122         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3123 }
3124
3125 static int want_replace(struct stripe_head *sh, int disk_idx)
3126 {
3127         struct md_rdev *rdev;
3128         int rv = 0;
3129         /* Doing recovery so rcu locking not required */
3130         rdev = sh->raid_conf->disks[disk_idx].replacement;
3131         if (rdev
3132             && !test_bit(Faulty, &rdev->flags)
3133             && !test_bit(In_sync, &rdev->flags)
3134             && (rdev->recovery_offset <= sh->sector
3135                 || rdev->mddev->recovery_cp <= sh->sector))
3136                 rv = 1;
3137
3138         return rv;
3139 }
3140
3141 /* fetch_block - checks the given member device to see if its data needs
3142  * to be read or computed to satisfy a request.
3143  *
3144  * Returns 1 when no more member devices need to be checked, otherwise returns
3145  * 0 to tell the loop in handle_stripe_fill to continue
3146  */
3147
3148 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3149                            int disk_idx, int disks)
3150 {
3151         struct r5dev *dev = &sh->dev[disk_idx];
3152         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3153                                   &sh->dev[s->failed_num[1]] };
3154         int i;
3155
3156
3157         if (test_bit(R5_LOCKED, &dev->flags) ||
3158             test_bit(R5_UPTODATE, &dev->flags))
3159                 /* No point reading this as we already have it or have
3160                  * decided to get it.
3161                  */
3162                 return 0;
3163
3164         if (dev->toread ||
3165             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3166                 /* We need this block to directly satisfy a request */
3167                 return 1;
3168
3169         if (s->syncing || s->expanding ||
3170             (s->replacing && want_replace(sh, disk_idx)))
3171                 /* When syncing, or expanding we read everything.
3172                  * When replacing, we need the replaced block.
3173                  */
3174                 return 1;
3175
3176         if ((s->failed >= 1 && fdev[0]->toread) ||
3177             (s->failed >= 2 && fdev[1]->toread))
3178                 /* If we want to read from a failed device, then
3179                  * we need to actually read every other device.
3180                  */
3181                 return 1;
3182
3183         /* Sometimes neither read-modify-write nor reconstruct-write
3184          * cycles can work.  In those cases we read every block we
3185          * can.  Then the parity-update is certain to have enough to
3186          * work with.
3187          * This can only be a problem when we need to write something,
3188          * and some device has failed.  If either of those tests
3189          * fail we need look no further.
3190          */
3191         if (!s->failed || !s->to_write)
3192                 return 0;
3193
3194         if (test_bit(R5_Insync, &dev->flags) &&
3195             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3196                 /* Pre-reads at not permitted until after short delay
3197                  * to gather multiple requests.  However if this
3198                  * device is no Insync, the block could only be be computed
3199                  * and there is no need to delay that.
3200                  */
3201                 return 0;
3202
3203         for (i = 0; i < s->failed; i++) {
3204                 if (fdev[i]->towrite &&
3205                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3206                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3207                         /* If we have a partial write to a failed
3208                          * device, then we will need to reconstruct
3209                          * the content of that device, so all other
3210                          * devices must be read.
3211                          */
3212                         return 1;
3213         }
3214
3215         /* If we are forced to do a reconstruct-write, either because
3216          * the current RAID6 implementation only supports that, or
3217          * or because parity cannot be trusted and we are currently
3218          * recovering it, there is extra need to be careful.
3219          * If one of the devices that we would need to read, because
3220          * it is not being overwritten (and maybe not written at all)
3221          * is missing/faulty, then we need to read everything we can.
3222          */
3223         if (sh->raid_conf->level != 6 &&
3224             sh->sector < sh->raid_conf->mddev->recovery_cp)
3225                 /* reconstruct-write isn't being forced */
3226                 return 0;
3227         for (i = 0; i < s->failed; i++) {
3228                 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3229                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3230                         return 1;
3231         }
3232
3233         return 0;
3234 }
3235
3236 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3237                        int disk_idx, int disks)
3238 {
3239         struct r5dev *dev = &sh->dev[disk_idx];
3240
3241         /* is the data in this block needed, and can we get it? */
3242         if (need_this_block(sh, s, disk_idx, disks)) {
3243                 /* we would like to get this block, possibly by computing it,
3244                  * otherwise read it if the backing disk is insync
3245                  */
3246                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3247                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3248                 if ((s->uptodate == disks - 1) &&
3249                     (s->failed && (disk_idx == s->failed_num[0] ||
3250                                    disk_idx == s->failed_num[1]))) {
3251                         /* have disk failed, and we're requested to fetch it;
3252                          * do compute it
3253                          */
3254                         pr_debug("Computing stripe %llu block %d\n",
3255                                (unsigned long long)sh->sector, disk_idx);
3256                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3257                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3258                         set_bit(R5_Wantcompute, &dev->flags);
3259                         sh->ops.target = disk_idx;
3260                         sh->ops.target2 = -1; /* no 2nd target */
3261                         s->req_compute = 1;
3262                         /* Careful: from this point on 'uptodate' is in the eye
3263                          * of raid_run_ops which services 'compute' operations
3264                          * before writes. R5_Wantcompute flags a block that will
3265                          * be R5_UPTODATE by the time it is needed for a
3266                          * subsequent operation.
3267                          */
3268                         s->uptodate++;
3269                         return 1;
3270                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3271                         /* Computing 2-failure is *very* expensive; only
3272                          * do it if failed >= 2
3273                          */
3274                         int other;
3275                         for (other = disks; other--; ) {
3276                                 if (other == disk_idx)
3277                                         continue;
3278                                 if (!test_bit(R5_UPTODATE,
3279                                       &sh->dev[other].flags))
3280                                         break;
3281                         }
3282                         BUG_ON(other < 0);
3283                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3284                                (unsigned long long)sh->sector,
3285                                disk_idx, other);
3286                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3287                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3288                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3289                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3290                         sh->ops.target = disk_idx;
3291                         sh->ops.target2 = other;
3292                         s->uptodate += 2;
3293                         s->req_compute = 1;
3294                         return 1;
3295                 } else if (test_bit(R5_Insync, &dev->flags)) {
3296                         set_bit(R5_LOCKED, &dev->flags);
3297                         set_bit(R5_Wantread, &dev->flags);
3298                         s->locked++;
3299                         pr_debug("Reading block %d (sync=%d)\n",
3300                                 disk_idx, s->syncing);
3301                 }
3302         }
3303
3304         return 0;
3305 }
3306
3307 /**
3308  * handle_stripe_fill - read or compute data to satisfy pending requests.
3309  */
3310 static void handle_stripe_fill(struct stripe_head *sh,
3311                                struct stripe_head_state *s,
3312                                int disks)
3313 {
3314         int i;
3315
3316         BUG_ON(sh->batch_head);
3317         /* look for blocks to read/compute, skip this if a compute
3318          * is already in flight, or if the stripe contents are in the
3319          * midst of changing due to a write
3320          */
3321         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3322             !sh->reconstruct_state)
3323                 for (i = disks; i--; )
3324                         if (fetch_block(sh, s, i, disks))
3325                                 break;
3326         set_bit(STRIPE_HANDLE, &sh->state);
3327 }
3328
3329 /* handle_stripe_clean_event
3330  * any written block on an uptodate or failed drive can be returned.
3331  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3332  * never LOCKED, so we don't need to test 'failed' directly.
3333  */
3334 static void handle_stripe_clean_event(struct r5conf *conf,
3335         struct stripe_head *sh, int disks, struct bio **return_bi)
3336 {
3337         int i;
3338         struct r5dev *dev;
3339         int discard_pending = 0;
3340         struct stripe_head *head_sh = sh;
3341         bool do_endio = false;
3342         int wakeup_nr = 0;
3343
3344         for (i = disks; i--; )
3345                 if (sh->dev[i].written) {
3346                         dev = &sh->dev[i];
3347                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3348                             (test_bit(R5_UPTODATE, &dev->flags) ||
3349                              test_bit(R5_Discard, &dev->flags) ||
3350                              test_bit(R5_SkipCopy, &dev->flags))) {
3351                                 /* We can return any write requests */
3352                                 struct bio *wbi, *wbi2;
3353                                 pr_debug("Return write for disc %d\n", i);
3354                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3355                                         clear_bit(R5_UPTODATE, &dev->flags);
3356                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3357                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3358                                 }
3359                                 do_endio = true;
3360
3361 returnbi:
3362                                 dev->page = dev->orig_page;
3363                                 wbi = dev->written;
3364                                 dev->written = NULL;
3365                                 while (wbi && wbi->bi_iter.bi_sector <
3366                                         dev->sector + STRIPE_SECTORS) {
3367                                         wbi2 = r5_next_bio(wbi, dev->sector);
3368                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3369                                                 md_write_end(conf->mddev);
3370                                                 wbi->bi_next = *return_bi;
3371                                                 *return_bi = wbi;
3372                                         }
3373                                         wbi = wbi2;
3374                                 }
3375                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3376                                                 STRIPE_SECTORS,
3377                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3378                                                 0);
3379                                 if (head_sh->batch_head) {
3380                                         sh = list_first_entry(&sh->batch_list,
3381                                                               struct stripe_head,
3382                                                               batch_list);
3383                                         if (sh != head_sh) {
3384                                                 dev = &sh->dev[i];
3385                                                 goto returnbi;
3386                                         }
3387                                 }
3388                                 sh = head_sh;
3389                                 dev = &sh->dev[i];
3390                         } else if (test_bit(R5_Discard, &dev->flags))
3391                                 discard_pending = 1;
3392                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3393                         WARN_ON(dev->page != dev->orig_page);
3394                 }
3395         if (!discard_pending &&
3396             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3397                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3398                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3399                 if (sh->qd_idx >= 0) {
3400                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3401                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3402                 }
3403                 /* now that discard is done we can proceed with any sync */
3404                 clear_bit(STRIPE_DISCARD, &sh->state);
3405                 /*
3406                  * SCSI discard will change some bio fields and the stripe has
3407                  * no updated data, so remove it from hash list and the stripe
3408                  * will be reinitialized
3409                  */
3410                 spin_lock_irq(&conf->device_lock);
3411 unhash:
3412                 remove_hash(sh);
3413                 if (head_sh->batch_head) {
3414                         sh = list_first_entry(&sh->batch_list,
3415                                               struct stripe_head, batch_list);
3416                         if (sh != head_sh)
3417                                         goto unhash;
3418                 }
3419                 spin_unlock_irq(&conf->device_lock);
3420                 sh = head_sh;
3421
3422                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3423                         set_bit(STRIPE_HANDLE, &sh->state);
3424
3425         }
3426
3427         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3428                 if (atomic_dec_and_test(&conf->pending_full_writes))
3429                         md_wakeup_thread(conf->mddev->thread);
3430
3431         if (!head_sh->batch_head || !do_endio)
3432                 return;
3433         for (i = 0; i < head_sh->disks; i++) {
3434                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3435                         wakeup_nr++;
3436         }
3437         while (!list_empty(&head_sh->batch_list)) {
3438                 int i;
3439                 sh = list_first_entry(&head_sh->batch_list,
3440                                       struct stripe_head, batch_list);
3441                 list_del_init(&sh->batch_list);
3442
3443                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3444                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
3445                                                  (1 << STRIPE_PREREAD_ACTIVE) |
3446                                                  STRIPE_EXPAND_SYNC_FLAG));
3447                 sh->check_state = head_sh->check_state;
3448                 sh->reconstruct_state = head_sh->reconstruct_state;
3449                 for (i = 0; i < sh->disks; i++) {
3450                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3451                                 wakeup_nr++;
3452                         sh->dev[i].flags = head_sh->dev[i].flags;
3453                 }
3454
3455                 spin_lock_irq(&sh->stripe_lock);
3456                 sh->batch_head = NULL;
3457                 spin_unlock_irq(&sh->stripe_lock);
3458                 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3459                         set_bit(STRIPE_HANDLE, &sh->state);
3460                 release_stripe(sh);
3461         }
3462
3463         spin_lock_irq(&head_sh->stripe_lock);
3464         head_sh->batch_head = NULL;
3465         spin_unlock_irq(&head_sh->stripe_lock);
3466         wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3467         if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3468                 set_bit(STRIPE_HANDLE, &head_sh->state);
3469 }
3470
3471 static void handle_stripe_dirtying(struct r5conf *conf,
3472                                    struct stripe_head *sh,
3473                                    struct stripe_head_state *s,
3474                                    int disks)
3475 {
3476         int rmw = 0, rcw = 0, i;
3477         sector_t recovery_cp = conf->mddev->recovery_cp;
3478
3479         /* RAID6 requires 'rcw' in current implementation.
3480          * Otherwise, check whether resync is now happening or should start.
3481          * If yes, then the array is dirty (after unclean shutdown or
3482          * initial creation), so parity in some stripes might be inconsistent.
3483          * In this case, we need to always do reconstruct-write, to ensure
3484          * that in case of drive failure or read-error correction, we
3485          * generate correct data from the parity.
3486          */
3487         if (conf->max_degraded == 2 ||
3488             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3489              s->failed == 0)) {
3490                 /* Calculate the real rcw later - for now make it
3491                  * look like rcw is cheaper
3492                  */
3493                 rcw = 1; rmw = 2;
3494                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3495                          conf->max_degraded, (unsigned long long)recovery_cp,
3496                          (unsigned long long)sh->sector);
3497         } else for (i = disks; i--; ) {
3498                 /* would I have to read this buffer for read_modify_write */
3499                 struct r5dev *dev = &sh->dev[i];
3500                 if ((dev->towrite || i == sh->pd_idx) &&
3501                     !test_bit(R5_LOCKED, &dev->flags) &&
3502                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3503                       test_bit(R5_Wantcompute, &dev->flags))) {
3504                         if (test_bit(R5_Insync, &dev->flags))
3505                                 rmw++;
3506                         else
3507                                 rmw += 2*disks;  /* cannot read it */
3508                 }
3509                 /* Would I have to read this buffer for reconstruct_write */
3510                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3511                     !test_bit(R5_LOCKED, &dev->flags) &&
3512                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3513                     test_bit(R5_Wantcompute, &dev->flags))) {
3514                         if (test_bit(R5_Insync, &dev->flags))
3515                                 rcw++;
3516                         else
3517                                 rcw += 2*disks;
3518                 }
3519         }
3520         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3521                 (unsigned long long)sh->sector, rmw, rcw);
3522         set_bit(STRIPE_HANDLE, &sh->state);
3523         if (rmw < rcw && rmw > 0) {
3524                 /* prefer read-modify-write, but need to get some data */
3525                 if (conf->mddev->queue)
3526                         blk_add_trace_msg(conf->mddev->queue,
3527                                           "raid5 rmw %llu %d",
3528                                           (unsigned long long)sh->sector, rmw);
3529                 for (i = disks; i--; ) {
3530                         struct r5dev *dev = &sh->dev[i];
3531                         if ((dev->towrite || i == sh->pd_idx) &&
3532                             !test_bit(R5_LOCKED, &dev->flags) &&
3533                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3534                             test_bit(R5_Wantcompute, &dev->flags)) &&
3535                             test_bit(R5_Insync, &dev->flags)) {
3536                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3537                                              &sh->state)) {
3538                                         pr_debug("Read_old block %d for r-m-w\n",
3539                                                  i);
3540                                         set_bit(R5_LOCKED, &dev->flags);
3541                                         set_bit(R5_Wantread, &dev->flags);
3542                                         s->locked++;
3543                                 } else {
3544                                         set_bit(STRIPE_DELAYED, &sh->state);
3545                                         set_bit(STRIPE_HANDLE, &sh->state);
3546                                 }
3547                         }
3548                 }
3549         }
3550         if (rcw <= rmw && rcw > 0) {
3551                 /* want reconstruct write, but need to get some data */
3552                 int qread =0;
3553                 rcw = 0;
3554                 for (i = disks; i--; ) {
3555                         struct r5dev *dev = &sh->dev[i];
3556                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3557                             i != sh->pd_idx && i != sh->qd_idx &&
3558                             !test_bit(R5_LOCKED, &dev->flags) &&
3559                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3560                               test_bit(R5_Wantcompute, &dev->flags))) {
3561                                 rcw++;
3562                                 if (test_bit(R5_Insync, &dev->flags) &&
3563                                     test_bit(STRIPE_PREREAD_ACTIVE,
3564                                              &sh->state)) {
3565                                         pr_debug("Read_old block "
3566                                                 "%d for Reconstruct\n", i);
3567                                         set_bit(R5_LOCKED, &dev->flags);
3568                                         set_bit(R5_Wantread, &dev->flags);
3569                                         s->locked++;
3570                                         qread++;
3571                                 } else {
3572                                         set_bit(STRIPE_DELAYED, &sh->state);
3573                                         set_bit(STRIPE_HANDLE, &sh->state);
3574                                 }
3575                         }
3576                 }
3577                 if (rcw && conf->mddev->queue)
3578                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3579                                           (unsigned long long)sh->sector,
3580                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3581         }
3582
3583         if (rcw > disks && rmw > disks &&
3584             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3585                 set_bit(STRIPE_DELAYED, &sh->state);
3586
3587         /* now if nothing is locked, and if we have enough data,
3588          * we can start a write request
3589          */
3590         /* since handle_stripe can be called at any time we need to handle the
3591          * case where a compute block operation has been submitted and then a
3592          * subsequent call wants to start a write request.  raid_run_ops only
3593          * handles the case where compute block and reconstruct are requested
3594          * simultaneously.  If this is not the case then new writes need to be
3595          * held off until the compute completes.
3596          */
3597         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3598             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3599             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3600                 schedule_reconstruction(sh, s, rcw == 0, 0);
3601 }
3602
3603 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3604                                 struct stripe_head_state *s, int disks)
3605 {
3606         struct r5dev *dev = NULL;
3607
3608         BUG_ON(sh->batch_head);
3609         set_bit(STRIPE_HANDLE, &sh->state);
3610
3611         switch (sh->check_state) {
3612         case check_state_idle:
3613                 /* start a new check operation if there are no failures */
3614                 if (s->failed == 0) {
3615                         BUG_ON(s->uptodate != disks);
3616                         sh->check_state = check_state_run;
3617                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3618                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3619                         s->uptodate--;
3620                         break;
3621                 }
3622                 dev = &sh->dev[s->failed_num[0]];
3623                 /* fall through */
3624         case check_state_compute_result:
3625                 sh->check_state = check_state_idle;
3626                 if (!dev)
3627                         dev = &sh->dev[sh->pd_idx];
3628
3629                 /* check that a write has not made the stripe insync */
3630                 if (test_bit(STRIPE_INSYNC, &sh->state))
3631                         break;
3632
3633                 /* either failed parity check, or recovery is happening */
3634                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3635                 BUG_ON(s->uptodate != disks);
3636
3637                 set_bit(R5_LOCKED, &dev->flags);
3638                 s->locked++;
3639                 set_bit(R5_Wantwrite, &dev->flags);
3640
3641                 clear_bit(STRIPE_DEGRADED, &sh->state);
3642                 set_bit(STRIPE_INSYNC, &sh->state);
3643                 break;
3644         case check_state_run:
3645                 break; /* we will be called again upon completion */
3646         case check_state_check_result:
3647                 sh->check_state = check_state_idle;
3648
3649                 /* if a failure occurred during the check operation, leave
3650                  * STRIPE_INSYNC not set and let the stripe be handled again
3651                  */
3652                 if (s->failed)
3653                         break;
3654
3655                 /* handle a successful check operation, if parity is correct
3656                  * we are done.  Otherwise update the mismatch count and repair
3657                  * parity if !MD_RECOVERY_CHECK
3658                  */
3659                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3660                         /* parity is correct (on disc,
3661                          * not in buffer any more)
3662                          */
3663                         set_bit(STRIPE_INSYNC, &sh->state);
3664                 else {
3665                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3666                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3667                                 /* don't try to repair!! */
3668                                 set_bit(STRIPE_INSYNC, &sh->state);
3669                         else {
3670                                 sh->check_state = check_state_compute_run;
3671                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3672                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3673                                 set_bit(R5_Wantcompute,
3674                                         &sh->dev[sh->pd_idx].flags);
3675                                 sh->ops.target = sh->pd_idx;
3676                                 sh->ops.target2 = -1;
3677                                 s->uptodate++;
3678                         }
3679                 }
3680                 break;
3681         case check_state_compute_run:
3682                 break;
3683         default:
3684                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3685                        __func__, sh->check_state,
3686                        (unsigned long long) sh->sector);
3687                 BUG();
3688         }
3689 }
3690
3691 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3692                                   struct stripe_head_state *s,
3693                                   int disks)
3694 {
3695         int pd_idx = sh->pd_idx;
3696         int qd_idx = sh->qd_idx;
3697         struct r5dev *dev;
3698
3699         BUG_ON(sh->batch_head);
3700         set_bit(STRIPE_HANDLE, &sh->state);
3701
3702         BUG_ON(s->failed > 2);
3703
3704         /* Want to check and possibly repair P and Q.
3705          * However there could be one 'failed' device, in which
3706          * case we can only check one of them, possibly using the
3707          * other to generate missing data
3708          */
3709
3710         switch (sh->check_state) {
3711         case check_state_idle:
3712                 /* start a new check operation if there are < 2 failures */
3713                 if (s->failed == s->q_failed) {
3714                         /* The only possible failed device holds Q, so it
3715                          * makes sense to check P (If anything else were failed,
3716                          * we would have used P to recreate it).
3717                          */
3718                         sh->check_state = check_state_run;
3719                 }
3720                 if (!s->q_failed && s->failed < 2) {
3721                         /* Q is not failed, and we didn't use it to generate
3722                          * anything, so it makes sense to check it
3723                          */
3724                         if (sh->check_state == check_state_run)
3725                                 sh->check_state = check_state_run_pq;
3726                         else
3727                                 sh->check_state = check_state_run_q;
3728                 }
3729
3730                 /* discard potentially stale zero_sum_result */
3731                 sh->ops.zero_sum_result = 0;
3732
3733                 if (sh->check_state == check_state_run) {
3734                         /* async_xor_zero_sum destroys the contents of P */
3735                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3736                         s->uptodate--;
3737                 }
3738                 if (sh->check_state >= check_state_run &&
3739                     sh->check_state <= check_state_run_pq) {
3740                         /* async_syndrome_zero_sum preserves P and Q, so
3741                          * no need to mark them !uptodate here
3742                          */
3743                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3744                         break;
3745                 }
3746
3747                 /* we have 2-disk failure */
3748                 BUG_ON(s->failed != 2);
3749                 /* fall through */
3750         case check_state_compute_result:
3751                 sh->check_state = check_state_idle;
3752
3753                 /* check that a write has not made the stripe insync */
3754                 if (test_bit(STRIPE_INSYNC, &sh->state))
3755                         break;
3756
3757                 /* now write out any block on a failed drive,
3758                  * or P or Q if they were recomputed
3759                  */
3760                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3761                 if (s->failed == 2) {
3762                         dev = &sh->dev[s->failed_num[1]];
3763                         s->locked++;
3764                         set_bit(R5_LOCKED, &dev->flags);
3765                         set_bit(R5_Wantwrite, &dev->flags);
3766                 }
3767                 if (s->failed >= 1) {
3768                         dev = &sh->dev[s->failed_num[0]];
3769                         s->locked++;
3770                         set_bit(R5_LOCKED, &dev->flags);
3771                         set_bit(R5_Wantwrite, &dev->flags);
3772                 }
3773                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3774                         dev = &sh->dev[pd_idx];
3775                         s->locked++;
3776                         set_bit(R5_LOCKED, &dev->flags);
3777                         set_bit(R5_Wantwrite, &dev->flags);
3778                 }
3779                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3780                         dev = &sh->dev[qd_idx];
3781                         s->locked++;
3782                         set_bit(R5_LOCKED, &dev->flags);
3783                         set_bit(R5_Wantwrite, &dev->flags);
3784                 }
3785                 clear_bit(STRIPE_DEGRADED, &sh->state);
3786
3787                 set_bit(STRIPE_INSYNC, &sh->state);
3788                 break;
3789         case check_state_run:
3790         case check_state_run_q:
3791         case check_state_run_pq:
3792                 break; /* we will be called again upon completion */
3793         case check_state_check_result:
3794                 sh->check_state = check_state_idle;
3795
3796                 /* handle a successful check operation, if parity is correct
3797                  * we are done.  Otherwise update the mismatch count and repair
3798                  * parity if !MD_RECOVERY_CHECK
3799                  */
3800                 if (sh->ops.zero_sum_result == 0) {
3801                         /* both parities are correct */
3802                         if (!s->failed)
3803                                 set_bit(STRIPE_INSYNC, &sh->state);
3804                         else {
3805                                 /* in contrast to the raid5 case we can validate
3806                                  * parity, but still have a failure to write
3807                                  * back
3808                                  */
3809                                 sh->check_state = check_state_compute_result;
3810                                 /* Returning at this point means that we may go
3811                                  * off and bring p and/or q uptodate again so
3812                                  * we make sure to check zero_sum_result again
3813                                  * to verify if p or q need writeback
3814                                  */
3815                         }
3816                 } else {
3817                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3818                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3819                                 /* don't try to repair!! */
3820                                 set_bit(STRIPE_INSYNC, &sh->state);
3821                         else {
3822                                 int *target = &sh->ops.target;
3823
3824                                 sh->ops.target = -1;
3825                                 sh->ops.target2 = -1;
3826                                 sh->check_state = check_state_compute_run;
3827                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3828                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3829                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3830                                         set_bit(R5_Wantcompute,
3831                                                 &sh->dev[pd_idx].flags);
3832                                         *target = pd_idx;
3833                                         target = &sh->ops.target2;
3834                                         s->uptodate++;
3835                                 }
3836                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3837                                         set_bit(R5_Wantcompute,
3838                                                 &sh->dev[qd_idx].flags);
3839                                         *target = qd_idx;
3840                                         s->uptodate++;
3841                                 }
3842                         }
3843                 }
3844                 break;
3845         case check_state_compute_run:
3846                 break;
3847         default:
3848                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3849                        __func__, sh->check_state,
3850                        (unsigned long long) sh->sector);
3851                 BUG();
3852         }
3853 }
3854
3855 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3856 {
3857         int i;
3858
3859         /* We have read all the blocks in this stripe and now we need to
3860          * copy some of them into a target stripe for expand.
3861          */
3862         struct dma_async_tx_descriptor *tx = NULL;
3863         BUG_ON(sh->batch_head);
3864         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3865         for (i = 0; i < sh->disks; i++)
3866                 if (i != sh->pd_idx && i != sh->qd_idx) {
3867                         int dd_idx, j;
3868                         struct stripe_head *sh2;
3869                         struct async_submit_ctl submit;
3870
3871                         sector_t bn = compute_blocknr(sh, i, 1);
3872                         sector_t s = raid5_compute_sector(conf, bn, 0,
3873                                                           &dd_idx, NULL);
3874                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3875                         if (sh2 == NULL)
3876                                 /* so far only the early blocks of this stripe
3877                                  * have been requested.  When later blocks
3878                                  * get requested, we will try again
3879                                  */
3880                                 continue;
3881                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3882                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3883                                 /* must have already done this block */
3884                                 release_stripe(sh2);
3885                                 continue;
3886                         }
3887
3888                         /* place all the copies on one channel */
3889                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3890                         tx = async_memcpy(sh2->dev[dd_idx].page,
3891                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3892                                           &submit);
3893
3894                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3895                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3896                         for (j = 0; j < conf->raid_disks; j++)
3897                                 if (j != sh2->pd_idx &&
3898                                     j != sh2->qd_idx &&
3899                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3900                                         break;
3901                         if (j == conf->raid_disks) {
3902                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3903                                 set_bit(STRIPE_HANDLE, &sh2->state);
3904                         }
3905                         release_stripe(sh2);
3906
3907                 }
3908         /* done submitting copies, wait for them to complete */
3909         async_tx_quiesce(&tx);
3910 }
3911
3912 /*
3913  * handle_stripe - do things to a stripe.
3914  *
3915  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3916  * state of various bits to see what needs to be done.
3917  * Possible results:
3918  *    return some read requests which now have data
3919  *    return some write requests which are safely on storage
3920  *    schedule a read on some buffers
3921  *    schedule a write of some buffers
3922  *    return confirmation of parity correctness
3923  *
3924  */
3925
3926 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3927 {
3928         struct r5conf *conf = sh->raid_conf;
3929         int disks = sh->disks;
3930         struct r5dev *dev;
3931         int i;
3932         int do_recovery = 0;
3933
3934         memset(s, 0, sizeof(*s));
3935
3936         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3937         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3938         s->failed_num[0] = -1;
3939         s->failed_num[1] = -1;
3940
3941         /* Now to look around and see what can be done */
3942         rcu_read_lock();
3943         for (i=disks; i--; ) {
3944                 struct md_rdev *rdev;
3945                 sector_t first_bad;
3946                 int bad_sectors;
3947                 int is_bad = 0;
3948
3949                 dev = &sh->dev[i];
3950
3951                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3952                          i, dev->flags,
3953                          dev->toread, dev->towrite, dev->written);
3954                 /* maybe we can reply to a read
3955                  *
3956                  * new wantfill requests are only permitted while
3957                  * ops_complete_biofill is guaranteed to be inactive
3958                  */
3959                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3960                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3961                         set_bit(R5_Wantfill, &dev->flags);
3962
3963                 /* now count some things */
3964                 if (test_bit(R5_LOCKED, &dev->flags))
3965                         s->locked++;
3966                 if (test_bit(R5_UPTODATE, &dev->flags))
3967                         s->uptodate++;
3968                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3969                         s->compute++;
3970                         BUG_ON(s->compute > 2);
3971                 }
3972
3973                 if (test_bit(R5_Wantfill, &dev->flags))
3974                         s->to_fill++;
3975                 else if (dev->toread)
3976                         s->to_read++;
3977                 if (dev->towrite) {
3978                         s->to_write++;
3979                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3980                                 s->non_overwrite++;
3981                 }
3982                 if (dev->written)
3983                         s->written++;
3984                 /* Prefer to use the replacement for reads, but only
3985                  * if it is recovered enough and has no bad blocks.
3986                  */
3987                 rdev = rcu_dereference(conf->disks[i].replacement);
3988                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3989                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3990                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3991                                  &first_bad, &bad_sectors))
3992                         set_bit(R5_ReadRepl, &dev->flags);
3993                 else {
3994                         if (rdev)
3995                                 set_bit(R5_NeedReplace, &dev->flags);
3996                         rdev = rcu_dereference(conf->disks[i].rdev);
3997                         clear_bit(R5_ReadRepl, &dev->flags);
3998                 }
3999                 if (rdev && test_bit(Faulty, &rdev->flags))
4000                         rdev = NULL;
4001                 if (rdev) {
4002                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4003                                              &first_bad, &bad_sectors);
4004                         if (s->blocked_rdev == NULL
4005                             && (test_bit(Blocked, &rdev->flags)
4006                                 || is_bad < 0)) {
4007                                 if (is_bad < 0)
4008                                         set_bit(BlockedBadBlocks,
4009                                                 &rdev->flags);
4010                                 s->blocked_rdev = rdev;
4011                                 atomic_inc(&rdev->nr_pending);
4012                         }
4013                 }
4014                 clear_bit(R5_Insync, &dev->flags);
4015                 if (!rdev)
4016                         /* Not in-sync */;
4017                 else if (is_bad) {
4018                         /* also not in-sync */
4019                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4020                             test_bit(R5_UPTODATE, &dev->flags)) {
4021                                 /* treat as in-sync, but with a read error
4022                                  * which we can now try to correct
4023                                  */
4024                                 set_bit(R5_Insync, &dev->flags);
4025                                 set_bit(R5_ReadError, &dev->flags);
4026                         }
4027                 } else if (test_bit(In_sync, &rdev->flags))
4028                         set_bit(R5_Insync, &dev->flags);
4029                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4030                         /* in sync if before recovery_offset */
4031                         set_bit(R5_Insync, &dev->flags);
4032                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4033                          test_bit(R5_Expanded, &dev->flags))
4034                         /* If we've reshaped into here, we assume it is Insync.
4035                          * We will shortly update recovery_offset to make
4036                          * it official.
4037                          */
4038                         set_bit(R5_Insync, &dev->flags);
4039
4040                 if (test_bit(R5_WriteError, &dev->flags)) {
4041                         /* This flag does not apply to '.replacement'
4042                          * only to .rdev, so make sure to check that*/
4043                         struct md_rdev *rdev2 = rcu_dereference(
4044                                 conf->disks[i].rdev);
4045                         if (rdev2 == rdev)
4046                                 clear_bit(R5_Insync, &dev->flags);
4047                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4048                                 s->handle_bad_blocks = 1;
4049                                 atomic_inc(&rdev2->nr_pending);
4050                         } else
4051                                 clear_bit(R5_WriteError, &dev->flags);
4052                 }
4053                 if (test_bit(R5_MadeGood, &dev->flags)) {
4054                         /* This flag does not apply to '.replacement'
4055                          * only to .rdev, so make sure to check that*/
4056                         struct md_rdev *rdev2 = rcu_dereference(
4057                                 conf->disks[i].rdev);
4058                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4059                                 s->handle_bad_blocks = 1;
4060                                 atomic_inc(&rdev2->nr_pending);
4061                         } else
4062                                 clear_bit(R5_MadeGood, &dev->flags);
4063                 }
4064                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4065                         struct md_rdev *rdev2 = rcu_dereference(
4066                                 conf->disks[i].replacement);
4067                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4068                                 s->handle_bad_blocks = 1;
4069                                 atomic_inc(&rdev2->nr_pending);
4070                         } else
4071                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4072                 }
4073                 if (!test_bit(R5_Insync, &dev->flags)) {
4074                         /* The ReadError flag will just be confusing now */
4075                         clear_bit(R5_ReadError, &dev->flags);
4076                         clear_bit(R5_ReWrite, &dev->flags);
4077                 }
4078                 if (test_bit(R5_ReadError, &dev->flags))
4079                         clear_bit(R5_Insync, &dev->flags);
4080                 if (!test_bit(R5_Insync, &dev->flags)) {
4081                         if (s->failed < 2)
4082                                 s->failed_num[s->failed] = i;
4083                         s->failed++;
4084                         if (rdev && !test_bit(Faulty, &rdev->flags))
4085                                 do_recovery = 1;
4086                 }
4087         }
4088         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4089                 /* If there is a failed device being replaced,
4090                  *     we must be recovering.
4091                  * else if we are after recovery_cp, we must be syncing
4092                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4093                  * else we can only be replacing
4094                  * sync and recovery both need to read all devices, and so
4095                  * use the same flag.
4096                  */
4097                 if (do_recovery ||
4098                     sh->sector >= conf->mddev->recovery_cp ||
4099                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4100                         s->syncing = 1;
4101                 else
4102                         s->replacing = 1;
4103         }
4104         rcu_read_unlock();
4105 }
4106
4107 static int clear_batch_ready(struct stripe_head *sh)
4108 {
4109         struct stripe_head *tmp;
4110         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4111                 return 0;
4112         spin_lock(&sh->stripe_lock);
4113         if (!sh->batch_head) {
4114                 spin_unlock(&sh->stripe_lock);
4115                 return 0;
4116         }
4117
4118         /*
4119          * this stripe could be added to a batch list before we check
4120          * BATCH_READY, skips it
4121          */
4122         if (sh->batch_head != sh) {
4123                 spin_unlock(&sh->stripe_lock);
4124                 return 1;
4125         }
4126         spin_lock(&sh->batch_lock);
4127         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4128                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4129         spin_unlock(&sh->batch_lock);
4130         spin_unlock(&sh->stripe_lock);
4131
4132         /*
4133          * BATCH_READY is cleared, no new stripes can be added.
4134          * batch_list can be accessed without lock
4135          */
4136         return 0;
4137 }
4138
4139 static void check_break_stripe_batch_list(struct stripe_head *sh)
4140 {
4141         struct stripe_head *head_sh, *next;
4142         int i;
4143
4144         if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4145                 return;
4146
4147         head_sh = sh;
4148         do {
4149                 sh = list_first_entry(&sh->batch_list,
4150                                       struct stripe_head, batch_list);
4151                 BUG_ON(sh == head_sh);
4152         } while (!test_bit(STRIPE_DEGRADED, &sh->state));
4153
4154         while (sh != head_sh) {
4155                 next = list_first_entry(&sh->batch_list,
4156                                         struct stripe_head, batch_list);
4157                 list_del_init(&sh->batch_list);
4158
4159                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4160                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
4161                                                  (1 << STRIPE_PREREAD_ACTIVE) |
4162                                                  (1 << STRIPE_DEGRADED) |
4163                                                  STRIPE_EXPAND_SYNC_FLAG));
4164                 sh->check_state = head_sh->check_state;
4165                 sh->reconstruct_state = head_sh->reconstruct_state;
4166                 for (i = 0; i < sh->disks; i++)
4167                         sh->dev[i].flags = head_sh->dev[i].flags &
4168                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4169
4170                 spin_lock_irq(&sh->stripe_lock);
4171                 sh->batch_head = NULL;
4172                 spin_unlock_irq(&sh->stripe_lock);
4173
4174                 set_bit(STRIPE_HANDLE, &sh->state);
4175                 release_stripe(sh);
4176
4177                 sh = next;
4178         }
4179 }
4180
4181 static void handle_stripe(struct stripe_head *sh)
4182 {
4183         struct stripe_head_state s;
4184         struct r5conf *conf = sh->raid_conf;
4185         int i;
4186         int prexor;
4187         int disks = sh->disks;
4188         struct r5dev *pdev, *qdev;
4189
4190         clear_bit(STRIPE_HANDLE, &sh->state);
4191         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4192                 /* already being handled, ensure it gets handled
4193                  * again when current action finishes */
4194                 set_bit(STRIPE_HANDLE, &sh->state);
4195                 return;
4196         }
4197
4198         if (clear_batch_ready(sh) ) {
4199                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4200                 return;
4201         }
4202
4203         check_break_stripe_batch_list(sh);
4204
4205         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4206                 spin_lock(&sh->stripe_lock);
4207                 /* Cannot process 'sync' concurrently with 'discard' */
4208                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4209                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4210                         set_bit(STRIPE_SYNCING, &sh->state);
4211                         clear_bit(STRIPE_INSYNC, &sh->state);
4212                         clear_bit(STRIPE_REPLACED, &sh->state);
4213                 }
4214                 spin_unlock(&sh->stripe_lock);
4215         }
4216         clear_bit(STRIPE_DELAYED, &sh->state);
4217
4218         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4219                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4220                (unsigned long long)sh->sector, sh->state,
4221                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4222                sh->check_state, sh->reconstruct_state);
4223
4224         analyse_stripe(sh, &s);
4225
4226         if (s.handle_bad_blocks) {
4227                 set_bit(STRIPE_HANDLE, &sh->state);
4228                 goto finish;
4229         }
4230
4231         if (unlikely(s.blocked_rdev)) {
4232                 if (s.syncing || s.expanding || s.expanded ||
4233                     s.replacing || s.to_write || s.written) {
4234                         set_bit(STRIPE_HANDLE, &sh->state);
4235                         goto finish;
4236                 }
4237                 /* There is nothing for the blocked_rdev to block */
4238                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4239                 s.blocked_rdev = NULL;
4240         }
4241
4242         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4243                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4244                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4245         }
4246
4247         pr_debug("locked=%d uptodate=%d to_read=%d"
4248                " to_write=%d failed=%d failed_num=%d,%d\n",
4249                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4250                s.failed_num[0], s.failed_num[1]);
4251         /* check if the array has lost more than max_degraded devices and,
4252          * if so, some requests might need to be failed.
4253          */
4254         if (s.failed > conf->max_degraded) {
4255                 sh->check_state = 0;
4256                 sh->reconstruct_state = 0;
4257                 if (s.to_read+s.to_write+s.written)
4258                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4259                 if (s.syncing + s.replacing)
4260                         handle_failed_sync(conf, sh, &s);
4261         }
4262
4263         /* Now we check to see if any write operations have recently
4264          * completed
4265          */
4266         prexor = 0;
4267         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4268                 prexor = 1;
4269         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4270             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4271                 sh->reconstruct_state = reconstruct_state_idle;
4272
4273                 /* All the 'written' buffers and the parity block are ready to
4274                  * be written back to disk
4275                  */
4276                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4277                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4278                 BUG_ON(sh->qd_idx >= 0 &&
4279                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4280                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4281                 for (i = disks; i--; ) {
4282                         struct r5dev *dev = &sh->dev[i];
4283                         if (test_bit(R5_LOCKED, &dev->flags) &&
4284                                 (i == sh->pd_idx || i == sh->qd_idx ||
4285                                  dev->written)) {
4286                                 pr_debug("Writing block %d\n", i);
4287                                 set_bit(R5_Wantwrite, &dev->flags);
4288                                 if (prexor)
4289                                         continue;
4290                                 if (s.failed > 1)
4291                                         continue;
4292                                 if (!test_bit(R5_Insync, &dev->flags) ||
4293                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4294                                      s.failed == 0))
4295                                         set_bit(STRIPE_INSYNC, &sh->state);
4296                         }
4297                 }
4298                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4299                         s.dec_preread_active = 1;
4300         }
4301
4302         /*
4303          * might be able to return some write requests if the parity blocks
4304          * are safe, or on a failed drive
4305          */
4306         pdev = &sh->dev[sh->pd_idx];
4307         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4308                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4309         qdev = &sh->dev[sh->qd_idx];
4310         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4311                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4312                 || conf->level < 6;
4313
4314         if (s.written &&
4315             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4316                              && !test_bit(R5_LOCKED, &pdev->flags)
4317                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4318                                  test_bit(R5_Discard, &pdev->flags))))) &&
4319             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4320                              && !test_bit(R5_LOCKED, &qdev->flags)
4321                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4322                                  test_bit(R5_Discard, &qdev->flags))))))
4323                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4324
4325         /* Now we might consider reading some blocks, either to check/generate
4326          * parity, or to satisfy requests
4327          * or to load a block that is being partially written.
4328          */
4329         if (s.to_read || s.non_overwrite
4330             || (conf->level == 6 && s.to_write && s.failed)
4331             || (s.syncing && (s.uptodate + s.compute < disks))
4332             || s.replacing
4333             || s.expanding)
4334                 handle_stripe_fill(sh, &s, disks);
4335
4336         /* Now to consider new write requests and what else, if anything
4337          * should be read.  We do not handle new writes when:
4338          * 1/ A 'write' operation (copy+xor) is already in flight.
4339          * 2/ A 'check' operation is in flight, as it may clobber the parity
4340          *    block.
4341          */
4342         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4343                 handle_stripe_dirtying(conf, sh, &s, disks);
4344
4345         /* maybe we need to check and possibly fix the parity for this stripe
4346          * Any reads will already have been scheduled, so we just see if enough
4347          * data is available.  The parity check is held off while parity
4348          * dependent operations are in flight.
4349          */
4350         if (sh->check_state ||
4351             (s.syncing && s.locked == 0 &&
4352              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4353              !test_bit(STRIPE_INSYNC, &sh->state))) {
4354                 if (conf->level == 6)
4355                         handle_parity_checks6(conf, sh, &s, disks);
4356                 else
4357                         handle_parity_checks5(conf, sh, &s, disks);
4358         }
4359
4360         if ((s.replacing || s.syncing) && s.locked == 0
4361             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4362             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4363                 /* Write out to replacement devices where possible */
4364                 for (i = 0; i < conf->raid_disks; i++)
4365                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4366                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4367                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4368                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4369                                 s.locked++;
4370                         }
4371                 if (s.replacing)
4372                         set_bit(STRIPE_INSYNC, &sh->state);
4373                 set_bit(STRIPE_REPLACED, &sh->state);
4374         }
4375         if ((s.syncing || s.replacing) && s.locked == 0 &&
4376             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4377             test_bit(STRIPE_INSYNC, &sh->state)) {
4378                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4379                 clear_bit(STRIPE_SYNCING, &sh->state);
4380                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4381                         wake_up(&conf->wait_for_overlap);
4382         }
4383
4384         /* If the failed drives are just a ReadError, then we might need
4385          * to progress the repair/check process
4386          */
4387         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4388                 for (i = 0; i < s.failed; i++) {
4389                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4390                         if (test_bit(R5_ReadError, &dev->flags)
4391                             && !test_bit(R5_LOCKED, &dev->flags)
4392                             && test_bit(R5_UPTODATE, &dev->flags)
4393                                 ) {
4394                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4395                                         set_bit(R5_Wantwrite, &dev->flags);
4396                                         set_bit(R5_ReWrite, &dev->flags);
4397                                         set_bit(R5_LOCKED, &dev->flags);
4398                                         s.locked++;
4399                                 } else {
4400                                         /* let's read it back */
4401                                         set_bit(R5_Wantread, &dev->flags);
4402                                         set_bit(R5_LOCKED, &dev->flags);
4403                                         s.locked++;
4404                                 }
4405                         }
4406                 }
4407
4408         /* Finish reconstruct operations initiated by the expansion process */
4409         if (sh->reconstruct_state == reconstruct_state_result) {
4410                 struct stripe_head *sh_src
4411                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4412                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4413                         /* sh cannot be written until sh_src has been read.
4414                          * so arrange for sh to be delayed a little
4415                          */
4416                         set_bit(STRIPE_DELAYED, &sh->state);
4417                         set_bit(STRIPE_HANDLE, &sh->state);
4418                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4419                                               &sh_src->state))
4420                                 atomic_inc(&conf->preread_active_stripes);
4421                         release_stripe(sh_src);
4422                         goto finish;
4423                 }
4424                 if (sh_src)
4425                         release_stripe(sh_src);
4426
4427                 sh->reconstruct_state = reconstruct_state_idle;
4428                 clear_bit(STRIPE_EXPANDING, &sh->state);
4429                 for (i = conf->raid_disks; i--; ) {
4430                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4431                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4432                         s.locked++;
4433                 }
4434         }
4435
4436         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4437             !sh->reconstruct_state) {
4438                 /* Need to write out all blocks after computing parity */
4439                 sh->disks = conf->raid_disks;
4440                 stripe_set_idx(sh->sector, conf, 0, sh);
4441                 schedule_reconstruction(sh, &s, 1, 1);
4442         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4443                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4444                 atomic_dec(&conf->reshape_stripes);
4445                 wake_up(&conf->wait_for_overlap);
4446                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4447         }
4448
4449         if (s.expanding && s.locked == 0 &&
4450             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4451                 handle_stripe_expansion(conf, sh);
4452
4453 finish:
4454         /* wait for this device to become unblocked */
4455         if (unlikely(s.blocked_rdev)) {
4456                 if (conf->mddev->external)
4457                         md_wait_for_blocked_rdev(s.blocked_rdev,
4458                                                  conf->mddev);
4459                 else
4460                         /* Internal metadata will immediately
4461                          * be written by raid5d, so we don't
4462                          * need to wait here.
4463                          */
4464                         rdev_dec_pending(s.blocked_rdev,
4465                                          conf->mddev);
4466         }
4467
4468         if (s.handle_bad_blocks)
4469                 for (i = disks; i--; ) {
4470                         struct md_rdev *rdev;
4471                         struct r5dev *dev = &sh->dev[i];
4472                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4473                                 /* We own a safe reference to the rdev */
4474                                 rdev = conf->disks[i].rdev;
4475                                 if (!rdev_set_badblocks(rdev, sh->sector,
4476                                                         STRIPE_SECTORS, 0))
4477                                         md_error(conf->mddev, rdev);
4478                                 rdev_dec_pending(rdev, conf->mddev);
4479                         }
4480                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4481                                 rdev = conf->disks[i].rdev;
4482                                 rdev_clear_badblocks(rdev, sh->sector,
4483                                                      STRIPE_SECTORS, 0);
4484                                 rdev_dec_pending(rdev, conf->mddev);
4485                         }
4486                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4487                                 rdev = conf->disks[i].replacement;
4488                                 if (!rdev)
4489                                         /* rdev have been moved down */
4490                                         rdev = conf->disks[i].rdev;
4491                                 rdev_clear_badblocks(rdev, sh->sector,
4492                                                      STRIPE_SECTORS, 0);
4493                                 rdev_dec_pending(rdev, conf->mddev);
4494                         }
4495                 }
4496
4497         if (s.ops_request)
4498                 raid_run_ops(sh, s.ops_request);
4499
4500         ops_run_io(sh, &s);
4501
4502         if (s.dec_preread_active) {
4503                 /* We delay this until after ops_run_io so that if make_request
4504                  * is waiting on a flush, it won't continue until the writes
4505                  * have actually been submitted.
4506                  */
4507                 atomic_dec(&conf->preread_active_stripes);
4508                 if (atomic_read(&conf->preread_active_stripes) <
4509                     IO_THRESHOLD)
4510                         md_wakeup_thread(conf->mddev->thread);
4511         }
4512
4513         return_io(s.return_bi);
4514
4515         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4516 }
4517
4518 static void raid5_activate_delayed(struct r5conf *conf)
4519 {
4520         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4521                 while (!list_empty(&conf->delayed_list)) {
4522                         struct list_head *l = conf->delayed_list.next;
4523                         struct stripe_head *sh;
4524                         sh = list_entry(l, struct stripe_head, lru);
4525                         list_del_init(l);
4526                         clear_bit(STRIPE_DELAYED, &sh->state);
4527                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4528                                 atomic_inc(&conf->preread_active_stripes);
4529                         list_add_tail(&sh->lru, &conf->hold_list);
4530                         raid5_wakeup_stripe_thread(sh);
4531                 }
4532         }
4533 }
4534
4535 static void activate_bit_delay(struct r5conf *conf,
4536         struct list_head *temp_inactive_list)
4537 {
4538         /* device_lock is held */
4539         struct list_head head;
4540         list_add(&head, &conf->bitmap_list);
4541         list_del_init(&conf->bitmap_list);
4542         while (!list_empty(&head)) {
4543                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4544                 int hash;
4545                 list_del_init(&sh->lru);
4546                 atomic_inc(&sh->count);
4547                 hash = sh->hash_lock_index;
4548                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4549         }
4550 }
4551
4552 static int raid5_congested(struct mddev *mddev, int bits)
4553 {
4554         struct r5conf *conf = mddev->private;
4555
4556         /* No difference between reads and writes.  Just check
4557          * how busy the stripe_cache is
4558          */
4559
4560         if (conf->inactive_blocked)
4561                 return 1;
4562         if (conf->quiesce)
4563                 return 1;
4564         if (atomic_read(&conf->empty_inactive_list_nr))
4565                 return 1;
4566
4567         return 0;
4568 }
4569
4570 /* We want read requests to align with chunks where possible,
4571  * but write requests don't need to.
4572  */
4573 static int raid5_mergeable_bvec(struct mddev *mddev,
4574                                 struct bvec_merge_data *bvm,
4575                                 struct bio_vec *biovec)
4576 {
4577         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4578         int max;
4579         unsigned int chunk_sectors = mddev->chunk_sectors;
4580         unsigned int bio_sectors = bvm->bi_size >> 9;
4581
4582         if ((bvm->bi_rw & 1) == WRITE)
4583                 return biovec->bv_len; /* always allow writes to be mergeable */
4584
4585         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4586                 chunk_sectors = mddev->new_chunk_sectors;
4587         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4588         if (max < 0) max = 0;
4589         if (max <= biovec->bv_len && bio_sectors == 0)
4590                 return biovec->bv_len;
4591         else
4592                 return max;
4593 }
4594
4595 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4596 {
4597         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4598         unsigned int chunk_sectors = mddev->chunk_sectors;
4599         unsigned int bio_sectors = bio_sectors(bio);
4600
4601         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4602                 chunk_sectors = mddev->new_chunk_sectors;
4603         return  chunk_sectors >=
4604                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4605 }
4606
4607 /*
4608  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4609  *  later sampled by raid5d.
4610  */
4611 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4612 {
4613         unsigned long flags;
4614
4615         spin_lock_irqsave(&conf->device_lock, flags);
4616
4617         bi->bi_next = conf->retry_read_aligned_list;
4618         conf->retry_read_aligned_list = bi;
4619
4620         spin_unlock_irqrestore(&conf->device_lock, flags);
4621         md_wakeup_thread(conf->mddev->thread);
4622 }
4623
4624 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4625 {
4626         struct bio *bi;
4627
4628         bi = conf->retry_read_aligned;
4629         if (bi) {
4630                 conf->retry_read_aligned = NULL;
4631                 return bi;
4632         }
4633         bi = conf->retry_read_aligned_list;
4634         if(bi) {
4635                 conf->retry_read_aligned_list = bi->bi_next;
4636                 bi->bi_next = NULL;
4637                 /*
4638                  * this sets the active strip count to 1 and the processed
4639                  * strip count to zero (upper 8 bits)
4640                  */
4641                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4642         }
4643
4644         return bi;
4645 }
4646
4647 /*
4648  *  The "raid5_align_endio" should check if the read succeeded and if it
4649  *  did, call bio_endio on the original bio (having bio_put the new bio
4650  *  first).
4651  *  If the read failed..
4652  */
4653 static void raid5_align_endio(struct bio *bi, int error)
4654 {
4655         struct bio* raid_bi  = bi->bi_private;
4656         struct mddev *mddev;
4657         struct r5conf *conf;
4658         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4659         struct md_rdev *rdev;
4660
4661         bio_put(bi);
4662
4663         rdev = (void*)raid_bi->bi_next;
4664         raid_bi->bi_next = NULL;
4665         mddev = rdev->mddev;
4666         conf = mddev->private;
4667
4668         rdev_dec_pending(rdev, conf->mddev);
4669
4670         if (!error && uptodate) {
4671                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4672                                          raid_bi, 0);
4673                 bio_endio(raid_bi, 0);
4674                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4675                         wake_up(&conf->wait_for_stripe);
4676                 return;
4677         }
4678
4679         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4680
4681         add_bio_to_retry(raid_bi, conf);
4682 }
4683
4684 static int bio_fits_rdev(struct bio *bi)
4685 {
4686         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4687
4688         if (bio_sectors(bi) > queue_max_sectors(q))
4689                 return 0;
4690         blk_recount_segments(q, bi);
4691         if (bi->bi_phys_segments > queue_max_segments(q))
4692                 return 0;
4693
4694         if (q->merge_bvec_fn)
4695                 /* it's too hard to apply the merge_bvec_fn at this stage,
4696                  * just just give up
4697                  */
4698                 return 0;
4699
4700         return 1;
4701 }
4702
4703 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4704 {
4705         struct r5conf *conf = mddev->private;
4706         int dd_idx;
4707         struct bio* align_bi;
4708         struct md_rdev *rdev;
4709         sector_t end_sector;
4710
4711         if (!in_chunk_boundary(mddev, raid_bio)) {
4712                 pr_debug("chunk_aligned_read : non aligned\n");
4713                 return 0;
4714         }
4715         /*
4716          * use bio_clone_mddev to make a copy of the bio
4717          */
4718         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4719         if (!align_bi)
4720                 return 0;
4721         /*
4722          *   set bi_end_io to a new function, and set bi_private to the
4723          *     original bio.
4724          */
4725         align_bi->bi_end_io  = raid5_align_endio;
4726         align_bi->bi_private = raid_bio;
4727         /*
4728          *      compute position
4729          */
4730         align_bi->bi_iter.bi_sector =
4731                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4732                                      0, &dd_idx, NULL);
4733
4734         end_sector = bio_end_sector(align_bi);
4735         rcu_read_lock();
4736         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4737         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4738             rdev->recovery_offset < end_sector) {
4739                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4740                 if (rdev &&
4741                     (test_bit(Faulty, &rdev->flags) ||
4742                     !(test_bit(In_sync, &rdev->flags) ||
4743                       rdev->recovery_offset >= end_sector)))
4744                         rdev = NULL;
4745         }
4746         if (rdev) {
4747                 sector_t first_bad;
4748                 int bad_sectors;
4749
4750                 atomic_inc(&rdev->nr_pending);
4751                 rcu_read_unlock();
4752                 raid_bio->bi_next = (void*)rdev;
4753                 align_bi->bi_bdev =  rdev->bdev;
4754                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4755
4756                 if (!bio_fits_rdev(align_bi) ||
4757                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4758                                 bio_sectors(align_bi),
4759                                 &first_bad, &bad_sectors)) {
4760                         /* too big in some way, or has a known bad block */
4761                         bio_put(align_bi);
4762                         rdev_dec_pending(rdev, mddev);
4763                         return 0;
4764                 }
4765
4766                 /* No reshape active, so we can trust rdev->data_offset */
4767                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4768
4769                 spin_lock_irq(&conf->device_lock);
4770                 wait_event_lock_irq(conf->wait_for_stripe,
4771                                     conf->quiesce == 0,
4772                                     conf->device_lock);
4773                 atomic_inc(&conf->active_aligned_reads);
4774                 spin_unlock_irq(&conf->device_lock);
4775
4776                 if (mddev->gendisk)
4777                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4778                                               align_bi, disk_devt(mddev->gendisk),
4779                                               raid_bio->bi_iter.bi_sector);
4780                 generic_make_request(align_bi);
4781                 return 1;
4782         } else {
4783                 rcu_read_unlock();
4784                 bio_put(align_bi);
4785                 return 0;
4786         }
4787 }
4788
4789 /* __get_priority_stripe - get the next stripe to process
4790  *
4791  * Full stripe writes are allowed to pass preread active stripes up until
4792  * the bypass_threshold is exceeded.  In general the bypass_count
4793  * increments when the handle_list is handled before the hold_list; however, it
4794  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4795  * stripe with in flight i/o.  The bypass_count will be reset when the
4796  * head of the hold_list has changed, i.e. the head was promoted to the
4797  * handle_list.
4798  */
4799 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4800 {
4801         struct stripe_head *sh = NULL, *tmp;
4802         struct list_head *handle_list = NULL;
4803         struct r5worker_group *wg = NULL;
4804
4805         if (conf->worker_cnt_per_group == 0) {
4806                 handle_list = &conf->handle_list;
4807         } else if (group != ANY_GROUP) {
4808                 handle_list = &conf->worker_groups[group].handle_list;
4809                 wg = &conf->worker_groups[group];
4810         } else {
4811                 int i;
4812                 for (i = 0; i < conf->group_cnt; i++) {
4813                         handle_list = &conf->worker_groups[i].handle_list;
4814                         wg = &conf->worker_groups[i];
4815                         if (!list_empty(handle_list))
4816                                 break;
4817                 }
4818         }
4819
4820         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4821                   __func__,
4822                   list_empty(handle_list) ? "empty" : "busy",
4823                   list_empty(&conf->hold_list) ? "empty" : "busy",
4824                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4825
4826         if (!list_empty(handle_list)) {
4827                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4828
4829                 if (list_empty(&conf->hold_list))
4830                         conf->bypass_count = 0;
4831                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4832                         if (conf->hold_list.next == conf->last_hold)
4833                                 conf->bypass_count++;
4834                         else {
4835                                 conf->last_hold = conf->hold_list.next;
4836                                 conf->bypass_count -= conf->bypass_threshold;
4837                                 if (conf->bypass_count < 0)
4838                                         conf->bypass_count = 0;
4839                         }
4840                 }
4841         } else if (!list_empty(&conf->hold_list) &&
4842                    ((conf->bypass_threshold &&
4843                      conf->bypass_count > conf->bypass_threshold) ||
4844                     atomic_read(&conf->pending_full_writes) == 0)) {
4845
4846                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4847                         if (conf->worker_cnt_per_group == 0 ||
4848                             group == ANY_GROUP ||
4849                             !cpu_online(tmp->cpu) ||
4850                             cpu_to_group(tmp->cpu) == group) {
4851                                 sh = tmp;
4852                                 break;
4853                         }
4854                 }
4855
4856                 if (sh) {
4857                         conf->bypass_count -= conf->bypass_threshold;
4858                         if (conf->bypass_count < 0)
4859                                 conf->bypass_count = 0;
4860                 }
4861                 wg = NULL;
4862         }
4863
4864         if (!sh)
4865                 return NULL;
4866
4867         if (wg) {
4868                 wg->stripes_cnt--;
4869                 sh->group = NULL;
4870         }
4871         list_del_init(&sh->lru);
4872         BUG_ON(atomic_inc_return(&sh->count) != 1);
4873         return sh;
4874 }
4875
4876 struct raid5_plug_cb {
4877         struct blk_plug_cb      cb;
4878         struct list_head        list;
4879         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4880 };
4881
4882 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4883 {
4884         struct raid5_plug_cb *cb = container_of(
4885                 blk_cb, struct raid5_plug_cb, cb);
4886         struct stripe_head *sh;
4887         struct mddev *mddev = cb->cb.data;
4888         struct r5conf *conf = mddev->private;
4889         int cnt = 0;
4890         int hash;
4891
4892         if (cb->list.next && !list_empty(&cb->list)) {
4893                 spin_lock_irq(&conf->device_lock);
4894                 while (!list_empty(&cb->list)) {
4895                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4896                         list_del_init(&sh->lru);
4897                         /*
4898                          * avoid race release_stripe_plug() sees
4899                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4900                          * is still in our list
4901                          */
4902                         smp_mb__before_atomic();
4903                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4904                         /*
4905                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4906                          * case, the count is always > 1 here
4907                          */
4908                         hash = sh->hash_lock_index;
4909                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4910                         cnt++;
4911                 }
4912                 spin_unlock_irq(&conf->device_lock);
4913         }
4914         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4915                                      NR_STRIPE_HASH_LOCKS);
4916         if (mddev->queue)
4917                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4918         kfree(cb);
4919 }
4920
4921 static void release_stripe_plug(struct mddev *mddev,
4922                                 struct stripe_head *sh)
4923 {
4924         struct blk_plug_cb *blk_cb = blk_check_plugged(
4925                 raid5_unplug, mddev,
4926                 sizeof(struct raid5_plug_cb));
4927         struct raid5_plug_cb *cb;
4928
4929         if (!blk_cb) {
4930                 release_stripe(sh);
4931                 return;
4932         }
4933
4934         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4935
4936         if (cb->list.next == NULL) {
4937                 int i;
4938                 INIT_LIST_HEAD(&cb->list);
4939                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4940                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4941         }
4942
4943         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4944                 list_add_tail(&sh->lru, &cb->list);
4945         else
4946                 release_stripe(sh);
4947 }
4948
4949 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4950 {
4951         struct r5conf *conf = mddev->private;
4952         sector_t logical_sector, last_sector;
4953         struct stripe_head *sh;
4954         int remaining;
4955         int stripe_sectors;
4956
4957         if (mddev->reshape_position != MaxSector)
4958                 /* Skip discard while reshape is happening */
4959                 return;
4960
4961         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4962         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4963
4964         bi->bi_next = NULL;
4965         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4966
4967         stripe_sectors = conf->chunk_sectors *
4968                 (conf->raid_disks - conf->max_degraded);
4969         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4970                                                stripe_sectors);
4971         sector_div(last_sector, stripe_sectors);
4972
4973         logical_sector *= conf->chunk_sectors;
4974         last_sector *= conf->chunk_sectors;
4975
4976         for (; logical_sector < last_sector;
4977              logical_sector += STRIPE_SECTORS) {
4978                 DEFINE_WAIT(w);
4979                 int d;
4980         again:
4981                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4982                 prepare_to_wait(&conf->wait_for_overlap, &w,
4983                                 TASK_UNINTERRUPTIBLE);
4984                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4985                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4986                         release_stripe(sh);
4987                         schedule();
4988                         goto again;
4989                 }
4990                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4991                 spin_lock_irq(&sh->stripe_lock);
4992                 for (d = 0; d < conf->raid_disks; d++) {
4993                         if (d == sh->pd_idx || d == sh->qd_idx)
4994                                 continue;
4995                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4996                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4997                                 spin_unlock_irq(&sh->stripe_lock);
4998                                 release_stripe(sh);
4999                                 schedule();
5000                                 goto again;
5001                         }
5002                 }
5003                 set_bit(STRIPE_DISCARD, &sh->state);
5004                 finish_wait(&conf->wait_for_overlap, &w);
5005                 sh->overwrite_disks = 0;
5006                 for (d = 0; d < conf->raid_disks; d++) {
5007                         if (d == sh->pd_idx || d == sh->qd_idx)
5008                                 continue;
5009                         sh->dev[d].towrite = bi;
5010                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5011                         raid5_inc_bi_active_stripes(bi);
5012                         sh->overwrite_disks++;
5013                 }
5014                 spin_unlock_irq(&sh->stripe_lock);
5015                 if (conf->mddev->bitmap) {
5016                         for (d = 0;
5017                              d < conf->raid_disks - conf->max_degraded;
5018                              d++)
5019                                 bitmap_startwrite(mddev->bitmap,
5020                                                   sh->sector,
5021                                                   STRIPE_SECTORS,
5022                                                   0);
5023                         sh->bm_seq = conf->seq_flush + 1;
5024                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5025                 }
5026
5027                 set_bit(STRIPE_HANDLE, &sh->state);
5028                 clear_bit(STRIPE_DELAYED, &sh->state);
5029                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5030                         atomic_inc(&conf->preread_active_stripes);
5031                 release_stripe_plug(mddev, sh);
5032         }
5033
5034         remaining = raid5_dec_bi_active_stripes(bi);
5035         if (remaining == 0) {
5036                 md_write_end(mddev);
5037                 bio_endio(bi, 0);
5038         }
5039 }
5040
5041 static void make_request(struct mddev *mddev, struct bio * bi)
5042 {
5043         struct r5conf *conf = mddev->private;
5044         int dd_idx;
5045         sector_t new_sector;
5046         sector_t logical_sector, last_sector;
5047         struct stripe_head *sh;
5048         const int rw = bio_data_dir(bi);
5049         int remaining;
5050         DEFINE_WAIT(w);
5051         bool do_prepare;
5052
5053         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5054                 md_flush_request(mddev, bi);
5055                 return;
5056         }
5057
5058         md_write_start(mddev, bi);
5059
5060         if (rw == READ &&
5061              mddev->reshape_position == MaxSector &&
5062              chunk_aligned_read(mddev,bi))
5063                 return;
5064
5065         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5066                 make_discard_request(mddev, bi);
5067                 return;
5068         }
5069
5070         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5071         last_sector = bio_end_sector(bi);
5072         bi->bi_next = NULL;
5073         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5074
5075         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5076         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5077                 int previous;
5078                 int seq;
5079
5080                 do_prepare = false;
5081         retry:
5082                 seq = read_seqcount_begin(&conf->gen_lock);
5083                 previous = 0;
5084                 if (do_prepare)
5085                         prepare_to_wait(&conf->wait_for_overlap, &w,
5086                                 TASK_UNINTERRUPTIBLE);
5087                 if (unlikely(conf->reshape_progress != MaxSector)) {
5088                         /* spinlock is needed as reshape_progress may be
5089                          * 64bit on a 32bit platform, and so it might be
5090                          * possible to see a half-updated value
5091                          * Of course reshape_progress could change after
5092                          * the lock is dropped, so once we get a reference
5093                          * to the stripe that we think it is, we will have
5094                          * to check again.
5095                          */
5096                         spin_lock_irq(&conf->device_lock);
5097                         if (mddev->reshape_backwards
5098                             ? logical_sector < conf->reshape_progress
5099                             : logical_sector >= conf->reshape_progress) {
5100                                 previous = 1;
5101                         } else {
5102                                 if (mddev->reshape_backwards
5103                                     ? logical_sector < conf->reshape_safe
5104                                     : logical_sector >= conf->reshape_safe) {
5105                                         spin_unlock_irq(&conf->device_lock);
5106                                         schedule();
5107                                         do_prepare = true;
5108                                         goto retry;
5109                                 }
5110                         }
5111                         spin_unlock_irq(&conf->device_lock);
5112                 }
5113
5114                 new_sector = raid5_compute_sector(conf, logical_sector,
5115                                                   previous,
5116                                                   &dd_idx, NULL);
5117                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5118                         (unsigned long long)new_sector,
5119                         (unsigned long long)logical_sector);
5120
5121                 sh = get_active_stripe(conf, new_sector, previous,
5122                                        (bi->bi_rw&RWA_MASK), 0);
5123                 if (sh) {
5124                         if (unlikely(previous)) {
5125                                 /* expansion might have moved on while waiting for a
5126                                  * stripe, so we must do the range check again.
5127                                  * Expansion could still move past after this
5128                                  * test, but as we are holding a reference to
5129                                  * 'sh', we know that if that happens,
5130                                  *  STRIPE_EXPANDING will get set and the expansion
5131                                  * won't proceed until we finish with the stripe.
5132                                  */
5133                                 int must_retry = 0;
5134                                 spin_lock_irq(&conf->device_lock);
5135                                 if (mddev->reshape_backwards
5136                                     ? logical_sector >= conf->reshape_progress
5137                                     : logical_sector < conf->reshape_progress)
5138                                         /* mismatch, need to try again */
5139                                         must_retry = 1;
5140                                 spin_unlock_irq(&conf->device_lock);
5141                                 if (must_retry) {
5142                                         release_stripe(sh);
5143                                         schedule();
5144                                         do_prepare = true;
5145                                         goto retry;
5146                                 }
5147                         }
5148                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5149                                 /* Might have got the wrong stripe_head
5150                                  * by accident
5151                                  */
5152                                 release_stripe(sh);
5153                                 goto retry;
5154                         }
5155
5156                         if (rw == WRITE &&
5157                             logical_sector >= mddev->suspend_lo &&
5158                             logical_sector < mddev->suspend_hi) {
5159                                 release_stripe(sh);
5160                                 /* As the suspend_* range is controlled by
5161                                  * userspace, we want an interruptible
5162                                  * wait.
5163                                  */
5164                                 flush_signals(current);
5165                                 prepare_to_wait(&conf->wait_for_overlap,
5166                                                 &w, TASK_INTERRUPTIBLE);
5167                                 if (logical_sector >= mddev->suspend_lo &&
5168                                     logical_sector < mddev->suspend_hi) {
5169                                         schedule();
5170                                         do_prepare = true;
5171                                 }
5172                                 goto retry;
5173                         }
5174
5175                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5176                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5177                                 /* Stripe is busy expanding or
5178                                  * add failed due to overlap.  Flush everything
5179                                  * and wait a while
5180                                  */
5181                                 md_wakeup_thread(mddev->thread);
5182                                 release_stripe(sh);
5183                                 schedule();
5184                                 do_prepare = true;
5185                                 goto retry;
5186                         }
5187                         set_bit(STRIPE_HANDLE, &sh->state);
5188                         clear_bit(STRIPE_DELAYED, &sh->state);
5189                         if ((!sh->batch_head || sh == sh->batch_head) &&
5190                             (bi->bi_rw & REQ_SYNC) &&
5191                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5192                                 atomic_inc(&conf->preread_active_stripes);
5193                         release_stripe_plug(mddev, sh);
5194                 } else {
5195                         /* cannot get stripe for read-ahead, just give-up */
5196                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5197                         break;
5198                 }
5199         }
5200         finish_wait(&conf->wait_for_overlap, &w);
5201
5202         remaining = raid5_dec_bi_active_stripes(bi);
5203         if (remaining == 0) {
5204
5205                 if ( rw == WRITE )
5206                         md_write_end(mddev);
5207
5208                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5209                                          bi, 0);
5210                 bio_endio(bi, 0);
5211         }
5212 }
5213
5214 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5215
5216 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5217 {
5218         /* reshaping is quite different to recovery/resync so it is
5219          * handled quite separately ... here.
5220          *
5221          * On each call to sync_request, we gather one chunk worth of
5222          * destination stripes and flag them as expanding.
5223          * Then we find all the source stripes and request reads.
5224          * As the reads complete, handle_stripe will copy the data
5225          * into the destination stripe and release that stripe.
5226          */
5227         struct r5conf *conf = mddev->private;
5228         struct stripe_head *sh;
5229         sector_t first_sector, last_sector;
5230         int raid_disks = conf->previous_raid_disks;
5231         int data_disks = raid_disks - conf->max_degraded;
5232         int new_data_disks = conf->raid_disks - conf->max_degraded;
5233         int i;
5234         int dd_idx;
5235         sector_t writepos, readpos, safepos;
5236         sector_t stripe_addr;
5237         int reshape_sectors;
5238         struct list_head stripes;
5239
5240         if (sector_nr == 0) {
5241                 /* If restarting in the middle, skip the initial sectors */
5242                 if (mddev->reshape_backwards &&
5243                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5244                         sector_nr = raid5_size(mddev, 0, 0)
5245                                 - conf->reshape_progress;
5246                 } else if (!mddev->reshape_backwards &&
5247                            conf->reshape_progress > 0)
5248                         sector_nr = conf->reshape_progress;
5249                 sector_div(sector_nr, new_data_disks);
5250                 if (sector_nr) {
5251                         mddev->curr_resync_completed = sector_nr;
5252                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5253                         *skipped = 1;
5254                         return sector_nr;
5255                 }
5256         }
5257
5258         /* We need to process a full chunk at a time.
5259          * If old and new chunk sizes differ, we need to process the
5260          * largest of these
5261          */
5262         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5263                 reshape_sectors = mddev->new_chunk_sectors;
5264         else
5265                 reshape_sectors = mddev->chunk_sectors;
5266
5267         /* We update the metadata at least every 10 seconds, or when
5268          * the data about to be copied would over-write the source of
5269          * the data at the front of the range.  i.e. one new_stripe
5270          * along from reshape_progress new_maps to after where
5271          * reshape_safe old_maps to
5272          */
5273         writepos = conf->reshape_progress;
5274         sector_div(writepos, new_data_disks);
5275         readpos = conf->reshape_progress;
5276         sector_div(readpos, data_disks);
5277         safepos = conf->reshape_safe;
5278         sector_div(safepos, data_disks);
5279         if (mddev->reshape_backwards) {
5280                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5281                 readpos += reshape_sectors;
5282                 safepos += reshape_sectors;
5283         } else {
5284                 writepos += reshape_sectors;
5285                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5286                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5287         }
5288
5289         /* Having calculated the 'writepos' possibly use it
5290          * to set 'stripe_addr' which is where we will write to.
5291          */
5292         if (mddev->reshape_backwards) {
5293                 BUG_ON(conf->reshape_progress == 0);
5294                 stripe_addr = writepos;
5295                 BUG_ON((mddev->dev_sectors &
5296                         ~((sector_t)reshape_sectors - 1))
5297                        - reshape_sectors - stripe_addr
5298                        != sector_nr);
5299         } else {
5300                 BUG_ON(writepos != sector_nr + reshape_sectors);
5301                 stripe_addr = sector_nr;
5302         }
5303
5304         /* 'writepos' is the most advanced device address we might write.
5305          * 'readpos' is the least advanced device address we might read.
5306          * 'safepos' is the least address recorded in the metadata as having
5307          *     been reshaped.
5308          * If there is a min_offset_diff, these are adjusted either by
5309          * increasing the safepos/readpos if diff is negative, or
5310          * increasing writepos if diff is positive.
5311          * If 'readpos' is then behind 'writepos', there is no way that we can
5312          * ensure safety in the face of a crash - that must be done by userspace
5313          * making a backup of the data.  So in that case there is no particular
5314          * rush to update metadata.
5315          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5316          * update the metadata to advance 'safepos' to match 'readpos' so that
5317          * we can be safe in the event of a crash.
5318          * So we insist on updating metadata if safepos is behind writepos and
5319          * readpos is beyond writepos.
5320          * In any case, update the metadata every 10 seconds.
5321          * Maybe that number should be configurable, but I'm not sure it is
5322          * worth it.... maybe it could be a multiple of safemode_delay???
5323          */
5324         if (conf->min_offset_diff < 0) {
5325                 safepos += -conf->min_offset_diff;
5326                 readpos += -conf->min_offset_diff;
5327         } else
5328                 writepos += conf->min_offset_diff;
5329
5330         if ((mddev->reshape_backwards
5331              ? (safepos > writepos && readpos < writepos)
5332              : (safepos < writepos && readpos > writepos)) ||
5333             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5334                 /* Cannot proceed until we've updated the superblock... */
5335                 wait_event(conf->wait_for_overlap,
5336                            atomic_read(&conf->reshape_stripes)==0
5337                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5338                 if (atomic_read(&conf->reshape_stripes) != 0)
5339                         return 0;
5340                 mddev->reshape_position = conf->reshape_progress;
5341                 mddev->curr_resync_completed = sector_nr;
5342                 conf->reshape_checkpoint = jiffies;
5343                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5344                 md_wakeup_thread(mddev->thread);
5345                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5346                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5347                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5348                         return 0;
5349                 spin_lock_irq(&conf->device_lock);
5350                 conf->reshape_safe = mddev->reshape_position;
5351                 spin_unlock_irq(&conf->device_lock);
5352                 wake_up(&conf->wait_for_overlap);
5353                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5354         }
5355
5356         INIT_LIST_HEAD(&stripes);
5357         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5358                 int j;
5359                 int skipped_disk = 0;
5360                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5361                 set_bit(STRIPE_EXPANDING, &sh->state);
5362                 atomic_inc(&conf->reshape_stripes);
5363                 /* If any of this stripe is beyond the end of the old
5364                  * array, then we need to zero those blocks
5365                  */
5366                 for (j=sh->disks; j--;) {
5367                         sector_t s;
5368                         if (j == sh->pd_idx)
5369                                 continue;
5370                         if (conf->level == 6 &&
5371                             j == sh->qd_idx)
5372                                 continue;
5373                         s = compute_blocknr(sh, j, 0);
5374                         if (s < raid5_size(mddev, 0, 0)) {
5375                                 skipped_disk = 1;
5376                                 continue;
5377                         }
5378                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5379                         set_bit(R5_Expanded, &sh->dev[j].flags);
5380                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5381                 }
5382                 if (!skipped_disk) {
5383                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5384                         set_bit(STRIPE_HANDLE, &sh->state);
5385                 }
5386                 list_add(&sh->lru, &stripes);
5387         }
5388         spin_lock_irq(&conf->device_lock);
5389         if (mddev->reshape_backwards)
5390                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5391         else
5392                 conf->reshape_progress += reshape_sectors * new_data_disks;
5393         spin_unlock_irq(&conf->device_lock);
5394         /* Ok, those stripe are ready. We can start scheduling
5395          * reads on the source stripes.
5396          * The source stripes are determined by mapping the first and last
5397          * block on the destination stripes.
5398          */
5399         first_sector =
5400                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5401                                      1, &dd_idx, NULL);
5402         last_sector =
5403                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5404                                             * new_data_disks - 1),
5405                                      1, &dd_idx, NULL);
5406         if (last_sector >= mddev->dev_sectors)
5407                 last_sector = mddev->dev_sectors - 1;
5408         while (first_sector <= last_sector) {
5409                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5410                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5411                 set_bit(STRIPE_HANDLE, &sh->state);
5412                 release_stripe(sh);
5413                 first_sector += STRIPE_SECTORS;
5414         }
5415         /* Now that the sources are clearly marked, we can release
5416          * the destination stripes
5417          */
5418         while (!list_empty(&stripes)) {
5419                 sh = list_entry(stripes.next, struct stripe_head, lru);
5420                 list_del_init(&sh->lru);
5421                 release_stripe(sh);
5422         }
5423         /* If this takes us to the resync_max point where we have to pause,
5424          * then we need to write out the superblock.
5425          */
5426         sector_nr += reshape_sectors;
5427         if ((sector_nr - mddev->curr_resync_completed) * 2
5428             >= mddev->resync_max - mddev->curr_resync_completed) {
5429                 /* Cannot proceed until we've updated the superblock... */
5430                 wait_event(conf->wait_for_overlap,
5431                            atomic_read(&conf->reshape_stripes) == 0
5432                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5433                 if (atomic_read(&conf->reshape_stripes) != 0)
5434                         goto ret;
5435                 mddev->reshape_position = conf->reshape_progress;
5436                 mddev->curr_resync_completed = sector_nr;
5437                 conf->reshape_checkpoint = jiffies;
5438                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5439                 md_wakeup_thread(mddev->thread);
5440                 wait_event(mddev->sb_wait,
5441                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5442                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5443                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5444                         goto ret;
5445                 spin_lock_irq(&conf->device_lock);
5446                 conf->reshape_safe = mddev->reshape_position;
5447                 spin_unlock_irq(&conf->device_lock);
5448                 wake_up(&conf->wait_for_overlap);
5449                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5450         }
5451 ret:
5452         return reshape_sectors;
5453 }
5454
5455 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5456 {
5457         struct r5conf *conf = mddev->private;
5458         struct stripe_head *sh;
5459         sector_t max_sector = mddev->dev_sectors;
5460         sector_t sync_blocks;
5461         int still_degraded = 0;
5462         int i;
5463
5464         if (sector_nr >= max_sector) {
5465                 /* just being told to finish up .. nothing much to do */
5466
5467                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5468                         end_reshape(conf);
5469                         return 0;
5470                 }
5471
5472                 if (mddev->curr_resync < max_sector) /* aborted */
5473                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5474                                         &sync_blocks, 1);
5475                 else /* completed sync */
5476                         conf->fullsync = 0;
5477                 bitmap_close_sync(mddev->bitmap);
5478
5479                 return 0;
5480         }
5481
5482         /* Allow raid5_quiesce to complete */
5483         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5484
5485         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5486                 return reshape_request(mddev, sector_nr, skipped);
5487
5488         /* No need to check resync_max as we never do more than one
5489          * stripe, and as resync_max will always be on a chunk boundary,
5490          * if the check in md_do_sync didn't fire, there is no chance
5491          * of overstepping resync_max here
5492          */
5493
5494         /* if there is too many failed drives and we are trying
5495          * to resync, then assert that we are finished, because there is
5496          * nothing we can do.
5497          */
5498         if (mddev->degraded >= conf->max_degraded &&
5499             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5500                 sector_t rv = mddev->dev_sectors - sector_nr;
5501                 *skipped = 1;
5502                 return rv;
5503         }
5504         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5505             !conf->fullsync &&
5506             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5507             sync_blocks >= STRIPE_SECTORS) {
5508                 /* we can skip this block, and probably more */
5509                 sync_blocks /= STRIPE_SECTORS;
5510                 *skipped = 1;
5511                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5512         }
5513
5514         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5515
5516         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5517         if (sh == NULL) {
5518                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5519                 /* make sure we don't swamp the stripe cache if someone else
5520                  * is trying to get access
5521                  */
5522                 schedule_timeout_uninterruptible(1);
5523         }
5524         /* Need to check if array will still be degraded after recovery/resync
5525          * Note in case of > 1 drive failures it's possible we're rebuilding
5526          * one drive while leaving another faulty drive in array.
5527          */
5528         rcu_read_lock();
5529         for (i = 0; i < conf->raid_disks; i++) {
5530                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5531
5532                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5533                         still_degraded = 1;
5534         }
5535         rcu_read_unlock();
5536
5537         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5538
5539         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5540         set_bit(STRIPE_HANDLE, &sh->state);
5541
5542         release_stripe(sh);
5543
5544         return STRIPE_SECTORS;
5545 }
5546
5547 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5548 {
5549         /* We may not be able to submit a whole bio at once as there
5550          * may not be enough stripe_heads available.
5551          * We cannot pre-allocate enough stripe_heads as we may need
5552          * more than exist in the cache (if we allow ever large chunks).
5553          * So we do one stripe head at a time and record in
5554          * ->bi_hw_segments how many have been done.
5555          *
5556          * We *know* that this entire raid_bio is in one chunk, so
5557          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5558          */
5559         struct stripe_head *sh;
5560         int dd_idx;
5561         sector_t sector, logical_sector, last_sector;
5562         int scnt = 0;
5563         int remaining;
5564         int handled = 0;
5565
5566         logical_sector = raid_bio->bi_iter.bi_sector &
5567                 ~((sector_t)STRIPE_SECTORS-1);
5568         sector = raid5_compute_sector(conf, logical_sector,
5569                                       0, &dd_idx, NULL);
5570         last_sector = bio_end_sector(raid_bio);
5571
5572         for (; logical_sector < last_sector;
5573              logical_sector += STRIPE_SECTORS,
5574                      sector += STRIPE_SECTORS,
5575                      scnt++) {
5576
5577                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5578                         /* already done this stripe */
5579                         continue;
5580
5581                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5582
5583                 if (!sh) {
5584                         /* failed to get a stripe - must wait */
5585                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5586                         conf->retry_read_aligned = raid_bio;
5587                         return handled;
5588                 }
5589
5590                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5591                         release_stripe(sh);
5592                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5593                         conf->retry_read_aligned = raid_bio;
5594                         return handled;
5595                 }
5596
5597                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5598                 handle_stripe(sh);
5599                 release_stripe(sh);
5600                 handled++;
5601         }
5602         remaining = raid5_dec_bi_active_stripes(raid_bio);
5603         if (remaining == 0) {
5604                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5605                                          raid_bio, 0);
5606                 bio_endio(raid_bio, 0);
5607         }
5608         if (atomic_dec_and_test(&conf->active_aligned_reads))
5609                 wake_up(&conf->wait_for_stripe);
5610         return handled;
5611 }
5612
5613 static int handle_active_stripes(struct r5conf *conf, int group,
5614                                  struct r5worker *worker,
5615                                  struct list_head *temp_inactive_list)
5616 {
5617         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5618         int i, batch_size = 0, hash;
5619         bool release_inactive = false;
5620
5621         while (batch_size < MAX_STRIPE_BATCH &&
5622                         (sh = __get_priority_stripe(conf, group)) != NULL)
5623                 batch[batch_size++] = sh;
5624
5625         if (batch_size == 0) {
5626                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5627                         if (!list_empty(temp_inactive_list + i))
5628                                 break;
5629                 if (i == NR_STRIPE_HASH_LOCKS)
5630                         return batch_size;
5631                 release_inactive = true;
5632         }
5633         spin_unlock_irq(&conf->device_lock);
5634
5635         release_inactive_stripe_list(conf, temp_inactive_list,
5636                                      NR_STRIPE_HASH_LOCKS);
5637
5638         if (release_inactive) {
5639                 spin_lock_irq(&conf->device_lock);
5640                 return 0;
5641         }
5642
5643         for (i = 0; i < batch_size; i++)
5644                 handle_stripe(batch[i]);
5645
5646         cond_resched();
5647
5648         spin_lock_irq(&conf->device_lock);
5649         for (i = 0; i < batch_size; i++) {
5650                 hash = batch[i]->hash_lock_index;
5651                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5652         }
5653         return batch_size;
5654 }
5655
5656 static void raid5_do_work(struct work_struct *work)
5657 {
5658         struct r5worker *worker = container_of(work, struct r5worker, work);
5659         struct r5worker_group *group = worker->group;
5660         struct r5conf *conf = group->conf;
5661         int group_id = group - conf->worker_groups;
5662         int handled;
5663         struct blk_plug plug;
5664
5665         pr_debug("+++ raid5worker active\n");
5666
5667         blk_start_plug(&plug);
5668         handled = 0;
5669         spin_lock_irq(&conf->device_lock);
5670         while (1) {
5671                 int batch_size, released;
5672
5673                 released = release_stripe_list(conf, worker->temp_inactive_list);
5674
5675                 batch_size = handle_active_stripes(conf, group_id, worker,
5676                                                    worker->temp_inactive_list);
5677                 worker->working = false;
5678                 if (!batch_size && !released)
5679                         break;
5680                 handled += batch_size;
5681         }
5682         pr_debug("%d stripes handled\n", handled);
5683
5684         spin_unlock_irq(&conf->device_lock);
5685         blk_finish_plug(&plug);
5686
5687         pr_debug("--- raid5worker inactive\n");
5688 }
5689
5690 /*
5691  * This is our raid5 kernel thread.
5692  *
5693  * We scan the hash table for stripes which can be handled now.
5694  * During the scan, completed stripes are saved for us by the interrupt
5695  * handler, so that they will not have to wait for our next wakeup.
5696  */
5697 static void raid5d(struct md_thread *thread)
5698 {
5699         struct mddev *mddev = thread->mddev;
5700         struct r5conf *conf = mddev->private;
5701         int handled;
5702         struct blk_plug plug;
5703
5704         pr_debug("+++ raid5d active\n");
5705
5706         md_check_recovery(mddev);
5707
5708         blk_start_plug(&plug);
5709         handled = 0;
5710         spin_lock_irq(&conf->device_lock);
5711         while (1) {
5712                 struct bio *bio;
5713                 int batch_size, released;
5714
5715                 released = release_stripe_list(conf, conf->temp_inactive_list);
5716
5717                 if (
5718                     !list_empty(&conf->bitmap_list)) {
5719                         /* Now is a good time to flush some bitmap updates */
5720                         conf->seq_flush++;
5721                         spin_unlock_irq(&conf->device_lock);
5722                         bitmap_unplug(mddev->bitmap);
5723                         spin_lock_irq(&conf->device_lock);
5724                         conf->seq_write = conf->seq_flush;
5725                         activate_bit_delay(conf, conf->temp_inactive_list);
5726                 }
5727                 raid5_activate_delayed(conf);
5728
5729                 while ((bio = remove_bio_from_retry(conf))) {
5730                         int ok;
5731                         spin_unlock_irq(&conf->device_lock);
5732                         ok = retry_aligned_read(conf, bio);
5733                         spin_lock_irq(&conf->device_lock);
5734                         if (!ok)
5735                                 break;
5736                         handled++;
5737                 }
5738
5739                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5740                                                    conf->temp_inactive_list);
5741                 if (!batch_size && !released)
5742                         break;
5743                 handled += batch_size;
5744
5745                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5746                         spin_unlock_irq(&conf->device_lock);
5747                         md_check_recovery(mddev);
5748                         spin_lock_irq(&conf->device_lock);
5749                 }
5750         }
5751         pr_debug("%d stripes handled\n", handled);
5752
5753         spin_unlock_irq(&conf->device_lock);
5754
5755         async_tx_issue_pending_all();
5756         blk_finish_plug(&plug);
5757
5758         pr_debug("--- raid5d inactive\n");
5759 }
5760
5761 static ssize_t
5762 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5763 {
5764         struct r5conf *conf;
5765         int ret = 0;
5766         spin_lock(&mddev->lock);
5767         conf = mddev->private;
5768         if (conf)
5769                 ret = sprintf(page, "%d\n", conf->max_nr_stripes);
5770         spin_unlock(&mddev->lock);
5771         return ret;
5772 }
5773
5774 int
5775 raid5_set_cache_size(struct mddev *mddev, int size)
5776 {
5777         struct r5conf *conf = mddev->private;
5778         int err;
5779         int hash;
5780
5781         if (size <= 16 || size > 32768)
5782                 return -EINVAL;
5783         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5784         while (size < conf->max_nr_stripes) {
5785                 if (drop_one_stripe(conf, hash))
5786                         conf->max_nr_stripes--;
5787                 else
5788                         break;
5789                 hash--;
5790                 if (hash < 0)
5791                         hash = NR_STRIPE_HASH_LOCKS - 1;
5792         }
5793         err = md_allow_write(mddev);
5794         if (err)
5795                 return err;
5796         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5797         while (size > conf->max_nr_stripes) {
5798                 if (grow_one_stripe(conf, hash))
5799                         conf->max_nr_stripes++;
5800                 else break;
5801                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5802         }
5803         return 0;
5804 }
5805 EXPORT_SYMBOL(raid5_set_cache_size);
5806
5807 static ssize_t
5808 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5809 {
5810         struct r5conf *conf;
5811         unsigned long new;
5812         int err;
5813
5814         if (len >= PAGE_SIZE)
5815                 return -EINVAL;
5816         if (kstrtoul(page, 10, &new))
5817                 return -EINVAL;
5818         err = mddev_lock(mddev);
5819         if (err)
5820                 return err;
5821         conf = mddev->private;
5822         if (!conf)
5823                 err = -ENODEV;
5824         else
5825                 err = raid5_set_cache_size(mddev, new);
5826         mddev_unlock(mddev);
5827
5828         return err ?: len;
5829 }
5830
5831 static struct md_sysfs_entry
5832 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5833                                 raid5_show_stripe_cache_size,
5834                                 raid5_store_stripe_cache_size);
5835
5836 static ssize_t
5837 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5838 {
5839         struct r5conf *conf;
5840         int ret = 0;
5841         spin_lock(&mddev->lock);
5842         conf = mddev->private;
5843         if (conf)
5844                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5845         spin_unlock(&mddev->lock);
5846         return ret;
5847 }
5848
5849 static ssize_t
5850 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5851 {
5852         struct r5conf *conf;
5853         unsigned long new;
5854         int err;
5855
5856         if (len >= PAGE_SIZE)
5857                 return -EINVAL;
5858         if (kstrtoul(page, 10, &new))
5859                 return -EINVAL;
5860
5861         err = mddev_lock(mddev);
5862         if (err)
5863                 return err;
5864         conf = mddev->private;
5865         if (!conf)
5866                 err = -ENODEV;
5867         else if (new > conf->max_nr_stripes)
5868                 err = -EINVAL;
5869         else
5870                 conf->bypass_threshold = new;
5871         mddev_unlock(mddev);
5872         return err ?: len;
5873 }
5874
5875 static struct md_sysfs_entry
5876 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5877                                         S_IRUGO | S_IWUSR,
5878                                         raid5_show_preread_threshold,
5879                                         raid5_store_preread_threshold);
5880
5881 static ssize_t
5882 raid5_show_skip_copy(struct mddev *mddev, char *page)
5883 {
5884         struct r5conf *conf;
5885         int ret = 0;
5886         spin_lock(&mddev->lock);
5887         conf = mddev->private;
5888         if (conf)
5889                 ret = sprintf(page, "%d\n", conf->skip_copy);
5890         spin_unlock(&mddev->lock);
5891         return ret;
5892 }
5893
5894 static ssize_t
5895 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5896 {
5897         struct r5conf *conf;
5898         unsigned long new;
5899         int err;
5900
5901         if (len >= PAGE_SIZE)
5902                 return -EINVAL;
5903         if (kstrtoul(page, 10, &new))
5904                 return -EINVAL;
5905         new = !!new;
5906
5907         err = mddev_lock(mddev);
5908         if (err)
5909                 return err;
5910         conf = mddev->private;
5911         if (!conf)
5912                 err = -ENODEV;
5913         else if (new != conf->skip_copy) {
5914                 mddev_suspend(mddev);
5915                 conf->skip_copy = new;
5916                 if (new)
5917                         mddev->queue->backing_dev_info.capabilities |=
5918                                 BDI_CAP_STABLE_WRITES;
5919                 else
5920                         mddev->queue->backing_dev_info.capabilities &=
5921                                 ~BDI_CAP_STABLE_WRITES;
5922                 mddev_resume(mddev);
5923         }
5924         mddev_unlock(mddev);
5925         return err ?: len;
5926 }
5927
5928 static struct md_sysfs_entry
5929 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5930                                         raid5_show_skip_copy,
5931                                         raid5_store_skip_copy);
5932
5933 static ssize_t
5934 stripe_cache_active_show(struct mddev *mddev, char *page)
5935 {
5936         struct r5conf *conf = mddev->private;
5937         if (conf)
5938                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5939         else
5940                 return 0;
5941 }
5942
5943 static struct md_sysfs_entry
5944 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5945
5946 static ssize_t
5947 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5948 {
5949         struct r5conf *conf;
5950         int ret = 0;
5951         spin_lock(&mddev->lock);
5952         conf = mddev->private;
5953         if (conf)
5954                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
5955         spin_unlock(&mddev->lock);
5956         return ret;
5957 }
5958
5959 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5960                                int *group_cnt,
5961                                int *worker_cnt_per_group,
5962                                struct r5worker_group **worker_groups);
5963 static ssize_t
5964 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5965 {
5966         struct r5conf *conf;
5967         unsigned long new;
5968         int err;
5969         struct r5worker_group *new_groups, *old_groups;
5970         int group_cnt, worker_cnt_per_group;
5971
5972         if (len >= PAGE_SIZE)
5973                 return -EINVAL;
5974         if (kstrtoul(page, 10, &new))
5975                 return -EINVAL;
5976
5977         err = mddev_lock(mddev);
5978         if (err)
5979                 return err;
5980         conf = mddev->private;
5981         if (!conf)
5982                 err = -ENODEV;
5983         else if (new != conf->worker_cnt_per_group) {
5984                 mddev_suspend(mddev);
5985
5986                 old_groups = conf->worker_groups;
5987                 if (old_groups)
5988                         flush_workqueue(raid5_wq);
5989
5990                 err = alloc_thread_groups(conf, new,
5991                                           &group_cnt, &worker_cnt_per_group,
5992                                           &new_groups);
5993                 if (!err) {
5994                         spin_lock_irq(&conf->device_lock);
5995                         conf->group_cnt = group_cnt;
5996                         conf->worker_cnt_per_group = worker_cnt_per_group;
5997                         conf->worker_groups = new_groups;
5998                         spin_unlock_irq(&conf->device_lock);
5999
6000                         if (old_groups)
6001                                 kfree(old_groups[0].workers);
6002                         kfree(old_groups);
6003                 }
6004                 mddev_resume(mddev);
6005         }
6006         mddev_unlock(mddev);
6007
6008         return err ?: len;
6009 }
6010
6011 static struct md_sysfs_entry
6012 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6013                                 raid5_show_group_thread_cnt,
6014                                 raid5_store_group_thread_cnt);
6015
6016 static struct attribute *raid5_attrs[] =  {
6017         &raid5_stripecache_size.attr,
6018         &raid5_stripecache_active.attr,
6019         &raid5_preread_bypass_threshold.attr,
6020         &raid5_group_thread_cnt.attr,
6021         &raid5_skip_copy.attr,
6022         NULL,
6023 };
6024 static struct attribute_group raid5_attrs_group = {
6025         .name = NULL,
6026         .attrs = raid5_attrs,
6027 };
6028
6029 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6030                                int *group_cnt,
6031                                int *worker_cnt_per_group,
6032                                struct r5worker_group **worker_groups)
6033 {
6034         int i, j, k;
6035         ssize_t size;
6036         struct r5worker *workers;
6037
6038         *worker_cnt_per_group = cnt;
6039         if (cnt == 0) {
6040                 *group_cnt = 0;
6041                 *worker_groups = NULL;
6042                 return 0;
6043         }
6044         *group_cnt = num_possible_nodes();
6045         size = sizeof(struct r5worker) * cnt;
6046         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6047         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6048                                 *group_cnt, GFP_NOIO);
6049         if (!*worker_groups || !workers) {
6050                 kfree(workers);
6051                 kfree(*worker_groups);
6052                 return -ENOMEM;
6053         }
6054
6055         for (i = 0; i < *group_cnt; i++) {
6056                 struct r5worker_group *group;
6057
6058                 group = &(*worker_groups)[i];
6059                 INIT_LIST_HEAD(&group->handle_list);
6060                 group->conf = conf;
6061                 group->workers = workers + i * cnt;
6062
6063                 for (j = 0; j < cnt; j++) {
6064                         struct r5worker *worker = group->workers + j;
6065                         worker->group = group;
6066                         INIT_WORK(&worker->work, raid5_do_work);
6067
6068                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6069                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6070                 }
6071         }
6072
6073         return 0;
6074 }
6075
6076 static void free_thread_groups(struct r5conf *conf)
6077 {
6078         if (conf->worker_groups)
6079                 kfree(conf->worker_groups[0].workers);
6080         kfree(conf->worker_groups);
6081         conf->worker_groups = NULL;
6082 }
6083
6084 static sector_t
6085 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6086 {
6087         struct r5conf *conf = mddev->private;
6088
6089         if (!sectors)
6090                 sectors = mddev->dev_sectors;
6091         if (!raid_disks)
6092                 /* size is defined by the smallest of previous and new size */
6093                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6094
6095         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6096         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6097         return sectors * (raid_disks - conf->max_degraded);
6098 }
6099
6100 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6101 {
6102         safe_put_page(percpu->spare_page);
6103         if (percpu->scribble)
6104                 flex_array_free(percpu->scribble);
6105         percpu->spare_page = NULL;
6106         percpu->scribble = NULL;
6107 }
6108
6109 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6110 {
6111         if (conf->level == 6 && !percpu->spare_page)
6112                 percpu->spare_page = alloc_page(GFP_KERNEL);
6113         if (!percpu->scribble)
6114                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6115                         conf->previous_raid_disks), conf->chunk_sectors /
6116                         STRIPE_SECTORS, GFP_KERNEL);
6117
6118         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6119                 free_scratch_buffer(conf, percpu);
6120                 return -ENOMEM;
6121         }
6122
6123         return 0;
6124 }
6125
6126 static void raid5_free_percpu(struct r5conf *conf)
6127 {
6128         unsigned long cpu;
6129
6130         if (!conf->percpu)
6131                 return;
6132
6133 #ifdef CONFIG_HOTPLUG_CPU
6134         unregister_cpu_notifier(&conf->cpu_notify);
6135 #endif
6136
6137         get_online_cpus();
6138         for_each_possible_cpu(cpu)
6139                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6140         put_online_cpus();
6141
6142         free_percpu(conf->percpu);
6143 }
6144
6145 static void free_conf(struct r5conf *conf)
6146 {
6147         free_thread_groups(conf);
6148         shrink_stripes(conf);
6149         raid5_free_percpu(conf);
6150         kfree(conf->disks);
6151         kfree(conf->stripe_hashtbl);
6152         kfree(conf);
6153 }
6154
6155 #ifdef CONFIG_HOTPLUG_CPU
6156 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6157                               void *hcpu)
6158 {
6159         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6160         long cpu = (long)hcpu;
6161         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6162
6163         switch (action) {
6164         case CPU_UP_PREPARE:
6165         case CPU_UP_PREPARE_FROZEN:
6166                 if (alloc_scratch_buffer(conf, percpu)) {
6167                         pr_err("%s: failed memory allocation for cpu%ld\n",
6168                                __func__, cpu);
6169                         return notifier_from_errno(-ENOMEM);
6170                 }
6171                 break;
6172         case CPU_DEAD:
6173         case CPU_DEAD_FROZEN:
6174                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6175                 break;
6176         default:
6177                 break;
6178         }
6179         return NOTIFY_OK;
6180 }
6181 #endif
6182
6183 static int raid5_alloc_percpu(struct r5conf *conf)
6184 {
6185         unsigned long cpu;
6186         int err = 0;
6187
6188         conf->percpu = alloc_percpu(struct raid5_percpu);
6189         if (!conf->percpu)
6190                 return -ENOMEM;
6191
6192 #ifdef CONFIG_HOTPLUG_CPU
6193         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6194         conf->cpu_notify.priority = 0;
6195         err = register_cpu_notifier(&conf->cpu_notify);
6196         if (err)
6197                 return err;
6198 #endif
6199
6200         get_online_cpus();
6201         for_each_present_cpu(cpu) {
6202                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6203                 if (err) {
6204                         pr_err("%s: failed memory allocation for cpu%ld\n",
6205                                __func__, cpu);
6206                         break;
6207                 }
6208         }
6209         put_online_cpus();
6210
6211         return err;
6212 }
6213
6214 static struct r5conf *setup_conf(struct mddev *mddev)
6215 {
6216         struct r5conf *conf;
6217         int raid_disk, memory, max_disks;
6218         struct md_rdev *rdev;
6219         struct disk_info *disk;
6220         char pers_name[6];
6221         int i;
6222         int group_cnt, worker_cnt_per_group;
6223         struct r5worker_group *new_group;
6224
6225         if (mddev->new_level != 5
6226             && mddev->new_level != 4
6227             && mddev->new_level != 6) {
6228                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6229                        mdname(mddev), mddev->new_level);
6230                 return ERR_PTR(-EIO);
6231         }
6232         if ((mddev->new_level == 5
6233              && !algorithm_valid_raid5(mddev->new_layout)) ||
6234             (mddev->new_level == 6
6235              && !algorithm_valid_raid6(mddev->new_layout))) {
6236                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6237                        mdname(mddev), mddev->new_layout);
6238                 return ERR_PTR(-EIO);
6239         }
6240         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6241                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6242                        mdname(mddev), mddev->raid_disks);
6243                 return ERR_PTR(-EINVAL);
6244         }
6245
6246         if (!mddev->new_chunk_sectors ||
6247             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6248             !is_power_of_2(mddev->new_chunk_sectors)) {
6249                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6250                        mdname(mddev), mddev->new_chunk_sectors << 9);
6251                 return ERR_PTR(-EINVAL);
6252         }
6253
6254         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6255         if (conf == NULL)
6256                 goto abort;
6257         /* Don't enable multi-threading by default*/
6258         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6259                                  &new_group)) {
6260                 conf->group_cnt = group_cnt;
6261                 conf->worker_cnt_per_group = worker_cnt_per_group;
6262                 conf->worker_groups = new_group;
6263         } else
6264                 goto abort;
6265         spin_lock_init(&conf->device_lock);
6266         seqcount_init(&conf->gen_lock);
6267         init_waitqueue_head(&conf->wait_for_stripe);
6268         init_waitqueue_head(&conf->wait_for_overlap);
6269         INIT_LIST_HEAD(&conf->handle_list);
6270         INIT_LIST_HEAD(&conf->hold_list);
6271         INIT_LIST_HEAD(&conf->delayed_list);
6272         INIT_LIST_HEAD(&conf->bitmap_list);
6273         init_llist_head(&conf->released_stripes);
6274         atomic_set(&conf->active_stripes, 0);
6275         atomic_set(&conf->preread_active_stripes, 0);
6276         atomic_set(&conf->active_aligned_reads, 0);
6277         conf->bypass_threshold = BYPASS_THRESHOLD;
6278         conf->recovery_disabled = mddev->recovery_disabled - 1;
6279
6280         conf->raid_disks = mddev->raid_disks;
6281         if (mddev->reshape_position == MaxSector)
6282                 conf->previous_raid_disks = mddev->raid_disks;
6283         else
6284                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6285         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6286
6287         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6288                               GFP_KERNEL);
6289         if (!conf->disks)
6290                 goto abort;
6291
6292         conf->mddev = mddev;
6293
6294         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6295                 goto abort;
6296
6297         /* We init hash_locks[0] separately to that it can be used
6298          * as the reference lock in the spin_lock_nest_lock() call
6299          * in lock_all_device_hash_locks_irq in order to convince
6300          * lockdep that we know what we are doing.
6301          */
6302         spin_lock_init(conf->hash_locks);
6303         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6304                 spin_lock_init(conf->hash_locks + i);
6305
6306         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6307                 INIT_LIST_HEAD(conf->inactive_list + i);
6308
6309         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6310                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6311
6312         conf->level = mddev->new_level;
6313         conf->chunk_sectors = mddev->new_chunk_sectors;
6314         if (raid5_alloc_percpu(conf) != 0)
6315                 goto abort;
6316
6317         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6318
6319         rdev_for_each(rdev, mddev) {
6320                 raid_disk = rdev->raid_disk;
6321                 if (raid_disk >= max_disks
6322                     || raid_disk < 0)
6323                         continue;
6324                 disk = conf->disks + raid_disk;
6325
6326                 if (test_bit(Replacement, &rdev->flags)) {
6327                         if (disk->replacement)
6328                                 goto abort;
6329                         disk->replacement = rdev;
6330                 } else {
6331                         if (disk->rdev)
6332                                 goto abort;
6333                         disk->rdev = rdev;
6334                 }
6335
6336                 if (test_bit(In_sync, &rdev->flags)) {
6337                         char b[BDEVNAME_SIZE];
6338                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6339                                " disk %d\n",
6340                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6341                 } else if (rdev->saved_raid_disk != raid_disk)
6342                         /* Cannot rely on bitmap to complete recovery */
6343                         conf->fullsync = 1;
6344         }
6345
6346         conf->level = mddev->new_level;
6347         if (conf->level == 6)
6348                 conf->max_degraded = 2;
6349         else
6350                 conf->max_degraded = 1;
6351         conf->algorithm = mddev->new_layout;
6352         conf->reshape_progress = mddev->reshape_position;
6353         if (conf->reshape_progress != MaxSector) {
6354                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6355                 conf->prev_algo = mddev->layout;
6356         }
6357
6358         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
6359                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6360         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6361         if (grow_stripes(conf, NR_STRIPES)) {
6362                 printk(KERN_ERR
6363                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6364                        mdname(mddev), memory);
6365                 goto abort;
6366         } else
6367                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6368                        mdname(mddev), memory);
6369
6370         sprintf(pers_name, "raid%d", mddev->new_level);
6371         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6372         if (!conf->thread) {
6373                 printk(KERN_ERR
6374                        "md/raid:%s: couldn't allocate thread.\n",
6375                        mdname(mddev));
6376                 goto abort;
6377         }
6378
6379         return conf;
6380
6381  abort:
6382         if (conf) {
6383                 free_conf(conf);
6384                 return ERR_PTR(-EIO);
6385         } else
6386                 return ERR_PTR(-ENOMEM);
6387 }
6388
6389 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6390 {
6391         switch (algo) {
6392         case ALGORITHM_PARITY_0:
6393                 if (raid_disk < max_degraded)
6394                         return 1;
6395                 break;
6396         case ALGORITHM_PARITY_N:
6397                 if (raid_disk >= raid_disks - max_degraded)
6398                         return 1;
6399                 break;
6400         case ALGORITHM_PARITY_0_6:
6401                 if (raid_disk == 0 ||
6402                     raid_disk == raid_disks - 1)
6403                         return 1;
6404                 break;
6405         case ALGORITHM_LEFT_ASYMMETRIC_6:
6406         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6407         case ALGORITHM_LEFT_SYMMETRIC_6:
6408         case ALGORITHM_RIGHT_SYMMETRIC_6:
6409                 if (raid_disk == raid_disks - 1)
6410                         return 1;
6411         }
6412         return 0;
6413 }
6414
6415 static int run(struct mddev *mddev)
6416 {
6417         struct r5conf *conf;
6418         int working_disks = 0;
6419         int dirty_parity_disks = 0;
6420         struct md_rdev *rdev;
6421         sector_t reshape_offset = 0;
6422         int i;
6423         long long min_offset_diff = 0;
6424         int first = 1;
6425
6426         if (mddev->recovery_cp != MaxSector)
6427                 printk(KERN_NOTICE "md/raid:%s: not clean"
6428                        " -- starting background reconstruction\n",
6429                        mdname(mddev));
6430
6431         rdev_for_each(rdev, mddev) {
6432                 long long diff;
6433                 if (rdev->raid_disk < 0)
6434                         continue;
6435                 diff = (rdev->new_data_offset - rdev->data_offset);
6436                 if (first) {
6437                         min_offset_diff = diff;
6438                         first = 0;
6439                 } else if (mddev->reshape_backwards &&
6440                          diff < min_offset_diff)
6441                         min_offset_diff = diff;
6442                 else if (!mddev->reshape_backwards &&
6443                          diff > min_offset_diff)
6444                         min_offset_diff = diff;
6445         }
6446
6447         if (mddev->reshape_position != MaxSector) {
6448                 /* Check that we can continue the reshape.
6449                  * Difficulties arise if the stripe we would write to
6450                  * next is at or after the stripe we would read from next.
6451                  * For a reshape that changes the number of devices, this
6452                  * is only possible for a very short time, and mdadm makes
6453                  * sure that time appears to have past before assembling
6454                  * the array.  So we fail if that time hasn't passed.
6455                  * For a reshape that keeps the number of devices the same
6456                  * mdadm must be monitoring the reshape can keeping the
6457                  * critical areas read-only and backed up.  It will start
6458                  * the array in read-only mode, so we check for that.
6459                  */
6460                 sector_t here_new, here_old;
6461                 int old_disks;
6462                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6463
6464                 if (mddev->new_level != mddev->level) {
6465                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6466                                "required - aborting.\n",
6467                                mdname(mddev));
6468                         return -EINVAL;
6469                 }
6470                 old_disks = mddev->raid_disks - mddev->delta_disks;
6471                 /* reshape_position must be on a new-stripe boundary, and one
6472                  * further up in new geometry must map after here in old
6473                  * geometry.
6474                  */
6475                 here_new = mddev->reshape_position;
6476                 if (sector_div(here_new, mddev->new_chunk_sectors *
6477                                (mddev->raid_disks - max_degraded))) {
6478                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6479                                "on a stripe boundary\n", mdname(mddev));
6480                         return -EINVAL;
6481                 }
6482                 reshape_offset = here_new * mddev->new_chunk_sectors;
6483                 /* here_new is the stripe we will write to */
6484                 here_old = mddev->reshape_position;
6485                 sector_div(here_old, mddev->chunk_sectors *
6486                            (old_disks-max_degraded));
6487                 /* here_old is the first stripe that we might need to read
6488                  * from */
6489                 if (mddev->delta_disks == 0) {
6490                         if ((here_new * mddev->new_chunk_sectors !=
6491                              here_old * mddev->chunk_sectors)) {
6492                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6493                                        " confused - aborting\n", mdname(mddev));
6494                                 return -EINVAL;
6495                         }
6496                         /* We cannot be sure it is safe to start an in-place
6497                          * reshape.  It is only safe if user-space is monitoring
6498                          * and taking constant backups.
6499                          * mdadm always starts a situation like this in
6500                          * readonly mode so it can take control before
6501                          * allowing any writes.  So just check for that.
6502                          */
6503                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6504                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6505                                 /* not really in-place - so OK */;
6506                         else if (mddev->ro == 0) {
6507                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6508                                        "must be started in read-only mode "
6509                                        "- aborting\n",
6510                                        mdname(mddev));
6511                                 return -EINVAL;
6512                         }
6513                 } else if (mddev->reshape_backwards
6514                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6515                        here_old * mddev->chunk_sectors)
6516                     : (here_new * mddev->new_chunk_sectors >=
6517                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6518                         /* Reading from the same stripe as writing to - bad */
6519                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6520                                "auto-recovery - aborting.\n",
6521                                mdname(mddev));
6522                         return -EINVAL;
6523                 }
6524                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6525                        mdname(mddev));
6526                 /* OK, we should be able to continue; */
6527         } else {
6528                 BUG_ON(mddev->level != mddev->new_level);
6529                 BUG_ON(mddev->layout != mddev->new_layout);
6530                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6531                 BUG_ON(mddev->delta_disks != 0);
6532         }
6533
6534         if (mddev->private == NULL)
6535                 conf = setup_conf(mddev);
6536         else
6537                 conf = mddev->private;
6538
6539         if (IS_ERR(conf))
6540                 return PTR_ERR(conf);
6541
6542         conf->min_offset_diff = min_offset_diff;
6543         mddev->thread = conf->thread;
6544         conf->thread = NULL;
6545         mddev->private = conf;
6546
6547         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6548              i++) {
6549                 rdev = conf->disks[i].rdev;
6550                 if (!rdev && conf->disks[i].replacement) {
6551                         /* The replacement is all we have yet */
6552                         rdev = conf->disks[i].replacement;
6553                         conf->disks[i].replacement = NULL;
6554                         clear_bit(Replacement, &rdev->flags);
6555                         conf->disks[i].rdev = rdev;
6556                 }
6557                 if (!rdev)
6558                         continue;
6559                 if (conf->disks[i].replacement &&
6560                     conf->reshape_progress != MaxSector) {
6561                         /* replacements and reshape simply do not mix. */
6562                         printk(KERN_ERR "md: cannot handle concurrent "
6563                                "replacement and reshape.\n");
6564                         goto abort;
6565                 }
6566                 if (test_bit(In_sync, &rdev->flags)) {
6567                         working_disks++;
6568                         continue;
6569                 }
6570                 /* This disc is not fully in-sync.  However if it
6571                  * just stored parity (beyond the recovery_offset),
6572                  * when we don't need to be concerned about the
6573                  * array being dirty.
6574                  * When reshape goes 'backwards', we never have
6575                  * partially completed devices, so we only need
6576                  * to worry about reshape going forwards.
6577                  */
6578                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6579                 if (mddev->major_version == 0 &&
6580                     mddev->minor_version > 90)
6581                         rdev->recovery_offset = reshape_offset;
6582
6583                 if (rdev->recovery_offset < reshape_offset) {
6584                         /* We need to check old and new layout */
6585                         if (!only_parity(rdev->raid_disk,
6586                                          conf->algorithm,
6587                                          conf->raid_disks,
6588                                          conf->max_degraded))
6589                                 continue;
6590                 }
6591                 if (!only_parity(rdev->raid_disk,
6592                                  conf->prev_algo,
6593                                  conf->previous_raid_disks,
6594                                  conf->max_degraded))
6595                         continue;
6596                 dirty_parity_disks++;
6597         }
6598
6599         /*
6600          * 0 for a fully functional array, 1 or 2 for a degraded array.
6601          */
6602         mddev->degraded = calc_degraded(conf);
6603
6604         if (has_failed(conf)) {
6605                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6606                         " (%d/%d failed)\n",
6607                         mdname(mddev), mddev->degraded, conf->raid_disks);
6608                 goto abort;
6609         }
6610
6611         /* device size must be a multiple of chunk size */
6612         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6613         mddev->resync_max_sectors = mddev->dev_sectors;
6614
6615         if (mddev->degraded > dirty_parity_disks &&
6616             mddev->recovery_cp != MaxSector) {
6617                 if (mddev->ok_start_degraded)
6618                         printk(KERN_WARNING
6619                                "md/raid:%s: starting dirty degraded array"
6620                                " - data corruption possible.\n",
6621                                mdname(mddev));
6622                 else {
6623                         printk(KERN_ERR
6624                                "md/raid:%s: cannot start dirty degraded array.\n",
6625                                mdname(mddev));
6626                         goto abort;
6627                 }
6628         }
6629
6630         if (mddev->degraded == 0)
6631                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6632                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6633                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6634                        mddev->new_layout);
6635         else
6636                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6637                        " out of %d devices, algorithm %d\n",
6638                        mdname(mddev), conf->level,
6639                        mddev->raid_disks - mddev->degraded,
6640                        mddev->raid_disks, mddev->new_layout);
6641
6642         print_raid5_conf(conf);
6643
6644         if (conf->reshape_progress != MaxSector) {
6645                 conf->reshape_safe = conf->reshape_progress;
6646                 atomic_set(&conf->reshape_stripes, 0);
6647                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6648                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6649                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6650                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6651                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6652                                                         "reshape");
6653         }
6654
6655         /* Ok, everything is just fine now */
6656         if (mddev->to_remove == &raid5_attrs_group)
6657                 mddev->to_remove = NULL;
6658         else if (mddev->kobj.sd &&
6659             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6660                 printk(KERN_WARNING
6661                        "raid5: failed to create sysfs attributes for %s\n",
6662                        mdname(mddev));
6663         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6664
6665         if (mddev->queue) {
6666                 int chunk_size;
6667                 bool discard_supported = true;
6668                 /* read-ahead size must cover two whole stripes, which
6669                  * is 2 * (datadisks) * chunksize where 'n' is the
6670                  * number of raid devices
6671                  */
6672                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6673                 int stripe = data_disks *
6674                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6675                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6676                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6677
6678                 chunk_size = mddev->chunk_sectors << 9;
6679                 blk_queue_io_min(mddev->queue, chunk_size);
6680                 blk_queue_io_opt(mddev->queue, chunk_size *
6681                                  (conf->raid_disks - conf->max_degraded));
6682                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6683                 /*
6684                  * We can only discard a whole stripe. It doesn't make sense to
6685                  * discard data disk but write parity disk
6686                  */
6687                 stripe = stripe * PAGE_SIZE;
6688                 /* Round up to power of 2, as discard handling
6689                  * currently assumes that */
6690                 while ((stripe-1) & stripe)
6691                         stripe = (stripe | (stripe-1)) + 1;
6692                 mddev->queue->limits.discard_alignment = stripe;
6693                 mddev->queue->limits.discard_granularity = stripe;
6694                 /*
6695                  * unaligned part of discard request will be ignored, so can't
6696                  * guarantee discard_zeroes_data
6697                  */
6698                 mddev->queue->limits.discard_zeroes_data = 0;
6699
6700                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6701
6702                 rdev_for_each(rdev, mddev) {
6703                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6704                                           rdev->data_offset << 9);
6705                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6706                                           rdev->new_data_offset << 9);
6707                         /*
6708                          * discard_zeroes_data is required, otherwise data
6709                          * could be lost. Consider a scenario: discard a stripe
6710                          * (the stripe could be inconsistent if
6711                          * discard_zeroes_data is 0); write one disk of the
6712                          * stripe (the stripe could be inconsistent again
6713                          * depending on which disks are used to calculate
6714                          * parity); the disk is broken; The stripe data of this
6715                          * disk is lost.
6716                          */
6717                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6718                             !bdev_get_queue(rdev->bdev)->
6719                                                 limits.discard_zeroes_data)
6720                                 discard_supported = false;
6721                         /* Unfortunately, discard_zeroes_data is not currently
6722                          * a guarantee - just a hint.  So we only allow DISCARD
6723                          * if the sysadmin has confirmed that only safe devices
6724                          * are in use by setting a module parameter.
6725                          */
6726                         if (!devices_handle_discard_safely) {
6727                                 if (discard_supported) {
6728                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6729                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6730                                 }
6731                                 discard_supported = false;
6732                         }
6733                 }
6734
6735                 if (discard_supported &&
6736                    mddev->queue->limits.max_discard_sectors >= stripe &&
6737                    mddev->queue->limits.discard_granularity >= stripe)
6738                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6739                                                 mddev->queue);
6740                 else
6741                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6742                                                 mddev->queue);
6743         }
6744
6745         return 0;
6746 abort:
6747         md_unregister_thread(&mddev->thread);
6748         print_raid5_conf(conf);
6749         free_conf(conf);
6750         mddev->private = NULL;
6751         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6752         return -EIO;
6753 }
6754
6755 static void raid5_free(struct mddev *mddev, void *priv)
6756 {
6757         struct r5conf *conf = priv;
6758
6759         free_conf(conf);
6760         mddev->to_remove = &raid5_attrs_group;
6761 }
6762
6763 static void status(struct seq_file *seq, struct mddev *mddev)
6764 {
6765         struct r5conf *conf = mddev->private;
6766         int i;
6767
6768         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6769                 mddev->chunk_sectors / 2, mddev->layout);
6770         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6771         for (i = 0; i < conf->raid_disks; i++)
6772                 seq_printf (seq, "%s",
6773                                conf->disks[i].rdev &&
6774                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6775         seq_printf (seq, "]");
6776 }
6777
6778 static void print_raid5_conf (struct r5conf *conf)
6779 {
6780         int i;
6781         struct disk_info *tmp;
6782
6783         printk(KERN_DEBUG "RAID conf printout:\n");
6784         if (!conf) {
6785                 printk("(conf==NULL)\n");
6786                 return;
6787         }
6788         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6789                conf->raid_disks,
6790                conf->raid_disks - conf->mddev->degraded);
6791
6792         for (i = 0; i < conf->raid_disks; i++) {
6793                 char b[BDEVNAME_SIZE];
6794                 tmp = conf->disks + i;
6795                 if (tmp->rdev)
6796                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6797                                i, !test_bit(Faulty, &tmp->rdev->flags),
6798                                bdevname(tmp->rdev->bdev, b));
6799         }
6800 }
6801
6802 static int raid5_spare_active(struct mddev *mddev)
6803 {
6804         int i;
6805         struct r5conf *conf = mddev->private;
6806         struct disk_info *tmp;
6807         int count = 0;
6808         unsigned long flags;
6809
6810         for (i = 0; i < conf->raid_disks; i++) {
6811                 tmp = conf->disks + i;
6812                 if (tmp->replacement
6813                     && tmp->replacement->recovery_offset == MaxSector
6814                     && !test_bit(Faulty, &tmp->replacement->flags)
6815                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6816                         /* Replacement has just become active. */
6817                         if (!tmp->rdev
6818                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6819                                 count++;
6820                         if (tmp->rdev) {
6821                                 /* Replaced device not technically faulty,
6822                                  * but we need to be sure it gets removed
6823                                  * and never re-added.
6824                                  */
6825                                 set_bit(Faulty, &tmp->rdev->flags);
6826                                 sysfs_notify_dirent_safe(
6827                                         tmp->rdev->sysfs_state);
6828                         }
6829                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6830                 } else if (tmp->rdev
6831                     && tmp->rdev->recovery_offset == MaxSector
6832                     && !test_bit(Faulty, &tmp->rdev->flags)
6833                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6834                         count++;
6835                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6836                 }
6837         }
6838         spin_lock_irqsave(&conf->device_lock, flags);
6839         mddev->degraded = calc_degraded(conf);
6840         spin_unlock_irqrestore(&conf->device_lock, flags);
6841         print_raid5_conf(conf);
6842         return count;
6843 }
6844
6845 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6846 {
6847         struct r5conf *conf = mddev->private;
6848         int err = 0;
6849         int number = rdev->raid_disk;
6850         struct md_rdev **rdevp;
6851         struct disk_info *p = conf->disks + number;
6852
6853         print_raid5_conf(conf);
6854         if (rdev == p->rdev)
6855                 rdevp = &p->rdev;
6856         else if (rdev == p->replacement)
6857                 rdevp = &p->replacement;
6858         else
6859                 return 0;
6860
6861         if (number >= conf->raid_disks &&
6862             conf->reshape_progress == MaxSector)
6863                 clear_bit(In_sync, &rdev->flags);
6864
6865         if (test_bit(In_sync, &rdev->flags) ||
6866             atomic_read(&rdev->nr_pending)) {
6867                 err = -EBUSY;
6868                 goto abort;
6869         }
6870         /* Only remove non-faulty devices if recovery
6871          * isn't possible.
6872          */
6873         if (!test_bit(Faulty, &rdev->flags) &&
6874             mddev->recovery_disabled != conf->recovery_disabled &&
6875             !has_failed(conf) &&
6876             (!p->replacement || p->replacement == rdev) &&
6877             number < conf->raid_disks) {
6878                 err = -EBUSY;
6879                 goto abort;
6880         }
6881         *rdevp = NULL;
6882         synchronize_rcu();
6883         if (atomic_read(&rdev->nr_pending)) {
6884                 /* lost the race, try later */
6885                 err = -EBUSY;
6886                 *rdevp = rdev;
6887         } else if (p->replacement) {
6888                 /* We must have just cleared 'rdev' */
6889                 p->rdev = p->replacement;
6890                 clear_bit(Replacement, &p->replacement->flags);
6891                 smp_mb(); /* Make sure other CPUs may see both as identical
6892                            * but will never see neither - if they are careful
6893                            */
6894                 p->replacement = NULL;
6895                 clear_bit(WantReplacement, &rdev->flags);
6896         } else
6897                 /* We might have just removed the Replacement as faulty-
6898                  * clear the bit just in case
6899                  */
6900                 clear_bit(WantReplacement, &rdev->flags);
6901 abort:
6902
6903         print_raid5_conf(conf);
6904         return err;
6905 }
6906
6907 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6908 {
6909         struct r5conf *conf = mddev->private;
6910         int err = -EEXIST;
6911         int disk;
6912         struct disk_info *p;
6913         int first = 0;
6914         int last = conf->raid_disks - 1;
6915
6916         if (mddev->recovery_disabled == conf->recovery_disabled)
6917                 return -EBUSY;
6918
6919         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6920                 /* no point adding a device */
6921                 return -EINVAL;
6922
6923         if (rdev->raid_disk >= 0)
6924                 first = last = rdev->raid_disk;
6925
6926         /*
6927          * find the disk ... but prefer rdev->saved_raid_disk
6928          * if possible.
6929          */
6930         if (rdev->saved_raid_disk >= 0 &&
6931             rdev->saved_raid_disk >= first &&
6932             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6933                 first = rdev->saved_raid_disk;
6934
6935         for (disk = first; disk <= last; disk++) {
6936                 p = conf->disks + disk;
6937                 if (p->rdev == NULL) {
6938                         clear_bit(In_sync, &rdev->flags);
6939                         rdev->raid_disk = disk;
6940                         err = 0;
6941                         if (rdev->saved_raid_disk != disk)
6942                                 conf->fullsync = 1;
6943                         rcu_assign_pointer(p->rdev, rdev);
6944                         goto out;
6945                 }
6946         }
6947         for (disk = first; disk <= last; disk++) {
6948                 p = conf->disks + disk;
6949                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6950                     p->replacement == NULL) {
6951                         clear_bit(In_sync, &rdev->flags);
6952                         set_bit(Replacement, &rdev->flags);
6953                         rdev->raid_disk = disk;
6954                         err = 0;
6955                         conf->fullsync = 1;
6956                         rcu_assign_pointer(p->replacement, rdev);
6957                         break;
6958                 }
6959         }
6960 out:
6961         print_raid5_conf(conf);
6962         return err;
6963 }
6964
6965 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6966 {
6967         /* no resync is happening, and there is enough space
6968          * on all devices, so we can resize.
6969          * We need to make sure resync covers any new space.
6970          * If the array is shrinking we should possibly wait until
6971          * any io in the removed space completes, but it hardly seems
6972          * worth it.
6973          */
6974         sector_t newsize;
6975         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6976         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6977         if (mddev->external_size &&
6978             mddev->array_sectors > newsize)
6979                 return -EINVAL;
6980         if (mddev->bitmap) {
6981                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6982                 if (ret)
6983                         return ret;
6984         }
6985         md_set_array_sectors(mddev, newsize);
6986         set_capacity(mddev->gendisk, mddev->array_sectors);
6987         revalidate_disk(mddev->gendisk);
6988         if (sectors > mddev->dev_sectors &&
6989             mddev->recovery_cp > mddev->dev_sectors) {
6990                 mddev->recovery_cp = mddev->dev_sectors;
6991                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6992         }
6993         mddev->dev_sectors = sectors;
6994         mddev->resync_max_sectors = sectors;
6995         return 0;
6996 }
6997
6998 static int check_stripe_cache(struct mddev *mddev)
6999 {
7000         /* Can only proceed if there are plenty of stripe_heads.
7001          * We need a minimum of one full stripe,, and for sensible progress
7002          * it is best to have about 4 times that.
7003          * If we require 4 times, then the default 256 4K stripe_heads will
7004          * allow for chunk sizes up to 256K, which is probably OK.
7005          * If the chunk size is greater, user-space should request more
7006          * stripe_heads first.
7007          */
7008         struct r5conf *conf = mddev->private;
7009         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7010             > conf->max_nr_stripes ||
7011             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7012             > conf->max_nr_stripes) {
7013                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7014                        mdname(mddev),
7015                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7016                         / STRIPE_SIZE)*4);
7017                 return 0;
7018         }
7019         return 1;
7020 }
7021
7022 static int check_reshape(struct mddev *mddev)
7023 {
7024         struct r5conf *conf = mddev->private;
7025
7026         if (mddev->delta_disks == 0 &&
7027             mddev->new_layout == mddev->layout &&
7028             mddev->new_chunk_sectors == mddev->chunk_sectors)
7029                 return 0; /* nothing to do */
7030         if (has_failed(conf))
7031                 return -EINVAL;
7032         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7033                 /* We might be able to shrink, but the devices must
7034                  * be made bigger first.
7035                  * For raid6, 4 is the minimum size.
7036                  * Otherwise 2 is the minimum
7037                  */
7038                 int min = 2;
7039                 if (mddev->level == 6)
7040                         min = 4;
7041                 if (mddev->raid_disks + mddev->delta_disks < min)
7042                         return -EINVAL;
7043         }
7044
7045         if (!check_stripe_cache(mddev))
7046                 return -ENOSPC;
7047
7048         return resize_stripes(conf, (conf->previous_raid_disks
7049                                      + mddev->delta_disks));
7050 }
7051
7052 static int raid5_start_reshape(struct mddev *mddev)
7053 {
7054         struct r5conf *conf = mddev->private;
7055         struct md_rdev *rdev;
7056         int spares = 0;
7057         unsigned long flags;
7058
7059         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7060                 return -EBUSY;
7061
7062         if (!check_stripe_cache(mddev))
7063                 return -ENOSPC;
7064
7065         if (has_failed(conf))
7066                 return -EINVAL;
7067
7068         rdev_for_each(rdev, mddev) {
7069                 if (!test_bit(In_sync, &rdev->flags)
7070                     && !test_bit(Faulty, &rdev->flags))
7071                         spares++;
7072         }
7073
7074         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7075                 /* Not enough devices even to make a degraded array
7076                  * of that size
7077                  */
7078                 return -EINVAL;
7079
7080         /* Refuse to reduce size of the array.  Any reductions in
7081          * array size must be through explicit setting of array_size
7082          * attribute.
7083          */
7084         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7085             < mddev->array_sectors) {
7086                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7087                        "before number of disks\n", mdname(mddev));
7088                 return -EINVAL;
7089         }
7090
7091         atomic_set(&conf->reshape_stripes, 0);
7092         spin_lock_irq(&conf->device_lock);
7093         write_seqcount_begin(&conf->gen_lock);
7094         conf->previous_raid_disks = conf->raid_disks;
7095         conf->raid_disks += mddev->delta_disks;
7096         conf->prev_chunk_sectors = conf->chunk_sectors;
7097         conf->chunk_sectors = mddev->new_chunk_sectors;
7098         conf->prev_algo = conf->algorithm;
7099         conf->algorithm = mddev->new_layout;
7100         conf->generation++;
7101         /* Code that selects data_offset needs to see the generation update
7102          * if reshape_progress has been set - so a memory barrier needed.
7103          */
7104         smp_mb();
7105         if (mddev->reshape_backwards)
7106                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7107         else
7108                 conf->reshape_progress = 0;
7109         conf->reshape_safe = conf->reshape_progress;
7110         write_seqcount_end(&conf->gen_lock);
7111         spin_unlock_irq(&conf->device_lock);
7112
7113         /* Now make sure any requests that proceeded on the assumption
7114          * the reshape wasn't running - like Discard or Read - have
7115          * completed.
7116          */
7117         mddev_suspend(mddev);
7118         mddev_resume(mddev);
7119
7120         /* Add some new drives, as many as will fit.
7121          * We know there are enough to make the newly sized array work.
7122          * Don't add devices if we are reducing the number of
7123          * devices in the array.  This is because it is not possible
7124          * to correctly record the "partially reconstructed" state of
7125          * such devices during the reshape and confusion could result.
7126          */
7127         if (mddev->delta_disks >= 0) {
7128                 rdev_for_each(rdev, mddev)
7129                         if (rdev->raid_disk < 0 &&
7130                             !test_bit(Faulty, &rdev->flags)) {
7131                                 if (raid5_add_disk(mddev, rdev) == 0) {
7132                                         if (rdev->raid_disk
7133                                             >= conf->previous_raid_disks)
7134                                                 set_bit(In_sync, &rdev->flags);
7135                                         else
7136                                                 rdev->recovery_offset = 0;
7137
7138                                         if (sysfs_link_rdev(mddev, rdev))
7139                                                 /* Failure here is OK */;
7140                                 }
7141                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7142                                    && !test_bit(Faulty, &rdev->flags)) {
7143                                 /* This is a spare that was manually added */
7144                                 set_bit(In_sync, &rdev->flags);
7145                         }
7146
7147                 /* When a reshape changes the number of devices,
7148                  * ->degraded is measured against the larger of the
7149                  * pre and post number of devices.
7150                  */
7151                 spin_lock_irqsave(&conf->device_lock, flags);
7152                 mddev->degraded = calc_degraded(conf);
7153                 spin_unlock_irqrestore(&conf->device_lock, flags);
7154         }
7155         mddev->raid_disks = conf->raid_disks;
7156         mddev->reshape_position = conf->reshape_progress;
7157         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7158
7159         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7160         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7161         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7162         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7163         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7164                                                 "reshape");
7165         if (!mddev->sync_thread) {
7166                 mddev->recovery = 0;
7167                 spin_lock_irq(&conf->device_lock);
7168                 write_seqcount_begin(&conf->gen_lock);
7169                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7170                 mddev->new_chunk_sectors =
7171                         conf->chunk_sectors = conf->prev_chunk_sectors;
7172                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7173                 rdev_for_each(rdev, mddev)
7174                         rdev->new_data_offset = rdev->data_offset;
7175                 smp_wmb();
7176                 conf->generation --;
7177                 conf->reshape_progress = MaxSector;
7178                 mddev->reshape_position = MaxSector;
7179                 write_seqcount_end(&conf->gen_lock);
7180                 spin_unlock_irq(&conf->device_lock);
7181                 return -EAGAIN;
7182         }
7183         conf->reshape_checkpoint = jiffies;
7184         md_wakeup_thread(mddev->sync_thread);
7185         md_new_event(mddev);
7186         return 0;
7187 }
7188
7189 /* This is called from the reshape thread and should make any
7190  * changes needed in 'conf'
7191  */
7192 static void end_reshape(struct r5conf *conf)
7193 {
7194
7195         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7196                 struct md_rdev *rdev;
7197
7198                 spin_lock_irq(&conf->device_lock);
7199                 conf->previous_raid_disks = conf->raid_disks;
7200                 rdev_for_each(rdev, conf->mddev)
7201                         rdev->data_offset = rdev->new_data_offset;
7202                 smp_wmb();
7203                 conf->reshape_progress = MaxSector;
7204                 spin_unlock_irq(&conf->device_lock);
7205                 wake_up(&conf->wait_for_overlap);
7206
7207                 /* read-ahead size must cover two whole stripes, which is
7208                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7209                  */
7210                 if (conf->mddev->queue) {
7211                         int data_disks = conf->raid_disks - conf->max_degraded;
7212                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7213                                                    / PAGE_SIZE);
7214                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7215                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7216                 }
7217         }
7218 }
7219
7220 /* This is called from the raid5d thread with mddev_lock held.
7221  * It makes config changes to the device.
7222  */
7223 static void raid5_finish_reshape(struct mddev *mddev)
7224 {
7225         struct r5conf *conf = mddev->private;
7226
7227         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7228
7229                 if (mddev->delta_disks > 0) {
7230                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7231                         set_capacity(mddev->gendisk, mddev->array_sectors);
7232                         revalidate_disk(mddev->gendisk);
7233                 } else {
7234                         int d;
7235                         spin_lock_irq(&conf->device_lock);
7236                         mddev->degraded = calc_degraded(conf);
7237                         spin_unlock_irq(&conf->device_lock);
7238                         for (d = conf->raid_disks ;
7239                              d < conf->raid_disks - mddev->delta_disks;
7240                              d++) {
7241                                 struct md_rdev *rdev = conf->disks[d].rdev;
7242                                 if (rdev)
7243                                         clear_bit(In_sync, &rdev->flags);
7244                                 rdev = conf->disks[d].replacement;
7245                                 if (rdev)
7246                                         clear_bit(In_sync, &rdev->flags);
7247                         }
7248                 }
7249                 mddev->layout = conf->algorithm;
7250                 mddev->chunk_sectors = conf->chunk_sectors;
7251                 mddev->reshape_position = MaxSector;
7252                 mddev->delta_disks = 0;
7253                 mddev->reshape_backwards = 0;
7254         }
7255 }
7256
7257 static void raid5_quiesce(struct mddev *mddev, int state)
7258 {
7259         struct r5conf *conf = mddev->private;
7260
7261         switch(state) {
7262         case 2: /* resume for a suspend */
7263                 wake_up(&conf->wait_for_overlap);
7264                 break;
7265
7266         case 1: /* stop all writes */
7267                 lock_all_device_hash_locks_irq(conf);
7268                 /* '2' tells resync/reshape to pause so that all
7269                  * active stripes can drain
7270                  */
7271                 conf->quiesce = 2;
7272                 wait_event_cmd(conf->wait_for_stripe,
7273                                     atomic_read(&conf->active_stripes) == 0 &&
7274                                     atomic_read(&conf->active_aligned_reads) == 0,
7275                                     unlock_all_device_hash_locks_irq(conf),
7276                                     lock_all_device_hash_locks_irq(conf));
7277                 conf->quiesce = 1;
7278                 unlock_all_device_hash_locks_irq(conf);
7279                 /* allow reshape to continue */
7280                 wake_up(&conf->wait_for_overlap);
7281                 break;
7282
7283         case 0: /* re-enable writes */
7284                 lock_all_device_hash_locks_irq(conf);
7285                 conf->quiesce = 0;
7286                 wake_up(&conf->wait_for_stripe);
7287                 wake_up(&conf->wait_for_overlap);
7288                 unlock_all_device_hash_locks_irq(conf);
7289                 break;
7290         }
7291 }
7292
7293 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7294 {
7295         struct r0conf *raid0_conf = mddev->private;
7296         sector_t sectors;
7297
7298         /* for raid0 takeover only one zone is supported */
7299         if (raid0_conf->nr_strip_zones > 1) {
7300                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7301                        mdname(mddev));
7302                 return ERR_PTR(-EINVAL);
7303         }
7304
7305         sectors = raid0_conf->strip_zone[0].zone_end;
7306         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7307         mddev->dev_sectors = sectors;
7308         mddev->new_level = level;
7309         mddev->new_layout = ALGORITHM_PARITY_N;
7310         mddev->new_chunk_sectors = mddev->chunk_sectors;
7311         mddev->raid_disks += 1;
7312         mddev->delta_disks = 1;
7313         /* make sure it will be not marked as dirty */
7314         mddev->recovery_cp = MaxSector;
7315
7316         return setup_conf(mddev);
7317 }
7318
7319 static void *raid5_takeover_raid1(struct mddev *mddev)
7320 {
7321         int chunksect;
7322
7323         if (mddev->raid_disks != 2 ||
7324             mddev->degraded > 1)
7325                 return ERR_PTR(-EINVAL);
7326
7327         /* Should check if there are write-behind devices? */
7328
7329         chunksect = 64*2; /* 64K by default */
7330
7331         /* The array must be an exact multiple of chunksize */
7332         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7333                 chunksect >>= 1;
7334
7335         if ((chunksect<<9) < STRIPE_SIZE)
7336                 /* array size does not allow a suitable chunk size */
7337                 return ERR_PTR(-EINVAL);
7338
7339         mddev->new_level = 5;
7340         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7341         mddev->new_chunk_sectors = chunksect;
7342
7343         return setup_conf(mddev);
7344 }
7345
7346 static void *raid5_takeover_raid6(struct mddev *mddev)
7347 {
7348         int new_layout;
7349
7350         switch (mddev->layout) {
7351         case ALGORITHM_LEFT_ASYMMETRIC_6:
7352                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7353                 break;
7354         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7355                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7356                 break;
7357         case ALGORITHM_LEFT_SYMMETRIC_6:
7358                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7359                 break;
7360         case ALGORITHM_RIGHT_SYMMETRIC_6:
7361                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7362                 break;
7363         case ALGORITHM_PARITY_0_6:
7364                 new_layout = ALGORITHM_PARITY_0;
7365                 break;
7366         case ALGORITHM_PARITY_N:
7367                 new_layout = ALGORITHM_PARITY_N;
7368                 break;
7369         default:
7370                 return ERR_PTR(-EINVAL);
7371         }
7372         mddev->new_level = 5;
7373         mddev->new_layout = new_layout;
7374         mddev->delta_disks = -1;
7375         mddev->raid_disks -= 1;
7376         return setup_conf(mddev);
7377 }
7378
7379 static int raid5_check_reshape(struct mddev *mddev)
7380 {
7381         /* For a 2-drive array, the layout and chunk size can be changed
7382          * immediately as not restriping is needed.
7383          * For larger arrays we record the new value - after validation
7384          * to be used by a reshape pass.
7385          */
7386         struct r5conf *conf = mddev->private;
7387         int new_chunk = mddev->new_chunk_sectors;
7388
7389         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7390                 return -EINVAL;
7391         if (new_chunk > 0) {
7392                 if (!is_power_of_2(new_chunk))
7393                         return -EINVAL;
7394                 if (new_chunk < (PAGE_SIZE>>9))
7395                         return -EINVAL;
7396                 if (mddev->array_sectors & (new_chunk-1))
7397                         /* not factor of array size */
7398                         return -EINVAL;
7399         }
7400
7401         /* They look valid */
7402
7403         if (mddev->raid_disks == 2) {
7404                 /* can make the change immediately */
7405                 if (mddev->new_layout >= 0) {
7406                         conf->algorithm = mddev->new_layout;
7407                         mddev->layout = mddev->new_layout;
7408                 }
7409                 if (new_chunk > 0) {
7410                         conf->chunk_sectors = new_chunk ;
7411                         mddev->chunk_sectors = new_chunk;
7412                 }
7413                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7414                 md_wakeup_thread(mddev->thread);
7415         }
7416         return check_reshape(mddev);
7417 }
7418
7419 static int raid6_check_reshape(struct mddev *mddev)
7420 {
7421         int new_chunk = mddev->new_chunk_sectors;
7422
7423         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7424                 return -EINVAL;
7425         if (new_chunk > 0) {
7426                 if (!is_power_of_2(new_chunk))
7427                         return -EINVAL;
7428                 if (new_chunk < (PAGE_SIZE >> 9))
7429                         return -EINVAL;
7430                 if (mddev->array_sectors & (new_chunk-1))
7431                         /* not factor of array size */
7432                         return -EINVAL;
7433         }
7434
7435         /* They look valid */
7436         return check_reshape(mddev);
7437 }
7438
7439 static void *raid5_takeover(struct mddev *mddev)
7440 {
7441         /* raid5 can take over:
7442          *  raid0 - if there is only one strip zone - make it a raid4 layout
7443          *  raid1 - if there are two drives.  We need to know the chunk size
7444          *  raid4 - trivial - just use a raid4 layout.
7445          *  raid6 - Providing it is a *_6 layout
7446          */
7447         if (mddev->level == 0)
7448                 return raid45_takeover_raid0(mddev, 5);
7449         if (mddev->level == 1)
7450                 return raid5_takeover_raid1(mddev);
7451         if (mddev->level == 4) {
7452                 mddev->new_layout = ALGORITHM_PARITY_N;
7453                 mddev->new_level = 5;
7454                 return setup_conf(mddev);
7455         }
7456         if (mddev->level == 6)
7457                 return raid5_takeover_raid6(mddev);
7458
7459         return ERR_PTR(-EINVAL);
7460 }
7461
7462 static void *raid4_takeover(struct mddev *mddev)
7463 {
7464         /* raid4 can take over:
7465          *  raid0 - if there is only one strip zone
7466          *  raid5 - if layout is right
7467          */
7468         if (mddev->level == 0)
7469                 return raid45_takeover_raid0(mddev, 4);
7470         if (mddev->level == 5 &&
7471             mddev->layout == ALGORITHM_PARITY_N) {
7472                 mddev->new_layout = 0;
7473                 mddev->new_level = 4;
7474                 return setup_conf(mddev);
7475         }
7476         return ERR_PTR(-EINVAL);
7477 }
7478
7479 static struct md_personality raid5_personality;
7480
7481 static void *raid6_takeover(struct mddev *mddev)
7482 {
7483         /* Currently can only take over a raid5.  We map the
7484          * personality to an equivalent raid6 personality
7485          * with the Q block at the end.
7486          */
7487         int new_layout;
7488
7489         if (mddev->pers != &raid5_personality)
7490                 return ERR_PTR(-EINVAL);
7491         if (mddev->degraded > 1)
7492                 return ERR_PTR(-EINVAL);
7493         if (mddev->raid_disks > 253)
7494                 return ERR_PTR(-EINVAL);
7495         if (mddev->raid_disks < 3)
7496                 return ERR_PTR(-EINVAL);
7497
7498         switch (mddev->layout) {
7499         case ALGORITHM_LEFT_ASYMMETRIC:
7500                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7501                 break;
7502         case ALGORITHM_RIGHT_ASYMMETRIC:
7503                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7504                 break;
7505         case ALGORITHM_LEFT_SYMMETRIC:
7506                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7507                 break;
7508         case ALGORITHM_RIGHT_SYMMETRIC:
7509                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7510                 break;
7511         case ALGORITHM_PARITY_0:
7512                 new_layout = ALGORITHM_PARITY_0_6;
7513                 break;
7514         case ALGORITHM_PARITY_N:
7515                 new_layout = ALGORITHM_PARITY_N;
7516                 break;
7517         default:
7518                 return ERR_PTR(-EINVAL);
7519         }
7520         mddev->new_level = 6;
7521         mddev->new_layout = new_layout;
7522         mddev->delta_disks = 1;
7523         mddev->raid_disks += 1;
7524         return setup_conf(mddev);
7525 }
7526
7527 static struct md_personality raid6_personality =
7528 {
7529         .name           = "raid6",
7530         .level          = 6,
7531         .owner          = THIS_MODULE,
7532         .make_request   = make_request,
7533         .run            = run,
7534         .free           = raid5_free,
7535         .status         = status,
7536         .error_handler  = error,
7537         .hot_add_disk   = raid5_add_disk,
7538         .hot_remove_disk= raid5_remove_disk,
7539         .spare_active   = raid5_spare_active,
7540         .sync_request   = sync_request,
7541         .resize         = raid5_resize,
7542         .size           = raid5_size,
7543         .check_reshape  = raid6_check_reshape,
7544         .start_reshape  = raid5_start_reshape,
7545         .finish_reshape = raid5_finish_reshape,
7546         .quiesce        = raid5_quiesce,
7547         .takeover       = raid6_takeover,
7548         .congested      = raid5_congested,
7549         .mergeable_bvec = raid5_mergeable_bvec,
7550 };
7551 static struct md_personality raid5_personality =
7552 {
7553         .name           = "raid5",
7554         .level          = 5,
7555         .owner          = THIS_MODULE,
7556         .make_request   = make_request,
7557         .run            = run,
7558         .free           = raid5_free,
7559         .status         = status,
7560         .error_handler  = error,
7561         .hot_add_disk   = raid5_add_disk,
7562         .hot_remove_disk= raid5_remove_disk,
7563         .spare_active   = raid5_spare_active,
7564         .sync_request   = sync_request,
7565         .resize         = raid5_resize,
7566         .size           = raid5_size,
7567         .check_reshape  = raid5_check_reshape,
7568         .start_reshape  = raid5_start_reshape,
7569         .finish_reshape = raid5_finish_reshape,
7570         .quiesce        = raid5_quiesce,
7571         .takeover       = raid5_takeover,
7572         .congested      = raid5_congested,
7573         .mergeable_bvec = raid5_mergeable_bvec,
7574 };
7575
7576 static struct md_personality raid4_personality =
7577 {
7578         .name           = "raid4",
7579         .level          = 4,
7580         .owner          = THIS_MODULE,
7581         .make_request   = make_request,
7582         .run            = run,
7583         .free           = raid5_free,
7584         .status         = status,
7585         .error_handler  = error,
7586         .hot_add_disk   = raid5_add_disk,
7587         .hot_remove_disk= raid5_remove_disk,
7588         .spare_active   = raid5_spare_active,
7589         .sync_request   = sync_request,
7590         .resize         = raid5_resize,
7591         .size           = raid5_size,
7592         .check_reshape  = raid5_check_reshape,
7593         .start_reshape  = raid5_start_reshape,
7594         .finish_reshape = raid5_finish_reshape,
7595         .quiesce        = raid5_quiesce,
7596         .takeover       = raid4_takeover,
7597         .congested      = raid5_congested,
7598         .mergeable_bvec = raid5_mergeable_bvec,
7599 };
7600
7601 static int __init raid5_init(void)
7602 {
7603         raid5_wq = alloc_workqueue("raid5wq",
7604                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7605         if (!raid5_wq)
7606                 return -ENOMEM;
7607         register_md_personality(&raid6_personality);
7608         register_md_personality(&raid5_personality);
7609         register_md_personality(&raid4_personality);
7610         return 0;
7611 }
7612
7613 static void raid5_exit(void)
7614 {
7615         unregister_md_personality(&raid6_personality);
7616         unregister_md_personality(&raid5_personality);
7617         unregister_md_personality(&raid4_personality);
7618         destroy_workqueue(raid5_wq);
7619 }
7620
7621 module_init(raid5_init);
7622 module_exit(raid5_exit);
7623 MODULE_LICENSE("GPL");
7624 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7625 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7626 MODULE_ALIAS("md-raid5");
7627 MODULE_ALIAS("md-raid4");
7628 MODULE_ALIAS("md-level-5");
7629 MODULE_ALIAS("md-level-4");
7630 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7631 MODULE_ALIAS("md-raid6");
7632 MODULE_ALIAS("md-level-6");
7633
7634 /* This used to be two separate modules, they were: */
7635 MODULE_ALIAS("raid5");
7636 MODULE_ALIAS("raid6");