md: don't allow arrays to contain devices with bad blocks.
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
55 #include "md.h"
56 #include "raid5.h"
57 #include "raid0.h"
58 #include "bitmap.h"
59
60 /*
61  * Stripe cache
62  */
63
64 #define NR_STRIPES              256
65 #define STRIPE_SIZE             PAGE_SIZE
66 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
68 #define IO_THRESHOLD            1
69 #define BYPASS_THRESHOLD        1
70 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK               (NR_HASH - 1)
72
73 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74
75 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
76  * order without overlap.  There may be several bio's per stripe+device, and
77  * a bio could span several devices.
78  * When walking this list for a particular stripe+device, we must never proceed
79  * beyond a bio that extends past this device, as the next bio might no longer
80  * be valid.
81  * This macro is used to determine the 'next' bio in the list, given the sector
82  * of the current stripe+device
83  */
84 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 /*
86  * The following can be used to debug the driver
87  */
88 #define RAID5_PARANOIA  1
89 #if RAID5_PARANOIA && defined(CONFIG_SMP)
90 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 #else
92 # define CHECK_DEVLOCK()
93 #endif
94
95 #ifdef DEBUG
96 #define inline
97 #define __inline__
98 #endif
99
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_phys_segments(struct bio *bio)
105 {
106         return bio->bi_phys_segments & 0xffff;
107 }
108
109 static inline int raid5_bi_hw_segments(struct bio *bio)
110 {
111         return (bio->bi_phys_segments >> 16) & 0xffff;
112 }
113
114 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 {
116         --bio->bi_phys_segments;
117         return raid5_bi_phys_segments(bio);
118 }
119
120 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 {
122         unsigned short val = raid5_bi_hw_segments(bio);
123
124         --val;
125         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126         return val;
127 }
128
129 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 {
131         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132 }
133
134 /* Find first data disk in a raid6 stripe */
135 static inline int raid6_d0(struct stripe_head *sh)
136 {
137         if (sh->ddf_layout)
138                 /* ddf always start from first device */
139                 return 0;
140         /* md starts just after Q block */
141         if (sh->qd_idx == sh->disks - 1)
142                 return 0;
143         else
144                 return sh->qd_idx + 1;
145 }
146 static inline int raid6_next_disk(int disk, int raid_disks)
147 {
148         disk++;
149         return (disk < raid_disks) ? disk : 0;
150 }
151
152 /* When walking through the disks in a raid5, starting at raid6_d0,
153  * We need to map each disk to a 'slot', where the data disks are slot
154  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155  * is raid_disks-1.  This help does that mapping.
156  */
157 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158                              int *count, int syndrome_disks)
159 {
160         int slot = *count;
161
162         if (sh->ddf_layout)
163                 (*count)++;
164         if (idx == sh->pd_idx)
165                 return syndrome_disks;
166         if (idx == sh->qd_idx)
167                 return syndrome_disks + 1;
168         if (!sh->ddf_layout)
169                 (*count)++;
170         return slot;
171 }
172
173 static void return_io(struct bio *return_bi)
174 {
175         struct bio *bi = return_bi;
176         while (bi) {
177
178                 return_bi = bi->bi_next;
179                 bi->bi_next = NULL;
180                 bi->bi_size = 0;
181                 bio_endio(bi, 0);
182                 bi = return_bi;
183         }
184 }
185
186 static void print_raid5_conf (raid5_conf_t *conf);
187
188 static int stripe_operations_active(struct stripe_head *sh)
189 {
190         return sh->check_state || sh->reconstruct_state ||
191                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193 }
194
195 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 {
197         if (atomic_dec_and_test(&sh->count)) {
198                 BUG_ON(!list_empty(&sh->lru));
199                 BUG_ON(atomic_read(&conf->active_stripes)==0);
200                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201                         if (test_bit(STRIPE_DELAYED, &sh->state))
202                                 list_add_tail(&sh->lru, &conf->delayed_list);
203                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204                                    sh->bm_seq - conf->seq_write > 0)
205                                 list_add_tail(&sh->lru, &conf->bitmap_list);
206                         else {
207                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208                                 list_add_tail(&sh->lru, &conf->handle_list);
209                         }
210                         md_wakeup_thread(conf->mddev->thread);
211                 } else {
212                         BUG_ON(stripe_operations_active(sh));
213                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214                                 atomic_dec(&conf->preread_active_stripes);
215                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216                                         md_wakeup_thread(conf->mddev->thread);
217                         }
218                         atomic_dec(&conf->active_stripes);
219                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220                                 list_add_tail(&sh->lru, &conf->inactive_list);
221                                 wake_up(&conf->wait_for_stripe);
222                                 if (conf->retry_read_aligned)
223                                         md_wakeup_thread(conf->mddev->thread);
224                         }
225                 }
226         }
227 }
228
229 static void release_stripe(struct stripe_head *sh)
230 {
231         raid5_conf_t *conf = sh->raid_conf;
232         unsigned long flags;
233
234         spin_lock_irqsave(&conf->device_lock, flags);
235         __release_stripe(conf, sh);
236         spin_unlock_irqrestore(&conf->device_lock, flags);
237 }
238
239 static inline void remove_hash(struct stripe_head *sh)
240 {
241         pr_debug("remove_hash(), stripe %llu\n",
242                 (unsigned long long)sh->sector);
243
244         hlist_del_init(&sh->hash);
245 }
246
247 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
248 {
249         struct hlist_head *hp = stripe_hash(conf, sh->sector);
250
251         pr_debug("insert_hash(), stripe %llu\n",
252                 (unsigned long long)sh->sector);
253
254         CHECK_DEVLOCK();
255         hlist_add_head(&sh->hash, hp);
256 }
257
258
259 /* find an idle stripe, make sure it is unhashed, and return it. */
260 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261 {
262         struct stripe_head *sh = NULL;
263         struct list_head *first;
264
265         CHECK_DEVLOCK();
266         if (list_empty(&conf->inactive_list))
267                 goto out;
268         first = conf->inactive_list.next;
269         sh = list_entry(first, struct stripe_head, lru);
270         list_del_init(first);
271         remove_hash(sh);
272         atomic_inc(&conf->active_stripes);
273 out:
274         return sh;
275 }
276
277 static void shrink_buffers(struct stripe_head *sh)
278 {
279         struct page *p;
280         int i;
281         int num = sh->raid_conf->pool_size;
282
283         for (i = 0; i < num ; i++) {
284                 p = sh->dev[i].page;
285                 if (!p)
286                         continue;
287                 sh->dev[i].page = NULL;
288                 put_page(p);
289         }
290 }
291
292 static int grow_buffers(struct stripe_head *sh)
293 {
294         int i;
295         int num = sh->raid_conf->pool_size;
296
297         for (i = 0; i < num; i++) {
298                 struct page *page;
299
300                 if (!(page = alloc_page(GFP_KERNEL))) {
301                         return 1;
302                 }
303                 sh->dev[i].page = page;
304         }
305         return 0;
306 }
307
308 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310                             struct stripe_head *sh);
311
312 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 {
314         raid5_conf_t *conf = sh->raid_conf;
315         int i;
316
317         BUG_ON(atomic_read(&sh->count) != 0);
318         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319         BUG_ON(stripe_operations_active(sh));
320
321         CHECK_DEVLOCK();
322         pr_debug("init_stripe called, stripe %llu\n",
323                 (unsigned long long)sh->sector);
324
325         remove_hash(sh);
326
327         sh->generation = conf->generation - previous;
328         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329         sh->sector = sector;
330         stripe_set_idx(sector, conf, previous, sh);
331         sh->state = 0;
332
333
334         for (i = sh->disks; i--; ) {
335                 struct r5dev *dev = &sh->dev[i];
336
337                 if (dev->toread || dev->read || dev->towrite || dev->written ||
338                     test_bit(R5_LOCKED, &dev->flags)) {
339                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340                                (unsigned long long)sh->sector, i, dev->toread,
341                                dev->read, dev->towrite, dev->written,
342                                test_bit(R5_LOCKED, &dev->flags));
343                         WARN_ON(1);
344                 }
345                 dev->flags = 0;
346                 raid5_build_block(sh, i, previous);
347         }
348         insert_hash(conf, sh);
349 }
350
351 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352                                          short generation)
353 {
354         struct stripe_head *sh;
355         struct hlist_node *hn;
356
357         CHECK_DEVLOCK();
358         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360                 if (sh->sector == sector && sh->generation == generation)
361                         return sh;
362         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363         return NULL;
364 }
365
366 /*
367  * Need to check if array has failed when deciding whether to:
368  *  - start an array
369  *  - remove non-faulty devices
370  *  - add a spare
371  *  - allow a reshape
372  * This determination is simple when no reshape is happening.
373  * However if there is a reshape, we need to carefully check
374  * both the before and after sections.
375  * This is because some failed devices may only affect one
376  * of the two sections, and some non-in_sync devices may
377  * be insync in the section most affected by failed devices.
378  */
379 static int has_failed(raid5_conf_t *conf)
380 {
381         int degraded;
382         int i;
383         if (conf->mddev->reshape_position == MaxSector)
384                 return conf->mddev->degraded > conf->max_degraded;
385
386         rcu_read_lock();
387         degraded = 0;
388         for (i = 0; i < conf->previous_raid_disks; i++) {
389                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390                 if (!rdev || test_bit(Faulty, &rdev->flags))
391                         degraded++;
392                 else if (test_bit(In_sync, &rdev->flags))
393                         ;
394                 else
395                         /* not in-sync or faulty.
396                          * If the reshape increases the number of devices,
397                          * this is being recovered by the reshape, so
398                          * this 'previous' section is not in_sync.
399                          * If the number of devices is being reduced however,
400                          * the device can only be part of the array if
401                          * we are reverting a reshape, so this section will
402                          * be in-sync.
403                          */
404                         if (conf->raid_disks >= conf->previous_raid_disks)
405                                 degraded++;
406         }
407         rcu_read_unlock();
408         if (degraded > conf->max_degraded)
409                 return 1;
410         rcu_read_lock();
411         degraded = 0;
412         for (i = 0; i < conf->raid_disks; i++) {
413                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414                 if (!rdev || test_bit(Faulty, &rdev->flags))
415                         degraded++;
416                 else if (test_bit(In_sync, &rdev->flags))
417                         ;
418                 else
419                         /* not in-sync or faulty.
420                          * If reshape increases the number of devices, this
421                          * section has already been recovered, else it
422                          * almost certainly hasn't.
423                          */
424                         if (conf->raid_disks <= conf->previous_raid_disks)
425                                 degraded++;
426         }
427         rcu_read_unlock();
428         if (degraded > conf->max_degraded)
429                 return 1;
430         return 0;
431 }
432
433 static struct stripe_head *
434 get_active_stripe(raid5_conf_t *conf, sector_t sector,
435                   int previous, int noblock, int noquiesce)
436 {
437         struct stripe_head *sh;
438
439         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
440
441         spin_lock_irq(&conf->device_lock);
442
443         do {
444                 wait_event_lock_irq(conf->wait_for_stripe,
445                                     conf->quiesce == 0 || noquiesce,
446                                     conf->device_lock, /* nothing */);
447                 sh = __find_stripe(conf, sector, conf->generation - previous);
448                 if (!sh) {
449                         if (!conf->inactive_blocked)
450                                 sh = get_free_stripe(conf);
451                         if (noblock && sh == NULL)
452                                 break;
453                         if (!sh) {
454                                 conf->inactive_blocked = 1;
455                                 wait_event_lock_irq(conf->wait_for_stripe,
456                                                     !list_empty(&conf->inactive_list) &&
457                                                     (atomic_read(&conf->active_stripes)
458                                                      < (conf->max_nr_stripes *3/4)
459                                                      || !conf->inactive_blocked),
460                                                     conf->device_lock,
461                                                     );
462                                 conf->inactive_blocked = 0;
463                         } else
464                                 init_stripe(sh, sector, previous);
465                 } else {
466                         if (atomic_read(&sh->count)) {
467                                 BUG_ON(!list_empty(&sh->lru)
468                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
469                         } else {
470                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
471                                         atomic_inc(&conf->active_stripes);
472                                 if (list_empty(&sh->lru) &&
473                                     !test_bit(STRIPE_EXPANDING, &sh->state))
474                                         BUG();
475                                 list_del_init(&sh->lru);
476                         }
477                 }
478         } while (sh == NULL);
479
480         if (sh)
481                 atomic_inc(&sh->count);
482
483         spin_unlock_irq(&conf->device_lock);
484         return sh;
485 }
486
487 static void
488 raid5_end_read_request(struct bio *bi, int error);
489 static void
490 raid5_end_write_request(struct bio *bi, int error);
491
492 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493 {
494         raid5_conf_t *conf = sh->raid_conf;
495         int i, disks = sh->disks;
496
497         might_sleep();
498
499         for (i = disks; i--; ) {
500                 int rw;
501                 struct bio *bi;
502                 mdk_rdev_t *rdev;
503                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505                                 rw = WRITE_FUA;
506                         else
507                                 rw = WRITE;
508                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509                         rw = READ;
510                 else
511                         continue;
512
513                 bi = &sh->dev[i].req;
514
515                 bi->bi_rw = rw;
516                 if (rw & WRITE)
517                         bi->bi_end_io = raid5_end_write_request;
518                 else
519                         bi->bi_end_io = raid5_end_read_request;
520
521                 rcu_read_lock();
522                 rdev = rcu_dereference(conf->disks[i].rdev);
523                 if (rdev && test_bit(Faulty, &rdev->flags))
524                         rdev = NULL;
525                 if (rdev)
526                         atomic_inc(&rdev->nr_pending);
527                 rcu_read_unlock();
528
529                 if (rdev) {
530                         if (s->syncing || s->expanding || s->expanded)
531                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
532
533                         set_bit(STRIPE_IO_STARTED, &sh->state);
534
535                         bi->bi_bdev = rdev->bdev;
536                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
537                                 __func__, (unsigned long long)sh->sector,
538                                 bi->bi_rw, i);
539                         atomic_inc(&sh->count);
540                         bi->bi_sector = sh->sector + rdev->data_offset;
541                         bi->bi_flags = 1 << BIO_UPTODATE;
542                         bi->bi_vcnt = 1;
543                         bi->bi_max_vecs = 1;
544                         bi->bi_idx = 0;
545                         bi->bi_io_vec = &sh->dev[i].vec;
546                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
547                         bi->bi_io_vec[0].bv_offset = 0;
548                         bi->bi_size = STRIPE_SIZE;
549                         bi->bi_next = NULL;
550                         generic_make_request(bi);
551                 } else {
552                         if (rw & WRITE)
553                                 set_bit(STRIPE_DEGRADED, &sh->state);
554                         pr_debug("skip op %ld on disc %d for sector %llu\n",
555                                 bi->bi_rw, i, (unsigned long long)sh->sector);
556                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
557                         set_bit(STRIPE_HANDLE, &sh->state);
558                 }
559         }
560 }
561
562 static struct dma_async_tx_descriptor *
563 async_copy_data(int frombio, struct bio *bio, struct page *page,
564         sector_t sector, struct dma_async_tx_descriptor *tx)
565 {
566         struct bio_vec *bvl;
567         struct page *bio_page;
568         int i;
569         int page_offset;
570         struct async_submit_ctl submit;
571         enum async_tx_flags flags = 0;
572
573         if (bio->bi_sector >= sector)
574                 page_offset = (signed)(bio->bi_sector - sector) * 512;
575         else
576                 page_offset = (signed)(sector - bio->bi_sector) * -512;
577
578         if (frombio)
579                 flags |= ASYNC_TX_FENCE;
580         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
581
582         bio_for_each_segment(bvl, bio, i) {
583                 int len = bvl->bv_len;
584                 int clen;
585                 int b_offset = 0;
586
587                 if (page_offset < 0) {
588                         b_offset = -page_offset;
589                         page_offset += b_offset;
590                         len -= b_offset;
591                 }
592
593                 if (len > 0 && page_offset + len > STRIPE_SIZE)
594                         clen = STRIPE_SIZE - page_offset;
595                 else
596                         clen = len;
597
598                 if (clen > 0) {
599                         b_offset += bvl->bv_offset;
600                         bio_page = bvl->bv_page;
601                         if (frombio)
602                                 tx = async_memcpy(page, bio_page, page_offset,
603                                                   b_offset, clen, &submit);
604                         else
605                                 tx = async_memcpy(bio_page, page, b_offset,
606                                                   page_offset, clen, &submit);
607                 }
608                 /* chain the operations */
609                 submit.depend_tx = tx;
610
611                 if (clen < len) /* hit end of page */
612                         break;
613                 page_offset +=  len;
614         }
615
616         return tx;
617 }
618
619 static void ops_complete_biofill(void *stripe_head_ref)
620 {
621         struct stripe_head *sh = stripe_head_ref;
622         struct bio *return_bi = NULL;
623         raid5_conf_t *conf = sh->raid_conf;
624         int i;
625
626         pr_debug("%s: stripe %llu\n", __func__,
627                 (unsigned long long)sh->sector);
628
629         /* clear completed biofills */
630         spin_lock_irq(&conf->device_lock);
631         for (i = sh->disks; i--; ) {
632                 struct r5dev *dev = &sh->dev[i];
633
634                 /* acknowledge completion of a biofill operation */
635                 /* and check if we need to reply to a read request,
636                  * new R5_Wantfill requests are held off until
637                  * !STRIPE_BIOFILL_RUN
638                  */
639                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
640                         struct bio *rbi, *rbi2;
641
642                         BUG_ON(!dev->read);
643                         rbi = dev->read;
644                         dev->read = NULL;
645                         while (rbi && rbi->bi_sector <
646                                 dev->sector + STRIPE_SECTORS) {
647                                 rbi2 = r5_next_bio(rbi, dev->sector);
648                                 if (!raid5_dec_bi_phys_segments(rbi)) {
649                                         rbi->bi_next = return_bi;
650                                         return_bi = rbi;
651                                 }
652                                 rbi = rbi2;
653                         }
654                 }
655         }
656         spin_unlock_irq(&conf->device_lock);
657         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
658
659         return_io(return_bi);
660
661         set_bit(STRIPE_HANDLE, &sh->state);
662         release_stripe(sh);
663 }
664
665 static void ops_run_biofill(struct stripe_head *sh)
666 {
667         struct dma_async_tx_descriptor *tx = NULL;
668         raid5_conf_t *conf = sh->raid_conf;
669         struct async_submit_ctl submit;
670         int i;
671
672         pr_debug("%s: stripe %llu\n", __func__,
673                 (unsigned long long)sh->sector);
674
675         for (i = sh->disks; i--; ) {
676                 struct r5dev *dev = &sh->dev[i];
677                 if (test_bit(R5_Wantfill, &dev->flags)) {
678                         struct bio *rbi;
679                         spin_lock_irq(&conf->device_lock);
680                         dev->read = rbi = dev->toread;
681                         dev->toread = NULL;
682                         spin_unlock_irq(&conf->device_lock);
683                         while (rbi && rbi->bi_sector <
684                                 dev->sector + STRIPE_SECTORS) {
685                                 tx = async_copy_data(0, rbi, dev->page,
686                                         dev->sector, tx);
687                                 rbi = r5_next_bio(rbi, dev->sector);
688                         }
689                 }
690         }
691
692         atomic_inc(&sh->count);
693         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
694         async_trigger_callback(&submit);
695 }
696
697 static void mark_target_uptodate(struct stripe_head *sh, int target)
698 {
699         struct r5dev *tgt;
700
701         if (target < 0)
702                 return;
703
704         tgt = &sh->dev[target];
705         set_bit(R5_UPTODATE, &tgt->flags);
706         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
707         clear_bit(R5_Wantcompute, &tgt->flags);
708 }
709
710 static void ops_complete_compute(void *stripe_head_ref)
711 {
712         struct stripe_head *sh = stripe_head_ref;
713
714         pr_debug("%s: stripe %llu\n", __func__,
715                 (unsigned long long)sh->sector);
716
717         /* mark the computed target(s) as uptodate */
718         mark_target_uptodate(sh, sh->ops.target);
719         mark_target_uptodate(sh, sh->ops.target2);
720
721         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
722         if (sh->check_state == check_state_compute_run)
723                 sh->check_state = check_state_compute_result;
724         set_bit(STRIPE_HANDLE, &sh->state);
725         release_stripe(sh);
726 }
727
728 /* return a pointer to the address conversion region of the scribble buffer */
729 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
730                                  struct raid5_percpu *percpu)
731 {
732         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
733 }
734
735 static struct dma_async_tx_descriptor *
736 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
737 {
738         int disks = sh->disks;
739         struct page **xor_srcs = percpu->scribble;
740         int target = sh->ops.target;
741         struct r5dev *tgt = &sh->dev[target];
742         struct page *xor_dest = tgt->page;
743         int count = 0;
744         struct dma_async_tx_descriptor *tx;
745         struct async_submit_ctl submit;
746         int i;
747
748         pr_debug("%s: stripe %llu block: %d\n",
749                 __func__, (unsigned long long)sh->sector, target);
750         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
751
752         for (i = disks; i--; )
753                 if (i != target)
754                         xor_srcs[count++] = sh->dev[i].page;
755
756         atomic_inc(&sh->count);
757
758         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
759                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
760         if (unlikely(count == 1))
761                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
762         else
763                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
764
765         return tx;
766 }
767
768 /* set_syndrome_sources - populate source buffers for gen_syndrome
769  * @srcs - (struct page *) array of size sh->disks
770  * @sh - stripe_head to parse
771  *
772  * Populates srcs in proper layout order for the stripe and returns the
773  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
774  * destination buffer is recorded in srcs[count] and the Q destination
775  * is recorded in srcs[count+1]].
776  */
777 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
778 {
779         int disks = sh->disks;
780         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
781         int d0_idx = raid6_d0(sh);
782         int count;
783         int i;
784
785         for (i = 0; i < disks; i++)
786                 srcs[i] = NULL;
787
788         count = 0;
789         i = d0_idx;
790         do {
791                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
792
793                 srcs[slot] = sh->dev[i].page;
794                 i = raid6_next_disk(i, disks);
795         } while (i != d0_idx);
796
797         return syndrome_disks;
798 }
799
800 static struct dma_async_tx_descriptor *
801 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
802 {
803         int disks = sh->disks;
804         struct page **blocks = percpu->scribble;
805         int target;
806         int qd_idx = sh->qd_idx;
807         struct dma_async_tx_descriptor *tx;
808         struct async_submit_ctl submit;
809         struct r5dev *tgt;
810         struct page *dest;
811         int i;
812         int count;
813
814         if (sh->ops.target < 0)
815                 target = sh->ops.target2;
816         else if (sh->ops.target2 < 0)
817                 target = sh->ops.target;
818         else
819                 /* we should only have one valid target */
820                 BUG();
821         BUG_ON(target < 0);
822         pr_debug("%s: stripe %llu block: %d\n",
823                 __func__, (unsigned long long)sh->sector, target);
824
825         tgt = &sh->dev[target];
826         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
827         dest = tgt->page;
828
829         atomic_inc(&sh->count);
830
831         if (target == qd_idx) {
832                 count = set_syndrome_sources(blocks, sh);
833                 blocks[count] = NULL; /* regenerating p is not necessary */
834                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
835                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
836                                   ops_complete_compute, sh,
837                                   to_addr_conv(sh, percpu));
838                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
839         } else {
840                 /* Compute any data- or p-drive using XOR */
841                 count = 0;
842                 for (i = disks; i-- ; ) {
843                         if (i == target || i == qd_idx)
844                                 continue;
845                         blocks[count++] = sh->dev[i].page;
846                 }
847
848                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
849                                   NULL, ops_complete_compute, sh,
850                                   to_addr_conv(sh, percpu));
851                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
852         }
853
854         return tx;
855 }
856
857 static struct dma_async_tx_descriptor *
858 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
859 {
860         int i, count, disks = sh->disks;
861         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
862         int d0_idx = raid6_d0(sh);
863         int faila = -1, failb = -1;
864         int target = sh->ops.target;
865         int target2 = sh->ops.target2;
866         struct r5dev *tgt = &sh->dev[target];
867         struct r5dev *tgt2 = &sh->dev[target2];
868         struct dma_async_tx_descriptor *tx;
869         struct page **blocks = percpu->scribble;
870         struct async_submit_ctl submit;
871
872         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
873                  __func__, (unsigned long long)sh->sector, target, target2);
874         BUG_ON(target < 0 || target2 < 0);
875         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
876         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
877
878         /* we need to open-code set_syndrome_sources to handle the
879          * slot number conversion for 'faila' and 'failb'
880          */
881         for (i = 0; i < disks ; i++)
882                 blocks[i] = NULL;
883         count = 0;
884         i = d0_idx;
885         do {
886                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
887
888                 blocks[slot] = sh->dev[i].page;
889
890                 if (i == target)
891                         faila = slot;
892                 if (i == target2)
893                         failb = slot;
894                 i = raid6_next_disk(i, disks);
895         } while (i != d0_idx);
896
897         BUG_ON(faila == failb);
898         if (failb < faila)
899                 swap(faila, failb);
900         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
901                  __func__, (unsigned long long)sh->sector, faila, failb);
902
903         atomic_inc(&sh->count);
904
905         if (failb == syndrome_disks+1) {
906                 /* Q disk is one of the missing disks */
907                 if (faila == syndrome_disks) {
908                         /* Missing P+Q, just recompute */
909                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
910                                           ops_complete_compute, sh,
911                                           to_addr_conv(sh, percpu));
912                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
913                                                   STRIPE_SIZE, &submit);
914                 } else {
915                         struct page *dest;
916                         int data_target;
917                         int qd_idx = sh->qd_idx;
918
919                         /* Missing D+Q: recompute D from P, then recompute Q */
920                         if (target == qd_idx)
921                                 data_target = target2;
922                         else
923                                 data_target = target;
924
925                         count = 0;
926                         for (i = disks; i-- ; ) {
927                                 if (i == data_target || i == qd_idx)
928                                         continue;
929                                 blocks[count++] = sh->dev[i].page;
930                         }
931                         dest = sh->dev[data_target].page;
932                         init_async_submit(&submit,
933                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
934                                           NULL, NULL, NULL,
935                                           to_addr_conv(sh, percpu));
936                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
937                                        &submit);
938
939                         count = set_syndrome_sources(blocks, sh);
940                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
941                                           ops_complete_compute, sh,
942                                           to_addr_conv(sh, percpu));
943                         return async_gen_syndrome(blocks, 0, count+2,
944                                                   STRIPE_SIZE, &submit);
945                 }
946         } else {
947                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
948                                   ops_complete_compute, sh,
949                                   to_addr_conv(sh, percpu));
950                 if (failb == syndrome_disks) {
951                         /* We're missing D+P. */
952                         return async_raid6_datap_recov(syndrome_disks+2,
953                                                        STRIPE_SIZE, faila,
954                                                        blocks, &submit);
955                 } else {
956                         /* We're missing D+D. */
957                         return async_raid6_2data_recov(syndrome_disks+2,
958                                                        STRIPE_SIZE, faila, failb,
959                                                        blocks, &submit);
960                 }
961         }
962 }
963
964
965 static void ops_complete_prexor(void *stripe_head_ref)
966 {
967         struct stripe_head *sh = stripe_head_ref;
968
969         pr_debug("%s: stripe %llu\n", __func__,
970                 (unsigned long long)sh->sector);
971 }
972
973 static struct dma_async_tx_descriptor *
974 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
975                struct dma_async_tx_descriptor *tx)
976 {
977         int disks = sh->disks;
978         struct page **xor_srcs = percpu->scribble;
979         int count = 0, pd_idx = sh->pd_idx, i;
980         struct async_submit_ctl submit;
981
982         /* existing parity data subtracted */
983         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
984
985         pr_debug("%s: stripe %llu\n", __func__,
986                 (unsigned long long)sh->sector);
987
988         for (i = disks; i--; ) {
989                 struct r5dev *dev = &sh->dev[i];
990                 /* Only process blocks that are known to be uptodate */
991                 if (test_bit(R5_Wantdrain, &dev->flags))
992                         xor_srcs[count++] = dev->page;
993         }
994
995         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
996                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
997         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
998
999         return tx;
1000 }
1001
1002 static struct dma_async_tx_descriptor *
1003 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1004 {
1005         int disks = sh->disks;
1006         int i;
1007
1008         pr_debug("%s: stripe %llu\n", __func__,
1009                 (unsigned long long)sh->sector);
1010
1011         for (i = disks; i--; ) {
1012                 struct r5dev *dev = &sh->dev[i];
1013                 struct bio *chosen;
1014
1015                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1016                         struct bio *wbi;
1017
1018                         spin_lock_irq(&sh->raid_conf->device_lock);
1019                         chosen = dev->towrite;
1020                         dev->towrite = NULL;
1021                         BUG_ON(dev->written);
1022                         wbi = dev->written = chosen;
1023                         spin_unlock_irq(&sh->raid_conf->device_lock);
1024
1025                         while (wbi && wbi->bi_sector <
1026                                 dev->sector + STRIPE_SECTORS) {
1027                                 if (wbi->bi_rw & REQ_FUA)
1028                                         set_bit(R5_WantFUA, &dev->flags);
1029                                 tx = async_copy_data(1, wbi, dev->page,
1030                                         dev->sector, tx);
1031                                 wbi = r5_next_bio(wbi, dev->sector);
1032                         }
1033                 }
1034         }
1035
1036         return tx;
1037 }
1038
1039 static void ops_complete_reconstruct(void *stripe_head_ref)
1040 {
1041         struct stripe_head *sh = stripe_head_ref;
1042         int disks = sh->disks;
1043         int pd_idx = sh->pd_idx;
1044         int qd_idx = sh->qd_idx;
1045         int i;
1046         bool fua = false;
1047
1048         pr_debug("%s: stripe %llu\n", __func__,
1049                 (unsigned long long)sh->sector);
1050
1051         for (i = disks; i--; )
1052                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1053
1054         for (i = disks; i--; ) {
1055                 struct r5dev *dev = &sh->dev[i];
1056
1057                 if (dev->written || i == pd_idx || i == qd_idx) {
1058                         set_bit(R5_UPTODATE, &dev->flags);
1059                         if (fua)
1060                                 set_bit(R5_WantFUA, &dev->flags);
1061                 }
1062         }
1063
1064         if (sh->reconstruct_state == reconstruct_state_drain_run)
1065                 sh->reconstruct_state = reconstruct_state_drain_result;
1066         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1067                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1068         else {
1069                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1070                 sh->reconstruct_state = reconstruct_state_result;
1071         }
1072
1073         set_bit(STRIPE_HANDLE, &sh->state);
1074         release_stripe(sh);
1075 }
1076
1077 static void
1078 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1079                      struct dma_async_tx_descriptor *tx)
1080 {
1081         int disks = sh->disks;
1082         struct page **xor_srcs = percpu->scribble;
1083         struct async_submit_ctl submit;
1084         int count = 0, pd_idx = sh->pd_idx, i;
1085         struct page *xor_dest;
1086         int prexor = 0;
1087         unsigned long flags;
1088
1089         pr_debug("%s: stripe %llu\n", __func__,
1090                 (unsigned long long)sh->sector);
1091
1092         /* check if prexor is active which means only process blocks
1093          * that are part of a read-modify-write (written)
1094          */
1095         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1096                 prexor = 1;
1097                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1098                 for (i = disks; i--; ) {
1099                         struct r5dev *dev = &sh->dev[i];
1100                         if (dev->written)
1101                                 xor_srcs[count++] = dev->page;
1102                 }
1103         } else {
1104                 xor_dest = sh->dev[pd_idx].page;
1105                 for (i = disks; i--; ) {
1106                         struct r5dev *dev = &sh->dev[i];
1107                         if (i != pd_idx)
1108                                 xor_srcs[count++] = dev->page;
1109                 }
1110         }
1111
1112         /* 1/ if we prexor'd then the dest is reused as a source
1113          * 2/ if we did not prexor then we are redoing the parity
1114          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1115          * for the synchronous xor case
1116          */
1117         flags = ASYNC_TX_ACK |
1118                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1119
1120         atomic_inc(&sh->count);
1121
1122         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1123                           to_addr_conv(sh, percpu));
1124         if (unlikely(count == 1))
1125                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1126         else
1127                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1128 }
1129
1130 static void
1131 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1132                      struct dma_async_tx_descriptor *tx)
1133 {
1134         struct async_submit_ctl submit;
1135         struct page **blocks = percpu->scribble;
1136         int count;
1137
1138         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1139
1140         count = set_syndrome_sources(blocks, sh);
1141
1142         atomic_inc(&sh->count);
1143
1144         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1145                           sh, to_addr_conv(sh, percpu));
1146         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1147 }
1148
1149 static void ops_complete_check(void *stripe_head_ref)
1150 {
1151         struct stripe_head *sh = stripe_head_ref;
1152
1153         pr_debug("%s: stripe %llu\n", __func__,
1154                 (unsigned long long)sh->sector);
1155
1156         sh->check_state = check_state_check_result;
1157         set_bit(STRIPE_HANDLE, &sh->state);
1158         release_stripe(sh);
1159 }
1160
1161 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1162 {
1163         int disks = sh->disks;
1164         int pd_idx = sh->pd_idx;
1165         int qd_idx = sh->qd_idx;
1166         struct page *xor_dest;
1167         struct page **xor_srcs = percpu->scribble;
1168         struct dma_async_tx_descriptor *tx;
1169         struct async_submit_ctl submit;
1170         int count;
1171         int i;
1172
1173         pr_debug("%s: stripe %llu\n", __func__,
1174                 (unsigned long long)sh->sector);
1175
1176         count = 0;
1177         xor_dest = sh->dev[pd_idx].page;
1178         xor_srcs[count++] = xor_dest;
1179         for (i = disks; i--; ) {
1180                 if (i == pd_idx || i == qd_idx)
1181                         continue;
1182                 xor_srcs[count++] = sh->dev[i].page;
1183         }
1184
1185         init_async_submit(&submit, 0, NULL, NULL, NULL,
1186                           to_addr_conv(sh, percpu));
1187         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1188                            &sh->ops.zero_sum_result, &submit);
1189
1190         atomic_inc(&sh->count);
1191         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1192         tx = async_trigger_callback(&submit);
1193 }
1194
1195 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1196 {
1197         struct page **srcs = percpu->scribble;
1198         struct async_submit_ctl submit;
1199         int count;
1200
1201         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1202                 (unsigned long long)sh->sector, checkp);
1203
1204         count = set_syndrome_sources(srcs, sh);
1205         if (!checkp)
1206                 srcs[count] = NULL;
1207
1208         atomic_inc(&sh->count);
1209         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1210                           sh, to_addr_conv(sh, percpu));
1211         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1212                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1213 }
1214
1215 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1216 {
1217         int overlap_clear = 0, i, disks = sh->disks;
1218         struct dma_async_tx_descriptor *tx = NULL;
1219         raid5_conf_t *conf = sh->raid_conf;
1220         int level = conf->level;
1221         struct raid5_percpu *percpu;
1222         unsigned long cpu;
1223
1224         cpu = get_cpu();
1225         percpu = per_cpu_ptr(conf->percpu, cpu);
1226         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1227                 ops_run_biofill(sh);
1228                 overlap_clear++;
1229         }
1230
1231         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1232                 if (level < 6)
1233                         tx = ops_run_compute5(sh, percpu);
1234                 else {
1235                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1236                                 tx = ops_run_compute6_1(sh, percpu);
1237                         else
1238                                 tx = ops_run_compute6_2(sh, percpu);
1239                 }
1240                 /* terminate the chain if reconstruct is not set to be run */
1241                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1242                         async_tx_ack(tx);
1243         }
1244
1245         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1246                 tx = ops_run_prexor(sh, percpu, tx);
1247
1248         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1249                 tx = ops_run_biodrain(sh, tx);
1250                 overlap_clear++;
1251         }
1252
1253         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1254                 if (level < 6)
1255                         ops_run_reconstruct5(sh, percpu, tx);
1256                 else
1257                         ops_run_reconstruct6(sh, percpu, tx);
1258         }
1259
1260         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1261                 if (sh->check_state == check_state_run)
1262                         ops_run_check_p(sh, percpu);
1263                 else if (sh->check_state == check_state_run_q)
1264                         ops_run_check_pq(sh, percpu, 0);
1265                 else if (sh->check_state == check_state_run_pq)
1266                         ops_run_check_pq(sh, percpu, 1);
1267                 else
1268                         BUG();
1269         }
1270
1271         if (overlap_clear)
1272                 for (i = disks; i--; ) {
1273                         struct r5dev *dev = &sh->dev[i];
1274                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1275                                 wake_up(&sh->raid_conf->wait_for_overlap);
1276                 }
1277         put_cpu();
1278 }
1279
1280 #ifdef CONFIG_MULTICORE_RAID456
1281 static void async_run_ops(void *param, async_cookie_t cookie)
1282 {
1283         struct stripe_head *sh = param;
1284         unsigned long ops_request = sh->ops.request;
1285
1286         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1287         wake_up(&sh->ops.wait_for_ops);
1288
1289         __raid_run_ops(sh, ops_request);
1290         release_stripe(sh);
1291 }
1292
1293 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1294 {
1295         /* since handle_stripe can be called outside of raid5d context
1296          * we need to ensure sh->ops.request is de-staged before another
1297          * request arrives
1298          */
1299         wait_event(sh->ops.wait_for_ops,
1300                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1301         sh->ops.request = ops_request;
1302
1303         atomic_inc(&sh->count);
1304         async_schedule(async_run_ops, sh);
1305 }
1306 #else
1307 #define raid_run_ops __raid_run_ops
1308 #endif
1309
1310 static int grow_one_stripe(raid5_conf_t *conf)
1311 {
1312         struct stripe_head *sh;
1313         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1314         if (!sh)
1315                 return 0;
1316
1317         sh->raid_conf = conf;
1318         #ifdef CONFIG_MULTICORE_RAID456
1319         init_waitqueue_head(&sh->ops.wait_for_ops);
1320         #endif
1321
1322         if (grow_buffers(sh)) {
1323                 shrink_buffers(sh);
1324                 kmem_cache_free(conf->slab_cache, sh);
1325                 return 0;
1326         }
1327         /* we just created an active stripe so... */
1328         atomic_set(&sh->count, 1);
1329         atomic_inc(&conf->active_stripes);
1330         INIT_LIST_HEAD(&sh->lru);
1331         release_stripe(sh);
1332         return 1;
1333 }
1334
1335 static int grow_stripes(raid5_conf_t *conf, int num)
1336 {
1337         struct kmem_cache *sc;
1338         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1339
1340         if (conf->mddev->gendisk)
1341                 sprintf(conf->cache_name[0],
1342                         "raid%d-%s", conf->level, mdname(conf->mddev));
1343         else
1344                 sprintf(conf->cache_name[0],
1345                         "raid%d-%p", conf->level, conf->mddev);
1346         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1347
1348         conf->active_name = 0;
1349         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1350                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1351                                0, 0, NULL);
1352         if (!sc)
1353                 return 1;
1354         conf->slab_cache = sc;
1355         conf->pool_size = devs;
1356         while (num--)
1357                 if (!grow_one_stripe(conf))
1358                         return 1;
1359         return 0;
1360 }
1361
1362 /**
1363  * scribble_len - return the required size of the scribble region
1364  * @num - total number of disks in the array
1365  *
1366  * The size must be enough to contain:
1367  * 1/ a struct page pointer for each device in the array +2
1368  * 2/ room to convert each entry in (1) to its corresponding dma
1369  *    (dma_map_page()) or page (page_address()) address.
1370  *
1371  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1372  * calculate over all devices (not just the data blocks), using zeros in place
1373  * of the P and Q blocks.
1374  */
1375 static size_t scribble_len(int num)
1376 {
1377         size_t len;
1378
1379         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1380
1381         return len;
1382 }
1383
1384 static int resize_stripes(raid5_conf_t *conf, int newsize)
1385 {
1386         /* Make all the stripes able to hold 'newsize' devices.
1387          * New slots in each stripe get 'page' set to a new page.
1388          *
1389          * This happens in stages:
1390          * 1/ create a new kmem_cache and allocate the required number of
1391          *    stripe_heads.
1392          * 2/ gather all the old stripe_heads and tranfer the pages across
1393          *    to the new stripe_heads.  This will have the side effect of
1394          *    freezing the array as once all stripe_heads have been collected,
1395          *    no IO will be possible.  Old stripe heads are freed once their
1396          *    pages have been transferred over, and the old kmem_cache is
1397          *    freed when all stripes are done.
1398          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1399          *    we simple return a failre status - no need to clean anything up.
1400          * 4/ allocate new pages for the new slots in the new stripe_heads.
1401          *    If this fails, we don't bother trying the shrink the
1402          *    stripe_heads down again, we just leave them as they are.
1403          *    As each stripe_head is processed the new one is released into
1404          *    active service.
1405          *
1406          * Once step2 is started, we cannot afford to wait for a write,
1407          * so we use GFP_NOIO allocations.
1408          */
1409         struct stripe_head *osh, *nsh;
1410         LIST_HEAD(newstripes);
1411         struct disk_info *ndisks;
1412         unsigned long cpu;
1413         int err;
1414         struct kmem_cache *sc;
1415         int i;
1416
1417         if (newsize <= conf->pool_size)
1418                 return 0; /* never bother to shrink */
1419
1420         err = md_allow_write(conf->mddev);
1421         if (err)
1422                 return err;
1423
1424         /* Step 1 */
1425         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1426                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1427                                0, 0, NULL);
1428         if (!sc)
1429                 return -ENOMEM;
1430
1431         for (i = conf->max_nr_stripes; i; i--) {
1432                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1433                 if (!nsh)
1434                         break;
1435
1436                 nsh->raid_conf = conf;
1437                 #ifdef CONFIG_MULTICORE_RAID456
1438                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1439                 #endif
1440
1441                 list_add(&nsh->lru, &newstripes);
1442         }
1443         if (i) {
1444                 /* didn't get enough, give up */
1445                 while (!list_empty(&newstripes)) {
1446                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1447                         list_del(&nsh->lru);
1448                         kmem_cache_free(sc, nsh);
1449                 }
1450                 kmem_cache_destroy(sc);
1451                 return -ENOMEM;
1452         }
1453         /* Step 2 - Must use GFP_NOIO now.
1454          * OK, we have enough stripes, start collecting inactive
1455          * stripes and copying them over
1456          */
1457         list_for_each_entry(nsh, &newstripes, lru) {
1458                 spin_lock_irq(&conf->device_lock);
1459                 wait_event_lock_irq(conf->wait_for_stripe,
1460                                     !list_empty(&conf->inactive_list),
1461                                     conf->device_lock,
1462                                     );
1463                 osh = get_free_stripe(conf);
1464                 spin_unlock_irq(&conf->device_lock);
1465                 atomic_set(&nsh->count, 1);
1466                 for(i=0; i<conf->pool_size; i++)
1467                         nsh->dev[i].page = osh->dev[i].page;
1468                 for( ; i<newsize; i++)
1469                         nsh->dev[i].page = NULL;
1470                 kmem_cache_free(conf->slab_cache, osh);
1471         }
1472         kmem_cache_destroy(conf->slab_cache);
1473
1474         /* Step 3.
1475          * At this point, we are holding all the stripes so the array
1476          * is completely stalled, so now is a good time to resize
1477          * conf->disks and the scribble region
1478          */
1479         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1480         if (ndisks) {
1481                 for (i=0; i<conf->raid_disks; i++)
1482                         ndisks[i] = conf->disks[i];
1483                 kfree(conf->disks);
1484                 conf->disks = ndisks;
1485         } else
1486                 err = -ENOMEM;
1487
1488         get_online_cpus();
1489         conf->scribble_len = scribble_len(newsize);
1490         for_each_present_cpu(cpu) {
1491                 struct raid5_percpu *percpu;
1492                 void *scribble;
1493
1494                 percpu = per_cpu_ptr(conf->percpu, cpu);
1495                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1496
1497                 if (scribble) {
1498                         kfree(percpu->scribble);
1499                         percpu->scribble = scribble;
1500                 } else {
1501                         err = -ENOMEM;
1502                         break;
1503                 }
1504         }
1505         put_online_cpus();
1506
1507         /* Step 4, return new stripes to service */
1508         while(!list_empty(&newstripes)) {
1509                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1510                 list_del_init(&nsh->lru);
1511
1512                 for (i=conf->raid_disks; i < newsize; i++)
1513                         if (nsh->dev[i].page == NULL) {
1514                                 struct page *p = alloc_page(GFP_NOIO);
1515                                 nsh->dev[i].page = p;
1516                                 if (!p)
1517                                         err = -ENOMEM;
1518                         }
1519                 release_stripe(nsh);
1520         }
1521         /* critical section pass, GFP_NOIO no longer needed */
1522
1523         conf->slab_cache = sc;
1524         conf->active_name = 1-conf->active_name;
1525         conf->pool_size = newsize;
1526         return err;
1527 }
1528
1529 static int drop_one_stripe(raid5_conf_t *conf)
1530 {
1531         struct stripe_head *sh;
1532
1533         spin_lock_irq(&conf->device_lock);
1534         sh = get_free_stripe(conf);
1535         spin_unlock_irq(&conf->device_lock);
1536         if (!sh)
1537                 return 0;
1538         BUG_ON(atomic_read(&sh->count));
1539         shrink_buffers(sh);
1540         kmem_cache_free(conf->slab_cache, sh);
1541         atomic_dec(&conf->active_stripes);
1542         return 1;
1543 }
1544
1545 static void shrink_stripes(raid5_conf_t *conf)
1546 {
1547         while (drop_one_stripe(conf))
1548                 ;
1549
1550         if (conf->slab_cache)
1551                 kmem_cache_destroy(conf->slab_cache);
1552         conf->slab_cache = NULL;
1553 }
1554
1555 static void raid5_end_read_request(struct bio * bi, int error)
1556 {
1557         struct stripe_head *sh = bi->bi_private;
1558         raid5_conf_t *conf = sh->raid_conf;
1559         int disks = sh->disks, i;
1560         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1561         char b[BDEVNAME_SIZE];
1562         mdk_rdev_t *rdev;
1563
1564
1565         for (i=0 ; i<disks; i++)
1566                 if (bi == &sh->dev[i].req)
1567                         break;
1568
1569         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1570                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1571                 uptodate);
1572         if (i == disks) {
1573                 BUG();
1574                 return;
1575         }
1576
1577         if (uptodate) {
1578                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1579                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1580                         rdev = conf->disks[i].rdev;
1581                         printk_ratelimited(
1582                                 KERN_INFO
1583                                 "md/raid:%s: read error corrected"
1584                                 " (%lu sectors at %llu on %s)\n",
1585                                 mdname(conf->mddev), STRIPE_SECTORS,
1586                                 (unsigned long long)(sh->sector
1587                                                      + rdev->data_offset),
1588                                 bdevname(rdev->bdev, b));
1589                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1590                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1591                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1592                 }
1593                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1594                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1595         } else {
1596                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1597                 int retry = 0;
1598                 rdev = conf->disks[i].rdev;
1599
1600                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1601                 atomic_inc(&rdev->read_errors);
1602                 if (conf->mddev->degraded >= conf->max_degraded)
1603                         printk_ratelimited(
1604                                 KERN_WARNING
1605                                 "md/raid:%s: read error not correctable "
1606                                 "(sector %llu on %s).\n",
1607                                 mdname(conf->mddev),
1608                                 (unsigned long long)(sh->sector
1609                                                      + rdev->data_offset),
1610                                 bdn);
1611                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1612                         /* Oh, no!!! */
1613                         printk_ratelimited(
1614                                 KERN_WARNING
1615                                 "md/raid:%s: read error NOT corrected!! "
1616                                 "(sector %llu on %s).\n",
1617                                 mdname(conf->mddev),
1618                                 (unsigned long long)(sh->sector
1619                                                      + rdev->data_offset),
1620                                 bdn);
1621                 else if (atomic_read(&rdev->read_errors)
1622                          > conf->max_nr_stripes)
1623                         printk(KERN_WARNING
1624                                "md/raid:%s: Too many read errors, failing device %s.\n",
1625                                mdname(conf->mddev), bdn);
1626                 else
1627                         retry = 1;
1628                 if (retry)
1629                         set_bit(R5_ReadError, &sh->dev[i].flags);
1630                 else {
1631                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1632                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633                         md_error(conf->mddev, rdev);
1634                 }
1635         }
1636         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638         set_bit(STRIPE_HANDLE, &sh->state);
1639         release_stripe(sh);
1640 }
1641
1642 static void raid5_end_write_request(struct bio *bi, int error)
1643 {
1644         struct stripe_head *sh = bi->bi_private;
1645         raid5_conf_t *conf = sh->raid_conf;
1646         int disks = sh->disks, i;
1647         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1648
1649         for (i=0 ; i<disks; i++)
1650                 if (bi == &sh->dev[i].req)
1651                         break;
1652
1653         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655                 uptodate);
1656         if (i == disks) {
1657                 BUG();
1658                 return;
1659         }
1660
1661         if (!uptodate)
1662                 md_error(conf->mddev, conf->disks[i].rdev);
1663
1664         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1665         
1666         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667         set_bit(STRIPE_HANDLE, &sh->state);
1668         release_stripe(sh);
1669 }
1670
1671
1672 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1673         
1674 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1675 {
1676         struct r5dev *dev = &sh->dev[i];
1677
1678         bio_init(&dev->req);
1679         dev->req.bi_io_vec = &dev->vec;
1680         dev->req.bi_vcnt++;
1681         dev->req.bi_max_vecs++;
1682         dev->vec.bv_page = dev->page;
1683         dev->vec.bv_len = STRIPE_SIZE;
1684         dev->vec.bv_offset = 0;
1685
1686         dev->req.bi_sector = sh->sector;
1687         dev->req.bi_private = sh;
1688
1689         dev->flags = 0;
1690         dev->sector = compute_blocknr(sh, i, previous);
1691 }
1692
1693 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1694 {
1695         char b[BDEVNAME_SIZE];
1696         raid5_conf_t *conf = mddev->private;
1697         pr_debug("raid456: error called\n");
1698
1699         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700                 unsigned long flags;
1701                 spin_lock_irqsave(&conf->device_lock, flags);
1702                 mddev->degraded++;
1703                 spin_unlock_irqrestore(&conf->device_lock, flags);
1704                 /*
1705                  * if recovery was running, make sure it aborts.
1706                  */
1707                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708         }
1709         set_bit(Faulty, &rdev->flags);
1710         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711         printk(KERN_ALERT
1712                "md/raid:%s: Disk failure on %s, disabling device.\n"
1713                "md/raid:%s: Operation continuing on %d devices.\n",
1714                mdname(mddev),
1715                bdevname(rdev->bdev, b),
1716                mdname(mddev),
1717                conf->raid_disks - mddev->degraded);
1718 }
1719
1720 /*
1721  * Input: a 'big' sector number,
1722  * Output: index of the data and parity disk, and the sector # in them.
1723  */
1724 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725                                      int previous, int *dd_idx,
1726                                      struct stripe_head *sh)
1727 {
1728         sector_t stripe, stripe2;
1729         sector_t chunk_number;
1730         unsigned int chunk_offset;
1731         int pd_idx, qd_idx;
1732         int ddf_layout = 0;
1733         sector_t new_sector;
1734         int algorithm = previous ? conf->prev_algo
1735                                  : conf->algorithm;
1736         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1737                                          : conf->chunk_sectors;
1738         int raid_disks = previous ? conf->previous_raid_disks
1739                                   : conf->raid_disks;
1740         int data_disks = raid_disks - conf->max_degraded;
1741
1742         /* First compute the information on this sector */
1743
1744         /*
1745          * Compute the chunk number and the sector offset inside the chunk
1746          */
1747         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1748         chunk_number = r_sector;
1749
1750         /*
1751          * Compute the stripe number
1752          */
1753         stripe = chunk_number;
1754         *dd_idx = sector_div(stripe, data_disks);
1755         stripe2 = stripe;
1756         /*
1757          * Select the parity disk based on the user selected algorithm.
1758          */
1759         pd_idx = qd_idx = -1;
1760         switch(conf->level) {
1761         case 4:
1762                 pd_idx = data_disks;
1763                 break;
1764         case 5:
1765                 switch (algorithm) {
1766                 case ALGORITHM_LEFT_ASYMMETRIC:
1767                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768                         if (*dd_idx >= pd_idx)
1769                                 (*dd_idx)++;
1770                         break;
1771                 case ALGORITHM_RIGHT_ASYMMETRIC:
1772                         pd_idx = sector_div(stripe2, raid_disks);
1773                         if (*dd_idx >= pd_idx)
1774                                 (*dd_idx)++;
1775                         break;
1776                 case ALGORITHM_LEFT_SYMMETRIC:
1777                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1779                         break;
1780                 case ALGORITHM_RIGHT_SYMMETRIC:
1781                         pd_idx = sector_div(stripe2, raid_disks);
1782                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783                         break;
1784                 case ALGORITHM_PARITY_0:
1785                         pd_idx = 0;
1786                         (*dd_idx)++;
1787                         break;
1788                 case ALGORITHM_PARITY_N:
1789                         pd_idx = data_disks;
1790                         break;
1791                 default:
1792                         BUG();
1793                 }
1794                 break;
1795         case 6:
1796
1797                 switch (algorithm) {
1798                 case ALGORITHM_LEFT_ASYMMETRIC:
1799                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800                         qd_idx = pd_idx + 1;
1801                         if (pd_idx == raid_disks-1) {
1802                                 (*dd_idx)++;    /* Q D D D P */
1803                                 qd_idx = 0;
1804                         } else if (*dd_idx >= pd_idx)
1805                                 (*dd_idx) += 2; /* D D P Q D */
1806                         break;
1807                 case ALGORITHM_RIGHT_ASYMMETRIC:
1808                         pd_idx = sector_div(stripe2, raid_disks);
1809                         qd_idx = pd_idx + 1;
1810                         if (pd_idx == raid_disks-1) {
1811                                 (*dd_idx)++;    /* Q D D D P */
1812                                 qd_idx = 0;
1813                         } else if (*dd_idx >= pd_idx)
1814                                 (*dd_idx) += 2; /* D D P Q D */
1815                         break;
1816                 case ALGORITHM_LEFT_SYMMETRIC:
1817                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818                         qd_idx = (pd_idx + 1) % raid_disks;
1819                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820                         break;
1821                 case ALGORITHM_RIGHT_SYMMETRIC:
1822                         pd_idx = sector_div(stripe2, raid_disks);
1823                         qd_idx = (pd_idx + 1) % raid_disks;
1824                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825                         break;
1826
1827                 case ALGORITHM_PARITY_0:
1828                         pd_idx = 0;
1829                         qd_idx = 1;
1830                         (*dd_idx) += 2;
1831                         break;
1832                 case ALGORITHM_PARITY_N:
1833                         pd_idx = data_disks;
1834                         qd_idx = data_disks + 1;
1835                         break;
1836
1837                 case ALGORITHM_ROTATING_ZERO_RESTART:
1838                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1839                          * of blocks for computing Q is different.
1840                          */
1841                         pd_idx = sector_div(stripe2, raid_disks);
1842                         qd_idx = pd_idx + 1;
1843                         if (pd_idx == raid_disks-1) {
1844                                 (*dd_idx)++;    /* Q D D D P */
1845                                 qd_idx = 0;
1846                         } else if (*dd_idx >= pd_idx)
1847                                 (*dd_idx) += 2; /* D D P Q D */
1848                         ddf_layout = 1;
1849                         break;
1850
1851                 case ALGORITHM_ROTATING_N_RESTART:
1852                         /* Same a left_asymmetric, by first stripe is
1853                          * D D D P Q  rather than
1854                          * Q D D D P
1855                          */
1856                         stripe2 += 1;
1857                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858                         qd_idx = pd_idx + 1;
1859                         if (pd_idx == raid_disks-1) {
1860                                 (*dd_idx)++;    /* Q D D D P */
1861                                 qd_idx = 0;
1862                         } else if (*dd_idx >= pd_idx)
1863                                 (*dd_idx) += 2; /* D D P Q D */
1864                         ddf_layout = 1;
1865                         break;
1866
1867                 case ALGORITHM_ROTATING_N_CONTINUE:
1868                         /* Same as left_symmetric but Q is before P */
1869                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1871                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872                         ddf_layout = 1;
1873                         break;
1874
1875                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1876                         /* RAID5 left_asymmetric, with Q on last device */
1877                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878                         if (*dd_idx >= pd_idx)
1879                                 (*dd_idx)++;
1880                         qd_idx = raid_disks - 1;
1881                         break;
1882
1883                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1884                         pd_idx = sector_div(stripe2, raid_disks-1);
1885                         if (*dd_idx >= pd_idx)
1886                                 (*dd_idx)++;
1887                         qd_idx = raid_disks - 1;
1888                         break;
1889
1890                 case ALGORITHM_LEFT_SYMMETRIC_6:
1891                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1893                         qd_idx = raid_disks - 1;
1894                         break;
1895
1896                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1897                         pd_idx = sector_div(stripe2, raid_disks-1);
1898                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899                         qd_idx = raid_disks - 1;
1900                         break;
1901
1902                 case ALGORITHM_PARITY_0_6:
1903                         pd_idx = 0;
1904                         (*dd_idx)++;
1905                         qd_idx = raid_disks - 1;
1906                         break;
1907
1908                 default:
1909                         BUG();
1910                 }
1911                 break;
1912         }
1913
1914         if (sh) {
1915                 sh->pd_idx = pd_idx;
1916                 sh->qd_idx = qd_idx;
1917                 sh->ddf_layout = ddf_layout;
1918         }
1919         /*
1920          * Finally, compute the new sector number
1921          */
1922         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1923         return new_sector;
1924 }
1925
1926
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1928 {
1929         raid5_conf_t *conf = sh->raid_conf;
1930         int raid_disks = sh->disks;
1931         int data_disks = raid_disks - conf->max_degraded;
1932         sector_t new_sector = sh->sector, check;
1933         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934                                          : conf->chunk_sectors;
1935         int algorithm = previous ? conf->prev_algo
1936                                  : conf->algorithm;
1937         sector_t stripe;
1938         int chunk_offset;
1939         sector_t chunk_number;
1940         int dummy1, dd_idx = i;
1941         sector_t r_sector;
1942         struct stripe_head sh2;
1943
1944
1945         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1946         stripe = new_sector;
1947
1948         if (i == sh->pd_idx)
1949                 return 0;
1950         switch(conf->level) {
1951         case 4: break;
1952         case 5:
1953                 switch (algorithm) {
1954                 case ALGORITHM_LEFT_ASYMMETRIC:
1955                 case ALGORITHM_RIGHT_ASYMMETRIC:
1956                         if (i > sh->pd_idx)
1957                                 i--;
1958                         break;
1959                 case ALGORITHM_LEFT_SYMMETRIC:
1960                 case ALGORITHM_RIGHT_SYMMETRIC:
1961                         if (i < sh->pd_idx)
1962                                 i += raid_disks;
1963                         i -= (sh->pd_idx + 1);
1964                         break;
1965                 case ALGORITHM_PARITY_0:
1966                         i -= 1;
1967                         break;
1968                 case ALGORITHM_PARITY_N:
1969                         break;
1970                 default:
1971                         BUG();
1972                 }
1973                 break;
1974         case 6:
1975                 if (i == sh->qd_idx)
1976                         return 0; /* It is the Q disk */
1977                 switch (algorithm) {
1978                 case ALGORITHM_LEFT_ASYMMETRIC:
1979                 case ALGORITHM_RIGHT_ASYMMETRIC:
1980                 case ALGORITHM_ROTATING_ZERO_RESTART:
1981                 case ALGORITHM_ROTATING_N_RESTART:
1982                         if (sh->pd_idx == raid_disks-1)
1983                                 i--;    /* Q D D D P */
1984                         else if (i > sh->pd_idx)
1985                                 i -= 2; /* D D P Q D */
1986                         break;
1987                 case ALGORITHM_LEFT_SYMMETRIC:
1988                 case ALGORITHM_RIGHT_SYMMETRIC:
1989                         if (sh->pd_idx == raid_disks-1)
1990                                 i--; /* Q D D D P */
1991                         else {
1992                                 /* D D P Q D */
1993                                 if (i < sh->pd_idx)
1994                                         i += raid_disks;
1995                                 i -= (sh->pd_idx + 2);
1996                         }
1997                         break;
1998                 case ALGORITHM_PARITY_0:
1999                         i -= 2;
2000                         break;
2001                 case ALGORITHM_PARITY_N:
2002                         break;
2003                 case ALGORITHM_ROTATING_N_CONTINUE:
2004                         /* Like left_symmetric, but P is before Q */
2005                         if (sh->pd_idx == 0)
2006                                 i--;    /* P D D D Q */
2007                         else {
2008                                 /* D D Q P D */
2009                                 if (i < sh->pd_idx)
2010                                         i += raid_disks;
2011                                 i -= (sh->pd_idx + 1);
2012                         }
2013                         break;
2014                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2015                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2016                         if (i > sh->pd_idx)
2017                                 i--;
2018                         break;
2019                 case ALGORITHM_LEFT_SYMMETRIC_6:
2020                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2021                         if (i < sh->pd_idx)
2022                                 i += data_disks + 1;
2023                         i -= (sh->pd_idx + 1);
2024                         break;
2025                 case ALGORITHM_PARITY_0_6:
2026                         i -= 1;
2027                         break;
2028                 default:
2029                         BUG();
2030                 }
2031                 break;
2032         }
2033
2034         chunk_number = stripe * data_disks + i;
2035         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2036
2037         check = raid5_compute_sector(conf, r_sector,
2038                                      previous, &dummy1, &sh2);
2039         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2040                 || sh2.qd_idx != sh->qd_idx) {
2041                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2042                        mdname(conf->mddev));
2043                 return 0;
2044         }
2045         return r_sector;
2046 }
2047
2048
2049 static void
2050 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051                          int rcw, int expand)
2052 {
2053         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054         raid5_conf_t *conf = sh->raid_conf;
2055         int level = conf->level;
2056
2057         if (rcw) {
2058                 /* if we are not expanding this is a proper write request, and
2059                  * there will be bios with new data to be drained into the
2060                  * stripe cache
2061                  */
2062                 if (!expand) {
2063                         sh->reconstruct_state = reconstruct_state_drain_run;
2064                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2065                 } else
2066                         sh->reconstruct_state = reconstruct_state_run;
2067
2068                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069
2070                 for (i = disks; i--; ) {
2071                         struct r5dev *dev = &sh->dev[i];
2072
2073                         if (dev->towrite) {
2074                                 set_bit(R5_LOCKED, &dev->flags);
2075                                 set_bit(R5_Wantdrain, &dev->flags);
2076                                 if (!expand)
2077                                         clear_bit(R5_UPTODATE, &dev->flags);
2078                                 s->locked++;
2079                         }
2080                 }
2081                 if (s->locked + conf->max_degraded == disks)
2082                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083                                 atomic_inc(&conf->pending_full_writes);
2084         } else {
2085                 BUG_ON(level == 6);
2086                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2087                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2088
2089                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2091                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093
2094                 for (i = disks; i--; ) {
2095                         struct r5dev *dev = &sh->dev[i];
2096                         if (i == pd_idx)
2097                                 continue;
2098
2099                         if (dev->towrite &&
2100                             (test_bit(R5_UPTODATE, &dev->flags) ||
2101                              test_bit(R5_Wantcompute, &dev->flags))) {
2102                                 set_bit(R5_Wantdrain, &dev->flags);
2103                                 set_bit(R5_LOCKED, &dev->flags);
2104                                 clear_bit(R5_UPTODATE, &dev->flags);
2105                                 s->locked++;
2106                         }
2107                 }
2108         }
2109
2110         /* keep the parity disk(s) locked while asynchronous operations
2111          * are in flight
2112          */
2113         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2114         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115         s->locked++;
2116
2117         if (level == 6) {
2118                 int qd_idx = sh->qd_idx;
2119                 struct r5dev *dev = &sh->dev[qd_idx];
2120
2121                 set_bit(R5_LOCKED, &dev->flags);
2122                 clear_bit(R5_UPTODATE, &dev->flags);
2123                 s->locked++;
2124         }
2125
2126         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127                 __func__, (unsigned long long)sh->sector,
2128                 s->locked, s->ops_request);
2129 }
2130
2131 /*
2132  * Each stripe/dev can have one or more bion attached.
2133  * toread/towrite point to the first in a chain.
2134  * The bi_next chain must be in order.
2135  */
2136 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2137 {
2138         struct bio **bip;
2139         raid5_conf_t *conf = sh->raid_conf;
2140         int firstwrite=0;
2141
2142         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2143                 (unsigned long long)bi->bi_sector,
2144                 (unsigned long long)sh->sector);
2145
2146
2147         spin_lock_irq(&conf->device_lock);
2148         if (forwrite) {
2149                 bip = &sh->dev[dd_idx].towrite;
2150                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2151                         firstwrite = 1;
2152         } else
2153                 bip = &sh->dev[dd_idx].toread;
2154         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2155                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2156                         goto overlap;
2157                 bip = & (*bip)->bi_next;
2158         }
2159         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2160                 goto overlap;
2161
2162         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2163         if (*bip)
2164                 bi->bi_next = *bip;
2165         *bip = bi;
2166         bi->bi_phys_segments++;
2167
2168         if (forwrite) {
2169                 /* check if page is covered */
2170                 sector_t sector = sh->dev[dd_idx].sector;
2171                 for (bi=sh->dev[dd_idx].towrite;
2172                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2173                              bi && bi->bi_sector <= sector;
2174                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2175                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2176                                 sector = bi->bi_sector + (bi->bi_size>>9);
2177                 }
2178                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2179                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2180         }
2181         spin_unlock_irq(&conf->device_lock);
2182
2183         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184                 (unsigned long long)(*bip)->bi_sector,
2185                 (unsigned long long)sh->sector, dd_idx);
2186
2187         if (conf->mddev->bitmap && firstwrite) {
2188                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189                                   STRIPE_SECTORS, 0);
2190                 sh->bm_seq = conf->seq_flush+1;
2191                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2192         }
2193         return 1;
2194
2195  overlap:
2196         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197         spin_unlock_irq(&conf->device_lock);
2198         return 0;
2199 }
2200
2201 static void end_reshape(raid5_conf_t *conf);
2202
2203 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2204                             struct stripe_head *sh)
2205 {
2206         int sectors_per_chunk =
2207                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208         int dd_idx;
2209         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211
2212         raid5_compute_sector(conf,
2213                              stripe * (disks - conf->max_degraded)
2214                              *sectors_per_chunk + chunk_offset,
2215                              previous,
2216                              &dd_idx, sh);
2217 }
2218
2219 static void
2220 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221                                 struct stripe_head_state *s, int disks,
2222                                 struct bio **return_bi)
2223 {
2224         int i;
2225         for (i = disks; i--; ) {
2226                 struct bio *bi;
2227                 int bitmap_end = 0;
2228
2229                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2230                         mdk_rdev_t *rdev;
2231                         rcu_read_lock();
2232                         rdev = rcu_dereference(conf->disks[i].rdev);
2233                         if (rdev && test_bit(In_sync, &rdev->flags))
2234                                 /* multiple read failures in one stripe */
2235                                 md_error(conf->mddev, rdev);
2236                         rcu_read_unlock();
2237                 }
2238                 spin_lock_irq(&conf->device_lock);
2239                 /* fail all writes first */
2240                 bi = sh->dev[i].towrite;
2241                 sh->dev[i].towrite = NULL;
2242                 if (bi) {
2243                         s->to_write--;
2244                         bitmap_end = 1;
2245                 }
2246
2247                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2248                         wake_up(&conf->wait_for_overlap);
2249
2250                 while (bi && bi->bi_sector <
2251                         sh->dev[i].sector + STRIPE_SECTORS) {
2252                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2253                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254                         if (!raid5_dec_bi_phys_segments(bi)) {
2255                                 md_write_end(conf->mddev);
2256                                 bi->bi_next = *return_bi;
2257                                 *return_bi = bi;
2258                         }
2259                         bi = nextbi;
2260                 }
2261                 /* and fail all 'written' */
2262                 bi = sh->dev[i].written;
2263                 sh->dev[i].written = NULL;
2264                 if (bi) bitmap_end = 1;
2265                 while (bi && bi->bi_sector <
2266                        sh->dev[i].sector + STRIPE_SECTORS) {
2267                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2268                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269                         if (!raid5_dec_bi_phys_segments(bi)) {
2270                                 md_write_end(conf->mddev);
2271                                 bi->bi_next = *return_bi;
2272                                 *return_bi = bi;
2273                         }
2274                         bi = bi2;
2275                 }
2276
2277                 /* fail any reads if this device is non-operational and
2278                  * the data has not reached the cache yet.
2279                  */
2280                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2281                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2282                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283                         bi = sh->dev[i].toread;
2284                         sh->dev[i].toread = NULL;
2285                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2286                                 wake_up(&conf->wait_for_overlap);
2287                         if (bi) s->to_read--;
2288                         while (bi && bi->bi_sector <
2289                                sh->dev[i].sector + STRIPE_SECTORS) {
2290                                 struct bio *nextbi =
2291                                         r5_next_bio(bi, sh->dev[i].sector);
2292                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293                                 if (!raid5_dec_bi_phys_segments(bi)) {
2294                                         bi->bi_next = *return_bi;
2295                                         *return_bi = bi;
2296                                 }
2297                                 bi = nextbi;
2298                         }
2299                 }
2300                 spin_unlock_irq(&conf->device_lock);
2301                 if (bitmap_end)
2302                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2303                                         STRIPE_SECTORS, 0, 0);
2304                 /* If we were in the middle of a write the parity block might
2305                  * still be locked - so just clear all R5_LOCKED flags
2306                  */
2307                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2308         }
2309
2310         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2311                 if (atomic_dec_and_test(&conf->pending_full_writes))
2312                         md_wakeup_thread(conf->mddev->thread);
2313 }
2314
2315 /* fetch_block - checks the given member device to see if its data needs
2316  * to be read or computed to satisfy a request.
2317  *
2318  * Returns 1 when no more member devices need to be checked, otherwise returns
2319  * 0 to tell the loop in handle_stripe_fill to continue
2320  */
2321 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2322                        int disk_idx, int disks)
2323 {
2324         struct r5dev *dev = &sh->dev[disk_idx];
2325         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2326                                   &sh->dev[s->failed_num[1]] };
2327
2328         /* is the data in this block needed, and can we get it? */
2329         if (!test_bit(R5_LOCKED, &dev->flags) &&
2330             !test_bit(R5_UPTODATE, &dev->flags) &&
2331             (dev->toread ||
2332              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2333              s->syncing || s->expanding ||
2334              (s->failed >= 1 && fdev[0]->toread) ||
2335              (s->failed >= 2 && fdev[1]->toread) ||
2336              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2337               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2338              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2339                 /* we would like to get this block, possibly by computing it,
2340                  * otherwise read it if the backing disk is insync
2341                  */
2342                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2343                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2344                 if ((s->uptodate == disks - 1) &&
2345                     (s->failed && (disk_idx == s->failed_num[0] ||
2346                                    disk_idx == s->failed_num[1]))) {
2347                         /* have disk failed, and we're requested to fetch it;
2348                          * do compute it
2349                          */
2350                         pr_debug("Computing stripe %llu block %d\n",
2351                                (unsigned long long)sh->sector, disk_idx);
2352                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2353                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2354                         set_bit(R5_Wantcompute, &dev->flags);
2355                         sh->ops.target = disk_idx;
2356                         sh->ops.target2 = -1; /* no 2nd target */
2357                         s->req_compute = 1;
2358                         /* Careful: from this point on 'uptodate' is in the eye
2359                          * of raid_run_ops which services 'compute' operations
2360                          * before writes. R5_Wantcompute flags a block that will
2361                          * be R5_UPTODATE by the time it is needed for a
2362                          * subsequent operation.
2363                          */
2364                         s->uptodate++;
2365                         return 1;
2366                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2367                         /* Computing 2-failure is *very* expensive; only
2368                          * do it if failed >= 2
2369                          */
2370                         int other;
2371                         for (other = disks; other--; ) {
2372                                 if (other == disk_idx)
2373                                         continue;
2374                                 if (!test_bit(R5_UPTODATE,
2375                                       &sh->dev[other].flags))
2376                                         break;
2377                         }
2378                         BUG_ON(other < 0);
2379                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2380                                (unsigned long long)sh->sector,
2381                                disk_idx, other);
2382                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2383                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2384                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2385                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2386                         sh->ops.target = disk_idx;
2387                         sh->ops.target2 = other;
2388                         s->uptodate += 2;
2389                         s->req_compute = 1;
2390                         return 1;
2391                 } else if (test_bit(R5_Insync, &dev->flags)) {
2392                         set_bit(R5_LOCKED, &dev->flags);
2393                         set_bit(R5_Wantread, &dev->flags);
2394                         s->locked++;
2395                         pr_debug("Reading block %d (sync=%d)\n",
2396                                 disk_idx, s->syncing);
2397                 }
2398         }
2399
2400         return 0;
2401 }
2402
2403 /**
2404  * handle_stripe_fill - read or compute data to satisfy pending requests.
2405  */
2406 static void handle_stripe_fill(struct stripe_head *sh,
2407                                struct stripe_head_state *s,
2408                                int disks)
2409 {
2410         int i;
2411
2412         /* look for blocks to read/compute, skip this if a compute
2413          * is already in flight, or if the stripe contents are in the
2414          * midst of changing due to a write
2415          */
2416         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2417             !sh->reconstruct_state)
2418                 for (i = disks; i--; )
2419                         if (fetch_block(sh, s, i, disks))
2420                                 break;
2421         set_bit(STRIPE_HANDLE, &sh->state);
2422 }
2423
2424
2425 /* handle_stripe_clean_event
2426  * any written block on an uptodate or failed drive can be returned.
2427  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2428  * never LOCKED, so we don't need to test 'failed' directly.
2429  */
2430 static void handle_stripe_clean_event(raid5_conf_t *conf,
2431         struct stripe_head *sh, int disks, struct bio **return_bi)
2432 {
2433         int i;
2434         struct r5dev *dev;
2435
2436         for (i = disks; i--; )
2437                 if (sh->dev[i].written) {
2438                         dev = &sh->dev[i];
2439                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2440                                 test_bit(R5_UPTODATE, &dev->flags)) {
2441                                 /* We can return any write requests */
2442                                 struct bio *wbi, *wbi2;
2443                                 int bitmap_end = 0;
2444                                 pr_debug("Return write for disc %d\n", i);
2445                                 spin_lock_irq(&conf->device_lock);
2446                                 wbi = dev->written;
2447                                 dev->written = NULL;
2448                                 while (wbi && wbi->bi_sector <
2449                                         dev->sector + STRIPE_SECTORS) {
2450                                         wbi2 = r5_next_bio(wbi, dev->sector);
2451                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2452                                                 md_write_end(conf->mddev);
2453                                                 wbi->bi_next = *return_bi;
2454                                                 *return_bi = wbi;
2455                                         }
2456                                         wbi = wbi2;
2457                                 }
2458                                 if (dev->towrite == NULL)
2459                                         bitmap_end = 1;
2460                                 spin_unlock_irq(&conf->device_lock);
2461                                 if (bitmap_end)
2462                                         bitmap_endwrite(conf->mddev->bitmap,
2463                                                         sh->sector,
2464                                                         STRIPE_SECTORS,
2465                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2466                                                         0);
2467                         }
2468                 }
2469
2470         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2471                 if (atomic_dec_and_test(&conf->pending_full_writes))
2472                         md_wakeup_thread(conf->mddev->thread);
2473 }
2474
2475 static void handle_stripe_dirtying(raid5_conf_t *conf,
2476                                    struct stripe_head *sh,
2477                                    struct stripe_head_state *s,
2478                                    int disks)
2479 {
2480         int rmw = 0, rcw = 0, i;
2481         if (conf->max_degraded == 2) {
2482                 /* RAID6 requires 'rcw' in current implementation
2483                  * Calculate the real rcw later - for now fake it
2484                  * look like rcw is cheaper
2485                  */
2486                 rcw = 1; rmw = 2;
2487         } else for (i = disks; i--; ) {
2488                 /* would I have to read this buffer for read_modify_write */
2489                 struct r5dev *dev = &sh->dev[i];
2490                 if ((dev->towrite || i == sh->pd_idx) &&
2491                     !test_bit(R5_LOCKED, &dev->flags) &&
2492                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2493                       test_bit(R5_Wantcompute, &dev->flags))) {
2494                         if (test_bit(R5_Insync, &dev->flags))
2495                                 rmw++;
2496                         else
2497                                 rmw += 2*disks;  /* cannot read it */
2498                 }
2499                 /* Would I have to read this buffer for reconstruct_write */
2500                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2501                     !test_bit(R5_LOCKED, &dev->flags) &&
2502                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2503                     test_bit(R5_Wantcompute, &dev->flags))) {
2504                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2505                         else
2506                                 rcw += 2*disks;
2507                 }
2508         }
2509         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2510                 (unsigned long long)sh->sector, rmw, rcw);
2511         set_bit(STRIPE_HANDLE, &sh->state);
2512         if (rmw < rcw && rmw > 0)
2513                 /* prefer read-modify-write, but need to get some data */
2514                 for (i = disks; i--; ) {
2515                         struct r5dev *dev = &sh->dev[i];
2516                         if ((dev->towrite || i == sh->pd_idx) &&
2517                             !test_bit(R5_LOCKED, &dev->flags) &&
2518                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2519                             test_bit(R5_Wantcompute, &dev->flags)) &&
2520                             test_bit(R5_Insync, &dev->flags)) {
2521                                 if (
2522                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2523                                         pr_debug("Read_old block "
2524                                                 "%d for r-m-w\n", i);
2525                                         set_bit(R5_LOCKED, &dev->flags);
2526                                         set_bit(R5_Wantread, &dev->flags);
2527                                         s->locked++;
2528                                 } else {
2529                                         set_bit(STRIPE_DELAYED, &sh->state);
2530                                         set_bit(STRIPE_HANDLE, &sh->state);
2531                                 }
2532                         }
2533                 }
2534         if (rcw <= rmw && rcw > 0) {
2535                 /* want reconstruct write, but need to get some data */
2536                 rcw = 0;
2537                 for (i = disks; i--; ) {
2538                         struct r5dev *dev = &sh->dev[i];
2539                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2540                             i != sh->pd_idx && i != sh->qd_idx &&
2541                             !test_bit(R5_LOCKED, &dev->flags) &&
2542                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2543                               test_bit(R5_Wantcompute, &dev->flags))) {
2544                                 rcw++;
2545                                 if (!test_bit(R5_Insync, &dev->flags))
2546                                         continue; /* it's a failed drive */
2547                                 if (
2548                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2549                                         pr_debug("Read_old block "
2550                                                 "%d for Reconstruct\n", i);
2551                                         set_bit(R5_LOCKED, &dev->flags);
2552                                         set_bit(R5_Wantread, &dev->flags);
2553                                         s->locked++;
2554                                 } else {
2555                                         set_bit(STRIPE_DELAYED, &sh->state);
2556                                         set_bit(STRIPE_HANDLE, &sh->state);
2557                                 }
2558                         }
2559                 }
2560         }
2561         /* now if nothing is locked, and if we have enough data,
2562          * we can start a write request
2563          */
2564         /* since handle_stripe can be called at any time we need to handle the
2565          * case where a compute block operation has been submitted and then a
2566          * subsequent call wants to start a write request.  raid_run_ops only
2567          * handles the case where compute block and reconstruct are requested
2568          * simultaneously.  If this is not the case then new writes need to be
2569          * held off until the compute completes.
2570          */
2571         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2572             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2573             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2574                 schedule_reconstruction(sh, s, rcw == 0, 0);
2575 }
2576
2577 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2578                                 struct stripe_head_state *s, int disks)
2579 {
2580         struct r5dev *dev = NULL;
2581
2582         set_bit(STRIPE_HANDLE, &sh->state);
2583
2584         switch (sh->check_state) {
2585         case check_state_idle:
2586                 /* start a new check operation if there are no failures */
2587                 if (s->failed == 0) {
2588                         BUG_ON(s->uptodate != disks);
2589                         sh->check_state = check_state_run;
2590                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2591                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2592                         s->uptodate--;
2593                         break;
2594                 }
2595                 dev = &sh->dev[s->failed_num[0]];
2596                 /* fall through */
2597         case check_state_compute_result:
2598                 sh->check_state = check_state_idle;
2599                 if (!dev)
2600                         dev = &sh->dev[sh->pd_idx];
2601
2602                 /* check that a write has not made the stripe insync */
2603                 if (test_bit(STRIPE_INSYNC, &sh->state))
2604                         break;
2605
2606                 /* either failed parity check, or recovery is happening */
2607                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2608                 BUG_ON(s->uptodate != disks);
2609
2610                 set_bit(R5_LOCKED, &dev->flags);
2611                 s->locked++;
2612                 set_bit(R5_Wantwrite, &dev->flags);
2613
2614                 clear_bit(STRIPE_DEGRADED, &sh->state);
2615                 set_bit(STRIPE_INSYNC, &sh->state);
2616                 break;
2617         case check_state_run:
2618                 break; /* we will be called again upon completion */
2619         case check_state_check_result:
2620                 sh->check_state = check_state_idle;
2621
2622                 /* if a failure occurred during the check operation, leave
2623                  * STRIPE_INSYNC not set and let the stripe be handled again
2624                  */
2625                 if (s->failed)
2626                         break;
2627
2628                 /* handle a successful check operation, if parity is correct
2629                  * we are done.  Otherwise update the mismatch count and repair
2630                  * parity if !MD_RECOVERY_CHECK
2631                  */
2632                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2633                         /* parity is correct (on disc,
2634                          * not in buffer any more)
2635                          */
2636                         set_bit(STRIPE_INSYNC, &sh->state);
2637                 else {
2638                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2639                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2640                                 /* don't try to repair!! */
2641                                 set_bit(STRIPE_INSYNC, &sh->state);
2642                         else {
2643                                 sh->check_state = check_state_compute_run;
2644                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2645                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2646                                 set_bit(R5_Wantcompute,
2647                                         &sh->dev[sh->pd_idx].flags);
2648                                 sh->ops.target = sh->pd_idx;
2649                                 sh->ops.target2 = -1;
2650                                 s->uptodate++;
2651                         }
2652                 }
2653                 break;
2654         case check_state_compute_run:
2655                 break;
2656         default:
2657                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2658                        __func__, sh->check_state,
2659                        (unsigned long long) sh->sector);
2660                 BUG();
2661         }
2662 }
2663
2664
2665 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2666                                   struct stripe_head_state *s,
2667                                   int disks)
2668 {
2669         int pd_idx = sh->pd_idx;
2670         int qd_idx = sh->qd_idx;
2671         struct r5dev *dev;
2672
2673         set_bit(STRIPE_HANDLE, &sh->state);
2674
2675         BUG_ON(s->failed > 2);
2676
2677         /* Want to check and possibly repair P and Q.
2678          * However there could be one 'failed' device, in which
2679          * case we can only check one of them, possibly using the
2680          * other to generate missing data
2681          */
2682
2683         switch (sh->check_state) {
2684         case check_state_idle:
2685                 /* start a new check operation if there are < 2 failures */
2686                 if (s->failed == s->q_failed) {
2687                         /* The only possible failed device holds Q, so it
2688                          * makes sense to check P (If anything else were failed,
2689                          * we would have used P to recreate it).
2690                          */
2691                         sh->check_state = check_state_run;
2692                 }
2693                 if (!s->q_failed && s->failed < 2) {
2694                         /* Q is not failed, and we didn't use it to generate
2695                          * anything, so it makes sense to check it
2696                          */
2697                         if (sh->check_state == check_state_run)
2698                                 sh->check_state = check_state_run_pq;
2699                         else
2700                                 sh->check_state = check_state_run_q;
2701                 }
2702
2703                 /* discard potentially stale zero_sum_result */
2704                 sh->ops.zero_sum_result = 0;
2705
2706                 if (sh->check_state == check_state_run) {
2707                         /* async_xor_zero_sum destroys the contents of P */
2708                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2709                         s->uptodate--;
2710                 }
2711                 if (sh->check_state >= check_state_run &&
2712                     sh->check_state <= check_state_run_pq) {
2713                         /* async_syndrome_zero_sum preserves P and Q, so
2714                          * no need to mark them !uptodate here
2715                          */
2716                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2717                         break;
2718                 }
2719
2720                 /* we have 2-disk failure */
2721                 BUG_ON(s->failed != 2);
2722                 /* fall through */
2723         case check_state_compute_result:
2724                 sh->check_state = check_state_idle;
2725
2726                 /* check that a write has not made the stripe insync */
2727                 if (test_bit(STRIPE_INSYNC, &sh->state))
2728                         break;
2729
2730                 /* now write out any block on a failed drive,
2731                  * or P or Q if they were recomputed
2732                  */
2733                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2734                 if (s->failed == 2) {
2735                         dev = &sh->dev[s->failed_num[1]];
2736                         s->locked++;
2737                         set_bit(R5_LOCKED, &dev->flags);
2738                         set_bit(R5_Wantwrite, &dev->flags);
2739                 }
2740                 if (s->failed >= 1) {
2741                         dev = &sh->dev[s->failed_num[0]];
2742                         s->locked++;
2743                         set_bit(R5_LOCKED, &dev->flags);
2744                         set_bit(R5_Wantwrite, &dev->flags);
2745                 }
2746                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2747                         dev = &sh->dev[pd_idx];
2748                         s->locked++;
2749                         set_bit(R5_LOCKED, &dev->flags);
2750                         set_bit(R5_Wantwrite, &dev->flags);
2751                 }
2752                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2753                         dev = &sh->dev[qd_idx];
2754                         s->locked++;
2755                         set_bit(R5_LOCKED, &dev->flags);
2756                         set_bit(R5_Wantwrite, &dev->flags);
2757                 }
2758                 clear_bit(STRIPE_DEGRADED, &sh->state);
2759
2760                 set_bit(STRIPE_INSYNC, &sh->state);
2761                 break;
2762         case check_state_run:
2763         case check_state_run_q:
2764         case check_state_run_pq:
2765                 break; /* we will be called again upon completion */
2766         case check_state_check_result:
2767                 sh->check_state = check_state_idle;
2768
2769                 /* handle a successful check operation, if parity is correct
2770                  * we are done.  Otherwise update the mismatch count and repair
2771                  * parity if !MD_RECOVERY_CHECK
2772                  */
2773                 if (sh->ops.zero_sum_result == 0) {
2774                         /* both parities are correct */
2775                         if (!s->failed)
2776                                 set_bit(STRIPE_INSYNC, &sh->state);
2777                         else {
2778                                 /* in contrast to the raid5 case we can validate
2779                                  * parity, but still have a failure to write
2780                                  * back
2781                                  */
2782                                 sh->check_state = check_state_compute_result;
2783                                 /* Returning at this point means that we may go
2784                                  * off and bring p and/or q uptodate again so
2785                                  * we make sure to check zero_sum_result again
2786                                  * to verify if p or q need writeback
2787                                  */
2788                         }
2789                 } else {
2790                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2791                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2792                                 /* don't try to repair!! */
2793                                 set_bit(STRIPE_INSYNC, &sh->state);
2794                         else {
2795                                 int *target = &sh->ops.target;
2796
2797                                 sh->ops.target = -1;
2798                                 sh->ops.target2 = -1;
2799                                 sh->check_state = check_state_compute_run;
2800                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2801                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2802                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2803                                         set_bit(R5_Wantcompute,
2804                                                 &sh->dev[pd_idx].flags);
2805                                         *target = pd_idx;
2806                                         target = &sh->ops.target2;
2807                                         s->uptodate++;
2808                                 }
2809                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2810                                         set_bit(R5_Wantcompute,
2811                                                 &sh->dev[qd_idx].flags);
2812                                         *target = qd_idx;
2813                                         s->uptodate++;
2814                                 }
2815                         }
2816                 }
2817                 break;
2818         case check_state_compute_run:
2819                 break;
2820         default:
2821                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2822                        __func__, sh->check_state,
2823                        (unsigned long long) sh->sector);
2824                 BUG();
2825         }
2826 }
2827
2828 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2829 {
2830         int i;
2831
2832         /* We have read all the blocks in this stripe and now we need to
2833          * copy some of them into a target stripe for expand.
2834          */
2835         struct dma_async_tx_descriptor *tx = NULL;
2836         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2837         for (i = 0; i < sh->disks; i++)
2838                 if (i != sh->pd_idx && i != sh->qd_idx) {
2839                         int dd_idx, j;
2840                         struct stripe_head *sh2;
2841                         struct async_submit_ctl submit;
2842
2843                         sector_t bn = compute_blocknr(sh, i, 1);
2844                         sector_t s = raid5_compute_sector(conf, bn, 0,
2845                                                           &dd_idx, NULL);
2846                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2847                         if (sh2 == NULL)
2848                                 /* so far only the early blocks of this stripe
2849                                  * have been requested.  When later blocks
2850                                  * get requested, we will try again
2851                                  */
2852                                 continue;
2853                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2854                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2855                                 /* must have already done this block */
2856                                 release_stripe(sh2);
2857                                 continue;
2858                         }
2859
2860                         /* place all the copies on one channel */
2861                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2862                         tx = async_memcpy(sh2->dev[dd_idx].page,
2863                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2864                                           &submit);
2865
2866                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2867                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2868                         for (j = 0; j < conf->raid_disks; j++)
2869                                 if (j != sh2->pd_idx &&
2870                                     j != sh2->qd_idx &&
2871                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2872                                         break;
2873                         if (j == conf->raid_disks) {
2874                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2875                                 set_bit(STRIPE_HANDLE, &sh2->state);
2876                         }
2877                         release_stripe(sh2);
2878
2879                 }
2880         /* done submitting copies, wait for them to complete */
2881         if (tx) {
2882                 async_tx_ack(tx);
2883                 dma_wait_for_async_tx(tx);
2884         }
2885 }
2886
2887
2888 /*
2889  * handle_stripe - do things to a stripe.
2890  *
2891  * We lock the stripe and then examine the state of various bits
2892  * to see what needs to be done.
2893  * Possible results:
2894  *    return some read request which now have data
2895  *    return some write requests which are safely on disc
2896  *    schedule a read on some buffers
2897  *    schedule a write of some buffers
2898  *    return confirmation of parity correctness
2899  *
2900  * buffers are taken off read_list or write_list, and bh_cache buffers
2901  * get BH_Lock set before the stripe lock is released.
2902  *
2903  */
2904
2905 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2906 {
2907         raid5_conf_t *conf = sh->raid_conf;
2908         int disks = sh->disks;
2909         struct r5dev *dev;
2910         int i;
2911
2912         memset(s, 0, sizeof(*s));
2913
2914         s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2915         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2916         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2917         s->failed_num[0] = -1;
2918         s->failed_num[1] = -1;
2919
2920         /* Now to look around and see what can be done */
2921         rcu_read_lock();
2922         spin_lock_irq(&conf->device_lock);
2923         for (i=disks; i--; ) {
2924                 mdk_rdev_t *rdev;
2925
2926                 dev = &sh->dev[i];
2927
2928                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2929                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2930                 /* maybe we can reply to a read
2931                  *
2932                  * new wantfill requests are only permitted while
2933                  * ops_complete_biofill is guaranteed to be inactive
2934                  */
2935                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2936                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2937                         set_bit(R5_Wantfill, &dev->flags);
2938
2939                 /* now count some things */
2940                 if (test_bit(R5_LOCKED, &dev->flags))
2941                         s->locked++;
2942                 if (test_bit(R5_UPTODATE, &dev->flags))
2943                         s->uptodate++;
2944                 if (test_bit(R5_Wantcompute, &dev->flags)) {
2945                         s->compute++;
2946                         BUG_ON(s->compute > 2);
2947                 }
2948
2949                 if (test_bit(R5_Wantfill, &dev->flags))
2950                         s->to_fill++;
2951                 else if (dev->toread)
2952                         s->to_read++;
2953                 if (dev->towrite) {
2954                         s->to_write++;
2955                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2956                                 s->non_overwrite++;
2957                 }
2958                 if (dev->written)
2959                         s->written++;
2960                 rdev = rcu_dereference(conf->disks[i].rdev);
2961                 if (s->blocked_rdev == NULL &&
2962                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2963                         s->blocked_rdev = rdev;
2964                         atomic_inc(&rdev->nr_pending);
2965                 }
2966                 clear_bit(R5_Insync, &dev->flags);
2967                 if (!rdev)
2968                         /* Not in-sync */;
2969                 else if (test_bit(In_sync, &rdev->flags))
2970                         set_bit(R5_Insync, &dev->flags);
2971                 else {
2972                         /* in sync if before recovery_offset */
2973                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
2974                                 set_bit(R5_Insync, &dev->flags);
2975                 }
2976                 if (!test_bit(R5_Insync, &dev->flags)) {
2977                         /* The ReadError flag will just be confusing now */
2978                         clear_bit(R5_ReadError, &dev->flags);
2979                         clear_bit(R5_ReWrite, &dev->flags);
2980                 }
2981                 if (test_bit(R5_ReadError, &dev->flags))
2982                         clear_bit(R5_Insync, &dev->flags);
2983                 if (!test_bit(R5_Insync, &dev->flags)) {
2984                         if (s->failed < 2)
2985                                 s->failed_num[s->failed] = i;
2986                         s->failed++;
2987                 }
2988         }
2989         spin_unlock_irq(&conf->device_lock);
2990         rcu_read_unlock();
2991 }
2992
2993 static void handle_stripe(struct stripe_head *sh)
2994 {
2995         struct stripe_head_state s;
2996         raid5_conf_t *conf = sh->raid_conf;
2997         int i;
2998         int prexor;
2999         int disks = sh->disks;
3000         struct r5dev *pdev, *qdev;
3001
3002         clear_bit(STRIPE_HANDLE, &sh->state);
3003         if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3004                 /* already being handled, ensure it gets handled
3005                  * again when current action finishes */
3006                 set_bit(STRIPE_HANDLE, &sh->state);
3007                 return;
3008         }
3009
3010         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3011                 set_bit(STRIPE_SYNCING, &sh->state);
3012                 clear_bit(STRIPE_INSYNC, &sh->state);
3013         }
3014         clear_bit(STRIPE_DELAYED, &sh->state);
3015
3016         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3017                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3018                (unsigned long long)sh->sector, sh->state,
3019                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3020                sh->check_state, sh->reconstruct_state);
3021
3022         analyse_stripe(sh, &s);
3023
3024         if (unlikely(s.blocked_rdev)) {
3025                 if (s.syncing || s.expanding || s.expanded ||
3026                     s.to_write || s.written) {
3027                         set_bit(STRIPE_HANDLE, &sh->state);
3028                         goto finish;
3029                 }
3030                 /* There is nothing for the blocked_rdev to block */
3031                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3032                 s.blocked_rdev = NULL;
3033         }
3034
3035         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3036                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3037                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3038         }
3039
3040         pr_debug("locked=%d uptodate=%d to_read=%d"
3041                " to_write=%d failed=%d failed_num=%d,%d\n",
3042                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3043                s.failed_num[0], s.failed_num[1]);
3044         /* check if the array has lost more than max_degraded devices and,
3045          * if so, some requests might need to be failed.
3046          */
3047         if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3048                 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3049         if (s.failed > conf->max_degraded && s.syncing) {
3050                 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
3051                 clear_bit(STRIPE_SYNCING, &sh->state);
3052                 s.syncing = 0;
3053         }
3054
3055         /*
3056          * might be able to return some write requests if the parity blocks
3057          * are safe, or on a failed drive
3058          */
3059         pdev = &sh->dev[sh->pd_idx];
3060         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3061                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3062         qdev = &sh->dev[sh->qd_idx];
3063         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3064                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3065                 || conf->level < 6;
3066
3067         if (s.written &&
3068             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3069                              && !test_bit(R5_LOCKED, &pdev->flags)
3070                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3071             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3072                              && !test_bit(R5_LOCKED, &qdev->flags)
3073                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3074                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3075
3076         /* Now we might consider reading some blocks, either to check/generate
3077          * parity, or to satisfy requests
3078          * or to load a block that is being partially written.
3079          */
3080         if (s.to_read || s.non_overwrite
3081             || (conf->level == 6 && s.to_write && s.failed)
3082             || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3083                 handle_stripe_fill(sh, &s, disks);
3084
3085         /* Now we check to see if any write operations have recently
3086          * completed
3087          */
3088         prexor = 0;
3089         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3090                 prexor = 1;
3091         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3092             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3093                 sh->reconstruct_state = reconstruct_state_idle;
3094
3095                 /* All the 'written' buffers and the parity block are ready to
3096                  * be written back to disk
3097                  */
3098                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3099                 BUG_ON(sh->qd_idx >= 0 &&
3100                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3101                 for (i = disks; i--; ) {
3102                         struct r5dev *dev = &sh->dev[i];
3103                         if (test_bit(R5_LOCKED, &dev->flags) &&
3104                                 (i == sh->pd_idx || i == sh->qd_idx ||
3105                                  dev->written)) {
3106                                 pr_debug("Writing block %d\n", i);
3107                                 set_bit(R5_Wantwrite, &dev->flags);
3108                                 if (prexor)
3109                                         continue;
3110                                 if (!test_bit(R5_Insync, &dev->flags) ||
3111                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3112                                      s.failed == 0))
3113                                         set_bit(STRIPE_INSYNC, &sh->state);
3114                         }
3115                 }
3116                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3117                         s.dec_preread_active = 1;
3118         }
3119
3120         /* Now to consider new write requests and what else, if anything
3121          * should be read.  We do not handle new writes when:
3122          * 1/ A 'write' operation (copy+xor) is already in flight.
3123          * 2/ A 'check' operation is in flight, as it may clobber the parity
3124          *    block.
3125          */
3126         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3127                 handle_stripe_dirtying(conf, sh, &s, disks);
3128
3129         /* maybe we need to check and possibly fix the parity for this stripe
3130          * Any reads will already have been scheduled, so we just see if enough
3131          * data is available.  The parity check is held off while parity
3132          * dependent operations are in flight.
3133          */
3134         if (sh->check_state ||
3135             (s.syncing && s.locked == 0 &&
3136              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3137              !test_bit(STRIPE_INSYNC, &sh->state))) {
3138                 if (conf->level == 6)
3139                         handle_parity_checks6(conf, sh, &s, disks);
3140                 else
3141                         handle_parity_checks5(conf, sh, &s, disks);
3142         }
3143
3144         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3145                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3146                 clear_bit(STRIPE_SYNCING, &sh->state);
3147         }
3148
3149         /* If the failed drives are just a ReadError, then we might need
3150          * to progress the repair/check process
3151          */
3152         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3153                 for (i = 0; i < s.failed; i++) {
3154                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3155                         if (test_bit(R5_ReadError, &dev->flags)
3156                             && !test_bit(R5_LOCKED, &dev->flags)
3157                             && test_bit(R5_UPTODATE, &dev->flags)
3158                                 ) {
3159                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3160                                         set_bit(R5_Wantwrite, &dev->flags);
3161                                         set_bit(R5_ReWrite, &dev->flags);
3162                                         set_bit(R5_LOCKED, &dev->flags);
3163                                         s.locked++;
3164                                 } else {
3165                                         /* let's read it back */
3166                                         set_bit(R5_Wantread, &dev->flags);
3167                                         set_bit(R5_LOCKED, &dev->flags);
3168                                         s.locked++;
3169                                 }
3170                         }
3171                 }
3172
3173
3174         /* Finish reconstruct operations initiated by the expansion process */
3175         if (sh->reconstruct_state == reconstruct_state_result) {
3176                 struct stripe_head *sh_src
3177                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3178                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3179                         /* sh cannot be written until sh_src has been read.
3180                          * so arrange for sh to be delayed a little
3181                          */
3182                         set_bit(STRIPE_DELAYED, &sh->state);
3183                         set_bit(STRIPE_HANDLE, &sh->state);
3184                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3185                                               &sh_src->state))
3186                                 atomic_inc(&conf->preread_active_stripes);
3187                         release_stripe(sh_src);
3188                         goto finish;
3189                 }
3190                 if (sh_src)
3191                         release_stripe(sh_src);
3192
3193                 sh->reconstruct_state = reconstruct_state_idle;
3194                 clear_bit(STRIPE_EXPANDING, &sh->state);
3195                 for (i = conf->raid_disks; i--; ) {
3196                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3197                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3198                         s.locked++;
3199                 }
3200         }
3201
3202         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3203             !sh->reconstruct_state) {
3204                 /* Need to write out all blocks after computing parity */
3205                 sh->disks = conf->raid_disks;
3206                 stripe_set_idx(sh->sector, conf, 0, sh);
3207                 schedule_reconstruction(sh, &s, 1, 1);
3208         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3209                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3210                 atomic_dec(&conf->reshape_stripes);
3211                 wake_up(&conf->wait_for_overlap);
3212                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3213         }
3214
3215         if (s.expanding && s.locked == 0 &&
3216             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3217                 handle_stripe_expansion(conf, sh);
3218
3219 finish:
3220         /* wait for this device to become unblocked */
3221         if (unlikely(s.blocked_rdev))
3222                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3223
3224         if (s.ops_request)
3225                 raid_run_ops(sh, s.ops_request);
3226
3227         ops_run_io(sh, &s);
3228
3229
3230         if (s.dec_preread_active) {
3231                 /* We delay this until after ops_run_io so that if make_request
3232                  * is waiting on a flush, it won't continue until the writes
3233                  * have actually been submitted.
3234                  */
3235                 atomic_dec(&conf->preread_active_stripes);
3236                 if (atomic_read(&conf->preread_active_stripes) <
3237                     IO_THRESHOLD)
3238                         md_wakeup_thread(conf->mddev->thread);
3239         }
3240
3241         return_io(s.return_bi);
3242
3243         clear_bit(STRIPE_ACTIVE, &sh->state);
3244 }
3245
3246 static void raid5_activate_delayed(raid5_conf_t *conf)
3247 {
3248         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3249                 while (!list_empty(&conf->delayed_list)) {
3250                         struct list_head *l = conf->delayed_list.next;
3251                         struct stripe_head *sh;
3252                         sh = list_entry(l, struct stripe_head, lru);
3253                         list_del_init(l);
3254                         clear_bit(STRIPE_DELAYED, &sh->state);
3255                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3256                                 atomic_inc(&conf->preread_active_stripes);
3257                         list_add_tail(&sh->lru, &conf->hold_list);
3258                 }
3259         }
3260 }
3261
3262 static void activate_bit_delay(raid5_conf_t *conf)
3263 {
3264         /* device_lock is held */
3265         struct list_head head;
3266         list_add(&head, &conf->bitmap_list);
3267         list_del_init(&conf->bitmap_list);
3268         while (!list_empty(&head)) {
3269                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3270                 list_del_init(&sh->lru);
3271                 atomic_inc(&sh->count);
3272                 __release_stripe(conf, sh);
3273         }
3274 }
3275
3276 int md_raid5_congested(mddev_t *mddev, int bits)
3277 {
3278         raid5_conf_t *conf = mddev->private;
3279
3280         /* No difference between reads and writes.  Just check
3281          * how busy the stripe_cache is
3282          */
3283
3284         if (conf->inactive_blocked)
3285                 return 1;
3286         if (conf->quiesce)
3287                 return 1;
3288         if (list_empty_careful(&conf->inactive_list))
3289                 return 1;
3290
3291         return 0;
3292 }
3293 EXPORT_SYMBOL_GPL(md_raid5_congested);
3294
3295 static int raid5_congested(void *data, int bits)
3296 {
3297         mddev_t *mddev = data;
3298
3299         return mddev_congested(mddev, bits) ||
3300                 md_raid5_congested(mddev, bits);
3301 }
3302
3303 /* We want read requests to align with chunks where possible,
3304  * but write requests don't need to.
3305  */
3306 static int raid5_mergeable_bvec(struct request_queue *q,
3307                                 struct bvec_merge_data *bvm,
3308                                 struct bio_vec *biovec)
3309 {
3310         mddev_t *mddev = q->queuedata;
3311         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3312         int max;
3313         unsigned int chunk_sectors = mddev->chunk_sectors;
3314         unsigned int bio_sectors = bvm->bi_size >> 9;
3315
3316         if ((bvm->bi_rw & 1) == WRITE)
3317                 return biovec->bv_len; /* always allow writes to be mergeable */
3318
3319         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3320                 chunk_sectors = mddev->new_chunk_sectors;
3321         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3322         if (max < 0) max = 0;
3323         if (max <= biovec->bv_len && bio_sectors == 0)
3324                 return biovec->bv_len;
3325         else
3326                 return max;
3327 }
3328
3329
3330 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3331 {
3332         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3333         unsigned int chunk_sectors = mddev->chunk_sectors;
3334         unsigned int bio_sectors = bio->bi_size >> 9;
3335
3336         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3337                 chunk_sectors = mddev->new_chunk_sectors;
3338         return  chunk_sectors >=
3339                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3340 }
3341
3342 /*
3343  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3344  *  later sampled by raid5d.
3345  */
3346 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3347 {
3348         unsigned long flags;
3349
3350         spin_lock_irqsave(&conf->device_lock, flags);
3351
3352         bi->bi_next = conf->retry_read_aligned_list;
3353         conf->retry_read_aligned_list = bi;
3354
3355         spin_unlock_irqrestore(&conf->device_lock, flags);
3356         md_wakeup_thread(conf->mddev->thread);
3357 }
3358
3359
3360 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3361 {
3362         struct bio *bi;
3363
3364         bi = conf->retry_read_aligned;
3365         if (bi) {
3366                 conf->retry_read_aligned = NULL;
3367                 return bi;
3368         }
3369         bi = conf->retry_read_aligned_list;
3370         if(bi) {
3371                 conf->retry_read_aligned_list = bi->bi_next;
3372                 bi->bi_next = NULL;
3373                 /*
3374                  * this sets the active strip count to 1 and the processed
3375                  * strip count to zero (upper 8 bits)
3376                  */
3377                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3378         }
3379
3380         return bi;
3381 }
3382
3383
3384 /*
3385  *  The "raid5_align_endio" should check if the read succeeded and if it
3386  *  did, call bio_endio on the original bio (having bio_put the new bio
3387  *  first).
3388  *  If the read failed..
3389  */
3390 static void raid5_align_endio(struct bio *bi, int error)
3391 {
3392         struct bio* raid_bi  = bi->bi_private;
3393         mddev_t *mddev;
3394         raid5_conf_t *conf;
3395         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3396         mdk_rdev_t *rdev;
3397
3398         bio_put(bi);
3399
3400         rdev = (void*)raid_bi->bi_next;
3401         raid_bi->bi_next = NULL;
3402         mddev = rdev->mddev;
3403         conf = mddev->private;
3404
3405         rdev_dec_pending(rdev, conf->mddev);
3406
3407         if (!error && uptodate) {
3408                 bio_endio(raid_bi, 0);
3409                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3410                         wake_up(&conf->wait_for_stripe);
3411                 return;
3412         }
3413
3414
3415         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3416
3417         add_bio_to_retry(raid_bi, conf);
3418 }
3419
3420 static int bio_fits_rdev(struct bio *bi)
3421 {
3422         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3423
3424         if ((bi->bi_size>>9) > queue_max_sectors(q))
3425                 return 0;
3426         blk_recount_segments(q, bi);
3427         if (bi->bi_phys_segments > queue_max_segments(q))
3428                 return 0;
3429
3430         if (q->merge_bvec_fn)
3431                 /* it's too hard to apply the merge_bvec_fn at this stage,
3432                  * just just give up
3433                  */
3434                 return 0;
3435
3436         return 1;
3437 }
3438
3439
3440 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3441 {
3442         raid5_conf_t *conf = mddev->private;
3443         int dd_idx;
3444         struct bio* align_bi;
3445         mdk_rdev_t *rdev;
3446
3447         if (!in_chunk_boundary(mddev, raid_bio)) {
3448                 pr_debug("chunk_aligned_read : non aligned\n");
3449                 return 0;
3450         }
3451         /*
3452          * use bio_clone_mddev to make a copy of the bio
3453          */
3454         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3455         if (!align_bi)
3456                 return 0;
3457         /*
3458          *   set bi_end_io to a new function, and set bi_private to the
3459          *     original bio.
3460          */
3461         align_bi->bi_end_io  = raid5_align_endio;
3462         align_bi->bi_private = raid_bio;
3463         /*
3464          *      compute position
3465          */
3466         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3467                                                     0,
3468                                                     &dd_idx, NULL);
3469
3470         rcu_read_lock();
3471         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3472         if (rdev && test_bit(In_sync, &rdev->flags)) {
3473                 atomic_inc(&rdev->nr_pending);
3474                 rcu_read_unlock();
3475                 raid_bio->bi_next = (void*)rdev;
3476                 align_bi->bi_bdev =  rdev->bdev;
3477                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3478                 align_bi->bi_sector += rdev->data_offset;
3479
3480                 if (!bio_fits_rdev(align_bi)) {
3481                         /* too big in some way */
3482                         bio_put(align_bi);
3483                         rdev_dec_pending(rdev, mddev);
3484                         return 0;
3485                 }
3486
3487                 spin_lock_irq(&conf->device_lock);
3488                 wait_event_lock_irq(conf->wait_for_stripe,
3489                                     conf->quiesce == 0,
3490                                     conf->device_lock, /* nothing */);
3491                 atomic_inc(&conf->active_aligned_reads);
3492                 spin_unlock_irq(&conf->device_lock);
3493
3494                 generic_make_request(align_bi);
3495                 return 1;
3496         } else {
3497                 rcu_read_unlock();
3498                 bio_put(align_bi);
3499                 return 0;
3500         }
3501 }
3502
3503 /* __get_priority_stripe - get the next stripe to process
3504  *
3505  * Full stripe writes are allowed to pass preread active stripes up until
3506  * the bypass_threshold is exceeded.  In general the bypass_count
3507  * increments when the handle_list is handled before the hold_list; however, it
3508  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3509  * stripe with in flight i/o.  The bypass_count will be reset when the
3510  * head of the hold_list has changed, i.e. the head was promoted to the
3511  * handle_list.
3512  */
3513 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3514 {
3515         struct stripe_head *sh;
3516
3517         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3518                   __func__,
3519                   list_empty(&conf->handle_list) ? "empty" : "busy",
3520                   list_empty(&conf->hold_list) ? "empty" : "busy",
3521                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3522
3523         if (!list_empty(&conf->handle_list)) {
3524                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3525
3526                 if (list_empty(&conf->hold_list))
3527                         conf->bypass_count = 0;
3528                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3529                         if (conf->hold_list.next == conf->last_hold)
3530                                 conf->bypass_count++;
3531                         else {
3532                                 conf->last_hold = conf->hold_list.next;
3533                                 conf->bypass_count -= conf->bypass_threshold;
3534                                 if (conf->bypass_count < 0)
3535                                         conf->bypass_count = 0;
3536                         }
3537                 }
3538         } else if (!list_empty(&conf->hold_list) &&
3539                    ((conf->bypass_threshold &&
3540                      conf->bypass_count > conf->bypass_threshold) ||
3541                     atomic_read(&conf->pending_full_writes) == 0)) {
3542                 sh = list_entry(conf->hold_list.next,
3543                                 typeof(*sh), lru);
3544                 conf->bypass_count -= conf->bypass_threshold;
3545                 if (conf->bypass_count < 0)
3546                         conf->bypass_count = 0;
3547         } else
3548                 return NULL;
3549
3550         list_del_init(&sh->lru);
3551         atomic_inc(&sh->count);
3552         BUG_ON(atomic_read(&sh->count) != 1);
3553         return sh;
3554 }
3555
3556 static int make_request(mddev_t *mddev, struct bio * bi)
3557 {
3558         raid5_conf_t *conf = mddev->private;
3559         int dd_idx;
3560         sector_t new_sector;
3561         sector_t logical_sector, last_sector;
3562         struct stripe_head *sh;
3563         const int rw = bio_data_dir(bi);
3564         int remaining;
3565         int plugged;
3566
3567         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3568                 md_flush_request(mddev, bi);
3569                 return 0;
3570         }
3571
3572         md_write_start(mddev, bi);
3573
3574         if (rw == READ &&
3575              mddev->reshape_position == MaxSector &&
3576              chunk_aligned_read(mddev,bi))
3577                 return 0;
3578
3579         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3580         last_sector = bi->bi_sector + (bi->bi_size>>9);
3581         bi->bi_next = NULL;
3582         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3583
3584         plugged = mddev_check_plugged(mddev);
3585         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3586                 DEFINE_WAIT(w);
3587                 int disks, data_disks;
3588                 int previous;
3589
3590         retry:
3591                 previous = 0;
3592                 disks = conf->raid_disks;
3593                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3594                 if (unlikely(conf->reshape_progress != MaxSector)) {
3595                         /* spinlock is needed as reshape_progress may be
3596                          * 64bit on a 32bit platform, and so it might be
3597                          * possible to see a half-updated value
3598                          * Of course reshape_progress could change after
3599                          * the lock is dropped, so once we get a reference
3600                          * to the stripe that we think it is, we will have
3601                          * to check again.
3602                          */
3603                         spin_lock_irq(&conf->device_lock);
3604                         if (mddev->delta_disks < 0
3605                             ? logical_sector < conf->reshape_progress
3606                             : logical_sector >= conf->reshape_progress) {
3607                                 disks = conf->previous_raid_disks;
3608                                 previous = 1;
3609                         } else {
3610                                 if (mddev->delta_disks < 0
3611                                     ? logical_sector < conf->reshape_safe
3612                                     : logical_sector >= conf->reshape_safe) {
3613                                         spin_unlock_irq(&conf->device_lock);
3614                                         schedule();
3615                                         goto retry;
3616                                 }
3617                         }
3618                         spin_unlock_irq(&conf->device_lock);
3619                 }
3620                 data_disks = disks - conf->max_degraded;
3621
3622                 new_sector = raid5_compute_sector(conf, logical_sector,
3623                                                   previous,
3624                                                   &dd_idx, NULL);
3625                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3626                         (unsigned long long)new_sector, 
3627                         (unsigned long long)logical_sector);
3628
3629                 sh = get_active_stripe(conf, new_sector, previous,
3630                                        (bi->bi_rw&RWA_MASK), 0);
3631                 if (sh) {
3632                         if (unlikely(previous)) {
3633                                 /* expansion might have moved on while waiting for a
3634                                  * stripe, so we must do the range check again.
3635                                  * Expansion could still move past after this
3636                                  * test, but as we are holding a reference to
3637                                  * 'sh', we know that if that happens,
3638                                  *  STRIPE_EXPANDING will get set and the expansion
3639                                  * won't proceed until we finish with the stripe.
3640                                  */
3641                                 int must_retry = 0;
3642                                 spin_lock_irq(&conf->device_lock);
3643                                 if (mddev->delta_disks < 0
3644                                     ? logical_sector >= conf->reshape_progress
3645                                     : logical_sector < conf->reshape_progress)
3646                                         /* mismatch, need to try again */
3647                                         must_retry = 1;
3648                                 spin_unlock_irq(&conf->device_lock);
3649                                 if (must_retry) {
3650                                         release_stripe(sh);
3651                                         schedule();
3652                                         goto retry;
3653                                 }
3654                         }
3655
3656                         if (rw == WRITE &&
3657                             logical_sector >= mddev->suspend_lo &&
3658                             logical_sector < mddev->suspend_hi) {
3659                                 release_stripe(sh);
3660                                 /* As the suspend_* range is controlled by
3661                                  * userspace, we want an interruptible
3662                                  * wait.
3663                                  */
3664                                 flush_signals(current);
3665                                 prepare_to_wait(&conf->wait_for_overlap,
3666                                                 &w, TASK_INTERRUPTIBLE);
3667                                 if (logical_sector >= mddev->suspend_lo &&
3668                                     logical_sector < mddev->suspend_hi)
3669                                         schedule();
3670                                 goto retry;
3671                         }
3672
3673                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3674                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3675                                 /* Stripe is busy expanding or
3676                                  * add failed due to overlap.  Flush everything
3677                                  * and wait a while
3678                                  */
3679                                 md_wakeup_thread(mddev->thread);
3680                                 release_stripe(sh);
3681                                 schedule();
3682                                 goto retry;
3683                         }
3684                         finish_wait(&conf->wait_for_overlap, &w);
3685                         set_bit(STRIPE_HANDLE, &sh->state);
3686                         clear_bit(STRIPE_DELAYED, &sh->state);
3687                         if ((bi->bi_rw & REQ_SYNC) &&
3688                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3689                                 atomic_inc(&conf->preread_active_stripes);
3690                         release_stripe(sh);
3691                 } else {
3692                         /* cannot get stripe for read-ahead, just give-up */
3693                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3694                         finish_wait(&conf->wait_for_overlap, &w);
3695                         break;
3696                 }
3697                         
3698         }
3699         if (!plugged)
3700                 md_wakeup_thread(mddev->thread);
3701
3702         spin_lock_irq(&conf->device_lock);
3703         remaining = raid5_dec_bi_phys_segments(bi);
3704         spin_unlock_irq(&conf->device_lock);
3705         if (remaining == 0) {
3706
3707                 if ( rw == WRITE )
3708                         md_write_end(mddev);
3709
3710                 bio_endio(bi, 0);
3711         }
3712
3713         return 0;
3714 }
3715
3716 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3717
3718 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3719 {
3720         /* reshaping is quite different to recovery/resync so it is
3721          * handled quite separately ... here.
3722          *
3723          * On each call to sync_request, we gather one chunk worth of
3724          * destination stripes and flag them as expanding.
3725          * Then we find all the source stripes and request reads.
3726          * As the reads complete, handle_stripe will copy the data
3727          * into the destination stripe and release that stripe.
3728          */
3729         raid5_conf_t *conf = mddev->private;
3730         struct stripe_head *sh;
3731         sector_t first_sector, last_sector;
3732         int raid_disks = conf->previous_raid_disks;
3733         int data_disks = raid_disks - conf->max_degraded;
3734         int new_data_disks = conf->raid_disks - conf->max_degraded;
3735         int i;
3736         int dd_idx;
3737         sector_t writepos, readpos, safepos;
3738         sector_t stripe_addr;
3739         int reshape_sectors;
3740         struct list_head stripes;
3741
3742         if (sector_nr == 0) {
3743                 /* If restarting in the middle, skip the initial sectors */
3744                 if (mddev->delta_disks < 0 &&
3745                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3746                         sector_nr = raid5_size(mddev, 0, 0)
3747                                 - conf->reshape_progress;
3748                 } else if (mddev->delta_disks >= 0 &&
3749                            conf->reshape_progress > 0)
3750                         sector_nr = conf->reshape_progress;
3751                 sector_div(sector_nr, new_data_disks);
3752                 if (sector_nr) {
3753                         mddev->curr_resync_completed = sector_nr;
3754                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3755                         *skipped = 1;
3756                         return sector_nr;
3757                 }
3758         }
3759
3760         /* We need to process a full chunk at a time.
3761          * If old and new chunk sizes differ, we need to process the
3762          * largest of these
3763          */
3764         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3765                 reshape_sectors = mddev->new_chunk_sectors;
3766         else
3767                 reshape_sectors = mddev->chunk_sectors;
3768
3769         /* we update the metadata when there is more than 3Meg
3770          * in the block range (that is rather arbitrary, should
3771          * probably be time based) or when the data about to be
3772          * copied would over-write the source of the data at
3773          * the front of the range.
3774          * i.e. one new_stripe along from reshape_progress new_maps
3775          * to after where reshape_safe old_maps to
3776          */
3777         writepos = conf->reshape_progress;
3778         sector_div(writepos, new_data_disks);
3779         readpos = conf->reshape_progress;
3780         sector_div(readpos, data_disks);
3781         safepos = conf->reshape_safe;
3782         sector_div(safepos, data_disks);
3783         if (mddev->delta_disks < 0) {
3784                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3785                 readpos += reshape_sectors;
3786                 safepos += reshape_sectors;
3787         } else {
3788                 writepos += reshape_sectors;
3789                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3790                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3791         }
3792
3793         /* 'writepos' is the most advanced device address we might write.
3794          * 'readpos' is the least advanced device address we might read.
3795          * 'safepos' is the least address recorded in the metadata as having
3796          *     been reshaped.
3797          * If 'readpos' is behind 'writepos', then there is no way that we can
3798          * ensure safety in the face of a crash - that must be done by userspace
3799          * making a backup of the data.  So in that case there is no particular
3800          * rush to update metadata.
3801          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3802          * update the metadata to advance 'safepos' to match 'readpos' so that
3803          * we can be safe in the event of a crash.
3804          * So we insist on updating metadata if safepos is behind writepos and
3805          * readpos is beyond writepos.
3806          * In any case, update the metadata every 10 seconds.
3807          * Maybe that number should be configurable, but I'm not sure it is
3808          * worth it.... maybe it could be a multiple of safemode_delay???
3809          */
3810         if ((mddev->delta_disks < 0
3811              ? (safepos > writepos && readpos < writepos)
3812              : (safepos < writepos && readpos > writepos)) ||
3813             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3814                 /* Cannot proceed until we've updated the superblock... */
3815                 wait_event(conf->wait_for_overlap,
3816                            atomic_read(&conf->reshape_stripes)==0);
3817                 mddev->reshape_position = conf->reshape_progress;
3818                 mddev->curr_resync_completed = sector_nr;
3819                 conf->reshape_checkpoint = jiffies;
3820                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3821                 md_wakeup_thread(mddev->thread);
3822                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3823                            kthread_should_stop());
3824                 spin_lock_irq(&conf->device_lock);
3825                 conf->reshape_safe = mddev->reshape_position;
3826                 spin_unlock_irq(&conf->device_lock);
3827                 wake_up(&conf->wait_for_overlap);
3828                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3829         }
3830
3831         if (mddev->delta_disks < 0) {
3832                 BUG_ON(conf->reshape_progress == 0);
3833                 stripe_addr = writepos;
3834                 BUG_ON((mddev->dev_sectors &
3835                         ~((sector_t)reshape_sectors - 1))
3836                        - reshape_sectors - stripe_addr
3837                        != sector_nr);
3838         } else {
3839                 BUG_ON(writepos != sector_nr + reshape_sectors);
3840                 stripe_addr = sector_nr;
3841         }
3842         INIT_LIST_HEAD(&stripes);
3843         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3844                 int j;
3845                 int skipped_disk = 0;
3846                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3847                 set_bit(STRIPE_EXPANDING, &sh->state);
3848                 atomic_inc(&conf->reshape_stripes);
3849                 /* If any of this stripe is beyond the end of the old
3850                  * array, then we need to zero those blocks
3851                  */
3852                 for (j=sh->disks; j--;) {
3853                         sector_t s;
3854                         if (j == sh->pd_idx)
3855                                 continue;
3856                         if (conf->level == 6 &&
3857                             j == sh->qd_idx)
3858                                 continue;
3859                         s = compute_blocknr(sh, j, 0);
3860                         if (s < raid5_size(mddev, 0, 0)) {
3861                                 skipped_disk = 1;
3862                                 continue;
3863                         }
3864                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3865                         set_bit(R5_Expanded, &sh->dev[j].flags);
3866                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3867                 }
3868                 if (!skipped_disk) {
3869                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3870                         set_bit(STRIPE_HANDLE, &sh->state);
3871                 }
3872                 list_add(&sh->lru, &stripes);
3873         }
3874         spin_lock_irq(&conf->device_lock);
3875         if (mddev->delta_disks < 0)
3876                 conf->reshape_progress -= reshape_sectors * new_data_disks;
3877         else
3878                 conf->reshape_progress += reshape_sectors * new_data_disks;
3879         spin_unlock_irq(&conf->device_lock);
3880         /* Ok, those stripe are ready. We can start scheduling
3881          * reads on the source stripes.
3882          * The source stripes are determined by mapping the first and last
3883          * block on the destination stripes.
3884          */
3885         first_sector =
3886                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3887                                      1, &dd_idx, NULL);
3888         last_sector =
3889                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3890                                             * new_data_disks - 1),
3891                                      1, &dd_idx, NULL);
3892         if (last_sector >= mddev->dev_sectors)
3893                 last_sector = mddev->dev_sectors - 1;
3894         while (first_sector <= last_sector) {
3895                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3896                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3897                 set_bit(STRIPE_HANDLE, &sh->state);
3898                 release_stripe(sh);
3899                 first_sector += STRIPE_SECTORS;
3900         }
3901         /* Now that the sources are clearly marked, we can release
3902          * the destination stripes
3903          */
3904         while (!list_empty(&stripes)) {
3905                 sh = list_entry(stripes.next, struct stripe_head, lru);
3906                 list_del_init(&sh->lru);
3907                 release_stripe(sh);
3908         }
3909         /* If this takes us to the resync_max point where we have to pause,
3910          * then we need to write out the superblock.
3911          */
3912         sector_nr += reshape_sectors;
3913         if ((sector_nr - mddev->curr_resync_completed) * 2
3914             >= mddev->resync_max - mddev->curr_resync_completed) {
3915                 /* Cannot proceed until we've updated the superblock... */
3916                 wait_event(conf->wait_for_overlap,
3917                            atomic_read(&conf->reshape_stripes) == 0);
3918                 mddev->reshape_position = conf->reshape_progress;
3919                 mddev->curr_resync_completed = sector_nr;
3920                 conf->reshape_checkpoint = jiffies;
3921                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3922                 md_wakeup_thread(mddev->thread);
3923                 wait_event(mddev->sb_wait,
3924                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3925                            || kthread_should_stop());
3926                 spin_lock_irq(&conf->device_lock);
3927                 conf->reshape_safe = mddev->reshape_position;
3928                 spin_unlock_irq(&conf->device_lock);
3929                 wake_up(&conf->wait_for_overlap);
3930                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3931         }
3932         return reshape_sectors;
3933 }
3934
3935 /* FIXME go_faster isn't used */
3936 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3937 {
3938         raid5_conf_t *conf = mddev->private;
3939         struct stripe_head *sh;
3940         sector_t max_sector = mddev->dev_sectors;
3941         sector_t sync_blocks;
3942         int still_degraded = 0;
3943         int i;
3944
3945         if (sector_nr >= max_sector) {
3946                 /* just being told to finish up .. nothing much to do */
3947
3948                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3949                         end_reshape(conf);
3950                         return 0;
3951                 }
3952
3953                 if (mddev->curr_resync < max_sector) /* aborted */
3954                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3955                                         &sync_blocks, 1);
3956                 else /* completed sync */
3957                         conf->fullsync = 0;
3958                 bitmap_close_sync(mddev->bitmap);
3959
3960                 return 0;
3961         }
3962
3963         /* Allow raid5_quiesce to complete */
3964         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
3965
3966         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3967                 return reshape_request(mddev, sector_nr, skipped);
3968
3969         /* No need to check resync_max as we never do more than one
3970          * stripe, and as resync_max will always be on a chunk boundary,
3971          * if the check in md_do_sync didn't fire, there is no chance
3972          * of overstepping resync_max here
3973          */
3974
3975         /* if there is too many failed drives and we are trying
3976          * to resync, then assert that we are finished, because there is
3977          * nothing we can do.
3978          */
3979         if (mddev->degraded >= conf->max_degraded &&
3980             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3981                 sector_t rv = mddev->dev_sectors - sector_nr;
3982                 *skipped = 1;
3983                 return rv;
3984         }
3985         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3986             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3987             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3988                 /* we can skip this block, and probably more */
3989                 sync_blocks /= STRIPE_SECTORS;
3990                 *skipped = 1;
3991                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3992         }
3993
3994
3995         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3996
3997         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
3998         if (sh == NULL) {
3999                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4000                 /* make sure we don't swamp the stripe cache if someone else
4001                  * is trying to get access
4002                  */
4003                 schedule_timeout_uninterruptible(1);
4004         }
4005         /* Need to check if array will still be degraded after recovery/resync
4006          * We don't need to check the 'failed' flag as when that gets set,
4007          * recovery aborts.
4008          */
4009         for (i = 0; i < conf->raid_disks; i++)
4010                 if (conf->disks[i].rdev == NULL)
4011                         still_degraded = 1;
4012
4013         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4014
4015         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4016
4017         handle_stripe(sh);
4018         release_stripe(sh);
4019
4020         return STRIPE_SECTORS;
4021 }
4022
4023 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4024 {
4025         /* We may not be able to submit a whole bio at once as there
4026          * may not be enough stripe_heads available.
4027          * We cannot pre-allocate enough stripe_heads as we may need
4028          * more than exist in the cache (if we allow ever large chunks).
4029          * So we do one stripe head at a time and record in
4030          * ->bi_hw_segments how many have been done.
4031          *
4032          * We *know* that this entire raid_bio is in one chunk, so
4033          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4034          */
4035         struct stripe_head *sh;
4036         int dd_idx;
4037         sector_t sector, logical_sector, last_sector;
4038         int scnt = 0;
4039         int remaining;
4040         int handled = 0;
4041
4042         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4043         sector = raid5_compute_sector(conf, logical_sector,
4044                                       0, &dd_idx, NULL);
4045         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4046
4047         for (; logical_sector < last_sector;
4048              logical_sector += STRIPE_SECTORS,
4049                      sector += STRIPE_SECTORS,
4050                      scnt++) {
4051
4052                 if (scnt < raid5_bi_hw_segments(raid_bio))
4053                         /* already done this stripe */
4054                         continue;
4055
4056                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4057
4058                 if (!sh) {
4059                         /* failed to get a stripe - must wait */
4060                         raid5_set_bi_hw_segments(raid_bio, scnt);
4061                         conf->retry_read_aligned = raid_bio;
4062                         return handled;
4063                 }
4064
4065                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4066                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4067                         release_stripe(sh);
4068                         raid5_set_bi_hw_segments(raid_bio, scnt);
4069                         conf->retry_read_aligned = raid_bio;
4070                         return handled;
4071                 }
4072
4073                 handle_stripe(sh);
4074                 release_stripe(sh);
4075                 handled++;
4076         }
4077         spin_lock_irq(&conf->device_lock);
4078         remaining = raid5_dec_bi_phys_segments(raid_bio);
4079         spin_unlock_irq(&conf->device_lock);
4080         if (remaining == 0)
4081                 bio_endio(raid_bio, 0);
4082         if (atomic_dec_and_test(&conf->active_aligned_reads))
4083                 wake_up(&conf->wait_for_stripe);
4084         return handled;
4085 }
4086
4087
4088 /*
4089  * This is our raid5 kernel thread.
4090  *
4091  * We scan the hash table for stripes which can be handled now.
4092  * During the scan, completed stripes are saved for us by the interrupt
4093  * handler, so that they will not have to wait for our next wakeup.
4094  */
4095 static void raid5d(mddev_t *mddev)
4096 {
4097         struct stripe_head *sh;
4098         raid5_conf_t *conf = mddev->private;
4099         int handled;
4100         struct blk_plug plug;
4101
4102         pr_debug("+++ raid5d active\n");
4103
4104         md_check_recovery(mddev);
4105
4106         blk_start_plug(&plug);
4107         handled = 0;
4108         spin_lock_irq(&conf->device_lock);
4109         while (1) {
4110                 struct bio *bio;
4111
4112                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4113                     !list_empty(&conf->bitmap_list)) {
4114                         /* Now is a good time to flush some bitmap updates */
4115                         conf->seq_flush++;
4116                         spin_unlock_irq(&conf->device_lock);
4117                         bitmap_unplug(mddev->bitmap);
4118                         spin_lock_irq(&conf->device_lock);
4119                         conf->seq_write = conf->seq_flush;
4120                         activate_bit_delay(conf);
4121                 }
4122                 if (atomic_read(&mddev->plug_cnt) == 0)
4123                         raid5_activate_delayed(conf);
4124
4125                 while ((bio = remove_bio_from_retry(conf))) {
4126                         int ok;
4127                         spin_unlock_irq(&conf->device_lock);
4128                         ok = retry_aligned_read(conf, bio);
4129                         spin_lock_irq(&conf->device_lock);
4130                         if (!ok)
4131                                 break;
4132                         handled++;
4133                 }
4134
4135                 sh = __get_priority_stripe(conf);
4136
4137                 if (!sh)
4138                         break;
4139                 spin_unlock_irq(&conf->device_lock);
4140                 
4141                 handled++;
4142                 handle_stripe(sh);
4143                 release_stripe(sh);
4144                 cond_resched();
4145
4146                 spin_lock_irq(&conf->device_lock);
4147         }
4148         pr_debug("%d stripes handled\n", handled);
4149
4150         spin_unlock_irq(&conf->device_lock);
4151
4152         async_tx_issue_pending_all();
4153         blk_finish_plug(&plug);
4154
4155         pr_debug("--- raid5d inactive\n");
4156 }
4157
4158 static ssize_t
4159 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4160 {
4161         raid5_conf_t *conf = mddev->private;
4162         if (conf)
4163                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4164         else
4165                 return 0;
4166 }
4167
4168 int
4169 raid5_set_cache_size(mddev_t *mddev, int size)
4170 {
4171         raid5_conf_t *conf = mddev->private;
4172         int err;
4173
4174         if (size <= 16 || size > 32768)
4175                 return -EINVAL;
4176         while (size < conf->max_nr_stripes) {
4177                 if (drop_one_stripe(conf))
4178                         conf->max_nr_stripes--;
4179                 else
4180                         break;
4181         }
4182         err = md_allow_write(mddev);
4183         if (err)
4184                 return err;
4185         while (size > conf->max_nr_stripes) {
4186                 if (grow_one_stripe(conf))
4187                         conf->max_nr_stripes++;
4188                 else break;
4189         }
4190         return 0;
4191 }
4192 EXPORT_SYMBOL(raid5_set_cache_size);
4193
4194 static ssize_t
4195 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4196 {
4197         raid5_conf_t *conf = mddev->private;
4198         unsigned long new;
4199         int err;
4200
4201         if (len >= PAGE_SIZE)
4202                 return -EINVAL;
4203         if (!conf)
4204                 return -ENODEV;
4205
4206         if (strict_strtoul(page, 10, &new))
4207                 return -EINVAL;
4208         err = raid5_set_cache_size(mddev, new);
4209         if (err)
4210                 return err;
4211         return len;
4212 }
4213
4214 static struct md_sysfs_entry
4215 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4216                                 raid5_show_stripe_cache_size,
4217                                 raid5_store_stripe_cache_size);
4218
4219 static ssize_t
4220 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4221 {
4222         raid5_conf_t *conf = mddev->private;
4223         if (conf)
4224                 return sprintf(page, "%d\n", conf->bypass_threshold);
4225         else
4226                 return 0;
4227 }
4228
4229 static ssize_t
4230 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4231 {
4232         raid5_conf_t *conf = mddev->private;
4233         unsigned long new;
4234         if (len >= PAGE_SIZE)
4235                 return -EINVAL;
4236         if (!conf)
4237                 return -ENODEV;
4238
4239         if (strict_strtoul(page, 10, &new))
4240                 return -EINVAL;
4241         if (new > conf->max_nr_stripes)
4242                 return -EINVAL;
4243         conf->bypass_threshold = new;
4244         return len;
4245 }
4246
4247 static struct md_sysfs_entry
4248 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4249                                         S_IRUGO | S_IWUSR,
4250                                         raid5_show_preread_threshold,
4251                                         raid5_store_preread_threshold);
4252
4253 static ssize_t
4254 stripe_cache_active_show(mddev_t *mddev, char *page)
4255 {
4256         raid5_conf_t *conf = mddev->private;
4257         if (conf)
4258                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4259         else
4260                 return 0;
4261 }
4262
4263 static struct md_sysfs_entry
4264 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4265
4266 static struct attribute *raid5_attrs[] =  {
4267         &raid5_stripecache_size.attr,
4268         &raid5_stripecache_active.attr,
4269         &raid5_preread_bypass_threshold.attr,
4270         NULL,
4271 };
4272 static struct attribute_group raid5_attrs_group = {
4273         .name = NULL,
4274         .attrs = raid5_attrs,
4275 };
4276
4277 static sector_t
4278 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4279 {
4280         raid5_conf_t *conf = mddev->private;
4281
4282         if (!sectors)
4283                 sectors = mddev->dev_sectors;
4284         if (!raid_disks)
4285                 /* size is defined by the smallest of previous and new size */
4286                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4287
4288         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4289         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4290         return sectors * (raid_disks - conf->max_degraded);
4291 }
4292
4293 static void raid5_free_percpu(raid5_conf_t *conf)
4294 {
4295         struct raid5_percpu *percpu;
4296         unsigned long cpu;
4297
4298         if (!conf->percpu)
4299                 return;
4300
4301         get_online_cpus();
4302         for_each_possible_cpu(cpu) {
4303                 percpu = per_cpu_ptr(conf->percpu, cpu);
4304                 safe_put_page(percpu->spare_page);
4305                 kfree(percpu->scribble);
4306         }
4307 #ifdef CONFIG_HOTPLUG_CPU
4308         unregister_cpu_notifier(&conf->cpu_notify);
4309 #endif
4310         put_online_cpus();
4311
4312         free_percpu(conf->percpu);
4313 }
4314
4315 static void free_conf(raid5_conf_t *conf)
4316 {
4317         shrink_stripes(conf);
4318         raid5_free_percpu(conf);
4319         kfree(conf->disks);
4320         kfree(conf->stripe_hashtbl);
4321         kfree(conf);
4322 }
4323
4324 #ifdef CONFIG_HOTPLUG_CPU
4325 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4326                               void *hcpu)
4327 {
4328         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4329         long cpu = (long)hcpu;
4330         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4331
4332         switch (action) {
4333         case CPU_UP_PREPARE:
4334         case CPU_UP_PREPARE_FROZEN:
4335                 if (conf->level == 6 && !percpu->spare_page)
4336                         percpu->spare_page = alloc_page(GFP_KERNEL);
4337                 if (!percpu->scribble)
4338                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4339
4340                 if (!percpu->scribble ||
4341                     (conf->level == 6 && !percpu->spare_page)) {
4342                         safe_put_page(percpu->spare_page);
4343                         kfree(percpu->scribble);
4344                         pr_err("%s: failed memory allocation for cpu%ld\n",
4345                                __func__, cpu);
4346                         return notifier_from_errno(-ENOMEM);
4347                 }
4348                 break;
4349         case CPU_DEAD:
4350         case CPU_DEAD_FROZEN:
4351                 safe_put_page(percpu->spare_page);
4352                 kfree(percpu->scribble);
4353                 percpu->spare_page = NULL;
4354                 percpu->scribble = NULL;
4355                 break;
4356         default:
4357                 break;
4358         }
4359         return NOTIFY_OK;
4360 }
4361 #endif
4362
4363 static int raid5_alloc_percpu(raid5_conf_t *conf)
4364 {
4365         unsigned long cpu;
4366         struct page *spare_page;
4367         struct raid5_percpu __percpu *allcpus;
4368         void *scribble;
4369         int err;
4370
4371         allcpus = alloc_percpu(struct raid5_percpu);
4372         if (!allcpus)
4373                 return -ENOMEM;
4374         conf->percpu = allcpus;
4375
4376         get_online_cpus();
4377         err = 0;
4378         for_each_present_cpu(cpu) {
4379                 if (conf->level == 6) {
4380                         spare_page = alloc_page(GFP_KERNEL);
4381                         if (!spare_page) {
4382                                 err = -ENOMEM;
4383                                 break;
4384                         }
4385                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4386                 }
4387                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4388                 if (!scribble) {
4389                         err = -ENOMEM;
4390                         break;
4391                 }
4392                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4393         }
4394 #ifdef CONFIG_HOTPLUG_CPU
4395         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4396         conf->cpu_notify.priority = 0;
4397         if (err == 0)
4398                 err = register_cpu_notifier(&conf->cpu_notify);
4399 #endif
4400         put_online_cpus();
4401
4402         return err;
4403 }
4404
4405 static raid5_conf_t *setup_conf(mddev_t *mddev)
4406 {
4407         raid5_conf_t *conf;
4408         int raid_disk, memory, max_disks;
4409         mdk_rdev_t *rdev;
4410         struct disk_info *disk;
4411
4412         if (mddev->new_level != 5
4413             && mddev->new_level != 4
4414             && mddev->new_level != 6) {
4415                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4416                        mdname(mddev), mddev->new_level);
4417                 return ERR_PTR(-EIO);
4418         }
4419         if ((mddev->new_level == 5
4420              && !algorithm_valid_raid5(mddev->new_layout)) ||
4421             (mddev->new_level == 6
4422              && !algorithm_valid_raid6(mddev->new_layout))) {
4423                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4424                        mdname(mddev), mddev->new_layout);
4425                 return ERR_PTR(-EIO);
4426         }
4427         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4428                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4429                        mdname(mddev), mddev->raid_disks);
4430                 return ERR_PTR(-EINVAL);
4431         }
4432
4433         if (!mddev->new_chunk_sectors ||
4434             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4435             !is_power_of_2(mddev->new_chunk_sectors)) {
4436                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4437                        mdname(mddev), mddev->new_chunk_sectors << 9);
4438                 return ERR_PTR(-EINVAL);
4439         }
4440
4441         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4442         if (conf == NULL)
4443                 goto abort;
4444         spin_lock_init(&conf->device_lock);
4445         init_waitqueue_head(&conf->wait_for_stripe);
4446         init_waitqueue_head(&conf->wait_for_overlap);
4447         INIT_LIST_HEAD(&conf->handle_list);
4448         INIT_LIST_HEAD(&conf->hold_list);
4449         INIT_LIST_HEAD(&conf->delayed_list);
4450         INIT_LIST_HEAD(&conf->bitmap_list);
4451         INIT_LIST_HEAD(&conf->inactive_list);
4452         atomic_set(&conf->active_stripes, 0);
4453         atomic_set(&conf->preread_active_stripes, 0);
4454         atomic_set(&conf->active_aligned_reads, 0);
4455         conf->bypass_threshold = BYPASS_THRESHOLD;
4456
4457         conf->raid_disks = mddev->raid_disks;
4458         if (mddev->reshape_position == MaxSector)
4459                 conf->previous_raid_disks = mddev->raid_disks;
4460         else
4461                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4462         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4463         conf->scribble_len = scribble_len(max_disks);
4464
4465         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4466                               GFP_KERNEL);
4467         if (!conf->disks)
4468                 goto abort;
4469
4470         conf->mddev = mddev;
4471
4472         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4473                 goto abort;
4474
4475         conf->level = mddev->new_level;
4476         if (raid5_alloc_percpu(conf) != 0)
4477                 goto abort;
4478
4479         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4480
4481         list_for_each_entry(rdev, &mddev->disks, same_set) {
4482                 raid_disk = rdev->raid_disk;
4483                 if (raid_disk >= max_disks
4484                     || raid_disk < 0)
4485                         continue;
4486                 disk = conf->disks + raid_disk;
4487
4488                 disk->rdev = rdev;
4489
4490                 if (test_bit(In_sync, &rdev->flags)) {
4491                         char b[BDEVNAME_SIZE];
4492                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4493                                " disk %d\n",
4494                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4495                 } else if (rdev->saved_raid_disk != raid_disk)
4496                         /* Cannot rely on bitmap to complete recovery */
4497                         conf->fullsync = 1;
4498         }
4499
4500         conf->chunk_sectors = mddev->new_chunk_sectors;
4501         conf->level = mddev->new_level;
4502         if (conf->level == 6)
4503                 conf->max_degraded = 2;
4504         else
4505                 conf->max_degraded = 1;
4506         conf->algorithm = mddev->new_layout;
4507         conf->max_nr_stripes = NR_STRIPES;
4508         conf->reshape_progress = mddev->reshape_position;
4509         if (conf->reshape_progress != MaxSector) {
4510                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4511                 conf->prev_algo = mddev->layout;
4512         }
4513
4514         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4515                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4516         if (grow_stripes(conf, conf->max_nr_stripes)) {
4517                 printk(KERN_ERR
4518                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4519                        mdname(mddev), memory);
4520                 goto abort;
4521         } else
4522                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4523                        mdname(mddev), memory);
4524
4525         conf->thread = md_register_thread(raid5d, mddev, NULL);
4526         if (!conf->thread) {
4527                 printk(KERN_ERR
4528                        "md/raid:%s: couldn't allocate thread.\n",
4529                        mdname(mddev));
4530                 goto abort;
4531         }
4532
4533         return conf;
4534
4535  abort:
4536         if (conf) {
4537                 free_conf(conf);
4538                 return ERR_PTR(-EIO);
4539         } else
4540                 return ERR_PTR(-ENOMEM);
4541 }
4542
4543
4544 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4545 {
4546         switch (algo) {
4547         case ALGORITHM_PARITY_0:
4548                 if (raid_disk < max_degraded)
4549                         return 1;
4550                 break;
4551         case ALGORITHM_PARITY_N:
4552                 if (raid_disk >= raid_disks - max_degraded)
4553                         return 1;
4554                 break;
4555         case ALGORITHM_PARITY_0_6:
4556                 if (raid_disk == 0 || 
4557                     raid_disk == raid_disks - 1)
4558                         return 1;
4559                 break;
4560         case ALGORITHM_LEFT_ASYMMETRIC_6:
4561         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4562         case ALGORITHM_LEFT_SYMMETRIC_6:
4563         case ALGORITHM_RIGHT_SYMMETRIC_6:
4564                 if (raid_disk == raid_disks - 1)
4565                         return 1;
4566         }
4567         return 0;
4568 }
4569
4570 static int run(mddev_t *mddev)
4571 {
4572         raid5_conf_t *conf;
4573         int working_disks = 0;
4574         int dirty_parity_disks = 0;
4575         mdk_rdev_t *rdev;
4576         sector_t reshape_offset = 0;
4577
4578         if (mddev->recovery_cp != MaxSector)
4579                 printk(KERN_NOTICE "md/raid:%s: not clean"
4580                        " -- starting background reconstruction\n",
4581                        mdname(mddev));
4582         if (mddev->reshape_position != MaxSector) {
4583                 /* Check that we can continue the reshape.
4584                  * Currently only disks can change, it must
4585                  * increase, and we must be past the point where
4586                  * a stripe over-writes itself
4587                  */
4588                 sector_t here_new, here_old;
4589                 int old_disks;
4590                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4591
4592                 if (mddev->new_level != mddev->level) {
4593                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4594                                "required - aborting.\n",
4595                                mdname(mddev));
4596                         return -EINVAL;
4597                 }
4598                 old_disks = mddev->raid_disks - mddev->delta_disks;
4599                 /* reshape_position must be on a new-stripe boundary, and one
4600                  * further up in new geometry must map after here in old
4601                  * geometry.
4602                  */
4603                 here_new = mddev->reshape_position;
4604                 if (sector_div(here_new, mddev->new_chunk_sectors *
4605                                (mddev->raid_disks - max_degraded))) {
4606                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4607                                "on a stripe boundary\n", mdname(mddev));
4608                         return -EINVAL;
4609                 }
4610                 reshape_offset = here_new * mddev->new_chunk_sectors;
4611                 /* here_new is the stripe we will write to */
4612                 here_old = mddev->reshape_position;
4613                 sector_div(here_old, mddev->chunk_sectors *
4614                            (old_disks-max_degraded));
4615                 /* here_old is the first stripe that we might need to read
4616                  * from */
4617                 if (mddev->delta_disks == 0) {
4618                         /* We cannot be sure it is safe to start an in-place
4619                          * reshape.  It is only safe if user-space if monitoring
4620                          * and taking constant backups.
4621                          * mdadm always starts a situation like this in
4622                          * readonly mode so it can take control before
4623                          * allowing any writes.  So just check for that.
4624                          */
4625                         if ((here_new * mddev->new_chunk_sectors != 
4626                              here_old * mddev->chunk_sectors) ||
4627                             mddev->ro == 0) {
4628                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4629                                        " in read-only mode - aborting\n",
4630                                        mdname(mddev));
4631                                 return -EINVAL;
4632                         }
4633                 } else if (mddev->delta_disks < 0
4634                     ? (here_new * mddev->new_chunk_sectors <=
4635                        here_old * mddev->chunk_sectors)
4636                     : (here_new * mddev->new_chunk_sectors >=
4637                        here_old * mddev->chunk_sectors)) {
4638                         /* Reading from the same stripe as writing to - bad */
4639                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4640                                "auto-recovery - aborting.\n",
4641                                mdname(mddev));
4642                         return -EINVAL;
4643                 }
4644                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4645                        mdname(mddev));
4646                 /* OK, we should be able to continue; */
4647         } else {
4648                 BUG_ON(mddev->level != mddev->new_level);
4649                 BUG_ON(mddev->layout != mddev->new_layout);
4650                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4651                 BUG_ON(mddev->delta_disks != 0);
4652         }
4653
4654         if (mddev->private == NULL)
4655                 conf = setup_conf(mddev);
4656         else
4657                 conf = mddev->private;
4658
4659         if (IS_ERR(conf))
4660                 return PTR_ERR(conf);
4661
4662         mddev->thread = conf->thread;
4663         conf->thread = NULL;
4664         mddev->private = conf;
4665
4666         /*
4667          * 0 for a fully functional array, 1 or 2 for a degraded array.
4668          */
4669         list_for_each_entry(rdev, &mddev->disks, same_set) {
4670                 if (rdev->badblocks.count) {
4671                         printk(KERN_ERR "md/raid5: cannot handle bad blocks yet\n");
4672                         goto abort;
4673                 }
4674                 if (rdev->raid_disk < 0)
4675                         continue;
4676                 if (test_bit(In_sync, &rdev->flags)) {
4677                         working_disks++;
4678                         continue;
4679                 }
4680                 /* This disc is not fully in-sync.  However if it
4681                  * just stored parity (beyond the recovery_offset),
4682                  * when we don't need to be concerned about the
4683                  * array being dirty.
4684                  * When reshape goes 'backwards', we never have
4685                  * partially completed devices, so we only need
4686                  * to worry about reshape going forwards.
4687                  */
4688                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4689                 if (mddev->major_version == 0 &&
4690                     mddev->minor_version > 90)
4691                         rdev->recovery_offset = reshape_offset;
4692                         
4693                 if (rdev->recovery_offset < reshape_offset) {
4694                         /* We need to check old and new layout */
4695                         if (!only_parity(rdev->raid_disk,
4696                                          conf->algorithm,
4697                                          conf->raid_disks,
4698                                          conf->max_degraded))
4699                                 continue;
4700                 }
4701                 if (!only_parity(rdev->raid_disk,
4702                                  conf->prev_algo,
4703                                  conf->previous_raid_disks,
4704                                  conf->max_degraded))
4705                         continue;
4706                 dirty_parity_disks++;
4707         }
4708
4709         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4710                            - working_disks);
4711
4712         if (has_failed(conf)) {
4713                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4714                         " (%d/%d failed)\n",
4715                         mdname(mddev), mddev->degraded, conf->raid_disks);
4716                 goto abort;
4717         }
4718
4719         /* device size must be a multiple of chunk size */
4720         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4721         mddev->resync_max_sectors = mddev->dev_sectors;
4722
4723         if (mddev->degraded > dirty_parity_disks &&
4724             mddev->recovery_cp != MaxSector) {
4725                 if (mddev->ok_start_degraded)
4726                         printk(KERN_WARNING
4727                                "md/raid:%s: starting dirty degraded array"
4728                                " - data corruption possible.\n",
4729                                mdname(mddev));
4730                 else {
4731                         printk(KERN_ERR
4732                                "md/raid:%s: cannot start dirty degraded array.\n",
4733                                mdname(mddev));
4734                         goto abort;
4735                 }
4736         }
4737
4738         if (mddev->degraded == 0)
4739                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4740                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4741                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4742                        mddev->new_layout);
4743         else
4744                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4745                        " out of %d devices, algorithm %d\n",
4746                        mdname(mddev), conf->level,
4747                        mddev->raid_disks - mddev->degraded,
4748                        mddev->raid_disks, mddev->new_layout);
4749
4750         print_raid5_conf(conf);
4751
4752         if (conf->reshape_progress != MaxSector) {
4753                 conf->reshape_safe = conf->reshape_progress;
4754                 atomic_set(&conf->reshape_stripes, 0);
4755                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4756                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4757                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4758                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4759                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4760                                                         "reshape");
4761         }
4762
4763
4764         /* Ok, everything is just fine now */
4765         if (mddev->to_remove == &raid5_attrs_group)
4766                 mddev->to_remove = NULL;
4767         else if (mddev->kobj.sd &&
4768             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4769                 printk(KERN_WARNING
4770                        "raid5: failed to create sysfs attributes for %s\n",
4771                        mdname(mddev));
4772         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4773
4774         if (mddev->queue) {
4775                 int chunk_size;
4776                 /* read-ahead size must cover two whole stripes, which
4777                  * is 2 * (datadisks) * chunksize where 'n' is the
4778                  * number of raid devices
4779                  */
4780                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4781                 int stripe = data_disks *
4782                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4783                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4784                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4785
4786                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4787
4788                 mddev->queue->backing_dev_info.congested_data = mddev;
4789                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4790
4791                 chunk_size = mddev->chunk_sectors << 9;
4792                 blk_queue_io_min(mddev->queue, chunk_size);
4793                 blk_queue_io_opt(mddev->queue, chunk_size *
4794                                  (conf->raid_disks - conf->max_degraded));
4795
4796                 list_for_each_entry(rdev, &mddev->disks, same_set)
4797                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4798                                           rdev->data_offset << 9);
4799         }
4800
4801         return 0;
4802 abort:
4803         md_unregister_thread(mddev->thread);
4804         mddev->thread = NULL;
4805         if (conf) {
4806                 print_raid5_conf(conf);
4807                 free_conf(conf);
4808         }
4809         mddev->private = NULL;
4810         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4811         return -EIO;
4812 }
4813
4814 static int stop(mddev_t *mddev)
4815 {
4816         raid5_conf_t *conf = mddev->private;
4817
4818         md_unregister_thread(mddev->thread);
4819         mddev->thread = NULL;
4820         if (mddev->queue)
4821                 mddev->queue->backing_dev_info.congested_fn = NULL;
4822         free_conf(conf);
4823         mddev->private = NULL;
4824         mddev->to_remove = &raid5_attrs_group;
4825         return 0;
4826 }
4827
4828 #ifdef DEBUG
4829 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4830 {
4831         int i;
4832
4833         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4834                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4835         seq_printf(seq, "sh %llu,  count %d.\n",
4836                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4837         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4838         for (i = 0; i < sh->disks; i++) {
4839                 seq_printf(seq, "(cache%d: %p %ld) ",
4840                            i, sh->dev[i].page, sh->dev[i].flags);
4841         }
4842         seq_printf(seq, "\n");
4843 }
4844
4845 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4846 {
4847         struct stripe_head *sh;
4848         struct hlist_node *hn;
4849         int i;
4850
4851         spin_lock_irq(&conf->device_lock);
4852         for (i = 0; i < NR_HASH; i++) {
4853                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4854                         if (sh->raid_conf != conf)
4855                                 continue;
4856                         print_sh(seq, sh);
4857                 }
4858         }
4859         spin_unlock_irq(&conf->device_lock);
4860 }
4861 #endif
4862
4863 static void status(struct seq_file *seq, mddev_t *mddev)
4864 {
4865         raid5_conf_t *conf = mddev->private;
4866         int i;
4867
4868         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4869                 mddev->chunk_sectors / 2, mddev->layout);
4870         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4871         for (i = 0; i < conf->raid_disks; i++)
4872                 seq_printf (seq, "%s",
4873                                conf->disks[i].rdev &&
4874                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4875         seq_printf (seq, "]");
4876 #ifdef DEBUG
4877         seq_printf (seq, "\n");
4878         printall(seq, conf);
4879 #endif
4880 }
4881
4882 static void print_raid5_conf (raid5_conf_t *conf)
4883 {
4884         int i;
4885         struct disk_info *tmp;
4886
4887         printk(KERN_DEBUG "RAID conf printout:\n");
4888         if (!conf) {
4889                 printk("(conf==NULL)\n");
4890                 return;
4891         }
4892         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
4893                conf->raid_disks,
4894                conf->raid_disks - conf->mddev->degraded);
4895
4896         for (i = 0; i < conf->raid_disks; i++) {
4897                 char b[BDEVNAME_SIZE];
4898                 tmp = conf->disks + i;
4899                 if (tmp->rdev)
4900                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
4901                                i, !test_bit(Faulty, &tmp->rdev->flags),
4902                                bdevname(tmp->rdev->bdev, b));
4903         }
4904 }
4905
4906 static int raid5_spare_active(mddev_t *mddev)
4907 {
4908         int i;
4909         raid5_conf_t *conf = mddev->private;
4910         struct disk_info *tmp;
4911         int count = 0;
4912         unsigned long flags;
4913
4914         for (i = 0; i < conf->raid_disks; i++) {
4915                 tmp = conf->disks + i;
4916                 if (tmp->rdev
4917                     && tmp->rdev->recovery_offset == MaxSector
4918                     && !test_bit(Faulty, &tmp->rdev->flags)
4919                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4920                         count++;
4921                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
4922                 }
4923         }
4924         spin_lock_irqsave(&conf->device_lock, flags);
4925         mddev->degraded -= count;
4926         spin_unlock_irqrestore(&conf->device_lock, flags);
4927         print_raid5_conf(conf);
4928         return count;
4929 }
4930
4931 static int raid5_remove_disk(mddev_t *mddev, int number)
4932 {
4933         raid5_conf_t *conf = mddev->private;
4934         int err = 0;
4935         mdk_rdev_t *rdev;
4936         struct disk_info *p = conf->disks + number;
4937
4938         print_raid5_conf(conf);
4939         rdev = p->rdev;
4940         if (rdev) {
4941                 if (number >= conf->raid_disks &&
4942                     conf->reshape_progress == MaxSector)
4943                         clear_bit(In_sync, &rdev->flags);
4944
4945                 if (test_bit(In_sync, &rdev->flags) ||
4946                     atomic_read(&rdev->nr_pending)) {
4947                         err = -EBUSY;
4948                         goto abort;
4949                 }
4950                 /* Only remove non-faulty devices if recovery
4951                  * isn't possible.
4952                  */
4953                 if (!test_bit(Faulty, &rdev->flags) &&
4954                     !has_failed(conf) &&
4955                     number < conf->raid_disks) {
4956                         err = -EBUSY;
4957                         goto abort;
4958                 }
4959                 p->rdev = NULL;
4960                 synchronize_rcu();
4961                 if (atomic_read(&rdev->nr_pending)) {
4962                         /* lost the race, try later */
4963                         err = -EBUSY;
4964                         p->rdev = rdev;
4965                 }
4966         }
4967 abort:
4968
4969         print_raid5_conf(conf);
4970         return err;
4971 }
4972
4973 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4974 {
4975         raid5_conf_t *conf = mddev->private;
4976         int err = -EEXIST;
4977         int disk;
4978         struct disk_info *p;
4979         int first = 0;
4980         int last = conf->raid_disks - 1;
4981
4982         if (rdev->badblocks.count)
4983                 return -EINVAL;
4984
4985         if (has_failed(conf))
4986                 /* no point adding a device */
4987                 return -EINVAL;
4988
4989         if (rdev->raid_disk >= 0)
4990                 first = last = rdev->raid_disk;
4991
4992         /*
4993          * find the disk ... but prefer rdev->saved_raid_disk
4994          * if possible.
4995          */
4996         if (rdev->saved_raid_disk >= 0 &&
4997             rdev->saved_raid_disk >= first &&
4998             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4999                 disk = rdev->saved_raid_disk;
5000         else
5001                 disk = first;
5002         for ( ; disk <= last ; disk++)
5003                 if ((p=conf->disks + disk)->rdev == NULL) {
5004                         clear_bit(In_sync, &rdev->flags);
5005                         rdev->raid_disk = disk;
5006                         err = 0;
5007                         if (rdev->saved_raid_disk != disk)
5008                                 conf->fullsync = 1;
5009                         rcu_assign_pointer(p->rdev, rdev);
5010                         break;
5011                 }
5012         print_raid5_conf(conf);
5013         return err;
5014 }
5015
5016 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5017 {
5018         /* no resync is happening, and there is enough space
5019          * on all devices, so we can resize.
5020          * We need to make sure resync covers any new space.
5021          * If the array is shrinking we should possibly wait until
5022          * any io in the removed space completes, but it hardly seems
5023          * worth it.
5024          */
5025         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5026         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5027                                                mddev->raid_disks));
5028         if (mddev->array_sectors >
5029             raid5_size(mddev, sectors, mddev->raid_disks))
5030                 return -EINVAL;
5031         set_capacity(mddev->gendisk, mddev->array_sectors);
5032         revalidate_disk(mddev->gendisk);
5033         if (sectors > mddev->dev_sectors &&
5034             mddev->recovery_cp > mddev->dev_sectors) {
5035                 mddev->recovery_cp = mddev->dev_sectors;
5036                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5037         }
5038         mddev->dev_sectors = sectors;
5039         mddev->resync_max_sectors = sectors;
5040         return 0;
5041 }
5042
5043 static int check_stripe_cache(mddev_t *mddev)
5044 {
5045         /* Can only proceed if there are plenty of stripe_heads.
5046          * We need a minimum of one full stripe,, and for sensible progress
5047          * it is best to have about 4 times that.
5048          * If we require 4 times, then the default 256 4K stripe_heads will
5049          * allow for chunk sizes up to 256K, which is probably OK.
5050          * If the chunk size is greater, user-space should request more
5051          * stripe_heads first.
5052          */
5053         raid5_conf_t *conf = mddev->private;
5054         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5055             > conf->max_nr_stripes ||
5056             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5057             > conf->max_nr_stripes) {
5058                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5059                        mdname(mddev),
5060                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5061                         / STRIPE_SIZE)*4);
5062                 return 0;
5063         }
5064         return 1;
5065 }
5066
5067 static int check_reshape(mddev_t *mddev)
5068 {
5069         raid5_conf_t *conf = mddev->private;
5070
5071         if (mddev->delta_disks == 0 &&
5072             mddev->new_layout == mddev->layout &&
5073             mddev->new_chunk_sectors == mddev->chunk_sectors)
5074                 return 0; /* nothing to do */
5075         if (mddev->bitmap)
5076                 /* Cannot grow a bitmap yet */
5077                 return -EBUSY;
5078         if (has_failed(conf))
5079                 return -EINVAL;
5080         if (mddev->delta_disks < 0) {
5081                 /* We might be able to shrink, but the devices must
5082                  * be made bigger first.
5083                  * For raid6, 4 is the minimum size.
5084                  * Otherwise 2 is the minimum
5085                  */
5086                 int min = 2;
5087                 if (mddev->level == 6)
5088                         min = 4;
5089                 if (mddev->raid_disks + mddev->delta_disks < min)
5090                         return -EINVAL;
5091         }
5092
5093         if (!check_stripe_cache(mddev))
5094                 return -ENOSPC;
5095
5096         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5097 }
5098
5099 static int raid5_start_reshape(mddev_t *mddev)
5100 {
5101         raid5_conf_t *conf = mddev->private;
5102         mdk_rdev_t *rdev;
5103         int spares = 0;
5104         unsigned long flags;
5105
5106         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5107                 return -EBUSY;
5108
5109         if (!check_stripe_cache(mddev))
5110                 return -ENOSPC;
5111
5112         list_for_each_entry(rdev, &mddev->disks, same_set)
5113                 if (!test_bit(In_sync, &rdev->flags)
5114                     && !test_bit(Faulty, &rdev->flags))
5115                         spares++;
5116
5117         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5118                 /* Not enough devices even to make a degraded array
5119                  * of that size
5120                  */
5121                 return -EINVAL;
5122
5123         /* Refuse to reduce size of the array.  Any reductions in
5124          * array size must be through explicit setting of array_size
5125          * attribute.
5126          */
5127         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5128             < mddev->array_sectors) {
5129                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5130                        "before number of disks\n", mdname(mddev));
5131                 return -EINVAL;
5132         }
5133
5134         atomic_set(&conf->reshape_stripes, 0);
5135         spin_lock_irq(&conf->device_lock);
5136         conf->previous_raid_disks = conf->raid_disks;
5137         conf->raid_disks += mddev->delta_disks;
5138         conf->prev_chunk_sectors = conf->chunk_sectors;
5139         conf->chunk_sectors = mddev->new_chunk_sectors;
5140         conf->prev_algo = conf->algorithm;
5141         conf->algorithm = mddev->new_layout;
5142         if (mddev->delta_disks < 0)
5143                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5144         else
5145                 conf->reshape_progress = 0;
5146         conf->reshape_safe = conf->reshape_progress;
5147         conf->generation++;
5148         spin_unlock_irq(&conf->device_lock);
5149
5150         /* Add some new drives, as many as will fit.
5151          * We know there are enough to make the newly sized array work.
5152          * Don't add devices if we are reducing the number of
5153          * devices in the array.  This is because it is not possible
5154          * to correctly record the "partially reconstructed" state of
5155          * such devices during the reshape and confusion could result.
5156          */
5157         if (mddev->delta_disks >= 0) {
5158                 int added_devices = 0;
5159                 list_for_each_entry(rdev, &mddev->disks, same_set)
5160                         if (rdev->raid_disk < 0 &&
5161                             !test_bit(Faulty, &rdev->flags)) {
5162                                 if (raid5_add_disk(mddev, rdev) == 0) {
5163                                         if (rdev->raid_disk
5164                                             >= conf->previous_raid_disks) {
5165                                                 set_bit(In_sync, &rdev->flags);
5166                                                 added_devices++;
5167                                         } else
5168                                                 rdev->recovery_offset = 0;
5169
5170                                         if (sysfs_link_rdev(mddev, rdev))
5171                                                 /* Failure here is OK */;
5172                                 }
5173                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5174                                    && !test_bit(Faulty, &rdev->flags)) {
5175                                 /* This is a spare that was manually added */
5176                                 set_bit(In_sync, &rdev->flags);
5177                                 added_devices++;
5178                         }
5179
5180                 /* When a reshape changes the number of devices,
5181                  * ->degraded is measured against the larger of the
5182                  * pre and post number of devices.
5183                  */
5184                 spin_lock_irqsave(&conf->device_lock, flags);
5185                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5186                         - added_devices;
5187                 spin_unlock_irqrestore(&conf->device_lock, flags);
5188         }
5189         mddev->raid_disks = conf->raid_disks;
5190         mddev->reshape_position = conf->reshape_progress;
5191         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5192
5193         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5194         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5195         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5196         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5197         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5198                                                 "reshape");
5199         if (!mddev->sync_thread) {
5200                 mddev->recovery = 0;
5201                 spin_lock_irq(&conf->device_lock);
5202                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5203                 conf->reshape_progress = MaxSector;
5204                 spin_unlock_irq(&conf->device_lock);
5205                 return -EAGAIN;
5206         }
5207         conf->reshape_checkpoint = jiffies;
5208         md_wakeup_thread(mddev->sync_thread);
5209         md_new_event(mddev);
5210         return 0;
5211 }
5212
5213 /* This is called from the reshape thread and should make any
5214  * changes needed in 'conf'
5215  */
5216 static void end_reshape(raid5_conf_t *conf)
5217 {
5218
5219         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5220
5221                 spin_lock_irq(&conf->device_lock);
5222                 conf->previous_raid_disks = conf->raid_disks;
5223                 conf->reshape_progress = MaxSector;
5224                 spin_unlock_irq(&conf->device_lock);
5225                 wake_up(&conf->wait_for_overlap);
5226
5227                 /* read-ahead size must cover two whole stripes, which is
5228                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5229                  */
5230                 if (conf->mddev->queue) {
5231                         int data_disks = conf->raid_disks - conf->max_degraded;
5232                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5233                                                    / PAGE_SIZE);
5234                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5235                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5236                 }
5237         }
5238 }
5239
5240 /* This is called from the raid5d thread with mddev_lock held.
5241  * It makes config changes to the device.
5242  */
5243 static void raid5_finish_reshape(mddev_t *mddev)
5244 {
5245         raid5_conf_t *conf = mddev->private;
5246
5247         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5248
5249                 if (mddev->delta_disks > 0) {
5250                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5251                         set_capacity(mddev->gendisk, mddev->array_sectors);
5252                         revalidate_disk(mddev->gendisk);
5253                 } else {
5254                         int d;
5255                         mddev->degraded = conf->raid_disks;
5256                         for (d = 0; d < conf->raid_disks ; d++)
5257                                 if (conf->disks[d].rdev &&
5258                                     test_bit(In_sync,
5259                                              &conf->disks[d].rdev->flags))
5260                                         mddev->degraded--;
5261                         for (d = conf->raid_disks ;
5262                              d < conf->raid_disks - mddev->delta_disks;
5263                              d++) {
5264                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5265                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5266                                         sysfs_unlink_rdev(mddev, rdev);
5267                                         rdev->raid_disk = -1;
5268                                 }
5269                         }
5270                 }
5271                 mddev->layout = conf->algorithm;
5272                 mddev->chunk_sectors = conf->chunk_sectors;
5273                 mddev->reshape_position = MaxSector;
5274                 mddev->delta_disks = 0;
5275         }
5276 }
5277
5278 static void raid5_quiesce(mddev_t *mddev, int state)
5279 {
5280         raid5_conf_t *conf = mddev->private;
5281
5282         switch(state) {
5283         case 2: /* resume for a suspend */
5284                 wake_up(&conf->wait_for_overlap);
5285                 break;
5286
5287         case 1: /* stop all writes */
5288                 spin_lock_irq(&conf->device_lock);
5289                 /* '2' tells resync/reshape to pause so that all
5290                  * active stripes can drain
5291                  */
5292                 conf->quiesce = 2;
5293                 wait_event_lock_irq(conf->wait_for_stripe,
5294                                     atomic_read(&conf->active_stripes) == 0 &&
5295                                     atomic_read(&conf->active_aligned_reads) == 0,
5296                                     conf->device_lock, /* nothing */);
5297                 conf->quiesce = 1;
5298                 spin_unlock_irq(&conf->device_lock);
5299                 /* allow reshape to continue */
5300                 wake_up(&conf->wait_for_overlap);
5301                 break;
5302
5303         case 0: /* re-enable writes */
5304                 spin_lock_irq(&conf->device_lock);
5305                 conf->quiesce = 0;
5306                 wake_up(&conf->wait_for_stripe);
5307                 wake_up(&conf->wait_for_overlap);
5308                 spin_unlock_irq(&conf->device_lock);
5309                 break;
5310         }
5311 }
5312
5313
5314 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5315 {
5316         struct raid0_private_data *raid0_priv = mddev->private;
5317         sector_t sectors;
5318
5319         /* for raid0 takeover only one zone is supported */
5320         if (raid0_priv->nr_strip_zones > 1) {
5321                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5322                        mdname(mddev));
5323                 return ERR_PTR(-EINVAL);
5324         }
5325
5326         sectors = raid0_priv->strip_zone[0].zone_end;
5327         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5328         mddev->dev_sectors = sectors;
5329         mddev->new_level = level;
5330         mddev->new_layout = ALGORITHM_PARITY_N;
5331         mddev->new_chunk_sectors = mddev->chunk_sectors;
5332         mddev->raid_disks += 1;
5333         mddev->delta_disks = 1;
5334         /* make sure it will be not marked as dirty */
5335         mddev->recovery_cp = MaxSector;
5336
5337         return setup_conf(mddev);
5338 }
5339
5340
5341 static void *raid5_takeover_raid1(mddev_t *mddev)
5342 {
5343         int chunksect;
5344
5345         if (mddev->raid_disks != 2 ||
5346             mddev->degraded > 1)
5347                 return ERR_PTR(-EINVAL);
5348
5349         /* Should check if there are write-behind devices? */
5350
5351         chunksect = 64*2; /* 64K by default */
5352
5353         /* The array must be an exact multiple of chunksize */
5354         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5355                 chunksect >>= 1;
5356
5357         if ((chunksect<<9) < STRIPE_SIZE)
5358                 /* array size does not allow a suitable chunk size */
5359                 return ERR_PTR(-EINVAL);
5360
5361         mddev->new_level = 5;
5362         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5363         mddev->new_chunk_sectors = chunksect;
5364
5365         return setup_conf(mddev);
5366 }
5367
5368 static void *raid5_takeover_raid6(mddev_t *mddev)
5369 {
5370         int new_layout;
5371
5372         switch (mddev->layout) {
5373         case ALGORITHM_LEFT_ASYMMETRIC_6:
5374                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5375                 break;
5376         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5377                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5378                 break;
5379         case ALGORITHM_LEFT_SYMMETRIC_6:
5380                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5381                 break;
5382         case ALGORITHM_RIGHT_SYMMETRIC_6:
5383                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5384                 break;
5385         case ALGORITHM_PARITY_0_6:
5386                 new_layout = ALGORITHM_PARITY_0;
5387                 break;
5388         case ALGORITHM_PARITY_N:
5389                 new_layout = ALGORITHM_PARITY_N;
5390                 break;
5391         default:
5392                 return ERR_PTR(-EINVAL);
5393         }
5394         mddev->new_level = 5;
5395         mddev->new_layout = new_layout;
5396         mddev->delta_disks = -1;
5397         mddev->raid_disks -= 1;
5398         return setup_conf(mddev);
5399 }
5400
5401
5402 static int raid5_check_reshape(mddev_t *mddev)
5403 {
5404         /* For a 2-drive array, the layout and chunk size can be changed
5405          * immediately as not restriping is needed.
5406          * For larger arrays we record the new value - after validation
5407          * to be used by a reshape pass.
5408          */
5409         raid5_conf_t *conf = mddev->private;
5410         int new_chunk = mddev->new_chunk_sectors;
5411
5412         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5413                 return -EINVAL;
5414         if (new_chunk > 0) {
5415                 if (!is_power_of_2(new_chunk))
5416                         return -EINVAL;
5417                 if (new_chunk < (PAGE_SIZE>>9))
5418                         return -EINVAL;
5419                 if (mddev->array_sectors & (new_chunk-1))
5420                         /* not factor of array size */
5421                         return -EINVAL;
5422         }
5423
5424         /* They look valid */
5425
5426         if (mddev->raid_disks == 2) {
5427                 /* can make the change immediately */
5428                 if (mddev->new_layout >= 0) {
5429                         conf->algorithm = mddev->new_layout;
5430                         mddev->layout = mddev->new_layout;
5431                 }
5432                 if (new_chunk > 0) {
5433                         conf->chunk_sectors = new_chunk ;
5434                         mddev->chunk_sectors = new_chunk;
5435                 }
5436                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5437                 md_wakeup_thread(mddev->thread);
5438         }
5439         return check_reshape(mddev);
5440 }
5441
5442 static int raid6_check_reshape(mddev_t *mddev)
5443 {
5444         int new_chunk = mddev->new_chunk_sectors;
5445
5446         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5447                 return -EINVAL;
5448         if (new_chunk > 0) {
5449                 if (!is_power_of_2(new_chunk))
5450                         return -EINVAL;
5451                 if (new_chunk < (PAGE_SIZE >> 9))
5452                         return -EINVAL;
5453                 if (mddev->array_sectors & (new_chunk-1))
5454                         /* not factor of array size */
5455                         return -EINVAL;
5456         }
5457
5458         /* They look valid */
5459         return check_reshape(mddev);
5460 }
5461
5462 static void *raid5_takeover(mddev_t *mddev)
5463 {
5464         /* raid5 can take over:
5465          *  raid0 - if there is only one strip zone - make it a raid4 layout
5466          *  raid1 - if there are two drives.  We need to know the chunk size
5467          *  raid4 - trivial - just use a raid4 layout.
5468          *  raid6 - Providing it is a *_6 layout
5469          */
5470         if (mddev->level == 0)
5471                 return raid45_takeover_raid0(mddev, 5);
5472         if (mddev->level == 1)
5473                 return raid5_takeover_raid1(mddev);
5474         if (mddev->level == 4) {
5475                 mddev->new_layout = ALGORITHM_PARITY_N;
5476                 mddev->new_level = 5;
5477                 return setup_conf(mddev);
5478         }
5479         if (mddev->level == 6)
5480                 return raid5_takeover_raid6(mddev);
5481
5482         return ERR_PTR(-EINVAL);
5483 }
5484
5485 static void *raid4_takeover(mddev_t *mddev)
5486 {
5487         /* raid4 can take over:
5488          *  raid0 - if there is only one strip zone
5489          *  raid5 - if layout is right
5490          */
5491         if (mddev->level == 0)
5492                 return raid45_takeover_raid0(mddev, 4);
5493         if (mddev->level == 5 &&
5494             mddev->layout == ALGORITHM_PARITY_N) {
5495                 mddev->new_layout = 0;
5496                 mddev->new_level = 4;
5497                 return setup_conf(mddev);
5498         }
5499         return ERR_PTR(-EINVAL);
5500 }
5501
5502 static struct mdk_personality raid5_personality;
5503
5504 static void *raid6_takeover(mddev_t *mddev)
5505 {
5506         /* Currently can only take over a raid5.  We map the
5507          * personality to an equivalent raid6 personality
5508          * with the Q block at the end.
5509          */
5510         int new_layout;
5511
5512         if (mddev->pers != &raid5_personality)
5513                 return ERR_PTR(-EINVAL);
5514         if (mddev->degraded > 1)
5515                 return ERR_PTR(-EINVAL);
5516         if (mddev->raid_disks > 253)
5517                 return ERR_PTR(-EINVAL);
5518         if (mddev->raid_disks < 3)
5519                 return ERR_PTR(-EINVAL);
5520
5521         switch (mddev->layout) {
5522         case ALGORITHM_LEFT_ASYMMETRIC:
5523                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5524                 break;
5525         case ALGORITHM_RIGHT_ASYMMETRIC:
5526                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5527                 break;
5528         case ALGORITHM_LEFT_SYMMETRIC:
5529                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5530                 break;
5531         case ALGORITHM_RIGHT_SYMMETRIC:
5532                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5533                 break;
5534         case ALGORITHM_PARITY_0:
5535                 new_layout = ALGORITHM_PARITY_0_6;
5536                 break;
5537         case ALGORITHM_PARITY_N:
5538                 new_layout = ALGORITHM_PARITY_N;
5539                 break;
5540         default:
5541                 return ERR_PTR(-EINVAL);
5542         }
5543         mddev->new_level = 6;
5544         mddev->new_layout = new_layout;
5545         mddev->delta_disks = 1;
5546         mddev->raid_disks += 1;
5547         return setup_conf(mddev);
5548 }
5549
5550
5551 static struct mdk_personality raid6_personality =
5552 {
5553         .name           = "raid6",
5554         .level          = 6,
5555         .owner          = THIS_MODULE,
5556         .make_request   = make_request,
5557         .run            = run,
5558         .stop           = stop,
5559         .status         = status,
5560         .error_handler  = error,
5561         .hot_add_disk   = raid5_add_disk,
5562         .hot_remove_disk= raid5_remove_disk,
5563         .spare_active   = raid5_spare_active,
5564         .sync_request   = sync_request,
5565         .resize         = raid5_resize,
5566         .size           = raid5_size,
5567         .check_reshape  = raid6_check_reshape,
5568         .start_reshape  = raid5_start_reshape,
5569         .finish_reshape = raid5_finish_reshape,
5570         .quiesce        = raid5_quiesce,
5571         .takeover       = raid6_takeover,
5572 };
5573 static struct mdk_personality raid5_personality =
5574 {
5575         .name           = "raid5",
5576         .level          = 5,
5577         .owner          = THIS_MODULE,
5578         .make_request   = make_request,
5579         .run            = run,
5580         .stop           = stop,
5581         .status         = status,
5582         .error_handler  = error,
5583         .hot_add_disk   = raid5_add_disk,
5584         .hot_remove_disk= raid5_remove_disk,
5585         .spare_active   = raid5_spare_active,
5586         .sync_request   = sync_request,
5587         .resize         = raid5_resize,
5588         .size           = raid5_size,
5589         .check_reshape  = raid5_check_reshape,
5590         .start_reshape  = raid5_start_reshape,
5591         .finish_reshape = raid5_finish_reshape,
5592         .quiesce        = raid5_quiesce,
5593         .takeover       = raid5_takeover,
5594 };
5595
5596 static struct mdk_personality raid4_personality =
5597 {
5598         .name           = "raid4",
5599         .level          = 4,
5600         .owner          = THIS_MODULE,
5601         .make_request   = make_request,
5602         .run            = run,
5603         .stop           = stop,
5604         .status         = status,
5605         .error_handler  = error,
5606         .hot_add_disk   = raid5_add_disk,
5607         .hot_remove_disk= raid5_remove_disk,
5608         .spare_active   = raid5_spare_active,
5609         .sync_request   = sync_request,
5610         .resize         = raid5_resize,
5611         .size           = raid5_size,
5612         .check_reshape  = raid5_check_reshape,
5613         .start_reshape  = raid5_start_reshape,
5614         .finish_reshape = raid5_finish_reshape,
5615         .quiesce        = raid5_quiesce,
5616         .takeover       = raid4_takeover,
5617 };
5618
5619 static int __init raid5_init(void)
5620 {
5621         register_md_personality(&raid6_personality);
5622         register_md_personality(&raid5_personality);
5623         register_md_personality(&raid4_personality);
5624         return 0;
5625 }
5626
5627 static void raid5_exit(void)
5628 {
5629         unregister_md_personality(&raid6_personality);
5630         unregister_md_personality(&raid5_personality);
5631         unregister_md_personality(&raid4_personality);
5632 }
5633
5634 module_init(raid5_init);
5635 module_exit(raid5_exit);
5636 MODULE_LICENSE("GPL");
5637 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5638 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5639 MODULE_ALIAS("md-raid5");
5640 MODULE_ALIAS("md-raid4");
5641 MODULE_ALIAS("md-level-5");
5642 MODULE_ALIAS("md-level-4");
5643 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5644 MODULE_ALIAS("md-raid6");
5645 MODULE_ALIAS("md-level-6");
5646
5647 /* This used to be two separate modules, they were: */
5648 MODULE_ALIAS("raid5");
5649 MODULE_ALIAS("raid6");