md/raid5: For odirect-write performance, do not set STRIPE_PREREAD_ACTIVE.
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105         return (atomic_read(segments) >> 16) & 0xffff;
106 }
107
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111         return atomic_sub_return(1, segments) & 0xffff;
112 }
113
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117         atomic_inc(segments);
118 }
119
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121         unsigned int cnt)
122 {
123         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124         int old, new;
125
126         do {
127                 old = atomic_read(segments);
128                 new = (old & 0xffff) | (cnt << 16);
129         } while (atomic_cmpxchg(segments, old, new) != old);
130 }
131
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135         atomic_set(segments, cnt);
136 }
137
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141         if (sh->ddf_layout)
142                 /* ddf always start from first device */
143                 return 0;
144         /* md starts just after Q block */
145         if (sh->qd_idx == sh->disks - 1)
146                 return 0;
147         else
148                 return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152         disk++;
153         return (disk < raid_disks) ? disk : 0;
154 }
155
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162                              int *count, int syndrome_disks)
163 {
164         int slot = *count;
165
166         if (sh->ddf_layout)
167                 (*count)++;
168         if (idx == sh->pd_idx)
169                 return syndrome_disks;
170         if (idx == sh->qd_idx)
171                 return syndrome_disks + 1;
172         if (!sh->ddf_layout)
173                 (*count)++;
174         return slot;
175 }
176
177 static void return_io(struct bio *return_bi)
178 {
179         struct bio *bi = return_bi;
180         while (bi) {
181
182                 return_bi = bi->bi_next;
183                 bi->bi_next = NULL;
184                 bi->bi_size = 0;
185                 bio_endio(bi, 0);
186                 bi = return_bi;
187         }
188 }
189
190 static void print_raid5_conf (struct r5conf *conf);
191
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194         return sh->check_state || sh->reconstruct_state ||
195                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201         BUG_ON(!list_empty(&sh->lru));
202         BUG_ON(atomic_read(&conf->active_stripes)==0);
203         if (test_bit(STRIPE_HANDLE, &sh->state)) {
204                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
205                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206                         list_add_tail(&sh->lru, &conf->delayed_list);
207                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208                            sh->bm_seq - conf->seq_write > 0)
209                         list_add_tail(&sh->lru, &conf->bitmap_list);
210                 else {
211                         clear_bit(STRIPE_DELAYED, &sh->state);
212                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
213                         list_add_tail(&sh->lru, &conf->handle_list);
214                 }
215                 md_wakeup_thread(conf->mddev->thread);
216         } else {
217                 BUG_ON(stripe_operations_active(sh));
218                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219                         if (atomic_dec_return(&conf->preread_active_stripes)
220                             < IO_THRESHOLD)
221                                 md_wakeup_thread(conf->mddev->thread);
222                 atomic_dec(&conf->active_stripes);
223                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224                         list_add_tail(&sh->lru, &conf->inactive_list);
225                         wake_up(&conf->wait_for_stripe);
226                         if (conf->retry_read_aligned)
227                                 md_wakeup_thread(conf->mddev->thread);
228                 }
229         }
230 }
231
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234         if (atomic_dec_and_test(&sh->count))
235                 do_release_stripe(conf, sh);
236 }
237
238 static void release_stripe(struct stripe_head *sh)
239 {
240         struct r5conf *conf = sh->raid_conf;
241         unsigned long flags;
242
243         local_irq_save(flags);
244         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245                 do_release_stripe(conf, sh);
246                 spin_unlock(&conf->device_lock);
247         }
248         local_irq_restore(flags);
249 }
250
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253         pr_debug("remove_hash(), stripe %llu\n",
254                 (unsigned long long)sh->sector);
255
256         hlist_del_init(&sh->hash);
257 }
258
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261         struct hlist_head *hp = stripe_hash(conf, sh->sector);
262
263         pr_debug("insert_hash(), stripe %llu\n",
264                 (unsigned long long)sh->sector);
265
266         hlist_add_head(&sh->hash, hp);
267 }
268
269
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273         struct stripe_head *sh = NULL;
274         struct list_head *first;
275
276         if (list_empty(&conf->inactive_list))
277                 goto out;
278         first = conf->inactive_list.next;
279         sh = list_entry(first, struct stripe_head, lru);
280         list_del_init(first);
281         remove_hash(sh);
282         atomic_inc(&conf->active_stripes);
283 out:
284         return sh;
285 }
286
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289         struct page *p;
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num ; i++) {
294                 p = sh->dev[i].page;
295                 if (!p)
296                         continue;
297                 sh->dev[i].page = NULL;
298                 put_page(p);
299         }
300 }
301
302 static int grow_buffers(struct stripe_head *sh)
303 {
304         int i;
305         int num = sh->raid_conf->pool_size;
306
307         for (i = 0; i < num; i++) {
308                 struct page *page;
309
310                 if (!(page = alloc_page(GFP_KERNEL))) {
311                         return 1;
312                 }
313                 sh->dev[i].page = page;
314         }
315         return 0;
316 }
317
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320                             struct stripe_head *sh);
321
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324         struct r5conf *conf = sh->raid_conf;
325         int i;
326
327         BUG_ON(atomic_read(&sh->count) != 0);
328         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329         BUG_ON(stripe_operations_active(sh));
330
331         pr_debug("init_stripe called, stripe %llu\n",
332                 (unsigned long long)sh->sector);
333
334         remove_hash(sh);
335
336         sh->generation = conf->generation - previous;
337         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338         sh->sector = sector;
339         stripe_set_idx(sector, conf, previous, sh);
340         sh->state = 0;
341
342
343         for (i = sh->disks; i--; ) {
344                 struct r5dev *dev = &sh->dev[i];
345
346                 if (dev->toread || dev->read || dev->towrite || dev->written ||
347                     test_bit(R5_LOCKED, &dev->flags)) {
348                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349                                (unsigned long long)sh->sector, i, dev->toread,
350                                dev->read, dev->towrite, dev->written,
351                                test_bit(R5_LOCKED, &dev->flags));
352                         WARN_ON(1);
353                 }
354                 dev->flags = 0;
355                 raid5_build_block(sh, i, previous);
356         }
357         insert_hash(conf, sh);
358 }
359
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361                                          short generation)
362 {
363         struct stripe_head *sh;
364         struct hlist_node *hn;
365
366         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368                 if (sh->sector == sector && sh->generation == generation)
369                         return sh;
370         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371         return NULL;
372 }
373
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389         int degraded, degraded2;
390         int i;
391
392         rcu_read_lock();
393         degraded = 0;
394         for (i = 0; i < conf->previous_raid_disks; i++) {
395                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396                 if (!rdev || test_bit(Faulty, &rdev->flags))
397                         degraded++;
398                 else if (test_bit(In_sync, &rdev->flags))
399                         ;
400                 else
401                         /* not in-sync or faulty.
402                          * If the reshape increases the number of devices,
403                          * this is being recovered by the reshape, so
404                          * this 'previous' section is not in_sync.
405                          * If the number of devices is being reduced however,
406                          * the device can only be part of the array if
407                          * we are reverting a reshape, so this section will
408                          * be in-sync.
409                          */
410                         if (conf->raid_disks >= conf->previous_raid_disks)
411                                 degraded++;
412         }
413         rcu_read_unlock();
414         if (conf->raid_disks == conf->previous_raid_disks)
415                 return degraded;
416         rcu_read_lock();
417         degraded2 = 0;
418         for (i = 0; i < conf->raid_disks; i++) {
419                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
420                 if (!rdev || test_bit(Faulty, &rdev->flags))
421                         degraded2++;
422                 else if (test_bit(In_sync, &rdev->flags))
423                         ;
424                 else
425                         /* not in-sync or faulty.
426                          * If reshape increases the number of devices, this
427                          * section has already been recovered, else it
428                          * almost certainly hasn't.
429                          */
430                         if (conf->raid_disks <= conf->previous_raid_disks)
431                                 degraded2++;
432         }
433         rcu_read_unlock();
434         if (degraded2 > degraded)
435                 return degraded2;
436         return degraded;
437 }
438
439 static int has_failed(struct r5conf *conf)
440 {
441         int degraded;
442
443         if (conf->mddev->reshape_position == MaxSector)
444                 return conf->mddev->degraded > conf->max_degraded;
445
446         degraded = calc_degraded(conf);
447         if (degraded > conf->max_degraded)
448                 return 1;
449         return 0;
450 }
451
452 static struct stripe_head *
453 get_active_stripe(struct r5conf *conf, sector_t sector,
454                   int previous, int noblock, int noquiesce)
455 {
456         struct stripe_head *sh;
457
458         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
459
460         spin_lock_irq(&conf->device_lock);
461
462         do {
463                 wait_event_lock_irq(conf->wait_for_stripe,
464                                     conf->quiesce == 0 || noquiesce,
465                                     conf->device_lock, /* nothing */);
466                 sh = __find_stripe(conf, sector, conf->generation - previous);
467                 if (!sh) {
468                         if (!conf->inactive_blocked)
469                                 sh = get_free_stripe(conf);
470                         if (noblock && sh == NULL)
471                                 break;
472                         if (!sh) {
473                                 conf->inactive_blocked = 1;
474                                 wait_event_lock_irq(conf->wait_for_stripe,
475                                                     !list_empty(&conf->inactive_list) &&
476                                                     (atomic_read(&conf->active_stripes)
477                                                      < (conf->max_nr_stripes *3/4)
478                                                      || !conf->inactive_blocked),
479                                                     conf->device_lock,
480                                                     );
481                                 conf->inactive_blocked = 0;
482                         } else
483                                 init_stripe(sh, sector, previous);
484                 } else {
485                         if (atomic_read(&sh->count)) {
486                                 BUG_ON(!list_empty(&sh->lru)
487                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
488                         } else {
489                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
490                                         atomic_inc(&conf->active_stripes);
491                                 if (list_empty(&sh->lru) &&
492                                     !test_bit(STRIPE_EXPANDING, &sh->state))
493                                         BUG();
494                                 list_del_init(&sh->lru);
495                         }
496                 }
497         } while (sh == NULL);
498
499         if (sh)
500                 atomic_inc(&sh->count);
501
502         spin_unlock_irq(&conf->device_lock);
503         return sh;
504 }
505
506 /* Determine if 'data_offset' or 'new_data_offset' should be used
507  * in this stripe_head.
508  */
509 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
510 {
511         sector_t progress = conf->reshape_progress;
512         /* Need a memory barrier to make sure we see the value
513          * of conf->generation, or ->data_offset that was set before
514          * reshape_progress was updated.
515          */
516         smp_rmb();
517         if (progress == MaxSector)
518                 return 0;
519         if (sh->generation == conf->generation - 1)
520                 return 0;
521         /* We are in a reshape, and this is a new-generation stripe,
522          * so use new_data_offset.
523          */
524         return 1;
525 }
526
527 static void
528 raid5_end_read_request(struct bio *bi, int error);
529 static void
530 raid5_end_write_request(struct bio *bi, int error);
531
532 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
533 {
534         struct r5conf *conf = sh->raid_conf;
535         int i, disks = sh->disks;
536
537         might_sleep();
538
539         for (i = disks; i--; ) {
540                 int rw;
541                 int replace_only = 0;
542                 struct bio *bi, *rbi;
543                 struct md_rdev *rdev, *rrdev = NULL;
544                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
545                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
546                                 rw = WRITE_FUA;
547                         else
548                                 rw = WRITE;
549                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
550                         rw = READ;
551                 else if (test_and_clear_bit(R5_WantReplace,
552                                             &sh->dev[i].flags)) {
553                         rw = WRITE;
554                         replace_only = 1;
555                 } else
556                         continue;
557                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
558                         rw |= REQ_SYNC;
559
560                 bi = &sh->dev[i].req;
561                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
562
563                 bi->bi_rw = rw;
564                 rbi->bi_rw = rw;
565                 if (rw & WRITE) {
566                         bi->bi_end_io = raid5_end_write_request;
567                         rbi->bi_end_io = raid5_end_write_request;
568                 } else
569                         bi->bi_end_io = raid5_end_read_request;
570
571                 rcu_read_lock();
572                 rrdev = rcu_dereference(conf->disks[i].replacement);
573                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
574                 rdev = rcu_dereference(conf->disks[i].rdev);
575                 if (!rdev) {
576                         rdev = rrdev;
577                         rrdev = NULL;
578                 }
579                 if (rw & WRITE) {
580                         if (replace_only)
581                                 rdev = NULL;
582                         if (rdev == rrdev)
583                                 /* We raced and saw duplicates */
584                                 rrdev = NULL;
585                 } else {
586                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
587                                 rdev = rrdev;
588                         rrdev = NULL;
589                 }
590
591                 if (rdev && test_bit(Faulty, &rdev->flags))
592                         rdev = NULL;
593                 if (rdev)
594                         atomic_inc(&rdev->nr_pending);
595                 if (rrdev && test_bit(Faulty, &rrdev->flags))
596                         rrdev = NULL;
597                 if (rrdev)
598                         atomic_inc(&rrdev->nr_pending);
599                 rcu_read_unlock();
600
601                 /* We have already checked bad blocks for reads.  Now
602                  * need to check for writes.  We never accept write errors
603                  * on the replacement, so we don't to check rrdev.
604                  */
605                 while ((rw & WRITE) && rdev &&
606                        test_bit(WriteErrorSeen, &rdev->flags)) {
607                         sector_t first_bad;
608                         int bad_sectors;
609                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
610                                               &first_bad, &bad_sectors);
611                         if (!bad)
612                                 break;
613
614                         if (bad < 0) {
615                                 set_bit(BlockedBadBlocks, &rdev->flags);
616                                 if (!conf->mddev->external &&
617                                     conf->mddev->flags) {
618                                         /* It is very unlikely, but we might
619                                          * still need to write out the
620                                          * bad block log - better give it
621                                          * a chance*/
622                                         md_check_recovery(conf->mddev);
623                                 }
624                                 /*
625                                  * Because md_wait_for_blocked_rdev
626                                  * will dec nr_pending, we must
627                                  * increment it first.
628                                  */
629                                 atomic_inc(&rdev->nr_pending);
630                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
631                         } else {
632                                 /* Acknowledged bad block - skip the write */
633                                 rdev_dec_pending(rdev, conf->mddev);
634                                 rdev = NULL;
635                         }
636                 }
637
638                 if (rdev) {
639                         if (s->syncing || s->expanding || s->expanded
640                             || s->replacing)
641                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
642
643                         set_bit(STRIPE_IO_STARTED, &sh->state);
644
645                         bi->bi_bdev = rdev->bdev;
646                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
647                                 __func__, (unsigned long long)sh->sector,
648                                 bi->bi_rw, i);
649                         atomic_inc(&sh->count);
650                         if (use_new_offset(conf, sh))
651                                 bi->bi_sector = (sh->sector
652                                                  + rdev->new_data_offset);
653                         else
654                                 bi->bi_sector = (sh->sector
655                                                  + rdev->data_offset);
656                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
657                                 bi->bi_rw |= REQ_FLUSH;
658
659                         bi->bi_flags = 1 << BIO_UPTODATE;
660                         bi->bi_idx = 0;
661                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
662                         bi->bi_io_vec[0].bv_offset = 0;
663                         bi->bi_size = STRIPE_SIZE;
664                         bi->bi_next = NULL;
665                         if (rrdev)
666                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
667                         generic_make_request(bi);
668                 }
669                 if (rrdev) {
670                         if (s->syncing || s->expanding || s->expanded
671                             || s->replacing)
672                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
673
674                         set_bit(STRIPE_IO_STARTED, &sh->state);
675
676                         rbi->bi_bdev = rrdev->bdev;
677                         pr_debug("%s: for %llu schedule op %ld on "
678                                  "replacement disc %d\n",
679                                 __func__, (unsigned long long)sh->sector,
680                                 rbi->bi_rw, i);
681                         atomic_inc(&sh->count);
682                         if (use_new_offset(conf, sh))
683                                 rbi->bi_sector = (sh->sector
684                                                   + rrdev->new_data_offset);
685                         else
686                                 rbi->bi_sector = (sh->sector
687                                                   + rrdev->data_offset);
688                         rbi->bi_flags = 1 << BIO_UPTODATE;
689                         rbi->bi_idx = 0;
690                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
691                         rbi->bi_io_vec[0].bv_offset = 0;
692                         rbi->bi_size = STRIPE_SIZE;
693                         rbi->bi_next = NULL;
694                         generic_make_request(rbi);
695                 }
696                 if (!rdev && !rrdev) {
697                         if (rw & WRITE)
698                                 set_bit(STRIPE_DEGRADED, &sh->state);
699                         pr_debug("skip op %ld on disc %d for sector %llu\n",
700                                 bi->bi_rw, i, (unsigned long long)sh->sector);
701                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
702                         set_bit(STRIPE_HANDLE, &sh->state);
703                 }
704         }
705 }
706
707 static struct dma_async_tx_descriptor *
708 async_copy_data(int frombio, struct bio *bio, struct page *page,
709         sector_t sector, struct dma_async_tx_descriptor *tx)
710 {
711         struct bio_vec *bvl;
712         struct page *bio_page;
713         int i;
714         int page_offset;
715         struct async_submit_ctl submit;
716         enum async_tx_flags flags = 0;
717
718         if (bio->bi_sector >= sector)
719                 page_offset = (signed)(bio->bi_sector - sector) * 512;
720         else
721                 page_offset = (signed)(sector - bio->bi_sector) * -512;
722
723         if (frombio)
724                 flags |= ASYNC_TX_FENCE;
725         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
726
727         bio_for_each_segment(bvl, bio, i) {
728                 int len = bvl->bv_len;
729                 int clen;
730                 int b_offset = 0;
731
732                 if (page_offset < 0) {
733                         b_offset = -page_offset;
734                         page_offset += b_offset;
735                         len -= b_offset;
736                 }
737
738                 if (len > 0 && page_offset + len > STRIPE_SIZE)
739                         clen = STRIPE_SIZE - page_offset;
740                 else
741                         clen = len;
742
743                 if (clen > 0) {
744                         b_offset += bvl->bv_offset;
745                         bio_page = bvl->bv_page;
746                         if (frombio)
747                                 tx = async_memcpy(page, bio_page, page_offset,
748                                                   b_offset, clen, &submit);
749                         else
750                                 tx = async_memcpy(bio_page, page, b_offset,
751                                                   page_offset, clen, &submit);
752                 }
753                 /* chain the operations */
754                 submit.depend_tx = tx;
755
756                 if (clen < len) /* hit end of page */
757                         break;
758                 page_offset +=  len;
759         }
760
761         return tx;
762 }
763
764 static void ops_complete_biofill(void *stripe_head_ref)
765 {
766         struct stripe_head *sh = stripe_head_ref;
767         struct bio *return_bi = NULL;
768         int i;
769
770         pr_debug("%s: stripe %llu\n", __func__,
771                 (unsigned long long)sh->sector);
772
773         /* clear completed biofills */
774         for (i = sh->disks; i--; ) {
775                 struct r5dev *dev = &sh->dev[i];
776
777                 /* acknowledge completion of a biofill operation */
778                 /* and check if we need to reply to a read request,
779                  * new R5_Wantfill requests are held off until
780                  * !STRIPE_BIOFILL_RUN
781                  */
782                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
783                         struct bio *rbi, *rbi2;
784
785                         BUG_ON(!dev->read);
786                         rbi = dev->read;
787                         dev->read = NULL;
788                         while (rbi && rbi->bi_sector <
789                                 dev->sector + STRIPE_SECTORS) {
790                                 rbi2 = r5_next_bio(rbi, dev->sector);
791                                 if (!raid5_dec_bi_active_stripes(rbi)) {
792                                         rbi->bi_next = return_bi;
793                                         return_bi = rbi;
794                                 }
795                                 rbi = rbi2;
796                         }
797                 }
798         }
799         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
800
801         return_io(return_bi);
802
803         set_bit(STRIPE_HANDLE, &sh->state);
804         release_stripe(sh);
805 }
806
807 static void ops_run_biofill(struct stripe_head *sh)
808 {
809         struct dma_async_tx_descriptor *tx = NULL;
810         struct async_submit_ctl submit;
811         int i;
812
813         pr_debug("%s: stripe %llu\n", __func__,
814                 (unsigned long long)sh->sector);
815
816         for (i = sh->disks; i--; ) {
817                 struct r5dev *dev = &sh->dev[i];
818                 if (test_bit(R5_Wantfill, &dev->flags)) {
819                         struct bio *rbi;
820                         spin_lock_irq(&sh->stripe_lock);
821                         dev->read = rbi = dev->toread;
822                         dev->toread = NULL;
823                         spin_unlock_irq(&sh->stripe_lock);
824                         while (rbi && rbi->bi_sector <
825                                 dev->sector + STRIPE_SECTORS) {
826                                 tx = async_copy_data(0, rbi, dev->page,
827                                         dev->sector, tx);
828                                 rbi = r5_next_bio(rbi, dev->sector);
829                         }
830                 }
831         }
832
833         atomic_inc(&sh->count);
834         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
835         async_trigger_callback(&submit);
836 }
837
838 static void mark_target_uptodate(struct stripe_head *sh, int target)
839 {
840         struct r5dev *tgt;
841
842         if (target < 0)
843                 return;
844
845         tgt = &sh->dev[target];
846         set_bit(R5_UPTODATE, &tgt->flags);
847         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
848         clear_bit(R5_Wantcompute, &tgt->flags);
849 }
850
851 static void ops_complete_compute(void *stripe_head_ref)
852 {
853         struct stripe_head *sh = stripe_head_ref;
854
855         pr_debug("%s: stripe %llu\n", __func__,
856                 (unsigned long long)sh->sector);
857
858         /* mark the computed target(s) as uptodate */
859         mark_target_uptodate(sh, sh->ops.target);
860         mark_target_uptodate(sh, sh->ops.target2);
861
862         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
863         if (sh->check_state == check_state_compute_run)
864                 sh->check_state = check_state_compute_result;
865         set_bit(STRIPE_HANDLE, &sh->state);
866         release_stripe(sh);
867 }
868
869 /* return a pointer to the address conversion region of the scribble buffer */
870 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
871                                  struct raid5_percpu *percpu)
872 {
873         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
874 }
875
876 static struct dma_async_tx_descriptor *
877 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
878 {
879         int disks = sh->disks;
880         struct page **xor_srcs = percpu->scribble;
881         int target = sh->ops.target;
882         struct r5dev *tgt = &sh->dev[target];
883         struct page *xor_dest = tgt->page;
884         int count = 0;
885         struct dma_async_tx_descriptor *tx;
886         struct async_submit_ctl submit;
887         int i;
888
889         pr_debug("%s: stripe %llu block: %d\n",
890                 __func__, (unsigned long long)sh->sector, target);
891         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
892
893         for (i = disks; i--; )
894                 if (i != target)
895                         xor_srcs[count++] = sh->dev[i].page;
896
897         atomic_inc(&sh->count);
898
899         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
900                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
901         if (unlikely(count == 1))
902                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
903         else
904                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
905
906         return tx;
907 }
908
909 /* set_syndrome_sources - populate source buffers for gen_syndrome
910  * @srcs - (struct page *) array of size sh->disks
911  * @sh - stripe_head to parse
912  *
913  * Populates srcs in proper layout order for the stripe and returns the
914  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
915  * destination buffer is recorded in srcs[count] and the Q destination
916  * is recorded in srcs[count+1]].
917  */
918 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
919 {
920         int disks = sh->disks;
921         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
922         int d0_idx = raid6_d0(sh);
923         int count;
924         int i;
925
926         for (i = 0; i < disks; i++)
927                 srcs[i] = NULL;
928
929         count = 0;
930         i = d0_idx;
931         do {
932                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
933
934                 srcs[slot] = sh->dev[i].page;
935                 i = raid6_next_disk(i, disks);
936         } while (i != d0_idx);
937
938         return syndrome_disks;
939 }
940
941 static struct dma_async_tx_descriptor *
942 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
943 {
944         int disks = sh->disks;
945         struct page **blocks = percpu->scribble;
946         int target;
947         int qd_idx = sh->qd_idx;
948         struct dma_async_tx_descriptor *tx;
949         struct async_submit_ctl submit;
950         struct r5dev *tgt;
951         struct page *dest;
952         int i;
953         int count;
954
955         if (sh->ops.target < 0)
956                 target = sh->ops.target2;
957         else if (sh->ops.target2 < 0)
958                 target = sh->ops.target;
959         else
960                 /* we should only have one valid target */
961                 BUG();
962         BUG_ON(target < 0);
963         pr_debug("%s: stripe %llu block: %d\n",
964                 __func__, (unsigned long long)sh->sector, target);
965
966         tgt = &sh->dev[target];
967         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
968         dest = tgt->page;
969
970         atomic_inc(&sh->count);
971
972         if (target == qd_idx) {
973                 count = set_syndrome_sources(blocks, sh);
974                 blocks[count] = NULL; /* regenerating p is not necessary */
975                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
976                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
977                                   ops_complete_compute, sh,
978                                   to_addr_conv(sh, percpu));
979                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
980         } else {
981                 /* Compute any data- or p-drive using XOR */
982                 count = 0;
983                 for (i = disks; i-- ; ) {
984                         if (i == target || i == qd_idx)
985                                 continue;
986                         blocks[count++] = sh->dev[i].page;
987                 }
988
989                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
990                                   NULL, ops_complete_compute, sh,
991                                   to_addr_conv(sh, percpu));
992                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
993         }
994
995         return tx;
996 }
997
998 static struct dma_async_tx_descriptor *
999 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1000 {
1001         int i, count, disks = sh->disks;
1002         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1003         int d0_idx = raid6_d0(sh);
1004         int faila = -1, failb = -1;
1005         int target = sh->ops.target;
1006         int target2 = sh->ops.target2;
1007         struct r5dev *tgt = &sh->dev[target];
1008         struct r5dev *tgt2 = &sh->dev[target2];
1009         struct dma_async_tx_descriptor *tx;
1010         struct page **blocks = percpu->scribble;
1011         struct async_submit_ctl submit;
1012
1013         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1014                  __func__, (unsigned long long)sh->sector, target, target2);
1015         BUG_ON(target < 0 || target2 < 0);
1016         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1017         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1018
1019         /* we need to open-code set_syndrome_sources to handle the
1020          * slot number conversion for 'faila' and 'failb'
1021          */
1022         for (i = 0; i < disks ; i++)
1023                 blocks[i] = NULL;
1024         count = 0;
1025         i = d0_idx;
1026         do {
1027                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1028
1029                 blocks[slot] = sh->dev[i].page;
1030
1031                 if (i == target)
1032                         faila = slot;
1033                 if (i == target2)
1034                         failb = slot;
1035                 i = raid6_next_disk(i, disks);
1036         } while (i != d0_idx);
1037
1038         BUG_ON(faila == failb);
1039         if (failb < faila)
1040                 swap(faila, failb);
1041         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1042                  __func__, (unsigned long long)sh->sector, faila, failb);
1043
1044         atomic_inc(&sh->count);
1045
1046         if (failb == syndrome_disks+1) {
1047                 /* Q disk is one of the missing disks */
1048                 if (faila == syndrome_disks) {
1049                         /* Missing P+Q, just recompute */
1050                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1051                                           ops_complete_compute, sh,
1052                                           to_addr_conv(sh, percpu));
1053                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1054                                                   STRIPE_SIZE, &submit);
1055                 } else {
1056                         struct page *dest;
1057                         int data_target;
1058                         int qd_idx = sh->qd_idx;
1059
1060                         /* Missing D+Q: recompute D from P, then recompute Q */
1061                         if (target == qd_idx)
1062                                 data_target = target2;
1063                         else
1064                                 data_target = target;
1065
1066                         count = 0;
1067                         for (i = disks; i-- ; ) {
1068                                 if (i == data_target || i == qd_idx)
1069                                         continue;
1070                                 blocks[count++] = sh->dev[i].page;
1071                         }
1072                         dest = sh->dev[data_target].page;
1073                         init_async_submit(&submit,
1074                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1075                                           NULL, NULL, NULL,
1076                                           to_addr_conv(sh, percpu));
1077                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1078                                        &submit);
1079
1080                         count = set_syndrome_sources(blocks, sh);
1081                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1082                                           ops_complete_compute, sh,
1083                                           to_addr_conv(sh, percpu));
1084                         return async_gen_syndrome(blocks, 0, count+2,
1085                                                   STRIPE_SIZE, &submit);
1086                 }
1087         } else {
1088                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1089                                   ops_complete_compute, sh,
1090                                   to_addr_conv(sh, percpu));
1091                 if (failb == syndrome_disks) {
1092                         /* We're missing D+P. */
1093                         return async_raid6_datap_recov(syndrome_disks+2,
1094                                                        STRIPE_SIZE, faila,
1095                                                        blocks, &submit);
1096                 } else {
1097                         /* We're missing D+D. */
1098                         return async_raid6_2data_recov(syndrome_disks+2,
1099                                                        STRIPE_SIZE, faila, failb,
1100                                                        blocks, &submit);
1101                 }
1102         }
1103 }
1104
1105
1106 static void ops_complete_prexor(void *stripe_head_ref)
1107 {
1108         struct stripe_head *sh = stripe_head_ref;
1109
1110         pr_debug("%s: stripe %llu\n", __func__,
1111                 (unsigned long long)sh->sector);
1112 }
1113
1114 static struct dma_async_tx_descriptor *
1115 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1116                struct dma_async_tx_descriptor *tx)
1117 {
1118         int disks = sh->disks;
1119         struct page **xor_srcs = percpu->scribble;
1120         int count = 0, pd_idx = sh->pd_idx, i;
1121         struct async_submit_ctl submit;
1122
1123         /* existing parity data subtracted */
1124         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1125
1126         pr_debug("%s: stripe %llu\n", __func__,
1127                 (unsigned long long)sh->sector);
1128
1129         for (i = disks; i--; ) {
1130                 struct r5dev *dev = &sh->dev[i];
1131                 /* Only process blocks that are known to be uptodate */
1132                 if (test_bit(R5_Wantdrain, &dev->flags))
1133                         xor_srcs[count++] = dev->page;
1134         }
1135
1136         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1137                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1138         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1139
1140         return tx;
1141 }
1142
1143 static struct dma_async_tx_descriptor *
1144 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1145 {
1146         int disks = sh->disks;
1147         int i;
1148
1149         pr_debug("%s: stripe %llu\n", __func__,
1150                 (unsigned long long)sh->sector);
1151
1152         for (i = disks; i--; ) {
1153                 struct r5dev *dev = &sh->dev[i];
1154                 struct bio *chosen;
1155
1156                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1157                         struct bio *wbi;
1158
1159                         spin_lock_irq(&sh->stripe_lock);
1160                         chosen = dev->towrite;
1161                         dev->towrite = NULL;
1162                         BUG_ON(dev->written);
1163                         wbi = dev->written = chosen;
1164                         spin_unlock_irq(&sh->stripe_lock);
1165
1166                         while (wbi && wbi->bi_sector <
1167                                 dev->sector + STRIPE_SECTORS) {
1168                                 if (wbi->bi_rw & REQ_FUA)
1169                                         set_bit(R5_WantFUA, &dev->flags);
1170                                 if (wbi->bi_rw & REQ_SYNC)
1171                                         set_bit(R5_SyncIO, &dev->flags);
1172                                 tx = async_copy_data(1, wbi, dev->page,
1173                                         dev->sector, tx);
1174                                 wbi = r5_next_bio(wbi, dev->sector);
1175                         }
1176                 }
1177         }
1178
1179         return tx;
1180 }
1181
1182 static void ops_complete_reconstruct(void *stripe_head_ref)
1183 {
1184         struct stripe_head *sh = stripe_head_ref;
1185         int disks = sh->disks;
1186         int pd_idx = sh->pd_idx;
1187         int qd_idx = sh->qd_idx;
1188         int i;
1189         bool fua = false, sync = false;
1190
1191         pr_debug("%s: stripe %llu\n", __func__,
1192                 (unsigned long long)sh->sector);
1193
1194         for (i = disks; i--; ) {
1195                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1196                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1197         }
1198
1199         for (i = disks; i--; ) {
1200                 struct r5dev *dev = &sh->dev[i];
1201
1202                 if (dev->written || i == pd_idx || i == qd_idx) {
1203                         set_bit(R5_UPTODATE, &dev->flags);
1204                         if (fua)
1205                                 set_bit(R5_WantFUA, &dev->flags);
1206                         if (sync)
1207                                 set_bit(R5_SyncIO, &dev->flags);
1208                 }
1209         }
1210
1211         if (sh->reconstruct_state == reconstruct_state_drain_run)
1212                 sh->reconstruct_state = reconstruct_state_drain_result;
1213         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1214                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1215         else {
1216                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1217                 sh->reconstruct_state = reconstruct_state_result;
1218         }
1219
1220         set_bit(STRIPE_HANDLE, &sh->state);
1221         release_stripe(sh);
1222 }
1223
1224 static void
1225 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1226                      struct dma_async_tx_descriptor *tx)
1227 {
1228         int disks = sh->disks;
1229         struct page **xor_srcs = percpu->scribble;
1230         struct async_submit_ctl submit;
1231         int count = 0, pd_idx = sh->pd_idx, i;
1232         struct page *xor_dest;
1233         int prexor = 0;
1234         unsigned long flags;
1235
1236         pr_debug("%s: stripe %llu\n", __func__,
1237                 (unsigned long long)sh->sector);
1238
1239         /* check if prexor is active which means only process blocks
1240          * that are part of a read-modify-write (written)
1241          */
1242         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1243                 prexor = 1;
1244                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1245                 for (i = disks; i--; ) {
1246                         struct r5dev *dev = &sh->dev[i];
1247                         if (dev->written)
1248                                 xor_srcs[count++] = dev->page;
1249                 }
1250         } else {
1251                 xor_dest = sh->dev[pd_idx].page;
1252                 for (i = disks; i--; ) {
1253                         struct r5dev *dev = &sh->dev[i];
1254                         if (i != pd_idx)
1255                                 xor_srcs[count++] = dev->page;
1256                 }
1257         }
1258
1259         /* 1/ if we prexor'd then the dest is reused as a source
1260          * 2/ if we did not prexor then we are redoing the parity
1261          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1262          * for the synchronous xor case
1263          */
1264         flags = ASYNC_TX_ACK |
1265                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1266
1267         atomic_inc(&sh->count);
1268
1269         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1270                           to_addr_conv(sh, percpu));
1271         if (unlikely(count == 1))
1272                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1273         else
1274                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1275 }
1276
1277 static void
1278 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1279                      struct dma_async_tx_descriptor *tx)
1280 {
1281         struct async_submit_ctl submit;
1282         struct page **blocks = percpu->scribble;
1283         int count;
1284
1285         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1286
1287         count = set_syndrome_sources(blocks, sh);
1288
1289         atomic_inc(&sh->count);
1290
1291         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1292                           sh, to_addr_conv(sh, percpu));
1293         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1294 }
1295
1296 static void ops_complete_check(void *stripe_head_ref)
1297 {
1298         struct stripe_head *sh = stripe_head_ref;
1299
1300         pr_debug("%s: stripe %llu\n", __func__,
1301                 (unsigned long long)sh->sector);
1302
1303         sh->check_state = check_state_check_result;
1304         set_bit(STRIPE_HANDLE, &sh->state);
1305         release_stripe(sh);
1306 }
1307
1308 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1309 {
1310         int disks = sh->disks;
1311         int pd_idx = sh->pd_idx;
1312         int qd_idx = sh->qd_idx;
1313         struct page *xor_dest;
1314         struct page **xor_srcs = percpu->scribble;
1315         struct dma_async_tx_descriptor *tx;
1316         struct async_submit_ctl submit;
1317         int count;
1318         int i;
1319
1320         pr_debug("%s: stripe %llu\n", __func__,
1321                 (unsigned long long)sh->sector);
1322
1323         count = 0;
1324         xor_dest = sh->dev[pd_idx].page;
1325         xor_srcs[count++] = xor_dest;
1326         for (i = disks; i--; ) {
1327                 if (i == pd_idx || i == qd_idx)
1328                         continue;
1329                 xor_srcs[count++] = sh->dev[i].page;
1330         }
1331
1332         init_async_submit(&submit, 0, NULL, NULL, NULL,
1333                           to_addr_conv(sh, percpu));
1334         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1335                            &sh->ops.zero_sum_result, &submit);
1336
1337         atomic_inc(&sh->count);
1338         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1339         tx = async_trigger_callback(&submit);
1340 }
1341
1342 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1343 {
1344         struct page **srcs = percpu->scribble;
1345         struct async_submit_ctl submit;
1346         int count;
1347
1348         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1349                 (unsigned long long)sh->sector, checkp);
1350
1351         count = set_syndrome_sources(srcs, sh);
1352         if (!checkp)
1353                 srcs[count] = NULL;
1354
1355         atomic_inc(&sh->count);
1356         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1357                           sh, to_addr_conv(sh, percpu));
1358         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1359                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1360 }
1361
1362 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1363 {
1364         int overlap_clear = 0, i, disks = sh->disks;
1365         struct dma_async_tx_descriptor *tx = NULL;
1366         struct r5conf *conf = sh->raid_conf;
1367         int level = conf->level;
1368         struct raid5_percpu *percpu;
1369         unsigned long cpu;
1370
1371         cpu = get_cpu();
1372         percpu = per_cpu_ptr(conf->percpu, cpu);
1373         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1374                 ops_run_biofill(sh);
1375                 overlap_clear++;
1376         }
1377
1378         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1379                 if (level < 6)
1380                         tx = ops_run_compute5(sh, percpu);
1381                 else {
1382                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1383                                 tx = ops_run_compute6_1(sh, percpu);
1384                         else
1385                                 tx = ops_run_compute6_2(sh, percpu);
1386                 }
1387                 /* terminate the chain if reconstruct is not set to be run */
1388                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1389                         async_tx_ack(tx);
1390         }
1391
1392         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1393                 tx = ops_run_prexor(sh, percpu, tx);
1394
1395         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1396                 tx = ops_run_biodrain(sh, tx);
1397                 overlap_clear++;
1398         }
1399
1400         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1401                 if (level < 6)
1402                         ops_run_reconstruct5(sh, percpu, tx);
1403                 else
1404                         ops_run_reconstruct6(sh, percpu, tx);
1405         }
1406
1407         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1408                 if (sh->check_state == check_state_run)
1409                         ops_run_check_p(sh, percpu);
1410                 else if (sh->check_state == check_state_run_q)
1411                         ops_run_check_pq(sh, percpu, 0);
1412                 else if (sh->check_state == check_state_run_pq)
1413                         ops_run_check_pq(sh, percpu, 1);
1414                 else
1415                         BUG();
1416         }
1417
1418         if (overlap_clear)
1419                 for (i = disks; i--; ) {
1420                         struct r5dev *dev = &sh->dev[i];
1421                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1422                                 wake_up(&sh->raid_conf->wait_for_overlap);
1423                 }
1424         put_cpu();
1425 }
1426
1427 #ifdef CONFIG_MULTICORE_RAID456
1428 static void async_run_ops(void *param, async_cookie_t cookie)
1429 {
1430         struct stripe_head *sh = param;
1431         unsigned long ops_request = sh->ops.request;
1432
1433         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1434         wake_up(&sh->ops.wait_for_ops);
1435
1436         __raid_run_ops(sh, ops_request);
1437         release_stripe(sh);
1438 }
1439
1440 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1441 {
1442         /* since handle_stripe can be called outside of raid5d context
1443          * we need to ensure sh->ops.request is de-staged before another
1444          * request arrives
1445          */
1446         wait_event(sh->ops.wait_for_ops,
1447                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1448         sh->ops.request = ops_request;
1449
1450         atomic_inc(&sh->count);
1451         async_schedule(async_run_ops, sh);
1452 }
1453 #else
1454 #define raid_run_ops __raid_run_ops
1455 #endif
1456
1457 static int grow_one_stripe(struct r5conf *conf)
1458 {
1459         struct stripe_head *sh;
1460         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1461         if (!sh)
1462                 return 0;
1463
1464         sh->raid_conf = conf;
1465         #ifdef CONFIG_MULTICORE_RAID456
1466         init_waitqueue_head(&sh->ops.wait_for_ops);
1467         #endif
1468
1469         spin_lock_init(&sh->stripe_lock);
1470
1471         if (grow_buffers(sh)) {
1472                 shrink_buffers(sh);
1473                 kmem_cache_free(conf->slab_cache, sh);
1474                 return 0;
1475         }
1476         /* we just created an active stripe so... */
1477         atomic_set(&sh->count, 1);
1478         atomic_inc(&conf->active_stripes);
1479         INIT_LIST_HEAD(&sh->lru);
1480         release_stripe(sh);
1481         return 1;
1482 }
1483
1484 static int grow_stripes(struct r5conf *conf, int num)
1485 {
1486         struct kmem_cache *sc;
1487         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1488
1489         if (conf->mddev->gendisk)
1490                 sprintf(conf->cache_name[0],
1491                         "raid%d-%s", conf->level, mdname(conf->mddev));
1492         else
1493                 sprintf(conf->cache_name[0],
1494                         "raid%d-%p", conf->level, conf->mddev);
1495         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1496
1497         conf->active_name = 0;
1498         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1499                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1500                                0, 0, NULL);
1501         if (!sc)
1502                 return 1;
1503         conf->slab_cache = sc;
1504         conf->pool_size = devs;
1505         while (num--)
1506                 if (!grow_one_stripe(conf))
1507                         return 1;
1508         return 0;
1509 }
1510
1511 /**
1512  * scribble_len - return the required size of the scribble region
1513  * @num - total number of disks in the array
1514  *
1515  * The size must be enough to contain:
1516  * 1/ a struct page pointer for each device in the array +2
1517  * 2/ room to convert each entry in (1) to its corresponding dma
1518  *    (dma_map_page()) or page (page_address()) address.
1519  *
1520  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1521  * calculate over all devices (not just the data blocks), using zeros in place
1522  * of the P and Q blocks.
1523  */
1524 static size_t scribble_len(int num)
1525 {
1526         size_t len;
1527
1528         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1529
1530         return len;
1531 }
1532
1533 static int resize_stripes(struct r5conf *conf, int newsize)
1534 {
1535         /* Make all the stripes able to hold 'newsize' devices.
1536          * New slots in each stripe get 'page' set to a new page.
1537          *
1538          * This happens in stages:
1539          * 1/ create a new kmem_cache and allocate the required number of
1540          *    stripe_heads.
1541          * 2/ gather all the old stripe_heads and tranfer the pages across
1542          *    to the new stripe_heads.  This will have the side effect of
1543          *    freezing the array as once all stripe_heads have been collected,
1544          *    no IO will be possible.  Old stripe heads are freed once their
1545          *    pages have been transferred over, and the old kmem_cache is
1546          *    freed when all stripes are done.
1547          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1548          *    we simple return a failre status - no need to clean anything up.
1549          * 4/ allocate new pages for the new slots in the new stripe_heads.
1550          *    If this fails, we don't bother trying the shrink the
1551          *    stripe_heads down again, we just leave them as they are.
1552          *    As each stripe_head is processed the new one is released into
1553          *    active service.
1554          *
1555          * Once step2 is started, we cannot afford to wait for a write,
1556          * so we use GFP_NOIO allocations.
1557          */
1558         struct stripe_head *osh, *nsh;
1559         LIST_HEAD(newstripes);
1560         struct disk_info *ndisks;
1561         unsigned long cpu;
1562         int err;
1563         struct kmem_cache *sc;
1564         int i;
1565
1566         if (newsize <= conf->pool_size)
1567                 return 0; /* never bother to shrink */
1568
1569         err = md_allow_write(conf->mddev);
1570         if (err)
1571                 return err;
1572
1573         /* Step 1 */
1574         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1575                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1576                                0, 0, NULL);
1577         if (!sc)
1578                 return -ENOMEM;
1579
1580         for (i = conf->max_nr_stripes; i; i--) {
1581                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1582                 if (!nsh)
1583                         break;
1584
1585                 nsh->raid_conf = conf;
1586                 #ifdef CONFIG_MULTICORE_RAID456
1587                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1588                 #endif
1589
1590                 list_add(&nsh->lru, &newstripes);
1591         }
1592         if (i) {
1593                 /* didn't get enough, give up */
1594                 while (!list_empty(&newstripes)) {
1595                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1596                         list_del(&nsh->lru);
1597                         kmem_cache_free(sc, nsh);
1598                 }
1599                 kmem_cache_destroy(sc);
1600                 return -ENOMEM;
1601         }
1602         /* Step 2 - Must use GFP_NOIO now.
1603          * OK, we have enough stripes, start collecting inactive
1604          * stripes and copying them over
1605          */
1606         list_for_each_entry(nsh, &newstripes, lru) {
1607                 spin_lock_irq(&conf->device_lock);
1608                 wait_event_lock_irq(conf->wait_for_stripe,
1609                                     !list_empty(&conf->inactive_list),
1610                                     conf->device_lock,
1611                                     );
1612                 osh = get_free_stripe(conf);
1613                 spin_unlock_irq(&conf->device_lock);
1614                 atomic_set(&nsh->count, 1);
1615                 for(i=0; i<conf->pool_size; i++)
1616                         nsh->dev[i].page = osh->dev[i].page;
1617                 for( ; i<newsize; i++)
1618                         nsh->dev[i].page = NULL;
1619                 kmem_cache_free(conf->slab_cache, osh);
1620         }
1621         kmem_cache_destroy(conf->slab_cache);
1622
1623         /* Step 3.
1624          * At this point, we are holding all the stripes so the array
1625          * is completely stalled, so now is a good time to resize
1626          * conf->disks and the scribble region
1627          */
1628         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1629         if (ndisks) {
1630                 for (i=0; i<conf->raid_disks; i++)
1631                         ndisks[i] = conf->disks[i];
1632                 kfree(conf->disks);
1633                 conf->disks = ndisks;
1634         } else
1635                 err = -ENOMEM;
1636
1637         get_online_cpus();
1638         conf->scribble_len = scribble_len(newsize);
1639         for_each_present_cpu(cpu) {
1640                 struct raid5_percpu *percpu;
1641                 void *scribble;
1642
1643                 percpu = per_cpu_ptr(conf->percpu, cpu);
1644                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1645
1646                 if (scribble) {
1647                         kfree(percpu->scribble);
1648                         percpu->scribble = scribble;
1649                 } else {
1650                         err = -ENOMEM;
1651                         break;
1652                 }
1653         }
1654         put_online_cpus();
1655
1656         /* Step 4, return new stripes to service */
1657         while(!list_empty(&newstripes)) {
1658                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1659                 list_del_init(&nsh->lru);
1660
1661                 for (i=conf->raid_disks; i < newsize; i++)
1662                         if (nsh->dev[i].page == NULL) {
1663                                 struct page *p = alloc_page(GFP_NOIO);
1664                                 nsh->dev[i].page = p;
1665                                 if (!p)
1666                                         err = -ENOMEM;
1667                         }
1668                 release_stripe(nsh);
1669         }
1670         /* critical section pass, GFP_NOIO no longer needed */
1671
1672         conf->slab_cache = sc;
1673         conf->active_name = 1-conf->active_name;
1674         conf->pool_size = newsize;
1675         return err;
1676 }
1677
1678 static int drop_one_stripe(struct r5conf *conf)
1679 {
1680         struct stripe_head *sh;
1681
1682         spin_lock_irq(&conf->device_lock);
1683         sh = get_free_stripe(conf);
1684         spin_unlock_irq(&conf->device_lock);
1685         if (!sh)
1686                 return 0;
1687         BUG_ON(atomic_read(&sh->count));
1688         shrink_buffers(sh);
1689         kmem_cache_free(conf->slab_cache, sh);
1690         atomic_dec(&conf->active_stripes);
1691         return 1;
1692 }
1693
1694 static void shrink_stripes(struct r5conf *conf)
1695 {
1696         while (drop_one_stripe(conf))
1697                 ;
1698
1699         if (conf->slab_cache)
1700                 kmem_cache_destroy(conf->slab_cache);
1701         conf->slab_cache = NULL;
1702 }
1703
1704 static void raid5_end_read_request(struct bio * bi, int error)
1705 {
1706         struct stripe_head *sh = bi->bi_private;
1707         struct r5conf *conf = sh->raid_conf;
1708         int disks = sh->disks, i;
1709         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1710         char b[BDEVNAME_SIZE];
1711         struct md_rdev *rdev = NULL;
1712         sector_t s;
1713
1714         for (i=0 ; i<disks; i++)
1715                 if (bi == &sh->dev[i].req)
1716                         break;
1717
1718         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1719                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1720                 uptodate);
1721         if (i == disks) {
1722                 BUG();
1723                 return;
1724         }
1725         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1726                 /* If replacement finished while this request was outstanding,
1727                  * 'replacement' might be NULL already.
1728                  * In that case it moved down to 'rdev'.
1729                  * rdev is not removed until all requests are finished.
1730                  */
1731                 rdev = conf->disks[i].replacement;
1732         if (!rdev)
1733                 rdev = conf->disks[i].rdev;
1734
1735         if (use_new_offset(conf, sh))
1736                 s = sh->sector + rdev->new_data_offset;
1737         else
1738                 s = sh->sector + rdev->data_offset;
1739         if (uptodate) {
1740                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1741                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1742                         /* Note that this cannot happen on a
1743                          * replacement device.  We just fail those on
1744                          * any error
1745                          */
1746                         printk_ratelimited(
1747                                 KERN_INFO
1748                                 "md/raid:%s: read error corrected"
1749                                 " (%lu sectors at %llu on %s)\n",
1750                                 mdname(conf->mddev), STRIPE_SECTORS,
1751                                 (unsigned long long)s,
1752                                 bdevname(rdev->bdev, b));
1753                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1754                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1755                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1756                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1757                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1758
1759                 if (atomic_read(&rdev->read_errors))
1760                         atomic_set(&rdev->read_errors, 0);
1761         } else {
1762                 const char *bdn = bdevname(rdev->bdev, b);
1763                 int retry = 0;
1764                 int set_bad = 0;
1765
1766                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1767                 atomic_inc(&rdev->read_errors);
1768                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1769                         printk_ratelimited(
1770                                 KERN_WARNING
1771                                 "md/raid:%s: read error on replacement device "
1772                                 "(sector %llu on %s).\n",
1773                                 mdname(conf->mddev),
1774                                 (unsigned long long)s,
1775                                 bdn);
1776                 else if (conf->mddev->degraded >= conf->max_degraded) {
1777                         set_bad = 1;
1778                         printk_ratelimited(
1779                                 KERN_WARNING
1780                                 "md/raid:%s: read error not correctable "
1781                                 "(sector %llu on %s).\n",
1782                                 mdname(conf->mddev),
1783                                 (unsigned long long)s,
1784                                 bdn);
1785                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1786                         /* Oh, no!!! */
1787                         set_bad = 1;
1788                         printk_ratelimited(
1789                                 KERN_WARNING
1790                                 "md/raid:%s: read error NOT corrected!! "
1791                                 "(sector %llu on %s).\n",
1792                                 mdname(conf->mddev),
1793                                 (unsigned long long)s,
1794                                 bdn);
1795                 } else if (atomic_read(&rdev->read_errors)
1796                          > conf->max_nr_stripes)
1797                         printk(KERN_WARNING
1798                                "md/raid:%s: Too many read errors, failing device %s.\n",
1799                                mdname(conf->mddev), bdn);
1800                 else
1801                         retry = 1;
1802                 if (retry)
1803                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1804                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1805                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1806                         } else
1807                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1808                 else {
1809                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1810                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1811                         if (!(set_bad
1812                               && test_bit(In_sync, &rdev->flags)
1813                               && rdev_set_badblocks(
1814                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1815                                 md_error(conf->mddev, rdev);
1816                 }
1817         }
1818         rdev_dec_pending(rdev, conf->mddev);
1819         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1820         set_bit(STRIPE_HANDLE, &sh->state);
1821         release_stripe(sh);
1822 }
1823
1824 static void raid5_end_write_request(struct bio *bi, int error)
1825 {
1826         struct stripe_head *sh = bi->bi_private;
1827         struct r5conf *conf = sh->raid_conf;
1828         int disks = sh->disks, i;
1829         struct md_rdev *uninitialized_var(rdev);
1830         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1831         sector_t first_bad;
1832         int bad_sectors;
1833         int replacement = 0;
1834
1835         for (i = 0 ; i < disks; i++) {
1836                 if (bi == &sh->dev[i].req) {
1837                         rdev = conf->disks[i].rdev;
1838                         break;
1839                 }
1840                 if (bi == &sh->dev[i].rreq) {
1841                         rdev = conf->disks[i].replacement;
1842                         if (rdev)
1843                                 replacement = 1;
1844                         else
1845                                 /* rdev was removed and 'replacement'
1846                                  * replaced it.  rdev is not removed
1847                                  * until all requests are finished.
1848                                  */
1849                                 rdev = conf->disks[i].rdev;
1850                         break;
1851                 }
1852         }
1853         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1854                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1855                 uptodate);
1856         if (i == disks) {
1857                 BUG();
1858                 return;
1859         }
1860
1861         if (replacement) {
1862                 if (!uptodate)
1863                         md_error(conf->mddev, rdev);
1864                 else if (is_badblock(rdev, sh->sector,
1865                                      STRIPE_SECTORS,
1866                                      &first_bad, &bad_sectors))
1867                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1868         } else {
1869                 if (!uptodate) {
1870                         set_bit(WriteErrorSeen, &rdev->flags);
1871                         set_bit(R5_WriteError, &sh->dev[i].flags);
1872                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1873                                 set_bit(MD_RECOVERY_NEEDED,
1874                                         &rdev->mddev->recovery);
1875                 } else if (is_badblock(rdev, sh->sector,
1876                                        STRIPE_SECTORS,
1877                                        &first_bad, &bad_sectors))
1878                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1879         }
1880         rdev_dec_pending(rdev, conf->mddev);
1881
1882         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1883                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1884         set_bit(STRIPE_HANDLE, &sh->state);
1885         release_stripe(sh);
1886 }
1887
1888 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1889         
1890 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1891 {
1892         struct r5dev *dev = &sh->dev[i];
1893
1894         bio_init(&dev->req);
1895         dev->req.bi_io_vec = &dev->vec;
1896         dev->req.bi_vcnt++;
1897         dev->req.bi_max_vecs++;
1898         dev->req.bi_private = sh;
1899         dev->vec.bv_page = dev->page;
1900
1901         bio_init(&dev->rreq);
1902         dev->rreq.bi_io_vec = &dev->rvec;
1903         dev->rreq.bi_vcnt++;
1904         dev->rreq.bi_max_vecs++;
1905         dev->rreq.bi_private = sh;
1906         dev->rvec.bv_page = dev->page;
1907
1908         dev->flags = 0;
1909         dev->sector = compute_blocknr(sh, i, previous);
1910 }
1911
1912 static void error(struct mddev *mddev, struct md_rdev *rdev)
1913 {
1914         char b[BDEVNAME_SIZE];
1915         struct r5conf *conf = mddev->private;
1916         unsigned long flags;
1917         pr_debug("raid456: error called\n");
1918
1919         spin_lock_irqsave(&conf->device_lock, flags);
1920         clear_bit(In_sync, &rdev->flags);
1921         mddev->degraded = calc_degraded(conf);
1922         spin_unlock_irqrestore(&conf->device_lock, flags);
1923         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1924
1925         set_bit(Blocked, &rdev->flags);
1926         set_bit(Faulty, &rdev->flags);
1927         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1928         printk(KERN_ALERT
1929                "md/raid:%s: Disk failure on %s, disabling device.\n"
1930                "md/raid:%s: Operation continuing on %d devices.\n",
1931                mdname(mddev),
1932                bdevname(rdev->bdev, b),
1933                mdname(mddev),
1934                conf->raid_disks - mddev->degraded);
1935 }
1936
1937 /*
1938  * Input: a 'big' sector number,
1939  * Output: index of the data and parity disk, and the sector # in them.
1940  */
1941 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1942                                      int previous, int *dd_idx,
1943                                      struct stripe_head *sh)
1944 {
1945         sector_t stripe, stripe2;
1946         sector_t chunk_number;
1947         unsigned int chunk_offset;
1948         int pd_idx, qd_idx;
1949         int ddf_layout = 0;
1950         sector_t new_sector;
1951         int algorithm = previous ? conf->prev_algo
1952                                  : conf->algorithm;
1953         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1954                                          : conf->chunk_sectors;
1955         int raid_disks = previous ? conf->previous_raid_disks
1956                                   : conf->raid_disks;
1957         int data_disks = raid_disks - conf->max_degraded;
1958
1959         /* First compute the information on this sector */
1960
1961         /*
1962          * Compute the chunk number and the sector offset inside the chunk
1963          */
1964         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1965         chunk_number = r_sector;
1966
1967         /*
1968          * Compute the stripe number
1969          */
1970         stripe = chunk_number;
1971         *dd_idx = sector_div(stripe, data_disks);
1972         stripe2 = stripe;
1973         /*
1974          * Select the parity disk based on the user selected algorithm.
1975          */
1976         pd_idx = qd_idx = -1;
1977         switch(conf->level) {
1978         case 4:
1979                 pd_idx = data_disks;
1980                 break;
1981         case 5:
1982                 switch (algorithm) {
1983                 case ALGORITHM_LEFT_ASYMMETRIC:
1984                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1985                         if (*dd_idx >= pd_idx)
1986                                 (*dd_idx)++;
1987                         break;
1988                 case ALGORITHM_RIGHT_ASYMMETRIC:
1989                         pd_idx = sector_div(stripe2, raid_disks);
1990                         if (*dd_idx >= pd_idx)
1991                                 (*dd_idx)++;
1992                         break;
1993                 case ALGORITHM_LEFT_SYMMETRIC:
1994                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1995                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1996                         break;
1997                 case ALGORITHM_RIGHT_SYMMETRIC:
1998                         pd_idx = sector_div(stripe2, raid_disks);
1999                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2000                         break;
2001                 case ALGORITHM_PARITY_0:
2002                         pd_idx = 0;
2003                         (*dd_idx)++;
2004                         break;
2005                 case ALGORITHM_PARITY_N:
2006                         pd_idx = data_disks;
2007                         break;
2008                 default:
2009                         BUG();
2010                 }
2011                 break;
2012         case 6:
2013
2014                 switch (algorithm) {
2015                 case ALGORITHM_LEFT_ASYMMETRIC:
2016                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2017                         qd_idx = pd_idx + 1;
2018                         if (pd_idx == raid_disks-1) {
2019                                 (*dd_idx)++;    /* Q D D D P */
2020                                 qd_idx = 0;
2021                         } else if (*dd_idx >= pd_idx)
2022                                 (*dd_idx) += 2; /* D D P Q D */
2023                         break;
2024                 case ALGORITHM_RIGHT_ASYMMETRIC:
2025                         pd_idx = sector_div(stripe2, raid_disks);
2026                         qd_idx = pd_idx + 1;
2027                         if (pd_idx == raid_disks-1) {
2028                                 (*dd_idx)++;    /* Q D D D P */
2029                                 qd_idx = 0;
2030                         } else if (*dd_idx >= pd_idx)
2031                                 (*dd_idx) += 2; /* D D P Q D */
2032                         break;
2033                 case ALGORITHM_LEFT_SYMMETRIC:
2034                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2035                         qd_idx = (pd_idx + 1) % raid_disks;
2036                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2037                         break;
2038                 case ALGORITHM_RIGHT_SYMMETRIC:
2039                         pd_idx = sector_div(stripe2, raid_disks);
2040                         qd_idx = (pd_idx + 1) % raid_disks;
2041                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2042                         break;
2043
2044                 case ALGORITHM_PARITY_0:
2045                         pd_idx = 0;
2046                         qd_idx = 1;
2047                         (*dd_idx) += 2;
2048                         break;
2049                 case ALGORITHM_PARITY_N:
2050                         pd_idx = data_disks;
2051                         qd_idx = data_disks + 1;
2052                         break;
2053
2054                 case ALGORITHM_ROTATING_ZERO_RESTART:
2055                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2056                          * of blocks for computing Q is different.
2057                          */
2058                         pd_idx = sector_div(stripe2, raid_disks);
2059                         qd_idx = pd_idx + 1;
2060                         if (pd_idx == raid_disks-1) {
2061                                 (*dd_idx)++;    /* Q D D D P */
2062                                 qd_idx = 0;
2063                         } else if (*dd_idx >= pd_idx)
2064                                 (*dd_idx) += 2; /* D D P Q D */
2065                         ddf_layout = 1;
2066                         break;
2067
2068                 case ALGORITHM_ROTATING_N_RESTART:
2069                         /* Same a left_asymmetric, by first stripe is
2070                          * D D D P Q  rather than
2071                          * Q D D D P
2072                          */
2073                         stripe2 += 1;
2074                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2075                         qd_idx = pd_idx + 1;
2076                         if (pd_idx == raid_disks-1) {
2077                                 (*dd_idx)++;    /* Q D D D P */
2078                                 qd_idx = 0;
2079                         } else if (*dd_idx >= pd_idx)
2080                                 (*dd_idx) += 2; /* D D P Q D */
2081                         ddf_layout = 1;
2082                         break;
2083
2084                 case ALGORITHM_ROTATING_N_CONTINUE:
2085                         /* Same as left_symmetric but Q is before P */
2086                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2087                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2088                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2089                         ddf_layout = 1;
2090                         break;
2091
2092                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2093                         /* RAID5 left_asymmetric, with Q on last device */
2094                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2095                         if (*dd_idx >= pd_idx)
2096                                 (*dd_idx)++;
2097                         qd_idx = raid_disks - 1;
2098                         break;
2099
2100                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2101                         pd_idx = sector_div(stripe2, raid_disks-1);
2102                         if (*dd_idx >= pd_idx)
2103                                 (*dd_idx)++;
2104                         qd_idx = raid_disks - 1;
2105                         break;
2106
2107                 case ALGORITHM_LEFT_SYMMETRIC_6:
2108                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2109                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2110                         qd_idx = raid_disks - 1;
2111                         break;
2112
2113                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2114                         pd_idx = sector_div(stripe2, raid_disks-1);
2115                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2116                         qd_idx = raid_disks - 1;
2117                         break;
2118
2119                 case ALGORITHM_PARITY_0_6:
2120                         pd_idx = 0;
2121                         (*dd_idx)++;
2122                         qd_idx = raid_disks - 1;
2123                         break;
2124
2125                 default:
2126                         BUG();
2127                 }
2128                 break;
2129         }
2130
2131         if (sh) {
2132                 sh->pd_idx = pd_idx;
2133                 sh->qd_idx = qd_idx;
2134                 sh->ddf_layout = ddf_layout;
2135         }
2136         /*
2137          * Finally, compute the new sector number
2138          */
2139         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2140         return new_sector;
2141 }
2142
2143
2144 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2145 {
2146         struct r5conf *conf = sh->raid_conf;
2147         int raid_disks = sh->disks;
2148         int data_disks = raid_disks - conf->max_degraded;
2149         sector_t new_sector = sh->sector, check;
2150         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2151                                          : conf->chunk_sectors;
2152         int algorithm = previous ? conf->prev_algo
2153                                  : conf->algorithm;
2154         sector_t stripe;
2155         int chunk_offset;
2156         sector_t chunk_number;
2157         int dummy1, dd_idx = i;
2158         sector_t r_sector;
2159         struct stripe_head sh2;
2160
2161
2162         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2163         stripe = new_sector;
2164
2165         if (i == sh->pd_idx)
2166                 return 0;
2167         switch(conf->level) {
2168         case 4: break;
2169         case 5:
2170                 switch (algorithm) {
2171                 case ALGORITHM_LEFT_ASYMMETRIC:
2172                 case ALGORITHM_RIGHT_ASYMMETRIC:
2173                         if (i > sh->pd_idx)
2174                                 i--;
2175                         break;
2176                 case ALGORITHM_LEFT_SYMMETRIC:
2177                 case ALGORITHM_RIGHT_SYMMETRIC:
2178                         if (i < sh->pd_idx)
2179                                 i += raid_disks;
2180                         i -= (sh->pd_idx + 1);
2181                         break;
2182                 case ALGORITHM_PARITY_0:
2183                         i -= 1;
2184                         break;
2185                 case ALGORITHM_PARITY_N:
2186                         break;
2187                 default:
2188                         BUG();
2189                 }
2190                 break;
2191         case 6:
2192                 if (i == sh->qd_idx)
2193                         return 0; /* It is the Q disk */
2194                 switch (algorithm) {
2195                 case ALGORITHM_LEFT_ASYMMETRIC:
2196                 case ALGORITHM_RIGHT_ASYMMETRIC:
2197                 case ALGORITHM_ROTATING_ZERO_RESTART:
2198                 case ALGORITHM_ROTATING_N_RESTART:
2199                         if (sh->pd_idx == raid_disks-1)
2200                                 i--;    /* Q D D D P */
2201                         else if (i > sh->pd_idx)
2202                                 i -= 2; /* D D P Q D */
2203                         break;
2204                 case ALGORITHM_LEFT_SYMMETRIC:
2205                 case ALGORITHM_RIGHT_SYMMETRIC:
2206                         if (sh->pd_idx == raid_disks-1)
2207                                 i--; /* Q D D D P */
2208                         else {
2209                                 /* D D P Q D */
2210                                 if (i < sh->pd_idx)
2211                                         i += raid_disks;
2212                                 i -= (sh->pd_idx + 2);
2213                         }
2214                         break;
2215                 case ALGORITHM_PARITY_0:
2216                         i -= 2;
2217                         break;
2218                 case ALGORITHM_PARITY_N:
2219                         break;
2220                 case ALGORITHM_ROTATING_N_CONTINUE:
2221                         /* Like left_symmetric, but P is before Q */
2222                         if (sh->pd_idx == 0)
2223                                 i--;    /* P D D D Q */
2224                         else {
2225                                 /* D D Q P D */
2226                                 if (i < sh->pd_idx)
2227                                         i += raid_disks;
2228                                 i -= (sh->pd_idx + 1);
2229                         }
2230                         break;
2231                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2232                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2233                         if (i > sh->pd_idx)
2234                                 i--;
2235                         break;
2236                 case ALGORITHM_LEFT_SYMMETRIC_6:
2237                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2238                         if (i < sh->pd_idx)
2239                                 i += data_disks + 1;
2240                         i -= (sh->pd_idx + 1);
2241                         break;
2242                 case ALGORITHM_PARITY_0_6:
2243                         i -= 1;
2244                         break;
2245                 default:
2246                         BUG();
2247                 }
2248                 break;
2249         }
2250
2251         chunk_number = stripe * data_disks + i;
2252         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2253
2254         check = raid5_compute_sector(conf, r_sector,
2255                                      previous, &dummy1, &sh2);
2256         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2257                 || sh2.qd_idx != sh->qd_idx) {
2258                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2259                        mdname(conf->mddev));
2260                 return 0;
2261         }
2262         return r_sector;
2263 }
2264
2265
2266 static void
2267 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2268                          int rcw, int expand)
2269 {
2270         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2271         struct r5conf *conf = sh->raid_conf;
2272         int level = conf->level;
2273
2274         if (rcw) {
2275                 /* if we are not expanding this is a proper write request, and
2276                  * there will be bios with new data to be drained into the
2277                  * stripe cache
2278                  */
2279                 if (!expand) {
2280                         sh->reconstruct_state = reconstruct_state_drain_run;
2281                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2282                 } else
2283                         sh->reconstruct_state = reconstruct_state_run;
2284
2285                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2286
2287                 for (i = disks; i--; ) {
2288                         struct r5dev *dev = &sh->dev[i];
2289
2290                         if (dev->towrite) {
2291                                 set_bit(R5_LOCKED, &dev->flags);
2292                                 set_bit(R5_Wantdrain, &dev->flags);
2293                                 if (!expand)
2294                                         clear_bit(R5_UPTODATE, &dev->flags);
2295                                 s->locked++;
2296                         }
2297                 }
2298                 if (s->locked + conf->max_degraded == disks)
2299                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2300                                 atomic_inc(&conf->pending_full_writes);
2301         } else {
2302                 BUG_ON(level == 6);
2303                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2304                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2305
2306                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2307                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2308                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2309                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2310
2311                 for (i = disks; i--; ) {
2312                         struct r5dev *dev = &sh->dev[i];
2313                         if (i == pd_idx)
2314                                 continue;
2315
2316                         if (dev->towrite &&
2317                             (test_bit(R5_UPTODATE, &dev->flags) ||
2318                              test_bit(R5_Wantcompute, &dev->flags))) {
2319                                 set_bit(R5_Wantdrain, &dev->flags);
2320                                 set_bit(R5_LOCKED, &dev->flags);
2321                                 clear_bit(R5_UPTODATE, &dev->flags);
2322                                 s->locked++;
2323                         }
2324                 }
2325         }
2326
2327         /* keep the parity disk(s) locked while asynchronous operations
2328          * are in flight
2329          */
2330         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2331         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2332         s->locked++;
2333
2334         if (level == 6) {
2335                 int qd_idx = sh->qd_idx;
2336                 struct r5dev *dev = &sh->dev[qd_idx];
2337
2338                 set_bit(R5_LOCKED, &dev->flags);
2339                 clear_bit(R5_UPTODATE, &dev->flags);
2340                 s->locked++;
2341         }
2342
2343         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2344                 __func__, (unsigned long long)sh->sector,
2345                 s->locked, s->ops_request);
2346 }
2347
2348 /*
2349  * Each stripe/dev can have one or more bion attached.
2350  * toread/towrite point to the first in a chain.
2351  * The bi_next chain must be in order.
2352  */
2353 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2354 {
2355         struct bio **bip;
2356         struct r5conf *conf = sh->raid_conf;
2357         int firstwrite=0;
2358
2359         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2360                 (unsigned long long)bi->bi_sector,
2361                 (unsigned long long)sh->sector);
2362
2363         /*
2364          * If several bio share a stripe. The bio bi_phys_segments acts as a
2365          * reference count to avoid race. The reference count should already be
2366          * increased before this function is called (for example, in
2367          * make_request()), so other bio sharing this stripe will not free the
2368          * stripe. If a stripe is owned by one stripe, the stripe lock will
2369          * protect it.
2370          */
2371         spin_lock_irq(&sh->stripe_lock);
2372         if (forwrite) {
2373                 bip = &sh->dev[dd_idx].towrite;
2374                 if (*bip == NULL)
2375                         firstwrite = 1;
2376         } else
2377                 bip = &sh->dev[dd_idx].toread;
2378         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2379                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2380                         goto overlap;
2381                 bip = & (*bip)->bi_next;
2382         }
2383         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2384                 goto overlap;
2385
2386         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2387         if (*bip)
2388                 bi->bi_next = *bip;
2389         *bip = bi;
2390         raid5_inc_bi_active_stripes(bi);
2391
2392         if (forwrite) {
2393                 /* check if page is covered */
2394                 sector_t sector = sh->dev[dd_idx].sector;
2395                 for (bi=sh->dev[dd_idx].towrite;
2396                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2397                              bi && bi->bi_sector <= sector;
2398                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2399                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2400                                 sector = bi->bi_sector + (bi->bi_size>>9);
2401                 }
2402                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2403                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2404         }
2405         spin_unlock_irq(&sh->stripe_lock);
2406
2407         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2408                 (unsigned long long)(*bip)->bi_sector,
2409                 (unsigned long long)sh->sector, dd_idx);
2410
2411         if (conf->mddev->bitmap && firstwrite) {
2412                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2413                                   STRIPE_SECTORS, 0);
2414                 sh->bm_seq = conf->seq_flush+1;
2415                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2416         }
2417         return 1;
2418
2419  overlap:
2420         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2421         spin_unlock_irq(&sh->stripe_lock);
2422         return 0;
2423 }
2424
2425 static void end_reshape(struct r5conf *conf);
2426
2427 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2428                             struct stripe_head *sh)
2429 {
2430         int sectors_per_chunk =
2431                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2432         int dd_idx;
2433         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2434         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2435
2436         raid5_compute_sector(conf,
2437                              stripe * (disks - conf->max_degraded)
2438                              *sectors_per_chunk + chunk_offset,
2439                              previous,
2440                              &dd_idx, sh);
2441 }
2442
2443 static void
2444 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2445                                 struct stripe_head_state *s, int disks,
2446                                 struct bio **return_bi)
2447 {
2448         int i;
2449         for (i = disks; i--; ) {
2450                 struct bio *bi;
2451                 int bitmap_end = 0;
2452
2453                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2454                         struct md_rdev *rdev;
2455                         rcu_read_lock();
2456                         rdev = rcu_dereference(conf->disks[i].rdev);
2457                         if (rdev && test_bit(In_sync, &rdev->flags))
2458                                 atomic_inc(&rdev->nr_pending);
2459                         else
2460                                 rdev = NULL;
2461                         rcu_read_unlock();
2462                         if (rdev) {
2463                                 if (!rdev_set_badblocks(
2464                                             rdev,
2465                                             sh->sector,
2466                                             STRIPE_SECTORS, 0))
2467                                         md_error(conf->mddev, rdev);
2468                                 rdev_dec_pending(rdev, conf->mddev);
2469                         }
2470                 }
2471                 spin_lock_irq(&sh->stripe_lock);
2472                 /* fail all writes first */
2473                 bi = sh->dev[i].towrite;
2474                 sh->dev[i].towrite = NULL;
2475                 spin_unlock_irq(&sh->stripe_lock);
2476                 if (bi) {
2477                         s->to_write--;
2478                         bitmap_end = 1;
2479                 }
2480
2481                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2482                         wake_up(&conf->wait_for_overlap);
2483
2484                 while (bi && bi->bi_sector <
2485                         sh->dev[i].sector + STRIPE_SECTORS) {
2486                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2487                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2488                         if (!raid5_dec_bi_active_stripes(bi)) {
2489                                 md_write_end(conf->mddev);
2490                                 bi->bi_next = *return_bi;
2491                                 *return_bi = bi;
2492                         }
2493                         bi = nextbi;
2494                 }
2495                 if (bitmap_end)
2496                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2497                                 STRIPE_SECTORS, 0, 0);
2498                 bitmap_end = 0;
2499                 /* and fail all 'written' */
2500                 bi = sh->dev[i].written;
2501                 sh->dev[i].written = NULL;
2502                 if (bi) bitmap_end = 1;
2503                 while (bi && bi->bi_sector <
2504                        sh->dev[i].sector + STRIPE_SECTORS) {
2505                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2506                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2507                         if (!raid5_dec_bi_active_stripes(bi)) {
2508                                 md_write_end(conf->mddev);
2509                                 bi->bi_next = *return_bi;
2510                                 *return_bi = bi;
2511                         }
2512                         bi = bi2;
2513                 }
2514
2515                 /* fail any reads if this device is non-operational and
2516                  * the data has not reached the cache yet.
2517                  */
2518                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2519                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2520                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2521                         bi = sh->dev[i].toread;
2522                         sh->dev[i].toread = NULL;
2523                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2524                                 wake_up(&conf->wait_for_overlap);
2525                         if (bi) s->to_read--;
2526                         while (bi && bi->bi_sector <
2527                                sh->dev[i].sector + STRIPE_SECTORS) {
2528                                 struct bio *nextbi =
2529                                         r5_next_bio(bi, sh->dev[i].sector);
2530                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2531                                 if (!raid5_dec_bi_active_stripes(bi)) {
2532                                         bi->bi_next = *return_bi;
2533                                         *return_bi = bi;
2534                                 }
2535                                 bi = nextbi;
2536                         }
2537                 }
2538                 if (bitmap_end)
2539                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2540                                         STRIPE_SECTORS, 0, 0);
2541                 /* If we were in the middle of a write the parity block might
2542                  * still be locked - so just clear all R5_LOCKED flags
2543                  */
2544                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2545         }
2546
2547         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2548                 if (atomic_dec_and_test(&conf->pending_full_writes))
2549                         md_wakeup_thread(conf->mddev->thread);
2550 }
2551
2552 static void
2553 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2554                    struct stripe_head_state *s)
2555 {
2556         int abort = 0;
2557         int i;
2558
2559         clear_bit(STRIPE_SYNCING, &sh->state);
2560         s->syncing = 0;
2561         s->replacing = 0;
2562         /* There is nothing more to do for sync/check/repair.
2563          * Don't even need to abort as that is handled elsewhere
2564          * if needed, and not always wanted e.g. if there is a known
2565          * bad block here.
2566          * For recover/replace we need to record a bad block on all
2567          * non-sync devices, or abort the recovery
2568          */
2569         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2570                 /* During recovery devices cannot be removed, so
2571                  * locking and refcounting of rdevs is not needed
2572                  */
2573                 for (i = 0; i < conf->raid_disks; i++) {
2574                         struct md_rdev *rdev = conf->disks[i].rdev;
2575                         if (rdev
2576                             && !test_bit(Faulty, &rdev->flags)
2577                             && !test_bit(In_sync, &rdev->flags)
2578                             && !rdev_set_badblocks(rdev, sh->sector,
2579                                                    STRIPE_SECTORS, 0))
2580                                 abort = 1;
2581                         rdev = conf->disks[i].replacement;
2582                         if (rdev
2583                             && !test_bit(Faulty, &rdev->flags)
2584                             && !test_bit(In_sync, &rdev->flags)
2585                             && !rdev_set_badblocks(rdev, sh->sector,
2586                                                    STRIPE_SECTORS, 0))
2587                                 abort = 1;
2588                 }
2589                 if (abort)
2590                         conf->recovery_disabled =
2591                                 conf->mddev->recovery_disabled;
2592         }
2593         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2594 }
2595
2596 static int want_replace(struct stripe_head *sh, int disk_idx)
2597 {
2598         struct md_rdev *rdev;
2599         int rv = 0;
2600         /* Doing recovery so rcu locking not required */
2601         rdev = sh->raid_conf->disks[disk_idx].replacement;
2602         if (rdev
2603             && !test_bit(Faulty, &rdev->flags)
2604             && !test_bit(In_sync, &rdev->flags)
2605             && (rdev->recovery_offset <= sh->sector
2606                 || rdev->mddev->recovery_cp <= sh->sector))
2607                 rv = 1;
2608
2609         return rv;
2610 }
2611
2612 /* fetch_block - checks the given member device to see if its data needs
2613  * to be read or computed to satisfy a request.
2614  *
2615  * Returns 1 when no more member devices need to be checked, otherwise returns
2616  * 0 to tell the loop in handle_stripe_fill to continue
2617  */
2618 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2619                        int disk_idx, int disks)
2620 {
2621         struct r5dev *dev = &sh->dev[disk_idx];
2622         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2623                                   &sh->dev[s->failed_num[1]] };
2624
2625         /* is the data in this block needed, and can we get it? */
2626         if (!test_bit(R5_LOCKED, &dev->flags) &&
2627             !test_bit(R5_UPTODATE, &dev->flags) &&
2628             (dev->toread ||
2629              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2630              s->syncing || s->expanding ||
2631              (s->replacing && want_replace(sh, disk_idx)) ||
2632              (s->failed >= 1 && fdev[0]->toread) ||
2633              (s->failed >= 2 && fdev[1]->toread) ||
2634              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2635               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2636              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2637                 /* we would like to get this block, possibly by computing it,
2638                  * otherwise read it if the backing disk is insync
2639                  */
2640                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2641                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2642                 if ((s->uptodate == disks - 1) &&
2643                     (s->failed && (disk_idx == s->failed_num[0] ||
2644                                    disk_idx == s->failed_num[1]))) {
2645                         /* have disk failed, and we're requested to fetch it;
2646                          * do compute it
2647                          */
2648                         pr_debug("Computing stripe %llu block %d\n",
2649                                (unsigned long long)sh->sector, disk_idx);
2650                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2651                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2652                         set_bit(R5_Wantcompute, &dev->flags);
2653                         sh->ops.target = disk_idx;
2654                         sh->ops.target2 = -1; /* no 2nd target */
2655                         s->req_compute = 1;
2656                         /* Careful: from this point on 'uptodate' is in the eye
2657                          * of raid_run_ops which services 'compute' operations
2658                          * before writes. R5_Wantcompute flags a block that will
2659                          * be R5_UPTODATE by the time it is needed for a
2660                          * subsequent operation.
2661                          */
2662                         s->uptodate++;
2663                         return 1;
2664                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2665                         /* Computing 2-failure is *very* expensive; only
2666                          * do it if failed >= 2
2667                          */
2668                         int other;
2669                         for (other = disks; other--; ) {
2670                                 if (other == disk_idx)
2671                                         continue;
2672                                 if (!test_bit(R5_UPTODATE,
2673                                       &sh->dev[other].flags))
2674                                         break;
2675                         }
2676                         BUG_ON(other < 0);
2677                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2678                                (unsigned long long)sh->sector,
2679                                disk_idx, other);
2680                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2681                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2682                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2683                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2684                         sh->ops.target = disk_idx;
2685                         sh->ops.target2 = other;
2686                         s->uptodate += 2;
2687                         s->req_compute = 1;
2688                         return 1;
2689                 } else if (test_bit(R5_Insync, &dev->flags)) {
2690                         set_bit(R5_LOCKED, &dev->flags);
2691                         set_bit(R5_Wantread, &dev->flags);
2692                         s->locked++;
2693                         pr_debug("Reading block %d (sync=%d)\n",
2694                                 disk_idx, s->syncing);
2695                 }
2696         }
2697
2698         return 0;
2699 }
2700
2701 /**
2702  * handle_stripe_fill - read or compute data to satisfy pending requests.
2703  */
2704 static void handle_stripe_fill(struct stripe_head *sh,
2705                                struct stripe_head_state *s,
2706                                int disks)
2707 {
2708         int i;
2709
2710         /* look for blocks to read/compute, skip this if a compute
2711          * is already in flight, or if the stripe contents are in the
2712          * midst of changing due to a write
2713          */
2714         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2715             !sh->reconstruct_state)
2716                 for (i = disks; i--; )
2717                         if (fetch_block(sh, s, i, disks))
2718                                 break;
2719         set_bit(STRIPE_HANDLE, &sh->state);
2720 }
2721
2722
2723 /* handle_stripe_clean_event
2724  * any written block on an uptodate or failed drive can be returned.
2725  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2726  * never LOCKED, so we don't need to test 'failed' directly.
2727  */
2728 static void handle_stripe_clean_event(struct r5conf *conf,
2729         struct stripe_head *sh, int disks, struct bio **return_bi)
2730 {
2731         int i;
2732         struct r5dev *dev;
2733
2734         for (i = disks; i--; )
2735                 if (sh->dev[i].written) {
2736                         dev = &sh->dev[i];
2737                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2738                                 test_bit(R5_UPTODATE, &dev->flags)) {
2739                                 /* We can return any write requests */
2740                                 struct bio *wbi, *wbi2;
2741                                 pr_debug("Return write for disc %d\n", i);
2742                                 wbi = dev->written;
2743                                 dev->written = NULL;
2744                                 while (wbi && wbi->bi_sector <
2745                                         dev->sector + STRIPE_SECTORS) {
2746                                         wbi2 = r5_next_bio(wbi, dev->sector);
2747                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2748                                                 md_write_end(conf->mddev);
2749                                                 wbi->bi_next = *return_bi;
2750                                                 *return_bi = wbi;
2751                                         }
2752                                         wbi = wbi2;
2753                                 }
2754                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2755                                                 STRIPE_SECTORS,
2756                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2757                                                 0);
2758                         }
2759                 }
2760
2761         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2762                 if (atomic_dec_and_test(&conf->pending_full_writes))
2763                         md_wakeup_thread(conf->mddev->thread);
2764 }
2765
2766 static void handle_stripe_dirtying(struct r5conf *conf,
2767                                    struct stripe_head *sh,
2768                                    struct stripe_head_state *s,
2769                                    int disks)
2770 {
2771         int rmw = 0, rcw = 0, i;
2772         if (conf->max_degraded == 2) {
2773                 /* RAID6 requires 'rcw' in current implementation
2774                  * Calculate the real rcw later - for now fake it
2775                  * look like rcw is cheaper
2776                  */
2777                 rcw = 1; rmw = 2;
2778         } else for (i = disks; i--; ) {
2779                 /* would I have to read this buffer for read_modify_write */
2780                 struct r5dev *dev = &sh->dev[i];
2781                 if ((dev->towrite || i == sh->pd_idx) &&
2782                     !test_bit(R5_LOCKED, &dev->flags) &&
2783                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2784                       test_bit(R5_Wantcompute, &dev->flags))) {
2785                         if (test_bit(R5_Insync, &dev->flags))
2786                                 rmw++;
2787                         else
2788                                 rmw += 2*disks;  /* cannot read it */
2789                 }
2790                 /* Would I have to read this buffer for reconstruct_write */
2791                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2792                     !test_bit(R5_LOCKED, &dev->flags) &&
2793                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2794                     test_bit(R5_Wantcompute, &dev->flags))) {
2795                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2796                         else
2797                                 rcw += 2*disks;
2798                 }
2799         }
2800         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2801                 (unsigned long long)sh->sector, rmw, rcw);
2802         set_bit(STRIPE_HANDLE, &sh->state);
2803         if (rmw < rcw && rmw > 0)
2804                 /* prefer read-modify-write, but need to get some data */
2805                 for (i = disks; i--; ) {
2806                         struct r5dev *dev = &sh->dev[i];
2807                         if ((dev->towrite || i == sh->pd_idx) &&
2808                             !test_bit(R5_LOCKED, &dev->flags) &&
2809                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2810                             test_bit(R5_Wantcompute, &dev->flags)) &&
2811                             test_bit(R5_Insync, &dev->flags)) {
2812                                 if (
2813                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2814                                         pr_debug("Read_old block "
2815                                                 "%d for r-m-w\n", i);
2816                                         set_bit(R5_LOCKED, &dev->flags);
2817                                         set_bit(R5_Wantread, &dev->flags);
2818                                         s->locked++;
2819                                 } else {
2820                                         set_bit(STRIPE_DELAYED, &sh->state);
2821                                         set_bit(STRIPE_HANDLE, &sh->state);
2822                                 }
2823                         }
2824                 }
2825         if (rcw <= rmw && rcw > 0) {
2826                 /* want reconstruct write, but need to get some data */
2827                 rcw = 0;
2828                 for (i = disks; i--; ) {
2829                         struct r5dev *dev = &sh->dev[i];
2830                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2831                             i != sh->pd_idx && i != sh->qd_idx &&
2832                             !test_bit(R5_LOCKED, &dev->flags) &&
2833                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2834                               test_bit(R5_Wantcompute, &dev->flags))) {
2835                                 rcw++;
2836                                 if (!test_bit(R5_Insync, &dev->flags))
2837                                         continue; /* it's a failed drive */
2838                                 if (
2839                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2840                                         pr_debug("Read_old block "
2841                                                 "%d for Reconstruct\n", i);
2842                                         set_bit(R5_LOCKED, &dev->flags);
2843                                         set_bit(R5_Wantread, &dev->flags);
2844                                         s->locked++;
2845                                 } else {
2846                                         set_bit(STRIPE_DELAYED, &sh->state);
2847                                         set_bit(STRIPE_HANDLE, &sh->state);
2848                                 }
2849                         }
2850                 }
2851         }
2852         /* now if nothing is locked, and if we have enough data,
2853          * we can start a write request
2854          */
2855         /* since handle_stripe can be called at any time we need to handle the
2856          * case where a compute block operation has been submitted and then a
2857          * subsequent call wants to start a write request.  raid_run_ops only
2858          * handles the case where compute block and reconstruct are requested
2859          * simultaneously.  If this is not the case then new writes need to be
2860          * held off until the compute completes.
2861          */
2862         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2863             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2864             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2865                 schedule_reconstruction(sh, s, rcw == 0, 0);
2866 }
2867
2868 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2869                                 struct stripe_head_state *s, int disks)
2870 {
2871         struct r5dev *dev = NULL;
2872
2873         set_bit(STRIPE_HANDLE, &sh->state);
2874
2875         switch (sh->check_state) {
2876         case check_state_idle:
2877                 /* start a new check operation if there are no failures */
2878                 if (s->failed == 0) {
2879                         BUG_ON(s->uptodate != disks);
2880                         sh->check_state = check_state_run;
2881                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2882                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2883                         s->uptodate--;
2884                         break;
2885                 }
2886                 dev = &sh->dev[s->failed_num[0]];
2887                 /* fall through */
2888         case check_state_compute_result:
2889                 sh->check_state = check_state_idle;
2890                 if (!dev)
2891                         dev = &sh->dev[sh->pd_idx];
2892
2893                 /* check that a write has not made the stripe insync */
2894                 if (test_bit(STRIPE_INSYNC, &sh->state))
2895                         break;
2896
2897                 /* either failed parity check, or recovery is happening */
2898                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2899                 BUG_ON(s->uptodate != disks);
2900
2901                 set_bit(R5_LOCKED, &dev->flags);
2902                 s->locked++;
2903                 set_bit(R5_Wantwrite, &dev->flags);
2904
2905                 clear_bit(STRIPE_DEGRADED, &sh->state);
2906                 set_bit(STRIPE_INSYNC, &sh->state);
2907                 break;
2908         case check_state_run:
2909                 break; /* we will be called again upon completion */
2910         case check_state_check_result:
2911                 sh->check_state = check_state_idle;
2912
2913                 /* if a failure occurred during the check operation, leave
2914                  * STRIPE_INSYNC not set and let the stripe be handled again
2915                  */
2916                 if (s->failed)
2917                         break;
2918
2919                 /* handle a successful check operation, if parity is correct
2920                  * we are done.  Otherwise update the mismatch count and repair
2921                  * parity if !MD_RECOVERY_CHECK
2922                  */
2923                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2924                         /* parity is correct (on disc,
2925                          * not in buffer any more)
2926                          */
2927                         set_bit(STRIPE_INSYNC, &sh->state);
2928                 else {
2929                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2930                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2931                                 /* don't try to repair!! */
2932                                 set_bit(STRIPE_INSYNC, &sh->state);
2933                         else {
2934                                 sh->check_state = check_state_compute_run;
2935                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2936                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2937                                 set_bit(R5_Wantcompute,
2938                                         &sh->dev[sh->pd_idx].flags);
2939                                 sh->ops.target = sh->pd_idx;
2940                                 sh->ops.target2 = -1;
2941                                 s->uptodate++;
2942                         }
2943                 }
2944                 break;
2945         case check_state_compute_run:
2946                 break;
2947         default:
2948                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2949                        __func__, sh->check_state,
2950                        (unsigned long long) sh->sector);
2951                 BUG();
2952         }
2953 }
2954
2955
2956 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2957                                   struct stripe_head_state *s,
2958                                   int disks)
2959 {
2960         int pd_idx = sh->pd_idx;
2961         int qd_idx = sh->qd_idx;
2962         struct r5dev *dev;
2963
2964         set_bit(STRIPE_HANDLE, &sh->state);
2965
2966         BUG_ON(s->failed > 2);
2967
2968         /* Want to check and possibly repair P and Q.
2969          * However there could be one 'failed' device, in which
2970          * case we can only check one of them, possibly using the
2971          * other to generate missing data
2972          */
2973
2974         switch (sh->check_state) {
2975         case check_state_idle:
2976                 /* start a new check operation if there are < 2 failures */
2977                 if (s->failed == s->q_failed) {
2978                         /* The only possible failed device holds Q, so it
2979                          * makes sense to check P (If anything else were failed,
2980                          * we would have used P to recreate it).
2981                          */
2982                         sh->check_state = check_state_run;
2983                 }
2984                 if (!s->q_failed && s->failed < 2) {
2985                         /* Q is not failed, and we didn't use it to generate
2986                          * anything, so it makes sense to check it
2987                          */
2988                         if (sh->check_state == check_state_run)
2989                                 sh->check_state = check_state_run_pq;
2990                         else
2991                                 sh->check_state = check_state_run_q;
2992                 }
2993
2994                 /* discard potentially stale zero_sum_result */
2995                 sh->ops.zero_sum_result = 0;
2996
2997                 if (sh->check_state == check_state_run) {
2998                         /* async_xor_zero_sum destroys the contents of P */
2999                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3000                         s->uptodate--;
3001                 }
3002                 if (sh->check_state >= check_state_run &&
3003                     sh->check_state <= check_state_run_pq) {
3004                         /* async_syndrome_zero_sum preserves P and Q, so
3005                          * no need to mark them !uptodate here
3006                          */
3007                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3008                         break;
3009                 }
3010
3011                 /* we have 2-disk failure */
3012                 BUG_ON(s->failed != 2);
3013                 /* fall through */
3014         case check_state_compute_result:
3015                 sh->check_state = check_state_idle;
3016
3017                 /* check that a write has not made the stripe insync */
3018                 if (test_bit(STRIPE_INSYNC, &sh->state))
3019                         break;
3020
3021                 /* now write out any block on a failed drive,
3022                  * or P or Q if they were recomputed
3023                  */
3024                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3025                 if (s->failed == 2) {
3026                         dev = &sh->dev[s->failed_num[1]];
3027                         s->locked++;
3028                         set_bit(R5_LOCKED, &dev->flags);
3029                         set_bit(R5_Wantwrite, &dev->flags);
3030                 }
3031                 if (s->failed >= 1) {
3032                         dev = &sh->dev[s->failed_num[0]];
3033                         s->locked++;
3034                         set_bit(R5_LOCKED, &dev->flags);
3035                         set_bit(R5_Wantwrite, &dev->flags);
3036                 }
3037                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3038                         dev = &sh->dev[pd_idx];
3039                         s->locked++;
3040                         set_bit(R5_LOCKED, &dev->flags);
3041                         set_bit(R5_Wantwrite, &dev->flags);
3042                 }
3043                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3044                         dev = &sh->dev[qd_idx];
3045                         s->locked++;
3046                         set_bit(R5_LOCKED, &dev->flags);
3047                         set_bit(R5_Wantwrite, &dev->flags);
3048                 }
3049                 clear_bit(STRIPE_DEGRADED, &sh->state);
3050
3051                 set_bit(STRIPE_INSYNC, &sh->state);
3052                 break;
3053         case check_state_run:
3054         case check_state_run_q:
3055         case check_state_run_pq:
3056                 break; /* we will be called again upon completion */
3057         case check_state_check_result:
3058                 sh->check_state = check_state_idle;
3059
3060                 /* handle a successful check operation, if parity is correct
3061                  * we are done.  Otherwise update the mismatch count and repair
3062                  * parity if !MD_RECOVERY_CHECK
3063                  */
3064                 if (sh->ops.zero_sum_result == 0) {
3065                         /* both parities are correct */
3066                         if (!s->failed)
3067                                 set_bit(STRIPE_INSYNC, &sh->state);
3068                         else {
3069                                 /* in contrast to the raid5 case we can validate
3070                                  * parity, but still have a failure to write
3071                                  * back
3072                                  */
3073                                 sh->check_state = check_state_compute_result;
3074                                 /* Returning at this point means that we may go
3075                                  * off and bring p and/or q uptodate again so
3076                                  * we make sure to check zero_sum_result again
3077                                  * to verify if p or q need writeback
3078                                  */
3079                         }
3080                 } else {
3081                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
3082                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3083                                 /* don't try to repair!! */
3084                                 set_bit(STRIPE_INSYNC, &sh->state);
3085                         else {
3086                                 int *target = &sh->ops.target;
3087
3088                                 sh->ops.target = -1;
3089                                 sh->ops.target2 = -1;
3090                                 sh->check_state = check_state_compute_run;
3091                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3092                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3093                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3094                                         set_bit(R5_Wantcompute,
3095                                                 &sh->dev[pd_idx].flags);
3096                                         *target = pd_idx;
3097                                         target = &sh->ops.target2;
3098                                         s->uptodate++;
3099                                 }
3100                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3101                                         set_bit(R5_Wantcompute,
3102                                                 &sh->dev[qd_idx].flags);
3103                                         *target = qd_idx;
3104                                         s->uptodate++;
3105                                 }
3106                         }
3107                 }
3108                 break;
3109         case check_state_compute_run:
3110                 break;
3111         default:
3112                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3113                        __func__, sh->check_state,
3114                        (unsigned long long) sh->sector);
3115                 BUG();
3116         }
3117 }
3118
3119 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3120 {
3121         int i;
3122
3123         /* We have read all the blocks in this stripe and now we need to
3124          * copy some of them into a target stripe for expand.
3125          */
3126         struct dma_async_tx_descriptor *tx = NULL;
3127         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3128         for (i = 0; i < sh->disks; i++)
3129                 if (i != sh->pd_idx && i != sh->qd_idx) {
3130                         int dd_idx, j;
3131                         struct stripe_head *sh2;
3132                         struct async_submit_ctl submit;
3133
3134                         sector_t bn = compute_blocknr(sh, i, 1);
3135                         sector_t s = raid5_compute_sector(conf, bn, 0,
3136                                                           &dd_idx, NULL);
3137                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3138                         if (sh2 == NULL)
3139                                 /* so far only the early blocks of this stripe
3140                                  * have been requested.  When later blocks
3141                                  * get requested, we will try again
3142                                  */
3143                                 continue;
3144                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3145                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3146                                 /* must have already done this block */
3147                                 release_stripe(sh2);
3148                                 continue;
3149                         }
3150
3151                         /* place all the copies on one channel */
3152                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3153                         tx = async_memcpy(sh2->dev[dd_idx].page,
3154                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3155                                           &submit);
3156
3157                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3158                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3159                         for (j = 0; j < conf->raid_disks; j++)
3160                                 if (j != sh2->pd_idx &&
3161                                     j != sh2->qd_idx &&
3162                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3163                                         break;
3164                         if (j == conf->raid_disks) {
3165                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3166                                 set_bit(STRIPE_HANDLE, &sh2->state);
3167                         }
3168                         release_stripe(sh2);
3169
3170                 }
3171         /* done submitting copies, wait for them to complete */
3172         if (tx) {
3173                 async_tx_ack(tx);
3174                 dma_wait_for_async_tx(tx);
3175         }
3176 }
3177
3178 /*
3179  * handle_stripe - do things to a stripe.
3180  *
3181  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3182  * state of various bits to see what needs to be done.
3183  * Possible results:
3184  *    return some read requests which now have data
3185  *    return some write requests which are safely on storage
3186  *    schedule a read on some buffers
3187  *    schedule a write of some buffers
3188  *    return confirmation of parity correctness
3189  *
3190  */
3191
3192 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3193 {
3194         struct r5conf *conf = sh->raid_conf;
3195         int disks = sh->disks;
3196         struct r5dev *dev;
3197         int i;
3198         int do_recovery = 0;
3199
3200         memset(s, 0, sizeof(*s));
3201
3202         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3203         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3204         s->failed_num[0] = -1;
3205         s->failed_num[1] = -1;
3206
3207         /* Now to look around and see what can be done */
3208         rcu_read_lock();
3209         for (i=disks; i--; ) {
3210                 struct md_rdev *rdev;
3211                 sector_t first_bad;
3212                 int bad_sectors;
3213                 int is_bad = 0;
3214
3215                 dev = &sh->dev[i];
3216
3217                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3218                          i, dev->flags,
3219                          dev->toread, dev->towrite, dev->written);
3220                 /* maybe we can reply to a read
3221                  *
3222                  * new wantfill requests are only permitted while
3223                  * ops_complete_biofill is guaranteed to be inactive
3224                  */
3225                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3226                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3227                         set_bit(R5_Wantfill, &dev->flags);
3228
3229                 /* now count some things */
3230                 if (test_bit(R5_LOCKED, &dev->flags))
3231                         s->locked++;
3232                 if (test_bit(R5_UPTODATE, &dev->flags))
3233                         s->uptodate++;
3234                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3235                         s->compute++;
3236                         BUG_ON(s->compute > 2);
3237                 }
3238
3239                 if (test_bit(R5_Wantfill, &dev->flags))
3240                         s->to_fill++;
3241                 else if (dev->toread)
3242                         s->to_read++;
3243                 if (dev->towrite) {
3244                         s->to_write++;
3245                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3246                                 s->non_overwrite++;
3247                 }
3248                 if (dev->written)
3249                         s->written++;
3250                 /* Prefer to use the replacement for reads, but only
3251                  * if it is recovered enough and has no bad blocks.
3252                  */
3253                 rdev = rcu_dereference(conf->disks[i].replacement);
3254                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3255                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3256                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3257                                  &first_bad, &bad_sectors))
3258                         set_bit(R5_ReadRepl, &dev->flags);
3259                 else {
3260                         if (rdev)
3261                                 set_bit(R5_NeedReplace, &dev->flags);
3262                         rdev = rcu_dereference(conf->disks[i].rdev);
3263                         clear_bit(R5_ReadRepl, &dev->flags);
3264                 }
3265                 if (rdev && test_bit(Faulty, &rdev->flags))
3266                         rdev = NULL;
3267                 if (rdev) {
3268                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3269                                              &first_bad, &bad_sectors);
3270                         if (s->blocked_rdev == NULL
3271                             && (test_bit(Blocked, &rdev->flags)
3272                                 || is_bad < 0)) {
3273                                 if (is_bad < 0)
3274                                         set_bit(BlockedBadBlocks,
3275                                                 &rdev->flags);
3276                                 s->blocked_rdev = rdev;
3277                                 atomic_inc(&rdev->nr_pending);
3278                         }
3279                 }
3280                 clear_bit(R5_Insync, &dev->flags);
3281                 if (!rdev)
3282                         /* Not in-sync */;
3283                 else if (is_bad) {
3284                         /* also not in-sync */
3285                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3286                             test_bit(R5_UPTODATE, &dev->flags)) {
3287                                 /* treat as in-sync, but with a read error
3288                                  * which we can now try to correct
3289                                  */
3290                                 set_bit(R5_Insync, &dev->flags);
3291                                 set_bit(R5_ReadError, &dev->flags);
3292                         }
3293                 } else if (test_bit(In_sync, &rdev->flags))
3294                         set_bit(R5_Insync, &dev->flags);
3295                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3296                         /* in sync if before recovery_offset */
3297                         set_bit(R5_Insync, &dev->flags);
3298                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3299                          test_bit(R5_Expanded, &dev->flags))
3300                         /* If we've reshaped into here, we assume it is Insync.
3301                          * We will shortly update recovery_offset to make
3302                          * it official.
3303                          */
3304                         set_bit(R5_Insync, &dev->flags);
3305
3306                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3307                         /* This flag does not apply to '.replacement'
3308                          * only to .rdev, so make sure to check that*/
3309                         struct md_rdev *rdev2 = rcu_dereference(
3310                                 conf->disks[i].rdev);
3311                         if (rdev2 == rdev)
3312                                 clear_bit(R5_Insync, &dev->flags);
3313                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3314                                 s->handle_bad_blocks = 1;
3315                                 atomic_inc(&rdev2->nr_pending);
3316                         } else
3317                                 clear_bit(R5_WriteError, &dev->flags);
3318                 }
3319                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3320                         /* This flag does not apply to '.replacement'
3321                          * only to .rdev, so make sure to check that*/
3322                         struct md_rdev *rdev2 = rcu_dereference(
3323                                 conf->disks[i].rdev);
3324                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3325                                 s->handle_bad_blocks = 1;
3326                                 atomic_inc(&rdev2->nr_pending);
3327                         } else
3328                                 clear_bit(R5_MadeGood, &dev->flags);
3329                 }
3330                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3331                         struct md_rdev *rdev2 = rcu_dereference(
3332                                 conf->disks[i].replacement);
3333                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3334                                 s->handle_bad_blocks = 1;
3335                                 atomic_inc(&rdev2->nr_pending);
3336                         } else
3337                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3338                 }
3339                 if (!test_bit(R5_Insync, &dev->flags)) {
3340                         /* The ReadError flag will just be confusing now */
3341                         clear_bit(R5_ReadError, &dev->flags);
3342                         clear_bit(R5_ReWrite, &dev->flags);
3343                 }
3344                 if (test_bit(R5_ReadError, &dev->flags))
3345                         clear_bit(R5_Insync, &dev->flags);
3346                 if (!test_bit(R5_Insync, &dev->flags)) {
3347                         if (s->failed < 2)
3348                                 s->failed_num[s->failed] = i;
3349                         s->failed++;
3350                         if (rdev && !test_bit(Faulty, &rdev->flags))
3351                                 do_recovery = 1;
3352                 }
3353         }
3354         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3355                 /* If there is a failed device being replaced,
3356                  *     we must be recovering.
3357                  * else if we are after recovery_cp, we must be syncing
3358                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3359                  * else we can only be replacing
3360                  * sync and recovery both need to read all devices, and so
3361                  * use the same flag.
3362                  */
3363                 if (do_recovery ||
3364                     sh->sector >= conf->mddev->recovery_cp ||
3365                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3366                         s->syncing = 1;
3367                 else
3368                         s->replacing = 1;
3369         }
3370         rcu_read_unlock();
3371 }
3372
3373 static void handle_stripe(struct stripe_head *sh)
3374 {
3375         struct stripe_head_state s;
3376         struct r5conf *conf = sh->raid_conf;
3377         int i;
3378         int prexor;
3379         int disks = sh->disks;
3380         struct r5dev *pdev, *qdev;
3381
3382         clear_bit(STRIPE_HANDLE, &sh->state);
3383         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3384                 /* already being handled, ensure it gets handled
3385                  * again when current action finishes */
3386                 set_bit(STRIPE_HANDLE, &sh->state);
3387                 return;
3388         }
3389
3390         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3391                 set_bit(STRIPE_SYNCING, &sh->state);
3392                 clear_bit(STRIPE_INSYNC, &sh->state);
3393         }
3394         clear_bit(STRIPE_DELAYED, &sh->state);
3395
3396         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3397                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3398                (unsigned long long)sh->sector, sh->state,
3399                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3400                sh->check_state, sh->reconstruct_state);
3401
3402         analyse_stripe(sh, &s);
3403
3404         if (s.handle_bad_blocks) {
3405                 set_bit(STRIPE_HANDLE, &sh->state);
3406                 goto finish;
3407         }
3408
3409         if (unlikely(s.blocked_rdev)) {
3410                 if (s.syncing || s.expanding || s.expanded ||
3411                     s.replacing || s.to_write || s.written) {
3412                         set_bit(STRIPE_HANDLE, &sh->state);
3413                         goto finish;
3414                 }
3415                 /* There is nothing for the blocked_rdev to block */
3416                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3417                 s.blocked_rdev = NULL;
3418         }
3419
3420         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3421                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3422                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3423         }
3424
3425         pr_debug("locked=%d uptodate=%d to_read=%d"
3426                " to_write=%d failed=%d failed_num=%d,%d\n",
3427                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3428                s.failed_num[0], s.failed_num[1]);
3429         /* check if the array has lost more than max_degraded devices and,
3430          * if so, some requests might need to be failed.
3431          */
3432         if (s.failed > conf->max_degraded) {
3433                 sh->check_state = 0;
3434                 sh->reconstruct_state = 0;
3435                 if (s.to_read+s.to_write+s.written)
3436                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3437                 if (s.syncing + s.replacing)
3438                         handle_failed_sync(conf, sh, &s);
3439         }
3440
3441         /*
3442          * might be able to return some write requests if the parity blocks
3443          * are safe, or on a failed drive
3444          */
3445         pdev = &sh->dev[sh->pd_idx];
3446         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3447                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3448         qdev = &sh->dev[sh->qd_idx];
3449         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3450                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3451                 || conf->level < 6;
3452
3453         if (s.written &&
3454             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3455                              && !test_bit(R5_LOCKED, &pdev->flags)
3456                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3457             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3458                              && !test_bit(R5_LOCKED, &qdev->flags)
3459                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3460                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3461
3462         /* Now we might consider reading some blocks, either to check/generate
3463          * parity, or to satisfy requests
3464          * or to load a block that is being partially written.
3465          */
3466         if (s.to_read || s.non_overwrite
3467             || (conf->level == 6 && s.to_write && s.failed)
3468             || (s.syncing && (s.uptodate + s.compute < disks))
3469             || s.replacing
3470             || s.expanding)
3471                 handle_stripe_fill(sh, &s, disks);
3472
3473         /* Now we check to see if any write operations have recently
3474          * completed
3475          */
3476         prexor = 0;
3477         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3478                 prexor = 1;
3479         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3480             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3481                 sh->reconstruct_state = reconstruct_state_idle;
3482
3483                 /* All the 'written' buffers and the parity block are ready to
3484                  * be written back to disk
3485                  */
3486                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3487                 BUG_ON(sh->qd_idx >= 0 &&
3488                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3489                 for (i = disks; i--; ) {
3490                         struct r5dev *dev = &sh->dev[i];
3491                         if (test_bit(R5_LOCKED, &dev->flags) &&
3492                                 (i == sh->pd_idx || i == sh->qd_idx ||
3493                                  dev->written)) {
3494                                 pr_debug("Writing block %d\n", i);
3495                                 set_bit(R5_Wantwrite, &dev->flags);
3496                                 if (prexor)
3497                                         continue;
3498                                 if (!test_bit(R5_Insync, &dev->flags) ||
3499                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3500                                      s.failed == 0))
3501                                         set_bit(STRIPE_INSYNC, &sh->state);
3502                         }
3503                 }
3504                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3505                         s.dec_preread_active = 1;
3506         }
3507
3508         /* Now to consider new write requests and what else, if anything
3509          * should be read.  We do not handle new writes when:
3510          * 1/ A 'write' operation (copy+xor) is already in flight.
3511          * 2/ A 'check' operation is in flight, as it may clobber the parity
3512          *    block.
3513          */
3514         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3515                 handle_stripe_dirtying(conf, sh, &s, disks);
3516
3517         /* maybe we need to check and possibly fix the parity for this stripe
3518          * Any reads will already have been scheduled, so we just see if enough
3519          * data is available.  The parity check is held off while parity
3520          * dependent operations are in flight.
3521          */
3522         if (sh->check_state ||
3523             (s.syncing && s.locked == 0 &&
3524              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3525              !test_bit(STRIPE_INSYNC, &sh->state))) {
3526                 if (conf->level == 6)
3527                         handle_parity_checks6(conf, sh, &s, disks);
3528                 else
3529                         handle_parity_checks5(conf, sh, &s, disks);
3530         }
3531
3532         if (s.replacing && s.locked == 0
3533             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3534                 /* Write out to replacement devices where possible */
3535                 for (i = 0; i < conf->raid_disks; i++)
3536                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3537                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3538                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3539                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3540                                 s.locked++;
3541                         }
3542                 set_bit(STRIPE_INSYNC, &sh->state);
3543         }
3544         if ((s.syncing || s.replacing) && s.locked == 0 &&
3545             test_bit(STRIPE_INSYNC, &sh->state)) {
3546                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3547                 clear_bit(STRIPE_SYNCING, &sh->state);
3548         }
3549
3550         /* If the failed drives are just a ReadError, then we might need
3551          * to progress the repair/check process
3552          */
3553         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3554                 for (i = 0; i < s.failed; i++) {
3555                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3556                         if (test_bit(R5_ReadError, &dev->flags)
3557                             && !test_bit(R5_LOCKED, &dev->flags)
3558                             && test_bit(R5_UPTODATE, &dev->flags)
3559                                 ) {
3560                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3561                                         set_bit(R5_Wantwrite, &dev->flags);
3562                                         set_bit(R5_ReWrite, &dev->flags);
3563                                         set_bit(R5_LOCKED, &dev->flags);
3564                                         s.locked++;
3565                                 } else {
3566                                         /* let's read it back */
3567                                         set_bit(R5_Wantread, &dev->flags);
3568                                         set_bit(R5_LOCKED, &dev->flags);
3569                                         s.locked++;
3570                                 }
3571                         }
3572                 }
3573
3574
3575         /* Finish reconstruct operations initiated by the expansion process */
3576         if (sh->reconstruct_state == reconstruct_state_result) {
3577                 struct stripe_head *sh_src
3578                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3579                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3580                         /* sh cannot be written until sh_src has been read.
3581                          * so arrange for sh to be delayed a little
3582                          */
3583                         set_bit(STRIPE_DELAYED, &sh->state);
3584                         set_bit(STRIPE_HANDLE, &sh->state);
3585                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3586                                               &sh_src->state))
3587                                 atomic_inc(&conf->preread_active_stripes);
3588                         release_stripe(sh_src);
3589                         goto finish;
3590                 }
3591                 if (sh_src)
3592                         release_stripe(sh_src);
3593
3594                 sh->reconstruct_state = reconstruct_state_idle;
3595                 clear_bit(STRIPE_EXPANDING, &sh->state);
3596                 for (i = conf->raid_disks; i--; ) {
3597                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3598                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3599                         s.locked++;
3600                 }
3601         }
3602
3603         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3604             !sh->reconstruct_state) {
3605                 /* Need to write out all blocks after computing parity */
3606                 sh->disks = conf->raid_disks;
3607                 stripe_set_idx(sh->sector, conf, 0, sh);
3608                 schedule_reconstruction(sh, &s, 1, 1);
3609         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3610                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3611                 atomic_dec(&conf->reshape_stripes);
3612                 wake_up(&conf->wait_for_overlap);
3613                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3614         }
3615
3616         if (s.expanding && s.locked == 0 &&
3617             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3618                 handle_stripe_expansion(conf, sh);
3619
3620 finish:
3621         /* wait for this device to become unblocked */
3622         if (unlikely(s.blocked_rdev)) {
3623                 if (conf->mddev->external)
3624                         md_wait_for_blocked_rdev(s.blocked_rdev,
3625                                                  conf->mddev);
3626                 else
3627                         /* Internal metadata will immediately
3628                          * be written by raid5d, so we don't
3629                          * need to wait here.
3630                          */
3631                         rdev_dec_pending(s.blocked_rdev,
3632                                          conf->mddev);
3633         }
3634
3635         if (s.handle_bad_blocks)
3636                 for (i = disks; i--; ) {
3637                         struct md_rdev *rdev;
3638                         struct r5dev *dev = &sh->dev[i];
3639                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3640                                 /* We own a safe reference to the rdev */
3641                                 rdev = conf->disks[i].rdev;
3642                                 if (!rdev_set_badblocks(rdev, sh->sector,
3643                                                         STRIPE_SECTORS, 0))
3644                                         md_error(conf->mddev, rdev);
3645                                 rdev_dec_pending(rdev, conf->mddev);
3646                         }
3647                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3648                                 rdev = conf->disks[i].rdev;
3649                                 rdev_clear_badblocks(rdev, sh->sector,
3650                                                      STRIPE_SECTORS, 0);
3651                                 rdev_dec_pending(rdev, conf->mddev);
3652                         }
3653                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3654                                 rdev = conf->disks[i].replacement;
3655                                 if (!rdev)
3656                                         /* rdev have been moved down */
3657                                         rdev = conf->disks[i].rdev;
3658                                 rdev_clear_badblocks(rdev, sh->sector,
3659                                                      STRIPE_SECTORS, 0);
3660                                 rdev_dec_pending(rdev, conf->mddev);
3661                         }
3662                 }
3663
3664         if (s.ops_request)
3665                 raid_run_ops(sh, s.ops_request);
3666
3667         ops_run_io(sh, &s);
3668
3669         if (s.dec_preread_active) {
3670                 /* We delay this until after ops_run_io so that if make_request
3671                  * is waiting on a flush, it won't continue until the writes
3672                  * have actually been submitted.
3673                  */
3674                 atomic_dec(&conf->preread_active_stripes);
3675                 if (atomic_read(&conf->preread_active_stripes) <
3676                     IO_THRESHOLD)
3677                         md_wakeup_thread(conf->mddev->thread);
3678         }
3679
3680         return_io(s.return_bi);
3681
3682         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3683 }
3684
3685 static void raid5_activate_delayed(struct r5conf *conf)
3686 {
3687         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3688                 while (!list_empty(&conf->delayed_list)) {
3689                         struct list_head *l = conf->delayed_list.next;
3690                         struct stripe_head *sh;
3691                         sh = list_entry(l, struct stripe_head, lru);
3692                         list_del_init(l);
3693                         clear_bit(STRIPE_DELAYED, &sh->state);
3694                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3695                                 atomic_inc(&conf->preread_active_stripes);
3696                         list_add_tail(&sh->lru, &conf->hold_list);
3697                 }
3698         }
3699 }
3700
3701 static void activate_bit_delay(struct r5conf *conf)
3702 {
3703         /* device_lock is held */
3704         struct list_head head;
3705         list_add(&head, &conf->bitmap_list);
3706         list_del_init(&conf->bitmap_list);
3707         while (!list_empty(&head)) {
3708                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3709                 list_del_init(&sh->lru);
3710                 atomic_inc(&sh->count);
3711                 __release_stripe(conf, sh);
3712         }
3713 }
3714
3715 int md_raid5_congested(struct mddev *mddev, int bits)
3716 {
3717         struct r5conf *conf = mddev->private;
3718
3719         /* No difference between reads and writes.  Just check
3720          * how busy the stripe_cache is
3721          */
3722
3723         if (conf->inactive_blocked)
3724                 return 1;
3725         if (conf->quiesce)
3726                 return 1;
3727         if (list_empty_careful(&conf->inactive_list))
3728                 return 1;
3729
3730         return 0;
3731 }
3732 EXPORT_SYMBOL_GPL(md_raid5_congested);
3733
3734 static int raid5_congested(void *data, int bits)
3735 {
3736         struct mddev *mddev = data;
3737
3738         return mddev_congested(mddev, bits) ||
3739                 md_raid5_congested(mddev, bits);
3740 }
3741
3742 /* We want read requests to align with chunks where possible,
3743  * but write requests don't need to.
3744  */
3745 static int raid5_mergeable_bvec(struct request_queue *q,
3746                                 struct bvec_merge_data *bvm,
3747                                 struct bio_vec *biovec)
3748 {
3749         struct mddev *mddev = q->queuedata;
3750         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3751         int max;
3752         unsigned int chunk_sectors = mddev->chunk_sectors;
3753         unsigned int bio_sectors = bvm->bi_size >> 9;
3754
3755         if ((bvm->bi_rw & 1) == WRITE)
3756                 return biovec->bv_len; /* always allow writes to be mergeable */
3757
3758         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3759                 chunk_sectors = mddev->new_chunk_sectors;
3760         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3761         if (max < 0) max = 0;
3762         if (max <= biovec->bv_len && bio_sectors == 0)
3763                 return biovec->bv_len;
3764         else
3765                 return max;
3766 }
3767
3768
3769 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3770 {
3771         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3772         unsigned int chunk_sectors = mddev->chunk_sectors;
3773         unsigned int bio_sectors = bio->bi_size >> 9;
3774
3775         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3776                 chunk_sectors = mddev->new_chunk_sectors;
3777         return  chunk_sectors >=
3778                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3779 }
3780
3781 /*
3782  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3783  *  later sampled by raid5d.
3784  */
3785 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3786 {
3787         unsigned long flags;
3788
3789         spin_lock_irqsave(&conf->device_lock, flags);
3790
3791         bi->bi_next = conf->retry_read_aligned_list;
3792         conf->retry_read_aligned_list = bi;
3793
3794         spin_unlock_irqrestore(&conf->device_lock, flags);
3795         md_wakeup_thread(conf->mddev->thread);
3796 }
3797
3798
3799 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3800 {
3801         struct bio *bi;
3802
3803         bi = conf->retry_read_aligned;
3804         if (bi) {
3805                 conf->retry_read_aligned = NULL;
3806                 return bi;
3807         }
3808         bi = conf->retry_read_aligned_list;
3809         if(bi) {
3810                 conf->retry_read_aligned_list = bi->bi_next;
3811                 bi->bi_next = NULL;
3812                 /*
3813                  * this sets the active strip count to 1 and the processed
3814                  * strip count to zero (upper 8 bits)
3815                  */
3816                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3817         }
3818
3819         return bi;
3820 }
3821
3822
3823 /*
3824  *  The "raid5_align_endio" should check if the read succeeded and if it
3825  *  did, call bio_endio on the original bio (having bio_put the new bio
3826  *  first).
3827  *  If the read failed..
3828  */
3829 static void raid5_align_endio(struct bio *bi, int error)
3830 {
3831         struct bio* raid_bi  = bi->bi_private;
3832         struct mddev *mddev;
3833         struct r5conf *conf;
3834         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3835         struct md_rdev *rdev;
3836
3837         bio_put(bi);
3838
3839         rdev = (void*)raid_bi->bi_next;
3840         raid_bi->bi_next = NULL;
3841         mddev = rdev->mddev;
3842         conf = mddev->private;
3843
3844         rdev_dec_pending(rdev, conf->mddev);
3845
3846         if (!error && uptodate) {
3847                 bio_endio(raid_bi, 0);
3848                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3849                         wake_up(&conf->wait_for_stripe);
3850                 return;
3851         }
3852
3853
3854         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3855
3856         add_bio_to_retry(raid_bi, conf);
3857 }
3858
3859 static int bio_fits_rdev(struct bio *bi)
3860 {
3861         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3862
3863         if ((bi->bi_size>>9) > queue_max_sectors(q))
3864                 return 0;
3865         blk_recount_segments(q, bi);
3866         if (bi->bi_phys_segments > queue_max_segments(q))
3867                 return 0;
3868
3869         if (q->merge_bvec_fn)
3870                 /* it's too hard to apply the merge_bvec_fn at this stage,
3871                  * just just give up
3872                  */
3873                 return 0;
3874
3875         return 1;
3876 }
3877
3878
3879 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3880 {
3881         struct r5conf *conf = mddev->private;
3882         int dd_idx;
3883         struct bio* align_bi;
3884         struct md_rdev *rdev;
3885         sector_t end_sector;
3886
3887         if (!in_chunk_boundary(mddev, raid_bio)) {
3888                 pr_debug("chunk_aligned_read : non aligned\n");
3889                 return 0;
3890         }
3891         /*
3892          * use bio_clone_mddev to make a copy of the bio
3893          */
3894         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3895         if (!align_bi)
3896                 return 0;
3897         /*
3898          *   set bi_end_io to a new function, and set bi_private to the
3899          *     original bio.
3900          */
3901         align_bi->bi_end_io  = raid5_align_endio;
3902         align_bi->bi_private = raid_bio;
3903         /*
3904          *      compute position
3905          */
3906         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3907                                                     0,
3908                                                     &dd_idx, NULL);
3909
3910         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3911         rcu_read_lock();
3912         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3913         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3914             rdev->recovery_offset < end_sector) {
3915                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3916                 if (rdev &&
3917                     (test_bit(Faulty, &rdev->flags) ||
3918                     !(test_bit(In_sync, &rdev->flags) ||
3919                       rdev->recovery_offset >= end_sector)))
3920                         rdev = NULL;
3921         }
3922         if (rdev) {
3923                 sector_t first_bad;
3924                 int bad_sectors;
3925
3926                 atomic_inc(&rdev->nr_pending);
3927                 rcu_read_unlock();
3928                 raid_bio->bi_next = (void*)rdev;
3929                 align_bi->bi_bdev =  rdev->bdev;
3930                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3931
3932                 if (!bio_fits_rdev(align_bi) ||
3933                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3934                                 &first_bad, &bad_sectors)) {
3935                         /* too big in some way, or has a known bad block */
3936                         bio_put(align_bi);
3937                         rdev_dec_pending(rdev, mddev);
3938                         return 0;
3939                 }
3940
3941                 /* No reshape active, so we can trust rdev->data_offset */
3942                 align_bi->bi_sector += rdev->data_offset;
3943
3944                 spin_lock_irq(&conf->device_lock);
3945                 wait_event_lock_irq(conf->wait_for_stripe,
3946                                     conf->quiesce == 0,
3947                                     conf->device_lock, /* nothing */);
3948                 atomic_inc(&conf->active_aligned_reads);
3949                 spin_unlock_irq(&conf->device_lock);
3950
3951                 generic_make_request(align_bi);
3952                 return 1;
3953         } else {
3954                 rcu_read_unlock();
3955                 bio_put(align_bi);
3956                 return 0;
3957         }
3958 }
3959
3960 /* __get_priority_stripe - get the next stripe to process
3961  *
3962  * Full stripe writes are allowed to pass preread active stripes up until
3963  * the bypass_threshold is exceeded.  In general the bypass_count
3964  * increments when the handle_list is handled before the hold_list; however, it
3965  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3966  * stripe with in flight i/o.  The bypass_count will be reset when the
3967  * head of the hold_list has changed, i.e. the head was promoted to the
3968  * handle_list.
3969  */
3970 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3971 {
3972         struct stripe_head *sh;
3973
3974         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3975                   __func__,
3976                   list_empty(&conf->handle_list) ? "empty" : "busy",
3977                   list_empty(&conf->hold_list) ? "empty" : "busy",
3978                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3979
3980         if (!list_empty(&conf->handle_list)) {
3981                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3982
3983                 if (list_empty(&conf->hold_list))
3984                         conf->bypass_count = 0;
3985                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3986                         if (conf->hold_list.next == conf->last_hold)
3987                                 conf->bypass_count++;
3988                         else {
3989                                 conf->last_hold = conf->hold_list.next;
3990                                 conf->bypass_count -= conf->bypass_threshold;
3991                                 if (conf->bypass_count < 0)
3992                                         conf->bypass_count = 0;
3993                         }
3994                 }
3995         } else if (!list_empty(&conf->hold_list) &&
3996                    ((conf->bypass_threshold &&
3997                      conf->bypass_count > conf->bypass_threshold) ||
3998                     atomic_read(&conf->pending_full_writes) == 0)) {
3999                 sh = list_entry(conf->hold_list.next,
4000                                 typeof(*sh), lru);
4001                 conf->bypass_count -= conf->bypass_threshold;
4002                 if (conf->bypass_count < 0)
4003                         conf->bypass_count = 0;
4004         } else
4005                 return NULL;
4006
4007         list_del_init(&sh->lru);
4008         atomic_inc(&sh->count);
4009         BUG_ON(atomic_read(&sh->count) != 1);
4010         return sh;
4011 }
4012
4013 static void make_request(struct mddev *mddev, struct bio * bi)
4014 {
4015         struct r5conf *conf = mddev->private;
4016         int dd_idx;
4017         sector_t new_sector;
4018         sector_t logical_sector, last_sector;
4019         struct stripe_head *sh;
4020         const int rw = bio_data_dir(bi);
4021         int remaining;
4022
4023         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4024                 md_flush_request(mddev, bi);
4025                 return;
4026         }
4027
4028         md_write_start(mddev, bi);
4029
4030         if (rw == READ &&
4031              mddev->reshape_position == MaxSector &&
4032              chunk_aligned_read(mddev,bi))
4033                 return;
4034
4035         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4036         last_sector = bi->bi_sector + (bi->bi_size>>9);
4037         bi->bi_next = NULL;
4038         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4039
4040         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4041                 DEFINE_WAIT(w);
4042                 int previous;
4043
4044         retry:
4045                 previous = 0;
4046                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4047                 if (unlikely(conf->reshape_progress != MaxSector)) {
4048                         /* spinlock is needed as reshape_progress may be
4049                          * 64bit on a 32bit platform, and so it might be
4050                          * possible to see a half-updated value
4051                          * Of course reshape_progress could change after
4052                          * the lock is dropped, so once we get a reference
4053                          * to the stripe that we think it is, we will have
4054                          * to check again.
4055                          */
4056                         spin_lock_irq(&conf->device_lock);
4057                         if (mddev->reshape_backwards
4058                             ? logical_sector < conf->reshape_progress
4059                             : logical_sector >= conf->reshape_progress) {
4060                                 previous = 1;
4061                         } else {
4062                                 if (mddev->reshape_backwards
4063                                     ? logical_sector < conf->reshape_safe
4064                                     : logical_sector >= conf->reshape_safe) {
4065                                         spin_unlock_irq(&conf->device_lock);
4066                                         schedule();
4067                                         goto retry;
4068                                 }
4069                         }
4070                         spin_unlock_irq(&conf->device_lock);
4071                 }
4072
4073                 new_sector = raid5_compute_sector(conf, logical_sector,
4074                                                   previous,
4075                                                   &dd_idx, NULL);
4076                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4077                         (unsigned long long)new_sector, 
4078                         (unsigned long long)logical_sector);
4079
4080                 sh = get_active_stripe(conf, new_sector, previous,
4081                                        (bi->bi_rw&RWA_MASK), 0);
4082                 if (sh) {
4083                         if (unlikely(previous)) {
4084                                 /* expansion might have moved on while waiting for a
4085                                  * stripe, so we must do the range check again.
4086                                  * Expansion could still move past after this
4087                                  * test, but as we are holding a reference to
4088                                  * 'sh', we know that if that happens,
4089                                  *  STRIPE_EXPANDING will get set and the expansion
4090                                  * won't proceed until we finish with the stripe.
4091                                  */
4092                                 int must_retry = 0;
4093                                 spin_lock_irq(&conf->device_lock);
4094                                 if (mddev->reshape_backwards
4095                                     ? logical_sector >= conf->reshape_progress
4096                                     : logical_sector < conf->reshape_progress)
4097                                         /* mismatch, need to try again */
4098                                         must_retry = 1;
4099                                 spin_unlock_irq(&conf->device_lock);
4100                                 if (must_retry) {
4101                                         release_stripe(sh);
4102                                         schedule();
4103                                         goto retry;
4104                                 }
4105                         }
4106
4107                         if (rw == WRITE &&
4108                             logical_sector >= mddev->suspend_lo &&
4109                             logical_sector < mddev->suspend_hi) {
4110                                 release_stripe(sh);
4111                                 /* As the suspend_* range is controlled by
4112                                  * userspace, we want an interruptible
4113                                  * wait.
4114                                  */
4115                                 flush_signals(current);
4116                                 prepare_to_wait(&conf->wait_for_overlap,
4117                                                 &w, TASK_INTERRUPTIBLE);
4118                                 if (logical_sector >= mddev->suspend_lo &&
4119                                     logical_sector < mddev->suspend_hi)
4120                                         schedule();
4121                                 goto retry;
4122                         }
4123
4124                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4125                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4126                                 /* Stripe is busy expanding or
4127                                  * add failed due to overlap.  Flush everything
4128                                  * and wait a while
4129                                  */
4130                                 md_wakeup_thread(mddev->thread);
4131                                 release_stripe(sh);
4132                                 schedule();
4133                                 goto retry;
4134                         }
4135                         finish_wait(&conf->wait_for_overlap, &w);
4136                         set_bit(STRIPE_HANDLE, &sh->state);
4137                         clear_bit(STRIPE_DELAYED, &sh->state);
4138                         if ((bi->bi_rw & REQ_NOIDLE) &&
4139                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4140                                 atomic_inc(&conf->preread_active_stripes);
4141                         mddev_check_plugged(mddev);
4142                         release_stripe(sh);
4143                 } else {
4144                         /* cannot get stripe for read-ahead, just give-up */
4145                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4146                         finish_wait(&conf->wait_for_overlap, &w);
4147                         break;
4148                 }
4149         }
4150
4151         remaining = raid5_dec_bi_active_stripes(bi);
4152         if (remaining == 0) {
4153
4154                 if ( rw == WRITE )
4155                         md_write_end(mddev);
4156
4157                 bio_endio(bi, 0);
4158         }
4159 }
4160
4161 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4162
4163 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4164 {
4165         /* reshaping is quite different to recovery/resync so it is
4166          * handled quite separately ... here.
4167          *
4168          * On each call to sync_request, we gather one chunk worth of
4169          * destination stripes and flag them as expanding.
4170          * Then we find all the source stripes and request reads.
4171          * As the reads complete, handle_stripe will copy the data
4172          * into the destination stripe and release that stripe.
4173          */
4174         struct r5conf *conf = mddev->private;
4175         struct stripe_head *sh;
4176         sector_t first_sector, last_sector;
4177         int raid_disks = conf->previous_raid_disks;
4178         int data_disks = raid_disks - conf->max_degraded;
4179         int new_data_disks = conf->raid_disks - conf->max_degraded;
4180         int i;
4181         int dd_idx;
4182         sector_t writepos, readpos, safepos;
4183         sector_t stripe_addr;
4184         int reshape_sectors;
4185         struct list_head stripes;
4186
4187         if (sector_nr == 0) {
4188                 /* If restarting in the middle, skip the initial sectors */
4189                 if (mddev->reshape_backwards &&
4190                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4191                         sector_nr = raid5_size(mddev, 0, 0)
4192                                 - conf->reshape_progress;
4193                 } else if (!mddev->reshape_backwards &&
4194                            conf->reshape_progress > 0)
4195                         sector_nr = conf->reshape_progress;
4196                 sector_div(sector_nr, new_data_disks);
4197                 if (sector_nr) {
4198                         mddev->curr_resync_completed = sector_nr;
4199                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4200                         *skipped = 1;
4201                         return sector_nr;
4202                 }
4203         }
4204
4205         /* We need to process a full chunk at a time.
4206          * If old and new chunk sizes differ, we need to process the
4207          * largest of these
4208          */
4209         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4210                 reshape_sectors = mddev->new_chunk_sectors;
4211         else
4212                 reshape_sectors = mddev->chunk_sectors;
4213
4214         /* We update the metadata at least every 10 seconds, or when
4215          * the data about to be copied would over-write the source of
4216          * the data at the front of the range.  i.e. one new_stripe
4217          * along from reshape_progress new_maps to after where
4218          * reshape_safe old_maps to
4219          */
4220         writepos = conf->reshape_progress;
4221         sector_div(writepos, new_data_disks);
4222         readpos = conf->reshape_progress;
4223         sector_div(readpos, data_disks);
4224         safepos = conf->reshape_safe;
4225         sector_div(safepos, data_disks);
4226         if (mddev->reshape_backwards) {
4227                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4228                 readpos += reshape_sectors;
4229                 safepos += reshape_sectors;
4230         } else {
4231                 writepos += reshape_sectors;
4232                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4233                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4234         }
4235
4236         /* Having calculated the 'writepos' possibly use it
4237          * to set 'stripe_addr' which is where we will write to.
4238          */
4239         if (mddev->reshape_backwards) {
4240                 BUG_ON(conf->reshape_progress == 0);
4241                 stripe_addr = writepos;
4242                 BUG_ON((mddev->dev_sectors &
4243                         ~((sector_t)reshape_sectors - 1))
4244                        - reshape_sectors - stripe_addr
4245                        != sector_nr);
4246         } else {
4247                 BUG_ON(writepos != sector_nr + reshape_sectors);
4248                 stripe_addr = sector_nr;
4249         }
4250
4251         /* 'writepos' is the most advanced device address we might write.
4252          * 'readpos' is the least advanced device address we might read.
4253          * 'safepos' is the least address recorded in the metadata as having
4254          *     been reshaped.
4255          * If there is a min_offset_diff, these are adjusted either by
4256          * increasing the safepos/readpos if diff is negative, or
4257          * increasing writepos if diff is positive.
4258          * If 'readpos' is then behind 'writepos', there is no way that we can
4259          * ensure safety in the face of a crash - that must be done by userspace
4260          * making a backup of the data.  So in that case there is no particular
4261          * rush to update metadata.
4262          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4263          * update the metadata to advance 'safepos' to match 'readpos' so that
4264          * we can be safe in the event of a crash.
4265          * So we insist on updating metadata if safepos is behind writepos and
4266          * readpos is beyond writepos.
4267          * In any case, update the metadata every 10 seconds.
4268          * Maybe that number should be configurable, but I'm not sure it is
4269          * worth it.... maybe it could be a multiple of safemode_delay???
4270          */
4271         if (conf->min_offset_diff < 0) {
4272                 safepos += -conf->min_offset_diff;
4273                 readpos += -conf->min_offset_diff;
4274         } else
4275                 writepos += conf->min_offset_diff;
4276
4277         if ((mddev->reshape_backwards
4278              ? (safepos > writepos && readpos < writepos)
4279              : (safepos < writepos && readpos > writepos)) ||
4280             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4281                 /* Cannot proceed until we've updated the superblock... */
4282                 wait_event(conf->wait_for_overlap,
4283                            atomic_read(&conf->reshape_stripes)==0);
4284                 mddev->reshape_position = conf->reshape_progress;
4285                 mddev->curr_resync_completed = sector_nr;
4286                 conf->reshape_checkpoint = jiffies;
4287                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4288                 md_wakeup_thread(mddev->thread);
4289                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4290                            kthread_should_stop());
4291                 spin_lock_irq(&conf->device_lock);
4292                 conf->reshape_safe = mddev->reshape_position;
4293                 spin_unlock_irq(&conf->device_lock);
4294                 wake_up(&conf->wait_for_overlap);
4295                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4296         }
4297
4298         INIT_LIST_HEAD(&stripes);
4299         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4300                 int j;
4301                 int skipped_disk = 0;
4302                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4303                 set_bit(STRIPE_EXPANDING, &sh->state);
4304                 atomic_inc(&conf->reshape_stripes);
4305                 /* If any of this stripe is beyond the end of the old
4306                  * array, then we need to zero those blocks
4307                  */
4308                 for (j=sh->disks; j--;) {
4309                         sector_t s;
4310                         if (j == sh->pd_idx)
4311                                 continue;
4312                         if (conf->level == 6 &&
4313                             j == sh->qd_idx)
4314                                 continue;
4315                         s = compute_blocknr(sh, j, 0);
4316                         if (s < raid5_size(mddev, 0, 0)) {
4317                                 skipped_disk = 1;
4318                                 continue;
4319                         }
4320                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4321                         set_bit(R5_Expanded, &sh->dev[j].flags);
4322                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4323                 }
4324                 if (!skipped_disk) {
4325                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4326                         set_bit(STRIPE_HANDLE, &sh->state);
4327                 }
4328                 list_add(&sh->lru, &stripes);
4329         }
4330         spin_lock_irq(&conf->device_lock);
4331         if (mddev->reshape_backwards)
4332                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4333         else
4334                 conf->reshape_progress += reshape_sectors * new_data_disks;
4335         spin_unlock_irq(&conf->device_lock);
4336         /* Ok, those stripe are ready. We can start scheduling
4337          * reads on the source stripes.
4338          * The source stripes are determined by mapping the first and last
4339          * block on the destination stripes.
4340          */
4341         first_sector =
4342                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4343                                      1, &dd_idx, NULL);
4344         last_sector =
4345                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4346                                             * new_data_disks - 1),
4347                                      1, &dd_idx, NULL);
4348         if (last_sector >= mddev->dev_sectors)
4349                 last_sector = mddev->dev_sectors - 1;
4350         while (first_sector <= last_sector) {
4351                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4352                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4353                 set_bit(STRIPE_HANDLE, &sh->state);
4354                 release_stripe(sh);
4355                 first_sector += STRIPE_SECTORS;
4356         }
4357         /* Now that the sources are clearly marked, we can release
4358          * the destination stripes
4359          */
4360         while (!list_empty(&stripes)) {
4361                 sh = list_entry(stripes.next, struct stripe_head, lru);
4362                 list_del_init(&sh->lru);
4363                 release_stripe(sh);
4364         }
4365         /* If this takes us to the resync_max point where we have to pause,
4366          * then we need to write out the superblock.
4367          */
4368         sector_nr += reshape_sectors;
4369         if ((sector_nr - mddev->curr_resync_completed) * 2
4370             >= mddev->resync_max - mddev->curr_resync_completed) {
4371                 /* Cannot proceed until we've updated the superblock... */
4372                 wait_event(conf->wait_for_overlap,
4373                            atomic_read(&conf->reshape_stripes) == 0);
4374                 mddev->reshape_position = conf->reshape_progress;
4375                 mddev->curr_resync_completed = sector_nr;
4376                 conf->reshape_checkpoint = jiffies;
4377                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4378                 md_wakeup_thread(mddev->thread);
4379                 wait_event(mddev->sb_wait,
4380                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4381                            || kthread_should_stop());
4382                 spin_lock_irq(&conf->device_lock);
4383                 conf->reshape_safe = mddev->reshape_position;
4384                 spin_unlock_irq(&conf->device_lock);
4385                 wake_up(&conf->wait_for_overlap);
4386                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4387         }
4388         return reshape_sectors;
4389 }
4390
4391 /* FIXME go_faster isn't used */
4392 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4393 {
4394         struct r5conf *conf = mddev->private;
4395         struct stripe_head *sh;
4396         sector_t max_sector = mddev->dev_sectors;
4397         sector_t sync_blocks;
4398         int still_degraded = 0;
4399         int i;
4400
4401         if (sector_nr >= max_sector) {
4402                 /* just being told to finish up .. nothing much to do */
4403
4404                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4405                         end_reshape(conf);
4406                         return 0;
4407                 }
4408
4409                 if (mddev->curr_resync < max_sector) /* aborted */
4410                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4411                                         &sync_blocks, 1);
4412                 else /* completed sync */
4413                         conf->fullsync = 0;
4414                 bitmap_close_sync(mddev->bitmap);
4415
4416                 return 0;
4417         }
4418
4419         /* Allow raid5_quiesce to complete */
4420         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4421
4422         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4423                 return reshape_request(mddev, sector_nr, skipped);
4424
4425         /* No need to check resync_max as we never do more than one
4426          * stripe, and as resync_max will always be on a chunk boundary,
4427          * if the check in md_do_sync didn't fire, there is no chance
4428          * of overstepping resync_max here
4429          */
4430
4431         /* if there is too many failed drives and we are trying
4432          * to resync, then assert that we are finished, because there is
4433          * nothing we can do.
4434          */
4435         if (mddev->degraded >= conf->max_degraded &&
4436             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4437                 sector_t rv = mddev->dev_sectors - sector_nr;
4438                 *skipped = 1;
4439                 return rv;
4440         }
4441         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4442             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4443             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4444                 /* we can skip this block, and probably more */
4445                 sync_blocks /= STRIPE_SECTORS;
4446                 *skipped = 1;
4447                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4448         }
4449
4450         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4451
4452         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4453         if (sh == NULL) {
4454                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4455                 /* make sure we don't swamp the stripe cache if someone else
4456                  * is trying to get access
4457                  */
4458                 schedule_timeout_uninterruptible(1);
4459         }
4460         /* Need to check if array will still be degraded after recovery/resync
4461          * We don't need to check the 'failed' flag as when that gets set,
4462          * recovery aborts.
4463          */
4464         for (i = 0; i < conf->raid_disks; i++)
4465                 if (conf->disks[i].rdev == NULL)
4466                         still_degraded = 1;
4467
4468         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4469
4470         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4471
4472         handle_stripe(sh);
4473         release_stripe(sh);
4474
4475         return STRIPE_SECTORS;
4476 }
4477
4478 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4479 {
4480         /* We may not be able to submit a whole bio at once as there
4481          * may not be enough stripe_heads available.
4482          * We cannot pre-allocate enough stripe_heads as we may need
4483          * more than exist in the cache (if we allow ever large chunks).
4484          * So we do one stripe head at a time and record in
4485          * ->bi_hw_segments how many have been done.
4486          *
4487          * We *know* that this entire raid_bio is in one chunk, so
4488          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4489          */
4490         struct stripe_head *sh;
4491         int dd_idx;
4492         sector_t sector, logical_sector, last_sector;
4493         int scnt = 0;
4494         int remaining;
4495         int handled = 0;
4496
4497         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4498         sector = raid5_compute_sector(conf, logical_sector,
4499                                       0, &dd_idx, NULL);
4500         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4501
4502         for (; logical_sector < last_sector;
4503              logical_sector += STRIPE_SECTORS,
4504                      sector += STRIPE_SECTORS,
4505                      scnt++) {
4506
4507                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4508                         /* already done this stripe */
4509                         continue;
4510
4511                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4512
4513                 if (!sh) {
4514                         /* failed to get a stripe - must wait */
4515                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4516                         conf->retry_read_aligned = raid_bio;
4517                         return handled;
4518                 }
4519
4520                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4521                         release_stripe(sh);
4522                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4523                         conf->retry_read_aligned = raid_bio;
4524                         return handled;
4525                 }
4526
4527                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4528                 handle_stripe(sh);
4529                 release_stripe(sh);
4530                 handled++;
4531         }
4532         remaining = raid5_dec_bi_active_stripes(raid_bio);
4533         if (remaining == 0)
4534                 bio_endio(raid_bio, 0);
4535         if (atomic_dec_and_test(&conf->active_aligned_reads))
4536                 wake_up(&conf->wait_for_stripe);
4537         return handled;
4538 }
4539
4540
4541 /*
4542  * This is our raid5 kernel thread.
4543  *
4544  * We scan the hash table for stripes which can be handled now.
4545  * During the scan, completed stripes are saved for us by the interrupt
4546  * handler, so that they will not have to wait for our next wakeup.
4547  */
4548 static void raid5d(struct mddev *mddev)
4549 {
4550         struct stripe_head *sh;
4551         struct r5conf *conf = mddev->private;
4552         int handled;
4553         struct blk_plug plug;
4554
4555         pr_debug("+++ raid5d active\n");
4556
4557         md_check_recovery(mddev);
4558
4559         blk_start_plug(&plug);
4560         handled = 0;
4561         spin_lock_irq(&conf->device_lock);
4562         while (1) {
4563                 struct bio *bio;
4564
4565                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4566                     !list_empty(&conf->bitmap_list)) {
4567                         /* Now is a good time to flush some bitmap updates */
4568                         conf->seq_flush++;
4569                         spin_unlock_irq(&conf->device_lock);
4570                         bitmap_unplug(mddev->bitmap);
4571                         spin_lock_irq(&conf->device_lock);
4572                         conf->seq_write = conf->seq_flush;
4573                         activate_bit_delay(conf);
4574                 }
4575                 if (atomic_read(&mddev->plug_cnt) == 0)
4576                         raid5_activate_delayed(conf);
4577
4578                 while ((bio = remove_bio_from_retry(conf))) {
4579                         int ok;
4580                         spin_unlock_irq(&conf->device_lock);
4581                         ok = retry_aligned_read(conf, bio);
4582                         spin_lock_irq(&conf->device_lock);
4583                         if (!ok)
4584                                 break;
4585                         handled++;
4586                 }
4587
4588                 sh = __get_priority_stripe(conf);
4589
4590                 if (!sh)
4591                         break;
4592                 spin_unlock_irq(&conf->device_lock);
4593                 
4594                 handled++;
4595                 handle_stripe(sh);
4596                 release_stripe(sh);
4597                 cond_resched();
4598
4599                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4600                         md_check_recovery(mddev);
4601
4602                 spin_lock_irq(&conf->device_lock);
4603         }
4604         pr_debug("%d stripes handled\n", handled);
4605
4606         spin_unlock_irq(&conf->device_lock);
4607
4608         async_tx_issue_pending_all();
4609         blk_finish_plug(&plug);
4610
4611         pr_debug("--- raid5d inactive\n");
4612 }
4613
4614 static ssize_t
4615 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4616 {
4617         struct r5conf *conf = mddev->private;
4618         if (conf)
4619                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4620         else
4621                 return 0;
4622 }
4623
4624 int
4625 raid5_set_cache_size(struct mddev *mddev, int size)
4626 {
4627         struct r5conf *conf = mddev->private;
4628         int err;
4629
4630         if (size <= 16 || size > 32768)
4631                 return -EINVAL;
4632         while (size < conf->max_nr_stripes) {
4633                 if (drop_one_stripe(conf))
4634                         conf->max_nr_stripes--;
4635                 else
4636                         break;
4637         }
4638         err = md_allow_write(mddev);
4639         if (err)
4640                 return err;
4641         while (size > conf->max_nr_stripes) {
4642                 if (grow_one_stripe(conf))
4643                         conf->max_nr_stripes++;
4644                 else break;
4645         }
4646         return 0;
4647 }
4648 EXPORT_SYMBOL(raid5_set_cache_size);
4649
4650 static ssize_t
4651 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4652 {
4653         struct r5conf *conf = mddev->private;
4654         unsigned long new;
4655         int err;
4656
4657         if (len >= PAGE_SIZE)
4658                 return -EINVAL;
4659         if (!conf)
4660                 return -ENODEV;
4661
4662         if (strict_strtoul(page, 10, &new))
4663                 return -EINVAL;
4664         err = raid5_set_cache_size(mddev, new);
4665         if (err)
4666                 return err;
4667         return len;
4668 }
4669
4670 static struct md_sysfs_entry
4671 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4672                                 raid5_show_stripe_cache_size,
4673                                 raid5_store_stripe_cache_size);
4674
4675 static ssize_t
4676 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4677 {
4678         struct r5conf *conf = mddev->private;
4679         if (conf)
4680                 return sprintf(page, "%d\n", conf->bypass_threshold);
4681         else
4682                 return 0;
4683 }
4684
4685 static ssize_t
4686 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4687 {
4688         struct r5conf *conf = mddev->private;
4689         unsigned long new;
4690         if (len >= PAGE_SIZE)
4691                 return -EINVAL;
4692         if (!conf)
4693                 return -ENODEV;
4694
4695         if (strict_strtoul(page, 10, &new))
4696                 return -EINVAL;
4697         if (new > conf->max_nr_stripes)
4698                 return -EINVAL;
4699         conf->bypass_threshold = new;
4700         return len;
4701 }
4702
4703 static struct md_sysfs_entry
4704 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4705                                         S_IRUGO | S_IWUSR,
4706                                         raid5_show_preread_threshold,
4707                                         raid5_store_preread_threshold);
4708
4709 static ssize_t
4710 stripe_cache_active_show(struct mddev *mddev, char *page)
4711 {
4712         struct r5conf *conf = mddev->private;
4713         if (conf)
4714                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4715         else
4716                 return 0;
4717 }
4718
4719 static struct md_sysfs_entry
4720 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4721
4722 static struct attribute *raid5_attrs[] =  {
4723         &raid5_stripecache_size.attr,
4724         &raid5_stripecache_active.attr,
4725         &raid5_preread_bypass_threshold.attr,
4726         NULL,
4727 };
4728 static struct attribute_group raid5_attrs_group = {
4729         .name = NULL,
4730         .attrs = raid5_attrs,
4731 };
4732
4733 static sector_t
4734 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4735 {
4736         struct r5conf *conf = mddev->private;
4737
4738         if (!sectors)
4739                 sectors = mddev->dev_sectors;
4740         if (!raid_disks)
4741                 /* size is defined by the smallest of previous and new size */
4742                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4743
4744         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4745         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4746         return sectors * (raid_disks - conf->max_degraded);
4747 }
4748
4749 static void raid5_free_percpu(struct r5conf *conf)
4750 {
4751         struct raid5_percpu *percpu;
4752         unsigned long cpu;
4753
4754         if (!conf->percpu)
4755                 return;
4756
4757         get_online_cpus();
4758         for_each_possible_cpu(cpu) {
4759                 percpu = per_cpu_ptr(conf->percpu, cpu);
4760                 safe_put_page(percpu->spare_page);
4761                 kfree(percpu->scribble);
4762         }
4763 #ifdef CONFIG_HOTPLUG_CPU
4764         unregister_cpu_notifier(&conf->cpu_notify);
4765 #endif
4766         put_online_cpus();
4767
4768         free_percpu(conf->percpu);
4769 }
4770
4771 static void free_conf(struct r5conf *conf)
4772 {
4773         shrink_stripes(conf);
4774         raid5_free_percpu(conf);
4775         kfree(conf->disks);
4776         kfree(conf->stripe_hashtbl);
4777         kfree(conf);
4778 }
4779
4780 #ifdef CONFIG_HOTPLUG_CPU
4781 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4782                               void *hcpu)
4783 {
4784         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4785         long cpu = (long)hcpu;
4786         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4787
4788         switch (action) {
4789         case CPU_UP_PREPARE:
4790         case CPU_UP_PREPARE_FROZEN:
4791                 if (conf->level == 6 && !percpu->spare_page)
4792                         percpu->spare_page = alloc_page(GFP_KERNEL);
4793                 if (!percpu->scribble)
4794                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4795
4796                 if (!percpu->scribble ||
4797                     (conf->level == 6 && !percpu->spare_page)) {
4798                         safe_put_page(percpu->spare_page);
4799                         kfree(percpu->scribble);
4800                         pr_err("%s: failed memory allocation for cpu%ld\n",
4801                                __func__, cpu);
4802                         return notifier_from_errno(-ENOMEM);
4803                 }
4804                 break;
4805         case CPU_DEAD:
4806         case CPU_DEAD_FROZEN:
4807                 safe_put_page(percpu->spare_page);
4808                 kfree(percpu->scribble);
4809                 percpu->spare_page = NULL;
4810                 percpu->scribble = NULL;
4811                 break;
4812         default:
4813                 break;
4814         }
4815         return NOTIFY_OK;
4816 }
4817 #endif
4818
4819 static int raid5_alloc_percpu(struct r5conf *conf)
4820 {
4821         unsigned long cpu;
4822         struct page *spare_page;
4823         struct raid5_percpu __percpu *allcpus;
4824         void *scribble;
4825         int err;
4826
4827         allcpus = alloc_percpu(struct raid5_percpu);
4828         if (!allcpus)
4829                 return -ENOMEM;
4830         conf->percpu = allcpus;
4831
4832         get_online_cpus();
4833         err = 0;
4834         for_each_present_cpu(cpu) {
4835                 if (conf->level == 6) {
4836                         spare_page = alloc_page(GFP_KERNEL);
4837                         if (!spare_page) {
4838                                 err = -ENOMEM;
4839                                 break;
4840                         }
4841                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4842                 }
4843                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4844                 if (!scribble) {
4845                         err = -ENOMEM;
4846                         break;
4847                 }
4848                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4849         }
4850 #ifdef CONFIG_HOTPLUG_CPU
4851         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4852         conf->cpu_notify.priority = 0;
4853         if (err == 0)
4854                 err = register_cpu_notifier(&conf->cpu_notify);
4855 #endif
4856         put_online_cpus();
4857
4858         return err;
4859 }
4860
4861 static struct r5conf *setup_conf(struct mddev *mddev)
4862 {
4863         struct r5conf *conf;
4864         int raid_disk, memory, max_disks;
4865         struct md_rdev *rdev;
4866         struct disk_info *disk;
4867         char pers_name[6];
4868
4869         if (mddev->new_level != 5
4870             && mddev->new_level != 4
4871             && mddev->new_level != 6) {
4872                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4873                        mdname(mddev), mddev->new_level);
4874                 return ERR_PTR(-EIO);
4875         }
4876         if ((mddev->new_level == 5
4877              && !algorithm_valid_raid5(mddev->new_layout)) ||
4878             (mddev->new_level == 6
4879              && !algorithm_valid_raid6(mddev->new_layout))) {
4880                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4881                        mdname(mddev), mddev->new_layout);
4882                 return ERR_PTR(-EIO);
4883         }
4884         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4885                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4886                        mdname(mddev), mddev->raid_disks);
4887                 return ERR_PTR(-EINVAL);
4888         }
4889
4890         if (!mddev->new_chunk_sectors ||
4891             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4892             !is_power_of_2(mddev->new_chunk_sectors)) {
4893                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4894                        mdname(mddev), mddev->new_chunk_sectors << 9);
4895                 return ERR_PTR(-EINVAL);
4896         }
4897
4898         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4899         if (conf == NULL)
4900                 goto abort;
4901         spin_lock_init(&conf->device_lock);
4902         init_waitqueue_head(&conf->wait_for_stripe);
4903         init_waitqueue_head(&conf->wait_for_overlap);
4904         INIT_LIST_HEAD(&conf->handle_list);
4905         INIT_LIST_HEAD(&conf->hold_list);
4906         INIT_LIST_HEAD(&conf->delayed_list);
4907         INIT_LIST_HEAD(&conf->bitmap_list);
4908         INIT_LIST_HEAD(&conf->inactive_list);
4909         atomic_set(&conf->active_stripes, 0);
4910         atomic_set(&conf->preread_active_stripes, 0);
4911         atomic_set(&conf->active_aligned_reads, 0);
4912         conf->bypass_threshold = BYPASS_THRESHOLD;
4913         conf->recovery_disabled = mddev->recovery_disabled - 1;
4914
4915         conf->raid_disks = mddev->raid_disks;
4916         if (mddev->reshape_position == MaxSector)
4917                 conf->previous_raid_disks = mddev->raid_disks;
4918         else
4919                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4920         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4921         conf->scribble_len = scribble_len(max_disks);
4922
4923         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4924                               GFP_KERNEL);
4925         if (!conf->disks)
4926                 goto abort;
4927
4928         conf->mddev = mddev;
4929
4930         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4931                 goto abort;
4932
4933         conf->level = mddev->new_level;
4934         if (raid5_alloc_percpu(conf) != 0)
4935                 goto abort;
4936
4937         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4938
4939         rdev_for_each(rdev, mddev) {
4940                 raid_disk = rdev->raid_disk;
4941                 if (raid_disk >= max_disks
4942                     || raid_disk < 0)
4943                         continue;
4944                 disk = conf->disks + raid_disk;
4945
4946                 if (test_bit(Replacement, &rdev->flags)) {
4947                         if (disk->replacement)
4948                                 goto abort;
4949                         disk->replacement = rdev;
4950                 } else {
4951                         if (disk->rdev)
4952                                 goto abort;
4953                         disk->rdev = rdev;
4954                 }
4955
4956                 if (test_bit(In_sync, &rdev->flags)) {
4957                         char b[BDEVNAME_SIZE];
4958                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4959                                " disk %d\n",
4960                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4961                 } else if (rdev->saved_raid_disk != raid_disk)
4962                         /* Cannot rely on bitmap to complete recovery */
4963                         conf->fullsync = 1;
4964         }
4965
4966         conf->chunk_sectors = mddev->new_chunk_sectors;
4967         conf->level = mddev->new_level;
4968         if (conf->level == 6)
4969                 conf->max_degraded = 2;
4970         else
4971                 conf->max_degraded = 1;
4972         conf->algorithm = mddev->new_layout;
4973         conf->max_nr_stripes = NR_STRIPES;
4974         conf->reshape_progress = mddev->reshape_position;
4975         if (conf->reshape_progress != MaxSector) {
4976                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4977                 conf->prev_algo = mddev->layout;
4978         }
4979
4980         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4981                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4982         if (grow_stripes(conf, conf->max_nr_stripes)) {
4983                 printk(KERN_ERR
4984                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4985                        mdname(mddev), memory);
4986                 goto abort;
4987         } else
4988                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4989                        mdname(mddev), memory);
4990
4991         sprintf(pers_name, "raid%d", mddev->new_level);
4992         conf->thread = md_register_thread(raid5d, mddev, pers_name);
4993         if (!conf->thread) {
4994                 printk(KERN_ERR
4995                        "md/raid:%s: couldn't allocate thread.\n",
4996                        mdname(mddev));
4997                 goto abort;
4998         }
4999
5000         return conf;
5001
5002  abort:
5003         if (conf) {
5004                 free_conf(conf);
5005                 return ERR_PTR(-EIO);
5006         } else
5007                 return ERR_PTR(-ENOMEM);
5008 }
5009
5010
5011 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5012 {
5013         switch (algo) {
5014         case ALGORITHM_PARITY_0:
5015                 if (raid_disk < max_degraded)
5016                         return 1;
5017                 break;
5018         case ALGORITHM_PARITY_N:
5019                 if (raid_disk >= raid_disks - max_degraded)
5020                         return 1;
5021                 break;
5022         case ALGORITHM_PARITY_0_6:
5023                 if (raid_disk == 0 || 
5024                     raid_disk == raid_disks - 1)
5025                         return 1;
5026                 break;
5027         case ALGORITHM_LEFT_ASYMMETRIC_6:
5028         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5029         case ALGORITHM_LEFT_SYMMETRIC_6:
5030         case ALGORITHM_RIGHT_SYMMETRIC_6:
5031                 if (raid_disk == raid_disks - 1)
5032                         return 1;
5033         }
5034         return 0;
5035 }
5036
5037 static int run(struct mddev *mddev)
5038 {
5039         struct r5conf *conf;
5040         int working_disks = 0;
5041         int dirty_parity_disks = 0;
5042         struct md_rdev *rdev;
5043         sector_t reshape_offset = 0;
5044         int i;
5045         long long min_offset_diff = 0;
5046         int first = 1;
5047
5048         if (mddev->recovery_cp != MaxSector)
5049                 printk(KERN_NOTICE "md/raid:%s: not clean"
5050                        " -- starting background reconstruction\n",
5051                        mdname(mddev));
5052
5053         rdev_for_each(rdev, mddev) {
5054                 long long diff;
5055                 if (rdev->raid_disk < 0)
5056                         continue;
5057                 diff = (rdev->new_data_offset - rdev->data_offset);
5058                 if (first) {
5059                         min_offset_diff = diff;
5060                         first = 0;
5061                 } else if (mddev->reshape_backwards &&
5062                          diff < min_offset_diff)
5063                         min_offset_diff = diff;
5064                 else if (!mddev->reshape_backwards &&
5065                          diff > min_offset_diff)
5066                         min_offset_diff = diff;
5067         }
5068
5069         if (mddev->reshape_position != MaxSector) {
5070                 /* Check that we can continue the reshape.
5071                  * Difficulties arise if the stripe we would write to
5072                  * next is at or after the stripe we would read from next.
5073                  * For a reshape that changes the number of devices, this
5074                  * is only possible for a very short time, and mdadm makes
5075                  * sure that time appears to have past before assembling
5076                  * the array.  So we fail if that time hasn't passed.
5077                  * For a reshape that keeps the number of devices the same
5078                  * mdadm must be monitoring the reshape can keeping the
5079                  * critical areas read-only and backed up.  It will start
5080                  * the array in read-only mode, so we check for that.
5081                  */
5082                 sector_t here_new, here_old;
5083                 int old_disks;
5084                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5085
5086                 if (mddev->new_level != mddev->level) {
5087                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5088                                "required - aborting.\n",
5089                                mdname(mddev));
5090                         return -EINVAL;
5091                 }
5092                 old_disks = mddev->raid_disks - mddev->delta_disks;
5093                 /* reshape_position must be on a new-stripe boundary, and one
5094                  * further up in new geometry must map after here in old
5095                  * geometry.
5096                  */
5097                 here_new = mddev->reshape_position;
5098                 if (sector_div(here_new, mddev->new_chunk_sectors *
5099                                (mddev->raid_disks - max_degraded))) {
5100                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5101                                "on a stripe boundary\n", mdname(mddev));
5102                         return -EINVAL;
5103                 }
5104                 reshape_offset = here_new * mddev->new_chunk_sectors;
5105                 /* here_new is the stripe we will write to */
5106                 here_old = mddev->reshape_position;
5107                 sector_div(here_old, mddev->chunk_sectors *
5108                            (old_disks-max_degraded));
5109                 /* here_old is the first stripe that we might need to read
5110                  * from */
5111                 if (mddev->delta_disks == 0) {
5112                         if ((here_new * mddev->new_chunk_sectors !=
5113                              here_old * mddev->chunk_sectors)) {
5114                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5115                                        " confused - aborting\n", mdname(mddev));
5116                                 return -EINVAL;
5117                         }
5118                         /* We cannot be sure it is safe to start an in-place
5119                          * reshape.  It is only safe if user-space is monitoring
5120                          * and taking constant backups.
5121                          * mdadm always starts a situation like this in
5122                          * readonly mode so it can take control before
5123                          * allowing any writes.  So just check for that.
5124                          */
5125                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5126                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5127                                 /* not really in-place - so OK */;
5128                         else if (mddev->ro == 0) {
5129                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5130                                        "must be started in read-only mode "
5131                                        "- aborting\n",
5132                                        mdname(mddev));
5133                                 return -EINVAL;
5134                         }
5135                 } else if (mddev->reshape_backwards
5136                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5137                        here_old * mddev->chunk_sectors)
5138                     : (here_new * mddev->new_chunk_sectors >=
5139                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5140                         /* Reading from the same stripe as writing to - bad */
5141                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5142                                "auto-recovery - aborting.\n",
5143                                mdname(mddev));
5144                         return -EINVAL;
5145                 }
5146                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5147                        mdname(mddev));
5148                 /* OK, we should be able to continue; */
5149         } else {
5150                 BUG_ON(mddev->level != mddev->new_level);
5151                 BUG_ON(mddev->layout != mddev->new_layout);
5152                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5153                 BUG_ON(mddev->delta_disks != 0);
5154         }
5155
5156         if (mddev->private == NULL)
5157                 conf = setup_conf(mddev);
5158         else
5159                 conf = mddev->private;
5160
5161         if (IS_ERR(conf))
5162                 return PTR_ERR(conf);
5163
5164         conf->min_offset_diff = min_offset_diff;
5165         mddev->thread = conf->thread;
5166         conf->thread = NULL;
5167         mddev->private = conf;
5168
5169         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5170              i++) {
5171                 rdev = conf->disks[i].rdev;
5172                 if (!rdev && conf->disks[i].replacement) {
5173                         /* The replacement is all we have yet */
5174                         rdev = conf->disks[i].replacement;
5175                         conf->disks[i].replacement = NULL;
5176                         clear_bit(Replacement, &rdev->flags);
5177                         conf->disks[i].rdev = rdev;
5178                 }
5179                 if (!rdev)
5180                         continue;
5181                 if (conf->disks[i].replacement &&
5182                     conf->reshape_progress != MaxSector) {
5183                         /* replacements and reshape simply do not mix. */
5184                         printk(KERN_ERR "md: cannot handle concurrent "
5185                                "replacement and reshape.\n");
5186                         goto abort;
5187                 }
5188                 if (test_bit(In_sync, &rdev->flags)) {
5189                         working_disks++;
5190                         continue;
5191                 }
5192                 /* This disc is not fully in-sync.  However if it
5193                  * just stored parity (beyond the recovery_offset),
5194                  * when we don't need to be concerned about the
5195                  * array being dirty.
5196                  * When reshape goes 'backwards', we never have
5197                  * partially completed devices, so we only need
5198                  * to worry about reshape going forwards.
5199                  */
5200                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5201                 if (mddev->major_version == 0 &&
5202                     mddev->minor_version > 90)
5203                         rdev->recovery_offset = reshape_offset;
5204                         
5205                 if (rdev->recovery_offset < reshape_offset) {
5206                         /* We need to check old and new layout */
5207                         if (!only_parity(rdev->raid_disk,
5208                                          conf->algorithm,
5209                                          conf->raid_disks,
5210                                          conf->max_degraded))
5211                                 continue;
5212                 }
5213                 if (!only_parity(rdev->raid_disk,
5214                                  conf->prev_algo,
5215                                  conf->previous_raid_disks,
5216                                  conf->max_degraded))
5217                         continue;
5218                 dirty_parity_disks++;
5219         }
5220
5221         /*
5222          * 0 for a fully functional array, 1 or 2 for a degraded array.
5223          */
5224         mddev->degraded = calc_degraded(conf);
5225
5226         if (has_failed(conf)) {
5227                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5228                         " (%d/%d failed)\n",
5229                         mdname(mddev), mddev->degraded, conf->raid_disks);
5230                 goto abort;
5231         }
5232
5233         /* device size must be a multiple of chunk size */
5234         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5235         mddev->resync_max_sectors = mddev->dev_sectors;
5236
5237         if (mddev->degraded > dirty_parity_disks &&
5238             mddev->recovery_cp != MaxSector) {
5239                 if (mddev->ok_start_degraded)
5240                         printk(KERN_WARNING
5241                                "md/raid:%s: starting dirty degraded array"
5242                                " - data corruption possible.\n",
5243                                mdname(mddev));
5244                 else {
5245                         printk(KERN_ERR
5246                                "md/raid:%s: cannot start dirty degraded array.\n",
5247                                mdname(mddev));
5248                         goto abort;
5249                 }
5250         }
5251
5252         if (mddev->degraded == 0)
5253                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5254                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5255                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5256                        mddev->new_layout);
5257         else
5258                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5259                        " out of %d devices, algorithm %d\n",
5260                        mdname(mddev), conf->level,
5261                        mddev->raid_disks - mddev->degraded,
5262                        mddev->raid_disks, mddev->new_layout);
5263
5264         print_raid5_conf(conf);
5265
5266         if (conf->reshape_progress != MaxSector) {
5267                 conf->reshape_safe = conf->reshape_progress;
5268                 atomic_set(&conf->reshape_stripes, 0);
5269                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5270                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5271                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5272                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5273                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5274                                                         "reshape");
5275         }
5276
5277
5278         /* Ok, everything is just fine now */
5279         if (mddev->to_remove == &raid5_attrs_group)
5280                 mddev->to_remove = NULL;
5281         else if (mddev->kobj.sd &&
5282             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5283                 printk(KERN_WARNING
5284                        "raid5: failed to create sysfs attributes for %s\n",
5285                        mdname(mddev));
5286         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5287
5288         if (mddev->queue) {
5289                 int chunk_size;
5290                 /* read-ahead size must cover two whole stripes, which
5291                  * is 2 * (datadisks) * chunksize where 'n' is the
5292                  * number of raid devices
5293                  */
5294                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5295                 int stripe = data_disks *
5296                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5297                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5298                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5299
5300                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5301
5302                 mddev->queue->backing_dev_info.congested_data = mddev;
5303                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5304
5305                 chunk_size = mddev->chunk_sectors << 9;
5306                 blk_queue_io_min(mddev->queue, chunk_size);
5307                 blk_queue_io_opt(mddev->queue, chunk_size *
5308                                  (conf->raid_disks - conf->max_degraded));
5309
5310                 rdev_for_each(rdev, mddev) {
5311                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5312                                           rdev->data_offset << 9);
5313                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5314                                           rdev->new_data_offset << 9);
5315                 }
5316         }
5317
5318         return 0;
5319 abort:
5320         md_unregister_thread(&mddev->thread);
5321         print_raid5_conf(conf);
5322         free_conf(conf);
5323         mddev->private = NULL;
5324         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5325         return -EIO;
5326 }
5327
5328 static int stop(struct mddev *mddev)
5329 {
5330         struct r5conf *conf = mddev->private;
5331
5332         md_unregister_thread(&mddev->thread);
5333         if (mddev->queue)
5334                 mddev->queue->backing_dev_info.congested_fn = NULL;
5335         free_conf(conf);
5336         mddev->private = NULL;
5337         mddev->to_remove = &raid5_attrs_group;
5338         return 0;
5339 }
5340
5341 static void status(struct seq_file *seq, struct mddev *mddev)
5342 {
5343         struct r5conf *conf = mddev->private;
5344         int i;
5345
5346         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5347                 mddev->chunk_sectors / 2, mddev->layout);
5348         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5349         for (i = 0; i < conf->raid_disks; i++)
5350                 seq_printf (seq, "%s",
5351                                conf->disks[i].rdev &&
5352                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5353         seq_printf (seq, "]");
5354 }
5355
5356 static void print_raid5_conf (struct r5conf *conf)
5357 {
5358         int i;
5359         struct disk_info *tmp;
5360
5361         printk(KERN_DEBUG "RAID conf printout:\n");
5362         if (!conf) {
5363                 printk("(conf==NULL)\n");
5364                 return;
5365         }
5366         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5367                conf->raid_disks,
5368                conf->raid_disks - conf->mddev->degraded);
5369
5370         for (i = 0; i < conf->raid_disks; i++) {
5371                 char b[BDEVNAME_SIZE];
5372                 tmp = conf->disks + i;
5373                 if (tmp->rdev)
5374                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5375                                i, !test_bit(Faulty, &tmp->rdev->flags),
5376                                bdevname(tmp->rdev->bdev, b));
5377         }
5378 }
5379
5380 static int raid5_spare_active(struct mddev *mddev)
5381 {
5382         int i;
5383         struct r5conf *conf = mddev->private;
5384         struct disk_info *tmp;
5385         int count = 0;
5386         unsigned long flags;
5387
5388         for (i = 0; i < conf->raid_disks; i++) {
5389                 tmp = conf->disks + i;
5390                 if (tmp->replacement
5391                     && tmp->replacement->recovery_offset == MaxSector
5392                     && !test_bit(Faulty, &tmp->replacement->flags)
5393                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5394                         /* Replacement has just become active. */
5395                         if (!tmp->rdev
5396                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5397                                 count++;
5398                         if (tmp->rdev) {
5399                                 /* Replaced device not technically faulty,
5400                                  * but we need to be sure it gets removed
5401                                  * and never re-added.
5402                                  */
5403                                 set_bit(Faulty, &tmp->rdev->flags);
5404                                 sysfs_notify_dirent_safe(
5405                                         tmp->rdev->sysfs_state);
5406                         }
5407                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5408                 } else if (tmp->rdev
5409                     && tmp->rdev->recovery_offset == MaxSector
5410                     && !test_bit(Faulty, &tmp->rdev->flags)
5411                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5412                         count++;
5413                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5414                 }
5415         }
5416         spin_lock_irqsave(&conf->device_lock, flags);
5417         mddev->degraded = calc_degraded(conf);
5418         spin_unlock_irqrestore(&conf->device_lock, flags);
5419         print_raid5_conf(conf);
5420         return count;
5421 }
5422
5423 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5424 {
5425         struct r5conf *conf = mddev->private;
5426         int err = 0;
5427         int number = rdev->raid_disk;
5428         struct md_rdev **rdevp;
5429         struct disk_info *p = conf->disks + number;
5430
5431         print_raid5_conf(conf);
5432         if (rdev == p->rdev)
5433                 rdevp = &p->rdev;
5434         else if (rdev == p->replacement)
5435                 rdevp = &p->replacement;
5436         else
5437                 return 0;
5438
5439         if (number >= conf->raid_disks &&
5440             conf->reshape_progress == MaxSector)
5441                 clear_bit(In_sync, &rdev->flags);
5442
5443         if (test_bit(In_sync, &rdev->flags) ||
5444             atomic_read(&rdev->nr_pending)) {
5445                 err = -EBUSY;
5446                 goto abort;
5447         }
5448         /* Only remove non-faulty devices if recovery
5449          * isn't possible.
5450          */
5451         if (!test_bit(Faulty, &rdev->flags) &&
5452             mddev->recovery_disabled != conf->recovery_disabled &&
5453             !has_failed(conf) &&
5454             (!p->replacement || p->replacement == rdev) &&
5455             number < conf->raid_disks) {
5456                 err = -EBUSY;
5457                 goto abort;
5458         }
5459         *rdevp = NULL;
5460         synchronize_rcu();
5461         if (atomic_read(&rdev->nr_pending)) {
5462                 /* lost the race, try later */
5463                 err = -EBUSY;
5464                 *rdevp = rdev;
5465         } else if (p->replacement) {
5466                 /* We must have just cleared 'rdev' */
5467                 p->rdev = p->replacement;
5468                 clear_bit(Replacement, &p->replacement->flags);
5469                 smp_mb(); /* Make sure other CPUs may see both as identical
5470                            * but will never see neither - if they are careful
5471                            */
5472                 p->replacement = NULL;
5473                 clear_bit(WantReplacement, &rdev->flags);
5474         } else
5475                 /* We might have just removed the Replacement as faulty-
5476                  * clear the bit just in case
5477                  */
5478                 clear_bit(WantReplacement, &rdev->flags);
5479 abort:
5480
5481         print_raid5_conf(conf);
5482         return err;
5483 }
5484
5485 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5486 {
5487         struct r5conf *conf = mddev->private;
5488         int err = -EEXIST;
5489         int disk;
5490         struct disk_info *p;
5491         int first = 0;
5492         int last = conf->raid_disks - 1;
5493
5494         if (mddev->recovery_disabled == conf->recovery_disabled)
5495                 return -EBUSY;
5496
5497         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5498                 /* no point adding a device */
5499                 return -EINVAL;
5500
5501         if (rdev->raid_disk >= 0)
5502                 first = last = rdev->raid_disk;
5503
5504         /*
5505          * find the disk ... but prefer rdev->saved_raid_disk
5506          * if possible.
5507          */
5508         if (rdev->saved_raid_disk >= 0 &&
5509             rdev->saved_raid_disk >= first &&
5510             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5511                 first = rdev->saved_raid_disk;
5512
5513         for (disk = first; disk <= last; disk++) {
5514                 p = conf->disks + disk;
5515                 if (p->rdev == NULL) {
5516                         clear_bit(In_sync, &rdev->flags);
5517                         rdev->raid_disk = disk;
5518                         err = 0;
5519                         if (rdev->saved_raid_disk != disk)
5520                                 conf->fullsync = 1;
5521                         rcu_assign_pointer(p->rdev, rdev);
5522                         goto out;
5523                 }
5524         }
5525         for (disk = first; disk <= last; disk++) {
5526                 p = conf->disks + disk;
5527                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5528                     p->replacement == NULL) {
5529                         clear_bit(In_sync, &rdev->flags);
5530                         set_bit(Replacement, &rdev->flags);
5531                         rdev->raid_disk = disk;
5532                         err = 0;
5533                         conf->fullsync = 1;
5534                         rcu_assign_pointer(p->replacement, rdev);
5535                         break;
5536                 }
5537         }
5538 out:
5539         print_raid5_conf(conf);
5540         return err;
5541 }
5542
5543 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5544 {
5545         /* no resync is happening, and there is enough space
5546          * on all devices, so we can resize.
5547          * We need to make sure resync covers any new space.
5548          * If the array is shrinking we should possibly wait until
5549          * any io in the removed space completes, but it hardly seems
5550          * worth it.
5551          */
5552         sector_t newsize;
5553         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5554         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5555         if (mddev->external_size &&
5556             mddev->array_sectors > newsize)
5557                 return -EINVAL;
5558         if (mddev->bitmap) {
5559                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5560                 if (ret)
5561                         return ret;
5562         }
5563         md_set_array_sectors(mddev, newsize);
5564         set_capacity(mddev->gendisk, mddev->array_sectors);
5565         revalidate_disk(mddev->gendisk);
5566         if (sectors > mddev->dev_sectors &&
5567             mddev->recovery_cp > mddev->dev_sectors) {
5568                 mddev->recovery_cp = mddev->dev_sectors;
5569                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5570         }
5571         mddev->dev_sectors = sectors;
5572         mddev->resync_max_sectors = sectors;
5573         return 0;
5574 }
5575
5576 static int check_stripe_cache(struct mddev *mddev)
5577 {
5578         /* Can only proceed if there are plenty of stripe_heads.
5579          * We need a minimum of one full stripe,, and for sensible progress
5580          * it is best to have about 4 times that.
5581          * If we require 4 times, then the default 256 4K stripe_heads will
5582          * allow for chunk sizes up to 256K, which is probably OK.
5583          * If the chunk size is greater, user-space should request more
5584          * stripe_heads first.
5585          */
5586         struct r5conf *conf = mddev->private;
5587         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5588             > conf->max_nr_stripes ||
5589             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5590             > conf->max_nr_stripes) {
5591                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5592                        mdname(mddev),
5593                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5594                         / STRIPE_SIZE)*4);
5595                 return 0;
5596         }
5597         return 1;
5598 }
5599
5600 static int check_reshape(struct mddev *mddev)
5601 {
5602         struct r5conf *conf = mddev->private;
5603
5604         if (mddev->delta_disks == 0 &&
5605             mddev->new_layout == mddev->layout &&
5606             mddev->new_chunk_sectors == mddev->chunk_sectors)
5607                 return 0; /* nothing to do */
5608         if (has_failed(conf))
5609                 return -EINVAL;
5610         if (mddev->delta_disks < 0) {
5611                 /* We might be able to shrink, but the devices must
5612                  * be made bigger first.
5613                  * For raid6, 4 is the minimum size.
5614                  * Otherwise 2 is the minimum
5615                  */
5616                 int min = 2;
5617                 if (mddev->level == 6)
5618                         min = 4;
5619                 if (mddev->raid_disks + mddev->delta_disks < min)
5620                         return -EINVAL;
5621         }
5622
5623         if (!check_stripe_cache(mddev))
5624                 return -ENOSPC;
5625
5626         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5627 }
5628
5629 static int raid5_start_reshape(struct mddev *mddev)
5630 {
5631         struct r5conf *conf = mddev->private;
5632         struct md_rdev *rdev;
5633         int spares = 0;
5634         unsigned long flags;
5635
5636         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5637                 return -EBUSY;
5638
5639         if (!check_stripe_cache(mddev))
5640                 return -ENOSPC;
5641
5642         if (has_failed(conf))
5643                 return -EINVAL;
5644
5645         rdev_for_each(rdev, mddev) {
5646                 if (!test_bit(In_sync, &rdev->flags)
5647                     && !test_bit(Faulty, &rdev->flags))
5648                         spares++;
5649         }
5650
5651         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5652                 /* Not enough devices even to make a degraded array
5653                  * of that size
5654                  */
5655                 return -EINVAL;
5656
5657         /* Refuse to reduce size of the array.  Any reductions in
5658          * array size must be through explicit setting of array_size
5659          * attribute.
5660          */
5661         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5662             < mddev->array_sectors) {
5663                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5664                        "before number of disks\n", mdname(mddev));
5665                 return -EINVAL;
5666         }
5667
5668         atomic_set(&conf->reshape_stripes, 0);
5669         spin_lock_irq(&conf->device_lock);
5670         conf->previous_raid_disks = conf->raid_disks;
5671         conf->raid_disks += mddev->delta_disks;
5672         conf->prev_chunk_sectors = conf->chunk_sectors;
5673         conf->chunk_sectors = mddev->new_chunk_sectors;
5674         conf->prev_algo = conf->algorithm;
5675         conf->algorithm = mddev->new_layout;
5676         conf->generation++;
5677         /* Code that selects data_offset needs to see the generation update
5678          * if reshape_progress has been set - so a memory barrier needed.
5679          */
5680         smp_mb();
5681         if (mddev->reshape_backwards)
5682                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5683         else
5684                 conf->reshape_progress = 0;
5685         conf->reshape_safe = conf->reshape_progress;
5686         spin_unlock_irq(&conf->device_lock);
5687
5688         /* Add some new drives, as many as will fit.
5689          * We know there are enough to make the newly sized array work.
5690          * Don't add devices if we are reducing the number of
5691          * devices in the array.  This is because it is not possible
5692          * to correctly record the "partially reconstructed" state of
5693          * such devices during the reshape and confusion could result.
5694          */
5695         if (mddev->delta_disks >= 0) {
5696                 rdev_for_each(rdev, mddev)
5697                         if (rdev->raid_disk < 0 &&
5698                             !test_bit(Faulty, &rdev->flags)) {
5699                                 if (raid5_add_disk(mddev, rdev) == 0) {
5700                                         if (rdev->raid_disk
5701                                             >= conf->previous_raid_disks)
5702                                                 set_bit(In_sync, &rdev->flags);
5703                                         else
5704                                                 rdev->recovery_offset = 0;
5705
5706                                         if (sysfs_link_rdev(mddev, rdev))
5707                                                 /* Failure here is OK */;
5708                                 }
5709                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5710                                    && !test_bit(Faulty, &rdev->flags)) {
5711                                 /* This is a spare that was manually added */
5712                                 set_bit(In_sync, &rdev->flags);
5713                         }
5714
5715                 /* When a reshape changes the number of devices,
5716                  * ->degraded is measured against the larger of the
5717                  * pre and post number of devices.
5718                  */
5719                 spin_lock_irqsave(&conf->device_lock, flags);
5720                 mddev->degraded = calc_degraded(conf);
5721                 spin_unlock_irqrestore(&conf->device_lock, flags);
5722         }
5723         mddev->raid_disks = conf->raid_disks;
5724         mddev->reshape_position = conf->reshape_progress;
5725         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5726
5727         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5728         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5729         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5730         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5731         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5732                                                 "reshape");
5733         if (!mddev->sync_thread) {
5734                 mddev->recovery = 0;
5735                 spin_lock_irq(&conf->device_lock);
5736                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5737                 rdev_for_each(rdev, mddev)
5738                         rdev->new_data_offset = rdev->data_offset;
5739                 smp_wmb();
5740                 conf->reshape_progress = MaxSector;
5741                 mddev->reshape_position = MaxSector;
5742                 spin_unlock_irq(&conf->device_lock);
5743                 return -EAGAIN;
5744         }
5745         conf->reshape_checkpoint = jiffies;
5746         md_wakeup_thread(mddev->sync_thread);
5747         md_new_event(mddev);
5748         return 0;
5749 }
5750
5751 /* This is called from the reshape thread and should make any
5752  * changes needed in 'conf'
5753  */
5754 static void end_reshape(struct r5conf *conf)
5755 {
5756
5757         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5758                 struct md_rdev *rdev;
5759
5760                 spin_lock_irq(&conf->device_lock);
5761                 conf->previous_raid_disks = conf->raid_disks;
5762                 rdev_for_each(rdev, conf->mddev)
5763                         rdev->data_offset = rdev->new_data_offset;
5764                 smp_wmb();
5765                 conf->reshape_progress = MaxSector;
5766                 spin_unlock_irq(&conf->device_lock);
5767                 wake_up(&conf->wait_for_overlap);
5768
5769                 /* read-ahead size must cover two whole stripes, which is
5770                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5771                  */
5772                 if (conf->mddev->queue) {
5773                         int data_disks = conf->raid_disks - conf->max_degraded;
5774                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5775                                                    / PAGE_SIZE);
5776                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5777                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5778                 }
5779         }
5780 }
5781
5782 /* This is called from the raid5d thread with mddev_lock held.
5783  * It makes config changes to the device.
5784  */
5785 static void raid5_finish_reshape(struct mddev *mddev)
5786 {
5787         struct r5conf *conf = mddev->private;
5788
5789         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5790
5791                 if (mddev->delta_disks > 0) {
5792                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5793                         set_capacity(mddev->gendisk, mddev->array_sectors);
5794                         revalidate_disk(mddev->gendisk);
5795                 } else {
5796                         int d;
5797                         spin_lock_irq(&conf->device_lock);
5798                         mddev->degraded = calc_degraded(conf);
5799                         spin_unlock_irq(&conf->device_lock);
5800                         for (d = conf->raid_disks ;
5801                              d < conf->raid_disks - mddev->delta_disks;
5802                              d++) {
5803                                 struct md_rdev *rdev = conf->disks[d].rdev;
5804                                 if (rdev)
5805                                         clear_bit(In_sync, &rdev->flags);
5806                                 rdev = conf->disks[d].replacement;
5807                                 if (rdev)
5808                                         clear_bit(In_sync, &rdev->flags);
5809                         }
5810                 }
5811                 mddev->layout = conf->algorithm;
5812                 mddev->chunk_sectors = conf->chunk_sectors;
5813                 mddev->reshape_position = MaxSector;
5814                 mddev->delta_disks = 0;
5815                 mddev->reshape_backwards = 0;
5816         }
5817 }
5818
5819 static void raid5_quiesce(struct mddev *mddev, int state)
5820 {
5821         struct r5conf *conf = mddev->private;
5822
5823         switch(state) {
5824         case 2: /* resume for a suspend */
5825                 wake_up(&conf->wait_for_overlap);
5826                 break;
5827
5828         case 1: /* stop all writes */
5829                 spin_lock_irq(&conf->device_lock);
5830                 /* '2' tells resync/reshape to pause so that all
5831                  * active stripes can drain
5832                  */
5833                 conf->quiesce = 2;
5834                 wait_event_lock_irq(conf->wait_for_stripe,
5835                                     atomic_read(&conf->active_stripes) == 0 &&
5836                                     atomic_read(&conf->active_aligned_reads) == 0,
5837                                     conf->device_lock, /* nothing */);
5838                 conf->quiesce = 1;
5839                 spin_unlock_irq(&conf->device_lock);
5840                 /* allow reshape to continue */
5841                 wake_up(&conf->wait_for_overlap);
5842                 break;
5843
5844         case 0: /* re-enable writes */
5845                 spin_lock_irq(&conf->device_lock);
5846                 conf->quiesce = 0;
5847                 wake_up(&conf->wait_for_stripe);
5848                 wake_up(&conf->wait_for_overlap);
5849                 spin_unlock_irq(&conf->device_lock);
5850                 break;
5851         }
5852 }
5853
5854
5855 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5856 {
5857         struct r0conf *raid0_conf = mddev->private;
5858         sector_t sectors;
5859
5860         /* for raid0 takeover only one zone is supported */
5861         if (raid0_conf->nr_strip_zones > 1) {
5862                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5863                        mdname(mddev));
5864                 return ERR_PTR(-EINVAL);
5865         }
5866
5867         sectors = raid0_conf->strip_zone[0].zone_end;
5868         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5869         mddev->dev_sectors = sectors;
5870         mddev->new_level = level;
5871         mddev->new_layout = ALGORITHM_PARITY_N;
5872         mddev->new_chunk_sectors = mddev->chunk_sectors;
5873         mddev->raid_disks += 1;
5874         mddev->delta_disks = 1;
5875         /* make sure it will be not marked as dirty */
5876         mddev->recovery_cp = MaxSector;
5877
5878         return setup_conf(mddev);
5879 }
5880
5881
5882 static void *raid5_takeover_raid1(struct mddev *mddev)
5883 {
5884         int chunksect;
5885
5886         if (mddev->raid_disks != 2 ||
5887             mddev->degraded > 1)
5888                 return ERR_PTR(-EINVAL);
5889
5890         /* Should check if there are write-behind devices? */
5891
5892         chunksect = 64*2; /* 64K by default */
5893
5894         /* The array must be an exact multiple of chunksize */
5895         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5896                 chunksect >>= 1;
5897
5898         if ((chunksect<<9) < STRIPE_SIZE)
5899                 /* array size does not allow a suitable chunk size */
5900                 return ERR_PTR(-EINVAL);
5901
5902         mddev->new_level = 5;
5903         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5904         mddev->new_chunk_sectors = chunksect;
5905
5906         return setup_conf(mddev);
5907 }
5908
5909 static void *raid5_takeover_raid6(struct mddev *mddev)
5910 {
5911         int new_layout;
5912
5913         switch (mddev->layout) {
5914         case ALGORITHM_LEFT_ASYMMETRIC_6:
5915                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5916                 break;
5917         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5918                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5919                 break;
5920         case ALGORITHM_LEFT_SYMMETRIC_6:
5921                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5922                 break;
5923         case ALGORITHM_RIGHT_SYMMETRIC_6:
5924                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5925                 break;
5926         case ALGORITHM_PARITY_0_6:
5927                 new_layout = ALGORITHM_PARITY_0;
5928                 break;
5929         case ALGORITHM_PARITY_N:
5930                 new_layout = ALGORITHM_PARITY_N;
5931                 break;
5932         default:
5933                 return ERR_PTR(-EINVAL);
5934         }
5935         mddev->new_level = 5;
5936         mddev->new_layout = new_layout;
5937         mddev->delta_disks = -1;
5938         mddev->raid_disks -= 1;
5939         return setup_conf(mddev);
5940 }
5941
5942
5943 static int raid5_check_reshape(struct mddev *mddev)
5944 {
5945         /* For a 2-drive array, the layout and chunk size can be changed
5946          * immediately as not restriping is needed.
5947          * For larger arrays we record the new value - after validation
5948          * to be used by a reshape pass.
5949          */
5950         struct r5conf *conf = mddev->private;
5951         int new_chunk = mddev->new_chunk_sectors;
5952
5953         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5954                 return -EINVAL;
5955         if (new_chunk > 0) {
5956                 if (!is_power_of_2(new_chunk))
5957                         return -EINVAL;
5958                 if (new_chunk < (PAGE_SIZE>>9))
5959                         return -EINVAL;
5960                 if (mddev->array_sectors & (new_chunk-1))
5961                         /* not factor of array size */
5962                         return -EINVAL;
5963         }
5964
5965         /* They look valid */
5966
5967         if (mddev->raid_disks == 2) {
5968                 /* can make the change immediately */
5969                 if (mddev->new_layout >= 0) {
5970                         conf->algorithm = mddev->new_layout;
5971                         mddev->layout = mddev->new_layout;
5972                 }
5973                 if (new_chunk > 0) {
5974                         conf->chunk_sectors = new_chunk ;
5975                         mddev->chunk_sectors = new_chunk;
5976                 }
5977                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5978                 md_wakeup_thread(mddev->thread);
5979         }
5980         return check_reshape(mddev);
5981 }
5982
5983 static int raid6_check_reshape(struct mddev *mddev)
5984 {
5985         int new_chunk = mddev->new_chunk_sectors;
5986
5987         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5988                 return -EINVAL;
5989         if (new_chunk > 0) {
5990                 if (!is_power_of_2(new_chunk))
5991                         return -EINVAL;
5992                 if (new_chunk < (PAGE_SIZE >> 9))
5993                         return -EINVAL;
5994                 if (mddev->array_sectors & (new_chunk-1))
5995                         /* not factor of array size */
5996                         return -EINVAL;
5997         }
5998
5999         /* They look valid */
6000         return check_reshape(mddev);
6001 }
6002
6003 static void *raid5_takeover(struct mddev *mddev)
6004 {
6005         /* raid5 can take over:
6006          *  raid0 - if there is only one strip zone - make it a raid4 layout
6007          *  raid1 - if there are two drives.  We need to know the chunk size
6008          *  raid4 - trivial - just use a raid4 layout.
6009          *  raid6 - Providing it is a *_6 layout
6010          */
6011         if (mddev->level == 0)
6012                 return raid45_takeover_raid0(mddev, 5);
6013         if (mddev->level == 1)
6014                 return raid5_takeover_raid1(mddev);
6015         if (mddev->level == 4) {
6016                 mddev->new_layout = ALGORITHM_PARITY_N;
6017                 mddev->new_level = 5;
6018                 return setup_conf(mddev);
6019         }
6020         if (mddev->level == 6)
6021                 return raid5_takeover_raid6(mddev);
6022
6023         return ERR_PTR(-EINVAL);
6024 }
6025
6026 static void *raid4_takeover(struct mddev *mddev)
6027 {
6028         /* raid4 can take over:
6029          *  raid0 - if there is only one strip zone
6030          *  raid5 - if layout is right
6031          */
6032         if (mddev->level == 0)
6033                 return raid45_takeover_raid0(mddev, 4);
6034         if (mddev->level == 5 &&
6035             mddev->layout == ALGORITHM_PARITY_N) {
6036                 mddev->new_layout = 0;
6037                 mddev->new_level = 4;
6038                 return setup_conf(mddev);
6039         }
6040         return ERR_PTR(-EINVAL);
6041 }
6042
6043 static struct md_personality raid5_personality;
6044
6045 static void *raid6_takeover(struct mddev *mddev)
6046 {
6047         /* Currently can only take over a raid5.  We map the
6048          * personality to an equivalent raid6 personality
6049          * with the Q block at the end.
6050          */
6051         int new_layout;
6052
6053         if (mddev->pers != &raid5_personality)
6054                 return ERR_PTR(-EINVAL);
6055         if (mddev->degraded > 1)
6056                 return ERR_PTR(-EINVAL);
6057         if (mddev->raid_disks > 253)
6058                 return ERR_PTR(-EINVAL);
6059         if (mddev->raid_disks < 3)
6060                 return ERR_PTR(-EINVAL);
6061
6062         switch (mddev->layout) {
6063         case ALGORITHM_LEFT_ASYMMETRIC:
6064                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6065                 break;
6066         case ALGORITHM_RIGHT_ASYMMETRIC:
6067                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6068                 break;
6069         case ALGORITHM_LEFT_SYMMETRIC:
6070                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6071                 break;
6072         case ALGORITHM_RIGHT_SYMMETRIC:
6073                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6074                 break;
6075         case ALGORITHM_PARITY_0:
6076                 new_layout = ALGORITHM_PARITY_0_6;
6077                 break;
6078         case ALGORITHM_PARITY_N:
6079                 new_layout = ALGORITHM_PARITY_N;
6080                 break;
6081         default:
6082                 return ERR_PTR(-EINVAL);
6083         }
6084         mddev->new_level = 6;
6085         mddev->new_layout = new_layout;
6086         mddev->delta_disks = 1;
6087         mddev->raid_disks += 1;
6088         return setup_conf(mddev);
6089 }
6090
6091
6092 static struct md_personality raid6_personality =
6093 {
6094         .name           = "raid6",
6095         .level          = 6,
6096         .owner          = THIS_MODULE,
6097         .make_request   = make_request,
6098         .run            = run,
6099         .stop           = stop,
6100         .status         = status,
6101         .error_handler  = error,
6102         .hot_add_disk   = raid5_add_disk,
6103         .hot_remove_disk= raid5_remove_disk,
6104         .spare_active   = raid5_spare_active,
6105         .sync_request   = sync_request,
6106         .resize         = raid5_resize,
6107         .size           = raid5_size,
6108         .check_reshape  = raid6_check_reshape,
6109         .start_reshape  = raid5_start_reshape,
6110         .finish_reshape = raid5_finish_reshape,
6111         .quiesce        = raid5_quiesce,
6112         .takeover       = raid6_takeover,
6113 };
6114 static struct md_personality raid5_personality =
6115 {
6116         .name           = "raid5",
6117         .level          = 5,
6118         .owner          = THIS_MODULE,
6119         .make_request   = make_request,
6120         .run            = run,
6121         .stop           = stop,
6122         .status         = status,
6123         .error_handler  = error,
6124         .hot_add_disk   = raid5_add_disk,
6125         .hot_remove_disk= raid5_remove_disk,
6126         .spare_active   = raid5_spare_active,
6127         .sync_request   = sync_request,
6128         .resize         = raid5_resize,
6129         .size           = raid5_size,
6130         .check_reshape  = raid5_check_reshape,
6131         .start_reshape  = raid5_start_reshape,
6132         .finish_reshape = raid5_finish_reshape,
6133         .quiesce        = raid5_quiesce,
6134         .takeover       = raid5_takeover,
6135 };
6136
6137 static struct md_personality raid4_personality =
6138 {
6139         .name           = "raid4",
6140         .level          = 4,
6141         .owner          = THIS_MODULE,
6142         .make_request   = make_request,
6143         .run            = run,
6144         .stop           = stop,
6145         .status         = status,
6146         .error_handler  = error,
6147         .hot_add_disk   = raid5_add_disk,
6148         .hot_remove_disk= raid5_remove_disk,
6149         .spare_active   = raid5_spare_active,
6150         .sync_request   = sync_request,
6151         .resize         = raid5_resize,
6152         .size           = raid5_size,
6153         .check_reshape  = raid5_check_reshape,
6154         .start_reshape  = raid5_start_reshape,
6155         .finish_reshape = raid5_finish_reshape,
6156         .quiesce        = raid5_quiesce,
6157         .takeover       = raid4_takeover,
6158 };
6159
6160 static int __init raid5_init(void)
6161 {
6162         register_md_personality(&raid6_personality);
6163         register_md_personality(&raid5_personality);
6164         register_md_personality(&raid4_personality);
6165         return 0;
6166 }
6167
6168 static void raid5_exit(void)
6169 {
6170         unregister_md_personality(&raid6_personality);
6171         unregister_md_personality(&raid5_personality);
6172         unregister_md_personality(&raid4_personality);
6173 }
6174
6175 module_init(raid5_init);
6176 module_exit(raid5_exit);
6177 MODULE_LICENSE("GPL");
6178 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6179 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6180 MODULE_ALIAS("md-raid5");
6181 MODULE_ALIAS("md-raid4");
6182 MODULE_ALIAS("md-level-5");
6183 MODULE_ALIAS("md-level-4");
6184 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6185 MODULE_ALIAS("md-raid6");
6186 MODULE_ALIAS("md-level-6");
6187
6188 /* This used to be two separate modules, they were: */
6189 MODULE_ALIAS("raid5");
6190 MODULE_ALIAS("raid6");