Merge remote-tracking branch 'stable/linux-3.0.y' into develop-3.0-jb
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state) &&
203                             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
204                                 list_add_tail(&sh->lru, &conf->delayed_list);
205                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206                                    sh->bm_seq - conf->seq_write > 0)
207                                 list_add_tail(&sh->lru, &conf->bitmap_list);
208                         else {
209                                 clear_bit(STRIPE_DELAYED, &sh->state);
210                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
211                                 list_add_tail(&sh->lru, &conf->handle_list);
212                         }
213                         md_wakeup_thread(conf->mddev->thread);
214                 } else {
215                         BUG_ON(stripe_operations_active(sh));
216                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217                                 atomic_dec(&conf->preread_active_stripes);
218                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219                                         md_wakeup_thread(conf->mddev->thread);
220                         }
221                         atomic_dec(&conf->active_stripes);
222                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223                                 list_add_tail(&sh->lru, &conf->inactive_list);
224                                 wake_up(&conf->wait_for_stripe);
225                                 if (conf->retry_read_aligned)
226                                         md_wakeup_thread(conf->mddev->thread);
227                         }
228                 }
229         }
230 }
231
232 static void release_stripe(struct stripe_head *sh)
233 {
234         raid5_conf_t *conf = sh->raid_conf;
235         unsigned long flags;
236
237         spin_lock_irqsave(&conf->device_lock, flags);
238         __release_stripe(conf, sh);
239         spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244         pr_debug("remove_hash(), stripe %llu\n",
245                 (unsigned long long)sh->sector);
246
247         hlist_del_init(&sh->hash);
248 }
249
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252         struct hlist_head *hp = stripe_hash(conf, sh->sector);
253
254         pr_debug("insert_hash(), stripe %llu\n",
255                 (unsigned long long)sh->sector);
256
257         CHECK_DEVLOCK();
258         hlist_add_head(&sh->hash, hp);
259 }
260
261
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265         struct stripe_head *sh = NULL;
266         struct list_head *first;
267
268         CHECK_DEVLOCK();
269         if (list_empty(&conf->inactive_list))
270                 goto out;
271         first = conf->inactive_list.next;
272         sh = list_entry(first, struct stripe_head, lru);
273         list_del_init(first);
274         remove_hash(sh);
275         atomic_inc(&conf->active_stripes);
276 out:
277         return sh;
278 }
279
280 static void shrink_buffers(struct stripe_head *sh)
281 {
282         struct page *p;
283         int i;
284         int num = sh->raid_conf->pool_size;
285
286         for (i = 0; i < num ; i++) {
287                 p = sh->dev[i].page;
288                 if (!p)
289                         continue;
290                 sh->dev[i].page = NULL;
291                 put_page(p);
292         }
293 }
294
295 static int grow_buffers(struct stripe_head *sh)
296 {
297         int i;
298         int num = sh->raid_conf->pool_size;
299
300         for (i = 0; i < num; i++) {
301                 struct page *page;
302
303                 if (!(page = alloc_page(GFP_KERNEL))) {
304                         return 1;
305                 }
306                 sh->dev[i].page = page;
307         }
308         return 0;
309 }
310
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313                             struct stripe_head *sh);
314
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
316 {
317         raid5_conf_t *conf = sh->raid_conf;
318         int i;
319
320         BUG_ON(atomic_read(&sh->count) != 0);
321         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322         BUG_ON(stripe_operations_active(sh));
323
324         CHECK_DEVLOCK();
325         pr_debug("init_stripe called, stripe %llu\n",
326                 (unsigned long long)sh->sector);
327
328         remove_hash(sh);
329
330         sh->generation = conf->generation - previous;
331         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332         sh->sector = sector;
333         stripe_set_idx(sector, conf, previous, sh);
334         sh->state = 0;
335
336
337         for (i = sh->disks; i--; ) {
338                 struct r5dev *dev = &sh->dev[i];
339
340                 if (dev->toread || dev->read || dev->towrite || dev->written ||
341                     test_bit(R5_LOCKED, &dev->flags)) {
342                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343                                (unsigned long long)sh->sector, i, dev->toread,
344                                dev->read, dev->towrite, dev->written,
345                                test_bit(R5_LOCKED, &dev->flags));
346                         BUG();
347                 }
348                 dev->flags = 0;
349                 raid5_build_block(sh, i, previous);
350         }
351         insert_hash(conf, sh);
352 }
353
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355                                          short generation)
356 {
357         struct stripe_head *sh;
358         struct hlist_node *hn;
359
360         CHECK_DEVLOCK();
361         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363                 if (sh->sector == sector && sh->generation == generation)
364                         return sh;
365         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366         return NULL;
367 }
368
369 /*
370  * Need to check if array has failed when deciding whether to:
371  *  - start an array
372  *  - remove non-faulty devices
373  *  - add a spare
374  *  - allow a reshape
375  * This determination is simple when no reshape is happening.
376  * However if there is a reshape, we need to carefully check
377  * both the before and after sections.
378  * This is because some failed devices may only affect one
379  * of the two sections, and some non-in_sync devices may
380  * be insync in the section most affected by failed devices.
381  */
382 static int has_failed(raid5_conf_t *conf)
383 {
384         int degraded;
385         int i;
386         if (conf->mddev->reshape_position == MaxSector)
387                 return conf->mddev->degraded > conf->max_degraded;
388
389         rcu_read_lock();
390         degraded = 0;
391         for (i = 0; i < conf->previous_raid_disks; i++) {
392                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393                 if (!rdev || test_bit(Faulty, &rdev->flags))
394                         degraded++;
395                 else if (test_bit(In_sync, &rdev->flags))
396                         ;
397                 else
398                         /* not in-sync or faulty.
399                          * If the reshape increases the number of devices,
400                          * this is being recovered by the reshape, so
401                          * this 'previous' section is not in_sync.
402                          * If the number of devices is being reduced however,
403                          * the device can only be part of the array if
404                          * we are reverting a reshape, so this section will
405                          * be in-sync.
406                          */
407                         if (conf->raid_disks >= conf->previous_raid_disks)
408                                 degraded++;
409         }
410         rcu_read_unlock();
411         if (degraded > conf->max_degraded)
412                 return 1;
413         rcu_read_lock();
414         degraded = 0;
415         for (i = 0; i < conf->raid_disks; i++) {
416                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417                 if (!rdev || test_bit(Faulty, &rdev->flags))
418                         degraded++;
419                 else if (test_bit(In_sync, &rdev->flags))
420                         ;
421                 else
422                         /* not in-sync or faulty.
423                          * If reshape increases the number of devices, this
424                          * section has already been recovered, else it
425                          * almost certainly hasn't.
426                          */
427                         if (conf->raid_disks <= conf->previous_raid_disks)
428                                 degraded++;
429         }
430         rcu_read_unlock();
431         if (degraded > conf->max_degraded)
432                 return 1;
433         return 0;
434 }
435
436 static struct stripe_head *
437 get_active_stripe(raid5_conf_t *conf, sector_t sector,
438                   int previous, int noblock, int noquiesce)
439 {
440         struct stripe_head *sh;
441
442         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
443
444         spin_lock_irq(&conf->device_lock);
445
446         do {
447                 wait_event_lock_irq(conf->wait_for_stripe,
448                                     conf->quiesce == 0 || noquiesce,
449                                     conf->device_lock, /* nothing */);
450                 sh = __find_stripe(conf, sector, conf->generation - previous);
451                 if (!sh) {
452                         if (!conf->inactive_blocked)
453                                 sh = get_free_stripe(conf);
454                         if (noblock && sh == NULL)
455                                 break;
456                         if (!sh) {
457                                 conf->inactive_blocked = 1;
458                                 wait_event_lock_irq(conf->wait_for_stripe,
459                                                     !list_empty(&conf->inactive_list) &&
460                                                     (atomic_read(&conf->active_stripes)
461                                                      < (conf->max_nr_stripes *3/4)
462                                                      || !conf->inactive_blocked),
463                                                     conf->device_lock,
464                                                     );
465                                 conf->inactive_blocked = 0;
466                         } else
467                                 init_stripe(sh, sector, previous);
468                 } else {
469                         if (atomic_read(&sh->count)) {
470                                 BUG_ON(!list_empty(&sh->lru)
471                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
472                         } else {
473                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
474                                         atomic_inc(&conf->active_stripes);
475                                 if (list_empty(&sh->lru) &&
476                                     !test_bit(STRIPE_EXPANDING, &sh->state))
477                                         BUG();
478                                 list_del_init(&sh->lru);
479                         }
480                 }
481         } while (sh == NULL);
482
483         if (sh)
484                 atomic_inc(&sh->count);
485
486         spin_unlock_irq(&conf->device_lock);
487         return sh;
488 }
489
490 static void
491 raid5_end_read_request(struct bio *bi, int error);
492 static void
493 raid5_end_write_request(struct bio *bi, int error);
494
495 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
496 {
497         raid5_conf_t *conf = sh->raid_conf;
498         int i, disks = sh->disks;
499
500         might_sleep();
501
502         for (i = disks; i--; ) {
503                 int rw;
504                 struct bio *bi;
505                 mdk_rdev_t *rdev;
506                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
507                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
508                                 rw = WRITE_FUA;
509                         else
510                                 rw = WRITE;
511                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
512                         rw = READ;
513                 else
514                         continue;
515
516                 bi = &sh->dev[i].req;
517
518                 bi->bi_rw = rw;
519                 if (rw & WRITE)
520                         bi->bi_end_io = raid5_end_write_request;
521                 else
522                         bi->bi_end_io = raid5_end_read_request;
523
524                 rcu_read_lock();
525                 rdev = rcu_dereference(conf->disks[i].rdev);
526                 if (rdev && test_bit(Faulty, &rdev->flags))
527                         rdev = NULL;
528                 if (rdev)
529                         atomic_inc(&rdev->nr_pending);
530                 rcu_read_unlock();
531
532                 if (rdev) {
533                         if (s->syncing || s->expanding || s->expanded)
534                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
535
536                         set_bit(STRIPE_IO_STARTED, &sh->state);
537
538                         bi->bi_bdev = rdev->bdev;
539                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
540                                 __func__, (unsigned long long)sh->sector,
541                                 bi->bi_rw, i);
542                         atomic_inc(&sh->count);
543                         bi->bi_sector = sh->sector + rdev->data_offset;
544                         bi->bi_flags = 1 << BIO_UPTODATE;
545                         bi->bi_vcnt = 1;
546                         bi->bi_max_vecs = 1;
547                         bi->bi_idx = 0;
548                         bi->bi_io_vec = &sh->dev[i].vec;
549                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
550                         bi->bi_io_vec[0].bv_offset = 0;
551                         bi->bi_size = STRIPE_SIZE;
552                         bi->bi_next = NULL;
553                         if ((rw & WRITE) &&
554                             test_bit(R5_ReWrite, &sh->dev[i].flags))
555                                 atomic_add(STRIPE_SECTORS,
556                                         &rdev->corrected_errors);
557                         generic_make_request(bi);
558                 } else {
559                         if (rw & WRITE)
560                                 set_bit(STRIPE_DEGRADED, &sh->state);
561                         pr_debug("skip op %ld on disc %d for sector %llu\n",
562                                 bi->bi_rw, i, (unsigned long long)sh->sector);
563                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
564                         set_bit(STRIPE_HANDLE, &sh->state);
565                 }
566         }
567 }
568
569 static struct dma_async_tx_descriptor *
570 async_copy_data(int frombio, struct bio *bio, struct page *page,
571         sector_t sector, struct dma_async_tx_descriptor *tx)
572 {
573         struct bio_vec *bvl;
574         struct page *bio_page;
575         int i;
576         int page_offset;
577         struct async_submit_ctl submit;
578         enum async_tx_flags flags = 0;
579
580         if (bio->bi_sector >= sector)
581                 page_offset = (signed)(bio->bi_sector - sector) * 512;
582         else
583                 page_offset = (signed)(sector - bio->bi_sector) * -512;
584
585         if (frombio)
586                 flags |= ASYNC_TX_FENCE;
587         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
588
589         bio_for_each_segment(bvl, bio, i) {
590                 int len = bvl->bv_len;
591                 int clen;
592                 int b_offset = 0;
593
594                 if (page_offset < 0) {
595                         b_offset = -page_offset;
596                         page_offset += b_offset;
597                         len -= b_offset;
598                 }
599
600                 if (len > 0 && page_offset + len > STRIPE_SIZE)
601                         clen = STRIPE_SIZE - page_offset;
602                 else
603                         clen = len;
604
605                 if (clen > 0) {
606                         b_offset += bvl->bv_offset;
607                         bio_page = bvl->bv_page;
608                         if (frombio)
609                                 tx = async_memcpy(page, bio_page, page_offset,
610                                                   b_offset, clen, &submit);
611                         else
612                                 tx = async_memcpy(bio_page, page, b_offset,
613                                                   page_offset, clen, &submit);
614                 }
615                 /* chain the operations */
616                 submit.depend_tx = tx;
617
618                 if (clen < len) /* hit end of page */
619                         break;
620                 page_offset +=  len;
621         }
622
623         return tx;
624 }
625
626 static void ops_complete_biofill(void *stripe_head_ref)
627 {
628         struct stripe_head *sh = stripe_head_ref;
629         struct bio *return_bi = NULL;
630         raid5_conf_t *conf = sh->raid_conf;
631         int i;
632
633         pr_debug("%s: stripe %llu\n", __func__,
634                 (unsigned long long)sh->sector);
635
636         /* clear completed biofills */
637         spin_lock_irq(&conf->device_lock);
638         for (i = sh->disks; i--; ) {
639                 struct r5dev *dev = &sh->dev[i];
640
641                 /* acknowledge completion of a biofill operation */
642                 /* and check if we need to reply to a read request,
643                  * new R5_Wantfill requests are held off until
644                  * !STRIPE_BIOFILL_RUN
645                  */
646                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
647                         struct bio *rbi, *rbi2;
648
649                         BUG_ON(!dev->read);
650                         rbi = dev->read;
651                         dev->read = NULL;
652                         while (rbi && rbi->bi_sector <
653                                 dev->sector + STRIPE_SECTORS) {
654                                 rbi2 = r5_next_bio(rbi, dev->sector);
655                                 if (!raid5_dec_bi_phys_segments(rbi)) {
656                                         rbi->bi_next = return_bi;
657                                         return_bi = rbi;
658                                 }
659                                 rbi = rbi2;
660                         }
661                 }
662         }
663         spin_unlock_irq(&conf->device_lock);
664         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
665
666         return_io(return_bi);
667
668         set_bit(STRIPE_HANDLE, &sh->state);
669         release_stripe(sh);
670 }
671
672 static void ops_run_biofill(struct stripe_head *sh)
673 {
674         struct dma_async_tx_descriptor *tx = NULL;
675         raid5_conf_t *conf = sh->raid_conf;
676         struct async_submit_ctl submit;
677         int i;
678
679         pr_debug("%s: stripe %llu\n", __func__,
680                 (unsigned long long)sh->sector);
681
682         for (i = sh->disks; i--; ) {
683                 struct r5dev *dev = &sh->dev[i];
684                 if (test_bit(R5_Wantfill, &dev->flags)) {
685                         struct bio *rbi;
686                         spin_lock_irq(&conf->device_lock);
687                         dev->read = rbi = dev->toread;
688                         dev->toread = NULL;
689                         spin_unlock_irq(&conf->device_lock);
690                         while (rbi && rbi->bi_sector <
691                                 dev->sector + STRIPE_SECTORS) {
692                                 tx = async_copy_data(0, rbi, dev->page,
693                                         dev->sector, tx);
694                                 rbi = r5_next_bio(rbi, dev->sector);
695                         }
696                 }
697         }
698
699         atomic_inc(&sh->count);
700         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
701         async_trigger_callback(&submit);
702 }
703
704 static void mark_target_uptodate(struct stripe_head *sh, int target)
705 {
706         struct r5dev *tgt;
707
708         if (target < 0)
709                 return;
710
711         tgt = &sh->dev[target];
712         set_bit(R5_UPTODATE, &tgt->flags);
713         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
714         clear_bit(R5_Wantcompute, &tgt->flags);
715 }
716
717 static void ops_complete_compute(void *stripe_head_ref)
718 {
719         struct stripe_head *sh = stripe_head_ref;
720
721         pr_debug("%s: stripe %llu\n", __func__,
722                 (unsigned long long)sh->sector);
723
724         /* mark the computed target(s) as uptodate */
725         mark_target_uptodate(sh, sh->ops.target);
726         mark_target_uptodate(sh, sh->ops.target2);
727
728         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
729         if (sh->check_state == check_state_compute_run)
730                 sh->check_state = check_state_compute_result;
731         set_bit(STRIPE_HANDLE, &sh->state);
732         release_stripe(sh);
733 }
734
735 /* return a pointer to the address conversion region of the scribble buffer */
736 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
737                                  struct raid5_percpu *percpu)
738 {
739         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
740 }
741
742 static struct dma_async_tx_descriptor *
743 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
744 {
745         int disks = sh->disks;
746         struct page **xor_srcs = percpu->scribble;
747         int target = sh->ops.target;
748         struct r5dev *tgt = &sh->dev[target];
749         struct page *xor_dest = tgt->page;
750         int count = 0;
751         struct dma_async_tx_descriptor *tx;
752         struct async_submit_ctl submit;
753         int i;
754
755         pr_debug("%s: stripe %llu block: %d\n",
756                 __func__, (unsigned long long)sh->sector, target);
757         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
758
759         for (i = disks; i--; )
760                 if (i != target)
761                         xor_srcs[count++] = sh->dev[i].page;
762
763         atomic_inc(&sh->count);
764
765         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
766                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
767         if (unlikely(count == 1))
768                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
769         else
770                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
771
772         return tx;
773 }
774
775 /* set_syndrome_sources - populate source buffers for gen_syndrome
776  * @srcs - (struct page *) array of size sh->disks
777  * @sh - stripe_head to parse
778  *
779  * Populates srcs in proper layout order for the stripe and returns the
780  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
781  * destination buffer is recorded in srcs[count] and the Q destination
782  * is recorded in srcs[count+1]].
783  */
784 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
785 {
786         int disks = sh->disks;
787         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
788         int d0_idx = raid6_d0(sh);
789         int count;
790         int i;
791
792         for (i = 0; i < disks; i++)
793                 srcs[i] = NULL;
794
795         count = 0;
796         i = d0_idx;
797         do {
798                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
799
800                 srcs[slot] = sh->dev[i].page;
801                 i = raid6_next_disk(i, disks);
802         } while (i != d0_idx);
803
804         return syndrome_disks;
805 }
806
807 static struct dma_async_tx_descriptor *
808 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
809 {
810         int disks = sh->disks;
811         struct page **blocks = percpu->scribble;
812         int target;
813         int qd_idx = sh->qd_idx;
814         struct dma_async_tx_descriptor *tx;
815         struct async_submit_ctl submit;
816         struct r5dev *tgt;
817         struct page *dest;
818         int i;
819         int count;
820
821         if (sh->ops.target < 0)
822                 target = sh->ops.target2;
823         else if (sh->ops.target2 < 0)
824                 target = sh->ops.target;
825         else
826                 /* we should only have one valid target */
827                 BUG();
828         BUG_ON(target < 0);
829         pr_debug("%s: stripe %llu block: %d\n",
830                 __func__, (unsigned long long)sh->sector, target);
831
832         tgt = &sh->dev[target];
833         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
834         dest = tgt->page;
835
836         atomic_inc(&sh->count);
837
838         if (target == qd_idx) {
839                 count = set_syndrome_sources(blocks, sh);
840                 blocks[count] = NULL; /* regenerating p is not necessary */
841                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
842                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
843                                   ops_complete_compute, sh,
844                                   to_addr_conv(sh, percpu));
845                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
846         } else {
847                 /* Compute any data- or p-drive using XOR */
848                 count = 0;
849                 for (i = disks; i-- ; ) {
850                         if (i == target || i == qd_idx)
851                                 continue;
852                         blocks[count++] = sh->dev[i].page;
853                 }
854
855                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
856                                   NULL, ops_complete_compute, sh,
857                                   to_addr_conv(sh, percpu));
858                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
859         }
860
861         return tx;
862 }
863
864 static struct dma_async_tx_descriptor *
865 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
866 {
867         int i, count, disks = sh->disks;
868         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
869         int d0_idx = raid6_d0(sh);
870         int faila = -1, failb = -1;
871         int target = sh->ops.target;
872         int target2 = sh->ops.target2;
873         struct r5dev *tgt = &sh->dev[target];
874         struct r5dev *tgt2 = &sh->dev[target2];
875         struct dma_async_tx_descriptor *tx;
876         struct page **blocks = percpu->scribble;
877         struct async_submit_ctl submit;
878
879         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
880                  __func__, (unsigned long long)sh->sector, target, target2);
881         BUG_ON(target < 0 || target2 < 0);
882         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
883         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
884
885         /* we need to open-code set_syndrome_sources to handle the
886          * slot number conversion for 'faila' and 'failb'
887          */
888         for (i = 0; i < disks ; i++)
889                 blocks[i] = NULL;
890         count = 0;
891         i = d0_idx;
892         do {
893                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
894
895                 blocks[slot] = sh->dev[i].page;
896
897                 if (i == target)
898                         faila = slot;
899                 if (i == target2)
900                         failb = slot;
901                 i = raid6_next_disk(i, disks);
902         } while (i != d0_idx);
903
904         BUG_ON(faila == failb);
905         if (failb < faila)
906                 swap(faila, failb);
907         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
908                  __func__, (unsigned long long)sh->sector, faila, failb);
909
910         atomic_inc(&sh->count);
911
912         if (failb == syndrome_disks+1) {
913                 /* Q disk is one of the missing disks */
914                 if (faila == syndrome_disks) {
915                         /* Missing P+Q, just recompute */
916                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
917                                           ops_complete_compute, sh,
918                                           to_addr_conv(sh, percpu));
919                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
920                                                   STRIPE_SIZE, &submit);
921                 } else {
922                         struct page *dest;
923                         int data_target;
924                         int qd_idx = sh->qd_idx;
925
926                         /* Missing D+Q: recompute D from P, then recompute Q */
927                         if (target == qd_idx)
928                                 data_target = target2;
929                         else
930                                 data_target = target;
931
932                         count = 0;
933                         for (i = disks; i-- ; ) {
934                                 if (i == data_target || i == qd_idx)
935                                         continue;
936                                 blocks[count++] = sh->dev[i].page;
937                         }
938                         dest = sh->dev[data_target].page;
939                         init_async_submit(&submit,
940                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
941                                           NULL, NULL, NULL,
942                                           to_addr_conv(sh, percpu));
943                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
944                                        &submit);
945
946                         count = set_syndrome_sources(blocks, sh);
947                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
948                                           ops_complete_compute, sh,
949                                           to_addr_conv(sh, percpu));
950                         return async_gen_syndrome(blocks, 0, count+2,
951                                                   STRIPE_SIZE, &submit);
952                 }
953         } else {
954                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
955                                   ops_complete_compute, sh,
956                                   to_addr_conv(sh, percpu));
957                 if (failb == syndrome_disks) {
958                         /* We're missing D+P. */
959                         return async_raid6_datap_recov(syndrome_disks+2,
960                                                        STRIPE_SIZE, faila,
961                                                        blocks, &submit);
962                 } else {
963                         /* We're missing D+D. */
964                         return async_raid6_2data_recov(syndrome_disks+2,
965                                                        STRIPE_SIZE, faila, failb,
966                                                        blocks, &submit);
967                 }
968         }
969 }
970
971
972 static void ops_complete_prexor(void *stripe_head_ref)
973 {
974         struct stripe_head *sh = stripe_head_ref;
975
976         pr_debug("%s: stripe %llu\n", __func__,
977                 (unsigned long long)sh->sector);
978 }
979
980 static struct dma_async_tx_descriptor *
981 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
982                struct dma_async_tx_descriptor *tx)
983 {
984         int disks = sh->disks;
985         struct page **xor_srcs = percpu->scribble;
986         int count = 0, pd_idx = sh->pd_idx, i;
987         struct async_submit_ctl submit;
988
989         /* existing parity data subtracted */
990         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
991
992         pr_debug("%s: stripe %llu\n", __func__,
993                 (unsigned long long)sh->sector);
994
995         for (i = disks; i--; ) {
996                 struct r5dev *dev = &sh->dev[i];
997                 /* Only process blocks that are known to be uptodate */
998                 if (test_bit(R5_Wantdrain, &dev->flags))
999                         xor_srcs[count++] = dev->page;
1000         }
1001
1002         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1003                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1004         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1005
1006         return tx;
1007 }
1008
1009 static struct dma_async_tx_descriptor *
1010 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1011 {
1012         int disks = sh->disks;
1013         int i;
1014
1015         pr_debug("%s: stripe %llu\n", __func__,
1016                 (unsigned long long)sh->sector);
1017
1018         for (i = disks; i--; ) {
1019                 struct r5dev *dev = &sh->dev[i];
1020                 struct bio *chosen;
1021
1022                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1023                         struct bio *wbi;
1024
1025                         spin_lock(&sh->lock);
1026                         chosen = dev->towrite;
1027                         dev->towrite = NULL;
1028                         BUG_ON(dev->written);
1029                         wbi = dev->written = chosen;
1030                         spin_unlock(&sh->lock);
1031
1032                         while (wbi && wbi->bi_sector <
1033                                 dev->sector + STRIPE_SECTORS) {
1034                                 if (wbi->bi_rw & REQ_FUA)
1035                                         set_bit(R5_WantFUA, &dev->flags);
1036                                 tx = async_copy_data(1, wbi, dev->page,
1037                                         dev->sector, tx);
1038                                 wbi = r5_next_bio(wbi, dev->sector);
1039                         }
1040                 }
1041         }
1042
1043         return tx;
1044 }
1045
1046 static void ops_complete_reconstruct(void *stripe_head_ref)
1047 {
1048         struct stripe_head *sh = stripe_head_ref;
1049         int disks = sh->disks;
1050         int pd_idx = sh->pd_idx;
1051         int qd_idx = sh->qd_idx;
1052         int i;
1053         bool fua = false;
1054
1055         pr_debug("%s: stripe %llu\n", __func__,
1056                 (unsigned long long)sh->sector);
1057
1058         for (i = disks; i--; )
1059                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1060
1061         for (i = disks; i--; ) {
1062                 struct r5dev *dev = &sh->dev[i];
1063
1064                 if (dev->written || i == pd_idx || i == qd_idx) {
1065                         set_bit(R5_UPTODATE, &dev->flags);
1066                         if (fua)
1067                                 set_bit(R5_WantFUA, &dev->flags);
1068                 }
1069         }
1070
1071         if (sh->reconstruct_state == reconstruct_state_drain_run)
1072                 sh->reconstruct_state = reconstruct_state_drain_result;
1073         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1074                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1075         else {
1076                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1077                 sh->reconstruct_state = reconstruct_state_result;
1078         }
1079
1080         set_bit(STRIPE_HANDLE, &sh->state);
1081         release_stripe(sh);
1082 }
1083
1084 static void
1085 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1086                      struct dma_async_tx_descriptor *tx)
1087 {
1088         int disks = sh->disks;
1089         struct page **xor_srcs = percpu->scribble;
1090         struct async_submit_ctl submit;
1091         int count = 0, pd_idx = sh->pd_idx, i;
1092         struct page *xor_dest;
1093         int prexor = 0;
1094         unsigned long flags;
1095
1096         pr_debug("%s: stripe %llu\n", __func__,
1097                 (unsigned long long)sh->sector);
1098
1099         /* check if prexor is active which means only process blocks
1100          * that are part of a read-modify-write (written)
1101          */
1102         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1103                 prexor = 1;
1104                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1105                 for (i = disks; i--; ) {
1106                         struct r5dev *dev = &sh->dev[i];
1107                         if (dev->written)
1108                                 xor_srcs[count++] = dev->page;
1109                 }
1110         } else {
1111                 xor_dest = sh->dev[pd_idx].page;
1112                 for (i = disks; i--; ) {
1113                         struct r5dev *dev = &sh->dev[i];
1114                         if (i != pd_idx)
1115                                 xor_srcs[count++] = dev->page;
1116                 }
1117         }
1118
1119         /* 1/ if we prexor'd then the dest is reused as a source
1120          * 2/ if we did not prexor then we are redoing the parity
1121          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1122          * for the synchronous xor case
1123          */
1124         flags = ASYNC_TX_ACK |
1125                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1126
1127         atomic_inc(&sh->count);
1128
1129         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1130                           to_addr_conv(sh, percpu));
1131         if (unlikely(count == 1))
1132                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1133         else
1134                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1135 }
1136
1137 static void
1138 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1139                      struct dma_async_tx_descriptor *tx)
1140 {
1141         struct async_submit_ctl submit;
1142         struct page **blocks = percpu->scribble;
1143         int count;
1144
1145         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1146
1147         count = set_syndrome_sources(blocks, sh);
1148
1149         atomic_inc(&sh->count);
1150
1151         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1152                           sh, to_addr_conv(sh, percpu));
1153         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1154 }
1155
1156 static void ops_complete_check(void *stripe_head_ref)
1157 {
1158         struct stripe_head *sh = stripe_head_ref;
1159
1160         pr_debug("%s: stripe %llu\n", __func__,
1161                 (unsigned long long)sh->sector);
1162
1163         sh->check_state = check_state_check_result;
1164         set_bit(STRIPE_HANDLE, &sh->state);
1165         release_stripe(sh);
1166 }
1167
1168 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1169 {
1170         int disks = sh->disks;
1171         int pd_idx = sh->pd_idx;
1172         int qd_idx = sh->qd_idx;
1173         struct page *xor_dest;
1174         struct page **xor_srcs = percpu->scribble;
1175         struct dma_async_tx_descriptor *tx;
1176         struct async_submit_ctl submit;
1177         int count;
1178         int i;
1179
1180         pr_debug("%s: stripe %llu\n", __func__,
1181                 (unsigned long long)sh->sector);
1182
1183         count = 0;
1184         xor_dest = sh->dev[pd_idx].page;
1185         xor_srcs[count++] = xor_dest;
1186         for (i = disks; i--; ) {
1187                 if (i == pd_idx || i == qd_idx)
1188                         continue;
1189                 xor_srcs[count++] = sh->dev[i].page;
1190         }
1191
1192         init_async_submit(&submit, 0, NULL, NULL, NULL,
1193                           to_addr_conv(sh, percpu));
1194         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1195                            &sh->ops.zero_sum_result, &submit);
1196
1197         atomic_inc(&sh->count);
1198         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1199         tx = async_trigger_callback(&submit);
1200 }
1201
1202 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1203 {
1204         struct page **srcs = percpu->scribble;
1205         struct async_submit_ctl submit;
1206         int count;
1207
1208         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1209                 (unsigned long long)sh->sector, checkp);
1210
1211         count = set_syndrome_sources(srcs, sh);
1212         if (!checkp)
1213                 srcs[count] = NULL;
1214
1215         atomic_inc(&sh->count);
1216         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1217                           sh, to_addr_conv(sh, percpu));
1218         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1219                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1220 }
1221
1222 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 {
1224         int overlap_clear = 0, i, disks = sh->disks;
1225         struct dma_async_tx_descriptor *tx = NULL;
1226         raid5_conf_t *conf = sh->raid_conf;
1227         int level = conf->level;
1228         struct raid5_percpu *percpu;
1229         unsigned long cpu;
1230
1231         cpu = get_cpu();
1232         percpu = per_cpu_ptr(conf->percpu, cpu);
1233         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1234                 ops_run_biofill(sh);
1235                 overlap_clear++;
1236         }
1237
1238         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1239                 if (level < 6)
1240                         tx = ops_run_compute5(sh, percpu);
1241                 else {
1242                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1243                                 tx = ops_run_compute6_1(sh, percpu);
1244                         else
1245                                 tx = ops_run_compute6_2(sh, percpu);
1246                 }
1247                 /* terminate the chain if reconstruct is not set to be run */
1248                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1249                         async_tx_ack(tx);
1250         }
1251
1252         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1253                 tx = ops_run_prexor(sh, percpu, tx);
1254
1255         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1256                 tx = ops_run_biodrain(sh, tx);
1257                 overlap_clear++;
1258         }
1259
1260         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1261                 if (level < 6)
1262                         ops_run_reconstruct5(sh, percpu, tx);
1263                 else
1264                         ops_run_reconstruct6(sh, percpu, tx);
1265         }
1266
1267         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1268                 if (sh->check_state == check_state_run)
1269                         ops_run_check_p(sh, percpu);
1270                 else if (sh->check_state == check_state_run_q)
1271                         ops_run_check_pq(sh, percpu, 0);
1272                 else if (sh->check_state == check_state_run_pq)
1273                         ops_run_check_pq(sh, percpu, 1);
1274                 else
1275                         BUG();
1276         }
1277
1278         if (overlap_clear)
1279                 for (i = disks; i--; ) {
1280                         struct r5dev *dev = &sh->dev[i];
1281                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1282                                 wake_up(&sh->raid_conf->wait_for_overlap);
1283                 }
1284         put_cpu();
1285 }
1286
1287 #ifdef CONFIG_MULTICORE_RAID456
1288 static void async_run_ops(void *param, async_cookie_t cookie)
1289 {
1290         struct stripe_head *sh = param;
1291         unsigned long ops_request = sh->ops.request;
1292
1293         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1294         wake_up(&sh->ops.wait_for_ops);
1295
1296         __raid_run_ops(sh, ops_request);
1297         release_stripe(sh);
1298 }
1299
1300 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1301 {
1302         /* since handle_stripe can be called outside of raid5d context
1303          * we need to ensure sh->ops.request is de-staged before another
1304          * request arrives
1305          */
1306         wait_event(sh->ops.wait_for_ops,
1307                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1308         sh->ops.request = ops_request;
1309
1310         atomic_inc(&sh->count);
1311         async_schedule(async_run_ops, sh);
1312 }
1313 #else
1314 #define raid_run_ops __raid_run_ops
1315 #endif
1316
1317 static int grow_one_stripe(raid5_conf_t *conf)
1318 {
1319         struct stripe_head *sh;
1320         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1321         if (!sh)
1322                 return 0;
1323         memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1324         sh->raid_conf = conf;
1325         spin_lock_init(&sh->lock);
1326         #ifdef CONFIG_MULTICORE_RAID456
1327         init_waitqueue_head(&sh->ops.wait_for_ops);
1328         #endif
1329
1330         if (grow_buffers(sh)) {
1331                 shrink_buffers(sh);
1332                 kmem_cache_free(conf->slab_cache, sh);
1333                 return 0;
1334         }
1335         /* we just created an active stripe so... */
1336         atomic_set(&sh->count, 1);
1337         atomic_inc(&conf->active_stripes);
1338         INIT_LIST_HEAD(&sh->lru);
1339         release_stripe(sh);
1340         return 1;
1341 }
1342
1343 static int grow_stripes(raid5_conf_t *conf, int num)
1344 {
1345         struct kmem_cache *sc;
1346         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1347
1348         if (conf->mddev->gendisk)
1349                 sprintf(conf->cache_name[0],
1350                         "raid%d-%s", conf->level, mdname(conf->mddev));
1351         else
1352                 sprintf(conf->cache_name[0],
1353                         "raid%d-%p", conf->level, conf->mddev);
1354         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1355
1356         conf->active_name = 0;
1357         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1358                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1359                                0, 0, NULL);
1360         if (!sc)
1361                 return 1;
1362         conf->slab_cache = sc;
1363         conf->pool_size = devs;
1364         while (num--)
1365                 if (!grow_one_stripe(conf))
1366                         return 1;
1367         return 0;
1368 }
1369
1370 /**
1371  * scribble_len - return the required size of the scribble region
1372  * @num - total number of disks in the array
1373  *
1374  * The size must be enough to contain:
1375  * 1/ a struct page pointer for each device in the array +2
1376  * 2/ room to convert each entry in (1) to its corresponding dma
1377  *    (dma_map_page()) or page (page_address()) address.
1378  *
1379  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1380  * calculate over all devices (not just the data blocks), using zeros in place
1381  * of the P and Q blocks.
1382  */
1383 static size_t scribble_len(int num)
1384 {
1385         size_t len;
1386
1387         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1388
1389         return len;
1390 }
1391
1392 static int resize_stripes(raid5_conf_t *conf, int newsize)
1393 {
1394         /* Make all the stripes able to hold 'newsize' devices.
1395          * New slots in each stripe get 'page' set to a new page.
1396          *
1397          * This happens in stages:
1398          * 1/ create a new kmem_cache and allocate the required number of
1399          *    stripe_heads.
1400          * 2/ gather all the old stripe_heads and tranfer the pages across
1401          *    to the new stripe_heads.  This will have the side effect of
1402          *    freezing the array as once all stripe_heads have been collected,
1403          *    no IO will be possible.  Old stripe heads are freed once their
1404          *    pages have been transferred over, and the old kmem_cache is
1405          *    freed when all stripes are done.
1406          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1407          *    we simple return a failre status - no need to clean anything up.
1408          * 4/ allocate new pages for the new slots in the new stripe_heads.
1409          *    If this fails, we don't bother trying the shrink the
1410          *    stripe_heads down again, we just leave them as they are.
1411          *    As each stripe_head is processed the new one is released into
1412          *    active service.
1413          *
1414          * Once step2 is started, we cannot afford to wait for a write,
1415          * so we use GFP_NOIO allocations.
1416          */
1417         struct stripe_head *osh, *nsh;
1418         LIST_HEAD(newstripes);
1419         struct disk_info *ndisks;
1420         unsigned long cpu;
1421         int err;
1422         struct kmem_cache *sc;
1423         int i;
1424
1425         if (newsize <= conf->pool_size)
1426                 return 0; /* never bother to shrink */
1427
1428         err = md_allow_write(conf->mddev);
1429         if (err)
1430                 return err;
1431
1432         /* Step 1 */
1433         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1434                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1435                                0, 0, NULL);
1436         if (!sc)
1437                 return -ENOMEM;
1438
1439         for (i = conf->max_nr_stripes; i; i--) {
1440                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1441                 if (!nsh)
1442                         break;
1443
1444                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1445
1446                 nsh->raid_conf = conf;
1447                 spin_lock_init(&nsh->lock);
1448                 #ifdef CONFIG_MULTICORE_RAID456
1449                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1450                 #endif
1451
1452                 list_add(&nsh->lru, &newstripes);
1453         }
1454         if (i) {
1455                 /* didn't get enough, give up */
1456                 while (!list_empty(&newstripes)) {
1457                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1458                         list_del(&nsh->lru);
1459                         kmem_cache_free(sc, nsh);
1460                 }
1461                 kmem_cache_destroy(sc);
1462                 return -ENOMEM;
1463         }
1464         /* Step 2 - Must use GFP_NOIO now.
1465          * OK, we have enough stripes, start collecting inactive
1466          * stripes and copying them over
1467          */
1468         list_for_each_entry(nsh, &newstripes, lru) {
1469                 spin_lock_irq(&conf->device_lock);
1470                 wait_event_lock_irq(conf->wait_for_stripe,
1471                                     !list_empty(&conf->inactive_list),
1472                                     conf->device_lock,
1473                                     );
1474                 osh = get_free_stripe(conf);
1475                 spin_unlock_irq(&conf->device_lock);
1476                 atomic_set(&nsh->count, 1);
1477                 for(i=0; i<conf->pool_size; i++)
1478                         nsh->dev[i].page = osh->dev[i].page;
1479                 for( ; i<newsize; i++)
1480                         nsh->dev[i].page = NULL;
1481                 kmem_cache_free(conf->slab_cache, osh);
1482         }
1483         kmem_cache_destroy(conf->slab_cache);
1484
1485         /* Step 3.
1486          * At this point, we are holding all the stripes so the array
1487          * is completely stalled, so now is a good time to resize
1488          * conf->disks and the scribble region
1489          */
1490         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1491         if (ndisks) {
1492                 for (i=0; i<conf->raid_disks; i++)
1493                         ndisks[i] = conf->disks[i];
1494                 kfree(conf->disks);
1495                 conf->disks = ndisks;
1496         } else
1497                 err = -ENOMEM;
1498
1499         get_online_cpus();
1500         conf->scribble_len = scribble_len(newsize);
1501         for_each_present_cpu(cpu) {
1502                 struct raid5_percpu *percpu;
1503                 void *scribble;
1504
1505                 percpu = per_cpu_ptr(conf->percpu, cpu);
1506                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1507
1508                 if (scribble) {
1509                         kfree(percpu->scribble);
1510                         percpu->scribble = scribble;
1511                 } else {
1512                         err = -ENOMEM;
1513                         break;
1514                 }
1515         }
1516         put_online_cpus();
1517
1518         /* Step 4, return new stripes to service */
1519         while(!list_empty(&newstripes)) {
1520                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1521                 list_del_init(&nsh->lru);
1522
1523                 for (i=conf->raid_disks; i < newsize; i++)
1524                         if (nsh->dev[i].page == NULL) {
1525                                 struct page *p = alloc_page(GFP_NOIO);
1526                                 nsh->dev[i].page = p;
1527                                 if (!p)
1528                                         err = -ENOMEM;
1529                         }
1530                 release_stripe(nsh);
1531         }
1532         /* critical section pass, GFP_NOIO no longer needed */
1533
1534         conf->slab_cache = sc;
1535         conf->active_name = 1-conf->active_name;
1536         conf->pool_size = newsize;
1537         return err;
1538 }
1539
1540 static int drop_one_stripe(raid5_conf_t *conf)
1541 {
1542         struct stripe_head *sh;
1543
1544         spin_lock_irq(&conf->device_lock);
1545         sh = get_free_stripe(conf);
1546         spin_unlock_irq(&conf->device_lock);
1547         if (!sh)
1548                 return 0;
1549         BUG_ON(atomic_read(&sh->count));
1550         shrink_buffers(sh);
1551         kmem_cache_free(conf->slab_cache, sh);
1552         atomic_dec(&conf->active_stripes);
1553         return 1;
1554 }
1555
1556 static void shrink_stripes(raid5_conf_t *conf)
1557 {
1558         while (drop_one_stripe(conf))
1559                 ;
1560
1561         if (conf->slab_cache)
1562                 kmem_cache_destroy(conf->slab_cache);
1563         conf->slab_cache = NULL;
1564 }
1565
1566 static void raid5_end_read_request(struct bio * bi, int error)
1567 {
1568         struct stripe_head *sh = bi->bi_private;
1569         raid5_conf_t *conf = sh->raid_conf;
1570         int disks = sh->disks, i;
1571         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1572         char b[BDEVNAME_SIZE];
1573         mdk_rdev_t *rdev;
1574
1575
1576         for (i=0 ; i<disks; i++)
1577                 if (bi == &sh->dev[i].req)
1578                         break;
1579
1580         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1581                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1582                 uptodate);
1583         if (i == disks) {
1584                 BUG();
1585                 return;
1586         }
1587
1588         if (uptodate) {
1589                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1590                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1591                         rdev = conf->disks[i].rdev;
1592                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1593                                   " (%lu sectors at %llu on %s)\n",
1594                                   mdname(conf->mddev), STRIPE_SECTORS,
1595                                   (unsigned long long)(sh->sector
1596                                                        + rdev->data_offset),
1597                                   bdevname(rdev->bdev, b));
1598                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1599                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1600                 }
1601                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1602                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1603         } else {
1604                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1605                 int retry = 0;
1606                 rdev = conf->disks[i].rdev;
1607
1608                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1609                 atomic_inc(&rdev->read_errors);
1610                 if (conf->mddev->degraded >= conf->max_degraded)
1611                         printk_rl(KERN_WARNING
1612                                   "md/raid:%s: read error not correctable "
1613                                   "(sector %llu on %s).\n",
1614                                   mdname(conf->mddev),
1615                                   (unsigned long long)(sh->sector
1616                                                        + rdev->data_offset),
1617                                   bdn);
1618                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1619                         /* Oh, no!!! */
1620                         printk_rl(KERN_WARNING
1621                                   "md/raid:%s: read error NOT corrected!! "
1622                                   "(sector %llu on %s).\n",
1623                                   mdname(conf->mddev),
1624                                   (unsigned long long)(sh->sector
1625                                                        + rdev->data_offset),
1626                                   bdn);
1627                 else if (atomic_read(&rdev->read_errors)
1628                          > conf->max_nr_stripes)
1629                         printk(KERN_WARNING
1630                                "md/raid:%s: Too many read errors, failing device %s.\n",
1631                                mdname(conf->mddev), bdn);
1632                 else
1633                         retry = 1;
1634                 if (retry)
1635                         set_bit(R5_ReadError, &sh->dev[i].flags);
1636                 else {
1637                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1638                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1639                         md_error(conf->mddev, rdev);
1640                 }
1641         }
1642         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1643         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1644         set_bit(STRIPE_HANDLE, &sh->state);
1645         release_stripe(sh);
1646 }
1647
1648 static void raid5_end_write_request(struct bio *bi, int error)
1649 {
1650         struct stripe_head *sh = bi->bi_private;
1651         raid5_conf_t *conf = sh->raid_conf;
1652         int disks = sh->disks, i;
1653         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1654
1655         for (i=0 ; i<disks; i++)
1656                 if (bi == &sh->dev[i].req)
1657                         break;
1658
1659         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1660                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1661                 uptodate);
1662         if (i == disks) {
1663                 BUG();
1664                 return;
1665         }
1666
1667         if (!uptodate)
1668                 md_error(conf->mddev, conf->disks[i].rdev);
1669
1670         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1671         
1672         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1673         set_bit(STRIPE_HANDLE, &sh->state);
1674         release_stripe(sh);
1675 }
1676
1677
1678 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1679         
1680 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1681 {
1682         struct r5dev *dev = &sh->dev[i];
1683
1684         bio_init(&dev->req);
1685         dev->req.bi_io_vec = &dev->vec;
1686         dev->req.bi_vcnt++;
1687         dev->req.bi_max_vecs++;
1688         dev->vec.bv_page = dev->page;
1689         dev->vec.bv_len = STRIPE_SIZE;
1690         dev->vec.bv_offset = 0;
1691
1692         dev->req.bi_sector = sh->sector;
1693         dev->req.bi_private = sh;
1694
1695         dev->flags = 0;
1696         dev->sector = compute_blocknr(sh, i, previous);
1697 }
1698
1699 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1700 {
1701         char b[BDEVNAME_SIZE];
1702         raid5_conf_t *conf = mddev->private;
1703         pr_debug("raid456: error called\n");
1704
1705         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1706                 unsigned long flags;
1707                 spin_lock_irqsave(&conf->device_lock, flags);
1708                 mddev->degraded++;
1709                 spin_unlock_irqrestore(&conf->device_lock, flags);
1710                 /*
1711                  * if recovery was running, make sure it aborts.
1712                  */
1713                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1714         }
1715         set_bit(Faulty, &rdev->flags);
1716         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1717         printk(KERN_ALERT
1718                "md/raid:%s: Disk failure on %s, disabling device.\n"
1719                "md/raid:%s: Operation continuing on %d devices.\n",
1720                mdname(mddev),
1721                bdevname(rdev->bdev, b),
1722                mdname(mddev),
1723                conf->raid_disks - mddev->degraded);
1724 }
1725
1726 /*
1727  * Input: a 'big' sector number,
1728  * Output: index of the data and parity disk, and the sector # in them.
1729  */
1730 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1731                                      int previous, int *dd_idx,
1732                                      struct stripe_head *sh)
1733 {
1734         sector_t stripe, stripe2;
1735         sector_t chunk_number;
1736         unsigned int chunk_offset;
1737         int pd_idx, qd_idx;
1738         int ddf_layout = 0;
1739         sector_t new_sector;
1740         int algorithm = previous ? conf->prev_algo
1741                                  : conf->algorithm;
1742         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1743                                          : conf->chunk_sectors;
1744         int raid_disks = previous ? conf->previous_raid_disks
1745                                   : conf->raid_disks;
1746         int data_disks = raid_disks - conf->max_degraded;
1747
1748         /* First compute the information on this sector */
1749
1750         /*
1751          * Compute the chunk number and the sector offset inside the chunk
1752          */
1753         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1754         chunk_number = r_sector;
1755
1756         /*
1757          * Compute the stripe number
1758          */
1759         stripe = chunk_number;
1760         *dd_idx = sector_div(stripe, data_disks);
1761         stripe2 = stripe;
1762         /*
1763          * Select the parity disk based on the user selected algorithm.
1764          */
1765         pd_idx = qd_idx = ~0;
1766         switch(conf->level) {
1767         case 4:
1768                 pd_idx = data_disks;
1769                 break;
1770         case 5:
1771                 switch (algorithm) {
1772                 case ALGORITHM_LEFT_ASYMMETRIC:
1773                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1774                         if (*dd_idx >= pd_idx)
1775                                 (*dd_idx)++;
1776                         break;
1777                 case ALGORITHM_RIGHT_ASYMMETRIC:
1778                         pd_idx = sector_div(stripe2, raid_disks);
1779                         if (*dd_idx >= pd_idx)
1780                                 (*dd_idx)++;
1781                         break;
1782                 case ALGORITHM_LEFT_SYMMETRIC:
1783                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1784                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1785                         break;
1786                 case ALGORITHM_RIGHT_SYMMETRIC:
1787                         pd_idx = sector_div(stripe2, raid_disks);
1788                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1789                         break;
1790                 case ALGORITHM_PARITY_0:
1791                         pd_idx = 0;
1792                         (*dd_idx)++;
1793                         break;
1794                 case ALGORITHM_PARITY_N:
1795                         pd_idx = data_disks;
1796                         break;
1797                 default:
1798                         BUG();
1799                 }
1800                 break;
1801         case 6:
1802
1803                 switch (algorithm) {
1804                 case ALGORITHM_LEFT_ASYMMETRIC:
1805                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1806                         qd_idx = pd_idx + 1;
1807                         if (pd_idx == raid_disks-1) {
1808                                 (*dd_idx)++;    /* Q D D D P */
1809                                 qd_idx = 0;
1810                         } else if (*dd_idx >= pd_idx)
1811                                 (*dd_idx) += 2; /* D D P Q D */
1812                         break;
1813                 case ALGORITHM_RIGHT_ASYMMETRIC:
1814                         pd_idx = sector_div(stripe2, raid_disks);
1815                         qd_idx = pd_idx + 1;
1816                         if (pd_idx == raid_disks-1) {
1817                                 (*dd_idx)++;    /* Q D D D P */
1818                                 qd_idx = 0;
1819                         } else if (*dd_idx >= pd_idx)
1820                                 (*dd_idx) += 2; /* D D P Q D */
1821                         break;
1822                 case ALGORITHM_LEFT_SYMMETRIC:
1823                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1824                         qd_idx = (pd_idx + 1) % raid_disks;
1825                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1826                         break;
1827                 case ALGORITHM_RIGHT_SYMMETRIC:
1828                         pd_idx = sector_div(stripe2, raid_disks);
1829                         qd_idx = (pd_idx + 1) % raid_disks;
1830                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1831                         break;
1832
1833                 case ALGORITHM_PARITY_0:
1834                         pd_idx = 0;
1835                         qd_idx = 1;
1836                         (*dd_idx) += 2;
1837                         break;
1838                 case ALGORITHM_PARITY_N:
1839                         pd_idx = data_disks;
1840                         qd_idx = data_disks + 1;
1841                         break;
1842
1843                 case ALGORITHM_ROTATING_ZERO_RESTART:
1844                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1845                          * of blocks for computing Q is different.
1846                          */
1847                         pd_idx = sector_div(stripe2, raid_disks);
1848                         qd_idx = pd_idx + 1;
1849                         if (pd_idx == raid_disks-1) {
1850                                 (*dd_idx)++;    /* Q D D D P */
1851                                 qd_idx = 0;
1852                         } else if (*dd_idx >= pd_idx)
1853                                 (*dd_idx) += 2; /* D D P Q D */
1854                         ddf_layout = 1;
1855                         break;
1856
1857                 case ALGORITHM_ROTATING_N_RESTART:
1858                         /* Same a left_asymmetric, by first stripe is
1859                          * D D D P Q  rather than
1860                          * Q D D D P
1861                          */
1862                         stripe2 += 1;
1863                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1864                         qd_idx = pd_idx + 1;
1865                         if (pd_idx == raid_disks-1) {
1866                                 (*dd_idx)++;    /* Q D D D P */
1867                                 qd_idx = 0;
1868                         } else if (*dd_idx >= pd_idx)
1869                                 (*dd_idx) += 2; /* D D P Q D */
1870                         ddf_layout = 1;
1871                         break;
1872
1873                 case ALGORITHM_ROTATING_N_CONTINUE:
1874                         /* Same as left_symmetric but Q is before P */
1875                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1876                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1877                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1878                         ddf_layout = 1;
1879                         break;
1880
1881                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1882                         /* RAID5 left_asymmetric, with Q on last device */
1883                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1884                         if (*dd_idx >= pd_idx)
1885                                 (*dd_idx)++;
1886                         qd_idx = raid_disks - 1;
1887                         break;
1888
1889                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1890                         pd_idx = sector_div(stripe2, raid_disks-1);
1891                         if (*dd_idx >= pd_idx)
1892                                 (*dd_idx)++;
1893                         qd_idx = raid_disks - 1;
1894                         break;
1895
1896                 case ALGORITHM_LEFT_SYMMETRIC_6:
1897                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1898                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899                         qd_idx = raid_disks - 1;
1900                         break;
1901
1902                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1903                         pd_idx = sector_div(stripe2, raid_disks-1);
1904                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1905                         qd_idx = raid_disks - 1;
1906                         break;
1907
1908                 case ALGORITHM_PARITY_0_6:
1909                         pd_idx = 0;
1910                         (*dd_idx)++;
1911                         qd_idx = raid_disks - 1;
1912                         break;
1913
1914                 default:
1915                         BUG();
1916                 }
1917                 break;
1918         }
1919
1920         if (sh) {
1921                 sh->pd_idx = pd_idx;
1922                 sh->qd_idx = qd_idx;
1923                 sh->ddf_layout = ddf_layout;
1924         }
1925         /*
1926          * Finally, compute the new sector number
1927          */
1928         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1929         return new_sector;
1930 }
1931
1932
1933 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1934 {
1935         raid5_conf_t *conf = sh->raid_conf;
1936         int raid_disks = sh->disks;
1937         int data_disks = raid_disks - conf->max_degraded;
1938         sector_t new_sector = sh->sector, check;
1939         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1940                                          : conf->chunk_sectors;
1941         int algorithm = previous ? conf->prev_algo
1942                                  : conf->algorithm;
1943         sector_t stripe;
1944         int chunk_offset;
1945         sector_t chunk_number;
1946         int dummy1, dd_idx = i;
1947         sector_t r_sector;
1948         struct stripe_head sh2;
1949
1950
1951         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1952         stripe = new_sector;
1953
1954         if (i == sh->pd_idx)
1955                 return 0;
1956         switch(conf->level) {
1957         case 4: break;
1958         case 5:
1959                 switch (algorithm) {
1960                 case ALGORITHM_LEFT_ASYMMETRIC:
1961                 case ALGORITHM_RIGHT_ASYMMETRIC:
1962                         if (i > sh->pd_idx)
1963                                 i--;
1964                         break;
1965                 case ALGORITHM_LEFT_SYMMETRIC:
1966                 case ALGORITHM_RIGHT_SYMMETRIC:
1967                         if (i < sh->pd_idx)
1968                                 i += raid_disks;
1969                         i -= (sh->pd_idx + 1);
1970                         break;
1971                 case ALGORITHM_PARITY_0:
1972                         i -= 1;
1973                         break;
1974                 case ALGORITHM_PARITY_N:
1975                         break;
1976                 default:
1977                         BUG();
1978                 }
1979                 break;
1980         case 6:
1981                 if (i == sh->qd_idx)
1982                         return 0; /* It is the Q disk */
1983                 switch (algorithm) {
1984                 case ALGORITHM_LEFT_ASYMMETRIC:
1985                 case ALGORITHM_RIGHT_ASYMMETRIC:
1986                 case ALGORITHM_ROTATING_ZERO_RESTART:
1987                 case ALGORITHM_ROTATING_N_RESTART:
1988                         if (sh->pd_idx == raid_disks-1)
1989                                 i--;    /* Q D D D P */
1990                         else if (i > sh->pd_idx)
1991                                 i -= 2; /* D D P Q D */
1992                         break;
1993                 case ALGORITHM_LEFT_SYMMETRIC:
1994                 case ALGORITHM_RIGHT_SYMMETRIC:
1995                         if (sh->pd_idx == raid_disks-1)
1996                                 i--; /* Q D D D P */
1997                         else {
1998                                 /* D D P Q D */
1999                                 if (i < sh->pd_idx)
2000                                         i += raid_disks;
2001                                 i -= (sh->pd_idx + 2);
2002                         }
2003                         break;
2004                 case ALGORITHM_PARITY_0:
2005                         i -= 2;
2006                         break;
2007                 case ALGORITHM_PARITY_N:
2008                         break;
2009                 case ALGORITHM_ROTATING_N_CONTINUE:
2010                         /* Like left_symmetric, but P is before Q */
2011                         if (sh->pd_idx == 0)
2012                                 i--;    /* P D D D Q */
2013                         else {
2014                                 /* D D Q P D */
2015                                 if (i < sh->pd_idx)
2016                                         i += raid_disks;
2017                                 i -= (sh->pd_idx + 1);
2018                         }
2019                         break;
2020                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2021                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2022                         if (i > sh->pd_idx)
2023                                 i--;
2024                         break;
2025                 case ALGORITHM_LEFT_SYMMETRIC_6:
2026                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2027                         if (i < sh->pd_idx)
2028                                 i += data_disks + 1;
2029                         i -= (sh->pd_idx + 1);
2030                         break;
2031                 case ALGORITHM_PARITY_0_6:
2032                         i -= 1;
2033                         break;
2034                 default:
2035                         BUG();
2036                 }
2037                 break;
2038         }
2039
2040         chunk_number = stripe * data_disks + i;
2041         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2042
2043         check = raid5_compute_sector(conf, r_sector,
2044                                      previous, &dummy1, &sh2);
2045         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2046                 || sh2.qd_idx != sh->qd_idx) {
2047                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2048                        mdname(conf->mddev));
2049                 return 0;
2050         }
2051         return r_sector;
2052 }
2053
2054
2055 static void
2056 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2057                          int rcw, int expand)
2058 {
2059         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2060         raid5_conf_t *conf = sh->raid_conf;
2061         int level = conf->level;
2062
2063         if (rcw) {
2064                 /* if we are not expanding this is a proper write request, and
2065                  * there will be bios with new data to be drained into the
2066                  * stripe cache
2067                  */
2068                 if (!expand) {
2069                         sh->reconstruct_state = reconstruct_state_drain_run;
2070                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2071                 } else
2072                         sh->reconstruct_state = reconstruct_state_run;
2073
2074                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2075
2076                 for (i = disks; i--; ) {
2077                         struct r5dev *dev = &sh->dev[i];
2078
2079                         if (dev->towrite) {
2080                                 set_bit(R5_LOCKED, &dev->flags);
2081                                 set_bit(R5_Wantdrain, &dev->flags);
2082                                 if (!expand)
2083                                         clear_bit(R5_UPTODATE, &dev->flags);
2084                                 s->locked++;
2085                         }
2086                 }
2087                 if (s->locked + conf->max_degraded == disks)
2088                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2089                                 atomic_inc(&conf->pending_full_writes);
2090         } else {
2091                 BUG_ON(level == 6);
2092                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2093                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2094
2095                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2096                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2097                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2098                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2099
2100                 for (i = disks; i--; ) {
2101                         struct r5dev *dev = &sh->dev[i];
2102                         if (i == pd_idx)
2103                                 continue;
2104
2105                         if (dev->towrite &&
2106                             (test_bit(R5_UPTODATE, &dev->flags) ||
2107                              test_bit(R5_Wantcompute, &dev->flags))) {
2108                                 set_bit(R5_Wantdrain, &dev->flags);
2109                                 set_bit(R5_LOCKED, &dev->flags);
2110                                 clear_bit(R5_UPTODATE, &dev->flags);
2111                                 s->locked++;
2112                         }
2113                 }
2114         }
2115
2116         /* keep the parity disk(s) locked while asynchronous operations
2117          * are in flight
2118          */
2119         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2120         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2121         s->locked++;
2122
2123         if (level == 6) {
2124                 int qd_idx = sh->qd_idx;
2125                 struct r5dev *dev = &sh->dev[qd_idx];
2126
2127                 set_bit(R5_LOCKED, &dev->flags);
2128                 clear_bit(R5_UPTODATE, &dev->flags);
2129                 s->locked++;
2130         }
2131
2132         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2133                 __func__, (unsigned long long)sh->sector,
2134                 s->locked, s->ops_request);
2135 }
2136
2137 /*
2138  * Each stripe/dev can have one or more bion attached.
2139  * toread/towrite point to the first in a chain.
2140  * The bi_next chain must be in order.
2141  */
2142 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2143 {
2144         struct bio **bip;
2145         raid5_conf_t *conf = sh->raid_conf;
2146         int firstwrite=0;
2147
2148         pr_debug("adding bh b#%llu to stripe s#%llu\n",
2149                 (unsigned long long)bi->bi_sector,
2150                 (unsigned long long)sh->sector);
2151
2152
2153         spin_lock(&sh->lock);
2154         spin_lock_irq(&conf->device_lock);
2155         if (forwrite) {
2156                 bip = &sh->dev[dd_idx].towrite;
2157                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2158                         firstwrite = 1;
2159         } else
2160                 bip = &sh->dev[dd_idx].toread;
2161         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2162                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2163                         goto overlap;
2164                 bip = & (*bip)->bi_next;
2165         }
2166         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2167                 goto overlap;
2168
2169         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2170         if (*bip)
2171                 bi->bi_next = *bip;
2172         *bip = bi;
2173         bi->bi_phys_segments++;
2174         spin_unlock_irq(&conf->device_lock);
2175         spin_unlock(&sh->lock);
2176
2177         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2178                 (unsigned long long)bi->bi_sector,
2179                 (unsigned long long)sh->sector, dd_idx);
2180
2181         if (conf->mddev->bitmap && firstwrite) {
2182                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2183                                   STRIPE_SECTORS, 0);
2184                 sh->bm_seq = conf->seq_flush+1;
2185                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2186         }
2187
2188         if (forwrite) {
2189                 /* check if page is covered */
2190                 sector_t sector = sh->dev[dd_idx].sector;
2191                 for (bi=sh->dev[dd_idx].towrite;
2192                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2193                              bi && bi->bi_sector <= sector;
2194                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2195                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2196                                 sector = bi->bi_sector + (bi->bi_size>>9);
2197                 }
2198                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2199                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2200         }
2201         return 1;
2202
2203  overlap:
2204         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2205         spin_unlock_irq(&conf->device_lock);
2206         spin_unlock(&sh->lock);
2207         return 0;
2208 }
2209
2210 static void end_reshape(raid5_conf_t *conf);
2211
2212 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2213                             struct stripe_head *sh)
2214 {
2215         int sectors_per_chunk =
2216                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2217         int dd_idx;
2218         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2219         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2220
2221         raid5_compute_sector(conf,
2222                              stripe * (disks - conf->max_degraded)
2223                              *sectors_per_chunk + chunk_offset,
2224                              previous,
2225                              &dd_idx, sh);
2226 }
2227
2228 static void
2229 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2230                                 struct stripe_head_state *s, int disks,
2231                                 struct bio **return_bi)
2232 {
2233         int i;
2234         for (i = disks; i--; ) {
2235                 struct bio *bi;
2236                 int bitmap_end = 0;
2237
2238                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2239                         mdk_rdev_t *rdev;
2240                         rcu_read_lock();
2241                         rdev = rcu_dereference(conf->disks[i].rdev);
2242                         if (rdev && test_bit(In_sync, &rdev->flags))
2243                                 /* multiple read failures in one stripe */
2244                                 md_error(conf->mddev, rdev);
2245                         rcu_read_unlock();
2246                 }
2247                 spin_lock_irq(&conf->device_lock);
2248                 /* fail all writes first */
2249                 bi = sh->dev[i].towrite;
2250                 sh->dev[i].towrite = NULL;
2251                 if (bi) {
2252                         s->to_write--;
2253                         bitmap_end = 1;
2254                 }
2255
2256                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2257                         wake_up(&conf->wait_for_overlap);
2258
2259                 while (bi && bi->bi_sector <
2260                         sh->dev[i].sector + STRIPE_SECTORS) {
2261                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2262                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2263                         if (!raid5_dec_bi_phys_segments(bi)) {
2264                                 md_write_end(conf->mddev);
2265                                 bi->bi_next = *return_bi;
2266                                 *return_bi = bi;
2267                         }
2268                         bi = nextbi;
2269                 }
2270                 /* and fail all 'written' */
2271                 bi = sh->dev[i].written;
2272                 sh->dev[i].written = NULL;
2273                 if (bi) bitmap_end = 1;
2274                 while (bi && bi->bi_sector <
2275                        sh->dev[i].sector + STRIPE_SECTORS) {
2276                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2277                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2278                         if (!raid5_dec_bi_phys_segments(bi)) {
2279                                 md_write_end(conf->mddev);
2280                                 bi->bi_next = *return_bi;
2281                                 *return_bi = bi;
2282                         }
2283                         bi = bi2;
2284                 }
2285
2286                 /* fail any reads if this device is non-operational and
2287                  * the data has not reached the cache yet.
2288                  */
2289                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2290                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2291                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2292                         bi = sh->dev[i].toread;
2293                         sh->dev[i].toread = NULL;
2294                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2295                                 wake_up(&conf->wait_for_overlap);
2296                         if (bi) s->to_read--;
2297                         while (bi && bi->bi_sector <
2298                                sh->dev[i].sector + STRIPE_SECTORS) {
2299                                 struct bio *nextbi =
2300                                         r5_next_bio(bi, sh->dev[i].sector);
2301                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2302                                 if (!raid5_dec_bi_phys_segments(bi)) {
2303                                         bi->bi_next = *return_bi;
2304                                         *return_bi = bi;
2305                                 }
2306                                 bi = nextbi;
2307                         }
2308                 }
2309                 spin_unlock_irq(&conf->device_lock);
2310                 if (bitmap_end)
2311                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2312                                         STRIPE_SECTORS, 0, 0);
2313         }
2314
2315         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2316                 if (atomic_dec_and_test(&conf->pending_full_writes))
2317                         md_wakeup_thread(conf->mddev->thread);
2318 }
2319
2320 /* fetch_block5 - checks the given member device to see if its data needs
2321  * to be read or computed to satisfy a request.
2322  *
2323  * Returns 1 when no more member devices need to be checked, otherwise returns
2324  * 0 to tell the loop in handle_stripe_fill5 to continue
2325  */
2326 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2327                         int disk_idx, int disks)
2328 {
2329         struct r5dev *dev = &sh->dev[disk_idx];
2330         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2331
2332         /* is the data in this block needed, and can we get it? */
2333         if (!test_bit(R5_LOCKED, &dev->flags) &&
2334             !test_bit(R5_UPTODATE, &dev->flags) &&
2335             (dev->toread ||
2336              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2337              s->syncing || s->expanding ||
2338              (s->failed &&
2339               (failed_dev->toread ||
2340                (failed_dev->towrite &&
2341                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2342                 /* We would like to get this block, possibly by computing it,
2343                  * otherwise read it if the backing disk is insync
2344                  */
2345                 if ((s->uptodate == disks - 1) &&
2346                     (s->failed && disk_idx == s->failed_num)) {
2347                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2348                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2349                         set_bit(R5_Wantcompute, &dev->flags);
2350                         sh->ops.target = disk_idx;
2351                         sh->ops.target2 = -1;
2352                         s->req_compute = 1;
2353                         /* Careful: from this point on 'uptodate' is in the eye
2354                          * of raid_run_ops which services 'compute' operations
2355                          * before writes. R5_Wantcompute flags a block that will
2356                          * be R5_UPTODATE by the time it is needed for a
2357                          * subsequent operation.
2358                          */
2359                         s->uptodate++;
2360                         return 1; /* uptodate + compute == disks */
2361                 } else if (test_bit(R5_Insync, &dev->flags)) {
2362                         set_bit(R5_LOCKED, &dev->flags);
2363                         set_bit(R5_Wantread, &dev->flags);
2364                         s->locked++;
2365                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2366                                 s->syncing);
2367                 }
2368         }
2369
2370         return 0;
2371 }
2372
2373 /**
2374  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2375  */
2376 static void handle_stripe_fill5(struct stripe_head *sh,
2377                         struct stripe_head_state *s, int disks)
2378 {
2379         int i;
2380
2381         /* look for blocks to read/compute, skip this if a compute
2382          * is already in flight, or if the stripe contents are in the
2383          * midst of changing due to a write
2384          */
2385         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2386             !sh->reconstruct_state)
2387                 for (i = disks; i--; )
2388                         if (fetch_block5(sh, s, i, disks))
2389                                 break;
2390         set_bit(STRIPE_HANDLE, &sh->state);
2391 }
2392
2393 /* fetch_block6 - checks the given member device to see if its data needs
2394  * to be read or computed to satisfy a request.
2395  *
2396  * Returns 1 when no more member devices need to be checked, otherwise returns
2397  * 0 to tell the loop in handle_stripe_fill6 to continue
2398  */
2399 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2400                          struct r6_state *r6s, int disk_idx, int disks)
2401 {
2402         struct r5dev *dev = &sh->dev[disk_idx];
2403         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2404                                   &sh->dev[r6s->failed_num[1]] };
2405
2406         if (!test_bit(R5_LOCKED, &dev->flags) &&
2407             !test_bit(R5_UPTODATE, &dev->flags) &&
2408             (dev->toread ||
2409              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2410              s->syncing || s->expanding ||
2411              (s->failed >= 1 &&
2412               (fdev[0]->toread || s->to_write)) ||
2413              (s->failed >= 2 &&
2414               (fdev[1]->toread || s->to_write)))) {
2415                 /* we would like to get this block, possibly by computing it,
2416                  * otherwise read it if the backing disk is insync
2417                  */
2418                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2419                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2420                 if ((s->uptodate == disks - 1) &&
2421                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2422                                    disk_idx == r6s->failed_num[1]))) {
2423                         /* have disk failed, and we're requested to fetch it;
2424                          * do compute it
2425                          */
2426                         pr_debug("Computing stripe %llu block %d\n",
2427                                (unsigned long long)sh->sector, disk_idx);
2428                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2429                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2430                         set_bit(R5_Wantcompute, &dev->flags);
2431                         sh->ops.target = disk_idx;
2432                         sh->ops.target2 = -1; /* no 2nd target */
2433                         s->req_compute = 1;
2434                         s->uptodate++;
2435                         return 1;
2436                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2437                         /* Computing 2-failure is *very* expensive; only
2438                          * do it if failed >= 2
2439                          */
2440                         int other;
2441                         for (other = disks; other--; ) {
2442                                 if (other == disk_idx)
2443                                         continue;
2444                                 if (!test_bit(R5_UPTODATE,
2445                                       &sh->dev[other].flags))
2446                                         break;
2447                         }
2448                         BUG_ON(other < 0);
2449                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2450                                (unsigned long long)sh->sector,
2451                                disk_idx, other);
2452                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2453                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2454                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2455                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2456                         sh->ops.target = disk_idx;
2457                         sh->ops.target2 = other;
2458                         s->uptodate += 2;
2459                         s->req_compute = 1;
2460                         return 1;
2461                 } else if (test_bit(R5_Insync, &dev->flags)) {
2462                         set_bit(R5_LOCKED, &dev->flags);
2463                         set_bit(R5_Wantread, &dev->flags);
2464                         s->locked++;
2465                         pr_debug("Reading block %d (sync=%d)\n",
2466                                 disk_idx, s->syncing);
2467                 }
2468         }
2469
2470         return 0;
2471 }
2472
2473 /**
2474  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2475  */
2476 static void handle_stripe_fill6(struct stripe_head *sh,
2477                         struct stripe_head_state *s, struct r6_state *r6s,
2478                         int disks)
2479 {
2480         int i;
2481
2482         /* look for blocks to read/compute, skip this if a compute
2483          * is already in flight, or if the stripe contents are in the
2484          * midst of changing due to a write
2485          */
2486         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2487             !sh->reconstruct_state)
2488                 for (i = disks; i--; )
2489                         if (fetch_block6(sh, s, r6s, i, disks))
2490                                 break;
2491         set_bit(STRIPE_HANDLE, &sh->state);
2492 }
2493
2494
2495 /* handle_stripe_clean_event
2496  * any written block on an uptodate or failed drive can be returned.
2497  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2498  * never LOCKED, so we don't need to test 'failed' directly.
2499  */
2500 static void handle_stripe_clean_event(raid5_conf_t *conf,
2501         struct stripe_head *sh, int disks, struct bio **return_bi)
2502 {
2503         int i;
2504         struct r5dev *dev;
2505
2506         for (i = disks; i--; )
2507                 if (sh->dev[i].written) {
2508                         dev = &sh->dev[i];
2509                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2510                                 test_bit(R5_UPTODATE, &dev->flags)) {
2511                                 /* We can return any write requests */
2512                                 struct bio *wbi, *wbi2;
2513                                 int bitmap_end = 0;
2514                                 pr_debug("Return write for disc %d\n", i);
2515                                 spin_lock_irq(&conf->device_lock);
2516                                 wbi = dev->written;
2517                                 dev->written = NULL;
2518                                 while (wbi && wbi->bi_sector <
2519                                         dev->sector + STRIPE_SECTORS) {
2520                                         wbi2 = r5_next_bio(wbi, dev->sector);
2521                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2522                                                 md_write_end(conf->mddev);
2523                                                 wbi->bi_next = *return_bi;
2524                                                 *return_bi = wbi;
2525                                         }
2526                                         wbi = wbi2;
2527                                 }
2528                                 if (dev->towrite == NULL)
2529                                         bitmap_end = 1;
2530                                 spin_unlock_irq(&conf->device_lock);
2531                                 if (bitmap_end)
2532                                         bitmap_endwrite(conf->mddev->bitmap,
2533                                                         sh->sector,
2534                                                         STRIPE_SECTORS,
2535                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2536                                                         0);
2537                         }
2538                 }
2539
2540         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2541                 if (atomic_dec_and_test(&conf->pending_full_writes))
2542                         md_wakeup_thread(conf->mddev->thread);
2543 }
2544
2545 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2546                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2547 {
2548         int rmw = 0, rcw = 0, i;
2549         for (i = disks; i--; ) {
2550                 /* would I have to read this buffer for read_modify_write */
2551                 struct r5dev *dev = &sh->dev[i];
2552                 if ((dev->towrite || i == sh->pd_idx) &&
2553                     !test_bit(R5_LOCKED, &dev->flags) &&
2554                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2555                       test_bit(R5_Wantcompute, &dev->flags))) {
2556                         if (test_bit(R5_Insync, &dev->flags))
2557                                 rmw++;
2558                         else
2559                                 rmw += 2*disks;  /* cannot read it */
2560                 }
2561                 /* Would I have to read this buffer for reconstruct_write */
2562                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2563                     !test_bit(R5_LOCKED, &dev->flags) &&
2564                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2565                     test_bit(R5_Wantcompute, &dev->flags))) {
2566                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2567                         else
2568                                 rcw += 2*disks;
2569                 }
2570         }
2571         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2572                 (unsigned long long)sh->sector, rmw, rcw);
2573         set_bit(STRIPE_HANDLE, &sh->state);
2574         if (rmw < rcw && rmw > 0)
2575                 /* prefer read-modify-write, but need to get some data */
2576                 for (i = disks; i--; ) {
2577                         struct r5dev *dev = &sh->dev[i];
2578                         if ((dev->towrite || i == sh->pd_idx) &&
2579                             !test_bit(R5_LOCKED, &dev->flags) &&
2580                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2581                             test_bit(R5_Wantcompute, &dev->flags)) &&
2582                             test_bit(R5_Insync, &dev->flags)) {
2583                                 if (
2584                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2585                                         pr_debug("Read_old block "
2586                                                 "%d for r-m-w\n", i);
2587                                         set_bit(R5_LOCKED, &dev->flags);
2588                                         set_bit(R5_Wantread, &dev->flags);
2589                                         s->locked++;
2590                                 } else {
2591                                         set_bit(STRIPE_DELAYED, &sh->state);
2592                                         set_bit(STRIPE_HANDLE, &sh->state);
2593                                 }
2594                         }
2595                 }
2596         if (rcw <= rmw && rcw > 0)
2597                 /* want reconstruct write, but need to get some data */
2598                 for (i = disks; i--; ) {
2599                         struct r5dev *dev = &sh->dev[i];
2600                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2601                             i != sh->pd_idx &&
2602                             !test_bit(R5_LOCKED, &dev->flags) &&
2603                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2604                             test_bit(R5_Wantcompute, &dev->flags)) &&
2605                             test_bit(R5_Insync, &dev->flags)) {
2606                                 if (
2607                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2608                                         pr_debug("Read_old block "
2609                                                 "%d for Reconstruct\n", i);
2610                                         set_bit(R5_LOCKED, &dev->flags);
2611                                         set_bit(R5_Wantread, &dev->flags);
2612                                         s->locked++;
2613                                 } else {
2614                                         set_bit(STRIPE_DELAYED, &sh->state);
2615                                         set_bit(STRIPE_HANDLE, &sh->state);
2616                                 }
2617                         }
2618                 }
2619         /* now if nothing is locked, and if we have enough data,
2620          * we can start a write request
2621          */
2622         /* since handle_stripe can be called at any time we need to handle the
2623          * case where a compute block operation has been submitted and then a
2624          * subsequent call wants to start a write request.  raid_run_ops only
2625          * handles the case where compute block and reconstruct are requested
2626          * simultaneously.  If this is not the case then new writes need to be
2627          * held off until the compute completes.
2628          */
2629         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2630             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2631             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2632                 schedule_reconstruction(sh, s, rcw == 0, 0);
2633 }
2634
2635 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2636                 struct stripe_head *sh, struct stripe_head_state *s,
2637                 struct r6_state *r6s, int disks)
2638 {
2639         int rcw = 0, pd_idx = sh->pd_idx, i;
2640         int qd_idx = sh->qd_idx;
2641
2642         set_bit(STRIPE_HANDLE, &sh->state);
2643         for (i = disks; i--; ) {
2644                 struct r5dev *dev = &sh->dev[i];
2645                 /* check if we haven't enough data */
2646                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2647                     i != pd_idx && i != qd_idx &&
2648                     !test_bit(R5_LOCKED, &dev->flags) &&
2649                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2650                       test_bit(R5_Wantcompute, &dev->flags))) {
2651                         rcw++;
2652                         if (!test_bit(R5_Insync, &dev->flags))
2653                                 continue; /* it's a failed drive */
2654
2655                         if (
2656                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2657                                 pr_debug("Read_old stripe %llu "
2658                                         "block %d for Reconstruct\n",
2659                                      (unsigned long long)sh->sector, i);
2660                                 set_bit(R5_LOCKED, &dev->flags);
2661                                 set_bit(R5_Wantread, &dev->flags);
2662                                 s->locked++;
2663                         } else {
2664                                 pr_debug("Request delayed stripe %llu "
2665                                         "block %d for Reconstruct\n",
2666                                      (unsigned long long)sh->sector, i);
2667                                 set_bit(STRIPE_DELAYED, &sh->state);
2668                                 set_bit(STRIPE_HANDLE, &sh->state);
2669                         }
2670                 }
2671         }
2672         /* now if nothing is locked, and if we have enough data, we can start a
2673          * write request
2674          */
2675         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2676             s->locked == 0 && rcw == 0 &&
2677             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2678                 schedule_reconstruction(sh, s, 1, 0);
2679         }
2680 }
2681
2682 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2683                                 struct stripe_head_state *s, int disks)
2684 {
2685         struct r5dev *dev = NULL;
2686
2687         set_bit(STRIPE_HANDLE, &sh->state);
2688
2689         switch (sh->check_state) {
2690         case check_state_idle:
2691                 /* start a new check operation if there are no failures */
2692                 if (s->failed == 0) {
2693                         BUG_ON(s->uptodate != disks);
2694                         sh->check_state = check_state_run;
2695                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2696                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2697                         s->uptodate--;
2698                         break;
2699                 }
2700                 dev = &sh->dev[s->failed_num];
2701                 /* fall through */
2702         case check_state_compute_result:
2703                 sh->check_state = check_state_idle;
2704                 if (!dev)
2705                         dev = &sh->dev[sh->pd_idx];
2706
2707                 /* check that a write has not made the stripe insync */
2708                 if (test_bit(STRIPE_INSYNC, &sh->state))
2709                         break;
2710
2711                 /* either failed parity check, or recovery is happening */
2712                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2713                 BUG_ON(s->uptodate != disks);
2714
2715                 set_bit(R5_LOCKED, &dev->flags);
2716                 s->locked++;
2717                 set_bit(R5_Wantwrite, &dev->flags);
2718
2719                 clear_bit(STRIPE_DEGRADED, &sh->state);
2720                 set_bit(STRIPE_INSYNC, &sh->state);
2721                 break;
2722         case check_state_run:
2723                 break; /* we will be called again upon completion */
2724         case check_state_check_result:
2725                 sh->check_state = check_state_idle;
2726
2727                 /* if a failure occurred during the check operation, leave
2728                  * STRIPE_INSYNC not set and let the stripe be handled again
2729                  */
2730                 if (s->failed)
2731                         break;
2732
2733                 /* handle a successful check operation, if parity is correct
2734                  * we are done.  Otherwise update the mismatch count and repair
2735                  * parity if !MD_RECOVERY_CHECK
2736                  */
2737                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2738                         /* parity is correct (on disc,
2739                          * not in buffer any more)
2740                          */
2741                         set_bit(STRIPE_INSYNC, &sh->state);
2742                 else {
2743                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2744                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2745                                 /* don't try to repair!! */
2746                                 set_bit(STRIPE_INSYNC, &sh->state);
2747                         else {
2748                                 sh->check_state = check_state_compute_run;
2749                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2750                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2751                                 set_bit(R5_Wantcompute,
2752                                         &sh->dev[sh->pd_idx].flags);
2753                                 sh->ops.target = sh->pd_idx;
2754                                 sh->ops.target2 = -1;
2755                                 s->uptodate++;
2756                         }
2757                 }
2758                 break;
2759         case check_state_compute_run:
2760                 break;
2761         default:
2762                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2763                        __func__, sh->check_state,
2764                        (unsigned long long) sh->sector);
2765                 BUG();
2766         }
2767 }
2768
2769
2770 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2771                                   struct stripe_head_state *s,
2772                                   struct r6_state *r6s, int disks)
2773 {
2774         int pd_idx = sh->pd_idx;
2775         int qd_idx = sh->qd_idx;
2776         struct r5dev *dev;
2777
2778         set_bit(STRIPE_HANDLE, &sh->state);
2779
2780         BUG_ON(s->failed > 2);
2781
2782         /* Want to check and possibly repair P and Q.
2783          * However there could be one 'failed' device, in which
2784          * case we can only check one of them, possibly using the
2785          * other to generate missing data
2786          */
2787
2788         switch (sh->check_state) {
2789         case check_state_idle:
2790                 /* start a new check operation if there are < 2 failures */
2791                 if (s->failed == r6s->q_failed) {
2792                         /* The only possible failed device holds Q, so it
2793                          * makes sense to check P (If anything else were failed,
2794                          * we would have used P to recreate it).
2795                          */
2796                         sh->check_state = check_state_run;
2797                 }
2798                 if (!r6s->q_failed && s->failed < 2) {
2799                         /* Q is not failed, and we didn't use it to generate
2800                          * anything, so it makes sense to check it
2801                          */
2802                         if (sh->check_state == check_state_run)
2803                                 sh->check_state = check_state_run_pq;
2804                         else
2805                                 sh->check_state = check_state_run_q;
2806                 }
2807
2808                 /* discard potentially stale zero_sum_result */
2809                 sh->ops.zero_sum_result = 0;
2810
2811                 if (sh->check_state == check_state_run) {
2812                         /* async_xor_zero_sum destroys the contents of P */
2813                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2814                         s->uptodate--;
2815                 }
2816                 if (sh->check_state >= check_state_run &&
2817                     sh->check_state <= check_state_run_pq) {
2818                         /* async_syndrome_zero_sum preserves P and Q, so
2819                          * no need to mark them !uptodate here
2820                          */
2821                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2822                         break;
2823                 }
2824
2825                 /* we have 2-disk failure */
2826                 BUG_ON(s->failed != 2);
2827                 /* fall through */
2828         case check_state_compute_result:
2829                 sh->check_state = check_state_idle;
2830
2831                 /* check that a write has not made the stripe insync */
2832                 if (test_bit(STRIPE_INSYNC, &sh->state))
2833                         break;
2834
2835                 /* now write out any block on a failed drive,
2836                  * or P or Q if they were recomputed
2837                  */
2838                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2839                 if (s->failed == 2) {
2840                         dev = &sh->dev[r6s->failed_num[1]];
2841                         s->locked++;
2842                         set_bit(R5_LOCKED, &dev->flags);
2843                         set_bit(R5_Wantwrite, &dev->flags);
2844                 }
2845                 if (s->failed >= 1) {
2846                         dev = &sh->dev[r6s->failed_num[0]];
2847                         s->locked++;
2848                         set_bit(R5_LOCKED, &dev->flags);
2849                         set_bit(R5_Wantwrite, &dev->flags);
2850                 }
2851                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2852                         dev = &sh->dev[pd_idx];
2853                         s->locked++;
2854                         set_bit(R5_LOCKED, &dev->flags);
2855                         set_bit(R5_Wantwrite, &dev->flags);
2856                 }
2857                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2858                         dev = &sh->dev[qd_idx];
2859                         s->locked++;
2860                         set_bit(R5_LOCKED, &dev->flags);
2861                         set_bit(R5_Wantwrite, &dev->flags);
2862                 }
2863                 clear_bit(STRIPE_DEGRADED, &sh->state);
2864
2865                 set_bit(STRIPE_INSYNC, &sh->state);
2866                 break;
2867         case check_state_run:
2868         case check_state_run_q:
2869         case check_state_run_pq:
2870                 break; /* we will be called again upon completion */
2871         case check_state_check_result:
2872                 sh->check_state = check_state_idle;
2873
2874                 /* handle a successful check operation, if parity is correct
2875                  * we are done.  Otherwise update the mismatch count and repair
2876                  * parity if !MD_RECOVERY_CHECK
2877                  */
2878                 if (sh->ops.zero_sum_result == 0) {
2879                         /* both parities are correct */
2880                         if (!s->failed)
2881                                 set_bit(STRIPE_INSYNC, &sh->state);
2882                         else {
2883                                 /* in contrast to the raid5 case we can validate
2884                                  * parity, but still have a failure to write
2885                                  * back
2886                                  */
2887                                 sh->check_state = check_state_compute_result;
2888                                 /* Returning at this point means that we may go
2889                                  * off and bring p and/or q uptodate again so
2890                                  * we make sure to check zero_sum_result again
2891                                  * to verify if p or q need writeback
2892                                  */
2893                         }
2894                 } else {
2895                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2896                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2897                                 /* don't try to repair!! */
2898                                 set_bit(STRIPE_INSYNC, &sh->state);
2899                         else {
2900                                 int *target = &sh->ops.target;
2901
2902                                 sh->ops.target = -1;
2903                                 sh->ops.target2 = -1;
2904                                 sh->check_state = check_state_compute_run;
2905                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2906                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2907                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2908                                         set_bit(R5_Wantcompute,
2909                                                 &sh->dev[pd_idx].flags);
2910                                         *target = pd_idx;
2911                                         target = &sh->ops.target2;
2912                                         s->uptodate++;
2913                                 }
2914                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2915                                         set_bit(R5_Wantcompute,
2916                                                 &sh->dev[qd_idx].flags);
2917                                         *target = qd_idx;
2918                                         s->uptodate++;
2919                                 }
2920                         }
2921                 }
2922                 break;
2923         case check_state_compute_run:
2924                 break;
2925         default:
2926                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2927                        __func__, sh->check_state,
2928                        (unsigned long long) sh->sector);
2929                 BUG();
2930         }
2931 }
2932
2933 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2934                                 struct r6_state *r6s)
2935 {
2936         int i;
2937
2938         /* We have read all the blocks in this stripe and now we need to
2939          * copy some of them into a target stripe for expand.
2940          */
2941         struct dma_async_tx_descriptor *tx = NULL;
2942         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2943         for (i = 0; i < sh->disks; i++)
2944                 if (i != sh->pd_idx && i != sh->qd_idx) {
2945                         int dd_idx, j;
2946                         struct stripe_head *sh2;
2947                         struct async_submit_ctl submit;
2948
2949                         sector_t bn = compute_blocknr(sh, i, 1);
2950                         sector_t s = raid5_compute_sector(conf, bn, 0,
2951                                                           &dd_idx, NULL);
2952                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2953                         if (sh2 == NULL)
2954                                 /* so far only the early blocks of this stripe
2955                                  * have been requested.  When later blocks
2956                                  * get requested, we will try again
2957                                  */
2958                                 continue;
2959                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2960                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2961                                 /* must have already done this block */
2962                                 release_stripe(sh2);
2963                                 continue;
2964                         }
2965
2966                         /* place all the copies on one channel */
2967                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2968                         tx = async_memcpy(sh2->dev[dd_idx].page,
2969                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2970                                           &submit);
2971
2972                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2973                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2974                         for (j = 0; j < conf->raid_disks; j++)
2975                                 if (j != sh2->pd_idx &&
2976                                     (!r6s || j != sh2->qd_idx) &&
2977                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2978                                         break;
2979                         if (j == conf->raid_disks) {
2980                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2981                                 set_bit(STRIPE_HANDLE, &sh2->state);
2982                         }
2983                         release_stripe(sh2);
2984
2985                 }
2986         /* done submitting copies, wait for them to complete */
2987         if (tx) {
2988                 async_tx_ack(tx);
2989                 dma_wait_for_async_tx(tx);
2990         }
2991 }
2992
2993
2994 /*
2995  * handle_stripe - do things to a stripe.
2996  *
2997  * We lock the stripe and then examine the state of various bits
2998  * to see what needs to be done.
2999  * Possible results:
3000  *    return some read request which now have data
3001  *    return some write requests which are safely on disc
3002  *    schedule a read on some buffers
3003  *    schedule a write of some buffers
3004  *    return confirmation of parity correctness
3005  *
3006  * buffers are taken off read_list or write_list, and bh_cache buffers
3007  * get BH_Lock set before the stripe lock is released.
3008  *
3009  */
3010
3011 static void handle_stripe5(struct stripe_head *sh)
3012 {
3013         raid5_conf_t *conf = sh->raid_conf;
3014         int disks = sh->disks, i;
3015         struct bio *return_bi = NULL;
3016         struct stripe_head_state s;
3017         struct r5dev *dev;
3018         mdk_rdev_t *blocked_rdev = NULL;
3019         int prexor;
3020         int dec_preread_active = 0;
3021
3022         memset(&s, 0, sizeof(s));
3023         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3024                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3025                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3026                  sh->reconstruct_state);
3027
3028         spin_lock(&sh->lock);
3029         clear_bit(STRIPE_HANDLE, &sh->state);
3030         clear_bit(STRIPE_DELAYED, &sh->state);
3031
3032         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3033         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3034         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3035
3036         /* Now to look around and see what can be done */
3037         rcu_read_lock();
3038         for (i=disks; i--; ) {
3039                 mdk_rdev_t *rdev;
3040
3041                 dev = &sh->dev[i];
3042
3043                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3044                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3045                         dev->towrite, dev->written);
3046
3047                 /* maybe we can request a biofill operation
3048                  *
3049                  * new wantfill requests are only permitted while
3050                  * ops_complete_biofill is guaranteed to be inactive
3051                  */
3052                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3053                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3054                         set_bit(R5_Wantfill, &dev->flags);
3055
3056                 /* now count some things */
3057                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3058                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3059                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3060
3061                 if (test_bit(R5_Wantfill, &dev->flags))
3062                         s.to_fill++;
3063                 else if (dev->toread)
3064                         s.to_read++;
3065                 if (dev->towrite) {
3066                         s.to_write++;
3067                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3068                                 s.non_overwrite++;
3069                 }
3070                 if (dev->written)
3071                         s.written++;
3072                 rdev = rcu_dereference(conf->disks[i].rdev);
3073                 if (blocked_rdev == NULL &&
3074                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3075                         blocked_rdev = rdev;
3076                         atomic_inc(&rdev->nr_pending);
3077                 }
3078                 clear_bit(R5_Insync, &dev->flags);
3079                 if (!rdev)
3080                         /* Not in-sync */;
3081                 else if (test_bit(In_sync, &rdev->flags))
3082                         set_bit(R5_Insync, &dev->flags);
3083                 else if (!test_bit(Faulty, &rdev->flags)) {
3084                         /* could be in-sync depending on recovery/reshape status */
3085                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3086                                 set_bit(R5_Insync, &dev->flags);
3087                 }
3088                 if (!test_bit(R5_Insync, &dev->flags)) {
3089                         /* The ReadError flag will just be confusing now */
3090                         clear_bit(R5_ReadError, &dev->flags);
3091                         clear_bit(R5_ReWrite, &dev->flags);
3092                 }
3093                 if (test_bit(R5_ReadError, &dev->flags))
3094                         clear_bit(R5_Insync, &dev->flags);
3095                 if (!test_bit(R5_Insync, &dev->flags)) {
3096                         s.failed++;
3097                         s.failed_num = i;
3098                 }
3099         }
3100         rcu_read_unlock();
3101
3102         if (unlikely(blocked_rdev)) {
3103                 if (s.syncing || s.expanding || s.expanded ||
3104                     s.to_write || s.written) {
3105                         set_bit(STRIPE_HANDLE, &sh->state);
3106                         goto unlock;
3107                 }
3108                 /* There is nothing for the blocked_rdev to block */
3109                 rdev_dec_pending(blocked_rdev, conf->mddev);
3110                 blocked_rdev = NULL;
3111         }
3112
3113         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3114                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3115                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3116         }
3117
3118         pr_debug("locked=%d uptodate=%d to_read=%d"
3119                 " to_write=%d failed=%d failed_num=%d\n",
3120                 s.locked, s.uptodate, s.to_read, s.to_write,
3121                 s.failed, s.failed_num);
3122         /* check if the array has lost two devices and, if so, some requests might
3123          * need to be failed
3124          */
3125         if (s.failed > 1) {
3126                 sh->check_state = 0;
3127                 sh->reconstruct_state = 0;
3128                 if (s.to_read+s.to_write+s.written)
3129                         handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3130                 if (s.syncing) {
3131                         md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3132                         clear_bit(STRIPE_SYNCING, &sh->state);
3133                         s.syncing = 0;
3134                 }
3135         }
3136
3137         /* might be able to return some write requests if the parity block
3138          * is safe, or on a failed drive
3139          */
3140         dev = &sh->dev[sh->pd_idx];
3141         if ( s.written &&
3142              ((test_bit(R5_Insync, &dev->flags) &&
3143                !test_bit(R5_LOCKED, &dev->flags) &&
3144                test_bit(R5_UPTODATE, &dev->flags)) ||
3145                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3146                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3147
3148         /* Now we might consider reading some blocks, either to check/generate
3149          * parity, or to satisfy requests
3150          * or to load a block that is being partially written.
3151          */
3152         if (s.to_read || s.non_overwrite ||
3153             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3154                 handle_stripe_fill5(sh, &s, disks);
3155
3156         /* Now we check to see if any write operations have recently
3157          * completed
3158          */
3159         prexor = 0;
3160         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3161                 prexor = 1;
3162         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3163             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3164                 sh->reconstruct_state = reconstruct_state_idle;
3165
3166                 /* All the 'written' buffers and the parity block are ready to
3167                  * be written back to disk
3168                  */
3169                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3170                 for (i = disks; i--; ) {
3171                         dev = &sh->dev[i];
3172                         if (test_bit(R5_LOCKED, &dev->flags) &&
3173                                 (i == sh->pd_idx || dev->written)) {
3174                                 pr_debug("Writing block %d\n", i);
3175                                 set_bit(R5_Wantwrite, &dev->flags);
3176                                 if (prexor)
3177                                         continue;
3178                                 if (!test_bit(R5_Insync, &dev->flags) ||
3179                                     (i == sh->pd_idx && s.failed == 0))
3180                                         set_bit(STRIPE_INSYNC, &sh->state);
3181                         }
3182                 }
3183                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3184                         dec_preread_active = 1;
3185         }
3186
3187         /* Now to consider new write requests and what else, if anything
3188          * should be read.  We do not handle new writes when:
3189          * 1/ A 'write' operation (copy+xor) is already in flight.
3190          * 2/ A 'check' operation is in flight, as it may clobber the parity
3191          *    block.
3192          */
3193         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3194                 handle_stripe_dirtying5(conf, sh, &s, disks);
3195
3196         /* maybe we need to check and possibly fix the parity for this stripe
3197          * Any reads will already have been scheduled, so we just see if enough
3198          * data is available.  The parity check is held off while parity
3199          * dependent operations are in flight.
3200          */
3201         if (sh->check_state ||
3202             (s.syncing && s.locked == 0 &&
3203              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3204              !test_bit(STRIPE_INSYNC, &sh->state)))
3205                 handle_parity_checks5(conf, sh, &s, disks);
3206
3207         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3208                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3209                 clear_bit(STRIPE_SYNCING, &sh->state);
3210         }
3211
3212         /* If the failed drive is just a ReadError, then we might need to progress
3213          * the repair/check process
3214          */
3215         if (s.failed == 1 && !conf->mddev->ro &&
3216             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3217             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3218             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3219                 ) {
3220                 dev = &sh->dev[s.failed_num];
3221                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3222                         set_bit(R5_Wantwrite, &dev->flags);
3223                         set_bit(R5_ReWrite, &dev->flags);
3224                         set_bit(R5_LOCKED, &dev->flags);
3225                         s.locked++;
3226                 } else {
3227                         /* let's read it back */
3228                         set_bit(R5_Wantread, &dev->flags);
3229                         set_bit(R5_LOCKED, &dev->flags);
3230                         s.locked++;
3231                 }
3232         }
3233
3234         /* Finish reconstruct operations initiated by the expansion process */
3235         if (sh->reconstruct_state == reconstruct_state_result) {
3236                 struct stripe_head *sh2
3237                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3238                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3239                         /* sh cannot be written until sh2 has been read.
3240                          * so arrange for sh to be delayed a little
3241                          */
3242                         set_bit(STRIPE_DELAYED, &sh->state);
3243                         set_bit(STRIPE_HANDLE, &sh->state);
3244                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3245                                               &sh2->state))
3246                                 atomic_inc(&conf->preread_active_stripes);
3247                         release_stripe(sh2);
3248                         goto unlock;
3249                 }
3250                 if (sh2)
3251                         release_stripe(sh2);
3252
3253                 sh->reconstruct_state = reconstruct_state_idle;
3254                 clear_bit(STRIPE_EXPANDING, &sh->state);
3255                 for (i = conf->raid_disks; i--; ) {
3256                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3257                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3258                         s.locked++;
3259                 }
3260         }
3261
3262         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3263             !sh->reconstruct_state) {
3264                 /* Need to write out all blocks after computing parity */
3265                 sh->disks = conf->raid_disks;
3266                 stripe_set_idx(sh->sector, conf, 0, sh);
3267                 schedule_reconstruction(sh, &s, 1, 1);
3268         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3269                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3270                 atomic_dec(&conf->reshape_stripes);
3271                 wake_up(&conf->wait_for_overlap);
3272                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3273         }
3274
3275         if (s.expanding && s.locked == 0 &&
3276             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3277                 handle_stripe_expansion(conf, sh, NULL);
3278
3279  unlock:
3280         spin_unlock(&sh->lock);
3281
3282         /* wait for this device to become unblocked */
3283         if (unlikely(blocked_rdev))
3284                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3285
3286         if (s.ops_request)
3287                 raid_run_ops(sh, s.ops_request);
3288
3289         ops_run_io(sh, &s);
3290
3291         if (dec_preread_active) {
3292                 /* We delay this until after ops_run_io so that if make_request
3293                  * is waiting on a flush, it won't continue until the writes
3294                  * have actually been submitted.
3295                  */
3296                 atomic_dec(&conf->preread_active_stripes);
3297                 if (atomic_read(&conf->preread_active_stripes) <
3298                     IO_THRESHOLD)
3299                         md_wakeup_thread(conf->mddev->thread);
3300         }
3301         return_io(return_bi);
3302 }
3303
3304 static void handle_stripe6(struct stripe_head *sh)
3305 {
3306         raid5_conf_t *conf = sh->raid_conf;
3307         int disks = sh->disks;
3308         struct bio *return_bi = NULL;
3309         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3310         struct stripe_head_state s;
3311         struct r6_state r6s;
3312         struct r5dev *dev, *pdev, *qdev;
3313         mdk_rdev_t *blocked_rdev = NULL;
3314         int dec_preread_active = 0;
3315
3316         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3317                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3318                (unsigned long long)sh->sector, sh->state,
3319                atomic_read(&sh->count), pd_idx, qd_idx,
3320                sh->check_state, sh->reconstruct_state);
3321         memset(&s, 0, sizeof(s));
3322
3323         spin_lock(&sh->lock);
3324         clear_bit(STRIPE_HANDLE, &sh->state);
3325         clear_bit(STRIPE_DELAYED, &sh->state);
3326
3327         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3328         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3329         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3330         /* Now to look around and see what can be done */
3331
3332         rcu_read_lock();
3333         for (i=disks; i--; ) {
3334                 mdk_rdev_t *rdev;
3335                 dev = &sh->dev[i];
3336
3337                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3338                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3339                 /* maybe we can reply to a read
3340                  *
3341                  * new wantfill requests are only permitted while
3342                  * ops_complete_biofill is guaranteed to be inactive
3343                  */
3344                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3345                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3346                         set_bit(R5_Wantfill, &dev->flags);
3347
3348                 /* now count some things */
3349                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3350                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3351                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3352                         s.compute++;
3353                         BUG_ON(s.compute > 2);
3354                 }
3355
3356                 if (test_bit(R5_Wantfill, &dev->flags)) {
3357                         s.to_fill++;
3358                 } else if (dev->toread)
3359                         s.to_read++;
3360                 if (dev->towrite) {
3361                         s.to_write++;
3362                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3363                                 s.non_overwrite++;
3364                 }
3365                 if (dev->written)
3366                         s.written++;
3367                 rdev = rcu_dereference(conf->disks[i].rdev);
3368                 if (blocked_rdev == NULL &&
3369                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3370                         blocked_rdev = rdev;
3371                         atomic_inc(&rdev->nr_pending);
3372                 }
3373                 clear_bit(R5_Insync, &dev->flags);
3374                 if (!rdev)
3375                         /* Not in-sync */;
3376                 else if (test_bit(In_sync, &rdev->flags))
3377                         set_bit(R5_Insync, &dev->flags);
3378                 else if (!test_bit(Faulty, &rdev->flags)) {
3379                         /* in sync if before recovery_offset */
3380                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3381                                 set_bit(R5_Insync, &dev->flags);
3382                 }
3383                 if (!test_bit(R5_Insync, &dev->flags)) {
3384                         /* The ReadError flag will just be confusing now */
3385                         clear_bit(R5_ReadError, &dev->flags);
3386                         clear_bit(R5_ReWrite, &dev->flags);
3387                 }
3388                 if (test_bit(R5_ReadError, &dev->flags))
3389                         clear_bit(R5_Insync, &dev->flags);
3390                 if (!test_bit(R5_Insync, &dev->flags)) {
3391                         if (s.failed < 2)
3392                                 r6s.failed_num[s.failed] = i;
3393                         s.failed++;
3394                 }
3395         }
3396         rcu_read_unlock();
3397
3398         if (unlikely(blocked_rdev)) {
3399                 if (s.syncing || s.expanding || s.expanded ||
3400                     s.to_write || s.written) {
3401                         set_bit(STRIPE_HANDLE, &sh->state);
3402                         goto unlock;
3403                 }
3404                 /* There is nothing for the blocked_rdev to block */
3405                 rdev_dec_pending(blocked_rdev, conf->mddev);
3406                 blocked_rdev = NULL;
3407         }
3408
3409         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3410                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3411                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3412         }
3413
3414         pr_debug("locked=%d uptodate=%d to_read=%d"
3415                " to_write=%d failed=%d failed_num=%d,%d\n",
3416                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3417                r6s.failed_num[0], r6s.failed_num[1]);
3418         /* check if the array has lost >2 devices and, if so, some requests
3419          * might need to be failed
3420          */
3421         if (s.failed > 2) {
3422                 sh->check_state = 0;
3423                 sh->reconstruct_state = 0;
3424                 if (s.to_read+s.to_write+s.written)
3425                         handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3426                 if (s.syncing) {
3427                         md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3428                         clear_bit(STRIPE_SYNCING, &sh->state);
3429                         s.syncing = 0;
3430                 }
3431         }
3432
3433         /*
3434          * might be able to return some write requests if the parity blocks
3435          * are safe, or on a failed drive
3436          */
3437         pdev = &sh->dev[pd_idx];
3438         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3439                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3440         qdev = &sh->dev[qd_idx];
3441         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3442                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3443
3444         if ( s.written &&
3445              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3446                              && !test_bit(R5_LOCKED, &pdev->flags)
3447                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3448              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3449                              && !test_bit(R5_LOCKED, &qdev->flags)
3450                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3451                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3452
3453         /* Now we might consider reading some blocks, either to check/generate
3454          * parity, or to satisfy requests
3455          * or to load a block that is being partially written.
3456          */
3457         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3458             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3459                 handle_stripe_fill6(sh, &s, &r6s, disks);
3460
3461         /* Now we check to see if any write operations have recently
3462          * completed
3463          */
3464         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3465
3466                 sh->reconstruct_state = reconstruct_state_idle;
3467                 /* All the 'written' buffers and the parity blocks are ready to
3468                  * be written back to disk
3469                  */
3470                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3471                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3472                 for (i = disks; i--; ) {
3473                         dev = &sh->dev[i];
3474                         if (test_bit(R5_LOCKED, &dev->flags) &&
3475                             (i == sh->pd_idx || i == qd_idx ||
3476                              dev->written)) {
3477                                 pr_debug("Writing block %d\n", i);
3478                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3479                                 set_bit(R5_Wantwrite, &dev->flags);
3480                                 if (!test_bit(R5_Insync, &dev->flags) ||
3481                                     ((i == sh->pd_idx || i == qd_idx) &&
3482                                       s.failed == 0))
3483                                         set_bit(STRIPE_INSYNC, &sh->state);
3484                         }
3485                 }
3486                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3487                         dec_preread_active = 1;
3488         }
3489
3490         /* Now to consider new write requests and what else, if anything
3491          * should be read.  We do not handle new writes when:
3492          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3493          * 2/ A 'check' operation is in flight, as it may clobber the parity
3494          *    block.
3495          */
3496         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3497                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3498
3499         /* maybe we need to check and possibly fix the parity for this stripe
3500          * Any reads will already have been scheduled, so we just see if enough
3501          * data is available.  The parity check is held off while parity
3502          * dependent operations are in flight.
3503          */
3504         if (sh->check_state ||
3505             (s.syncing && s.locked == 0 &&
3506              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3507              !test_bit(STRIPE_INSYNC, &sh->state)))
3508                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3509
3510         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3511                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3512                 clear_bit(STRIPE_SYNCING, &sh->state);
3513         }
3514
3515         /* If the failed drives are just a ReadError, then we might need
3516          * to progress the repair/check process
3517          */
3518         if (s.failed <= 2 && !conf->mddev->ro)
3519                 for (i = 0; i < s.failed; i++) {
3520                         dev = &sh->dev[r6s.failed_num[i]];
3521                         if (test_bit(R5_ReadError, &dev->flags)
3522                             && !test_bit(R5_LOCKED, &dev->flags)
3523                             && test_bit(R5_UPTODATE, &dev->flags)
3524                                 ) {
3525                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3526                                         set_bit(R5_Wantwrite, &dev->flags);
3527                                         set_bit(R5_ReWrite, &dev->flags);
3528                                         set_bit(R5_LOCKED, &dev->flags);
3529                                         s.locked++;
3530                                 } else {
3531                                         /* let's read it back */
3532                                         set_bit(R5_Wantread, &dev->flags);
3533                                         set_bit(R5_LOCKED, &dev->flags);
3534                                         s.locked++;
3535                                 }
3536                         }
3537                 }
3538
3539         /* Finish reconstruct operations initiated by the expansion process */
3540         if (sh->reconstruct_state == reconstruct_state_result) {
3541                 sh->reconstruct_state = reconstruct_state_idle;
3542                 clear_bit(STRIPE_EXPANDING, &sh->state);
3543                 for (i = conf->raid_disks; i--; ) {
3544                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3545                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3546                         s.locked++;
3547                 }
3548         }
3549
3550         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3551             !sh->reconstruct_state) {
3552                 struct stripe_head *sh2
3553                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3554                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3555                         /* sh cannot be written until sh2 has been read.
3556                          * so arrange for sh to be delayed a little
3557                          */
3558                         set_bit(STRIPE_DELAYED, &sh->state);
3559                         set_bit(STRIPE_HANDLE, &sh->state);
3560                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3561                                               &sh2->state))
3562                                 atomic_inc(&conf->preread_active_stripes);
3563                         release_stripe(sh2);
3564                         goto unlock;
3565                 }
3566                 if (sh2)
3567                         release_stripe(sh2);
3568
3569                 /* Need to write out all blocks after computing P&Q */
3570                 sh->disks = conf->raid_disks;
3571                 stripe_set_idx(sh->sector, conf, 0, sh);
3572                 schedule_reconstruction(sh, &s, 1, 1);
3573         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3574                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3575                 atomic_dec(&conf->reshape_stripes);
3576                 wake_up(&conf->wait_for_overlap);
3577                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3578         }
3579
3580         if (s.expanding && s.locked == 0 &&
3581             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3582                 handle_stripe_expansion(conf, sh, &r6s);
3583
3584  unlock:
3585         spin_unlock(&sh->lock);
3586
3587         /* wait for this device to become unblocked */
3588         if (unlikely(blocked_rdev))
3589                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3590
3591         if (s.ops_request)
3592                 raid_run_ops(sh, s.ops_request);
3593
3594         ops_run_io(sh, &s);
3595
3596
3597         if (dec_preread_active) {
3598                 /* We delay this until after ops_run_io so that if make_request
3599                  * is waiting on a flush, it won't continue until the writes
3600                  * have actually been submitted.
3601                  */
3602                 atomic_dec(&conf->preread_active_stripes);
3603                 if (atomic_read(&conf->preread_active_stripes) <
3604                     IO_THRESHOLD)
3605                         md_wakeup_thread(conf->mddev->thread);
3606         }
3607
3608         return_io(return_bi);
3609 }
3610
3611 static void handle_stripe(struct stripe_head *sh)
3612 {
3613         if (sh->raid_conf->level == 6)
3614                 handle_stripe6(sh);
3615         else
3616                 handle_stripe5(sh);
3617 }
3618
3619 static void raid5_activate_delayed(raid5_conf_t *conf)
3620 {
3621         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3622                 while (!list_empty(&conf->delayed_list)) {
3623                         struct list_head *l = conf->delayed_list.next;
3624                         struct stripe_head *sh;
3625                         sh = list_entry(l, struct stripe_head, lru);
3626                         list_del_init(l);
3627                         clear_bit(STRIPE_DELAYED, &sh->state);
3628                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3629                                 atomic_inc(&conf->preread_active_stripes);
3630                         list_add_tail(&sh->lru, &conf->hold_list);
3631                 }
3632         }
3633 }
3634
3635 static void activate_bit_delay(raid5_conf_t *conf)
3636 {
3637         /* device_lock is held */
3638         struct list_head head;
3639         list_add(&head, &conf->bitmap_list);
3640         list_del_init(&conf->bitmap_list);
3641         while (!list_empty(&head)) {
3642                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3643                 list_del_init(&sh->lru);
3644                 atomic_inc(&sh->count);
3645                 __release_stripe(conf, sh);
3646         }
3647 }
3648
3649 int md_raid5_congested(mddev_t *mddev, int bits)
3650 {
3651         raid5_conf_t *conf = mddev->private;
3652
3653         /* No difference between reads and writes.  Just check
3654          * how busy the stripe_cache is
3655          */
3656
3657         if (conf->inactive_blocked)
3658                 return 1;
3659         if (conf->quiesce)
3660                 return 1;
3661         if (list_empty_careful(&conf->inactive_list))
3662                 return 1;
3663
3664         return 0;
3665 }
3666 EXPORT_SYMBOL_GPL(md_raid5_congested);
3667
3668 static int raid5_congested(void *data, int bits)
3669 {
3670         mddev_t *mddev = data;
3671
3672         return mddev_congested(mddev, bits) ||
3673                 md_raid5_congested(mddev, bits);
3674 }
3675
3676 /* We want read requests to align with chunks where possible,
3677  * but write requests don't need to.
3678  */
3679 static int raid5_mergeable_bvec(struct request_queue *q,
3680                                 struct bvec_merge_data *bvm,
3681                                 struct bio_vec *biovec)
3682 {
3683         mddev_t *mddev = q->queuedata;
3684         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3685         int max;
3686         unsigned int chunk_sectors = mddev->chunk_sectors;
3687         unsigned int bio_sectors = bvm->bi_size >> 9;
3688
3689         if ((bvm->bi_rw & 1) == WRITE)
3690                 return biovec->bv_len; /* always allow writes to be mergeable */
3691
3692         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3693                 chunk_sectors = mddev->new_chunk_sectors;
3694         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3695         if (max < 0) max = 0;
3696         if (max <= biovec->bv_len && bio_sectors == 0)
3697                 return biovec->bv_len;
3698         else
3699                 return max;
3700 }
3701
3702
3703 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3704 {
3705         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3706         unsigned int chunk_sectors = mddev->chunk_sectors;
3707         unsigned int bio_sectors = bio->bi_size >> 9;
3708
3709         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3710                 chunk_sectors = mddev->new_chunk_sectors;
3711         return  chunk_sectors >=
3712                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3713 }
3714
3715 /*
3716  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3717  *  later sampled by raid5d.
3718  */
3719 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3720 {
3721         unsigned long flags;
3722
3723         spin_lock_irqsave(&conf->device_lock, flags);
3724
3725         bi->bi_next = conf->retry_read_aligned_list;
3726         conf->retry_read_aligned_list = bi;
3727
3728         spin_unlock_irqrestore(&conf->device_lock, flags);
3729         md_wakeup_thread(conf->mddev->thread);
3730 }
3731
3732
3733 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3734 {
3735         struct bio *bi;
3736
3737         bi = conf->retry_read_aligned;
3738         if (bi) {
3739                 conf->retry_read_aligned = NULL;
3740                 return bi;
3741         }
3742         bi = conf->retry_read_aligned_list;
3743         if(bi) {
3744                 conf->retry_read_aligned_list = bi->bi_next;
3745                 bi->bi_next = NULL;
3746                 /*
3747                  * this sets the active strip count to 1 and the processed
3748                  * strip count to zero (upper 8 bits)
3749                  */
3750                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3751         }
3752
3753         return bi;
3754 }
3755
3756
3757 /*
3758  *  The "raid5_align_endio" should check if the read succeeded and if it
3759  *  did, call bio_endio on the original bio (having bio_put the new bio
3760  *  first).
3761  *  If the read failed..
3762  */
3763 static void raid5_align_endio(struct bio *bi, int error)
3764 {
3765         struct bio* raid_bi  = bi->bi_private;
3766         mddev_t *mddev;
3767         raid5_conf_t *conf;
3768         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3769         mdk_rdev_t *rdev;
3770
3771         bio_put(bi);
3772
3773         rdev = (void*)raid_bi->bi_next;
3774         raid_bi->bi_next = NULL;
3775         mddev = rdev->mddev;
3776         conf = mddev->private;
3777
3778         rdev_dec_pending(rdev, conf->mddev);
3779
3780         if (!error && uptodate) {
3781                 bio_endio(raid_bi, 0);
3782                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3783                         wake_up(&conf->wait_for_stripe);
3784                 return;
3785         }
3786
3787
3788         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3789
3790         add_bio_to_retry(raid_bi, conf);
3791 }
3792
3793 static int bio_fits_rdev(struct bio *bi)
3794 {
3795         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3796
3797         if ((bi->bi_size>>9) > queue_max_sectors(q))
3798                 return 0;
3799         blk_recount_segments(q, bi);
3800         if (bi->bi_phys_segments > queue_max_segments(q))
3801                 return 0;
3802
3803         if (q->merge_bvec_fn)
3804                 /* it's too hard to apply the merge_bvec_fn at this stage,
3805                  * just just give up
3806                  */
3807                 return 0;
3808
3809         return 1;
3810 }
3811
3812
3813 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3814 {
3815         raid5_conf_t *conf = mddev->private;
3816         int dd_idx;
3817         struct bio* align_bi;
3818         mdk_rdev_t *rdev;
3819
3820         if (!in_chunk_boundary(mddev, raid_bio)) {
3821                 pr_debug("chunk_aligned_read : non aligned\n");
3822                 return 0;
3823         }
3824         /*
3825          * use bio_clone_mddev to make a copy of the bio
3826          */
3827         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3828         if (!align_bi)
3829                 return 0;
3830         /*
3831          *   set bi_end_io to a new function, and set bi_private to the
3832          *     original bio.
3833          */
3834         align_bi->bi_end_io  = raid5_align_endio;
3835         align_bi->bi_private = raid_bio;
3836         /*
3837          *      compute position
3838          */
3839         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3840                                                     0,
3841                                                     &dd_idx, NULL);
3842
3843         rcu_read_lock();
3844         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3845         if (rdev && test_bit(In_sync, &rdev->flags)) {
3846                 atomic_inc(&rdev->nr_pending);
3847                 rcu_read_unlock();
3848                 raid_bio->bi_next = (void*)rdev;
3849                 align_bi->bi_bdev =  rdev->bdev;
3850                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3851
3852                 if (!bio_fits_rdev(align_bi)) {
3853                         /* too big in some way */
3854                         bio_put(align_bi);
3855                         rdev_dec_pending(rdev, mddev);
3856                         return 0;
3857                 }
3858
3859                 /* No reshape active, so we can trust rdev->data_offset */
3860                 align_bi->bi_sector += rdev->data_offset;
3861
3862                 spin_lock_irq(&conf->device_lock);
3863                 wait_event_lock_irq(conf->wait_for_stripe,
3864                                     conf->quiesce == 0,
3865                                     conf->device_lock, /* nothing */);
3866                 atomic_inc(&conf->active_aligned_reads);
3867                 spin_unlock_irq(&conf->device_lock);
3868
3869                 generic_make_request(align_bi);
3870                 return 1;
3871         } else {
3872                 rcu_read_unlock();
3873                 bio_put(align_bi);
3874                 return 0;
3875         }
3876 }
3877
3878 /* __get_priority_stripe - get the next stripe to process
3879  *
3880  * Full stripe writes are allowed to pass preread active stripes up until
3881  * the bypass_threshold is exceeded.  In general the bypass_count
3882  * increments when the handle_list is handled before the hold_list; however, it
3883  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3884  * stripe with in flight i/o.  The bypass_count will be reset when the
3885  * head of the hold_list has changed, i.e. the head was promoted to the
3886  * handle_list.
3887  */
3888 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3889 {
3890         struct stripe_head *sh;
3891
3892         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3893                   __func__,
3894                   list_empty(&conf->handle_list) ? "empty" : "busy",
3895                   list_empty(&conf->hold_list) ? "empty" : "busy",
3896                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3897
3898         if (!list_empty(&conf->handle_list)) {
3899                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3900
3901                 if (list_empty(&conf->hold_list))
3902                         conf->bypass_count = 0;
3903                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3904                         if (conf->hold_list.next == conf->last_hold)
3905                                 conf->bypass_count++;
3906                         else {
3907                                 conf->last_hold = conf->hold_list.next;
3908                                 conf->bypass_count -= conf->bypass_threshold;
3909                                 if (conf->bypass_count < 0)
3910                                         conf->bypass_count = 0;
3911                         }
3912                 }
3913         } else if (!list_empty(&conf->hold_list) &&
3914                    ((conf->bypass_threshold &&
3915                      conf->bypass_count > conf->bypass_threshold) ||
3916                     atomic_read(&conf->pending_full_writes) == 0)) {
3917                 sh = list_entry(conf->hold_list.next,
3918                                 typeof(*sh), lru);
3919                 conf->bypass_count -= conf->bypass_threshold;
3920                 if (conf->bypass_count < 0)
3921                         conf->bypass_count = 0;
3922         } else
3923                 return NULL;
3924
3925         list_del_init(&sh->lru);
3926         atomic_inc(&sh->count);
3927         BUG_ON(atomic_read(&sh->count) != 1);
3928         return sh;
3929 }
3930
3931 static int make_request(mddev_t *mddev, struct bio * bi)
3932 {
3933         raid5_conf_t *conf = mddev->private;
3934         int dd_idx;
3935         sector_t new_sector;
3936         sector_t logical_sector, last_sector;
3937         struct stripe_head *sh;
3938         const int rw = bio_data_dir(bi);
3939         int remaining;
3940         int plugged;
3941
3942         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3943                 md_flush_request(mddev, bi);
3944                 return 0;
3945         }
3946
3947         md_write_start(mddev, bi);
3948
3949         if (rw == READ &&
3950              mddev->reshape_position == MaxSector &&
3951              chunk_aligned_read(mddev,bi))
3952                 return 0;
3953
3954         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3955         last_sector = bi->bi_sector + (bi->bi_size>>9);
3956         bi->bi_next = NULL;
3957         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3958
3959         plugged = mddev_check_plugged(mddev);
3960         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3961                 DEFINE_WAIT(w);
3962                 int disks, data_disks;
3963                 int previous;
3964
3965         retry:
3966                 previous = 0;
3967                 disks = conf->raid_disks;
3968                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3969                 if (unlikely(conf->reshape_progress != MaxSector)) {
3970                         /* spinlock is needed as reshape_progress may be
3971                          * 64bit on a 32bit platform, and so it might be
3972                          * possible to see a half-updated value
3973                          * Of course reshape_progress could change after
3974                          * the lock is dropped, so once we get a reference
3975                          * to the stripe that we think it is, we will have
3976                          * to check again.
3977                          */
3978                         spin_lock_irq(&conf->device_lock);
3979                         if (mddev->delta_disks < 0
3980                             ? logical_sector < conf->reshape_progress
3981                             : logical_sector >= conf->reshape_progress) {
3982                                 disks = conf->previous_raid_disks;
3983                                 previous = 1;
3984                         } else {
3985                                 if (mddev->delta_disks < 0
3986                                     ? logical_sector < conf->reshape_safe
3987                                     : logical_sector >= conf->reshape_safe) {
3988                                         spin_unlock_irq(&conf->device_lock);
3989                                         schedule();
3990                                         goto retry;
3991                                 }
3992                         }
3993                         spin_unlock_irq(&conf->device_lock);
3994                 }
3995                 data_disks = disks - conf->max_degraded;
3996
3997                 new_sector = raid5_compute_sector(conf, logical_sector,
3998                                                   previous,
3999                                                   &dd_idx, NULL);
4000                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4001                         (unsigned long long)new_sector, 
4002                         (unsigned long long)logical_sector);
4003
4004                 sh = get_active_stripe(conf, new_sector, previous,
4005                                        (bi->bi_rw&RWA_MASK), 0);
4006                 if (sh) {
4007                         if (unlikely(previous)) {
4008                                 /* expansion might have moved on while waiting for a
4009                                  * stripe, so we must do the range check again.
4010                                  * Expansion could still move past after this
4011                                  * test, but as we are holding a reference to
4012                                  * 'sh', we know that if that happens,
4013                                  *  STRIPE_EXPANDING will get set and the expansion
4014                                  * won't proceed until we finish with the stripe.
4015                                  */
4016                                 int must_retry = 0;
4017                                 spin_lock_irq(&conf->device_lock);
4018                                 if (mddev->delta_disks < 0
4019                                     ? logical_sector >= conf->reshape_progress
4020                                     : logical_sector < conf->reshape_progress)
4021                                         /* mismatch, need to try again */
4022                                         must_retry = 1;
4023                                 spin_unlock_irq(&conf->device_lock);
4024                                 if (must_retry) {
4025                                         release_stripe(sh);
4026                                         schedule();
4027                                         goto retry;
4028                                 }
4029                         }
4030
4031                         if (bio_data_dir(bi) == WRITE &&
4032                             logical_sector >= mddev->suspend_lo &&
4033                             logical_sector < mddev->suspend_hi) {
4034                                 release_stripe(sh);
4035                                 /* As the suspend_* range is controlled by
4036                                  * userspace, we want an interruptible
4037                                  * wait.
4038                                  */
4039                                 flush_signals(current);
4040                                 prepare_to_wait(&conf->wait_for_overlap,
4041                                                 &w, TASK_INTERRUPTIBLE);
4042                                 if (logical_sector >= mddev->suspend_lo &&
4043                                     logical_sector < mddev->suspend_hi)
4044                                         schedule();
4045                                 goto retry;
4046                         }
4047
4048                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4049                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4050                                 /* Stripe is busy expanding or
4051                                  * add failed due to overlap.  Flush everything
4052                                  * and wait a while
4053                                  */
4054                                 md_wakeup_thread(mddev->thread);
4055                                 release_stripe(sh);
4056                                 schedule();
4057                                 goto retry;
4058                         }
4059                         finish_wait(&conf->wait_for_overlap, &w);
4060                         set_bit(STRIPE_HANDLE, &sh->state);
4061                         clear_bit(STRIPE_DELAYED, &sh->state);
4062                         if ((bi->bi_rw & REQ_SYNC) &&
4063                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4064                                 atomic_inc(&conf->preread_active_stripes);
4065                         release_stripe(sh);
4066                 } else {
4067                         /* cannot get stripe for read-ahead, just give-up */
4068                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4069                         finish_wait(&conf->wait_for_overlap, &w);
4070                         break;
4071                 }
4072                         
4073         }
4074         if (!plugged)
4075                 md_wakeup_thread(mddev->thread);
4076
4077         spin_lock_irq(&conf->device_lock);
4078         remaining = raid5_dec_bi_phys_segments(bi);
4079         spin_unlock_irq(&conf->device_lock);
4080         if (remaining == 0) {
4081
4082                 if ( rw == WRITE )
4083                         md_write_end(mddev);
4084
4085                 bio_endio(bi, 0);
4086         }
4087
4088         return 0;
4089 }
4090
4091 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4092
4093 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4094 {
4095         /* reshaping is quite different to recovery/resync so it is
4096          * handled quite separately ... here.
4097          *
4098          * On each call to sync_request, we gather one chunk worth of
4099          * destination stripes and flag them as expanding.
4100          * Then we find all the source stripes and request reads.
4101          * As the reads complete, handle_stripe will copy the data
4102          * into the destination stripe and release that stripe.
4103          */
4104         raid5_conf_t *conf = mddev->private;
4105         struct stripe_head *sh;
4106         sector_t first_sector, last_sector;
4107         int raid_disks = conf->previous_raid_disks;
4108         int data_disks = raid_disks - conf->max_degraded;
4109         int new_data_disks = conf->raid_disks - conf->max_degraded;
4110         int i;
4111         int dd_idx;
4112         sector_t writepos, readpos, safepos;
4113         sector_t stripe_addr;
4114         int reshape_sectors;
4115         struct list_head stripes;
4116
4117         if (sector_nr == 0) {
4118                 /* If restarting in the middle, skip the initial sectors */
4119                 if (mddev->delta_disks < 0 &&
4120                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4121                         sector_nr = raid5_size(mddev, 0, 0)
4122                                 - conf->reshape_progress;
4123                 } else if (mddev->delta_disks >= 0 &&
4124                            conf->reshape_progress > 0)
4125                         sector_nr = conf->reshape_progress;
4126                 sector_div(sector_nr, new_data_disks);
4127                 if (sector_nr) {
4128                         mddev->curr_resync_completed = sector_nr;
4129                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4130                         *skipped = 1;
4131                         return sector_nr;
4132                 }
4133         }
4134
4135         /* We need to process a full chunk at a time.
4136          * If old and new chunk sizes differ, we need to process the
4137          * largest of these
4138          */
4139         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4140                 reshape_sectors = mddev->new_chunk_sectors;
4141         else
4142                 reshape_sectors = mddev->chunk_sectors;
4143
4144         /* we update the metadata when there is more than 3Meg
4145          * in the block range (that is rather arbitrary, should
4146          * probably be time based) or when the data about to be
4147          * copied would over-write the source of the data at
4148          * the front of the range.
4149          * i.e. one new_stripe along from reshape_progress new_maps
4150          * to after where reshape_safe old_maps to
4151          */
4152         writepos = conf->reshape_progress;
4153         sector_div(writepos, new_data_disks);
4154         readpos = conf->reshape_progress;
4155         sector_div(readpos, data_disks);
4156         safepos = conf->reshape_safe;
4157         sector_div(safepos, data_disks);
4158         if (mddev->delta_disks < 0) {
4159                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4160                 readpos += reshape_sectors;
4161                 safepos += reshape_sectors;
4162         } else {
4163                 writepos += reshape_sectors;
4164                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4165                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4166         }
4167
4168         /* 'writepos' is the most advanced device address we might write.
4169          * 'readpos' is the least advanced device address we might read.
4170          * 'safepos' is the least address recorded in the metadata as having
4171          *     been reshaped.
4172          * If 'readpos' is behind 'writepos', then there is no way that we can
4173          * ensure safety in the face of a crash - that must be done by userspace
4174          * making a backup of the data.  So in that case there is no particular
4175          * rush to update metadata.
4176          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4177          * update the metadata to advance 'safepos' to match 'readpos' so that
4178          * we can be safe in the event of a crash.
4179          * So we insist on updating metadata if safepos is behind writepos and
4180          * readpos is beyond writepos.
4181          * In any case, update the metadata every 10 seconds.
4182          * Maybe that number should be configurable, but I'm not sure it is
4183          * worth it.... maybe it could be a multiple of safemode_delay???
4184          */
4185         if ((mddev->delta_disks < 0
4186              ? (safepos > writepos && readpos < writepos)
4187              : (safepos < writepos && readpos > writepos)) ||
4188             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4189                 /* Cannot proceed until we've updated the superblock... */
4190                 wait_event(conf->wait_for_overlap,
4191                            atomic_read(&conf->reshape_stripes)==0);
4192                 mddev->reshape_position = conf->reshape_progress;
4193                 mddev->curr_resync_completed = sector_nr;
4194                 conf->reshape_checkpoint = jiffies;
4195                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4196                 md_wakeup_thread(mddev->thread);
4197                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4198                            kthread_should_stop());
4199                 spin_lock_irq(&conf->device_lock);
4200                 conf->reshape_safe = mddev->reshape_position;
4201                 spin_unlock_irq(&conf->device_lock);
4202                 wake_up(&conf->wait_for_overlap);
4203                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4204         }
4205
4206         if (mddev->delta_disks < 0) {
4207                 BUG_ON(conf->reshape_progress == 0);
4208                 stripe_addr = writepos;
4209                 BUG_ON((mddev->dev_sectors &
4210                         ~((sector_t)reshape_sectors - 1))
4211                        - reshape_sectors - stripe_addr
4212                        != sector_nr);
4213         } else {
4214                 BUG_ON(writepos != sector_nr + reshape_sectors);
4215                 stripe_addr = sector_nr;
4216         }
4217         INIT_LIST_HEAD(&stripes);
4218         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4219                 int j;
4220                 int skipped_disk = 0;
4221                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4222                 set_bit(STRIPE_EXPANDING, &sh->state);
4223                 atomic_inc(&conf->reshape_stripes);
4224                 /* If any of this stripe is beyond the end of the old
4225                  * array, then we need to zero those blocks
4226                  */
4227                 for (j=sh->disks; j--;) {
4228                         sector_t s;
4229                         if (j == sh->pd_idx)
4230                                 continue;
4231                         if (conf->level == 6 &&
4232                             j == sh->qd_idx)
4233                                 continue;
4234                         s = compute_blocknr(sh, j, 0);
4235                         if (s < raid5_size(mddev, 0, 0)) {
4236                                 skipped_disk = 1;
4237                                 continue;
4238                         }
4239                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4240                         set_bit(R5_Expanded, &sh->dev[j].flags);
4241                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4242                 }
4243                 if (!skipped_disk) {
4244                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4245                         set_bit(STRIPE_HANDLE, &sh->state);
4246                 }
4247                 list_add(&sh->lru, &stripes);
4248         }
4249         spin_lock_irq(&conf->device_lock);
4250         if (mddev->delta_disks < 0)
4251                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4252         else
4253                 conf->reshape_progress += reshape_sectors * new_data_disks;
4254         spin_unlock_irq(&conf->device_lock);
4255         /* Ok, those stripe are ready. We can start scheduling
4256          * reads on the source stripes.
4257          * The source stripes are determined by mapping the first and last
4258          * block on the destination stripes.
4259          */
4260         first_sector =
4261                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4262                                      1, &dd_idx, NULL);
4263         last_sector =
4264                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4265                                             * new_data_disks - 1),
4266                                      1, &dd_idx, NULL);
4267         if (last_sector >= mddev->dev_sectors)
4268                 last_sector = mddev->dev_sectors - 1;
4269         while (first_sector <= last_sector) {
4270                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4271                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4272                 set_bit(STRIPE_HANDLE, &sh->state);
4273                 release_stripe(sh);
4274                 first_sector += STRIPE_SECTORS;
4275         }
4276         /* Now that the sources are clearly marked, we can release
4277          * the destination stripes
4278          */
4279         while (!list_empty(&stripes)) {
4280                 sh = list_entry(stripes.next, struct stripe_head, lru);
4281                 list_del_init(&sh->lru);
4282                 release_stripe(sh);
4283         }
4284         /* If this takes us to the resync_max point where we have to pause,
4285          * then we need to write out the superblock.
4286          */
4287         sector_nr += reshape_sectors;
4288         if ((sector_nr - mddev->curr_resync_completed) * 2
4289             >= mddev->resync_max - mddev->curr_resync_completed) {
4290                 /* Cannot proceed until we've updated the superblock... */
4291                 wait_event(conf->wait_for_overlap,
4292                            atomic_read(&conf->reshape_stripes) == 0);
4293                 mddev->reshape_position = conf->reshape_progress;
4294                 mddev->curr_resync_completed = sector_nr;
4295                 conf->reshape_checkpoint = jiffies;
4296                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4297                 md_wakeup_thread(mddev->thread);
4298                 wait_event(mddev->sb_wait,
4299                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4300                            || kthread_should_stop());
4301                 spin_lock_irq(&conf->device_lock);
4302                 conf->reshape_safe = mddev->reshape_position;
4303                 spin_unlock_irq(&conf->device_lock);
4304                 wake_up(&conf->wait_for_overlap);
4305                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4306         }
4307         return reshape_sectors;
4308 }
4309
4310 /* FIXME go_faster isn't used */
4311 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4312 {
4313         raid5_conf_t *conf = mddev->private;
4314         struct stripe_head *sh;
4315         sector_t max_sector = mddev->dev_sectors;
4316         sector_t sync_blocks;
4317         int still_degraded = 0;
4318         int i;
4319
4320         if (sector_nr >= max_sector) {
4321                 /* just being told to finish up .. nothing much to do */
4322
4323                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4324                         end_reshape(conf);
4325                         return 0;
4326                 }
4327
4328                 if (mddev->curr_resync < max_sector) /* aborted */
4329                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4330                                         &sync_blocks, 1);
4331                 else /* completed sync */
4332                         conf->fullsync = 0;
4333                 bitmap_close_sync(mddev->bitmap);
4334
4335                 return 0;
4336         }
4337
4338         /* Allow raid5_quiesce to complete */
4339         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4340
4341         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4342                 return reshape_request(mddev, sector_nr, skipped);
4343
4344         /* No need to check resync_max as we never do more than one
4345          * stripe, and as resync_max will always be on a chunk boundary,
4346          * if the check in md_do_sync didn't fire, there is no chance
4347          * of overstepping resync_max here
4348          */
4349
4350         /* if there is too many failed drives and we are trying
4351          * to resync, then assert that we are finished, because there is
4352          * nothing we can do.
4353          */
4354         if (mddev->degraded >= conf->max_degraded &&
4355             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4356                 sector_t rv = mddev->dev_sectors - sector_nr;
4357                 *skipped = 1;
4358                 return rv;
4359         }
4360         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4361             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4362             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4363                 /* we can skip this block, and probably more */
4364                 sync_blocks /= STRIPE_SECTORS;
4365                 *skipped = 1;
4366                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4367         }
4368
4369
4370         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4371
4372         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4373         if (sh == NULL) {
4374                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4375                 /* make sure we don't swamp the stripe cache if someone else
4376                  * is trying to get access
4377                  */
4378                 schedule_timeout_uninterruptible(1);
4379         }
4380         /* Need to check if array will still be degraded after recovery/resync
4381          * We don't need to check the 'failed' flag as when that gets set,
4382          * recovery aborts.
4383          */
4384         for (i = 0; i < conf->raid_disks; i++)
4385                 if (conf->disks[i].rdev == NULL)
4386                         still_degraded = 1;
4387
4388         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4389
4390         spin_lock(&sh->lock);
4391         set_bit(STRIPE_SYNCING, &sh->state);
4392         clear_bit(STRIPE_INSYNC, &sh->state);
4393         spin_unlock(&sh->lock);
4394
4395         handle_stripe(sh);
4396         release_stripe(sh);
4397
4398         return STRIPE_SECTORS;
4399 }
4400
4401 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4402 {
4403         /* We may not be able to submit a whole bio at once as there
4404          * may not be enough stripe_heads available.
4405          * We cannot pre-allocate enough stripe_heads as we may need
4406          * more than exist in the cache (if we allow ever large chunks).
4407          * So we do one stripe head at a time and record in
4408          * ->bi_hw_segments how many have been done.
4409          *
4410          * We *know* that this entire raid_bio is in one chunk, so
4411          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4412          */
4413         struct stripe_head *sh;
4414         int dd_idx;
4415         sector_t sector, logical_sector, last_sector;
4416         int scnt = 0;
4417         int remaining;
4418         int handled = 0;
4419
4420         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4421         sector = raid5_compute_sector(conf, logical_sector,
4422                                       0, &dd_idx, NULL);
4423         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4424
4425         for (; logical_sector < last_sector;
4426              logical_sector += STRIPE_SECTORS,
4427                      sector += STRIPE_SECTORS,
4428                      scnt++) {
4429
4430                 if (scnt < raid5_bi_hw_segments(raid_bio))
4431                         /* already done this stripe */
4432                         continue;
4433
4434                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4435
4436                 if (!sh) {
4437                         /* failed to get a stripe - must wait */
4438                         raid5_set_bi_hw_segments(raid_bio, scnt);
4439                         conf->retry_read_aligned = raid_bio;
4440                         return handled;
4441                 }
4442
4443                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4444                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4445                         release_stripe(sh);
4446                         raid5_set_bi_hw_segments(raid_bio, scnt);
4447                         conf->retry_read_aligned = raid_bio;
4448                         return handled;
4449                 }
4450
4451                 handle_stripe(sh);
4452                 release_stripe(sh);
4453                 handled++;
4454         }
4455         spin_lock_irq(&conf->device_lock);
4456         remaining = raid5_dec_bi_phys_segments(raid_bio);
4457         spin_unlock_irq(&conf->device_lock);
4458         if (remaining == 0)
4459                 bio_endio(raid_bio, 0);
4460         if (atomic_dec_and_test(&conf->active_aligned_reads))
4461                 wake_up(&conf->wait_for_stripe);
4462         return handled;
4463 }
4464
4465
4466 /*
4467  * This is our raid5 kernel thread.
4468  *
4469  * We scan the hash table for stripes which can be handled now.
4470  * During the scan, completed stripes are saved for us by the interrupt
4471  * handler, so that they will not have to wait for our next wakeup.
4472  */
4473 static void raid5d(mddev_t *mddev)
4474 {
4475         struct stripe_head *sh;
4476         raid5_conf_t *conf = mddev->private;
4477         int handled;
4478         struct blk_plug plug;
4479
4480         pr_debug("+++ raid5d active\n");
4481
4482         md_check_recovery(mddev);
4483
4484         blk_start_plug(&plug);
4485         handled = 0;
4486         spin_lock_irq(&conf->device_lock);
4487         while (1) {
4488                 struct bio *bio;
4489
4490                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4491                     !list_empty(&conf->bitmap_list)) {
4492                         /* Now is a good time to flush some bitmap updates */
4493                         conf->seq_flush++;
4494                         spin_unlock_irq(&conf->device_lock);
4495                         bitmap_unplug(mddev->bitmap);
4496                         spin_lock_irq(&conf->device_lock);
4497                         conf->seq_write = conf->seq_flush;
4498                         activate_bit_delay(conf);
4499                 }
4500                 if (atomic_read(&mddev->plug_cnt) == 0)
4501                         raid5_activate_delayed(conf);
4502
4503                 while ((bio = remove_bio_from_retry(conf))) {
4504                         int ok;
4505                         spin_unlock_irq(&conf->device_lock);
4506                         ok = retry_aligned_read(conf, bio);
4507                         spin_lock_irq(&conf->device_lock);
4508                         if (!ok)
4509                                 break;
4510                         handled++;
4511                 }
4512
4513                 sh = __get_priority_stripe(conf);
4514
4515                 if (!sh)
4516                         break;
4517                 spin_unlock_irq(&conf->device_lock);
4518                 
4519                 handled++;
4520                 handle_stripe(sh);
4521                 release_stripe(sh);
4522                 cond_resched();
4523
4524                 spin_lock_irq(&conf->device_lock);
4525         }
4526         pr_debug("%d stripes handled\n", handled);
4527
4528         spin_unlock_irq(&conf->device_lock);
4529
4530         async_tx_issue_pending_all();
4531         blk_finish_plug(&plug);
4532
4533         pr_debug("--- raid5d inactive\n");
4534 }
4535
4536 static ssize_t
4537 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4538 {
4539         raid5_conf_t *conf = mddev->private;
4540         if (conf)
4541                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4542         else
4543                 return 0;
4544 }
4545
4546 int
4547 raid5_set_cache_size(mddev_t *mddev, int size)
4548 {
4549         raid5_conf_t *conf = mddev->private;
4550         int err;
4551
4552         if (size <= 16 || size > 32768)
4553                 return -EINVAL;
4554         while (size < conf->max_nr_stripes) {
4555                 if (drop_one_stripe(conf))
4556                         conf->max_nr_stripes--;
4557                 else
4558                         break;
4559         }
4560         err = md_allow_write(mddev);
4561         if (err)
4562                 return err;
4563         while (size > conf->max_nr_stripes) {
4564                 if (grow_one_stripe(conf))
4565                         conf->max_nr_stripes++;
4566                 else break;
4567         }
4568         return 0;
4569 }
4570 EXPORT_SYMBOL(raid5_set_cache_size);
4571
4572 static ssize_t
4573 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4574 {
4575         raid5_conf_t *conf = mddev->private;
4576         unsigned long new;
4577         int err;
4578
4579         if (len >= PAGE_SIZE)
4580                 return -EINVAL;
4581         if (!conf)
4582                 return -ENODEV;
4583
4584         if (strict_strtoul(page, 10, &new))
4585                 return -EINVAL;
4586         err = raid5_set_cache_size(mddev, new);
4587         if (err)
4588                 return err;
4589         return len;
4590 }
4591
4592 static struct md_sysfs_entry
4593 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4594                                 raid5_show_stripe_cache_size,
4595                                 raid5_store_stripe_cache_size);
4596
4597 static ssize_t
4598 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4599 {
4600         raid5_conf_t *conf = mddev->private;
4601         if (conf)
4602                 return sprintf(page, "%d\n", conf->bypass_threshold);
4603         else
4604                 return 0;
4605 }
4606
4607 static ssize_t
4608 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4609 {
4610         raid5_conf_t *conf = mddev->private;
4611         unsigned long new;
4612         if (len >= PAGE_SIZE)
4613                 return -EINVAL;
4614         if (!conf)
4615                 return -ENODEV;
4616
4617         if (strict_strtoul(page, 10, &new))
4618                 return -EINVAL;
4619         if (new > conf->max_nr_stripes)
4620                 return -EINVAL;
4621         conf->bypass_threshold = new;
4622         return len;
4623 }
4624
4625 static struct md_sysfs_entry
4626 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4627                                         S_IRUGO | S_IWUSR,
4628                                         raid5_show_preread_threshold,
4629                                         raid5_store_preread_threshold);
4630
4631 static ssize_t
4632 stripe_cache_active_show(mddev_t *mddev, char *page)
4633 {
4634         raid5_conf_t *conf = mddev->private;
4635         if (conf)
4636                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4637         else
4638                 return 0;
4639 }
4640
4641 static struct md_sysfs_entry
4642 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4643
4644 static struct attribute *raid5_attrs[] =  {
4645         &raid5_stripecache_size.attr,
4646         &raid5_stripecache_active.attr,
4647         &raid5_preread_bypass_threshold.attr,
4648         NULL,
4649 };
4650 static struct attribute_group raid5_attrs_group = {
4651         .name = NULL,
4652         .attrs = raid5_attrs,
4653 };
4654
4655 static sector_t
4656 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4657 {
4658         raid5_conf_t *conf = mddev->private;
4659
4660         if (!sectors)
4661                 sectors = mddev->dev_sectors;
4662         if (!raid_disks)
4663                 /* size is defined by the smallest of previous and new size */
4664                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4665
4666         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4667         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4668         return sectors * (raid_disks - conf->max_degraded);
4669 }
4670
4671 static void raid5_free_percpu(raid5_conf_t *conf)
4672 {
4673         struct raid5_percpu *percpu;
4674         unsigned long cpu;
4675
4676         if (!conf->percpu)
4677                 return;
4678
4679         get_online_cpus();
4680         for_each_possible_cpu(cpu) {
4681                 percpu = per_cpu_ptr(conf->percpu, cpu);
4682                 safe_put_page(percpu->spare_page);
4683                 kfree(percpu->scribble);
4684         }
4685 #ifdef CONFIG_HOTPLUG_CPU
4686         unregister_cpu_notifier(&conf->cpu_notify);
4687 #endif
4688         put_online_cpus();
4689
4690         free_percpu(conf->percpu);
4691 }
4692
4693 static void free_conf(raid5_conf_t *conf)
4694 {
4695         shrink_stripes(conf);
4696         raid5_free_percpu(conf);
4697         kfree(conf->disks);
4698         kfree(conf->stripe_hashtbl);
4699         kfree(conf);
4700 }
4701
4702 #ifdef CONFIG_HOTPLUG_CPU
4703 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4704                               void *hcpu)
4705 {
4706         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4707         long cpu = (long)hcpu;
4708         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4709
4710         switch (action) {
4711         case CPU_UP_PREPARE:
4712         case CPU_UP_PREPARE_FROZEN:
4713                 if (conf->level == 6 && !percpu->spare_page)
4714                         percpu->spare_page = alloc_page(GFP_KERNEL);
4715                 if (!percpu->scribble)
4716                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4717
4718                 if (!percpu->scribble ||
4719                     (conf->level == 6 && !percpu->spare_page)) {
4720                         safe_put_page(percpu->spare_page);
4721                         kfree(percpu->scribble);
4722                         pr_err("%s: failed memory allocation for cpu%ld\n",
4723                                __func__, cpu);
4724                         return notifier_from_errno(-ENOMEM);
4725                 }
4726                 break;
4727         case CPU_DEAD:
4728         case CPU_DEAD_FROZEN:
4729                 safe_put_page(percpu->spare_page);
4730                 kfree(percpu->scribble);
4731                 percpu->spare_page = NULL;
4732                 percpu->scribble = NULL;
4733                 break;
4734         default:
4735                 break;
4736         }
4737         return NOTIFY_OK;
4738 }
4739 #endif
4740
4741 static int raid5_alloc_percpu(raid5_conf_t *conf)
4742 {
4743         unsigned long cpu;
4744         struct page *spare_page;
4745         struct raid5_percpu __percpu *allcpus;
4746         void *scribble;
4747         int err;
4748
4749         allcpus = alloc_percpu(struct raid5_percpu);
4750         if (!allcpus)
4751                 return -ENOMEM;
4752         conf->percpu = allcpus;
4753
4754         get_online_cpus();
4755         err = 0;
4756         for_each_present_cpu(cpu) {
4757                 if (conf->level == 6) {
4758                         spare_page = alloc_page(GFP_KERNEL);
4759                         if (!spare_page) {
4760                                 err = -ENOMEM;
4761                                 break;
4762                         }
4763                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4764                 }
4765                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4766                 if (!scribble) {
4767                         err = -ENOMEM;
4768                         break;
4769                 }
4770                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4771         }
4772 #ifdef CONFIG_HOTPLUG_CPU
4773         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4774         conf->cpu_notify.priority = 0;
4775         if (err == 0)
4776                 err = register_cpu_notifier(&conf->cpu_notify);
4777 #endif
4778         put_online_cpus();
4779
4780         return err;
4781 }
4782
4783 static raid5_conf_t *setup_conf(mddev_t *mddev)
4784 {
4785         raid5_conf_t *conf;
4786         int raid_disk, memory, max_disks;
4787         mdk_rdev_t *rdev;
4788         struct disk_info *disk;
4789
4790         if (mddev->new_level != 5
4791             && mddev->new_level != 4
4792             && mddev->new_level != 6) {
4793                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4794                        mdname(mddev), mddev->new_level);
4795                 return ERR_PTR(-EIO);
4796         }
4797         if ((mddev->new_level == 5
4798              && !algorithm_valid_raid5(mddev->new_layout)) ||
4799             (mddev->new_level == 6
4800              && !algorithm_valid_raid6(mddev->new_layout))) {
4801                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4802                        mdname(mddev), mddev->new_layout);
4803                 return ERR_PTR(-EIO);
4804         }
4805         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4806                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4807                        mdname(mddev), mddev->raid_disks);
4808                 return ERR_PTR(-EINVAL);
4809         }
4810
4811         if (!mddev->new_chunk_sectors ||
4812             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4813             !is_power_of_2(mddev->new_chunk_sectors)) {
4814                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4815                        mdname(mddev), mddev->new_chunk_sectors << 9);
4816                 return ERR_PTR(-EINVAL);
4817         }
4818
4819         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4820         if (conf == NULL)
4821                 goto abort;
4822         spin_lock_init(&conf->device_lock);
4823         init_waitqueue_head(&conf->wait_for_stripe);
4824         init_waitqueue_head(&conf->wait_for_overlap);
4825         INIT_LIST_HEAD(&conf->handle_list);
4826         INIT_LIST_HEAD(&conf->hold_list);
4827         INIT_LIST_HEAD(&conf->delayed_list);
4828         INIT_LIST_HEAD(&conf->bitmap_list);
4829         INIT_LIST_HEAD(&conf->inactive_list);
4830         atomic_set(&conf->active_stripes, 0);
4831         atomic_set(&conf->preread_active_stripes, 0);
4832         atomic_set(&conf->active_aligned_reads, 0);
4833         conf->bypass_threshold = BYPASS_THRESHOLD;
4834
4835         conf->raid_disks = mddev->raid_disks;
4836         if (mddev->reshape_position == MaxSector)
4837                 conf->previous_raid_disks = mddev->raid_disks;
4838         else
4839                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4840         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4841         conf->scribble_len = scribble_len(max_disks);
4842
4843         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4844                               GFP_KERNEL);
4845         if (!conf->disks)
4846                 goto abort;
4847
4848         conf->mddev = mddev;
4849
4850         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4851                 goto abort;
4852
4853         conf->level = mddev->new_level;
4854         if (raid5_alloc_percpu(conf) != 0)
4855                 goto abort;
4856
4857         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4858
4859         list_for_each_entry(rdev, &mddev->disks, same_set) {
4860                 raid_disk = rdev->raid_disk;
4861                 if (raid_disk >= max_disks
4862                     || raid_disk < 0)
4863                         continue;
4864                 disk = conf->disks + raid_disk;
4865
4866                 disk->rdev = rdev;
4867
4868                 if (test_bit(In_sync, &rdev->flags)) {
4869                         char b[BDEVNAME_SIZE];
4870                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4871                                " disk %d\n",
4872                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4873                 } else if (rdev->saved_raid_disk != raid_disk)
4874                         /* Cannot rely on bitmap to complete recovery */
4875                         conf->fullsync = 1;
4876         }
4877
4878         conf->chunk_sectors = mddev->new_chunk_sectors;
4879         conf->level = mddev->new_level;
4880         if (conf->level == 6)
4881                 conf->max_degraded = 2;
4882         else
4883                 conf->max_degraded = 1;
4884         conf->algorithm = mddev->new_layout;
4885         conf->max_nr_stripes = NR_STRIPES;
4886         conf->reshape_progress = mddev->reshape_position;
4887         if (conf->reshape_progress != MaxSector) {
4888                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4889                 conf->prev_algo = mddev->layout;
4890         }
4891
4892         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4893                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4894         if (grow_stripes(conf, conf->max_nr_stripes)) {
4895                 printk(KERN_ERR
4896                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4897                        mdname(mddev), memory);
4898                 goto abort;
4899         } else
4900                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4901                        mdname(mddev), memory);
4902
4903         conf->thread = md_register_thread(raid5d, mddev, NULL);
4904         if (!conf->thread) {
4905                 printk(KERN_ERR
4906                        "md/raid:%s: couldn't allocate thread.\n",
4907                        mdname(mddev));
4908                 goto abort;
4909         }
4910
4911         return conf;
4912
4913  abort:
4914         if (conf) {
4915                 free_conf(conf);
4916                 return ERR_PTR(-EIO);
4917         } else
4918                 return ERR_PTR(-ENOMEM);
4919 }
4920
4921
4922 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4923 {
4924         switch (algo) {
4925         case ALGORITHM_PARITY_0:
4926                 if (raid_disk < max_degraded)
4927                         return 1;
4928                 break;
4929         case ALGORITHM_PARITY_N:
4930                 if (raid_disk >= raid_disks - max_degraded)
4931                         return 1;
4932                 break;
4933         case ALGORITHM_PARITY_0_6:
4934                 if (raid_disk == 0 || 
4935                     raid_disk == raid_disks - 1)
4936                         return 1;
4937                 break;
4938         case ALGORITHM_LEFT_ASYMMETRIC_6:
4939         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4940         case ALGORITHM_LEFT_SYMMETRIC_6:
4941         case ALGORITHM_RIGHT_SYMMETRIC_6:
4942                 if (raid_disk == raid_disks - 1)
4943                         return 1;
4944         }
4945         return 0;
4946 }
4947
4948 static int run(mddev_t *mddev)
4949 {
4950         raid5_conf_t *conf;
4951         int working_disks = 0;
4952         int dirty_parity_disks = 0;
4953         mdk_rdev_t *rdev;
4954         sector_t reshape_offset = 0;
4955
4956         if (mddev->recovery_cp != MaxSector)
4957                 printk(KERN_NOTICE "md/raid:%s: not clean"
4958                        " -- starting background reconstruction\n",
4959                        mdname(mddev));
4960         if (mddev->reshape_position != MaxSector) {
4961                 /* Check that we can continue the reshape.
4962                  * Currently only disks can change, it must
4963                  * increase, and we must be past the point where
4964                  * a stripe over-writes itself
4965                  */
4966                 sector_t here_new, here_old;
4967                 int old_disks;
4968                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4969
4970                 if (mddev->new_level != mddev->level) {
4971                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4972                                "required - aborting.\n",
4973                                mdname(mddev));
4974                         return -EINVAL;
4975                 }
4976                 old_disks = mddev->raid_disks - mddev->delta_disks;
4977                 /* reshape_position must be on a new-stripe boundary, and one
4978                  * further up in new geometry must map after here in old
4979                  * geometry.
4980                  */
4981                 here_new = mddev->reshape_position;
4982                 if (sector_div(here_new, mddev->new_chunk_sectors *
4983                                (mddev->raid_disks - max_degraded))) {
4984                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4985                                "on a stripe boundary\n", mdname(mddev));
4986                         return -EINVAL;
4987                 }
4988                 reshape_offset = here_new * mddev->new_chunk_sectors;
4989                 /* here_new is the stripe we will write to */
4990                 here_old = mddev->reshape_position;
4991                 sector_div(here_old, mddev->chunk_sectors *
4992                            (old_disks-max_degraded));
4993                 /* here_old is the first stripe that we might need to read
4994                  * from */
4995                 if (mddev->delta_disks == 0) {
4996                         /* We cannot be sure it is safe to start an in-place
4997                          * reshape.  It is only safe if user-space if monitoring
4998                          * and taking constant backups.
4999                          * mdadm always starts a situation like this in
5000                          * readonly mode so it can take control before
5001                          * allowing any writes.  So just check for that.
5002                          */
5003                         if ((here_new * mddev->new_chunk_sectors != 
5004                              here_old * mddev->chunk_sectors) ||
5005                             mddev->ro == 0) {
5006                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5007                                        " in read-only mode - aborting\n",
5008                                        mdname(mddev));
5009                                 return -EINVAL;
5010                         }
5011                 } else if (mddev->delta_disks < 0
5012                     ? (here_new * mddev->new_chunk_sectors <=
5013                        here_old * mddev->chunk_sectors)
5014                     : (here_new * mddev->new_chunk_sectors >=
5015                        here_old * mddev->chunk_sectors)) {
5016                         /* Reading from the same stripe as writing to - bad */
5017                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5018                                "auto-recovery - aborting.\n",
5019                                mdname(mddev));
5020                         return -EINVAL;
5021                 }
5022                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5023                        mdname(mddev));
5024                 /* OK, we should be able to continue; */
5025         } else {
5026                 BUG_ON(mddev->level != mddev->new_level);
5027                 BUG_ON(mddev->layout != mddev->new_layout);
5028                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5029                 BUG_ON(mddev->delta_disks != 0);
5030         }
5031
5032         if (mddev->private == NULL)
5033                 conf = setup_conf(mddev);
5034         else
5035                 conf = mddev->private;
5036
5037         if (IS_ERR(conf))
5038                 return PTR_ERR(conf);
5039
5040         mddev->thread = conf->thread;
5041         conf->thread = NULL;
5042         mddev->private = conf;
5043
5044         /*
5045          * 0 for a fully functional array, 1 or 2 for a degraded array.
5046          */
5047         list_for_each_entry(rdev, &mddev->disks, same_set) {
5048                 if (rdev->raid_disk < 0)
5049                         continue;
5050                 if (test_bit(In_sync, &rdev->flags)) {
5051                         working_disks++;
5052                         continue;
5053                 }
5054                 /* This disc is not fully in-sync.  However if it
5055                  * just stored parity (beyond the recovery_offset),
5056                  * when we don't need to be concerned about the
5057                  * array being dirty.
5058                  * When reshape goes 'backwards', we never have
5059                  * partially completed devices, so we only need
5060                  * to worry about reshape going forwards.
5061                  */
5062                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5063                 if (mddev->major_version == 0 &&
5064                     mddev->minor_version > 90)
5065                         rdev->recovery_offset = reshape_offset;
5066                         
5067                 if (rdev->recovery_offset < reshape_offset) {
5068                         /* We need to check old and new layout */
5069                         if (!only_parity(rdev->raid_disk,
5070                                          conf->algorithm,
5071                                          conf->raid_disks,
5072                                          conf->max_degraded))
5073                                 continue;
5074                 }
5075                 if (!only_parity(rdev->raid_disk,
5076                                  conf->prev_algo,
5077                                  conf->previous_raid_disks,
5078                                  conf->max_degraded))
5079                         continue;
5080                 dirty_parity_disks++;
5081         }
5082
5083         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5084                            - working_disks);
5085
5086         if (has_failed(conf)) {
5087                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5088                         " (%d/%d failed)\n",
5089                         mdname(mddev), mddev->degraded, conf->raid_disks);
5090                 goto abort;
5091         }
5092
5093         /* device size must be a multiple of chunk size */
5094         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5095         mddev->resync_max_sectors = mddev->dev_sectors;
5096
5097         if (mddev->degraded > dirty_parity_disks &&
5098             mddev->recovery_cp != MaxSector) {
5099                 if (mddev->ok_start_degraded)
5100                         printk(KERN_WARNING
5101                                "md/raid:%s: starting dirty degraded array"
5102                                " - data corruption possible.\n",
5103                                mdname(mddev));
5104                 else {
5105                         printk(KERN_ERR
5106                                "md/raid:%s: cannot start dirty degraded array.\n",
5107                                mdname(mddev));
5108                         goto abort;
5109                 }
5110         }
5111
5112         if (mddev->degraded == 0)
5113                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5114                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5115                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5116                        mddev->new_layout);
5117         else
5118                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5119                        " out of %d devices, algorithm %d\n",
5120                        mdname(mddev), conf->level,
5121                        mddev->raid_disks - mddev->degraded,
5122                        mddev->raid_disks, mddev->new_layout);
5123
5124         print_raid5_conf(conf);
5125
5126         if (conf->reshape_progress != MaxSector) {
5127                 conf->reshape_safe = conf->reshape_progress;
5128                 atomic_set(&conf->reshape_stripes, 0);
5129                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5130                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5131                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5132                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5133                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5134                                                         "reshape");
5135         }
5136
5137
5138         /* Ok, everything is just fine now */
5139         if (mddev->to_remove == &raid5_attrs_group)
5140                 mddev->to_remove = NULL;
5141         else if (mddev->kobj.sd &&
5142             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5143                 printk(KERN_WARNING
5144                        "raid5: failed to create sysfs attributes for %s\n",
5145                        mdname(mddev));
5146         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5147
5148         if (mddev->queue) {
5149                 int chunk_size;
5150                 /* read-ahead size must cover two whole stripes, which
5151                  * is 2 * (datadisks) * chunksize where 'n' is the
5152                  * number of raid devices
5153                  */
5154                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5155                 int stripe = data_disks *
5156                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5157                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5158                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5159
5160                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5161
5162                 mddev->queue->backing_dev_info.congested_data = mddev;
5163                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5164
5165                 chunk_size = mddev->chunk_sectors << 9;
5166                 blk_queue_io_min(mddev->queue, chunk_size);
5167                 blk_queue_io_opt(mddev->queue, chunk_size *
5168                                  (conf->raid_disks - conf->max_degraded));
5169
5170                 list_for_each_entry(rdev, &mddev->disks, same_set)
5171                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5172                                           rdev->data_offset << 9);
5173         }
5174
5175         return 0;
5176 abort:
5177         md_unregister_thread(&mddev->thread);
5178         if (conf) {
5179                 print_raid5_conf(conf);
5180                 free_conf(conf);
5181         }
5182         mddev->private = NULL;
5183         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5184         return -EIO;
5185 }
5186
5187 static int stop(mddev_t *mddev)
5188 {
5189         raid5_conf_t *conf = mddev->private;
5190
5191         md_unregister_thread(&mddev->thread);
5192         if (mddev->queue)
5193                 mddev->queue->backing_dev_info.congested_fn = NULL;
5194         free_conf(conf);
5195         mddev->private = NULL;
5196         mddev->to_remove = &raid5_attrs_group;
5197         return 0;
5198 }
5199
5200 #ifdef DEBUG
5201 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5202 {
5203         int i;
5204
5205         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5206                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5207         seq_printf(seq, "sh %llu,  count %d.\n",
5208                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5209         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5210         for (i = 0; i < sh->disks; i++) {
5211                 seq_printf(seq, "(cache%d: %p %ld) ",
5212                            i, sh->dev[i].page, sh->dev[i].flags);
5213         }
5214         seq_printf(seq, "\n");
5215 }
5216
5217 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5218 {
5219         struct stripe_head *sh;
5220         struct hlist_node *hn;
5221         int i;
5222
5223         spin_lock_irq(&conf->device_lock);
5224         for (i = 0; i < NR_HASH; i++) {
5225                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5226                         if (sh->raid_conf != conf)
5227                                 continue;
5228                         print_sh(seq, sh);
5229                 }
5230         }
5231         spin_unlock_irq(&conf->device_lock);
5232 }
5233 #endif
5234
5235 static void status(struct seq_file *seq, mddev_t *mddev)
5236 {
5237         raid5_conf_t *conf = mddev->private;
5238         int i;
5239
5240         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5241                 mddev->chunk_sectors / 2, mddev->layout);
5242         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5243         for (i = 0; i < conf->raid_disks; i++)
5244                 seq_printf (seq, "%s",
5245                                conf->disks[i].rdev &&
5246                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5247         seq_printf (seq, "]");
5248 #ifdef DEBUG
5249         seq_printf (seq, "\n");
5250         printall(seq, conf);
5251 #endif
5252 }
5253
5254 static void print_raid5_conf (raid5_conf_t *conf)
5255 {
5256         int i;
5257         struct disk_info *tmp;
5258
5259         printk(KERN_DEBUG "RAID conf printout:\n");
5260         if (!conf) {
5261                 printk("(conf==NULL)\n");
5262                 return;
5263         }
5264         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5265                conf->raid_disks,
5266                conf->raid_disks - conf->mddev->degraded);
5267
5268         for (i = 0; i < conf->raid_disks; i++) {
5269                 char b[BDEVNAME_SIZE];
5270                 tmp = conf->disks + i;
5271                 if (tmp->rdev)
5272                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5273                                i, !test_bit(Faulty, &tmp->rdev->flags),
5274                                bdevname(tmp->rdev->bdev, b));
5275         }
5276 }
5277
5278 static int raid5_spare_active(mddev_t *mddev)
5279 {
5280         int i;
5281         raid5_conf_t *conf = mddev->private;
5282         struct disk_info *tmp;
5283         int count = 0;
5284         unsigned long flags;
5285
5286         for (i = 0; i < conf->raid_disks; i++) {
5287                 tmp = conf->disks + i;
5288                 if (tmp->rdev
5289                     && tmp->rdev->recovery_offset == MaxSector
5290                     && !test_bit(Faulty, &tmp->rdev->flags)
5291                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5292                         count++;
5293                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5294                 }
5295         }
5296         spin_lock_irqsave(&conf->device_lock, flags);
5297         mddev->degraded -= count;
5298         spin_unlock_irqrestore(&conf->device_lock, flags);
5299         print_raid5_conf(conf);
5300         return count;
5301 }
5302
5303 static int raid5_remove_disk(mddev_t *mddev, int number)
5304 {
5305         raid5_conf_t *conf = mddev->private;
5306         int err = 0;
5307         mdk_rdev_t *rdev;
5308         struct disk_info *p = conf->disks + number;
5309
5310         print_raid5_conf(conf);
5311         rdev = p->rdev;
5312         if (rdev) {
5313                 if (number >= conf->raid_disks &&
5314                     conf->reshape_progress == MaxSector)
5315                         clear_bit(In_sync, &rdev->flags);
5316
5317                 if (test_bit(In_sync, &rdev->flags) ||
5318                     atomic_read(&rdev->nr_pending)) {
5319                         err = -EBUSY;
5320                         goto abort;
5321                 }
5322                 /* Only remove non-faulty devices if recovery
5323                  * isn't possible.
5324                  */
5325                 if (!test_bit(Faulty, &rdev->flags) &&
5326                     !has_failed(conf) &&
5327                     number < conf->raid_disks) {
5328                         err = -EBUSY;
5329                         goto abort;
5330                 }
5331                 p->rdev = NULL;
5332                 synchronize_rcu();
5333                 if (atomic_read(&rdev->nr_pending)) {
5334                         /* lost the race, try later */
5335                         err = -EBUSY;
5336                         p->rdev = rdev;
5337                 }
5338         }
5339 abort:
5340
5341         print_raid5_conf(conf);
5342         return err;
5343 }
5344
5345 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5346 {
5347         raid5_conf_t *conf = mddev->private;
5348         int err = -EEXIST;
5349         int disk;
5350         struct disk_info *p;
5351         int first = 0;
5352         int last = conf->raid_disks - 1;
5353
5354         if (has_failed(conf))
5355                 /* no point adding a device */
5356                 return -EINVAL;
5357
5358         if (rdev->raid_disk >= 0)
5359                 first = last = rdev->raid_disk;
5360
5361         /*
5362          * find the disk ... but prefer rdev->saved_raid_disk
5363          * if possible.
5364          */
5365         if (rdev->saved_raid_disk >= 0 &&
5366             rdev->saved_raid_disk >= first &&
5367             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5368                 disk = rdev->saved_raid_disk;
5369         else
5370                 disk = first;
5371         for ( ; disk <= last ; disk++)
5372                 if ((p=conf->disks + disk)->rdev == NULL) {
5373                         clear_bit(In_sync, &rdev->flags);
5374                         rdev->raid_disk = disk;
5375                         err = 0;
5376                         if (rdev->saved_raid_disk != disk)
5377                                 conf->fullsync = 1;
5378                         rcu_assign_pointer(p->rdev, rdev);
5379                         break;
5380                 }
5381         print_raid5_conf(conf);
5382         return err;
5383 }
5384
5385 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5386 {
5387         /* no resync is happening, and there is enough space
5388          * on all devices, so we can resize.
5389          * We need to make sure resync covers any new space.
5390          * If the array is shrinking we should possibly wait until
5391          * any io in the removed space completes, but it hardly seems
5392          * worth it.
5393          */
5394         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5395         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5396                                                mddev->raid_disks));
5397         if (mddev->array_sectors >
5398             raid5_size(mddev, sectors, mddev->raid_disks))
5399                 return -EINVAL;
5400         set_capacity(mddev->gendisk, mddev->array_sectors);
5401         revalidate_disk(mddev->gendisk);
5402         if (sectors > mddev->dev_sectors &&
5403             mddev->recovery_cp > mddev->dev_sectors) {
5404                 mddev->recovery_cp = mddev->dev_sectors;
5405                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5406         }
5407         mddev->dev_sectors = sectors;
5408         mddev->resync_max_sectors = sectors;
5409         return 0;
5410 }
5411
5412 static int check_stripe_cache(mddev_t *mddev)
5413 {
5414         /* Can only proceed if there are plenty of stripe_heads.
5415          * We need a minimum of one full stripe,, and for sensible progress
5416          * it is best to have about 4 times that.
5417          * If we require 4 times, then the default 256 4K stripe_heads will
5418          * allow for chunk sizes up to 256K, which is probably OK.
5419          * If the chunk size is greater, user-space should request more
5420          * stripe_heads first.
5421          */
5422         raid5_conf_t *conf = mddev->private;
5423         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5424             > conf->max_nr_stripes ||
5425             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5426             > conf->max_nr_stripes) {
5427                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5428                        mdname(mddev),
5429                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5430                         / STRIPE_SIZE)*4);
5431                 return 0;
5432         }
5433         return 1;
5434 }
5435
5436 static int check_reshape(mddev_t *mddev)
5437 {
5438         raid5_conf_t *conf = mddev->private;
5439
5440         if (mddev->delta_disks == 0 &&
5441             mddev->new_layout == mddev->layout &&
5442             mddev->new_chunk_sectors == mddev->chunk_sectors)
5443                 return 0; /* nothing to do */
5444         if (mddev->bitmap)
5445                 /* Cannot grow a bitmap yet */
5446                 return -EBUSY;
5447         if (has_failed(conf))
5448                 return -EINVAL;
5449         if (mddev->delta_disks < 0) {
5450                 /* We might be able to shrink, but the devices must
5451                  * be made bigger first.
5452                  * For raid6, 4 is the minimum size.
5453                  * Otherwise 2 is the minimum
5454                  */
5455                 int min = 2;
5456                 if (mddev->level == 6)
5457                         min = 4;
5458                 if (mddev->raid_disks + mddev->delta_disks < min)
5459                         return -EINVAL;
5460         }
5461
5462         if (!check_stripe_cache(mddev))
5463                 return -ENOSPC;
5464
5465         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5466 }
5467
5468 static int raid5_start_reshape(mddev_t *mddev)
5469 {
5470         raid5_conf_t *conf = mddev->private;
5471         mdk_rdev_t *rdev;
5472         int spares = 0;
5473         unsigned long flags;
5474
5475         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5476                 return -EBUSY;
5477
5478         if (!check_stripe_cache(mddev))
5479                 return -ENOSPC;
5480
5481         list_for_each_entry(rdev, &mddev->disks, same_set)
5482                 if (!test_bit(In_sync, &rdev->flags)
5483                     && !test_bit(Faulty, &rdev->flags))
5484                         spares++;
5485
5486         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5487                 /* Not enough devices even to make a degraded array
5488                  * of that size
5489                  */
5490                 return -EINVAL;
5491
5492         /* Refuse to reduce size of the array.  Any reductions in
5493          * array size must be through explicit setting of array_size
5494          * attribute.
5495          */
5496         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5497             < mddev->array_sectors) {
5498                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5499                        "before number of disks\n", mdname(mddev));
5500                 return -EINVAL;
5501         }
5502
5503         atomic_set(&conf->reshape_stripes, 0);
5504         spin_lock_irq(&conf->device_lock);
5505         conf->previous_raid_disks = conf->raid_disks;
5506         conf->raid_disks += mddev->delta_disks;
5507         conf->prev_chunk_sectors = conf->chunk_sectors;
5508         conf->chunk_sectors = mddev->new_chunk_sectors;
5509         conf->prev_algo = conf->algorithm;
5510         conf->algorithm = mddev->new_layout;
5511         if (mddev->delta_disks < 0)
5512                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5513         else
5514                 conf->reshape_progress = 0;
5515         conf->reshape_safe = conf->reshape_progress;
5516         conf->generation++;
5517         spin_unlock_irq(&conf->device_lock);
5518
5519         /* Add some new drives, as many as will fit.
5520          * We know there are enough to make the newly sized array work.
5521          * Don't add devices if we are reducing the number of
5522          * devices in the array.  This is because it is not possible
5523          * to correctly record the "partially reconstructed" state of
5524          * such devices during the reshape and confusion could result.
5525          */
5526         if (mddev->delta_disks >= 0) {
5527                 int added_devices = 0;
5528                 list_for_each_entry(rdev, &mddev->disks, same_set)
5529                         if (rdev->raid_disk < 0 &&
5530                             !test_bit(Faulty, &rdev->flags)) {
5531                                 if (raid5_add_disk(mddev, rdev) == 0) {
5532                                         char nm[20];
5533                                         if (rdev->raid_disk
5534                                             >= conf->previous_raid_disks) {
5535                                                 set_bit(In_sync, &rdev->flags);
5536                                                 added_devices++;
5537                                         } else
5538                                                 rdev->recovery_offset = 0;
5539                                         sprintf(nm, "rd%d", rdev->raid_disk);
5540                                         if (sysfs_create_link(&mddev->kobj,
5541                                                               &rdev->kobj, nm))
5542                                                 /* Failure here is OK */;
5543                                 }
5544                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5545                                    && !test_bit(Faulty, &rdev->flags)) {
5546                                 /* This is a spare that was manually added */
5547                                 set_bit(In_sync, &rdev->flags);
5548                                 added_devices++;
5549                         }
5550
5551                 /* When a reshape changes the number of devices,
5552                  * ->degraded is measured against the larger of the
5553                  * pre and post number of devices.
5554                  */
5555                 spin_lock_irqsave(&conf->device_lock, flags);
5556                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5557                         - added_devices;
5558                 spin_unlock_irqrestore(&conf->device_lock, flags);
5559         }
5560         mddev->raid_disks = conf->raid_disks;
5561         mddev->reshape_position = conf->reshape_progress;
5562         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5563
5564         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5565         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5566         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5567         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5568         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5569                                                 "reshape");
5570         if (!mddev->sync_thread) {
5571                 mddev->recovery = 0;
5572                 spin_lock_irq(&conf->device_lock);
5573                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5574                 conf->reshape_progress = MaxSector;
5575                 spin_unlock_irq(&conf->device_lock);
5576                 return -EAGAIN;
5577         }
5578         conf->reshape_checkpoint = jiffies;
5579         md_wakeup_thread(mddev->sync_thread);
5580         md_new_event(mddev);
5581         return 0;
5582 }
5583
5584 /* This is called from the reshape thread and should make any
5585  * changes needed in 'conf'
5586  */
5587 static void end_reshape(raid5_conf_t *conf)
5588 {
5589
5590         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5591
5592                 spin_lock_irq(&conf->device_lock);
5593                 conf->previous_raid_disks = conf->raid_disks;
5594                 conf->reshape_progress = MaxSector;
5595                 spin_unlock_irq(&conf->device_lock);
5596                 wake_up(&conf->wait_for_overlap);
5597
5598                 /* read-ahead size must cover two whole stripes, which is
5599                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5600                  */
5601                 if (conf->mddev->queue) {
5602                         int data_disks = conf->raid_disks - conf->max_degraded;
5603                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5604                                                    / PAGE_SIZE);
5605                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5606                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5607                 }
5608         }
5609 }
5610
5611 /* This is called from the raid5d thread with mddev_lock held.
5612  * It makes config changes to the device.
5613  */
5614 static void raid5_finish_reshape(mddev_t *mddev)
5615 {
5616         raid5_conf_t *conf = mddev->private;
5617
5618         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5619
5620                 if (mddev->delta_disks > 0) {
5621                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5622                         set_capacity(mddev->gendisk, mddev->array_sectors);
5623                         revalidate_disk(mddev->gendisk);
5624                 } else {
5625                         int d;
5626                         mddev->degraded = conf->raid_disks;
5627                         for (d = 0; d < conf->raid_disks ; d++)
5628                                 if (conf->disks[d].rdev &&
5629                                     test_bit(In_sync,
5630                                              &conf->disks[d].rdev->flags))
5631                                         mddev->degraded--;
5632                         for (d = conf->raid_disks ;
5633                              d < conf->raid_disks - mddev->delta_disks;
5634                              d++) {
5635                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5636                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5637                                         char nm[20];
5638                                         sprintf(nm, "rd%d", rdev->raid_disk);
5639                                         sysfs_remove_link(&mddev->kobj, nm);
5640                                         rdev->raid_disk = -1;
5641                                 }
5642                         }
5643                 }
5644                 mddev->layout = conf->algorithm;
5645                 mddev->chunk_sectors = conf->chunk_sectors;
5646                 mddev->reshape_position = MaxSector;
5647                 mddev->delta_disks = 0;
5648         }
5649 }
5650
5651 static void raid5_quiesce(mddev_t *mddev, int state)
5652 {
5653         raid5_conf_t *conf = mddev->private;
5654
5655         switch(state) {
5656         case 2: /* resume for a suspend */
5657                 wake_up(&conf->wait_for_overlap);
5658                 break;
5659
5660         case 1: /* stop all writes */
5661                 spin_lock_irq(&conf->device_lock);
5662                 /* '2' tells resync/reshape to pause so that all
5663                  * active stripes can drain
5664                  */
5665                 conf->quiesce = 2;
5666                 wait_event_lock_irq(conf->wait_for_stripe,
5667                                     atomic_read(&conf->active_stripes) == 0 &&
5668                                     atomic_read(&conf->active_aligned_reads) == 0,
5669                                     conf->device_lock, /* nothing */);
5670                 conf->quiesce = 1;
5671                 spin_unlock_irq(&conf->device_lock);
5672                 /* allow reshape to continue */
5673                 wake_up(&conf->wait_for_overlap);
5674                 break;
5675
5676         case 0: /* re-enable writes */
5677                 spin_lock_irq(&conf->device_lock);
5678                 conf->quiesce = 0;
5679                 wake_up(&conf->wait_for_stripe);
5680                 wake_up(&conf->wait_for_overlap);
5681                 spin_unlock_irq(&conf->device_lock);
5682                 break;
5683         }
5684 }
5685
5686
5687 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5688 {
5689         struct raid0_private_data *raid0_priv = mddev->private;
5690         sector_t sectors;
5691
5692         /* for raid0 takeover only one zone is supported */
5693         if (raid0_priv->nr_strip_zones > 1) {
5694                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5695                        mdname(mddev));
5696                 return ERR_PTR(-EINVAL);
5697         }
5698
5699         sectors = raid0_priv->strip_zone[0].zone_end;
5700         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5701         mddev->dev_sectors = sectors;
5702         mddev->new_level = level;
5703         mddev->new_layout = ALGORITHM_PARITY_N;
5704         mddev->new_chunk_sectors = mddev->chunk_sectors;
5705         mddev->raid_disks += 1;
5706         mddev->delta_disks = 1;
5707         /* make sure it will be not marked as dirty */
5708         mddev->recovery_cp = MaxSector;
5709
5710         return setup_conf(mddev);
5711 }
5712
5713
5714 static void *raid5_takeover_raid1(mddev_t *mddev)
5715 {
5716         int chunksect;
5717
5718         if (mddev->raid_disks != 2 ||
5719             mddev->degraded > 1)
5720                 return ERR_PTR(-EINVAL);
5721
5722         /* Should check if there are write-behind devices? */
5723
5724         chunksect = 64*2; /* 64K by default */
5725
5726         /* The array must be an exact multiple of chunksize */
5727         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5728                 chunksect >>= 1;
5729
5730         if ((chunksect<<9) < STRIPE_SIZE)
5731                 /* array size does not allow a suitable chunk size */
5732                 return ERR_PTR(-EINVAL);
5733
5734         mddev->new_level = 5;
5735         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5736         mddev->new_chunk_sectors = chunksect;
5737
5738         return setup_conf(mddev);
5739 }
5740
5741 static void *raid5_takeover_raid6(mddev_t *mddev)
5742 {
5743         int new_layout;
5744
5745         switch (mddev->layout) {
5746         case ALGORITHM_LEFT_ASYMMETRIC_6:
5747                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5748                 break;
5749         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5750                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5751                 break;
5752         case ALGORITHM_LEFT_SYMMETRIC_6:
5753                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5754                 break;
5755         case ALGORITHM_RIGHT_SYMMETRIC_6:
5756                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5757                 break;
5758         case ALGORITHM_PARITY_0_6:
5759                 new_layout = ALGORITHM_PARITY_0;
5760                 break;
5761         case ALGORITHM_PARITY_N:
5762                 new_layout = ALGORITHM_PARITY_N;
5763                 break;
5764         default:
5765                 return ERR_PTR(-EINVAL);
5766         }
5767         mddev->new_level = 5;
5768         mddev->new_layout = new_layout;
5769         mddev->delta_disks = -1;
5770         mddev->raid_disks -= 1;
5771         return setup_conf(mddev);
5772 }
5773
5774
5775 static int raid5_check_reshape(mddev_t *mddev)
5776 {
5777         /* For a 2-drive array, the layout and chunk size can be changed
5778          * immediately as not restriping is needed.
5779          * For larger arrays we record the new value - after validation
5780          * to be used by a reshape pass.
5781          */
5782         raid5_conf_t *conf = mddev->private;
5783         int new_chunk = mddev->new_chunk_sectors;
5784
5785         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5786                 return -EINVAL;
5787         if (new_chunk > 0) {
5788                 if (!is_power_of_2(new_chunk))
5789                         return -EINVAL;
5790                 if (new_chunk < (PAGE_SIZE>>9))
5791                         return -EINVAL;
5792                 if (mddev->array_sectors & (new_chunk-1))
5793                         /* not factor of array size */
5794                         return -EINVAL;
5795         }
5796
5797         /* They look valid */
5798
5799         if (mddev->raid_disks == 2) {
5800                 /* can make the change immediately */
5801                 if (mddev->new_layout >= 0) {
5802                         conf->algorithm = mddev->new_layout;
5803                         mddev->layout = mddev->new_layout;
5804                 }
5805                 if (new_chunk > 0) {
5806                         conf->chunk_sectors = new_chunk ;
5807                         mddev->chunk_sectors = new_chunk;
5808                 }
5809                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5810                 md_wakeup_thread(mddev->thread);
5811         }
5812         return check_reshape(mddev);
5813 }
5814
5815 static int raid6_check_reshape(mddev_t *mddev)
5816 {
5817         int new_chunk = mddev->new_chunk_sectors;
5818
5819         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5820                 return -EINVAL;
5821         if (new_chunk > 0) {
5822                 if (!is_power_of_2(new_chunk))
5823                         return -EINVAL;
5824                 if (new_chunk < (PAGE_SIZE >> 9))
5825                         return -EINVAL;
5826                 if (mddev->array_sectors & (new_chunk-1))
5827                         /* not factor of array size */
5828                         return -EINVAL;
5829         }
5830
5831         /* They look valid */
5832         return check_reshape(mddev);
5833 }
5834
5835 static void *raid5_takeover(mddev_t *mddev)
5836 {
5837         /* raid5 can take over:
5838          *  raid0 - if there is only one strip zone - make it a raid4 layout
5839          *  raid1 - if there are two drives.  We need to know the chunk size
5840          *  raid4 - trivial - just use a raid4 layout.
5841          *  raid6 - Providing it is a *_6 layout
5842          */
5843         if (mddev->level == 0)
5844                 return raid45_takeover_raid0(mddev, 5);
5845         if (mddev->level == 1)
5846                 return raid5_takeover_raid1(mddev);
5847         if (mddev->level == 4) {
5848                 mddev->new_layout = ALGORITHM_PARITY_N;
5849                 mddev->new_level = 5;
5850                 return setup_conf(mddev);
5851         }
5852         if (mddev->level == 6)
5853                 return raid5_takeover_raid6(mddev);
5854
5855         return ERR_PTR(-EINVAL);
5856 }
5857
5858 static void *raid4_takeover(mddev_t *mddev)
5859 {
5860         /* raid4 can take over:
5861          *  raid0 - if there is only one strip zone
5862          *  raid5 - if layout is right
5863          */
5864         if (mddev->level == 0)
5865                 return raid45_takeover_raid0(mddev, 4);
5866         if (mddev->level == 5 &&
5867             mddev->layout == ALGORITHM_PARITY_N) {
5868                 mddev->new_layout = 0;
5869                 mddev->new_level = 4;
5870                 return setup_conf(mddev);
5871         }
5872         return ERR_PTR(-EINVAL);
5873 }
5874
5875 static struct mdk_personality raid5_personality;
5876
5877 static void *raid6_takeover(mddev_t *mddev)
5878 {
5879         /* Currently can only take over a raid5.  We map the
5880          * personality to an equivalent raid6 personality
5881          * with the Q block at the end.
5882          */
5883         int new_layout;
5884
5885         if (mddev->pers != &raid5_personality)
5886                 return ERR_PTR(-EINVAL);
5887         if (mddev->degraded > 1)
5888                 return ERR_PTR(-EINVAL);
5889         if (mddev->raid_disks > 253)
5890                 return ERR_PTR(-EINVAL);
5891         if (mddev->raid_disks < 3)
5892                 return ERR_PTR(-EINVAL);
5893
5894         switch (mddev->layout) {
5895         case ALGORITHM_LEFT_ASYMMETRIC:
5896                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5897                 break;
5898         case ALGORITHM_RIGHT_ASYMMETRIC:
5899                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5900                 break;
5901         case ALGORITHM_LEFT_SYMMETRIC:
5902                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5903                 break;
5904         case ALGORITHM_RIGHT_SYMMETRIC:
5905                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5906                 break;
5907         case ALGORITHM_PARITY_0:
5908                 new_layout = ALGORITHM_PARITY_0_6;
5909                 break;
5910         case ALGORITHM_PARITY_N:
5911                 new_layout = ALGORITHM_PARITY_N;
5912                 break;
5913         default:
5914                 return ERR_PTR(-EINVAL);
5915         }
5916         mddev->new_level = 6;
5917         mddev->new_layout = new_layout;
5918         mddev->delta_disks = 1;
5919         mddev->raid_disks += 1;
5920         return setup_conf(mddev);
5921 }
5922
5923
5924 static struct mdk_personality raid6_personality =
5925 {
5926         .name           = "raid6",
5927         .level          = 6,
5928         .owner          = THIS_MODULE,
5929         .make_request   = make_request,
5930         .run            = run,
5931         .stop           = stop,
5932         .status         = status,
5933         .error_handler  = error,
5934         .hot_add_disk   = raid5_add_disk,
5935         .hot_remove_disk= raid5_remove_disk,
5936         .spare_active   = raid5_spare_active,
5937         .sync_request   = sync_request,
5938         .resize         = raid5_resize,
5939         .size           = raid5_size,
5940         .check_reshape  = raid6_check_reshape,
5941         .start_reshape  = raid5_start_reshape,
5942         .finish_reshape = raid5_finish_reshape,
5943         .quiesce        = raid5_quiesce,
5944         .takeover       = raid6_takeover,
5945 };
5946 static struct mdk_personality raid5_personality =
5947 {
5948         .name           = "raid5",
5949         .level          = 5,
5950         .owner          = THIS_MODULE,
5951         .make_request   = make_request,
5952         .run            = run,
5953         .stop           = stop,
5954         .status         = status,
5955         .error_handler  = error,
5956         .hot_add_disk   = raid5_add_disk,
5957         .hot_remove_disk= raid5_remove_disk,
5958         .spare_active   = raid5_spare_active,
5959         .sync_request   = sync_request,
5960         .resize         = raid5_resize,
5961         .size           = raid5_size,
5962         .check_reshape  = raid5_check_reshape,
5963         .start_reshape  = raid5_start_reshape,
5964         .finish_reshape = raid5_finish_reshape,
5965         .quiesce        = raid5_quiesce,
5966         .takeover       = raid5_takeover,
5967 };
5968
5969 static struct mdk_personality raid4_personality =
5970 {
5971         .name           = "raid4",
5972         .level          = 4,
5973         .owner          = THIS_MODULE,
5974         .make_request   = make_request,
5975         .run            = run,
5976         .stop           = stop,
5977         .status         = status,
5978         .error_handler  = error,
5979         .hot_add_disk   = raid5_add_disk,
5980         .hot_remove_disk= raid5_remove_disk,
5981         .spare_active   = raid5_spare_active,
5982         .sync_request   = sync_request,
5983         .resize         = raid5_resize,
5984         .size           = raid5_size,
5985         .check_reshape  = raid5_check_reshape,
5986         .start_reshape  = raid5_start_reshape,
5987         .finish_reshape = raid5_finish_reshape,
5988         .quiesce        = raid5_quiesce,
5989         .takeover       = raid4_takeover,
5990 };
5991
5992 static int __init raid5_init(void)
5993 {
5994         register_md_personality(&raid6_personality);
5995         register_md_personality(&raid5_personality);
5996         register_md_personality(&raid4_personality);
5997         return 0;
5998 }
5999
6000 static void raid5_exit(void)
6001 {
6002         unregister_md_personality(&raid6_personality);
6003         unregister_md_personality(&raid5_personality);
6004         unregister_md_personality(&raid4_personality);
6005 }
6006
6007 module_init(raid5_init);
6008 module_exit(raid5_exit);
6009 MODULE_LICENSE("GPL");
6010 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6011 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6012 MODULE_ALIAS("md-raid5");
6013 MODULE_ALIAS("md-raid4");
6014 MODULE_ALIAS("md-level-5");
6015 MODULE_ALIAS("md-level-4");
6016 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6017 MODULE_ALIAS("md-raid6");
6018 MODULE_ALIAS("md-level-6");
6019
6020 /* This used to be two separate modules, they were: */
6021 MODULE_ALIAS("raid5");
6022 MODULE_ALIAS("raid6");