Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/scottwood/linux.git
[firefly-linux-kernel-4.4.55.git] / drivers / media / rc / nuvoton-cir.c
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39
40 #include "nuvoton-cir.h"
41
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
44 {
45         outb(reg, nvt->cr_efir);
46         outb(val, nvt->cr_efdr);
47 }
48
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
51 {
52         outb(reg, nvt->cr_efir);
53         return inb(nvt->cr_efdr);
54 }
55
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59         u8 tmp = nvt_cr_read(nvt, reg) | val;
60         nvt_cr_write(nvt, tmp, reg);
61 }
62
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
65 {
66         u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67         nvt_cr_write(nvt, tmp, reg);
68 }
69
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
72 {
73         /* Enabling Extended Function Mode explicitly requires writing 2x */
74         outb(EFER_EFM_ENABLE, nvt->cr_efir);
75         outb(EFER_EFM_ENABLE, nvt->cr_efir);
76 }
77
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
80 {
81         outb(EFER_EFM_DISABLE, nvt->cr_efir);
82 }
83
84 /*
85  * When you want to address a specific logical device, write its logical
86  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
88  */
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
90 {
91         outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92         outb(ldev, nvt->cr_efdr);
93 }
94
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
97 {
98         outb(val, nvt->cir_addr + offset);
99 }
100
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
103 {
104         u8 val;
105
106         val = inb(nvt->cir_addr + offset);
107
108         return val;
109 }
110
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113                                           u8 val, u8 offset)
114 {
115         outb(val, nvt->cir_wake_addr + offset);
116 }
117
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
120 {
121         u8 val;
122
123         val = inb(nvt->cir_wake_addr + offset);
124
125         return val;
126 }
127
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
130 {
131         nvt_efm_enable(nvt);
132         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
133
134         pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135         pr_info(" * CR CIR ACTIVE :   0x%x\n",
136                 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137         pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138                 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139                 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140         pr_info(" * CR CIR IRQ NUM:   0x%x\n",
141                 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
142
143         nvt_efm_disable(nvt);
144
145         pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146         pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147         pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148         pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149         pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150         pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151         pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152         pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153         pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154         pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155         pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156         pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157         pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158         pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159         pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160         pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161         pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
162 }
163
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
166 {
167         u8 i, fifo_len;
168
169         nvt_efm_enable(nvt);
170         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
171
172         pr_info("%s: Dump CIR WAKE logical device registers:\n",
173                 NVT_DRIVER_NAME);
174         pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
175                 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176         pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177                 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178                 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179         pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
180                 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
181
182         nvt_efm_disable(nvt);
183
184         pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185         pr_info(" * IRCON:          0x%x\n",
186                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187         pr_info(" * IRSTS:          0x%x\n",
188                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189         pr_info(" * IREN:           0x%x\n",
190                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191         pr_info(" * FIFO CMP DEEP:  0x%x\n",
192                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193         pr_info(" * FIFO CMP TOL:   0x%x\n",
194                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195         pr_info(" * FIFO COUNT:     0x%x\n",
196                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197         pr_info(" * SLCH:           0x%x\n",
198                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199         pr_info(" * SLCL:           0x%x\n",
200                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201         pr_info(" * FIFOCON:        0x%x\n",
202                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203         pr_info(" * SRXFSTS:        0x%x\n",
204                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205         pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207         pr_info(" * WR FIFO DATA:   0x%x\n",
208                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209         pr_info(" * RD FIFO ONLY:   0x%x\n",
210                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211         pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213         pr_info(" * FIFO IGNORE:    0x%x\n",
214                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215         pr_info(" * IRFSM:          0x%x\n",
216                 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
217
218         fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219         pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220         pr_info("* Contents =");
221         for (i = 0; i < fifo_len; i++)
222                 pr_cont(" %02x",
223                         nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224         pr_cont("\n");
225 }
226
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
229 {
230         unsigned long flags;
231         u8 chip_major, chip_minor;
232         int ret = 0;
233         char chip_id[12];
234         bool chip_unknown = false;
235
236         nvt_efm_enable(nvt);
237
238         /* Check if we're wired for the alternate EFER setup */
239         chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
240         if (chip_major == 0xff) {
241                 nvt->cr_efir = CR_EFIR2;
242                 nvt->cr_efdr = CR_EFDR2;
243                 nvt_efm_enable(nvt);
244                 chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
245         }
246
247         chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
248
249         /* these are the known working chip revisions... */
250         switch (chip_major) {
251         case CHIP_ID_HIGH_667:
252                 strcpy(chip_id, "w83667hg\0");
253                 if (chip_minor != CHIP_ID_LOW_667)
254                         chip_unknown = true;
255                 break;
256         case CHIP_ID_HIGH_677B:
257                 strcpy(chip_id, "w83677hg\0");
258                 if (chip_minor != CHIP_ID_LOW_677B2 &&
259                     chip_minor != CHIP_ID_LOW_677B3)
260                         chip_unknown = true;
261                 break;
262         case CHIP_ID_HIGH_677C:
263                 strcpy(chip_id, "w83677hg-c\0");
264                 if (chip_minor != CHIP_ID_LOW_677C)
265                         chip_unknown = true;
266                 break;
267         default:
268                 strcpy(chip_id, "w836x7hg\0");
269                 chip_unknown = true;
270                 break;
271         }
272
273         /* warn, but still let the driver load, if we don't know this chip */
274         if (chip_unknown)
275                 nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
276                        "it may not work...", chip_id, chip_major, chip_minor);
277         else
278                 nvt_dbg("%s: chip id: 0x%02x 0x%02x",
279                         chip_id, chip_major, chip_minor);
280
281         nvt_efm_disable(nvt);
282
283         spin_lock_irqsave(&nvt->nvt_lock, flags);
284         nvt->chip_major = chip_major;
285         nvt->chip_minor = chip_minor;
286         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
287
288         return ret;
289 }
290
291 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
292 {
293         u8 val, psreg, psmask, psval;
294
295         if (nvt->chip_major == CHIP_ID_HIGH_667) {
296                 psreg = CR_MULTIFUNC_PIN_SEL;
297                 psmask = MULTIFUNC_PIN_SEL_MASK;
298                 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
299         } else {
300                 psreg = CR_OUTPUT_PIN_SEL;
301                 psmask = OUTPUT_PIN_SEL_MASK;
302                 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
303         }
304
305         /* output pin selection: enable CIR, with WB sensor enabled */
306         val = nvt_cr_read(nvt, psreg);
307         val &= psmask;
308         val |= psval;
309         nvt_cr_write(nvt, val, psreg);
310
311         /* Select CIR logical device and enable */
312         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
313         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
314
315         nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
316         nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
317
318         nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
319
320         nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
321                 nvt->cir_addr, nvt->cir_irq);
322 }
323
324 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
325 {
326         /* Select ACPI logical device, enable it and CIR Wake */
327         nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
328         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
329
330         /* Enable CIR Wake via PSOUT# (Pin60) */
331         nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
332
333         /* enable pme interrupt of cir wakeup event */
334         nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
335
336         /* Select CIR Wake logical device and enable */
337         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
338         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
339
340         nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
341         nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
342
343         nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
344
345         nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
346                 nvt->cir_wake_addr, nvt->cir_wake_irq);
347 }
348
349 /* clear out the hardware's cir rx fifo */
350 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
351 {
352         u8 val;
353
354         val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
355         nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
356 }
357
358 /* clear out the hardware's cir wake rx fifo */
359 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
360 {
361         u8 val;
362
363         val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
364         nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
365                                CIR_WAKE_FIFOCON);
366 }
367
368 /* clear out the hardware's cir tx fifo */
369 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
370 {
371         u8 val;
372
373         val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
374         nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
375 }
376
377 /* enable RX Trigger Level Reach and Packet End interrupts */
378 static void nvt_set_cir_iren(struct nvt_dev *nvt)
379 {
380         u8 iren;
381
382         iren = CIR_IREN_RTR | CIR_IREN_PE;
383         nvt_cir_reg_write(nvt, iren, CIR_IREN);
384 }
385
386 static void nvt_cir_regs_init(struct nvt_dev *nvt)
387 {
388         /* set sample limit count (PE interrupt raised when reached) */
389         nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
390         nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
391
392         /* set fifo irq trigger levels */
393         nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
394                           CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
395
396         /*
397          * Enable TX and RX, specify carrier on = low, off = high, and set
398          * sample period (currently 50us)
399          */
400         nvt_cir_reg_write(nvt,
401                           CIR_IRCON_TXEN | CIR_IRCON_RXEN |
402                           CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
403                           CIR_IRCON);
404
405         /* clear hardware rx and tx fifos */
406         nvt_clear_cir_fifo(nvt);
407         nvt_clear_tx_fifo(nvt);
408
409         /* clear any and all stray interrupts */
410         nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
411
412         /* and finally, enable interrupts */
413         nvt_set_cir_iren(nvt);
414 }
415
416 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
417 {
418         /* set number of bytes needed for wake from s3 (default 65) */
419         nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
420                                CIR_WAKE_FIFO_CMP_DEEP);
421
422         /* set tolerance/variance allowed per byte during wake compare */
423         nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
424                                CIR_WAKE_FIFO_CMP_TOL);
425
426         /* set sample limit count (PE interrupt raised when reached) */
427         nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
428         nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
429
430         /* set cir wake fifo rx trigger level (currently 67) */
431         nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
432                                CIR_WAKE_FIFOCON);
433
434         /*
435          * Enable TX and RX, specific carrier on = low, off = high, and set
436          * sample period (currently 50us)
437          */
438         nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
439                                CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
440                                CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
441                                CIR_WAKE_IRCON);
442
443         /* clear cir wake rx fifo */
444         nvt_clear_cir_wake_fifo(nvt);
445
446         /* clear any and all stray interrupts */
447         nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
448 }
449
450 static void nvt_enable_wake(struct nvt_dev *nvt)
451 {
452         nvt_efm_enable(nvt);
453
454         nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
455         nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
456         nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
457
458         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
459         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
460
461         nvt_efm_disable(nvt);
462
463         nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
464                                CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
465                                CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
466                                CIR_WAKE_IRCON);
467         nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
468         nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
469 }
470
471 #if 0 /* Currently unused */
472 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
473 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
474 {
475         u32 count, carrier, duration = 0;
476         int i;
477
478         count = nvt_cir_reg_read(nvt, CIR_FCCL) |
479                 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
480
481         for (i = 0; i < nvt->pkts; i++) {
482                 if (nvt->buf[i] & BUF_PULSE_BIT)
483                         duration += nvt->buf[i] & BUF_LEN_MASK;
484         }
485
486         duration *= SAMPLE_PERIOD;
487
488         if (!count || !duration) {
489                 nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
490                        count, duration);
491                 return 0;
492         }
493
494         carrier = MS_TO_NS(count) / duration;
495
496         if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
497                 nvt_dbg("WTF? Carrier frequency out of range!");
498
499         nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
500                 carrier, count, duration);
501
502         return carrier;
503 }
504 #endif
505 /*
506  * set carrier frequency
507  *
508  * set carrier on 2 registers: CP & CC
509  * always set CP as 0x81
510  * set CC by SPEC, CC = 3MHz/carrier - 1
511  */
512 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
513 {
514         struct nvt_dev *nvt = dev->priv;
515         u16 val;
516
517         if (carrier == 0)
518                 return -EINVAL;
519
520         nvt_cir_reg_write(nvt, 1, CIR_CP);
521         val = 3000000 / (carrier) - 1;
522         nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
523
524         nvt_dbg("cp: 0x%x cc: 0x%x\n",
525                 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
526
527         return 0;
528 }
529
530 /*
531  * nvt_tx_ir
532  *
533  * 1) clean TX fifo first (handled by AP)
534  * 2) copy data from user space
535  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
536  * 4) send 9 packets to TX FIFO to open TTR
537  * in interrupt_handler:
538  * 5) send all data out
539  * go back to write():
540  * 6) disable TX interrupts, re-enable RX interupts
541  *
542  * The key problem of this function is user space data may larger than
543  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
544  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
545  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
546  * set TXFCONT as 0xff, until buf_count less than 0xff.
547  */
548 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
549 {
550         struct nvt_dev *nvt = dev->priv;
551         unsigned long flags;
552         unsigned int i;
553         u8 iren;
554         int ret;
555
556         spin_lock_irqsave(&nvt->tx.lock, flags);
557
558         ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
559         nvt->tx.buf_count = (ret * sizeof(unsigned));
560
561         memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
562
563         nvt->tx.cur_buf_num = 0;
564
565         /* save currently enabled interrupts */
566         iren = nvt_cir_reg_read(nvt, CIR_IREN);
567
568         /* now disable all interrupts, save TFU & TTR */
569         nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
570
571         nvt->tx.tx_state = ST_TX_REPLY;
572
573         nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
574                           CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
575
576         /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
577         for (i = 0; i < 9; i++)
578                 nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
579
580         spin_unlock_irqrestore(&nvt->tx.lock, flags);
581
582         wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
583
584         spin_lock_irqsave(&nvt->tx.lock, flags);
585         nvt->tx.tx_state = ST_TX_NONE;
586         spin_unlock_irqrestore(&nvt->tx.lock, flags);
587
588         /* restore enabled interrupts to prior state */
589         nvt_cir_reg_write(nvt, iren, CIR_IREN);
590
591         return ret;
592 }
593
594 /* dump contents of the last rx buffer we got from the hw rx fifo */
595 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
596 {
597         int i;
598
599         printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
600         for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
601                 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
602         printk(KERN_CONT "\n");
603 }
604
605 /*
606  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
607  * trigger decode when appropriate.
608  *
609  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
610  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
611  * (default 50us) intervals for that pulse/space. A discrete signal is
612  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
613  * to signal more IR coming (repeats) or end of IR, respectively. We store
614  * sample data in the raw event kfifo until we see 0x7<something> (except f)
615  * or 0x80, at which time, we trigger a decode operation.
616  */
617 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
618 {
619         DEFINE_IR_RAW_EVENT(rawir);
620         u8 sample;
621         int i;
622
623         nvt_dbg_verbose("%s firing", __func__);
624
625         if (debug)
626                 nvt_dump_rx_buf(nvt);
627
628         nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
629
630         init_ir_raw_event(&rawir);
631
632         for (i = 0; i < nvt->pkts; i++) {
633                 sample = nvt->buf[i];
634
635                 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
636                 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
637                                           * SAMPLE_PERIOD);
638
639                 nvt_dbg("Storing %s with duration %d",
640                         rawir.pulse ? "pulse" : "space", rawir.duration);
641
642                 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
643
644                 /*
645                  * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
646                  * indicates end of IR signal, but new data incoming. In both
647                  * cases, it means we're ready to call ir_raw_event_handle
648                  */
649                 if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
650                         nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
651                         ir_raw_event_handle(nvt->rdev);
652                 }
653         }
654
655         nvt->pkts = 0;
656
657         nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
658         ir_raw_event_handle(nvt->rdev);
659
660         nvt_dbg_verbose("%s done", __func__);
661 }
662
663 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
664 {
665         nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
666
667         nvt->pkts = 0;
668         nvt_clear_cir_fifo(nvt);
669         ir_raw_event_reset(nvt->rdev);
670 }
671
672 /* copy data from hardware rx fifo into driver buffer */
673 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
674 {
675         unsigned long flags;
676         u8 fifocount, val;
677         unsigned int b_idx;
678         bool overrun = false;
679         int i;
680
681         /* Get count of how many bytes to read from RX FIFO */
682         fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
683         /* if we get 0xff, probably means the logical dev is disabled */
684         if (fifocount == 0xff)
685                 return;
686         /* watch out for a fifo overrun condition */
687         else if (fifocount > RX_BUF_LEN) {
688                 overrun = true;
689                 fifocount = RX_BUF_LEN;
690         }
691
692         nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
693
694         spin_lock_irqsave(&nvt->nvt_lock, flags);
695
696         b_idx = nvt->pkts;
697
698         /* This should never happen, but lets check anyway... */
699         if (b_idx + fifocount > RX_BUF_LEN) {
700                 nvt_process_rx_ir_data(nvt);
701                 b_idx = 0;
702         }
703
704         /* Read fifocount bytes from CIR Sample RX FIFO register */
705         for (i = 0; i < fifocount; i++) {
706                 val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
707                 nvt->buf[b_idx + i] = val;
708         }
709
710         nvt->pkts += fifocount;
711         nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
712
713         nvt_process_rx_ir_data(nvt);
714
715         if (overrun)
716                 nvt_handle_rx_fifo_overrun(nvt);
717
718         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
719 }
720
721 static void nvt_cir_log_irqs(u8 status, u8 iren)
722 {
723         nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
724                 status, iren,
725                 status & CIR_IRSTS_RDR  ? " RDR"        : "",
726                 status & CIR_IRSTS_RTR  ? " RTR"        : "",
727                 status & CIR_IRSTS_PE   ? " PE"         : "",
728                 status & CIR_IRSTS_RFO  ? " RFO"        : "",
729                 status & CIR_IRSTS_TE   ? " TE"         : "",
730                 status & CIR_IRSTS_TTR  ? " TTR"        : "",
731                 status & CIR_IRSTS_TFU  ? " TFU"        : "",
732                 status & CIR_IRSTS_GH   ? " GH"         : "",
733                 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
734                            CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
735                            CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
736 }
737
738 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
739 {
740         unsigned long flags;
741         bool tx_inactive;
742         u8 tx_state;
743
744         spin_lock_irqsave(&nvt->tx.lock, flags);
745         tx_state = nvt->tx.tx_state;
746         spin_unlock_irqrestore(&nvt->tx.lock, flags);
747
748         tx_inactive = (tx_state == ST_TX_NONE);
749
750         return tx_inactive;
751 }
752
753 /* interrupt service routine for incoming and outgoing CIR data */
754 static irqreturn_t nvt_cir_isr(int irq, void *data)
755 {
756         struct nvt_dev *nvt = data;
757         u8 status, iren, cur_state;
758         unsigned long flags;
759
760         nvt_dbg_verbose("%s firing", __func__);
761
762         nvt_efm_enable(nvt);
763         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
764         nvt_efm_disable(nvt);
765
766         /*
767          * Get IR Status register contents. Write 1 to ack/clear
768          *
769          * bit: reg name      - description
770          *   7: CIR_IRSTS_RDR - RX Data Ready
771          *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
772          *   5: CIR_IRSTS_PE  - Packet End
773          *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
774          *   3: CIR_IRSTS_TE  - TX FIFO Empty
775          *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
776          *   1: CIR_IRSTS_TFU - TX FIFO Underrun
777          *   0: CIR_IRSTS_GH  - Min Length Detected
778          */
779         status = nvt_cir_reg_read(nvt, CIR_IRSTS);
780         if (!status) {
781                 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
782                 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
783                 return IRQ_RETVAL(IRQ_NONE);
784         }
785
786         /* ack/clear all irq flags we've got */
787         nvt_cir_reg_write(nvt, status, CIR_IRSTS);
788         nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
789
790         /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
791         iren = nvt_cir_reg_read(nvt, CIR_IREN);
792         if (!iren) {
793                 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
794                 return IRQ_RETVAL(IRQ_NONE);
795         }
796
797         if (debug)
798                 nvt_cir_log_irqs(status, iren);
799
800         if (status & CIR_IRSTS_RTR) {
801                 /* FIXME: add code for study/learn mode */
802                 /* We only do rx if not tx'ing */
803                 if (nvt_cir_tx_inactive(nvt))
804                         nvt_get_rx_ir_data(nvt);
805         }
806
807         if (status & CIR_IRSTS_PE) {
808                 if (nvt_cir_tx_inactive(nvt))
809                         nvt_get_rx_ir_data(nvt);
810
811                 spin_lock_irqsave(&nvt->nvt_lock, flags);
812
813                 cur_state = nvt->study_state;
814
815                 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
816
817                 if (cur_state == ST_STUDY_NONE)
818                         nvt_clear_cir_fifo(nvt);
819         }
820
821         if (status & CIR_IRSTS_TE)
822                 nvt_clear_tx_fifo(nvt);
823
824         if (status & CIR_IRSTS_TTR) {
825                 unsigned int pos, count;
826                 u8 tmp;
827
828                 spin_lock_irqsave(&nvt->tx.lock, flags);
829
830                 pos = nvt->tx.cur_buf_num;
831                 count = nvt->tx.buf_count;
832
833                 /* Write data into the hardware tx fifo while pos < count */
834                 if (pos < count) {
835                         nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
836                         nvt->tx.cur_buf_num++;
837                 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
838                 } else {
839                         tmp = nvt_cir_reg_read(nvt, CIR_IREN);
840                         nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
841                 }
842
843                 spin_unlock_irqrestore(&nvt->tx.lock, flags);
844
845         }
846
847         if (status & CIR_IRSTS_TFU) {
848                 spin_lock_irqsave(&nvt->tx.lock, flags);
849                 if (nvt->tx.tx_state == ST_TX_REPLY) {
850                         nvt->tx.tx_state = ST_TX_REQUEST;
851                         wake_up(&nvt->tx.queue);
852                 }
853                 spin_unlock_irqrestore(&nvt->tx.lock, flags);
854         }
855
856         nvt_dbg_verbose("%s done", __func__);
857         return IRQ_RETVAL(IRQ_HANDLED);
858 }
859
860 /* Interrupt service routine for CIR Wake */
861 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
862 {
863         u8 status, iren, val;
864         struct nvt_dev *nvt = data;
865         unsigned long flags;
866
867         nvt_dbg_wake("%s firing", __func__);
868
869         status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
870         if (!status)
871                 return IRQ_RETVAL(IRQ_NONE);
872
873         if (status & CIR_WAKE_IRSTS_IR_PENDING)
874                 nvt_clear_cir_wake_fifo(nvt);
875
876         nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
877         nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
878
879         /* Interrupt may be shared with CIR, bail if Wake not enabled */
880         iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
881         if (!iren) {
882                 nvt_dbg_wake("%s exiting, wake not enabled", __func__);
883                 return IRQ_RETVAL(IRQ_HANDLED);
884         }
885
886         if ((status & CIR_WAKE_IRSTS_PE) &&
887             (nvt->wake_state == ST_WAKE_START)) {
888                 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
889                         val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
890                         nvt_dbg("setting wake up key: 0x%x", val);
891                 }
892
893                 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
894                 spin_lock_irqsave(&nvt->nvt_lock, flags);
895                 nvt->wake_state = ST_WAKE_FINISH;
896                 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
897         }
898
899         nvt_dbg_wake("%s done", __func__);
900         return IRQ_RETVAL(IRQ_HANDLED);
901 }
902
903 static void nvt_enable_cir(struct nvt_dev *nvt)
904 {
905         /* set function enable flags */
906         nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
907                           CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
908                           CIR_IRCON);
909
910         nvt_efm_enable(nvt);
911
912         /* enable the CIR logical device */
913         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
914         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
915
916         nvt_efm_disable(nvt);
917
918         /* clear all pending interrupts */
919         nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
920
921         /* enable interrupts */
922         nvt_set_cir_iren(nvt);
923 }
924
925 static void nvt_disable_cir(struct nvt_dev *nvt)
926 {
927         /* disable CIR interrupts */
928         nvt_cir_reg_write(nvt, 0, CIR_IREN);
929
930         /* clear any and all pending interrupts */
931         nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
932
933         /* clear all function enable flags */
934         nvt_cir_reg_write(nvt, 0, CIR_IRCON);
935
936         /* clear hardware rx and tx fifos */
937         nvt_clear_cir_fifo(nvt);
938         nvt_clear_tx_fifo(nvt);
939
940         nvt_efm_enable(nvt);
941
942         /* disable the CIR logical device */
943         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
944         nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
945
946         nvt_efm_disable(nvt);
947 }
948
949 static int nvt_open(struct rc_dev *dev)
950 {
951         struct nvt_dev *nvt = dev->priv;
952         unsigned long flags;
953
954         spin_lock_irqsave(&nvt->nvt_lock, flags);
955         nvt_enable_cir(nvt);
956         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
957
958         return 0;
959 }
960
961 static void nvt_close(struct rc_dev *dev)
962 {
963         struct nvt_dev *nvt = dev->priv;
964         unsigned long flags;
965
966         spin_lock_irqsave(&nvt->nvt_lock, flags);
967         nvt_disable_cir(nvt);
968         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
969 }
970
971 /* Allocate memory, probe hardware, and initialize everything */
972 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
973 {
974         struct nvt_dev *nvt;
975         struct rc_dev *rdev;
976         int ret = -ENOMEM;
977
978         nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
979         if (!nvt)
980                 return ret;
981
982         /* input device for IR remote (and tx) */
983         rdev = rc_allocate_device();
984         if (!rdev)
985                 goto exit_free_dev_rdev;
986
987         ret = -ENODEV;
988         /* activate pnp device */
989         if (pnp_activate_dev(pdev) < 0) {
990                 dev_err(&pdev->dev, "Could not activate PNP device!\n");
991                 goto exit_free_dev_rdev;
992         }
993
994         /* validate pnp resources */
995         if (!pnp_port_valid(pdev, 0) ||
996             pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
997                 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
998                 goto exit_free_dev_rdev;
999         }
1000
1001         if (!pnp_irq_valid(pdev, 0)) {
1002                 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1003                 goto exit_free_dev_rdev;
1004         }
1005
1006         if (!pnp_port_valid(pdev, 1) ||
1007             pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1008                 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1009                 goto exit_free_dev_rdev;
1010         }
1011
1012         nvt->cir_addr = pnp_port_start(pdev, 0);
1013         nvt->cir_irq  = pnp_irq(pdev, 0);
1014
1015         nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1016         /* irq is always shared between cir and cir wake */
1017         nvt->cir_wake_irq  = nvt->cir_irq;
1018
1019         nvt->cr_efir = CR_EFIR;
1020         nvt->cr_efdr = CR_EFDR;
1021
1022         spin_lock_init(&nvt->nvt_lock);
1023         spin_lock_init(&nvt->tx.lock);
1024
1025         pnp_set_drvdata(pdev, nvt);
1026         nvt->pdev = pdev;
1027
1028         init_waitqueue_head(&nvt->tx.queue);
1029
1030         ret = nvt_hw_detect(nvt);
1031         if (ret)
1032                 goto exit_free_dev_rdev;
1033
1034         /* Initialize CIR & CIR Wake Logical Devices */
1035         nvt_efm_enable(nvt);
1036         nvt_cir_ldev_init(nvt);
1037         nvt_cir_wake_ldev_init(nvt);
1038         nvt_efm_disable(nvt);
1039
1040         /* Initialize CIR & CIR Wake Config Registers */
1041         nvt_cir_regs_init(nvt);
1042         nvt_cir_wake_regs_init(nvt);
1043
1044         /* Set up the rc device */
1045         rdev->priv = nvt;
1046         rdev->driver_type = RC_DRIVER_IR_RAW;
1047         rdev->allowed_protocols = RC_BIT_ALL;
1048         rdev->open = nvt_open;
1049         rdev->close = nvt_close;
1050         rdev->tx_ir = nvt_tx_ir;
1051         rdev->s_tx_carrier = nvt_set_tx_carrier;
1052         rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1053         rdev->input_phys = "nuvoton/cir0";
1054         rdev->input_id.bustype = BUS_HOST;
1055         rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1056         rdev->input_id.product = nvt->chip_major;
1057         rdev->input_id.version = nvt->chip_minor;
1058         rdev->dev.parent = &pdev->dev;
1059         rdev->driver_name = NVT_DRIVER_NAME;
1060         rdev->map_name = RC_MAP_RC6_MCE;
1061         rdev->timeout = MS_TO_NS(100);
1062         /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1063         rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1064 #if 0
1065         rdev->min_timeout = XYZ;
1066         rdev->max_timeout = XYZ;
1067         /* tx bits */
1068         rdev->tx_resolution = XYZ;
1069 #endif
1070         nvt->rdev = rdev;
1071
1072         ret = rc_register_device(rdev);
1073         if (ret)
1074                 goto exit_free_dev_rdev;
1075
1076         ret = -EBUSY;
1077         /* now claim resources */
1078         if (!request_region(nvt->cir_addr,
1079                             CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1080                 goto exit_unregister_device;
1081
1082         if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1083                         NVT_DRIVER_NAME, (void *)nvt))
1084                 goto exit_release_cir_addr;
1085
1086         if (!request_region(nvt->cir_wake_addr,
1087                             CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1088                 goto exit_free_irq;
1089
1090         if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1091                         NVT_DRIVER_NAME, (void *)nvt))
1092                 goto exit_release_cir_wake_addr;
1093
1094         device_init_wakeup(&pdev->dev, true);
1095
1096         nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1097         if (debug) {
1098                 cir_dump_regs(nvt);
1099                 cir_wake_dump_regs(nvt);
1100         }
1101
1102         return 0;
1103
1104 exit_release_cir_wake_addr:
1105         release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1106 exit_free_irq:
1107         free_irq(nvt->cir_irq, nvt);
1108 exit_release_cir_addr:
1109         release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1110 exit_unregister_device:
1111         rc_unregister_device(rdev);
1112         rdev = NULL;
1113 exit_free_dev_rdev:
1114         rc_free_device(rdev);
1115         kfree(nvt);
1116
1117         return ret;
1118 }
1119
1120 static void nvt_remove(struct pnp_dev *pdev)
1121 {
1122         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1123         unsigned long flags;
1124
1125         spin_lock_irqsave(&nvt->nvt_lock, flags);
1126         /* disable CIR */
1127         nvt_cir_reg_write(nvt, 0, CIR_IREN);
1128         nvt_disable_cir(nvt);
1129         /* enable CIR Wake (for IR power-on) */
1130         nvt_enable_wake(nvt);
1131         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1132
1133         /* free resources */
1134         free_irq(nvt->cir_irq, nvt);
1135         free_irq(nvt->cir_wake_irq, nvt);
1136         release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1137         release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1138
1139         rc_unregister_device(nvt->rdev);
1140
1141         kfree(nvt);
1142 }
1143
1144 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1145 {
1146         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1147         unsigned long flags;
1148
1149         nvt_dbg("%s called", __func__);
1150
1151         /* zero out misc state tracking */
1152         spin_lock_irqsave(&nvt->nvt_lock, flags);
1153         nvt->study_state = ST_STUDY_NONE;
1154         nvt->wake_state = ST_WAKE_NONE;
1155         spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1156
1157         spin_lock_irqsave(&nvt->tx.lock, flags);
1158         nvt->tx.tx_state = ST_TX_NONE;
1159         spin_unlock_irqrestore(&nvt->tx.lock, flags);
1160
1161         /* disable all CIR interrupts */
1162         nvt_cir_reg_write(nvt, 0, CIR_IREN);
1163
1164         nvt_efm_enable(nvt);
1165
1166         /* disable cir logical dev */
1167         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1168         nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1169
1170         nvt_efm_disable(nvt);
1171
1172         /* make sure wake is enabled */
1173         nvt_enable_wake(nvt);
1174
1175         return 0;
1176 }
1177
1178 static int nvt_resume(struct pnp_dev *pdev)
1179 {
1180         int ret = 0;
1181         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1182
1183         nvt_dbg("%s called", __func__);
1184
1185         /* open interrupt */
1186         nvt_set_cir_iren(nvt);
1187
1188         /* Enable CIR logical device */
1189         nvt_efm_enable(nvt);
1190         nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1191         nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1192
1193         nvt_efm_disable(nvt);
1194
1195         nvt_cir_regs_init(nvt);
1196         nvt_cir_wake_regs_init(nvt);
1197
1198         return ret;
1199 }
1200
1201 static void nvt_shutdown(struct pnp_dev *pdev)
1202 {
1203         struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1204         nvt_enable_wake(nvt);
1205 }
1206
1207 static const struct pnp_device_id nvt_ids[] = {
1208         { "WEC0530", 0 },   /* CIR */
1209         { "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1210         { "", 0 },
1211 };
1212
1213 static struct pnp_driver nvt_driver = {
1214         .name           = NVT_DRIVER_NAME,
1215         .id_table       = nvt_ids,
1216         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1217         .probe          = nvt_probe,
1218         .remove         = nvt_remove,
1219         .suspend        = nvt_suspend,
1220         .resume         = nvt_resume,
1221         .shutdown       = nvt_shutdown,
1222 };
1223
1224 static int __init nvt_init(void)
1225 {
1226         return pnp_register_driver(&nvt_driver);
1227 }
1228
1229 static void __exit nvt_exit(void)
1230 {
1231         pnp_unregister_driver(&nvt_driver);
1232 }
1233
1234 module_param(debug, int, S_IRUGO | S_IWUSR);
1235 MODULE_PARM_DESC(debug, "Enable debugging output");
1236
1237 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1238 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1239
1240 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1241 MODULE_LICENSE("GPL");
1242
1243 module_init(nvt_init);
1244 module_exit(nvt_exit);