1571a7cdf9d03808a0e68ffcc05027979d0d6aae
[firefly-linux-kernel-4.4.55.git] / drivers / misc / sgi-xp / xpc_sn2.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8
9 /*
10  * Cross Partition Communication (XPC) sn2-based functions.
11  *
12  *     Architecture specific implementation of common functions.
13  *
14  */
15
16 #include <linux/delay.h>
17 #include <asm/uncached.h>
18 #include <asm/sn/mspec.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
21
22 /*
23  * Define the number of u64s required to represent all the C-brick nasids
24  * as a bitmap.  The cross-partition kernel modules deal only with
25  * C-brick nasids, thus the need for bitmaps which don't account for
26  * odd-numbered (non C-brick) nasids.
27  */
28 #define XPC_MAX_PHYSNODES_SN2   (MAX_NUMALINK_NODES / 2)
29 #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
30 #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
31
32 /*
33  * Memory for XPC's amo variables is allocated by the MSPEC driver. These
34  * pages are located in the lowest granule. The lowest granule uses 4k pages
35  * for cached references and an alternate TLB handler to never provide a
36  * cacheable mapping for the entire region. This will prevent speculative
37  * reading of cached copies of our lines from being issued which will cause
38  * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
39  * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
40  * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
41  * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
42  * partitions (i.e., XPCs) consider themselves currently engaged with the
43  * local XPC and 1 amo variable to request partition deactivation.
44  */
45 #define XPC_NOTIFY_IRQ_AMOS_SN2         0
46 #define XPC_ACTIVATE_IRQ_AMOS_SN2       (XPC_NOTIFY_IRQ_AMOS_SN2 + \
47                                          XP_MAX_NPARTITIONS_SN2)
48 #define XPC_ENGAGED_PARTITIONS_AMO_SN2  (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
49                                          XP_NASID_MASK_WORDS_SN2)
50 #define XPC_DEACTIVATE_REQUEST_AMO_SN2  (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
51
52 /*
53  * Buffer used to store a local copy of portions of a remote partition's
54  * reserved page (either its header and part_nasids mask, or its vars).
55  */
56 static char *xpc_remote_copy_buffer_sn2;
57 static void *xpc_remote_copy_buffer_base_sn2;
58
59 static struct xpc_vars_sn2 *xpc_vars_sn2;
60 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
61
62 /* SH_IPI_ACCESS shub register value on startup */
63 static u64 xpc_sh1_IPI_access_sn2;
64 static u64 xpc_sh2_IPI_access0_sn2;
65 static u64 xpc_sh2_IPI_access1_sn2;
66 static u64 xpc_sh2_IPI_access2_sn2;
67 static u64 xpc_sh2_IPI_access3_sn2;
68
69 /*
70  * Change protections to allow IPI operations.
71  */
72 static void
73 xpc_allow_IPI_ops_sn2(void)
74 {
75         int node;
76         int nasid;
77
78         /* !!! The following should get moved into SAL. */
79         if (is_shub2()) {
80                 xpc_sh2_IPI_access0_sn2 =
81                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
82                 xpc_sh2_IPI_access1_sn2 =
83                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
84                 xpc_sh2_IPI_access2_sn2 =
85                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
86                 xpc_sh2_IPI_access3_sn2 =
87                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
88
89                 for_each_online_node(node) {
90                         nasid = cnodeid_to_nasid(node);
91                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
92                               -1UL);
93                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
94                               -1UL);
95                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
96                               -1UL);
97                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
98                               -1UL);
99                 }
100         } else {
101                 xpc_sh1_IPI_access_sn2 =
102                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
103
104                 for_each_online_node(node) {
105                         nasid = cnodeid_to_nasid(node);
106                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
107                               -1UL);
108                 }
109         }
110 }
111
112 /*
113  * Restrict protections to disallow IPI operations.
114  */
115 static void
116 xpc_disallow_IPI_ops_sn2(void)
117 {
118         int node;
119         int nasid;
120
121         /* !!! The following should get moved into SAL. */
122         if (is_shub2()) {
123                 for_each_online_node(node) {
124                         nasid = cnodeid_to_nasid(node);
125                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
126                               xpc_sh2_IPI_access0_sn2);
127                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
128                               xpc_sh2_IPI_access1_sn2);
129                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
130                               xpc_sh2_IPI_access2_sn2);
131                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
132                               xpc_sh2_IPI_access3_sn2);
133                 }
134         } else {
135                 for_each_online_node(node) {
136                         nasid = cnodeid_to_nasid(node);
137                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
138                               xpc_sh1_IPI_access_sn2);
139                 }
140         }
141 }
142
143 /*
144  * The following set of functions are used for the sending and receiving of
145  * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
146  * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
147  * is associated with channel activity (SGI_XPC_NOTIFY).
148  */
149
150 static u64
151 xpc_receive_IRQ_amo_sn2(struct amo *amo)
152 {
153         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
154 }
155
156 static enum xp_retval
157 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
158                  int vector)
159 {
160         int ret = 0;
161         unsigned long irq_flags;
162
163         local_irq_save(irq_flags);
164
165         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
166         sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
167
168         /*
169          * We must always use the nofault function regardless of whether we
170          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
171          * didn't, we'd never know that the other partition is down and would
172          * keep sending IRQs and amos to it until the heartbeat times out.
173          */
174         ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
175                                                      xp_nofault_PIOR_target));
176
177         local_irq_restore(irq_flags);
178
179         return (ret == 0) ? xpSuccess : xpPioReadError;
180 }
181
182 static struct amo *
183 xpc_init_IRQ_amo_sn2(int index)
184 {
185         struct amo *amo = xpc_vars_sn2->amos_page + index;
186
187         (void)xpc_receive_IRQ_amo_sn2(amo);     /* clear amo variable */
188         return amo;
189 }
190
191 /*
192  * Functions associated with SGI_XPC_ACTIVATE IRQ.
193  */
194
195 /*
196  * Notify the heartbeat check thread that an activate IRQ has been received.
197  */
198 static irqreturn_t
199 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
200 {
201         atomic_inc(&xpc_activate_IRQ_rcvd);
202         wake_up_interruptible(&xpc_activate_IRQ_wq);
203         return IRQ_HANDLED;
204 }
205
206 /*
207  * Flag the appropriate amo variable and send an IRQ to the specified node.
208  */
209 static void
210 xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
211                           int to_nasid, int to_phys_cpuid)
212 {
213         struct amo *amos = (struct amo *)__va(amos_page_pa +
214                                               (XPC_ACTIVATE_IRQ_AMOS_SN2 *
215                                               sizeof(struct amo)));
216
217         (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
218                                BIT_MASK(from_nasid / 2), to_nasid,
219                                to_phys_cpuid, SGI_XPC_ACTIVATE);
220 }
221
222 static void
223 xpc_send_local_activate_IRQ_sn2(int from_nasid)
224 {
225         struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
226                                               (XPC_ACTIVATE_IRQ_AMOS_SN2 *
227                                               sizeof(struct amo)));
228
229         /* fake the sending and receipt of an activate IRQ from remote nasid */
230         FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
231                          FETCHOP_OR, BIT_MASK(from_nasid / 2));
232
233         atomic_inc(&xpc_activate_IRQ_rcvd);
234         wake_up_interruptible(&xpc_activate_IRQ_wq);
235 }
236
237 /*
238  * Functions associated with SGI_XPC_NOTIFY IRQ.
239  */
240
241 /*
242  * Check to see if any chctl flags were sent from the specified partition.
243  */
244 static void
245 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
246 {
247         union xpc_channel_ctl_flags chctl;
248         unsigned long irq_flags;
249
250         chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
251                                                   local_chctl_amo_va);
252         if (chctl.all_flags == 0)
253                 return;
254
255         spin_lock_irqsave(&part->chctl_lock, irq_flags);
256         part->chctl.all_flags |= chctl.all_flags;
257         spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
258
259         dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
260                 "0x%lx\n", XPC_PARTID(part), chctl.all_flags);
261
262         xpc_wakeup_channel_mgr(part);
263 }
264
265 /*
266  * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
267  * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
268  * than one partition, we use an amo structure per partition to indicate
269  * whether a partition has sent an IRQ or not.  If it has, then wake up the
270  * associated kthread to handle it.
271  *
272  * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
273  * running on other partitions.
274  *
275  * Noteworthy Arguments:
276  *
277  *      irq - Interrupt ReQuest number. NOT USED.
278  *
279  *      dev_id - partid of IRQ's potential sender.
280  */
281 static irqreturn_t
282 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
283 {
284         short partid = (short)(u64)dev_id;
285         struct xpc_partition *part = &xpc_partitions[partid];
286
287         DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
288
289         if (xpc_part_ref(part)) {
290                 xpc_check_for_sent_chctl_flags_sn2(part);
291
292                 xpc_part_deref(part);
293         }
294         return IRQ_HANDLED;
295 }
296
297 /*
298  * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
299  * because the write to their associated amo variable completed after the IRQ
300  * was received.
301  */
302 static void
303 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
304 {
305         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
306
307         if (xpc_part_ref(part)) {
308                 xpc_check_for_sent_chctl_flags_sn2(part);
309
310                 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
311                     XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
312                 add_timer(&part_sn2->dropped_notify_IRQ_timer);
313                 xpc_part_deref(part);
314         }
315 }
316
317 /*
318  * Send a notify IRQ to the remote partition that is associated with the
319  * specified channel.
320  */
321 static void
322 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
323                         char *chctl_flag_string, unsigned long *irq_flags)
324 {
325         struct xpc_partition *part = &xpc_partitions[ch->partid];
326         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
327         union xpc_channel_ctl_flags chctl = { 0 };
328         enum xp_retval ret;
329
330         if (likely(part->act_state != XPC_P_DEACTIVATING)) {
331                 chctl.flags[ch->number] = chctl_flag;
332                 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
333                                        chctl.all_flags,
334                                        part_sn2->notify_IRQ_nasid,
335                                        part_sn2->notify_IRQ_phys_cpuid,
336                                        SGI_XPC_NOTIFY);
337                 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
338                         chctl_flag_string, ch->partid, ch->number, ret);
339                 if (unlikely(ret != xpSuccess)) {
340                         if (irq_flags != NULL)
341                                 spin_unlock_irqrestore(&ch->lock, *irq_flags);
342                         XPC_DEACTIVATE_PARTITION(part, ret);
343                         if (irq_flags != NULL)
344                                 spin_lock_irqsave(&ch->lock, *irq_flags);
345                 }
346         }
347 }
348
349 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
350                 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
351
352 /*
353  * Make it look like the remote partition, which is associated with the
354  * specified channel, sent us a notify IRQ. This faked IRQ will be handled
355  * by xpc_check_for_dropped_notify_IRQ_sn2().
356  */
357 static void
358 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
359                               char *chctl_flag_string)
360 {
361         struct xpc_partition *part = &xpc_partitions[ch->partid];
362         union xpc_channel_ctl_flags chctl = { 0 };
363
364         chctl.flags[ch->number] = chctl_flag;
365         FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
366                                 variable), FETCHOP_OR, chctl.all_flags);
367         dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
368                 chctl_flag_string, ch->partid, ch->number);
369 }
370
371 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
372                 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
373
374 static void
375 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
376                                 unsigned long *irq_flags)
377 {
378         struct xpc_openclose_args *args = ch->local_openclose_args;
379
380         args->reason = ch->reason;
381         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
382 }
383
384 static void
385 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
386 {
387         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
388 }
389
390 static void
391 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
392 {
393         struct xpc_openclose_args *args = ch->local_openclose_args;
394
395         args->msg_size = ch->msg_size;
396         args->local_nentries = ch->local_nentries;
397         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
398 }
399
400 static void
401 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
402 {
403         struct xpc_openclose_args *args = ch->local_openclose_args;
404
405         args->remote_nentries = ch->remote_nentries;
406         args->local_nentries = ch->local_nentries;
407         args->local_msgqueue_pa = xp_pa(ch->local_msgqueue);
408         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
409 }
410
411 static void
412 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
413 {
414         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
415 }
416
417 static void
418 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
419 {
420         XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
421 }
422
423 /*
424  * This next set of functions are used to keep track of when a partition is
425  * potentially engaged in accessing memory belonging to another partition.
426  */
427
428 static void
429 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
430 {
431         unsigned long irq_flags;
432         struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
433                                              (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
434                                              sizeof(struct amo)));
435
436         local_irq_save(irq_flags);
437
438         /* set bit corresponding to our partid in remote partition's amo */
439         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
440                          BIT(sn_partition_id));
441
442         /*
443          * We must always use the nofault function regardless of whether we
444          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
445          * didn't, we'd never know that the other partition is down and would
446          * keep sending IRQs and amos to it until the heartbeat times out.
447          */
448         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
449                                                                variable),
450                                                      xp_nofault_PIOR_target));
451
452         local_irq_restore(irq_flags);
453 }
454
455 static void
456 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
457 {
458         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
459         unsigned long irq_flags;
460         struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
461                                              (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
462                                              sizeof(struct amo)));
463
464         local_irq_save(irq_flags);
465
466         /* clear bit corresponding to our partid in remote partition's amo */
467         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
468                          ~BIT(sn_partition_id));
469
470         /*
471          * We must always use the nofault function regardless of whether we
472          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
473          * didn't, we'd never know that the other partition is down and would
474          * keep sending IRQs and amos to it until the heartbeat times out.
475          */
476         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
477                                                                variable),
478                                                      xp_nofault_PIOR_target));
479
480         local_irq_restore(irq_flags);
481
482         /*
483          * Send activate IRQ to get other side to see that we've cleared our
484          * bit in their engaged partitions amo.
485          */
486         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
487                                   cnodeid_to_nasid(0),
488                                   part_sn2->activate_IRQ_nasid,
489                                   part_sn2->activate_IRQ_phys_cpuid);
490 }
491
492 static int
493 xpc_partition_engaged_sn2(short partid)
494 {
495         struct amo *amo = xpc_vars_sn2->amos_page +
496                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
497
498         /* our partition's amo variable ANDed with partid mask */
499         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
500                 BIT(partid)) != 0;
501 }
502
503 static int
504 xpc_any_partition_engaged_sn2(void)
505 {
506         struct amo *amo = xpc_vars_sn2->amos_page +
507                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
508
509         /* our partition's amo variable */
510         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
511 }
512
513 static void
514 xpc_assume_partition_disengaged_sn2(short partid)
515 {
516         struct amo *amo = xpc_vars_sn2->amos_page +
517                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
518
519         /* clear bit(s) based on partid mask in our partition's amo */
520         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
521                          ~BIT(partid));
522 }
523
524 /* original protection values for each node */
525 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
526
527 /*
528  * Change protections to allow amo operations on non-Shub 1.1 systems.
529  */
530 static enum xp_retval
531 xpc_allow_amo_ops_sn2(struct amo *amos_page)
532 {
533         u64 nasid_array = 0;
534         int ret;
535
536         /*
537          * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
538          * collides with memory operations. On those systems we call
539          * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
540          */
541         if (!enable_shub_wars_1_1()) {
542                 ret = sn_change_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE,
543                                            SN_MEMPROT_ACCESS_CLASS_1,
544                                            &nasid_array);
545                 if (ret != 0)
546                         return xpSalError;
547         }
548         return xpSuccess;
549 }
550
551 /*
552  * Change protections to allow amo operations on Shub 1.1 systems.
553  */
554 static void
555 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
556 {
557         int node;
558         int nasid;
559
560         if (!enable_shub_wars_1_1())
561                 return;
562
563         for_each_online_node(node) {
564                 nasid = cnodeid_to_nasid(node);
565                 /* save current protection values */
566                 xpc_prot_vec_sn2[node] =
567                     (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
568                                                   SH1_MD_DQLP_MMR_DIR_PRIVEC0));
569                 /* open up everything */
570                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
571                                              SH1_MD_DQLP_MMR_DIR_PRIVEC0),
572                       -1UL);
573                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
574                                              SH1_MD_DQRP_MMR_DIR_PRIVEC0),
575                       -1UL);
576         }
577 }
578
579 static enum xp_retval
580 xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
581                                    size_t *len)
582 {
583         s64 status;
584         enum xp_retval ret;
585
586         status = sn_partition_reserved_page_pa((u64)buf, cookie, rp_pa, len);
587         if (status == SALRET_OK)
588                 ret = xpSuccess;
589         else if (status == SALRET_MORE_PASSES)
590                 ret = xpNeedMoreInfo;
591         else
592                 ret = xpSalError;
593
594         return ret;
595 }
596
597
598 static enum xp_retval
599 xpc_rsvd_page_init_sn2(struct xpc_rsvd_page *rp)
600 {
601         struct amo *amos_page;
602         int i;
603         int ret;
604
605         xpc_vars_sn2 = XPC_RP_VARS(rp);
606
607         rp->sn.vars_pa = xp_pa(xpc_vars_sn2);
608
609         /* vars_part array follows immediately after vars */
610         xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
611                                                          XPC_RP_VARS_SIZE);
612
613         /*
614          * Before clearing xpc_vars_sn2, see if a page of amos had been
615          * previously allocated. If not we'll need to allocate one and set
616          * permissions so that cross-partition amos are allowed.
617          *
618          * The allocated amo page needs MCA reporting to remain disabled after
619          * XPC has unloaded.  To make this work, we keep a copy of the pointer
620          * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
621          * which is pointed to by the reserved page, and re-use that saved copy
622          * on subsequent loads of XPC. This amo page is never freed, and its
623          * memory protections are never restricted.
624          */
625         amos_page = xpc_vars_sn2->amos_page;
626         if (amos_page == NULL) {
627                 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
628                 if (amos_page == NULL) {
629                         dev_err(xpc_part, "can't allocate page of amos\n");
630                         return xpNoMemory;
631                 }
632
633                 /*
634                  * Open up amo-R/W to cpu.  This is done on Shub 1.1 systems
635                  * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
636                  */
637                 ret = xpc_allow_amo_ops_sn2(amos_page);
638                 if (ret != xpSuccess) {
639                         dev_err(xpc_part, "can't allow amo operations\n");
640                         uncached_free_page(__IA64_UNCACHED_OFFSET |
641                                            TO_PHYS((u64)amos_page), 1);
642                         return ret;
643                 }
644         }
645
646         /* clear xpc_vars_sn2 */
647         memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
648
649         xpc_vars_sn2->version = XPC_V_VERSION;
650         xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
651         xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
652         xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
653         xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
654         xpc_vars_sn2->amos_page = amos_page;    /* save for next load of XPC */
655
656         /* clear xpc_vars_part_sn2 */
657         memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
658                XP_MAX_NPARTITIONS_SN2);
659
660         /* initialize the activate IRQ related amo variables */
661         for (i = 0; i < xpc_nasid_mask_nlongs; i++)
662                 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
663
664         /* initialize the engaged remote partitions related amo variables */
665         (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
666         (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
667
668         return xpSuccess;
669 }
670
671 static void
672 xpc_increment_heartbeat_sn2(void)
673 {
674         xpc_vars_sn2->heartbeat++;
675 }
676
677 static void
678 xpc_offline_heartbeat_sn2(void)
679 {
680         xpc_increment_heartbeat_sn2();
681         xpc_vars_sn2->heartbeat_offline = 1;
682 }
683
684 static void
685 xpc_online_heartbeat_sn2(void)
686 {
687         xpc_increment_heartbeat_sn2();
688         xpc_vars_sn2->heartbeat_offline = 0;
689 }
690
691 static void
692 xpc_heartbeat_init_sn2(void)
693 {
694         DBUG_ON(xpc_vars_sn2 == NULL);
695
696         bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
697         xpc_heartbeating_to_mask = &xpc_vars_sn2->heartbeating_to_mask[0];
698         xpc_online_heartbeat_sn2();
699 }
700
701 static void
702 xpc_heartbeat_exit_sn2(void)
703 {
704         xpc_offline_heartbeat_sn2();
705 }
706
707 /*
708  * At periodic intervals, scan through all active partitions and ensure
709  * their heartbeat is still active.  If not, the partition is deactivated.
710  */
711 static void
712 xpc_check_remote_hb_sn2(void)
713 {
714         struct xpc_vars_sn2 *remote_vars;
715         struct xpc_partition *part;
716         short partid;
717         enum xp_retval ret;
718
719         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
720
721         for (partid = 0; partid < XP_MAX_NPARTITIONS_SN2; partid++) {
722
723                 if (xpc_exiting)
724                         break;
725
726                 if (partid == sn_partition_id)
727                         continue;
728
729                 part = &xpc_partitions[partid];
730
731                 if (part->act_state == XPC_P_INACTIVE ||
732                     part->act_state == XPC_P_DEACTIVATING) {
733                         continue;
734                 }
735
736                 /* pull the remote_hb cache line */
737                 ret = xp_remote_memcpy(xp_pa(remote_vars),
738                                        part->sn.sn2.remote_vars_pa,
739                                        XPC_RP_VARS_SIZE);
740                 if (ret != xpSuccess) {
741                         XPC_DEACTIVATE_PARTITION(part, ret);
742                         continue;
743                 }
744
745                 dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat"
746                         " = %ld, heartbeat_offline = %ld, HB_mask[0] = 0x%lx\n",
747                         partid, remote_vars->heartbeat, part->last_heartbeat,
748                         remote_vars->heartbeat_offline,
749                         remote_vars->heartbeating_to_mask[0]);
750
751                 if (((remote_vars->heartbeat == part->last_heartbeat) &&
752                      (remote_vars->heartbeat_offline == 0)) ||
753                     !xpc_hb_allowed(sn_partition_id,
754                                     &remote_vars->heartbeating_to_mask)) {
755
756                         XPC_DEACTIVATE_PARTITION(part, xpNoHeartbeat);
757                         continue;
758                 }
759
760                 part->last_heartbeat = remote_vars->heartbeat;
761         }
762 }
763
764 /*
765  * Get a copy of the remote partition's XPC variables from the reserved page.
766  *
767  * remote_vars points to a buffer that is cacheline aligned for BTE copies and
768  * assumed to be of size XPC_RP_VARS_SIZE.
769  */
770 static enum xp_retval
771 xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
772                         struct xpc_vars_sn2 *remote_vars)
773 {
774         enum xp_retval ret;
775
776         if (remote_vars_pa == 0)
777                 return xpVarsNotSet;
778
779         /* pull over the cross partition variables */
780         ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
781                                XPC_RP_VARS_SIZE);
782         if (ret != xpSuccess)
783                 return ret;
784
785         if (XPC_VERSION_MAJOR(remote_vars->version) !=
786             XPC_VERSION_MAJOR(XPC_V_VERSION)) {
787                 return xpBadVersion;
788         }
789
790         return xpSuccess;
791 }
792
793 static void
794 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
795                                      unsigned long remote_rp_pa, int nasid)
796 {
797         xpc_send_local_activate_IRQ_sn2(nasid);
798 }
799
800 static void
801 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
802 {
803         xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
804 }
805
806 static void
807 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
808 {
809         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
810         unsigned long irq_flags;
811         struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
812                                              (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
813                                              sizeof(struct amo)));
814
815         local_irq_save(irq_flags);
816
817         /* set bit corresponding to our partid in remote partition's amo */
818         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
819                          BIT(sn_partition_id));
820
821         /*
822          * We must always use the nofault function regardless of whether we
823          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
824          * didn't, we'd never know that the other partition is down and would
825          * keep sending IRQs and amos to it until the heartbeat times out.
826          */
827         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
828                                                                variable),
829                                                      xp_nofault_PIOR_target));
830
831         local_irq_restore(irq_flags);
832
833         /*
834          * Send activate IRQ to get other side to see that we've set our
835          * bit in their deactivate request amo.
836          */
837         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
838                                   cnodeid_to_nasid(0),
839                                   part_sn2->activate_IRQ_nasid,
840                                   part_sn2->activate_IRQ_phys_cpuid);
841 }
842
843 static void
844 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
845 {
846         unsigned long irq_flags;
847         struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
848                                              (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
849                                              sizeof(struct amo)));
850
851         local_irq_save(irq_flags);
852
853         /* clear bit corresponding to our partid in remote partition's amo */
854         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
855                          ~BIT(sn_partition_id));
856
857         /*
858          * We must always use the nofault function regardless of whether we
859          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
860          * didn't, we'd never know that the other partition is down and would
861          * keep sending IRQs and amos to it until the heartbeat times out.
862          */
863         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
864                                                                variable),
865                                                      xp_nofault_PIOR_target));
866
867         local_irq_restore(irq_flags);
868 }
869
870 static int
871 xpc_partition_deactivation_requested_sn2(short partid)
872 {
873         struct amo *amo = xpc_vars_sn2->amos_page +
874                           XPC_DEACTIVATE_REQUEST_AMO_SN2;
875
876         /* our partition's amo variable ANDed with partid mask */
877         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
878                 BIT(partid)) != 0;
879 }
880
881 /*
882  * Update the remote partition's info.
883  */
884 static void
885 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
886                               unsigned long *remote_rp_ts_jiffies,
887                               unsigned long remote_rp_pa,
888                               unsigned long remote_vars_pa,
889                               struct xpc_vars_sn2 *remote_vars)
890 {
891         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
892
893         part->remote_rp_version = remote_rp_version;
894         dev_dbg(xpc_part, "  remote_rp_version = 0x%016x\n",
895                 part->remote_rp_version);
896
897         part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
898         dev_dbg(xpc_part, "  remote_rp_ts_jiffies = 0x%016lx\n",
899                 part->remote_rp_ts_jiffies);
900
901         part->remote_rp_pa = remote_rp_pa;
902         dev_dbg(xpc_part, "  remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
903
904         part_sn2->remote_vars_pa = remote_vars_pa;
905         dev_dbg(xpc_part, "  remote_vars_pa = 0x%016lx\n",
906                 part_sn2->remote_vars_pa);
907
908         part->last_heartbeat = remote_vars->heartbeat;
909         dev_dbg(xpc_part, "  last_heartbeat = 0x%016lx\n",
910                 part->last_heartbeat);
911
912         part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
913         dev_dbg(xpc_part, "  remote_vars_part_pa = 0x%016lx\n",
914                 part_sn2->remote_vars_part_pa);
915
916         part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
917         dev_dbg(xpc_part, "  activate_IRQ_nasid = 0x%x\n",
918                 part_sn2->activate_IRQ_nasid);
919
920         part_sn2->activate_IRQ_phys_cpuid =
921             remote_vars->activate_IRQ_phys_cpuid;
922         dev_dbg(xpc_part, "  activate_IRQ_phys_cpuid = 0x%x\n",
923                 part_sn2->activate_IRQ_phys_cpuid);
924
925         part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
926         dev_dbg(xpc_part, "  remote_amos_page_pa = 0x%lx\n",
927                 part_sn2->remote_amos_page_pa);
928
929         part_sn2->remote_vars_version = remote_vars->version;
930         dev_dbg(xpc_part, "  remote_vars_version = 0x%x\n",
931                 part_sn2->remote_vars_version);
932 }
933
934 /*
935  * Prior code has determined the nasid which generated a activate IRQ.
936  * Inspect that nasid to determine if its partition needs to be activated
937  * or deactivated.
938  *
939  * A partition is considered "awaiting activation" if our partition
940  * flags indicate it is not active and it has a heartbeat.  A
941  * partition is considered "awaiting deactivation" if our partition
942  * flags indicate it is active but it has no heartbeat or it is not
943  * sending its heartbeat to us.
944  *
945  * To determine the heartbeat, the remote nasid must have a properly
946  * initialized reserved page.
947  */
948 static void
949 xpc_identify_activate_IRQ_req_sn2(int nasid)
950 {
951         struct xpc_rsvd_page *remote_rp;
952         struct xpc_vars_sn2 *remote_vars;
953         unsigned long remote_rp_pa;
954         unsigned long remote_vars_pa;
955         int remote_rp_version;
956         int reactivate = 0;
957         unsigned long remote_rp_ts_jiffies = 0;
958         short partid;
959         struct xpc_partition *part;
960         struct xpc_partition_sn2 *part_sn2;
961         enum xp_retval ret;
962
963         /* pull over the reserved page structure */
964
965         remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
966
967         ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
968         if (ret != xpSuccess) {
969                 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
970                          "which sent interrupt, reason=%d\n", nasid, ret);
971                 return;
972         }
973
974         remote_vars_pa = remote_rp->sn.vars_pa;
975         remote_rp_version = remote_rp->version;
976         remote_rp_ts_jiffies = remote_rp->ts_jiffies;
977
978         partid = remote_rp->SAL_partid;
979         part = &xpc_partitions[partid];
980         part_sn2 = &part->sn.sn2;
981
982         /* pull over the cross partition variables */
983
984         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
985
986         ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
987         if (ret != xpSuccess) {
988                 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
989                          "which sent interrupt, reason=%d\n", nasid, ret);
990
991                 XPC_DEACTIVATE_PARTITION(part, ret);
992                 return;
993         }
994
995         part->activate_IRQ_rcvd++;
996
997         dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
998                 "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
999                 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
1000
1001         if (xpc_partition_disengaged(part) &&
1002             part->act_state == XPC_P_INACTIVE) {
1003
1004                 xpc_update_partition_info_sn2(part, remote_rp_version,
1005                                               &remote_rp_ts_jiffies,
1006                                               remote_rp_pa, remote_vars_pa,
1007                                               remote_vars);
1008
1009                 if (xpc_partition_deactivation_requested_sn2(partid)) {
1010                         /*
1011                          * Other side is waiting on us to deactivate even though
1012                          * we already have.
1013                          */
1014                         return;
1015                 }
1016
1017                 xpc_activate_partition(part);
1018                 return;
1019         }
1020
1021         DBUG_ON(part->remote_rp_version == 0);
1022         DBUG_ON(part_sn2->remote_vars_version == 0);
1023
1024         if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1025
1026                 /* the other side rebooted */
1027
1028                 DBUG_ON(xpc_partition_engaged_sn2(partid));
1029                 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1030
1031                 xpc_update_partition_info_sn2(part, remote_rp_version,
1032                                               &remote_rp_ts_jiffies,
1033                                               remote_rp_pa, remote_vars_pa,
1034                                               remote_vars);
1035                 reactivate = 1;
1036         }
1037
1038         if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1039                 /* still waiting on other side to disengage from us */
1040                 return;
1041         }
1042
1043         if (reactivate)
1044                 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1045         else if (xpc_partition_deactivation_requested_sn2(partid))
1046                 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1047 }
1048
1049 /*
1050  * Loop through the activation amo variables and process any bits
1051  * which are set.  Each bit indicates a nasid sending a partition
1052  * activation or deactivation request.
1053  *
1054  * Return #of IRQs detected.
1055  */
1056 int
1057 xpc_identify_activate_IRQ_sender_sn2(void)
1058 {
1059         int l;
1060         int b;
1061         unsigned long nasid_mask_long;
1062         u64 nasid;              /* remote nasid */
1063         int n_IRQs_detected = 0;
1064         struct amo *act_amos;
1065
1066         act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1067
1068         /* scan through activate amo variables looking for non-zero entries */
1069         for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1070
1071                 if (xpc_exiting)
1072                         break;
1073
1074                 nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1075
1076                 b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1077                 if (b >= BITS_PER_LONG) {
1078                         /* no IRQs from nasids in this amo variable */
1079                         continue;
1080                 }
1081
1082                 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1083                         nasid_mask_long);
1084
1085                 /*
1086                  * If this nasid has been added to the machine since
1087                  * our partition was reset, this will retain the
1088                  * remote nasid in our reserved pages machine mask.
1089                  * This is used in the event of module reload.
1090                  */
1091                 xpc_mach_nasids[l] |= nasid_mask_long;
1092
1093                 /* locate the nasid(s) which sent interrupts */
1094
1095                 do {
1096                         n_IRQs_detected++;
1097                         nasid = (l * BITS_PER_LONG + b) * 2;
1098                         dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid);
1099                         xpc_identify_activate_IRQ_req_sn2(nasid);
1100
1101                         b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1102                                           b + 1);
1103                 } while (b < BITS_PER_LONG);
1104         }
1105         return n_IRQs_detected;
1106 }
1107
1108 static void
1109 xpc_process_activate_IRQ_rcvd_sn2(int n_IRQs_expected)
1110 {
1111         int n_IRQs_detected;
1112
1113         n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1114         if (n_IRQs_detected < n_IRQs_expected) {
1115                 /* retry once to help avoid missing amo */
1116                 (void)xpc_identify_activate_IRQ_sender_sn2();
1117         }
1118 }
1119
1120 /*
1121  * Guarantee that the kzalloc'd memory is cacheline aligned.
1122  */
1123 static void *
1124 xpc_kzalloc_cacheline_aligned_sn2(size_t size, gfp_t flags, void **base)
1125 {
1126         /* see if kzalloc will give us cachline aligned memory by default */
1127         *base = kzalloc(size, flags);
1128         if (*base == NULL)
1129                 return NULL;
1130
1131         if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
1132                 return *base;
1133
1134         kfree(*base);
1135
1136         /* nope, we'll have to do it ourselves */
1137         *base = kzalloc(size + L1_CACHE_BYTES, flags);
1138         if (*base == NULL)
1139                 return NULL;
1140
1141         return (void *)L1_CACHE_ALIGN((u64)*base);
1142 }
1143
1144 /*
1145  * Setup the infrastructure necessary to support XPartition Communication
1146  * between the specified remote partition and the local one.
1147  */
1148 static enum xp_retval
1149 xpc_setup_infrastructure_sn2(struct xpc_partition *part)
1150 {
1151         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1152         enum xp_retval retval;
1153         int ret;
1154         int cpuid;
1155         int ch_number;
1156         struct xpc_channel *ch;
1157         struct timer_list *timer;
1158         short partid = XPC_PARTID(part);
1159
1160         /*
1161          * Allocate all of the channel structures as a contiguous chunk of
1162          * memory.
1163          */
1164         DBUG_ON(part->channels != NULL);
1165         part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
1166                                  GFP_KERNEL);
1167         if (part->channels == NULL) {
1168                 dev_err(xpc_chan, "can't get memory for channels\n");
1169                 return xpNoMemory;
1170         }
1171
1172         /* allocate all the required GET/PUT values */
1173
1174         part_sn2->local_GPs =
1175             xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL,
1176                                               &part_sn2->local_GPs_base);
1177         if (part_sn2->local_GPs == NULL) {
1178                 dev_err(xpc_chan, "can't get memory for local get/put "
1179                         "values\n");
1180                 retval = xpNoMemory;
1181                 goto out_1;
1182         }
1183
1184         part_sn2->remote_GPs =
1185             xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL,
1186                                               &part_sn2->remote_GPs_base);
1187         if (part_sn2->remote_GPs == NULL) {
1188                 dev_err(xpc_chan, "can't get memory for remote get/put "
1189                         "values\n");
1190                 retval = xpNoMemory;
1191                 goto out_2;
1192         }
1193
1194         part_sn2->remote_GPs_pa = 0;
1195
1196         /* allocate all the required open and close args */
1197
1198         part->local_openclose_args =
1199             xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE,
1200                                               GFP_KERNEL,
1201                                               &part->local_openclose_args_base);
1202         if (part->local_openclose_args == NULL) {
1203                 dev_err(xpc_chan, "can't get memory for local connect args\n");
1204                 retval = xpNoMemory;
1205                 goto out_3;
1206         }
1207
1208         part->remote_openclose_args =
1209             xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE,
1210                                               GFP_KERNEL,
1211                                              &part->remote_openclose_args_base);
1212         if (part->remote_openclose_args == NULL) {
1213                 dev_err(xpc_chan, "can't get memory for remote connect args\n");
1214                 retval = xpNoMemory;
1215                 goto out_4;
1216         }
1217
1218         part_sn2->remote_openclose_args_pa = 0;
1219
1220         part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1221         part->chctl.all_flags = 0;
1222         spin_lock_init(&part->chctl_lock);
1223
1224         part_sn2->notify_IRQ_nasid = 0;
1225         part_sn2->notify_IRQ_phys_cpuid = 0;
1226         part_sn2->remote_chctl_amo_va = NULL;
1227
1228         atomic_set(&part->channel_mgr_requests, 1);
1229         init_waitqueue_head(&part->channel_mgr_wq);
1230
1231         sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1232         ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1233                           IRQF_SHARED, part_sn2->notify_IRQ_owner,
1234                           (void *)(u64)partid);
1235         if (ret != 0) {
1236                 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1237                         "errno=%d\n", -ret);
1238                 retval = xpLackOfResources;
1239                 goto out_5;
1240         }
1241
1242         /* Setup a timer to check for dropped notify IRQs */
1243         timer = &part_sn2->dropped_notify_IRQ_timer;
1244         init_timer(timer);
1245         timer->function =
1246             (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1247         timer->data = (unsigned long)part;
1248         timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1249         add_timer(timer);
1250
1251         part->nchannels = XPC_MAX_NCHANNELS;
1252
1253         atomic_set(&part->nchannels_active, 0);
1254         atomic_set(&part->nchannels_engaged, 0);
1255
1256         for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1257                 ch = &part->channels[ch_number];
1258
1259                 ch->partid = partid;
1260                 ch->number = ch_number;
1261                 ch->flags = XPC_C_DISCONNECTED;
1262
1263                 ch->sn.sn2.local_GP = &part_sn2->local_GPs[ch_number];
1264                 ch->local_openclose_args =
1265                     &part->local_openclose_args[ch_number];
1266
1267                 atomic_set(&ch->kthreads_assigned, 0);
1268                 atomic_set(&ch->kthreads_idle, 0);
1269                 atomic_set(&ch->kthreads_active, 0);
1270
1271                 atomic_set(&ch->references, 0);
1272                 atomic_set(&ch->n_to_notify, 0);
1273
1274                 spin_lock_init(&ch->lock);
1275                 mutex_init(&ch->sn.sn2.msg_to_pull_mutex);
1276                 init_completion(&ch->wdisconnect_wait);
1277
1278                 atomic_set(&ch->n_on_msg_allocate_wq, 0);
1279                 init_waitqueue_head(&ch->msg_allocate_wq);
1280                 init_waitqueue_head(&ch->idle_wq);
1281         }
1282
1283         /*
1284          * With the setting of the partition setup_state to XPC_P_SETUP, we're
1285          * declaring that this partition is ready to go.
1286          */
1287         part->setup_state = XPC_P_SETUP;
1288
1289         /*
1290          * Setup the per partition specific variables required by the
1291          * remote partition to establish channel connections with us.
1292          *
1293          * The setting of the magic # indicates that these per partition
1294          * specific variables are ready to be used.
1295          */
1296         xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1297         xpc_vars_part_sn2[partid].openclose_args_pa =
1298             xp_pa(part->local_openclose_args);
1299         xpc_vars_part_sn2[partid].chctl_amo_pa =
1300             xp_pa(part_sn2->local_chctl_amo_va);
1301         cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1302         xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1303         xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1304             cpu_physical_id(cpuid);
1305         xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1306         xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1;
1307
1308         return xpSuccess;
1309
1310         /* setup of infrastructure failed */
1311 out_5:
1312         kfree(part->remote_openclose_args_base);
1313         part->remote_openclose_args = NULL;
1314 out_4:
1315         kfree(part->local_openclose_args_base);
1316         part->local_openclose_args = NULL;
1317 out_3:
1318         kfree(part_sn2->remote_GPs_base);
1319         part_sn2->remote_GPs = NULL;
1320 out_2:
1321         kfree(part_sn2->local_GPs_base);
1322         part_sn2->local_GPs = NULL;
1323 out_1:
1324         kfree(part->channels);
1325         part->channels = NULL;
1326         return retval;
1327 }
1328
1329 /*
1330  * Teardown the infrastructure necessary to support XPartition Communication
1331  * between the specified remote partition and the local one.
1332  */
1333 static void
1334 xpc_teardown_infrastructure_sn2(struct xpc_partition *part)
1335 {
1336         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1337         short partid = XPC_PARTID(part);
1338
1339         /*
1340          * We start off by making this partition inaccessible to local
1341          * processes by marking it as no longer setup. Then we make it
1342          * inaccessible to remote processes by clearing the XPC per partition
1343          * specific variable's magic # (which indicates that these variables
1344          * are no longer valid) and by ignoring all XPC notify IRQs sent to
1345          * this partition.
1346          */
1347
1348         DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
1349         DBUG_ON(atomic_read(&part->nchannels_active) != 0);
1350         DBUG_ON(part->setup_state != XPC_P_SETUP);
1351         part->setup_state = XPC_P_WTEARDOWN;
1352
1353         xpc_vars_part_sn2[partid].magic = 0;
1354
1355         free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1356
1357         /*
1358          * Before proceeding with the teardown we have to wait until all
1359          * existing references cease.
1360          */
1361         wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
1362
1363         /* now we can begin tearing down the infrastructure */
1364
1365         part->setup_state = XPC_P_TORNDOWN;
1366
1367         /* in case we've still got outstanding timers registered... */
1368         del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1369
1370         kfree(part->remote_openclose_args_base);
1371         part->remote_openclose_args = NULL;
1372         kfree(part->local_openclose_args_base);
1373         part->local_openclose_args = NULL;
1374         kfree(part_sn2->remote_GPs_base);
1375         part_sn2->remote_GPs = NULL;
1376         kfree(part_sn2->local_GPs_base);
1377         part_sn2->local_GPs = NULL;
1378         kfree(part->channels);
1379         part->channels = NULL;
1380         part_sn2->local_chctl_amo_va = NULL;
1381 }
1382
1383 /*
1384  * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1385  * (or multiple cachelines) from a remote partition.
1386  *
1387  * src_pa must be a cacheline aligned physical address on the remote partition.
1388  * dst must be a cacheline aligned virtual address on this partition.
1389  * cnt must be cacheline sized
1390  */
1391 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1392 static enum xp_retval
1393 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1394                                const unsigned long src_pa, size_t cnt)
1395 {
1396         enum xp_retval ret;
1397
1398         DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1399         DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1400         DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1401
1402         if (part->act_state == XPC_P_DEACTIVATING)
1403                 return part->reason;
1404
1405         ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1406         if (ret != xpSuccess) {
1407                 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1408                         " ret=%d\n", XPC_PARTID(part), ret);
1409         }
1410         return ret;
1411 }
1412
1413 /*
1414  * Pull the remote per partition specific variables from the specified
1415  * partition.
1416  */
1417 static enum xp_retval
1418 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1419 {
1420         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1421         u8 buffer[L1_CACHE_BYTES * 2];
1422         struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1423             (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1424         struct xpc_vars_part_sn2 *pulled_entry;
1425         unsigned long remote_entry_cacheline_pa;
1426         unsigned long remote_entry_pa;
1427         short partid = XPC_PARTID(part);
1428         enum xp_retval ret;
1429
1430         /* pull the cacheline that contains the variables we're interested in */
1431
1432         DBUG_ON(part_sn2->remote_vars_part_pa !=
1433                 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1434         DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1435
1436         remote_entry_pa = part_sn2->remote_vars_part_pa +
1437             sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1438
1439         remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1440
1441         pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1442                                                     + (remote_entry_pa &
1443                                                     (L1_CACHE_BYTES - 1)));
1444
1445         ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1446                                              remote_entry_cacheline_pa,
1447                                              L1_CACHE_BYTES);
1448         if (ret != xpSuccess) {
1449                 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1450                         "partition %d, ret=%d\n", partid, ret);
1451                 return ret;
1452         }
1453
1454         /* see if they've been set up yet */
1455
1456         if (pulled_entry->magic != XPC_VP_MAGIC1 &&
1457             pulled_entry->magic != XPC_VP_MAGIC2) {
1458
1459                 if (pulled_entry->magic != 0) {
1460                         dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1461                                 "partition %d has bad magic value (=0x%lx)\n",
1462                                 partid, sn_partition_id, pulled_entry->magic);
1463                         return xpBadMagic;
1464                 }
1465
1466                 /* they've not been initialized yet */
1467                 return xpRetry;
1468         }
1469
1470         if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1) {
1471
1472                 /* validate the variables */
1473
1474                 if (pulled_entry->GPs_pa == 0 ||
1475                     pulled_entry->openclose_args_pa == 0 ||
1476                     pulled_entry->chctl_amo_pa == 0) {
1477
1478                         dev_err(xpc_chan, "partition %d's XPC vars_part for "
1479                                 "partition %d are not valid\n", partid,
1480                                 sn_partition_id);
1481                         return xpInvalidAddress;
1482                 }
1483
1484                 /* the variables we imported look to be valid */
1485
1486                 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1487                 part_sn2->remote_openclose_args_pa =
1488                     pulled_entry->openclose_args_pa;
1489                 part_sn2->remote_chctl_amo_va =
1490                     (struct amo *)__va(pulled_entry->chctl_amo_pa);
1491                 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1492                 part_sn2->notify_IRQ_phys_cpuid =
1493                     pulled_entry->notify_IRQ_phys_cpuid;
1494
1495                 if (part->nchannels > pulled_entry->nchannels)
1496                         part->nchannels = pulled_entry->nchannels;
1497
1498                 /* let the other side know that we've pulled their variables */
1499
1500                 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2;
1501         }
1502
1503         if (pulled_entry->magic == XPC_VP_MAGIC1)
1504                 return xpRetry;
1505
1506         return xpSuccess;
1507 }
1508
1509 /*
1510  * Establish first contact with the remote partititon. This involves pulling
1511  * the XPC per partition variables from the remote partition and waiting for
1512  * the remote partition to pull ours.
1513  */
1514 static enum xp_retval
1515 xpc_make_first_contact_sn2(struct xpc_partition *part)
1516 {
1517         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1518         enum xp_retval ret;
1519
1520         /*
1521          * Register the remote partition's amos with SAL so it can handle
1522          * and cleanup errors within that address range should the remote
1523          * partition go down. We don't unregister this range because it is
1524          * difficult to tell when outstanding writes to the remote partition
1525          * are finished and thus when it is safe to unregister. This should
1526          * not result in wasted space in the SAL xp_addr_region table because
1527          * we should get the same page for remote_amos_page_pa after module
1528          * reloads and system reboots.
1529          */
1530         if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1531                                        PAGE_SIZE, 1) < 0) {
1532                 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1533                          "xp_addr region\n", XPC_PARTID(part));
1534
1535                 ret = xpPhysAddrRegFailed;
1536                 XPC_DEACTIVATE_PARTITION(part, ret);
1537                 return ret;
1538         }
1539
1540         /*
1541          * Send activate IRQ to get other side to activate if they've not
1542          * already begun to do so.
1543          */
1544         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1545                                   cnodeid_to_nasid(0),
1546                                   part_sn2->activate_IRQ_nasid,
1547                                   part_sn2->activate_IRQ_phys_cpuid);
1548
1549         while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1550                 if (ret != xpRetry) {
1551                         XPC_DEACTIVATE_PARTITION(part, ret);
1552                         return ret;
1553                 }
1554
1555                 dev_dbg(xpc_part, "waiting to make first contact with "
1556                         "partition %d\n", XPC_PARTID(part));
1557
1558                 /* wait a 1/4 of a second or so */
1559                 (void)msleep_interruptible(250);
1560
1561                 if (part->act_state == XPC_P_DEACTIVATING)
1562                         return part->reason;
1563         }
1564
1565         return xpSuccess;
1566 }
1567
1568 /*
1569  * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1570  */
1571 static u64
1572 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1573 {
1574         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1575         unsigned long irq_flags;
1576         union xpc_channel_ctl_flags chctl;
1577         enum xp_retval ret;
1578
1579         /*
1580          * See if there are any chctl flags to be handled.
1581          */
1582
1583         spin_lock_irqsave(&part->chctl_lock, irq_flags);
1584         chctl = part->chctl;
1585         if (chctl.all_flags != 0)
1586                 part->chctl.all_flags = 0;
1587
1588         spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1589
1590         if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1591                 ret = xpc_pull_remote_cachelines_sn2(part, part->
1592                                                      remote_openclose_args,
1593                                                      part_sn2->
1594                                                      remote_openclose_args_pa,
1595                                                      XPC_OPENCLOSE_ARGS_SIZE);
1596                 if (ret != xpSuccess) {
1597                         XPC_DEACTIVATE_PARTITION(part, ret);
1598
1599                         dev_dbg(xpc_chan, "failed to pull openclose args from "
1600                                 "partition %d, ret=%d\n", XPC_PARTID(part),
1601                                 ret);
1602
1603                         /* don't bother processing chctl flags anymore */
1604                         chctl.all_flags = 0;
1605                 }
1606         }
1607
1608         if (xpc_any_msg_chctl_flags_set(&chctl)) {
1609                 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1610                                                      part_sn2->remote_GPs_pa,
1611                                                      XPC_GP_SIZE);
1612                 if (ret != xpSuccess) {
1613                         XPC_DEACTIVATE_PARTITION(part, ret);
1614
1615                         dev_dbg(xpc_chan, "failed to pull GPs from partition "
1616                                 "%d, ret=%d\n", XPC_PARTID(part), ret);
1617
1618                         /* don't bother processing chctl flags anymore */
1619                         chctl.all_flags = 0;
1620                 }
1621         }
1622
1623         return chctl.all_flags;
1624 }
1625
1626 /*
1627  * Allocate the local message queue and the notify queue.
1628  */
1629 static enum xp_retval
1630 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1631 {
1632         unsigned long irq_flags;
1633         int nentries;
1634         size_t nbytes;
1635
1636         for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1637
1638                 nbytes = nentries * ch->msg_size;
1639                 ch->local_msgqueue =
1640                     xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL,
1641                                                       &ch->local_msgqueue_base);
1642                 if (ch->local_msgqueue == NULL)
1643                         continue;
1644
1645                 nbytes = nentries * sizeof(struct xpc_notify);
1646                 ch->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1647                 if (ch->notify_queue == NULL) {
1648                         kfree(ch->local_msgqueue_base);
1649                         ch->local_msgqueue = NULL;
1650                         continue;
1651                 }
1652
1653                 spin_lock_irqsave(&ch->lock, irq_flags);
1654                 if (nentries < ch->local_nentries) {
1655                         dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1656                                 "partid=%d, channel=%d\n", nentries,
1657                                 ch->local_nentries, ch->partid, ch->number);
1658
1659                         ch->local_nentries = nentries;
1660                 }
1661                 spin_unlock_irqrestore(&ch->lock, irq_flags);
1662                 return xpSuccess;
1663         }
1664
1665         dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1666                 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1667         return xpNoMemory;
1668 }
1669
1670 /*
1671  * Allocate the cached remote message queue.
1672  */
1673 static enum xp_retval
1674 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1675 {
1676         unsigned long irq_flags;
1677         int nentries;
1678         size_t nbytes;
1679
1680         DBUG_ON(ch->remote_nentries <= 0);
1681
1682         for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1683
1684                 nbytes = nentries * ch->msg_size;
1685                 ch->remote_msgqueue =
1686                     xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL,
1687                                                      &ch->remote_msgqueue_base);
1688                 if (ch->remote_msgqueue == NULL)
1689                         continue;
1690
1691                 spin_lock_irqsave(&ch->lock, irq_flags);
1692                 if (nentries < ch->remote_nentries) {
1693                         dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1694                                 "partid=%d, channel=%d\n", nentries,
1695                                 ch->remote_nentries, ch->partid, ch->number);
1696
1697                         ch->remote_nentries = nentries;
1698                 }
1699                 spin_unlock_irqrestore(&ch->lock, irq_flags);
1700                 return xpSuccess;
1701         }
1702
1703         dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1704                 "partid=%d, channel=%d\n", ch->partid, ch->number);
1705         return xpNoMemory;
1706 }
1707
1708 /*
1709  * Allocate message queues and other stuff associated with a channel.
1710  *
1711  * Note: Assumes all of the channel sizes are filled in.
1712  */
1713 static enum xp_retval
1714 xpc_allocate_msgqueues_sn2(struct xpc_channel *ch)
1715 {
1716         enum xp_retval ret;
1717
1718         DBUG_ON(ch->flags & XPC_C_SETUP);
1719
1720         ret = xpc_allocate_local_msgqueue_sn2(ch);
1721         if (ret == xpSuccess) {
1722
1723                 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1724                 if (ret != xpSuccess) {
1725                         kfree(ch->local_msgqueue_base);
1726                         ch->local_msgqueue = NULL;
1727                         kfree(ch->notify_queue);
1728                         ch->notify_queue = NULL;
1729                 }
1730         }
1731         return ret;
1732 }
1733
1734 /*
1735  * Free up message queues and other stuff that were allocated for the specified
1736  * channel.
1737  *
1738  * Note: ch->reason and ch->reason_line are left set for debugging purposes,
1739  * they're cleared when XPC_C_DISCONNECTED is cleared.
1740  */
1741 static void
1742 xpc_free_msgqueues_sn2(struct xpc_channel *ch)
1743 {
1744         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1745
1746         DBUG_ON(!spin_is_locked(&ch->lock));
1747         DBUG_ON(atomic_read(&ch->n_to_notify) != 0);
1748
1749         ch->remote_msgqueue_pa = 0;
1750         ch->func = NULL;
1751         ch->key = NULL;
1752         ch->msg_size = 0;
1753         ch->local_nentries = 0;
1754         ch->remote_nentries = 0;
1755         ch->kthreads_assigned_limit = 0;
1756         ch->kthreads_idle_limit = 0;
1757
1758         ch_sn2->local_GP->get = 0;
1759         ch_sn2->local_GP->put = 0;
1760         ch_sn2->remote_GP.get = 0;
1761         ch_sn2->remote_GP.put = 0;
1762         ch_sn2->w_local_GP.get = 0;
1763         ch_sn2->w_local_GP.put = 0;
1764         ch_sn2->w_remote_GP.get = 0;
1765         ch_sn2->w_remote_GP.put = 0;
1766         ch_sn2->next_msg_to_pull = 0;
1767
1768         if (ch->flags & XPC_C_SETUP) {
1769                 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1770                         ch->flags, ch->partid, ch->number);
1771
1772                 kfree(ch->local_msgqueue_base);
1773                 ch->local_msgqueue = NULL;
1774                 kfree(ch->remote_msgqueue_base);
1775                 ch->remote_msgqueue = NULL;
1776                 kfree(ch->notify_queue);
1777                 ch->notify_queue = NULL;
1778         }
1779 }
1780
1781 /*
1782  * Notify those who wanted to be notified upon delivery of their message.
1783  */
1784 static void
1785 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1786 {
1787         struct xpc_notify *notify;
1788         u8 notify_type;
1789         s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1790
1791         while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1792
1793                 notify = &ch->notify_queue[get % ch->local_nentries];
1794
1795                 /*
1796                  * See if the notify entry indicates it was associated with
1797                  * a message who's sender wants to be notified. It is possible
1798                  * that it is, but someone else is doing or has done the
1799                  * notification.
1800                  */
1801                 notify_type = notify->type;
1802                 if (notify_type == 0 ||
1803                     cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1804                         continue;
1805                 }
1806
1807                 DBUG_ON(notify_type != XPC_N_CALL);
1808
1809                 atomic_dec(&ch->n_to_notify);
1810
1811                 if (notify->func != NULL) {
1812                         dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, "
1813                                 "msg_number=%ld, partid=%d, channel=%d\n",
1814                                 (void *)notify, get, ch->partid, ch->number);
1815
1816                         notify->func(reason, ch->partid, ch->number,
1817                                      notify->key);
1818
1819                         dev_dbg(xpc_chan, "notify->func() returned, "
1820                                 "notify=0x%p, msg_number=%ld, partid=%d, "
1821                                 "channel=%d\n", (void *)notify, get,
1822                                 ch->partid, ch->number);
1823                 }
1824         }
1825 }
1826
1827 static void
1828 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1829 {
1830         xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1831 }
1832
1833 /*
1834  * Clear some of the msg flags in the local message queue.
1835  */
1836 static inline void
1837 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1838 {
1839         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1840         struct xpc_msg *msg;
1841         s64 get;
1842
1843         get = ch_sn2->w_remote_GP.get;
1844         do {
1845                 msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
1846                                          (get % ch->local_nentries) *
1847                                          ch->msg_size);
1848                 msg->flags = 0;
1849         } while (++get < ch_sn2->remote_GP.get);
1850 }
1851
1852 /*
1853  * Clear some of the msg flags in the remote message queue.
1854  */
1855 static inline void
1856 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1857 {
1858         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1859         struct xpc_msg *msg;
1860         s64 put;
1861
1862         put = ch_sn2->w_remote_GP.put;
1863         do {
1864                 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
1865                                          (put % ch->remote_nentries) *
1866                                          ch->msg_size);
1867                 msg->flags = 0;
1868         } while (++put < ch_sn2->remote_GP.put);
1869 }
1870
1871 static void
1872 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1873 {
1874         struct xpc_channel *ch = &part->channels[ch_number];
1875         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1876         int nmsgs_sent;
1877
1878         ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1879
1880         /* See what, if anything, has changed for each connected channel */
1881
1882         xpc_msgqueue_ref(ch);
1883
1884         if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1885             ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1886                 /* nothing changed since GPs were last pulled */
1887                 xpc_msgqueue_deref(ch);
1888                 return;
1889         }
1890
1891         if (!(ch->flags & XPC_C_CONNECTED)) {
1892                 xpc_msgqueue_deref(ch);
1893                 return;
1894         }
1895
1896         /*
1897          * First check to see if messages recently sent by us have been
1898          * received by the other side. (The remote GET value will have
1899          * changed since we last looked at it.)
1900          */
1901
1902         if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1903
1904                 /*
1905                  * We need to notify any senders that want to be notified
1906                  * that their sent messages have been received by their
1907                  * intended recipients. We need to do this before updating
1908                  * w_remote_GP.get so that we don't allocate the same message
1909                  * queue entries prematurely (see xpc_allocate_msg()).
1910                  */
1911                 if (atomic_read(&ch->n_to_notify) > 0) {
1912                         /*
1913                          * Notify senders that messages sent have been
1914                          * received and delivered by the other side.
1915                          */
1916                         xpc_notify_senders_sn2(ch, xpMsgDelivered,
1917                                                ch_sn2->remote_GP.get);
1918                 }
1919
1920                 /*
1921                  * Clear msg->flags in previously sent messages, so that
1922                  * they're ready for xpc_allocate_msg().
1923                  */
1924                 xpc_clear_local_msgqueue_flags_sn2(ch);
1925
1926                 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1927
1928                 dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1929                         "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1930                         ch->number);
1931
1932                 /*
1933                  * If anyone was waiting for message queue entries to become
1934                  * available, wake them up.
1935                  */
1936                 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1937                         wake_up(&ch->msg_allocate_wq);
1938         }
1939
1940         /*
1941          * Now check for newly sent messages by the other side. (The remote
1942          * PUT value will have changed since we last looked at it.)
1943          */
1944
1945         if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1946                 /*
1947                  * Clear msg->flags in previously received messages, so that
1948                  * they're ready for xpc_get_deliverable_msg().
1949                  */
1950                 xpc_clear_remote_msgqueue_flags_sn2(ch);
1951
1952                 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1953
1954                 dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1955                         "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1956                         ch->number);
1957
1958                 nmsgs_sent = ch_sn2->w_remote_GP.put - ch_sn2->w_local_GP.get;
1959                 if (nmsgs_sent > 0) {
1960                         dev_dbg(xpc_chan, "msgs waiting to be copied and "
1961                                 "delivered=%d, partid=%d, channel=%d\n",
1962                                 nmsgs_sent, ch->partid, ch->number);
1963
1964                         if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1965                                 xpc_activate_kthreads(ch, nmsgs_sent);
1966                 }
1967         }
1968
1969         xpc_msgqueue_deref(ch);
1970 }
1971
1972 static struct xpc_msg *
1973 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1974 {
1975         struct xpc_partition *part = &xpc_partitions[ch->partid];
1976         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1977         unsigned long remote_msg_pa;
1978         struct xpc_msg *msg;
1979         u32 msg_index;
1980         u32 nmsgs;
1981         u64 msg_offset;
1982         enum xp_retval ret;
1983
1984         if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1985                 /* we were interrupted by a signal */
1986                 return NULL;
1987         }
1988
1989         while (get >= ch_sn2->next_msg_to_pull) {
1990
1991                 /* pull as many messages as are ready and able to be pulled */
1992
1993                 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1994
1995                 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1996                 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1997                 if (msg_index + nmsgs > ch->remote_nentries) {
1998                         /* ignore the ones that wrap the msg queue for now */
1999                         nmsgs = ch->remote_nentries - msg_index;
2000                 }
2001
2002                 msg_offset = msg_index * ch->msg_size;
2003                 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
2004                 remote_msg_pa = ch->remote_msgqueue_pa + msg_offset;
2005
2006                 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
2007                                                      nmsgs * ch->msg_size);
2008                 if (ret != xpSuccess) {
2009
2010                         dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
2011                                 " msg %ld from partition %d, channel=%d, "
2012                                 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
2013                                 ch->partid, ch->number, ret);
2014
2015                         XPC_DEACTIVATE_PARTITION(part, ret);
2016
2017                         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
2018                         return NULL;
2019                 }
2020
2021                 ch_sn2->next_msg_to_pull += nmsgs;
2022         }
2023
2024         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
2025
2026         /* return the message we were looking for */
2027         msg_offset = (get % ch->remote_nentries) * ch->msg_size;
2028         msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
2029
2030         return msg;
2031 }
2032
2033 static int
2034 xpc_n_of_deliverable_msgs_sn2(struct xpc_channel *ch)
2035 {
2036         return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
2037 }
2038
2039 /*
2040  * Get a message to be delivered.
2041  */
2042 static struct xpc_msg *
2043 xpc_get_deliverable_msg_sn2(struct xpc_channel *ch)
2044 {
2045         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2046         struct xpc_msg *msg = NULL;
2047         s64 get;
2048
2049         do {
2050                 if (ch->flags & XPC_C_DISCONNECTING)
2051                         break;
2052
2053                 get = ch_sn2->w_local_GP.get;
2054                 rmb();  /* guarantee that .get loads before .put */
2055                 if (get == ch_sn2->w_remote_GP.put)
2056                         break;
2057
2058                 /* There are messages waiting to be pulled and delivered.
2059                  * We need to try to secure one for ourselves. We'll do this
2060                  * by trying to increment w_local_GP.get and hope that no one
2061                  * else beats us to it. If they do, we'll we'll simply have
2062                  * to try again for the next one.
2063                  */
2064
2065                 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
2066                         /* we got the entry referenced by get */
2067
2068                         dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
2069                                 "partid=%d, channel=%d\n", get + 1,
2070                                 ch->partid, ch->number);
2071
2072                         /* pull the message from the remote partition */
2073
2074                         msg = xpc_pull_remote_msg_sn2(ch, get);
2075
2076                         DBUG_ON(msg != NULL && msg->number != get);
2077                         DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE));
2078                         DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY));
2079
2080                         break;
2081                 }
2082
2083         } while (1);
2084
2085         return msg;
2086 }
2087
2088 /*
2089  * Now we actually send the messages that are ready to be sent by advancing
2090  * the local message queue's Put value and then send a chctl msgrequest to the
2091  * recipient partition.
2092  */
2093 static void
2094 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2095 {
2096         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2097         struct xpc_msg *msg;
2098         s64 put = initial_put + 1;
2099         int send_msgrequest = 0;
2100
2101         while (1) {
2102
2103                 while (1) {
2104                         if (put == ch_sn2->w_local_GP.put)
2105                                 break;
2106
2107                         msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
2108                                                  (put % ch->local_nentries) *
2109                                                  ch->msg_size);
2110
2111                         if (!(msg->flags & XPC_M_READY))
2112                                 break;
2113
2114                         put++;
2115                 }
2116
2117                 if (put == initial_put) {
2118                         /* nothing's changed */
2119                         break;
2120                 }
2121
2122                 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2123                     initial_put) {
2124                         /* someone else beat us to it */
2125                         DBUG_ON(ch_sn2->local_GP->put < initial_put);
2126                         break;
2127                 }
2128
2129                 /* we just set the new value of local_GP->put */
2130
2131                 dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
2132                         "channel=%d\n", put, ch->partid, ch->number);
2133
2134                 send_msgrequest = 1;
2135
2136                 /*
2137                  * We need to ensure that the message referenced by
2138                  * local_GP->put is not XPC_M_READY or that local_GP->put
2139                  * equals w_local_GP.put, so we'll go have a look.
2140                  */
2141                 initial_put = put;
2142         }
2143
2144         if (send_msgrequest)
2145                 xpc_send_chctl_msgrequest_sn2(ch);
2146 }
2147
2148 /*
2149  * Allocate an entry for a message from the message queue associated with the
2150  * specified channel.
2151  */
2152 static enum xp_retval
2153 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2154                      struct xpc_msg **address_of_msg)
2155 {
2156         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2157         struct xpc_msg *msg;
2158         enum xp_retval ret;
2159         s64 put;
2160
2161         /*
2162          * Get the next available message entry from the local message queue.
2163          * If none are available, we'll make sure that we grab the latest
2164          * GP values.
2165          */
2166         ret = xpTimeout;
2167
2168         while (1) {
2169
2170                 put = ch_sn2->w_local_GP.put;
2171                 rmb();  /* guarantee that .put loads before .get */
2172                 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2173
2174                         /* There are available message entries. We need to try
2175                          * to secure one for ourselves. We'll do this by trying
2176                          * to increment w_local_GP.put as long as someone else
2177                          * doesn't beat us to it. If they do, we'll have to
2178                          * try again.
2179                          */
2180                         if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2181                             put) {
2182                                 /* we got the entry referenced by put */
2183                                 break;
2184                         }
2185                         continue;       /* try again */
2186                 }
2187
2188                 /*
2189                  * There aren't any available msg entries at this time.
2190                  *
2191                  * In waiting for a message entry to become available,
2192                  * we set a timeout in case the other side is not sending
2193                  * completion interrupts. This lets us fake a notify IRQ
2194                  * that will cause the notify IRQ handler to fetch the latest
2195                  * GP values as if an interrupt was sent by the other side.
2196                  */
2197                 if (ret == xpTimeout)
2198                         xpc_send_chctl_local_msgrequest_sn2(ch);
2199
2200                 if (flags & XPC_NOWAIT)
2201                         return xpNoWait;
2202
2203                 ret = xpc_allocate_msg_wait(ch);
2204                 if (ret != xpInterrupted && ret != xpTimeout)
2205                         return ret;
2206         }
2207
2208         /* get the message's address and initialize it */
2209         msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
2210                                  (put % ch->local_nentries) * ch->msg_size);
2211
2212         DBUG_ON(msg->flags != 0);
2213         msg->number = put;
2214
2215         dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
2216                 "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
2217                 (void *)msg, msg->number, ch->partid, ch->number);
2218
2219         *address_of_msg = msg;
2220         return xpSuccess;
2221 }
2222
2223 /*
2224  * Common code that does the actual sending of the message by advancing the
2225  * local message queue's Put value and sends a chctl msgrequest to the
2226  * partition the message is being sent to.
2227  */
2228 static enum xp_retval
2229 xpc_send_msg_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2230                  u16 payload_size, u8 notify_type, xpc_notify_func func,
2231                  void *key)
2232 {
2233         enum xp_retval ret = xpSuccess;
2234         struct xpc_msg *msg = msg;
2235         struct xpc_notify *notify = notify;
2236         s64 msg_number;
2237         s64 put;
2238
2239         DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2240
2241         if (XPC_MSG_SIZE(payload_size) > ch->msg_size)
2242                 return xpPayloadTooBig;
2243
2244         xpc_msgqueue_ref(ch);
2245
2246         if (ch->flags & XPC_C_DISCONNECTING) {
2247                 ret = ch->reason;
2248                 goto out_1;
2249         }
2250         if (!(ch->flags & XPC_C_CONNECTED)) {
2251                 ret = xpNotConnected;
2252                 goto out_1;
2253         }
2254
2255         ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2256         if (ret != xpSuccess)
2257                 goto out_1;
2258
2259         msg_number = msg->number;
2260
2261         if (notify_type != 0) {
2262                 /*
2263                  * Tell the remote side to send an ACK interrupt when the
2264                  * message has been delivered.
2265                  */
2266                 msg->flags |= XPC_M_INTERRUPT;
2267
2268                 atomic_inc(&ch->n_to_notify);
2269
2270                 notify = &ch->notify_queue[msg_number % ch->local_nentries];
2271                 notify->func = func;
2272                 notify->key = key;
2273                 notify->type = notify_type;
2274
2275                 /* ??? Is a mb() needed here? */
2276
2277                 if (ch->flags & XPC_C_DISCONNECTING) {
2278                         /*
2279                          * An error occurred between our last error check and
2280                          * this one. We will try to clear the type field from
2281                          * the notify entry. If we succeed then
2282                          * xpc_disconnect_channel() didn't already process
2283                          * the notify entry.
2284                          */
2285                         if (cmpxchg(&notify->type, notify_type, 0) ==
2286                             notify_type) {
2287                                 atomic_dec(&ch->n_to_notify);
2288                                 ret = ch->reason;
2289                         }
2290                         goto out_1;
2291                 }
2292         }
2293
2294         memcpy(&msg->payload, payload, payload_size);
2295
2296         msg->flags |= XPC_M_READY;
2297
2298         /*
2299          * The preceding store of msg->flags must occur before the following
2300          * load of local_GP->put.
2301          */
2302         mb();
2303
2304         /* see if the message is next in line to be sent, if so send it */
2305
2306         put = ch->sn.sn2.local_GP->put;
2307         if (put == msg_number)
2308                 xpc_send_msgs_sn2(ch, put);
2309
2310 out_1:
2311         xpc_msgqueue_deref(ch);
2312         return ret;
2313 }
2314
2315 /*
2316  * Now we actually acknowledge the messages that have been delivered and ack'd
2317  * by advancing the cached remote message queue's Get value and if requested
2318  * send a chctl msgrequest to the message sender's partition.
2319  */
2320 static void
2321 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2322 {
2323         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2324         struct xpc_msg *msg;
2325         s64 get = initial_get + 1;
2326         int send_msgrequest = 0;
2327
2328         while (1) {
2329
2330                 while (1) {
2331                         if (get == ch_sn2->w_local_GP.get)
2332                                 break;
2333
2334                         msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
2335                                                  (get % ch->remote_nentries) *
2336                                                  ch->msg_size);
2337
2338                         if (!(msg->flags & XPC_M_DONE))
2339                                 break;
2340
2341                         msg_flags |= msg->flags;
2342                         get++;
2343                 }
2344
2345                 if (get == initial_get) {
2346                         /* nothing's changed */
2347                         break;
2348                 }
2349
2350                 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2351                     initial_get) {
2352                         /* someone else beat us to it */
2353                         DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2354                         break;
2355                 }
2356
2357                 /* we just set the new value of local_GP->get */
2358
2359                 dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2360                         "channel=%d\n", get, ch->partid, ch->number);
2361
2362                 send_msgrequest = (msg_flags & XPC_M_INTERRUPT);
2363
2364                 /*
2365                  * We need to ensure that the message referenced by
2366                  * local_GP->get is not XPC_M_DONE or that local_GP->get
2367                  * equals w_local_GP.get, so we'll go have a look.
2368                  */
2369                 initial_get = get;
2370         }
2371
2372         if (send_msgrequest)
2373                 xpc_send_chctl_msgrequest_sn2(ch);
2374 }
2375
2376 static void
2377 xpc_received_msg_sn2(struct xpc_channel *ch, struct xpc_msg *msg)
2378 {
2379         s64 get;
2380         s64 msg_number = msg->number;
2381
2382         dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2383                 (void *)msg, msg_number, ch->partid, ch->number);
2384
2385         DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->msg_size) !=
2386                 msg_number % ch->remote_nentries);
2387         DBUG_ON(msg->flags & XPC_M_DONE);
2388
2389         msg->flags |= XPC_M_DONE;
2390
2391         /*
2392          * The preceding store of msg->flags must occur before the following
2393          * load of local_GP->get.
2394          */
2395         mb();
2396
2397         /*
2398          * See if this message is next in line to be acknowledged as having
2399          * been delivered.
2400          */
2401         get = ch->sn.sn2.local_GP->get;
2402         if (get == msg_number)
2403                 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2404 }
2405
2406 int
2407 xpc_init_sn2(void)
2408 {
2409         int ret;
2410         size_t buf_size;
2411
2412         xpc_get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2;
2413         xpc_rsvd_page_init = xpc_rsvd_page_init_sn2;
2414         xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
2415         xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
2416         xpc_online_heartbeat = xpc_online_heartbeat_sn2;
2417         xpc_heartbeat_init = xpc_heartbeat_init_sn2;
2418         xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
2419         xpc_check_remote_hb = xpc_check_remote_hb_sn2;
2420
2421         xpc_request_partition_activation = xpc_request_partition_activation_sn2;
2422         xpc_request_partition_reactivation =
2423             xpc_request_partition_reactivation_sn2;
2424         xpc_request_partition_deactivation =
2425             xpc_request_partition_deactivation_sn2;
2426         xpc_cancel_partition_deactivation_request =
2427             xpc_cancel_partition_deactivation_request_sn2;
2428
2429         xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
2430         xpc_setup_infrastructure = xpc_setup_infrastructure_sn2;
2431         xpc_teardown_infrastructure = xpc_teardown_infrastructure_sn2;
2432         xpc_make_first_contact = xpc_make_first_contact_sn2;
2433         xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2;
2434         xpc_allocate_msgqueues = xpc_allocate_msgqueues_sn2;
2435         xpc_free_msgqueues = xpc_free_msgqueues_sn2;
2436         xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
2437         xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2;
2438         xpc_n_of_deliverable_msgs = xpc_n_of_deliverable_msgs_sn2;
2439         xpc_get_deliverable_msg = xpc_get_deliverable_msg_sn2;
2440
2441         xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
2442         xpc_partition_engaged = xpc_partition_engaged_sn2;
2443         xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
2444         xpc_indicate_partition_disengaged =
2445             xpc_indicate_partition_disengaged_sn2;
2446         xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
2447
2448         xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2;
2449         xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2;
2450         xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2;
2451         xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2;
2452
2453         xpc_send_msg = xpc_send_msg_sn2;
2454         xpc_received_msg = xpc_received_msg_sn2;
2455
2456         buf_size = max(XPC_RP_VARS_SIZE,
2457                        XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2458         xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2459                                                                    GFP_KERNEL,
2460                                               &xpc_remote_copy_buffer_base_sn2);
2461         if (xpc_remote_copy_buffer_sn2 == NULL) {
2462                 dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2463                 return -ENOMEM;
2464         }
2465
2466         /* open up protections for IPI and [potentially] amo operations */
2467         xpc_allow_IPI_ops_sn2();
2468         xpc_allow_amo_ops_shub_wars_1_1_sn2();
2469
2470         /*
2471          * This is safe to do before the xpc_hb_checker thread has started
2472          * because the handler releases a wait queue.  If an interrupt is
2473          * received before the thread is waiting, it will not go to sleep,
2474          * but rather immediately process the interrupt.
2475          */
2476         ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2477                           "xpc hb", NULL);
2478         if (ret != 0) {
2479                 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2480                         "errno=%d\n", -ret);
2481                 xpc_disallow_IPI_ops_sn2();
2482                 kfree(xpc_remote_copy_buffer_base_sn2);
2483         }
2484         return ret;
2485 }
2486
2487 void
2488 xpc_exit_sn2(void)
2489 {
2490         free_irq(SGI_XPC_ACTIVATE, NULL);
2491         xpc_disallow_IPI_ops_sn2();
2492         kfree(xpc_remote_copy_buffer_base_sn2);
2493 }