2596664246c10fb94f00ce5ee292148f2408ada5
[firefly-linux-kernel-4.4.55.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
67
68 #define DRIVER_NAME     "sh_mmcif"
69 #define DRIVER_VERSION  "2010-04-28"
70
71 /* CE_CMD_SET */
72 #define CMD_MASK                0x3f000000
73 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY            (1 << 21) /* R1b */
77 #define CMD_SET_CCSEN           (1 << 20)
78 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH            (1 << 5)
93 #define CMD_SET_DARS            (1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
97
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK          (1 << 0)
100
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK         0x0000ffff
103
104 /* CE_INT */
105 #define INT_CCSDE               (1 << 29)
106 #define INT_CMD12DRE            (1 << 26)
107 #define INT_CMD12RBE            (1 << 25)
108 #define INT_CMD12CRE            (1 << 24)
109 #define INT_DTRANE              (1 << 23)
110 #define INT_BUFRE               (1 << 22)
111 #define INT_BUFWEN              (1 << 21)
112 #define INT_BUFREN              (1 << 20)
113 #define INT_CCSRCV              (1 << 19)
114 #define INT_RBSYE               (1 << 17)
115 #define INT_CRSPE               (1 << 16)
116 #define INT_CMDVIO              (1 << 15)
117 #define INT_BUFVIO              (1 << 14)
118 #define INT_WDATERR             (1 << 11)
119 #define INT_RDATERR             (1 << 10)
120 #define INT_RIDXERR             (1 << 9)
121 #define INT_RSPERR              (1 << 8)
122 #define INT_CCSTO               (1 << 5)
123 #define INT_CRCSTO              (1 << 4)
124 #define INT_WDATTO              (1 << 3)
125 #define INT_RDATTO              (1 << 2)
126 #define INT_RBSYTO              (1 << 1)
127 #define INT_RSPTO               (1 << 0)
128 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
129                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
131                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132
133 #define INT_ALL                 (INT_RBSYE | INT_CRSPE | INT_BUFREN |    \
134                                  INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135                                  INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136
137 /* CE_INT_MASK */
138 #define MASK_ALL                0x00000000
139 #define MASK_MCCSDE             (1 << 29)
140 #define MASK_MCMD12DRE          (1 << 26)
141 #define MASK_MCMD12RBE          (1 << 25)
142 #define MASK_MCMD12CRE          (1 << 24)
143 #define MASK_MDTRANE            (1 << 23)
144 #define MASK_MBUFRE             (1 << 22)
145 #define MASK_MBUFWEN            (1 << 21)
146 #define MASK_MBUFREN            (1 << 20)
147 #define MASK_MCCSRCV            (1 << 19)
148 #define MASK_MRBSYE             (1 << 17)
149 #define MASK_MCRSPE             (1 << 16)
150 #define MASK_MCMDVIO            (1 << 15)
151 #define MASK_MBUFVIO            (1 << 14)
152 #define MASK_MWDATERR           (1 << 11)
153 #define MASK_MRDATERR           (1 << 10)
154 #define MASK_MRIDXERR           (1 << 9)
155 #define MASK_MRSPERR            (1 << 8)
156 #define MASK_MCCSTO             (1 << 5)
157 #define MASK_MCRCSTO            (1 << 4)
158 #define MASK_MWDATTO            (1 << 3)
159 #define MASK_MRDATTO            (1 << 2)
160 #define MASK_MRBSYTO            (1 << 1)
161 #define MASK_MRSPTO             (1 << 0)
162
163 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
164                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
165                                  MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
166                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
167
168 #define MASK_CLEAN              (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |      \
169                                  MASK_MBUFREN | MASK_MBUFWEN |                  \
170                                  MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |  \
171                                  MASK_MCMD12RBE | MASK_MCMD12CRE)
172
173 /* CE_HOST_STS1 */
174 #define STS1_CMDSEQ             (1 << 31)
175
176 /* CE_HOST_STS2 */
177 #define STS2_CRCSTE             (1 << 31)
178 #define STS2_CRC16E             (1 << 30)
179 #define STS2_AC12CRCE           (1 << 29)
180 #define STS2_RSPCRC7E           (1 << 28)
181 #define STS2_CRCSTEBE           (1 << 27)
182 #define STS2_RDATEBE            (1 << 26)
183 #define STS2_AC12REBE           (1 << 25)
184 #define STS2_RSPEBE             (1 << 24)
185 #define STS2_AC12IDXE           (1 << 23)
186 #define STS2_RSPIDXE            (1 << 22)
187 #define STS2_CCSTO              (1 << 15)
188 #define STS2_RDATTO             (1 << 14)
189 #define STS2_DATBSYTO           (1 << 13)
190 #define STS2_CRCSTTO            (1 << 12)
191 #define STS2_AC12BSYTO          (1 << 11)
192 #define STS2_RSPBSYTO           (1 << 10)
193 #define STS2_AC12RSPTO          (1 << 9)
194 #define STS2_RSPTO              (1 << 8)
195 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
196                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
197 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
198                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
199                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
200                                  STS2_AC12RSPTO | STS2_RSPTO)
201
202 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
203 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
204 #define CLKDEV_INIT             400000   /* 400 KHz */
205
206 enum mmcif_state {
207         STATE_IDLE,
208         STATE_REQUEST,
209         STATE_IOS,
210         STATE_TIMEOUT,
211 };
212
213 enum mmcif_wait_for {
214         MMCIF_WAIT_FOR_REQUEST,
215         MMCIF_WAIT_FOR_CMD,
216         MMCIF_WAIT_FOR_MREAD,
217         MMCIF_WAIT_FOR_MWRITE,
218         MMCIF_WAIT_FOR_READ,
219         MMCIF_WAIT_FOR_WRITE,
220         MMCIF_WAIT_FOR_READ_END,
221         MMCIF_WAIT_FOR_WRITE_END,
222         MMCIF_WAIT_FOR_STOP,
223 };
224
225 struct sh_mmcif_host {
226         struct mmc_host *mmc;
227         struct mmc_request *mrq;
228         struct platform_device *pd;
229         struct clk *hclk;
230         unsigned int clk;
231         int bus_width;
232         unsigned char timing;
233         bool sd_error;
234         bool dying;
235         long timeout;
236         void __iomem *addr;
237         u32 *pio_ptr;
238         spinlock_t lock;                /* protect sh_mmcif_host::state */
239         enum mmcif_state state;
240         enum mmcif_wait_for wait_for;
241         struct delayed_work timeout_work;
242         size_t blocksize;
243         int sg_idx;
244         int sg_blkidx;
245         bool power;
246         bool card_present;
247         struct mutex thread_lock;
248
249         /* DMA support */
250         struct dma_chan         *chan_rx;
251         struct dma_chan         *chan_tx;
252         struct completion       dma_complete;
253         bool                    dma_active;
254 };
255
256 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
257                                         unsigned int reg, u32 val)
258 {
259         writel(val | readl(host->addr + reg), host->addr + reg);
260 }
261
262 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
263                                         unsigned int reg, u32 val)
264 {
265         writel(~val & readl(host->addr + reg), host->addr + reg);
266 }
267
268 static void mmcif_dma_complete(void *arg)
269 {
270         struct sh_mmcif_host *host = arg;
271         struct mmc_request *mrq = host->mrq;
272
273         dev_dbg(&host->pd->dev, "Command completed\n");
274
275         if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
276                  dev_name(&host->pd->dev)))
277                 return;
278
279         complete(&host->dma_complete);
280 }
281
282 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
283 {
284         struct mmc_data *data = host->mrq->data;
285         struct scatterlist *sg = data->sg;
286         struct dma_async_tx_descriptor *desc = NULL;
287         struct dma_chan *chan = host->chan_rx;
288         dma_cookie_t cookie = -EINVAL;
289         int ret;
290
291         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
292                          DMA_FROM_DEVICE);
293         if (ret > 0) {
294                 host->dma_active = true;
295                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
296                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
297         }
298
299         if (desc) {
300                 desc->callback = mmcif_dma_complete;
301                 desc->callback_param = host;
302                 cookie = dmaengine_submit(desc);
303                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
304                 dma_async_issue_pending(chan);
305         }
306         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
307                 __func__, data->sg_len, ret, cookie);
308
309         if (!desc) {
310                 /* DMA failed, fall back to PIO */
311                 if (ret >= 0)
312                         ret = -EIO;
313                 host->chan_rx = NULL;
314                 host->dma_active = false;
315                 dma_release_channel(chan);
316                 /* Free the Tx channel too */
317                 chan = host->chan_tx;
318                 if (chan) {
319                         host->chan_tx = NULL;
320                         dma_release_channel(chan);
321                 }
322                 dev_warn(&host->pd->dev,
323                          "DMA failed: %d, falling back to PIO\n", ret);
324                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
325         }
326
327         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
328                 desc, cookie, data->sg_len);
329 }
330
331 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
332 {
333         struct mmc_data *data = host->mrq->data;
334         struct scatterlist *sg = data->sg;
335         struct dma_async_tx_descriptor *desc = NULL;
336         struct dma_chan *chan = host->chan_tx;
337         dma_cookie_t cookie = -EINVAL;
338         int ret;
339
340         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
341                          DMA_TO_DEVICE);
342         if (ret > 0) {
343                 host->dma_active = true;
344                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
345                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
346         }
347
348         if (desc) {
349                 desc->callback = mmcif_dma_complete;
350                 desc->callback_param = host;
351                 cookie = dmaengine_submit(desc);
352                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
353                 dma_async_issue_pending(chan);
354         }
355         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
356                 __func__, data->sg_len, ret, cookie);
357
358         if (!desc) {
359                 /* DMA failed, fall back to PIO */
360                 if (ret >= 0)
361                         ret = -EIO;
362                 host->chan_tx = NULL;
363                 host->dma_active = false;
364                 dma_release_channel(chan);
365                 /* Free the Rx channel too */
366                 chan = host->chan_rx;
367                 if (chan) {
368                         host->chan_rx = NULL;
369                         dma_release_channel(chan);
370                 }
371                 dev_warn(&host->pd->dev,
372                          "DMA failed: %d, falling back to PIO\n", ret);
373                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
374         }
375
376         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
377                 desc, cookie);
378 }
379
380 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
381                                  struct sh_mmcif_plat_data *pdata)
382 {
383         struct resource *res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
384         struct dma_slave_config cfg;
385         dma_cap_mask_t mask;
386         int ret;
387
388         host->dma_active = false;
389
390         if (!pdata)
391                 return;
392
393         if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
394                 return;
395
396         /* We can only either use DMA for both Tx and Rx or not use it at all */
397         dma_cap_zero(mask);
398         dma_cap_set(DMA_SLAVE, mask);
399
400         host->chan_tx = dma_request_channel(mask, shdma_chan_filter,
401                                             (void *)pdata->slave_id_tx);
402         dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
403                 host->chan_tx);
404
405         if (!host->chan_tx)
406                 return;
407
408         cfg.slave_id = pdata->slave_id_tx;
409         cfg.direction = DMA_MEM_TO_DEV;
410         cfg.dst_addr = res->start + MMCIF_CE_DATA;
411         cfg.src_addr = 0;
412         ret = dmaengine_slave_config(host->chan_tx, &cfg);
413         if (ret < 0)
414                 goto ecfgtx;
415
416         host->chan_rx = dma_request_channel(mask, shdma_chan_filter,
417                                             (void *)pdata->slave_id_rx);
418         dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
419                 host->chan_rx);
420
421         if (!host->chan_rx)
422                 goto erqrx;
423
424         cfg.slave_id = pdata->slave_id_rx;
425         cfg.direction = DMA_DEV_TO_MEM;
426         cfg.dst_addr = 0;
427         cfg.src_addr = res->start + MMCIF_CE_DATA;
428         ret = dmaengine_slave_config(host->chan_rx, &cfg);
429         if (ret < 0)
430                 goto ecfgrx;
431
432         return;
433
434 ecfgrx:
435         dma_release_channel(host->chan_rx);
436         host->chan_rx = NULL;
437 erqrx:
438 ecfgtx:
439         dma_release_channel(host->chan_tx);
440         host->chan_tx = NULL;
441 }
442
443 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
444 {
445         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
446         /* Descriptors are freed automatically */
447         if (host->chan_tx) {
448                 struct dma_chan *chan = host->chan_tx;
449                 host->chan_tx = NULL;
450                 dma_release_channel(chan);
451         }
452         if (host->chan_rx) {
453                 struct dma_chan *chan = host->chan_rx;
454                 host->chan_rx = NULL;
455                 dma_release_channel(chan);
456         }
457
458         host->dma_active = false;
459 }
460
461 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
462 {
463         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
464         bool sup_pclk = p ? p->sup_pclk : false;
465
466         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
467         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
468
469         if (!clk)
470                 return;
471         if (sup_pclk && clk == host->clk)
472                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
473         else
474                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
475                                 ((fls(DIV_ROUND_UP(host->clk,
476                                                    clk) - 1) - 1) << 16));
477
478         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
479 }
480
481 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
482 {
483         u32 tmp;
484
485         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
486
487         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
488         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
489         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
490                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
491         /* byte swap on */
492         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
493 }
494
495 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
496 {
497         u32 state1, state2;
498         int ret, timeout;
499
500         host->sd_error = false;
501
502         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
503         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
504         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
505         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
506
507         if (state1 & STS1_CMDSEQ) {
508                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
509                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
510                 for (timeout = 10000000; timeout; timeout--) {
511                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
512                               & STS1_CMDSEQ))
513                                 break;
514                         mdelay(1);
515                 }
516                 if (!timeout) {
517                         dev_err(&host->pd->dev,
518                                 "Forced end of command sequence timeout err\n");
519                         return -EIO;
520                 }
521                 sh_mmcif_sync_reset(host);
522                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
523                 return -EIO;
524         }
525
526         if (state2 & STS2_CRC_ERR) {
527                 dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
528                         host->state, host->wait_for);
529                 ret = -EIO;
530         } else if (state2 & STS2_TIMEOUT_ERR) {
531                 dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
532                         host->state, host->wait_for);
533                 ret = -ETIMEDOUT;
534         } else {
535                 dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
536                         host->state, host->wait_for);
537                 ret = -EIO;
538         }
539         return ret;
540 }
541
542 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
543 {
544         struct mmc_data *data = host->mrq->data;
545
546         host->sg_blkidx += host->blocksize;
547
548         /* data->sg->length must be a multiple of host->blocksize? */
549         BUG_ON(host->sg_blkidx > data->sg->length);
550
551         if (host->sg_blkidx == data->sg->length) {
552                 host->sg_blkidx = 0;
553                 if (++host->sg_idx < data->sg_len)
554                         host->pio_ptr = sg_virt(++data->sg);
555         } else {
556                 host->pio_ptr = p;
557         }
558
559         return host->sg_idx != data->sg_len;
560 }
561
562 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
563                                  struct mmc_request *mrq)
564 {
565         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
566                            BLOCK_SIZE_MASK) + 3;
567
568         host->wait_for = MMCIF_WAIT_FOR_READ;
569
570         /* buf read enable */
571         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
572 }
573
574 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
575 {
576         struct mmc_data *data = host->mrq->data;
577         u32 *p = sg_virt(data->sg);
578         int i;
579
580         if (host->sd_error) {
581                 data->error = sh_mmcif_error_manage(host);
582                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
583                 return false;
584         }
585
586         for (i = 0; i < host->blocksize / 4; i++)
587                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
588
589         /* buffer read end */
590         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
591         host->wait_for = MMCIF_WAIT_FOR_READ_END;
592
593         return true;
594 }
595
596 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
597                                 struct mmc_request *mrq)
598 {
599         struct mmc_data *data = mrq->data;
600
601         if (!data->sg_len || !data->sg->length)
602                 return;
603
604         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
605                 BLOCK_SIZE_MASK;
606
607         host->wait_for = MMCIF_WAIT_FOR_MREAD;
608         host->sg_idx = 0;
609         host->sg_blkidx = 0;
610         host->pio_ptr = sg_virt(data->sg);
611
612         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
613 }
614
615 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
616 {
617         struct mmc_data *data = host->mrq->data;
618         u32 *p = host->pio_ptr;
619         int i;
620
621         if (host->sd_error) {
622                 data->error = sh_mmcif_error_manage(host);
623                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
624                 return false;
625         }
626
627         BUG_ON(!data->sg->length);
628
629         for (i = 0; i < host->blocksize / 4; i++)
630                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
631
632         if (!sh_mmcif_next_block(host, p))
633                 return false;
634
635         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
636
637         return true;
638 }
639
640 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
641                                         struct mmc_request *mrq)
642 {
643         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
644                            BLOCK_SIZE_MASK) + 3;
645
646         host->wait_for = MMCIF_WAIT_FOR_WRITE;
647
648         /* buf write enable */
649         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
650 }
651
652 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
653 {
654         struct mmc_data *data = host->mrq->data;
655         u32 *p = sg_virt(data->sg);
656         int i;
657
658         if (host->sd_error) {
659                 data->error = sh_mmcif_error_manage(host);
660                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
661                 return false;
662         }
663
664         for (i = 0; i < host->blocksize / 4; i++)
665                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
666
667         /* buffer write end */
668         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
669         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
670
671         return true;
672 }
673
674 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
675                                 struct mmc_request *mrq)
676 {
677         struct mmc_data *data = mrq->data;
678
679         if (!data->sg_len || !data->sg->length)
680                 return;
681
682         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
683                 BLOCK_SIZE_MASK;
684
685         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
686         host->sg_idx = 0;
687         host->sg_blkidx = 0;
688         host->pio_ptr = sg_virt(data->sg);
689
690         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
691 }
692
693 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
694 {
695         struct mmc_data *data = host->mrq->data;
696         u32 *p = host->pio_ptr;
697         int i;
698
699         if (host->sd_error) {
700                 data->error = sh_mmcif_error_manage(host);
701                 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
702                 return false;
703         }
704
705         BUG_ON(!data->sg->length);
706
707         for (i = 0; i < host->blocksize / 4; i++)
708                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
709
710         if (!sh_mmcif_next_block(host, p))
711                 return false;
712
713         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
714
715         return true;
716 }
717
718 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
719                                                 struct mmc_command *cmd)
720 {
721         if (cmd->flags & MMC_RSP_136) {
722                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
723                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
724                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
725                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
726         } else
727                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
728 }
729
730 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
731                                                 struct mmc_command *cmd)
732 {
733         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
734 }
735
736 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
737                             struct mmc_request *mrq)
738 {
739         struct mmc_data *data = mrq->data;
740         struct mmc_command *cmd = mrq->cmd;
741         u32 opc = cmd->opcode;
742         u32 tmp = 0;
743
744         /* Response Type check */
745         switch (mmc_resp_type(cmd)) {
746         case MMC_RSP_NONE:
747                 tmp |= CMD_SET_RTYP_NO;
748                 break;
749         case MMC_RSP_R1:
750         case MMC_RSP_R1B:
751         case MMC_RSP_R3:
752                 tmp |= CMD_SET_RTYP_6B;
753                 break;
754         case MMC_RSP_R2:
755                 tmp |= CMD_SET_RTYP_17B;
756                 break;
757         default:
758                 dev_err(&host->pd->dev, "Unsupported response type.\n");
759                 break;
760         }
761         switch (opc) {
762         /* RBSY */
763         case MMC_SLEEP_AWAKE:
764         case MMC_SWITCH:
765         case MMC_STOP_TRANSMISSION:
766         case MMC_SET_WRITE_PROT:
767         case MMC_CLR_WRITE_PROT:
768         case MMC_ERASE:
769                 tmp |= CMD_SET_RBSY;
770                 break;
771         }
772         /* WDAT / DATW */
773         if (data) {
774                 tmp |= CMD_SET_WDAT;
775                 switch (host->bus_width) {
776                 case MMC_BUS_WIDTH_1:
777                         tmp |= CMD_SET_DATW_1;
778                         break;
779                 case MMC_BUS_WIDTH_4:
780                         tmp |= CMD_SET_DATW_4;
781                         break;
782                 case MMC_BUS_WIDTH_8:
783                         tmp |= CMD_SET_DATW_8;
784                         break;
785                 default:
786                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
787                         break;
788                 }
789                 switch (host->timing) {
790                 case MMC_TIMING_UHS_DDR50:
791                         /*
792                          * MMC core will only set this timing, if the host
793                          * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF
794                          * implementations with this capability, e.g. sh73a0,
795                          * will have to set it in their platform data.
796                          */
797                         tmp |= CMD_SET_DARS;
798                         break;
799                 }
800         }
801         /* DWEN */
802         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
803                 tmp |= CMD_SET_DWEN;
804         /* CMLTE/CMD12EN */
805         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
806                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
807                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
808                                 data->blocks << 16);
809         }
810         /* RIDXC[1:0] check bits */
811         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
812             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
813                 tmp |= CMD_SET_RIDXC_BITS;
814         /* RCRC7C[1:0] check bits */
815         if (opc == MMC_SEND_OP_COND)
816                 tmp |= CMD_SET_CRC7C_BITS;
817         /* RCRC7C[1:0] internal CRC7 */
818         if (opc == MMC_ALL_SEND_CID ||
819                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
820                 tmp |= CMD_SET_CRC7C_INTERNAL;
821
822         return (opc << 24) | tmp;
823 }
824
825 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
826                                struct mmc_request *mrq, u32 opc)
827 {
828         switch (opc) {
829         case MMC_READ_MULTIPLE_BLOCK:
830                 sh_mmcif_multi_read(host, mrq);
831                 return 0;
832         case MMC_WRITE_MULTIPLE_BLOCK:
833                 sh_mmcif_multi_write(host, mrq);
834                 return 0;
835         case MMC_WRITE_BLOCK:
836                 sh_mmcif_single_write(host, mrq);
837                 return 0;
838         case MMC_READ_SINGLE_BLOCK:
839         case MMC_SEND_EXT_CSD:
840                 sh_mmcif_single_read(host, mrq);
841                 return 0;
842         default:
843                 dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
844                 return -EINVAL;
845         }
846 }
847
848 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
849                                struct mmc_request *mrq)
850 {
851         struct mmc_command *cmd = mrq->cmd;
852         u32 opc = cmd->opcode;
853         u32 mask;
854
855         switch (opc) {
856         /* response busy check */
857         case MMC_SLEEP_AWAKE:
858         case MMC_SWITCH:
859         case MMC_STOP_TRANSMISSION:
860         case MMC_SET_WRITE_PROT:
861         case MMC_CLR_WRITE_PROT:
862         case MMC_ERASE:
863                 mask = MASK_START_CMD | MASK_MRBSYE;
864                 break;
865         default:
866                 mask = MASK_START_CMD | MASK_MCRSPE;
867                 break;
868         }
869
870         if (mrq->data) {
871                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
872                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
873                                 mrq->data->blksz);
874         }
875         opc = sh_mmcif_set_cmd(host, mrq);
876
877         sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
878         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
879         /* set arg */
880         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
881         /* set cmd */
882         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
883
884         host->wait_for = MMCIF_WAIT_FOR_CMD;
885         schedule_delayed_work(&host->timeout_work, host->timeout);
886 }
887
888 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
889                               struct mmc_request *mrq)
890 {
891         switch (mrq->cmd->opcode) {
892         case MMC_READ_MULTIPLE_BLOCK:
893                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
894                 break;
895         case MMC_WRITE_MULTIPLE_BLOCK:
896                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
897                 break;
898         default:
899                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
900                 mrq->stop->error = sh_mmcif_error_manage(host);
901                 return;
902         }
903
904         host->wait_for = MMCIF_WAIT_FOR_STOP;
905 }
906
907 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
908 {
909         struct sh_mmcif_host *host = mmc_priv(mmc);
910         unsigned long flags;
911
912         spin_lock_irqsave(&host->lock, flags);
913         if (host->state != STATE_IDLE) {
914                 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
915                 spin_unlock_irqrestore(&host->lock, flags);
916                 mrq->cmd->error = -EAGAIN;
917                 mmc_request_done(mmc, mrq);
918                 return;
919         }
920
921         host->state = STATE_REQUEST;
922         spin_unlock_irqrestore(&host->lock, flags);
923
924         switch (mrq->cmd->opcode) {
925         /* MMCIF does not support SD/SDIO command */
926         case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
927         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
928                 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
929                         break;
930         case MMC_APP_CMD:
931         case SD_IO_RW_DIRECT:
932                 host->state = STATE_IDLE;
933                 mrq->cmd->error = -ETIMEDOUT;
934                 mmc_request_done(mmc, mrq);
935                 return;
936         default:
937                 break;
938         }
939
940         host->mrq = mrq;
941
942         sh_mmcif_start_cmd(host, mrq);
943 }
944
945 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
946 {
947         int ret = clk_enable(host->hclk);
948
949         if (!ret) {
950                 host->clk = clk_get_rate(host->hclk);
951                 host->mmc->f_max = host->clk / 2;
952                 host->mmc->f_min = host->clk / 512;
953         }
954
955         return ret;
956 }
957
958 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
959 {
960         struct mmc_host *mmc = host->mmc;
961
962         if (!IS_ERR(mmc->supply.vmmc))
963                 /* Errors ignored... */
964                 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
965                                       ios->power_mode ? ios->vdd : 0);
966 }
967
968 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
969 {
970         struct sh_mmcif_host *host = mmc_priv(mmc);
971         unsigned long flags;
972
973         spin_lock_irqsave(&host->lock, flags);
974         if (host->state != STATE_IDLE) {
975                 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
976                 spin_unlock_irqrestore(&host->lock, flags);
977                 return;
978         }
979
980         host->state = STATE_IOS;
981         spin_unlock_irqrestore(&host->lock, flags);
982
983         if (ios->power_mode == MMC_POWER_UP) {
984                 if (!host->card_present) {
985                         /* See if we also get DMA */
986                         sh_mmcif_request_dma(host, host->pd->dev.platform_data);
987                         host->card_present = true;
988                 }
989                 sh_mmcif_set_power(host, ios);
990         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
991                 /* clock stop */
992                 sh_mmcif_clock_control(host, 0);
993                 if (ios->power_mode == MMC_POWER_OFF) {
994                         if (host->card_present) {
995                                 sh_mmcif_release_dma(host);
996                                 host->card_present = false;
997                         }
998                 }
999                 if (host->power) {
1000                         pm_runtime_put_sync(&host->pd->dev);
1001                         clk_disable(host->hclk);
1002                         host->power = false;
1003                         if (ios->power_mode == MMC_POWER_OFF)
1004                                 sh_mmcif_set_power(host, ios);
1005                 }
1006                 host->state = STATE_IDLE;
1007                 return;
1008         }
1009
1010         if (ios->clock) {
1011                 if (!host->power) {
1012                         sh_mmcif_clk_update(host);
1013                         pm_runtime_get_sync(&host->pd->dev);
1014                         host->power = true;
1015                         sh_mmcif_sync_reset(host);
1016                 }
1017                 sh_mmcif_clock_control(host, ios->clock);
1018         }
1019
1020         host->timing = ios->timing;
1021         host->bus_width = ios->bus_width;
1022         host->state = STATE_IDLE;
1023 }
1024
1025 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1026 {
1027         struct sh_mmcif_host *host = mmc_priv(mmc);
1028         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1029         int ret = mmc_gpio_get_cd(mmc);
1030
1031         if (ret >= 0)
1032                 return ret;
1033
1034         if (!p || !p->get_cd)
1035                 return -ENOSYS;
1036         else
1037                 return p->get_cd(host->pd);
1038 }
1039
1040 static struct mmc_host_ops sh_mmcif_ops = {
1041         .request        = sh_mmcif_request,
1042         .set_ios        = sh_mmcif_set_ios,
1043         .get_cd         = sh_mmcif_get_cd,
1044 };
1045
1046 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1047 {
1048         struct mmc_command *cmd = host->mrq->cmd;
1049         struct mmc_data *data = host->mrq->data;
1050         long time;
1051
1052         if (host->sd_error) {
1053                 switch (cmd->opcode) {
1054                 case MMC_ALL_SEND_CID:
1055                 case MMC_SELECT_CARD:
1056                 case MMC_APP_CMD:
1057                         cmd->error = -ETIMEDOUT;
1058                         break;
1059                 default:
1060                         cmd->error = sh_mmcif_error_manage(host);
1061                         break;
1062                 }
1063                 dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1064                         cmd->opcode, cmd->error);
1065                 host->sd_error = false;
1066                 return false;
1067         }
1068         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1069                 cmd->error = 0;
1070                 return false;
1071         }
1072
1073         sh_mmcif_get_response(host, cmd);
1074
1075         if (!data)
1076                 return false;
1077
1078         /*
1079          * Completion can be signalled from DMA callback and error, so, have to
1080          * reset here, before setting .dma_active
1081          */
1082         init_completion(&host->dma_complete);
1083
1084         if (data->flags & MMC_DATA_READ) {
1085                 if (host->chan_rx)
1086                         sh_mmcif_start_dma_rx(host);
1087         } else {
1088                 if (host->chan_tx)
1089                         sh_mmcif_start_dma_tx(host);
1090         }
1091
1092         if (!host->dma_active) {
1093                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1094                 return !data->error;
1095         }
1096
1097         /* Running in the IRQ thread, can sleep */
1098         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1099                                                          host->timeout);
1100
1101         if (data->flags & MMC_DATA_READ)
1102                 dma_unmap_sg(host->chan_rx->device->dev,
1103                              data->sg, data->sg_len,
1104                              DMA_FROM_DEVICE);
1105         else
1106                 dma_unmap_sg(host->chan_tx->device->dev,
1107                              data->sg, data->sg_len,
1108                              DMA_TO_DEVICE);
1109
1110         if (host->sd_error) {
1111                 dev_err(host->mmc->parent,
1112                         "Error IRQ while waiting for DMA completion!\n");
1113                 /* Woken up by an error IRQ: abort DMA */
1114                 data->error = sh_mmcif_error_manage(host);
1115         } else if (!time) {
1116                 dev_err(host->mmc->parent, "DMA timeout!\n");
1117                 data->error = -ETIMEDOUT;
1118         } else if (time < 0) {
1119                 dev_err(host->mmc->parent,
1120                         "wait_for_completion_...() error %ld!\n", time);
1121                 data->error = time;
1122         }
1123         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1124                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1125         host->dma_active = false;
1126
1127         if (data->error) {
1128                 data->bytes_xfered = 0;
1129                 /* Abort DMA */
1130                 if (data->flags & MMC_DATA_READ)
1131                         dmaengine_terminate_all(host->chan_rx);
1132                 else
1133                         dmaengine_terminate_all(host->chan_tx);
1134         }
1135
1136         return false;
1137 }
1138
1139 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1140 {
1141         struct sh_mmcif_host *host = dev_id;
1142         struct mmc_request *mrq;
1143         bool wait = false;
1144
1145         cancel_delayed_work_sync(&host->timeout_work);
1146
1147         mutex_lock(&host->thread_lock);
1148
1149         mrq = host->mrq;
1150         if (!mrq) {
1151                 dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1152                         host->state, host->wait_for);
1153                 mutex_unlock(&host->thread_lock);
1154                 return IRQ_HANDLED;
1155         }
1156
1157         /*
1158          * All handlers return true, if processing continues, and false, if the
1159          * request has to be completed - successfully or not
1160          */
1161         switch (host->wait_for) {
1162         case MMCIF_WAIT_FOR_REQUEST:
1163                 /* We're too late, the timeout has already kicked in */
1164                 mutex_unlock(&host->thread_lock);
1165                 return IRQ_HANDLED;
1166         case MMCIF_WAIT_FOR_CMD:
1167                 /* Wait for data? */
1168                 wait = sh_mmcif_end_cmd(host);
1169                 break;
1170         case MMCIF_WAIT_FOR_MREAD:
1171                 /* Wait for more data? */
1172                 wait = sh_mmcif_mread_block(host);
1173                 break;
1174         case MMCIF_WAIT_FOR_READ:
1175                 /* Wait for data end? */
1176                 wait = sh_mmcif_read_block(host);
1177                 break;
1178         case MMCIF_WAIT_FOR_MWRITE:
1179                 /* Wait data to write? */
1180                 wait = sh_mmcif_mwrite_block(host);
1181                 break;
1182         case MMCIF_WAIT_FOR_WRITE:
1183                 /* Wait for data end? */
1184                 wait = sh_mmcif_write_block(host);
1185                 break;
1186         case MMCIF_WAIT_FOR_STOP:
1187                 if (host->sd_error) {
1188                         mrq->stop->error = sh_mmcif_error_manage(host);
1189                         dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1190                         break;
1191                 }
1192                 sh_mmcif_get_cmd12response(host, mrq->stop);
1193                 mrq->stop->error = 0;
1194                 break;
1195         case MMCIF_WAIT_FOR_READ_END:
1196         case MMCIF_WAIT_FOR_WRITE_END:
1197                 if (host->sd_error) {
1198                         mrq->data->error = sh_mmcif_error_manage(host);
1199                         dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1200                 }
1201                 break;
1202         default:
1203                 BUG();
1204         }
1205
1206         if (wait) {
1207                 schedule_delayed_work(&host->timeout_work, host->timeout);
1208                 /* Wait for more data */
1209                 mutex_unlock(&host->thread_lock);
1210                 return IRQ_HANDLED;
1211         }
1212
1213         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1214                 struct mmc_data *data = mrq->data;
1215                 if (!mrq->cmd->error && data && !data->error)
1216                         data->bytes_xfered =
1217                                 data->blocks * data->blksz;
1218
1219                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1220                         sh_mmcif_stop_cmd(host, mrq);
1221                         if (!mrq->stop->error) {
1222                                 schedule_delayed_work(&host->timeout_work, host->timeout);
1223                                 mutex_unlock(&host->thread_lock);
1224                                 return IRQ_HANDLED;
1225                         }
1226                 }
1227         }
1228
1229         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1230         host->state = STATE_IDLE;
1231         host->mrq = NULL;
1232         mmc_request_done(host->mmc, mrq);
1233
1234         mutex_unlock(&host->thread_lock);
1235
1236         return IRQ_HANDLED;
1237 }
1238
1239 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1240 {
1241         struct sh_mmcif_host *host = dev_id;
1242         u32 state;
1243
1244         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1245         sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1246                         ~(state & sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK)));
1247         sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1248
1249         if (state & ~MASK_CLEAN)
1250                 dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1251                         state);
1252
1253         if (state & INT_ERR_STS || state & ~INT_ALL) {
1254                 host->sd_error = true;
1255                 dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1256         }
1257         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1258                 if (!host->mrq)
1259                         dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1260                 if (!host->dma_active)
1261                         return IRQ_WAKE_THREAD;
1262                 else if (host->sd_error)
1263                         mmcif_dma_complete(host);
1264         } else {
1265                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1266         }
1267
1268         return IRQ_HANDLED;
1269 }
1270
1271 static void mmcif_timeout_work(struct work_struct *work)
1272 {
1273         struct delayed_work *d = container_of(work, struct delayed_work, work);
1274         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1275         struct mmc_request *mrq = host->mrq;
1276         unsigned long flags;
1277
1278         if (host->dying)
1279                 /* Don't run after mmc_remove_host() */
1280                 return;
1281
1282         dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1283                 host->wait_for, mrq->cmd->opcode);
1284
1285         spin_lock_irqsave(&host->lock, flags);
1286         if (host->state == STATE_IDLE) {
1287                 spin_unlock_irqrestore(&host->lock, flags);
1288                 return;
1289         }
1290
1291         host->state = STATE_TIMEOUT;
1292         spin_unlock_irqrestore(&host->lock, flags);
1293
1294         /*
1295          * Handle races with cancel_delayed_work(), unless
1296          * cancel_delayed_work_sync() is used
1297          */
1298         switch (host->wait_for) {
1299         case MMCIF_WAIT_FOR_CMD:
1300                 mrq->cmd->error = sh_mmcif_error_manage(host);
1301                 break;
1302         case MMCIF_WAIT_FOR_STOP:
1303                 mrq->stop->error = sh_mmcif_error_manage(host);
1304                 break;
1305         case MMCIF_WAIT_FOR_MREAD:
1306         case MMCIF_WAIT_FOR_MWRITE:
1307         case MMCIF_WAIT_FOR_READ:
1308         case MMCIF_WAIT_FOR_WRITE:
1309         case MMCIF_WAIT_FOR_READ_END:
1310         case MMCIF_WAIT_FOR_WRITE_END:
1311                 mrq->data->error = sh_mmcif_error_manage(host);
1312                 break;
1313         default:
1314                 BUG();
1315         }
1316
1317         host->state = STATE_IDLE;
1318         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1319         host->mrq = NULL;
1320         mmc_request_done(host->mmc, mrq);
1321 }
1322
1323 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1324 {
1325         struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1326         struct mmc_host *mmc = host->mmc;
1327
1328         mmc_regulator_get_supply(mmc);
1329
1330         if (!pd)
1331                 return;
1332
1333         if (!mmc->ocr_avail)
1334                 mmc->ocr_avail = pd->ocr;
1335         else if (pd->ocr)
1336                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1337 }
1338
1339 static int sh_mmcif_probe(struct platform_device *pdev)
1340 {
1341         int ret = 0, irq[2];
1342         struct mmc_host *mmc;
1343         struct sh_mmcif_host *host;
1344         struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1345         struct resource *res;
1346         void __iomem *reg;
1347         const char *name;
1348
1349         irq[0] = platform_get_irq(pdev, 0);
1350         irq[1] = platform_get_irq(pdev, 1);
1351         if (irq[0] < 0) {
1352                 dev_err(&pdev->dev, "Get irq error\n");
1353                 return -ENXIO;
1354         }
1355         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1356         if (!res) {
1357                 dev_err(&pdev->dev, "platform_get_resource error.\n");
1358                 return -ENXIO;
1359         }
1360         reg = ioremap(res->start, resource_size(res));
1361         if (!reg) {
1362                 dev_err(&pdev->dev, "ioremap error.\n");
1363                 return -ENOMEM;
1364         }
1365
1366         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1367         if (!mmc) {
1368                 ret = -ENOMEM;
1369                 goto ealloch;
1370         }
1371
1372         ret = mmc_of_parse(mmc);
1373         if (ret < 0)
1374                 goto eofparse;
1375
1376         host            = mmc_priv(mmc);
1377         host->mmc       = mmc;
1378         host->addr      = reg;
1379         host->timeout   = msecs_to_jiffies(1000);
1380
1381         host->pd = pdev;
1382
1383         spin_lock_init(&host->lock);
1384
1385         mmc->ops = &sh_mmcif_ops;
1386         sh_mmcif_init_ocr(host);
1387
1388         mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1389         if (pd && pd->caps)
1390                 mmc->caps |= pd->caps;
1391         mmc->max_segs = 32;
1392         mmc->max_blk_size = 512;
1393         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1394         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1395         mmc->max_seg_size = mmc->max_req_size;
1396
1397         platform_set_drvdata(pdev, host);
1398
1399         pm_runtime_enable(&pdev->dev);
1400         host->power = false;
1401
1402         host->hclk = clk_get(&pdev->dev, NULL);
1403         if (IS_ERR(host->hclk)) {
1404                 ret = PTR_ERR(host->hclk);
1405                 dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1406                 goto eclkget;
1407         }
1408         ret = sh_mmcif_clk_update(host);
1409         if (ret < 0)
1410                 goto eclkupdate;
1411
1412         ret = pm_runtime_resume(&pdev->dev);
1413         if (ret < 0)
1414                 goto eresume;
1415
1416         INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1417
1418         sh_mmcif_sync_reset(host);
1419         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1420
1421         name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1422         ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host);
1423         if (ret) {
1424                 dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1425                 goto ereqirq0;
1426         }
1427         if (irq[1] >= 0) {
1428                 ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt,
1429                                            0, "sh_mmc:int", host);
1430                 if (ret) {
1431                         dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1432                         goto ereqirq1;
1433                 }
1434         }
1435
1436         if (pd && pd->use_cd_gpio) {
1437                 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1438                 if (ret < 0)
1439                         goto erqcd;
1440         }
1441
1442         mutex_init(&host->thread_lock);
1443
1444         clk_disable(host->hclk);
1445         ret = mmc_add_host(mmc);
1446         if (ret < 0)
1447                 goto emmcaddh;
1448
1449         dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1450
1451         dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1452         dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1453                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1454         return ret;
1455
1456 emmcaddh:
1457 erqcd:
1458         if (irq[1] >= 0)
1459                 free_irq(irq[1], host);
1460 ereqirq1:
1461         free_irq(irq[0], host);
1462 ereqirq0:
1463         pm_runtime_suspend(&pdev->dev);
1464 eresume:
1465         clk_disable(host->hclk);
1466 eclkupdate:
1467         clk_put(host->hclk);
1468 eclkget:
1469         pm_runtime_disable(&pdev->dev);
1470 eofparse:
1471         mmc_free_host(mmc);
1472 ealloch:
1473         iounmap(reg);
1474         return ret;
1475 }
1476
1477 static int sh_mmcif_remove(struct platform_device *pdev)
1478 {
1479         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1480         int irq[2];
1481
1482         host->dying = true;
1483         clk_enable(host->hclk);
1484         pm_runtime_get_sync(&pdev->dev);
1485
1486         dev_pm_qos_hide_latency_limit(&pdev->dev);
1487
1488         mmc_remove_host(host->mmc);
1489         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1490
1491         /*
1492          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1493          * mmc_remove_host() call above. But swapping order doesn't help either
1494          * (a query on the linux-mmc mailing list didn't bring any replies).
1495          */
1496         cancel_delayed_work_sync(&host->timeout_work);
1497
1498         if (host->addr)
1499                 iounmap(host->addr);
1500
1501         irq[0] = platform_get_irq(pdev, 0);
1502         irq[1] = platform_get_irq(pdev, 1);
1503
1504         free_irq(irq[0], host);
1505         if (irq[1] >= 0)
1506                 free_irq(irq[1], host);
1507
1508         clk_disable(host->hclk);
1509         mmc_free_host(host->mmc);
1510         pm_runtime_put_sync(&pdev->dev);
1511         pm_runtime_disable(&pdev->dev);
1512
1513         return 0;
1514 }
1515
1516 #ifdef CONFIG_PM
1517 static int sh_mmcif_suspend(struct device *dev)
1518 {
1519         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1520         int ret = mmc_suspend_host(host->mmc);
1521
1522         if (!ret)
1523                 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1524
1525         return ret;
1526 }
1527
1528 static int sh_mmcif_resume(struct device *dev)
1529 {
1530         struct sh_mmcif_host *host = dev_get_drvdata(dev);
1531
1532         return mmc_resume_host(host->mmc);
1533 }
1534 #else
1535 #define sh_mmcif_suspend        NULL
1536 #define sh_mmcif_resume         NULL
1537 #endif  /* CONFIG_PM */
1538
1539 static const struct of_device_id mmcif_of_match[] = {
1540         { .compatible = "renesas,sh-mmcif" },
1541         { }
1542 };
1543 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1544
1545 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1546         .suspend = sh_mmcif_suspend,
1547         .resume = sh_mmcif_resume,
1548 };
1549
1550 static struct platform_driver sh_mmcif_driver = {
1551         .probe          = sh_mmcif_probe,
1552         .remove         = sh_mmcif_remove,
1553         .driver         = {
1554                 .name   = DRIVER_NAME,
1555                 .pm     = &sh_mmcif_dev_pm_ops,
1556                 .owner  = THIS_MODULE,
1557                 .of_match_table = mmcif_of_match,
1558         },
1559 };
1560
1561 module_platform_driver(sh_mmcif_driver);
1562
1563 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1564 MODULE_LICENSE("GPL");
1565 MODULE_ALIAS("platform:" DRIVER_NAME);
1566 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");