mtd: nand: pxa3xx: Add a local loop variable
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  *  Copyright © 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13  *
14  *     Derived from Das U-Boot source code
15  *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *  Add Programmable Multibit ECC support for various AT91 SoC
19  *     © Copyright 2012 ATMEL, Hong Xu
20  *
21  *  Add Nand Flash Controller support for SAMA5 SoC
22  *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29
30 #include <linux/dma-mapping.h>
31 #include <linux/slab.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/platform_device.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_gpio.h>
38 #include <linux/of_mtd.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/partitions.h>
42
43 #include <linux/delay.h>
44 #include <linux/dmaengine.h>
45 #include <linux/gpio.h>
46 #include <linux/interrupt.h>
47 #include <linux/io.h>
48 #include <linux/platform_data/atmel.h>
49
50 static int use_dma = 1;
51 module_param(use_dma, int, 0);
52
53 static int on_flash_bbt = 0;
54 module_param(on_flash_bbt, int, 0);
55
56 /* Register access macros */
57 #define ecc_readl(add, reg)                             \
58         __raw_readl(add + ATMEL_ECC_##reg)
59 #define ecc_writel(add, reg, value)                     \
60         __raw_writel((value), add + ATMEL_ECC_##reg)
61
62 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
63 #include "atmel_nand_nfc.h"     /* Nand Flash Controller definition */
64
65 /* oob layout for large page size
66  * bad block info is on bytes 0 and 1
67  * the bytes have to be consecutives to avoid
68  * several NAND_CMD_RNDOUT during read
69  */
70 static struct nand_ecclayout atmel_oobinfo_large = {
71         .eccbytes = 4,
72         .eccpos = {60, 61, 62, 63},
73         .oobfree = {
74                 {2, 58}
75         },
76 };
77
78 /* oob layout for small page size
79  * bad block info is on bytes 4 and 5
80  * the bytes have to be consecutives to avoid
81  * several NAND_CMD_RNDOUT during read
82  */
83 static struct nand_ecclayout atmel_oobinfo_small = {
84         .eccbytes = 4,
85         .eccpos = {0, 1, 2, 3},
86         .oobfree = {
87                 {6, 10}
88         },
89 };
90
91 struct atmel_nfc {
92         void __iomem            *base_cmd_regs;
93         void __iomem            *hsmc_regs;
94         void __iomem            *sram_bank0;
95         dma_addr_t              sram_bank0_phys;
96         bool                    use_nfc_sram;
97         bool                    write_by_sram;
98
99         bool                    is_initialized;
100         struct completion       comp_nfc;
101
102         /* Point to the sram bank which include readed data via NFC */
103         void __iomem            *data_in_sram;
104         bool                    will_write_sram;
105 };
106 static struct atmel_nfc nand_nfc;
107
108 struct atmel_nand_host {
109         struct nand_chip        nand_chip;
110         struct mtd_info         mtd;
111         void __iomem            *io_base;
112         dma_addr_t              io_phys;
113         struct atmel_nand_data  board;
114         struct device           *dev;
115         void __iomem            *ecc;
116
117         struct completion       comp;
118         struct dma_chan         *dma_chan;
119
120         struct atmel_nfc        *nfc;
121
122         bool                    has_pmecc;
123         u8                      pmecc_corr_cap;
124         u16                     pmecc_sector_size;
125         u32                     pmecc_lookup_table_offset;
126         u32                     pmecc_lookup_table_offset_512;
127         u32                     pmecc_lookup_table_offset_1024;
128
129         int                     pmecc_bytes_per_sector;
130         int                     pmecc_sector_number;
131         int                     pmecc_degree;   /* Degree of remainders */
132         int                     pmecc_cw_len;   /* Length of codeword */
133
134         void __iomem            *pmerrloc_base;
135         void __iomem            *pmecc_rom_base;
136
137         /* lookup table for alpha_to and index_of */
138         void __iomem            *pmecc_alpha_to;
139         void __iomem            *pmecc_index_of;
140
141         /* data for pmecc computation */
142         int16_t                 *pmecc_partial_syn;
143         int16_t                 *pmecc_si;
144         int16_t                 *pmecc_smu;     /* Sigma table */
145         int16_t                 *pmecc_lmu;     /* polynomal order */
146         int                     *pmecc_mu;
147         int                     *pmecc_dmu;
148         int                     *pmecc_delta;
149 };
150
151 static struct nand_ecclayout atmel_pmecc_oobinfo;
152
153 /*
154  * Enable NAND.
155  */
156 static void atmel_nand_enable(struct atmel_nand_host *host)
157 {
158         if (gpio_is_valid(host->board.enable_pin))
159                 gpio_set_value(host->board.enable_pin, 0);
160 }
161
162 /*
163  * Disable NAND.
164  */
165 static void atmel_nand_disable(struct atmel_nand_host *host)
166 {
167         if (gpio_is_valid(host->board.enable_pin))
168                 gpio_set_value(host->board.enable_pin, 1);
169 }
170
171 /*
172  * Hardware specific access to control-lines
173  */
174 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
175 {
176         struct nand_chip *nand_chip = mtd->priv;
177         struct atmel_nand_host *host = nand_chip->priv;
178
179         if (ctrl & NAND_CTRL_CHANGE) {
180                 if (ctrl & NAND_NCE)
181                         atmel_nand_enable(host);
182                 else
183                         atmel_nand_disable(host);
184         }
185         if (cmd == NAND_CMD_NONE)
186                 return;
187
188         if (ctrl & NAND_CLE)
189                 writeb(cmd, host->io_base + (1 << host->board.cle));
190         else
191                 writeb(cmd, host->io_base + (1 << host->board.ale));
192 }
193
194 /*
195  * Read the Device Ready pin.
196  */
197 static int atmel_nand_device_ready(struct mtd_info *mtd)
198 {
199         struct nand_chip *nand_chip = mtd->priv;
200         struct atmel_nand_host *host = nand_chip->priv;
201
202         return gpio_get_value(host->board.rdy_pin) ^
203                 !!host->board.rdy_pin_active_low;
204 }
205
206 /* Set up for hardware ready pin and enable pin. */
207 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
208 {
209         struct nand_chip *chip = mtd->priv;
210         struct atmel_nand_host *host = chip->priv;
211         int res = 0;
212
213         if (gpio_is_valid(host->board.rdy_pin)) {
214                 res = devm_gpio_request(host->dev,
215                                 host->board.rdy_pin, "nand_rdy");
216                 if (res < 0) {
217                         dev_err(host->dev,
218                                 "can't request rdy gpio %d\n",
219                                 host->board.rdy_pin);
220                         return res;
221                 }
222
223                 res = gpio_direction_input(host->board.rdy_pin);
224                 if (res < 0) {
225                         dev_err(host->dev,
226                                 "can't request input direction rdy gpio %d\n",
227                                 host->board.rdy_pin);
228                         return res;
229                 }
230
231                 chip->dev_ready = atmel_nand_device_ready;
232         }
233
234         if (gpio_is_valid(host->board.enable_pin)) {
235                 res = devm_gpio_request(host->dev,
236                                 host->board.enable_pin, "nand_enable");
237                 if (res < 0) {
238                         dev_err(host->dev,
239                                 "can't request enable gpio %d\n",
240                                 host->board.enable_pin);
241                         return res;
242                 }
243
244                 res = gpio_direction_output(host->board.enable_pin, 1);
245                 if (res < 0) {
246                         dev_err(host->dev,
247                                 "can't request output direction enable gpio %d\n",
248                                 host->board.enable_pin);
249                         return res;
250                 }
251         }
252
253         return res;
254 }
255
256 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
257 {
258         int i;
259         u32 *t = trg;
260         const __iomem u32 *s = src;
261
262         for (i = 0; i < (size >> 2); i++)
263                 *t++ = readl_relaxed(s++);
264 }
265
266 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
267 {
268         int i;
269         u32 __iomem *t = trg;
270         const u32 *s = src;
271
272         for (i = 0; i < (size >> 2); i++)
273                 writel_relaxed(*s++, t++);
274 }
275
276 /*
277  * Minimal-overhead PIO for data access.
278  */
279 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
280 {
281         struct nand_chip        *nand_chip = mtd->priv;
282         struct atmel_nand_host *host = nand_chip->priv;
283
284         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
285                 memcpy32_fromio(buf, host->nfc->data_in_sram, len);
286                 host->nfc->data_in_sram += len;
287         } else {
288                 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
289         }
290 }
291
292 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
293 {
294         struct nand_chip        *nand_chip = mtd->priv;
295         struct atmel_nand_host *host = nand_chip->priv;
296
297         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
298                 memcpy32_fromio(buf, host->nfc->data_in_sram, len);
299                 host->nfc->data_in_sram += len;
300         } else {
301                 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
302         }
303 }
304
305 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
306 {
307         struct nand_chip        *nand_chip = mtd->priv;
308
309         __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
310 }
311
312 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
313 {
314         struct nand_chip        *nand_chip = mtd->priv;
315
316         __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
317 }
318
319 static void dma_complete_func(void *completion)
320 {
321         complete(completion);
322 }
323
324 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
325 {
326         /* NFC only has two banks. Must be 0 or 1 */
327         if (bank > 1)
328                 return -EINVAL;
329
330         if (bank) {
331                 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
332                 if (host->mtd.writesize > 2048)
333                         return -EINVAL;
334                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
335         } else {
336                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
337         }
338
339         return 0;
340 }
341
342 static uint nfc_get_sram_off(struct atmel_nand_host *host)
343 {
344         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
345                 return NFC_SRAM_BANK1_OFFSET;
346         else
347                 return 0;
348 }
349
350 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
351 {
352         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
353                 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
354         else
355                 return host->nfc->sram_bank0_phys;
356 }
357
358 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
359                                int is_read)
360 {
361         struct dma_device *dma_dev;
362         enum dma_ctrl_flags flags;
363         dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
364         struct dma_async_tx_descriptor *tx = NULL;
365         dma_cookie_t cookie;
366         struct nand_chip *chip = mtd->priv;
367         struct atmel_nand_host *host = chip->priv;
368         void *p = buf;
369         int err = -EIO;
370         enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
371         struct atmel_nfc *nfc = host->nfc;
372
373         if (buf >= high_memory)
374                 goto err_buf;
375
376         dma_dev = host->dma_chan->device;
377
378         flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
379                 DMA_COMPL_SKIP_DEST_UNMAP;
380
381         phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
382         if (dma_mapping_error(dma_dev->dev, phys_addr)) {
383                 dev_err(host->dev, "Failed to dma_map_single\n");
384                 goto err_buf;
385         }
386
387         if (is_read) {
388                 if (nfc && nfc->data_in_sram)
389                         dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
390                                 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
391                 else
392                         dma_src_addr = host->io_phys;
393
394                 dma_dst_addr = phys_addr;
395         } else {
396                 dma_src_addr = phys_addr;
397
398                 if (nfc && nfc->write_by_sram)
399                         dma_dst_addr = nfc_sram_phys(host);
400                 else
401                         dma_dst_addr = host->io_phys;
402         }
403
404         tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
405                                              dma_src_addr, len, flags);
406         if (!tx) {
407                 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
408                 goto err_dma;
409         }
410
411         init_completion(&host->comp);
412         tx->callback = dma_complete_func;
413         tx->callback_param = &host->comp;
414
415         cookie = tx->tx_submit(tx);
416         if (dma_submit_error(cookie)) {
417                 dev_err(host->dev, "Failed to do DMA tx_submit\n");
418                 goto err_dma;
419         }
420
421         dma_async_issue_pending(host->dma_chan);
422         wait_for_completion(&host->comp);
423
424         if (is_read && nfc && nfc->data_in_sram)
425                 /* After read data from SRAM, need to increase the position */
426                 nfc->data_in_sram += len;
427
428         err = 0;
429
430 err_dma:
431         dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
432 err_buf:
433         if (err != 0)
434                 dev_warn(host->dev, "Fall back to CPU I/O\n");
435         return err;
436 }
437
438 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
439 {
440         struct nand_chip *chip = mtd->priv;
441         struct atmel_nand_host *host = chip->priv;
442
443         if (use_dma && len > mtd->oobsize)
444                 /* only use DMA for bigger than oob size: better performances */
445                 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
446                         return;
447
448         if (host->board.bus_width_16)
449                 atmel_read_buf16(mtd, buf, len);
450         else
451                 atmel_read_buf8(mtd, buf, len);
452 }
453
454 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
455 {
456         struct nand_chip *chip = mtd->priv;
457         struct atmel_nand_host *host = chip->priv;
458
459         if (use_dma && len > mtd->oobsize)
460                 /* only use DMA for bigger than oob size: better performances */
461                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
462                         return;
463
464         if (host->board.bus_width_16)
465                 atmel_write_buf16(mtd, buf, len);
466         else
467                 atmel_write_buf8(mtd, buf, len);
468 }
469
470 /*
471  * Return number of ecc bytes per sector according to sector size and
472  * correction capability
473  *
474  * Following table shows what at91 PMECC supported:
475  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
476  * =====================        ================        =================
477  *                2-bits                 4-bytes                  4-bytes
478  *                4-bits                 7-bytes                  7-bytes
479  *                8-bits                13-bytes                 14-bytes
480  *               12-bits                20-bytes                 21-bytes
481  *               24-bits                39-bytes                 42-bytes
482  */
483 static int pmecc_get_ecc_bytes(int cap, int sector_size)
484 {
485         int m = 12 + sector_size / 512;
486         return (m * cap + 7) / 8;
487 }
488
489 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
490                                     int oobsize, int ecc_len)
491 {
492         int i;
493
494         layout->eccbytes = ecc_len;
495
496         /* ECC will occupy the last ecc_len bytes continuously */
497         for (i = 0; i < ecc_len; i++)
498                 layout->eccpos[i] = oobsize - ecc_len + i;
499
500         layout->oobfree[0].offset = 2;
501         layout->oobfree[0].length =
502                 oobsize - ecc_len - layout->oobfree[0].offset;
503 }
504
505 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
506 {
507         int table_size;
508
509         table_size = host->pmecc_sector_size == 512 ?
510                 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
511
512         return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
513                         table_size * sizeof(int16_t);
514 }
515
516 static int pmecc_data_alloc(struct atmel_nand_host *host)
517 {
518         const int cap = host->pmecc_corr_cap;
519         int size;
520
521         size = (2 * cap + 1) * sizeof(int16_t);
522         host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
523         host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
524         host->pmecc_lmu = devm_kzalloc(host->dev,
525                         (cap + 1) * sizeof(int16_t), GFP_KERNEL);
526         host->pmecc_smu = devm_kzalloc(host->dev,
527                         (cap + 2) * size, GFP_KERNEL);
528
529         size = (cap + 1) * sizeof(int);
530         host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
531         host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
532         host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
533
534         if (!host->pmecc_partial_syn ||
535                 !host->pmecc_si ||
536                 !host->pmecc_lmu ||
537                 !host->pmecc_smu ||
538                 !host->pmecc_mu ||
539                 !host->pmecc_dmu ||
540                 !host->pmecc_delta)
541                 return -ENOMEM;
542
543         return 0;
544 }
545
546 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
547 {
548         struct nand_chip *nand_chip = mtd->priv;
549         struct atmel_nand_host *host = nand_chip->priv;
550         int i;
551         uint32_t value;
552
553         /* Fill odd syndromes */
554         for (i = 0; i < host->pmecc_corr_cap; i++) {
555                 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
556                 if (i & 1)
557                         value >>= 16;
558                 value &= 0xffff;
559                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
560         }
561 }
562
563 static void pmecc_substitute(struct mtd_info *mtd)
564 {
565         struct nand_chip *nand_chip = mtd->priv;
566         struct atmel_nand_host *host = nand_chip->priv;
567         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
568         int16_t __iomem *index_of = host->pmecc_index_of;
569         int16_t *partial_syn = host->pmecc_partial_syn;
570         const int cap = host->pmecc_corr_cap;
571         int16_t *si;
572         int i, j;
573
574         /* si[] is a table that holds the current syndrome value,
575          * an element of that table belongs to the field
576          */
577         si = host->pmecc_si;
578
579         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
580
581         /* Computation 2t syndromes based on S(x) */
582         /* Odd syndromes */
583         for (i = 1; i < 2 * cap; i += 2) {
584                 for (j = 0; j < host->pmecc_degree; j++) {
585                         if (partial_syn[i] & ((unsigned short)0x1 << j))
586                                 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
587                 }
588         }
589         /* Even syndrome = (Odd syndrome) ** 2 */
590         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
591                 if (si[j] == 0) {
592                         si[i] = 0;
593                 } else {
594                         int16_t tmp;
595
596                         tmp = readw_relaxed(index_of + si[j]);
597                         tmp = (tmp * 2) % host->pmecc_cw_len;
598                         si[i] = readw_relaxed(alpha_to + tmp);
599                 }
600         }
601
602         return;
603 }
604
605 static void pmecc_get_sigma(struct mtd_info *mtd)
606 {
607         struct nand_chip *nand_chip = mtd->priv;
608         struct atmel_nand_host *host = nand_chip->priv;
609
610         int16_t *lmu = host->pmecc_lmu;
611         int16_t *si = host->pmecc_si;
612         int *mu = host->pmecc_mu;
613         int *dmu = host->pmecc_dmu;     /* Discrepancy */
614         int *delta = host->pmecc_delta; /* Delta order */
615         int cw_len = host->pmecc_cw_len;
616         const int16_t cap = host->pmecc_corr_cap;
617         const int num = 2 * cap + 1;
618         int16_t __iomem *index_of = host->pmecc_index_of;
619         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
620         int i, j, k;
621         uint32_t dmu_0_count, tmp;
622         int16_t *smu = host->pmecc_smu;
623
624         /* index of largest delta */
625         int ro;
626         int largest;
627         int diff;
628
629         dmu_0_count = 0;
630
631         /* First Row */
632
633         /* Mu */
634         mu[0] = -1;
635
636         memset(smu, 0, sizeof(int16_t) * num);
637         smu[0] = 1;
638
639         /* discrepancy set to 1 */
640         dmu[0] = 1;
641         /* polynom order set to 0 */
642         lmu[0] = 0;
643         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
644
645         /* Second Row */
646
647         /* Mu */
648         mu[1] = 0;
649         /* Sigma(x) set to 1 */
650         memset(&smu[num], 0, sizeof(int16_t) * num);
651         smu[num] = 1;
652
653         /* discrepancy set to S1 */
654         dmu[1] = si[1];
655
656         /* polynom order set to 0 */
657         lmu[1] = 0;
658
659         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
660
661         /* Init the Sigma(x) last row */
662         memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
663
664         for (i = 1; i <= cap; i++) {
665                 mu[i + 1] = i << 1;
666                 /* Begin Computing Sigma (Mu+1) and L(mu) */
667                 /* check if discrepancy is set to 0 */
668                 if (dmu[i] == 0) {
669                         dmu_0_count++;
670
671                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
672                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
673                                 tmp += 2;
674                         else
675                                 tmp += 1;
676
677                         if (dmu_0_count == tmp) {
678                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
679                                         smu[(cap + 1) * num + j] =
680                                                         smu[i * num + j];
681
682                                 lmu[cap + 1] = lmu[i];
683                                 return;
684                         }
685
686                         /* copy polynom */
687                         for (j = 0; j <= lmu[i] >> 1; j++)
688                                 smu[(i + 1) * num + j] = smu[i * num + j];
689
690                         /* copy previous polynom order to the next */
691                         lmu[i + 1] = lmu[i];
692                 } else {
693                         ro = 0;
694                         largest = -1;
695                         /* find largest delta with dmu != 0 */
696                         for (j = 0; j < i; j++) {
697                                 if ((dmu[j]) && (delta[j] > largest)) {
698                                         largest = delta[j];
699                                         ro = j;
700                                 }
701                         }
702
703                         /* compute difference */
704                         diff = (mu[i] - mu[ro]);
705
706                         /* Compute degree of the new smu polynomial */
707                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
708                                 lmu[i + 1] = lmu[i];
709                         else
710                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
711
712                         /* Init smu[i+1] with 0 */
713                         for (k = 0; k < num; k++)
714                                 smu[(i + 1) * num + k] = 0;
715
716                         /* Compute smu[i+1] */
717                         for (k = 0; k <= lmu[ro] >> 1; k++) {
718                                 int16_t a, b, c;
719
720                                 if (!(smu[ro * num + k] && dmu[i]))
721                                         continue;
722                                 a = readw_relaxed(index_of + dmu[i]);
723                                 b = readw_relaxed(index_of + dmu[ro]);
724                                 c = readw_relaxed(index_of + smu[ro * num + k]);
725                                 tmp = a + (cw_len - b) + c;
726                                 a = readw_relaxed(alpha_to + tmp % cw_len);
727                                 smu[(i + 1) * num + (k + diff)] = a;
728                         }
729
730                         for (k = 0; k <= lmu[i] >> 1; k++)
731                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
732                 }
733
734                 /* End Computing Sigma (Mu+1) and L(mu) */
735                 /* In either case compute delta */
736                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
737
738                 /* Do not compute discrepancy for the last iteration */
739                 if (i >= cap)
740                         continue;
741
742                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
743                         tmp = 2 * (i - 1);
744                         if (k == 0) {
745                                 dmu[i + 1] = si[tmp + 3];
746                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
747                                 int16_t a, b, c;
748                                 a = readw_relaxed(index_of +
749                                                 smu[(i + 1) * num + k]);
750                                 b = si[2 * (i - 1) + 3 - k];
751                                 c = readw_relaxed(index_of + b);
752                                 tmp = a + c;
753                                 tmp %= cw_len;
754                                 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
755                                         dmu[i + 1];
756                         }
757                 }
758         }
759
760         return;
761 }
762
763 static int pmecc_err_location(struct mtd_info *mtd)
764 {
765         struct nand_chip *nand_chip = mtd->priv;
766         struct atmel_nand_host *host = nand_chip->priv;
767         unsigned long end_time;
768         const int cap = host->pmecc_corr_cap;
769         const int num = 2 * cap + 1;
770         int sector_size = host->pmecc_sector_size;
771         int err_nbr = 0;        /* number of error */
772         int roots_nbr;          /* number of roots */
773         int i;
774         uint32_t val;
775         int16_t *smu = host->pmecc_smu;
776
777         pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
778
779         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
780                 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
781                                       smu[(cap + 1) * num + i]);
782                 err_nbr++;
783         }
784
785         val = (err_nbr - 1) << 16;
786         if (sector_size == 1024)
787                 val |= 1;
788
789         pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
790         pmerrloc_writel(host->pmerrloc_base, ELEN,
791                         sector_size * 8 + host->pmecc_degree * cap);
792
793         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
794         while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
795                  & PMERRLOC_CALC_DONE)) {
796                 if (unlikely(time_after(jiffies, end_time))) {
797                         dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
798                         return -1;
799                 }
800                 cpu_relax();
801         }
802
803         roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
804                 & PMERRLOC_ERR_NUM_MASK) >> 8;
805         /* Number of roots == degree of smu hence <= cap */
806         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
807                 return err_nbr - 1;
808
809         /* Number of roots does not match the degree of smu
810          * unable to correct error */
811         return -1;
812 }
813
814 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
815                 int sector_num, int extra_bytes, int err_nbr)
816 {
817         struct nand_chip *nand_chip = mtd->priv;
818         struct atmel_nand_host *host = nand_chip->priv;
819         int i = 0;
820         int byte_pos, bit_pos, sector_size, pos;
821         uint32_t tmp;
822         uint8_t err_byte;
823
824         sector_size = host->pmecc_sector_size;
825
826         while (err_nbr) {
827                 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
828                 byte_pos = tmp / 8;
829                 bit_pos  = tmp % 8;
830
831                 if (byte_pos >= (sector_size + extra_bytes))
832                         BUG();  /* should never happen */
833
834                 if (byte_pos < sector_size) {
835                         err_byte = *(buf + byte_pos);
836                         *(buf + byte_pos) ^= (1 << bit_pos);
837
838                         pos = sector_num * host->pmecc_sector_size + byte_pos;
839                         dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
840                                 pos, bit_pos, err_byte, *(buf + byte_pos));
841                 } else {
842                         /* Bit flip in OOB area */
843                         tmp = sector_num * host->pmecc_bytes_per_sector
844                                         + (byte_pos - sector_size);
845                         err_byte = ecc[tmp];
846                         ecc[tmp] ^= (1 << bit_pos);
847
848                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
849                         dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
850                                 pos, bit_pos, err_byte, ecc[tmp]);
851                 }
852
853                 i++;
854                 err_nbr--;
855         }
856
857         return;
858 }
859
860 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
861         u8 *ecc)
862 {
863         struct nand_chip *nand_chip = mtd->priv;
864         struct atmel_nand_host *host = nand_chip->priv;
865         int i, err_nbr, eccbytes;
866         uint8_t *buf_pos;
867         int total_err = 0;
868
869         eccbytes = nand_chip->ecc.bytes;
870         for (i = 0; i < eccbytes; i++)
871                 if (ecc[i] != 0xff)
872                         goto normal_check;
873         /* Erased page, return OK */
874         return 0;
875
876 normal_check:
877         for (i = 0; i < host->pmecc_sector_number; i++) {
878                 err_nbr = 0;
879                 if (pmecc_stat & 0x1) {
880                         buf_pos = buf + i * host->pmecc_sector_size;
881
882                         pmecc_gen_syndrome(mtd, i);
883                         pmecc_substitute(mtd);
884                         pmecc_get_sigma(mtd);
885
886                         err_nbr = pmecc_err_location(mtd);
887                         if (err_nbr == -1) {
888                                 dev_err(host->dev, "PMECC: Too many errors\n");
889                                 mtd->ecc_stats.failed++;
890                                 return -EIO;
891                         } else {
892                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
893                                         host->pmecc_bytes_per_sector, err_nbr);
894                                 mtd->ecc_stats.corrected += err_nbr;
895                                 total_err += err_nbr;
896                         }
897                 }
898                 pmecc_stat >>= 1;
899         }
900
901         return total_err;
902 }
903
904 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
905 {
906         u32 val;
907
908         if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
909                 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
910                 return;
911         }
912
913         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
914         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
915         val = pmecc_readl_relaxed(host->ecc, CFG);
916
917         if (ecc_op == NAND_ECC_READ)
918                 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
919                         | PMECC_CFG_AUTO_ENABLE);
920         else
921                 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
922                         & ~PMECC_CFG_AUTO_ENABLE);
923
924         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
925         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
926 }
927
928 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
929         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
930 {
931         struct atmel_nand_host *host = chip->priv;
932         int eccsize = chip->ecc.size;
933         uint8_t *oob = chip->oob_poi;
934         uint32_t *eccpos = chip->ecc.layout->eccpos;
935         uint32_t stat;
936         unsigned long end_time;
937         int bitflips = 0;
938
939         if (!host->nfc || !host->nfc->use_nfc_sram)
940                 pmecc_enable(host, NAND_ECC_READ);
941
942         chip->read_buf(mtd, buf, eccsize);
943         chip->read_buf(mtd, oob, mtd->oobsize);
944
945         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
946         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
947                 if (unlikely(time_after(jiffies, end_time))) {
948                         dev_err(host->dev, "PMECC: Timeout to get error status.\n");
949                         return -EIO;
950                 }
951                 cpu_relax();
952         }
953
954         stat = pmecc_readl_relaxed(host->ecc, ISR);
955         if (stat != 0) {
956                 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
957                 if (bitflips < 0)
958                         /* uncorrectable errors */
959                         return 0;
960         }
961
962         return bitflips;
963 }
964
965 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
966                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
967 {
968         struct atmel_nand_host *host = chip->priv;
969         uint32_t *eccpos = chip->ecc.layout->eccpos;
970         int i, j;
971         unsigned long end_time;
972
973         if (!host->nfc || !host->nfc->write_by_sram) {
974                 pmecc_enable(host, NAND_ECC_WRITE);
975                 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
976         }
977
978         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
979         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
980                 if (unlikely(time_after(jiffies, end_time))) {
981                         dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
982                         return -EIO;
983                 }
984                 cpu_relax();
985         }
986
987         for (i = 0; i < host->pmecc_sector_number; i++) {
988                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
989                         int pos;
990
991                         pos = i * host->pmecc_bytes_per_sector + j;
992                         chip->oob_poi[eccpos[pos]] =
993                                 pmecc_readb_ecc_relaxed(host->ecc, i, j);
994                 }
995         }
996         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
997
998         return 0;
999 }
1000
1001 static void atmel_pmecc_core_init(struct mtd_info *mtd)
1002 {
1003         struct nand_chip *nand_chip = mtd->priv;
1004         struct atmel_nand_host *host = nand_chip->priv;
1005         uint32_t val = 0;
1006         struct nand_ecclayout *ecc_layout;
1007
1008         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1009         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1010
1011         switch (host->pmecc_corr_cap) {
1012         case 2:
1013                 val = PMECC_CFG_BCH_ERR2;
1014                 break;
1015         case 4:
1016                 val = PMECC_CFG_BCH_ERR4;
1017                 break;
1018         case 8:
1019                 val = PMECC_CFG_BCH_ERR8;
1020                 break;
1021         case 12:
1022                 val = PMECC_CFG_BCH_ERR12;
1023                 break;
1024         case 24:
1025                 val = PMECC_CFG_BCH_ERR24;
1026                 break;
1027         }
1028
1029         if (host->pmecc_sector_size == 512)
1030                 val |= PMECC_CFG_SECTOR512;
1031         else if (host->pmecc_sector_size == 1024)
1032                 val |= PMECC_CFG_SECTOR1024;
1033
1034         switch (host->pmecc_sector_number) {
1035         case 1:
1036                 val |= PMECC_CFG_PAGE_1SECTOR;
1037                 break;
1038         case 2:
1039                 val |= PMECC_CFG_PAGE_2SECTORS;
1040                 break;
1041         case 4:
1042                 val |= PMECC_CFG_PAGE_4SECTORS;
1043                 break;
1044         case 8:
1045                 val |= PMECC_CFG_PAGE_8SECTORS;
1046                 break;
1047         }
1048
1049         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1050                 | PMECC_CFG_AUTO_DISABLE);
1051         pmecc_writel(host->ecc, CFG, val);
1052
1053         ecc_layout = nand_chip->ecc.layout;
1054         pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1055         pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1056         pmecc_writel(host->ecc, EADDR,
1057                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1058         /* See datasheet about PMECC Clock Control Register */
1059         pmecc_writel(host->ecc, CLK, 2);
1060         pmecc_writel(host->ecc, IDR, 0xff);
1061         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1062 }
1063
1064 /*
1065  * Get ECC requirement in ONFI parameters, returns -1 if ONFI
1066  * parameters is not supported.
1067  * return 0 if success to get the ECC requirement.
1068  */
1069 static int get_onfi_ecc_param(struct nand_chip *chip,
1070                 int *ecc_bits, int *sector_size)
1071 {
1072         *ecc_bits = *sector_size = 0;
1073
1074         if (chip->onfi_params.ecc_bits == 0xff)
1075                 /* TODO: the sector_size and ecc_bits need to be find in
1076                  * extended ecc parameter, currently we don't support it.
1077                  */
1078                 return -1;
1079
1080         *ecc_bits = chip->onfi_params.ecc_bits;
1081
1082         /* The default sector size (ecc codeword size) is 512 */
1083         *sector_size = 512;
1084
1085         return 0;
1086 }
1087
1088 /*
1089  * Get ecc requirement from ONFI parameters ecc requirement.
1090  * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1091  * will set them according to ONFI ecc requirement. Otherwise, use the
1092  * value in DTS file.
1093  * return 0 if success. otherwise return error code.
1094  */
1095 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1096                 int *cap, int *sector_size)
1097 {
1098         /* Get ECC requirement from ONFI parameters */
1099         *cap = *sector_size = 0;
1100         if (host->nand_chip.onfi_version) {
1101                 if (!get_onfi_ecc_param(&host->nand_chip, cap, sector_size))
1102                         dev_info(host->dev, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
1103                                 *cap, *sector_size);
1104                 else
1105                         dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
1106         } else {
1107                 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
1108         }
1109         if (*cap == 0 && *sector_size == 0) {
1110                 *cap = 2;
1111                 *sector_size = 512;
1112         }
1113
1114         /* If dts file doesn't specify then use the one in ONFI parameters */
1115         if (host->pmecc_corr_cap == 0) {
1116                 /* use the most fitable ecc bits (the near bigger one ) */
1117                 if (*cap <= 2)
1118                         host->pmecc_corr_cap = 2;
1119                 else if (*cap <= 4)
1120                         host->pmecc_corr_cap = 4;
1121                 else if (*cap <= 8)
1122                         host->pmecc_corr_cap = 8;
1123                 else if (*cap <= 12)
1124                         host->pmecc_corr_cap = 12;
1125                 else if (*cap <= 24)
1126                         host->pmecc_corr_cap = 24;
1127                 else
1128                         return -EINVAL;
1129         }
1130         if (host->pmecc_sector_size == 0) {
1131                 /* use the most fitable sector size (the near smaller one ) */
1132                 if (*sector_size >= 1024)
1133                         host->pmecc_sector_size = 1024;
1134                 else if (*sector_size >= 512)
1135                         host->pmecc_sector_size = 512;
1136                 else
1137                         return -EINVAL;
1138         }
1139         return 0;
1140 }
1141
1142 static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
1143                                          struct atmel_nand_host *host)
1144 {
1145         struct mtd_info *mtd = &host->mtd;
1146         struct nand_chip *nand_chip = &host->nand_chip;
1147         struct resource *regs, *regs_pmerr, *regs_rom;
1148         int cap, sector_size, err_no;
1149
1150         err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1151         if (err_no) {
1152                 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1153                 return err_no;
1154         }
1155
1156         if (cap > host->pmecc_corr_cap ||
1157                         sector_size != host->pmecc_sector_size)
1158                 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1159
1160         cap = host->pmecc_corr_cap;
1161         sector_size = host->pmecc_sector_size;
1162         host->pmecc_lookup_table_offset = (sector_size == 512) ?
1163                         host->pmecc_lookup_table_offset_512 :
1164                         host->pmecc_lookup_table_offset_1024;
1165
1166         dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1167                  cap, sector_size);
1168
1169         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1170         if (!regs) {
1171                 dev_warn(host->dev,
1172                         "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1173                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1174                 return 0;
1175         }
1176
1177         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1178         if (IS_ERR(host->ecc)) {
1179                 dev_err(host->dev, "ioremap failed\n");
1180                 err_no = PTR_ERR(host->ecc);
1181                 goto err;
1182         }
1183
1184         regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1185         host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1186         if (IS_ERR(host->pmerrloc_base)) {
1187                 dev_err(host->dev,
1188                         "Can not get I/O resource for PMECC ERRLOC controller!\n");
1189                 err_no = PTR_ERR(host->pmerrloc_base);
1190                 goto err;
1191         }
1192
1193         regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1194         host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1195         if (IS_ERR(host->pmecc_rom_base)) {
1196                 dev_err(host->dev, "Can not get I/O resource for ROM!\n");
1197                 err_no = PTR_ERR(host->pmecc_rom_base);
1198                 goto err;
1199         }
1200
1201         /* ECC is calculated for the whole page (1 step) */
1202         nand_chip->ecc.size = mtd->writesize;
1203
1204         /* set ECC page size and oob layout */
1205         switch (mtd->writesize) {
1206         case 2048:
1207                 host->pmecc_degree = PMECC_GF_DIMENSION_13;
1208                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1209                 host->pmecc_sector_number = mtd->writesize / sector_size;
1210                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
1211                         cap, sector_size);
1212                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1213                 host->pmecc_index_of = host->pmecc_rom_base +
1214                         host->pmecc_lookup_table_offset;
1215
1216                 nand_chip->ecc.steps = 1;
1217                 nand_chip->ecc.strength = cap;
1218                 nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
1219                                        host->pmecc_sector_number;
1220                 if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
1221                         dev_err(host->dev, "No room for ECC bytes\n");
1222                         err_no = -EINVAL;
1223                         goto err;
1224                 }
1225                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1226                                         mtd->oobsize,
1227                                         nand_chip->ecc.bytes);
1228                 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1229                 break;
1230         case 512:
1231         case 1024:
1232         case 4096:
1233                 /* TODO */
1234                 dev_warn(host->dev,
1235                         "Unsupported page size for PMECC, use Software ECC\n");
1236         default:
1237                 /* page size not handled by HW ECC */
1238                 /* switching back to soft ECC */
1239                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1240                 return 0;
1241         }
1242
1243         /* Allocate data for PMECC computation */
1244         err_no = pmecc_data_alloc(host);
1245         if (err_no) {
1246                 dev_err(host->dev,
1247                                 "Cannot allocate memory for PMECC computation!\n");
1248                 goto err;
1249         }
1250
1251         nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1252         nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1253
1254         atmel_pmecc_core_init(mtd);
1255
1256         return 0;
1257
1258 err:
1259         return err_no;
1260 }
1261
1262 /*
1263  * Calculate HW ECC
1264  *
1265  * function called after a write
1266  *
1267  * mtd:        MTD block structure
1268  * dat:        raw data (unused)
1269  * ecc_code:   buffer for ECC
1270  */
1271 static int atmel_nand_calculate(struct mtd_info *mtd,
1272                 const u_char *dat, unsigned char *ecc_code)
1273 {
1274         struct nand_chip *nand_chip = mtd->priv;
1275         struct atmel_nand_host *host = nand_chip->priv;
1276         unsigned int ecc_value;
1277
1278         /* get the first 2 ECC bytes */
1279         ecc_value = ecc_readl(host->ecc, PR);
1280
1281         ecc_code[0] = ecc_value & 0xFF;
1282         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1283
1284         /* get the last 2 ECC bytes */
1285         ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1286
1287         ecc_code[2] = ecc_value & 0xFF;
1288         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1289
1290         return 0;
1291 }
1292
1293 /*
1294  * HW ECC read page function
1295  *
1296  * mtd:        mtd info structure
1297  * chip:       nand chip info structure
1298  * buf:        buffer to store read data
1299  * oob_required:    caller expects OOB data read to chip->oob_poi
1300  */
1301 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1302                                 uint8_t *buf, int oob_required, int page)
1303 {
1304         int eccsize = chip->ecc.size;
1305         int eccbytes = chip->ecc.bytes;
1306         uint32_t *eccpos = chip->ecc.layout->eccpos;
1307         uint8_t *p = buf;
1308         uint8_t *oob = chip->oob_poi;
1309         uint8_t *ecc_pos;
1310         int stat;
1311         unsigned int max_bitflips = 0;
1312
1313         /*
1314          * Errata: ALE is incorrectly wired up to the ECC controller
1315          * on the AP7000, so it will include the address cycles in the
1316          * ECC calculation.
1317          *
1318          * Workaround: Reset the parity registers before reading the
1319          * actual data.
1320          */
1321         struct atmel_nand_host *host = chip->priv;
1322         if (host->board.need_reset_workaround)
1323                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1324
1325         /* read the page */
1326         chip->read_buf(mtd, p, eccsize);
1327
1328         /* move to ECC position if needed */
1329         if (eccpos[0] != 0) {
1330                 /* This only works on large pages
1331                  * because the ECC controller waits for
1332                  * NAND_CMD_RNDOUTSTART after the
1333                  * NAND_CMD_RNDOUT.
1334                  * anyway, for small pages, the eccpos[0] == 0
1335                  */
1336                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1337                                 mtd->writesize + eccpos[0], -1);
1338         }
1339
1340         /* the ECC controller needs to read the ECC just after the data */
1341         ecc_pos = oob + eccpos[0];
1342         chip->read_buf(mtd, ecc_pos, eccbytes);
1343
1344         /* check if there's an error */
1345         stat = chip->ecc.correct(mtd, p, oob, NULL);
1346
1347         if (stat < 0) {
1348                 mtd->ecc_stats.failed++;
1349         } else {
1350                 mtd->ecc_stats.corrected += stat;
1351                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1352         }
1353
1354         /* get back to oob start (end of page) */
1355         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1356
1357         /* read the oob */
1358         chip->read_buf(mtd, oob, mtd->oobsize);
1359
1360         return max_bitflips;
1361 }
1362
1363 /*
1364  * HW ECC Correction
1365  *
1366  * function called after a read
1367  *
1368  * mtd:        MTD block structure
1369  * dat:        raw data read from the chip
1370  * read_ecc:   ECC from the chip (unused)
1371  * isnull:     unused
1372  *
1373  * Detect and correct a 1 bit error for a page
1374  */
1375 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1376                 u_char *read_ecc, u_char *isnull)
1377 {
1378         struct nand_chip *nand_chip = mtd->priv;
1379         struct atmel_nand_host *host = nand_chip->priv;
1380         unsigned int ecc_status;
1381         unsigned int ecc_word, ecc_bit;
1382
1383         /* get the status from the Status Register */
1384         ecc_status = ecc_readl(host->ecc, SR);
1385
1386         /* if there's no error */
1387         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1388                 return 0;
1389
1390         /* get error bit offset (4 bits) */
1391         ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1392         /* get word address (12 bits) */
1393         ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1394         ecc_word >>= 4;
1395
1396         /* if there are multiple errors */
1397         if (ecc_status & ATMEL_ECC_MULERR) {
1398                 /* check if it is a freshly erased block
1399                  * (filled with 0xff) */
1400                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1401                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1402                         /* the block has just been erased, return OK */
1403                         return 0;
1404                 }
1405                 /* it doesn't seems to be a freshly
1406                  * erased block.
1407                  * We can't correct so many errors */
1408                 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1409                                 " Unable to correct.\n");
1410                 return -EIO;
1411         }
1412
1413         /* if there's a single bit error : we can correct it */
1414         if (ecc_status & ATMEL_ECC_ECCERR) {
1415                 /* there's nothing much to do here.
1416                  * the bit error is on the ECC itself.
1417                  */
1418                 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1419                                 " Nothing to correct\n");
1420                 return 0;
1421         }
1422
1423         dev_dbg(host->dev, "atmel_nand : one bit error on data."
1424                         " (word offset in the page :"
1425                         " 0x%x bit offset : 0x%x)\n",
1426                         ecc_word, ecc_bit);
1427         /* correct the error */
1428         if (nand_chip->options & NAND_BUSWIDTH_16) {
1429                 /* 16 bits words */
1430                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1431         } else {
1432                 /* 8 bits words */
1433                 dat[ecc_word] ^= (1 << ecc_bit);
1434         }
1435         dev_dbg(host->dev, "atmel_nand : error corrected\n");
1436         return 1;
1437 }
1438
1439 /*
1440  * Enable HW ECC : unused on most chips
1441  */
1442 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1443 {
1444         struct nand_chip *nand_chip = mtd->priv;
1445         struct atmel_nand_host *host = nand_chip->priv;
1446
1447         if (host->board.need_reset_workaround)
1448                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1449 }
1450
1451 #if defined(CONFIG_OF)
1452 static int atmel_of_init_port(struct atmel_nand_host *host,
1453                               struct device_node *np)
1454 {
1455         u32 val;
1456         u32 offset[2];
1457         int ecc_mode;
1458         struct atmel_nand_data *board = &host->board;
1459         enum of_gpio_flags flags;
1460
1461         if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1462                 if (val >= 32) {
1463                         dev_err(host->dev, "invalid addr-offset %u\n", val);
1464                         return -EINVAL;
1465                 }
1466                 board->ale = val;
1467         }
1468
1469         if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1470                 if (val >= 32) {
1471                         dev_err(host->dev, "invalid cmd-offset %u\n", val);
1472                         return -EINVAL;
1473                 }
1474                 board->cle = val;
1475         }
1476
1477         ecc_mode = of_get_nand_ecc_mode(np);
1478
1479         board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1480
1481         board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1482
1483         board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1484
1485         if (of_get_nand_bus_width(np) == 16)
1486                 board->bus_width_16 = 1;
1487
1488         board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1489         board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1490
1491         board->enable_pin = of_get_gpio(np, 1);
1492         board->det_pin = of_get_gpio(np, 2);
1493
1494         host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1495
1496         /* load the nfc driver if there is */
1497         of_platform_populate(np, NULL, NULL, host->dev);
1498
1499         if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1500                 return 0;       /* Not using PMECC */
1501
1502         /* use PMECC, get correction capability, sector size and lookup
1503          * table offset.
1504          * If correction bits and sector size are not specified, then find
1505          * them from NAND ONFI parameters.
1506          */
1507         if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1508                 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1509                                 (val != 24)) {
1510                         dev_err(host->dev,
1511                                 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1512                                 val);
1513                         return -EINVAL;
1514                 }
1515                 host->pmecc_corr_cap = (u8)val;
1516         }
1517
1518         if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1519                 if ((val != 512) && (val != 1024)) {
1520                         dev_err(host->dev,
1521                                 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1522                                 val);
1523                         return -EINVAL;
1524                 }
1525                 host->pmecc_sector_size = (u16)val;
1526         }
1527
1528         if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1529                         offset, 2) != 0) {
1530                 dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1531                 return -EINVAL;
1532         }
1533         if (!offset[0] && !offset[1]) {
1534                 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1535                 return -EINVAL;
1536         }
1537         host->pmecc_lookup_table_offset_512 = offset[0];
1538         host->pmecc_lookup_table_offset_1024 = offset[1];
1539
1540         return 0;
1541 }
1542 #else
1543 static int atmel_of_init_port(struct atmel_nand_host *host,
1544                               struct device_node *np)
1545 {
1546         return -EINVAL;
1547 }
1548 #endif
1549
1550 static int __init atmel_hw_nand_init_params(struct platform_device *pdev,
1551                                          struct atmel_nand_host *host)
1552 {
1553         struct mtd_info *mtd = &host->mtd;
1554         struct nand_chip *nand_chip = &host->nand_chip;
1555         struct resource         *regs;
1556
1557         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1558         if (!regs) {
1559                 dev_err(host->dev,
1560                         "Can't get I/O resource regs, use software ECC\n");
1561                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1562                 return 0;
1563         }
1564
1565         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1566         if (IS_ERR(host->ecc)) {
1567                 dev_err(host->dev, "ioremap failed\n");
1568                 return PTR_ERR(host->ecc);
1569         }
1570
1571         /* ECC is calculated for the whole page (1 step) */
1572         nand_chip->ecc.size = mtd->writesize;
1573
1574         /* set ECC page size and oob layout */
1575         switch (mtd->writesize) {
1576         case 512:
1577                 nand_chip->ecc.layout = &atmel_oobinfo_small;
1578                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1579                 break;
1580         case 1024:
1581                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1582                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1583                 break;
1584         case 2048:
1585                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1586                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1587                 break;
1588         case 4096:
1589                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1590                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1591                 break;
1592         default:
1593                 /* page size not handled by HW ECC */
1594                 /* switching back to soft ECC */
1595                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1596                 return 0;
1597         }
1598
1599         /* set up for HW ECC */
1600         nand_chip->ecc.calculate = atmel_nand_calculate;
1601         nand_chip->ecc.correct = atmel_nand_correct;
1602         nand_chip->ecc.hwctl = atmel_nand_hwctl;
1603         nand_chip->ecc.read_page = atmel_nand_read_page;
1604         nand_chip->ecc.bytes = 4;
1605         nand_chip->ecc.strength = 1;
1606
1607         return 0;
1608 }
1609
1610 /* SMC interrupt service routine */
1611 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1612 {
1613         struct atmel_nand_host *host = dev_id;
1614         u32 status, mask, pending;
1615         irqreturn_t ret = IRQ_HANDLED;
1616
1617         status = nfc_readl(host->nfc->hsmc_regs, SR);
1618         mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1619         pending = status & mask;
1620
1621         if (pending & NFC_SR_XFR_DONE) {
1622                 complete(&host->nfc->comp_nfc);
1623                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1624         } else if (pending & NFC_SR_RB_EDGE) {
1625                 complete(&host->nfc->comp_nfc);
1626                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1627         } else if (pending & NFC_SR_CMD_DONE) {
1628                 complete(&host->nfc->comp_nfc);
1629                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1630         } else {
1631                 ret = IRQ_NONE;
1632         }
1633
1634         return ret;
1635 }
1636
1637 /* NFC(Nand Flash Controller) related functions */
1638 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1639 {
1640         unsigned long timeout;
1641         init_completion(&host->nfc->comp_nfc);
1642
1643         /* Enable interrupt that need to wait for */
1644         nfc_writel(host->nfc->hsmc_regs, IER, flag);
1645
1646         timeout = wait_for_completion_timeout(&host->nfc->comp_nfc,
1647                         msecs_to_jiffies(NFC_TIME_OUT_MS));
1648         if (timeout)
1649                 return 0;
1650
1651         /* Time out to wait for the interrupt */
1652         dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1653         return -ETIMEDOUT;
1654 }
1655
1656 static int nfc_send_command(struct atmel_nand_host *host,
1657         unsigned int cmd, unsigned int addr, unsigned char cycle0)
1658 {
1659         unsigned long timeout;
1660         dev_dbg(host->dev,
1661                 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1662                 cmd, addr, cycle0);
1663
1664         timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1665         while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1666                         & NFCADDR_CMD_NFCBUSY) {
1667                 if (time_after(jiffies, timeout)) {
1668                         dev_err(host->dev,
1669                                 "Time out to wait CMD_NFCBUSY ready!\n");
1670                         return -ETIMEDOUT;
1671                 }
1672         }
1673         nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1674         nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1675         return nfc_wait_interrupt(host, NFC_SR_CMD_DONE);
1676 }
1677
1678 static int nfc_device_ready(struct mtd_info *mtd)
1679 {
1680         struct nand_chip *nand_chip = mtd->priv;
1681         struct atmel_nand_host *host = nand_chip->priv;
1682         if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE))
1683                 return 1;
1684         return 0;
1685 }
1686
1687 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1688 {
1689         struct nand_chip *nand_chip = mtd->priv;
1690         struct atmel_nand_host *host = nand_chip->priv;
1691
1692         if (chip == -1)
1693                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1694         else
1695                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1696 }
1697
1698 static int nfc_make_addr(struct mtd_info *mtd, int column, int page_addr,
1699                 unsigned int *addr1234, unsigned int *cycle0)
1700 {
1701         struct nand_chip *chip = mtd->priv;
1702
1703         int acycle = 0;
1704         unsigned char addr_bytes[8];
1705         int index = 0, bit_shift;
1706
1707         BUG_ON(addr1234 == NULL || cycle0 == NULL);
1708
1709         *cycle0 = 0;
1710         *addr1234 = 0;
1711
1712         if (column != -1) {
1713                 if (chip->options & NAND_BUSWIDTH_16)
1714                         column >>= 1;
1715                 addr_bytes[acycle++] = column & 0xff;
1716                 if (mtd->writesize > 512)
1717                         addr_bytes[acycle++] = (column >> 8) & 0xff;
1718         }
1719
1720         if (page_addr != -1) {
1721                 addr_bytes[acycle++] = page_addr & 0xff;
1722                 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1723                 if (chip->chipsize > (128 << 20))
1724                         addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1725         }
1726
1727         if (acycle > 4)
1728                 *cycle0 = addr_bytes[index++];
1729
1730         for (bit_shift = 0; index < acycle; bit_shift += 8)
1731                 *addr1234 += addr_bytes[index++] << bit_shift;
1732
1733         /* return acycle in cmd register */
1734         return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1735 }
1736
1737 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1738                                 int column, int page_addr)
1739 {
1740         struct nand_chip *chip = mtd->priv;
1741         struct atmel_nand_host *host = chip->priv;
1742         unsigned long timeout;
1743         unsigned int nfc_addr_cmd = 0;
1744
1745         unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1746
1747         /* Set default settings: no cmd2, no addr cycle. read from nand */
1748         unsigned int cmd2 = 0;
1749         unsigned int vcmd2 = 0;
1750         int acycle = NFCADDR_CMD_ACYCLE_NONE;
1751         int csid = NFCADDR_CMD_CSID_3;
1752         int dataen = NFCADDR_CMD_DATADIS;
1753         int nfcwr = NFCADDR_CMD_NFCRD;
1754         unsigned int addr1234 = 0;
1755         unsigned int cycle0 = 0;
1756         bool do_addr = true;
1757         host->nfc->data_in_sram = NULL;
1758
1759         dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1760              __func__, command, column, page_addr);
1761
1762         switch (command) {
1763         case NAND_CMD_RESET:
1764                 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1765                 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1766                 udelay(chip->chip_delay);
1767
1768                 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1769                 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1770                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1771                         if (time_after(jiffies, timeout)) {
1772                                 dev_err(host->dev,
1773                                         "Time out to wait status ready!\n");
1774                                 break;
1775                         }
1776                 }
1777                 return;
1778         case NAND_CMD_STATUS:
1779                 do_addr = false;
1780                 break;
1781         case NAND_CMD_PARAM:
1782         case NAND_CMD_READID:
1783                 do_addr = false;
1784                 acycle = NFCADDR_CMD_ACYCLE_1;
1785                 if (column != -1)
1786                         addr1234 = column;
1787                 break;
1788         case NAND_CMD_RNDOUT:
1789                 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1790                 vcmd2 = NFCADDR_CMD_VCMD2;
1791                 break;
1792         case NAND_CMD_READ0:
1793         case NAND_CMD_READOOB:
1794                 if (command == NAND_CMD_READOOB) {
1795                         column += mtd->writesize;
1796                         command = NAND_CMD_READ0; /* only READ0 is valid */
1797                         cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1798                 }
1799                 if (host->nfc->use_nfc_sram) {
1800                         /* Enable Data transfer to sram */
1801                         dataen = NFCADDR_CMD_DATAEN;
1802
1803                         /* Need enable PMECC now, since NFC will transfer
1804                          * data in bus after sending nfc read command.
1805                          */
1806                         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1807                                 pmecc_enable(host, NAND_ECC_READ);
1808                 }
1809
1810                 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1811                 vcmd2 = NFCADDR_CMD_VCMD2;
1812                 break;
1813         /* For prgramming command, the cmd need set to write enable */
1814         case NAND_CMD_PAGEPROG:
1815         case NAND_CMD_SEQIN:
1816         case NAND_CMD_RNDIN:
1817                 nfcwr = NFCADDR_CMD_NFCWR;
1818                 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1819                         dataen = NFCADDR_CMD_DATAEN;
1820                 break;
1821         default:
1822                 break;
1823         }
1824
1825         if (do_addr)
1826                 acycle = nfc_make_addr(mtd, column, page_addr, &addr1234,
1827                                 &cycle0);
1828
1829         nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1830         nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1831
1832         if (dataen == NFCADDR_CMD_DATAEN)
1833                 if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE))
1834                         dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n");
1835
1836         /*
1837          * Program and erase have their own busy handlers status, sequential
1838          * in, and deplete1 need no delay.
1839          */
1840         switch (command) {
1841         case NAND_CMD_CACHEDPROG:
1842         case NAND_CMD_PAGEPROG:
1843         case NAND_CMD_ERASE1:
1844         case NAND_CMD_ERASE2:
1845         case NAND_CMD_RNDIN:
1846         case NAND_CMD_STATUS:
1847         case NAND_CMD_RNDOUT:
1848         case NAND_CMD_SEQIN:
1849         case NAND_CMD_READID:
1850                 return;
1851
1852         case NAND_CMD_READ0:
1853                 if (dataen == NFCADDR_CMD_DATAEN) {
1854                         host->nfc->data_in_sram = host->nfc->sram_bank0 +
1855                                 nfc_get_sram_off(host);
1856                         return;
1857                 }
1858                 /* fall through */
1859         default:
1860                 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1861         }
1862 }
1863
1864 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1865                         uint32_t offset, int data_len, const uint8_t *buf,
1866                         int oob_required, int page, int cached, int raw)
1867 {
1868         int cfg, len;
1869         int status = 0;
1870         struct atmel_nand_host *host = chip->priv;
1871         void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1872
1873         /* Subpage write is not supported */
1874         if (offset || (data_len < mtd->writesize))
1875                 return -EINVAL;
1876
1877         cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1878         len = mtd->writesize;
1879
1880         if (unlikely(raw)) {
1881                 len += mtd->oobsize;
1882                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1883         } else
1884                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1885
1886         /* Copy page data to sram that will write to nand via NFC */
1887         if (use_dma) {
1888                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1889                         /* Fall back to use cpu copy */
1890                         memcpy32_toio(sram, buf, len);
1891         } else {
1892                 memcpy32_toio(sram, buf, len);
1893         }
1894
1895         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1896                 /*
1897                  * When use NFC sram, need set up PMECC before send
1898                  * NAND_CMD_SEQIN command. Since when the nand command
1899                  * is sent, nfc will do transfer from sram and nand.
1900                  */
1901                 pmecc_enable(host, NAND_ECC_WRITE);
1902
1903         host->nfc->will_write_sram = true;
1904         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1905         host->nfc->will_write_sram = false;
1906
1907         if (likely(!raw))
1908                 /* Need to write ecc into oob */
1909                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1910
1911         if (status < 0)
1912                 return status;
1913
1914         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1915         status = chip->waitfunc(mtd, chip);
1916
1917         if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1918                 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
1919
1920         if (status & NAND_STATUS_FAIL)
1921                 return -EIO;
1922
1923         return 0;
1924 }
1925
1926 static int nfc_sram_init(struct mtd_info *mtd)
1927 {
1928         struct nand_chip *chip = mtd->priv;
1929         struct atmel_nand_host *host = chip->priv;
1930         int res = 0;
1931
1932         /* Initialize the NFC CFG register */
1933         unsigned int cfg_nfc = 0;
1934
1935         /* set page size and oob layout */
1936         switch (mtd->writesize) {
1937         case 512:
1938                 cfg_nfc = NFC_CFG_PAGESIZE_512;
1939                 break;
1940         case 1024:
1941                 cfg_nfc = NFC_CFG_PAGESIZE_1024;
1942                 break;
1943         case 2048:
1944                 cfg_nfc = NFC_CFG_PAGESIZE_2048;
1945                 break;
1946         case 4096:
1947                 cfg_nfc = NFC_CFG_PAGESIZE_4096;
1948                 break;
1949         case 8192:
1950                 cfg_nfc = NFC_CFG_PAGESIZE_8192;
1951                 break;
1952         default:
1953                 dev_err(host->dev, "Unsupported page size for NFC.\n");
1954                 res = -ENXIO;
1955                 return res;
1956         }
1957
1958         /* oob bytes size = (NFCSPARESIZE + 1) * 4
1959          * Max support spare size is 512 bytes. */
1960         cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
1961                 & NFC_CFG_NFC_SPARESIZE);
1962         /* default set a max timeout */
1963         cfg_nfc |= NFC_CFG_RSPARE |
1964                         NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
1965
1966         nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
1967
1968         host->nfc->will_write_sram = false;
1969         nfc_set_sram_bank(host, 0);
1970
1971         /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
1972         if (host->nfc->write_by_sram) {
1973                 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
1974                                 chip->ecc.mode == NAND_ECC_NONE)
1975                         chip->write_page = nfc_sram_write_page;
1976                 else
1977                         host->nfc->write_by_sram = false;
1978         }
1979
1980         dev_info(host->dev, "Using NFC Sram read %s\n",
1981                         host->nfc->write_by_sram ? "and write" : "");
1982         return 0;
1983 }
1984
1985 static struct platform_driver atmel_nand_nfc_driver;
1986 /*
1987  * Probe for the NAND device.
1988  */
1989 static int __init atmel_nand_probe(struct platform_device *pdev)
1990 {
1991         struct atmel_nand_host *host;
1992         struct mtd_info *mtd;
1993         struct nand_chip *nand_chip;
1994         struct resource *mem;
1995         struct mtd_part_parser_data ppdata = {};
1996         int res, irq;
1997
1998         /* Allocate memory for the device structure (and zero it) */
1999         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2000         if (!host) {
2001                 printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
2002                 return -ENOMEM;
2003         }
2004
2005         res = platform_driver_register(&atmel_nand_nfc_driver);
2006         if (res)
2007                 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2008
2009         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2010         host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2011         if (IS_ERR(host->io_base)) {
2012                 dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n");
2013                 res = PTR_ERR(host->io_base);
2014                 goto err_nand_ioremap;
2015         }
2016         host->io_phys = (dma_addr_t)mem->start;
2017
2018         mtd = &host->mtd;
2019         nand_chip = &host->nand_chip;
2020         host->dev = &pdev->dev;
2021         if (pdev->dev.of_node) {
2022                 res = atmel_of_init_port(host, pdev->dev.of_node);
2023                 if (res)
2024                         goto err_nand_ioremap;
2025         } else {
2026                 memcpy(&host->board, dev_get_platdata(&pdev->dev),
2027                        sizeof(struct atmel_nand_data));
2028         }
2029
2030         nand_chip->priv = host;         /* link the private data structures */
2031         mtd->priv = nand_chip;
2032         mtd->owner = THIS_MODULE;
2033
2034         /* Set address of NAND IO lines */
2035         nand_chip->IO_ADDR_R = host->io_base;
2036         nand_chip->IO_ADDR_W = host->io_base;
2037
2038         if (nand_nfc.is_initialized) {
2039                 /* NFC driver is probed and initialized */
2040                 host->nfc = &nand_nfc;
2041
2042                 nand_chip->select_chip = nfc_select_chip;
2043                 nand_chip->dev_ready = nfc_device_ready;
2044                 nand_chip->cmdfunc = nfc_nand_command;
2045
2046                 /* Initialize the interrupt for NFC */
2047                 irq = platform_get_irq(pdev, 0);
2048                 if (irq < 0) {
2049                         dev_err(host->dev, "Cannot get HSMC irq!\n");
2050                         goto err_nand_ioremap;
2051                 }
2052
2053                 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2054                                 0, "hsmc", host);
2055                 if (res) {
2056                         dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2057                                 irq);
2058                         goto err_nand_ioremap;
2059                 }
2060         } else {
2061                 res = atmel_nand_set_enable_ready_pins(mtd);
2062                 if (res)
2063                         goto err_nand_ioremap;
2064
2065                 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2066         }
2067
2068         nand_chip->ecc.mode = host->board.ecc_mode;
2069         nand_chip->chip_delay = 20;             /* 20us command delay time */
2070
2071         if (host->board.bus_width_16)   /* 16-bit bus width */
2072                 nand_chip->options |= NAND_BUSWIDTH_16;
2073
2074         nand_chip->read_buf = atmel_read_buf;
2075         nand_chip->write_buf = atmel_write_buf;
2076
2077         platform_set_drvdata(pdev, host);
2078         atmel_nand_enable(host);
2079
2080         if (gpio_is_valid(host->board.det_pin)) {
2081                 res = devm_gpio_request(&pdev->dev,
2082                                 host->board.det_pin, "nand_det");
2083                 if (res < 0) {
2084                         dev_err(&pdev->dev,
2085                                 "can't request det gpio %d\n",
2086                                 host->board.det_pin);
2087                         goto err_no_card;
2088                 }
2089
2090                 res = gpio_direction_input(host->board.det_pin);
2091                 if (res < 0) {
2092                         dev_err(&pdev->dev,
2093                                 "can't request input direction det gpio %d\n",
2094                                 host->board.det_pin);
2095                         goto err_no_card;
2096                 }
2097
2098                 if (gpio_get_value(host->board.det_pin)) {
2099                         printk(KERN_INFO "No SmartMedia card inserted.\n");
2100                         res = -ENXIO;
2101                         goto err_no_card;
2102                 }
2103         }
2104
2105         if (host->board.on_flash_bbt || on_flash_bbt) {
2106                 printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
2107                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2108         }
2109
2110         if (!host->board.has_dma)
2111                 use_dma = 0;
2112
2113         if (use_dma) {
2114                 dma_cap_mask_t mask;
2115
2116                 dma_cap_zero(mask);
2117                 dma_cap_set(DMA_MEMCPY, mask);
2118                 host->dma_chan = dma_request_channel(mask, NULL, NULL);
2119                 if (!host->dma_chan) {
2120                         dev_err(host->dev, "Failed to request DMA channel\n");
2121                         use_dma = 0;
2122                 }
2123         }
2124         if (use_dma)
2125                 dev_info(host->dev, "Using %s for DMA transfers.\n",
2126                                         dma_chan_name(host->dma_chan));
2127         else
2128                 dev_info(host->dev, "No DMA support for NAND access.\n");
2129
2130         /* first scan to find the device and get the page size */
2131         if (nand_scan_ident(mtd, 1, NULL)) {
2132                 res = -ENXIO;
2133                 goto err_scan_ident;
2134         }
2135
2136         if (nand_chip->ecc.mode == NAND_ECC_HW) {
2137                 if (host->has_pmecc)
2138                         res = atmel_pmecc_nand_init_params(pdev, host);
2139                 else
2140                         res = atmel_hw_nand_init_params(pdev, host);
2141
2142                 if (res != 0)
2143                         goto err_hw_ecc;
2144         }
2145
2146         /* initialize the nfc configuration register */
2147         if (host->nfc && host->nfc->use_nfc_sram) {
2148                 res = nfc_sram_init(mtd);
2149                 if (res) {
2150                         host->nfc->use_nfc_sram = false;
2151                         dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2152                 }
2153         }
2154
2155         /* second phase scan */
2156         if (nand_scan_tail(mtd)) {
2157                 res = -ENXIO;
2158                 goto err_scan_tail;
2159         }
2160
2161         mtd->name = "atmel_nand";
2162         ppdata.of_node = pdev->dev.of_node;
2163         res = mtd_device_parse_register(mtd, NULL, &ppdata,
2164                         host->board.parts, host->board.num_parts);
2165         if (!res)
2166                 return res;
2167
2168 err_scan_tail:
2169         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2170                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2171 err_hw_ecc:
2172 err_scan_ident:
2173 err_no_card:
2174         atmel_nand_disable(host);
2175         if (host->dma_chan)
2176                 dma_release_channel(host->dma_chan);
2177 err_nand_ioremap:
2178         platform_driver_unregister(&atmel_nand_nfc_driver);
2179         return res;
2180 }
2181
2182 /*
2183  * Remove a NAND device.
2184  */
2185 static int __exit atmel_nand_remove(struct platform_device *pdev)
2186 {
2187         struct atmel_nand_host *host = platform_get_drvdata(pdev);
2188         struct mtd_info *mtd = &host->mtd;
2189
2190         nand_release(mtd);
2191
2192         atmel_nand_disable(host);
2193
2194         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2195                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2196                 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2197                                 PMERRLOC_DISABLE);
2198         }
2199
2200         if (host->dma_chan)
2201                 dma_release_channel(host->dma_chan);
2202
2203         platform_driver_unregister(&atmel_nand_nfc_driver);
2204
2205         return 0;
2206 }
2207
2208 #if defined(CONFIG_OF)
2209 static const struct of_device_id atmel_nand_dt_ids[] = {
2210         { .compatible = "atmel,at91rm9200-nand" },
2211         { /* sentinel */ }
2212 };
2213
2214 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2215 #endif
2216
2217 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2218 {
2219         struct atmel_nfc *nfc = &nand_nfc;
2220         struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2221
2222         nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2223         nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2224         if (IS_ERR(nfc->base_cmd_regs))
2225                 return PTR_ERR(nfc->base_cmd_regs);
2226
2227         nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2228         nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2229         if (IS_ERR(nfc->hsmc_regs))
2230                 return PTR_ERR(nfc->hsmc_regs);
2231
2232         nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2233         if (nfc_sram) {
2234                 nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram);
2235                 if (IS_ERR(nfc->sram_bank0)) {
2236                         dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2237                                         PTR_ERR(nfc->sram_bank0));
2238                 } else {
2239                         nfc->use_nfc_sram = true;
2240                         nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2241
2242                         if (pdev->dev.of_node)
2243                                 nfc->write_by_sram = of_property_read_bool(
2244                                                 pdev->dev.of_node,
2245                                                 "atmel,write-by-sram");
2246                 }
2247         }
2248
2249         nfc->is_initialized = true;
2250         dev_info(&pdev->dev, "NFC is probed.\n");
2251         return 0;
2252 }
2253
2254 #if defined(CONFIG_OF)
2255 static struct of_device_id atmel_nand_nfc_match[] = {
2256         { .compatible = "atmel,sama5d3-nfc" },
2257         { /* sentinel */ }
2258 };
2259 #endif
2260
2261 static struct platform_driver atmel_nand_nfc_driver = {
2262         .driver = {
2263                 .name = "atmel_nand_nfc",
2264                 .owner = THIS_MODULE,
2265                 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2266         },
2267         .probe = atmel_nand_nfc_probe,
2268 };
2269
2270 static struct platform_driver atmel_nand_driver = {
2271         .remove         = __exit_p(atmel_nand_remove),
2272         .driver         = {
2273                 .name   = "atmel_nand",
2274                 .owner  = THIS_MODULE,
2275                 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2276         },
2277 };
2278
2279 module_platform_driver_probe(atmel_nand_driver, atmel_nand_probe);
2280
2281 MODULE_LICENSE("GPL");
2282 MODULE_AUTHOR("Rick Bronson");
2283 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2284 MODULE_ALIAS("platform:atmel_nand");