Merge tag 'fbdev-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tomba/linux
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_mtd.h>
38
39 #include <asm/mach/flash.h>
40 #include <linux/platform_data/mtd-mxc_nand.h>
41
42 #define DRIVER_NAME "mxc_nand"
43
44 /* Addresses for NFC registers */
45 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
46 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
47 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
48 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
49 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
50 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
51 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
52 #define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
53 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
54 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
55 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
56 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
57 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
58 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
59 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
60 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
61 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
62 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
63 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
64 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
65 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
66 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
67
68 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
69 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
70 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
71 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
72 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
73 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
74 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
75 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
76 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
77 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
78
79 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
80
81 /*
82  * Operation modes for the NFC. Valid for v1, v2 and v3
83  * type controllers.
84  */
85 #define NFC_CMD                         (1 << 0)
86 #define NFC_ADDR                        (1 << 1)
87 #define NFC_INPUT                       (1 << 2)
88 #define NFC_OUTPUT                      (1 << 3)
89 #define NFC_ID                          (1 << 4)
90 #define NFC_STATUS                      (1 << 5)
91
92 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
93 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
94
95 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
96 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
97 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
98
99 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
100
101 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
102
103 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
104 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
105 #define NFC_V3_WRPROT_LOCK              (1 << 1)
106 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
107 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
108
109 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
110
111 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
112 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
113 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
114 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
115 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
116 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
117 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
118 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
119 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
120 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
122 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
123 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
124 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
125
126 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
127 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
128 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
129 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
130 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
131 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
132 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
133
134 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
135 #define NFC_V3_IPC_CREQ                 (1 << 0)
136 #define NFC_V3_IPC_INT                  (1 << 31)
137
138 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
139
140 struct mxc_nand_host;
141
142 struct mxc_nand_devtype_data {
143         void (*preset)(struct mtd_info *);
144         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
145         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
146         void (*send_page)(struct mtd_info *, unsigned int);
147         void (*send_read_id)(struct mxc_nand_host *);
148         uint16_t (*get_dev_status)(struct mxc_nand_host *);
149         int (*check_int)(struct mxc_nand_host *);
150         void (*irq_control)(struct mxc_nand_host *, int);
151         u32 (*get_ecc_status)(struct mxc_nand_host *);
152         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
153         void (*select_chip)(struct mtd_info *mtd, int chip);
154         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
155                         u_char *read_ecc, u_char *calc_ecc);
156
157         /*
158          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
159          * (CONFIG1:INT_MSK is set). To handle this the driver uses
160          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161          */
162         int irqpending_quirk;
163         int needs_ip;
164
165         size_t regs_offset;
166         size_t spare0_offset;
167         size_t axi_offset;
168
169         int spare_len;
170         int eccbytes;
171         int eccsize;
172         int ppb_shift;
173 };
174
175 struct mxc_nand_host {
176         struct mtd_info         mtd;
177         struct nand_chip        nand;
178         struct device           *dev;
179
180         void __iomem            *spare0;
181         void __iomem            *main_area0;
182
183         void __iomem            *base;
184         void __iomem            *regs;
185         void __iomem            *regs_axi;
186         void __iomem            *regs_ip;
187         int                     status_request;
188         struct clk              *clk;
189         int                     clk_act;
190         int                     irq;
191         int                     eccsize;
192         int                     active_cs;
193
194         struct completion       op_completion;
195
196         uint8_t                 *data_buf;
197         unsigned int            buf_start;
198
199         const struct mxc_nand_devtype_data *devtype_data;
200         struct mxc_nand_platform_data pdata;
201 };
202
203 /* OOB placement block for use with hardware ecc generation */
204 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
205         .eccbytes = 5,
206         .eccpos = {6, 7, 8, 9, 10},
207         .oobfree = {{0, 5}, {12, 4}, }
208 };
209
210 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
211         .eccbytes = 20,
212         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
213                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
214         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
215 };
216
217 /* OOB description for 512 byte pages with 16 byte OOB */
218 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
219         .eccbytes = 1 * 9,
220         .eccpos = {
221                  7,  8,  9, 10, 11, 12, 13, 14, 15
222         },
223         .oobfree = {
224                 {.offset = 0, .length = 5}
225         }
226 };
227
228 /* OOB description for 2048 byte pages with 64 byte OOB */
229 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
230         .eccbytes = 4 * 9,
231         .eccpos = {
232                  7,  8,  9, 10, 11, 12, 13, 14, 15,
233                 23, 24, 25, 26, 27, 28, 29, 30, 31,
234                 39, 40, 41, 42, 43, 44, 45, 46, 47,
235                 55, 56, 57, 58, 59, 60, 61, 62, 63
236         },
237         .oobfree = {
238                 {.offset = 2, .length = 4},
239                 {.offset = 16, .length = 7},
240                 {.offset = 32, .length = 7},
241                 {.offset = 48, .length = 7}
242         }
243 };
244
245 /* OOB description for 4096 byte pages with 128 byte OOB */
246 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
247         .eccbytes = 8 * 9,
248         .eccpos = {
249                 7,  8,  9, 10, 11, 12, 13, 14, 15,
250                 23, 24, 25, 26, 27, 28, 29, 30, 31,
251                 39, 40, 41, 42, 43, 44, 45, 46, 47,
252                 55, 56, 57, 58, 59, 60, 61, 62, 63,
253                 71, 72, 73, 74, 75, 76, 77, 78, 79,
254                 87, 88, 89, 90, 91, 92, 93, 94, 95,
255                 103, 104, 105, 106, 107, 108, 109, 110, 111,
256                 119, 120, 121, 122, 123, 124, 125, 126, 127,
257         },
258         .oobfree = {
259                 {.offset = 2, .length = 4},
260                 {.offset = 16, .length = 7},
261                 {.offset = 32, .length = 7},
262                 {.offset = 48, .length = 7},
263                 {.offset = 64, .length = 7},
264                 {.offset = 80, .length = 7},
265                 {.offset = 96, .length = 7},
266                 {.offset = 112, .length = 7},
267         }
268 };
269
270 static const char * const part_probes[] = {
271         "cmdlinepart", "RedBoot", "ofpart", NULL };
272
273 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
274 {
275         int i;
276         u32 *t = trg;
277         const __iomem u32 *s = src;
278
279         for (i = 0; i < (size >> 2); i++)
280                 *t++ = __raw_readl(s++);
281 }
282
283 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
284 {
285         int i;
286         u32 __iomem *t = trg;
287         const u32 *s = src;
288
289         for (i = 0; i < (size >> 2); i++)
290                 __raw_writel(*s++, t++);
291 }
292
293 static int check_int_v3(struct mxc_nand_host *host)
294 {
295         uint32_t tmp;
296
297         tmp = readl(NFC_V3_IPC);
298         if (!(tmp & NFC_V3_IPC_INT))
299                 return 0;
300
301         tmp &= ~NFC_V3_IPC_INT;
302         writel(tmp, NFC_V3_IPC);
303
304         return 1;
305 }
306
307 static int check_int_v1_v2(struct mxc_nand_host *host)
308 {
309         uint32_t tmp;
310
311         tmp = readw(NFC_V1_V2_CONFIG2);
312         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
313                 return 0;
314
315         if (!host->devtype_data->irqpending_quirk)
316                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
317
318         return 1;
319 }
320
321 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
322 {
323         uint16_t tmp;
324
325         tmp = readw(NFC_V1_V2_CONFIG1);
326
327         if (activate)
328                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
329         else
330                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
331
332         writew(tmp, NFC_V1_V2_CONFIG1);
333 }
334
335 static void irq_control_v3(struct mxc_nand_host *host, int activate)
336 {
337         uint32_t tmp;
338
339         tmp = readl(NFC_V3_CONFIG2);
340
341         if (activate)
342                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
343         else
344                 tmp |= NFC_V3_CONFIG2_INT_MSK;
345
346         writel(tmp, NFC_V3_CONFIG2);
347 }
348
349 static void irq_control(struct mxc_nand_host *host, int activate)
350 {
351         if (host->devtype_data->irqpending_quirk) {
352                 if (activate)
353                         enable_irq(host->irq);
354                 else
355                         disable_irq_nosync(host->irq);
356         } else {
357                 host->devtype_data->irq_control(host, activate);
358         }
359 }
360
361 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
362 {
363         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
364 }
365
366 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
367 {
368         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
369 }
370
371 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
372 {
373         return readl(NFC_V3_ECC_STATUS_RESULT);
374 }
375
376 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
377 {
378         struct mxc_nand_host *host = dev_id;
379
380         if (!host->devtype_data->check_int(host))
381                 return IRQ_NONE;
382
383         irq_control(host, 0);
384
385         complete(&host->op_completion);
386
387         return IRQ_HANDLED;
388 }
389
390 /* This function polls the NANDFC to wait for the basic operation to
391  * complete by checking the INT bit of config2 register.
392  */
393 static void wait_op_done(struct mxc_nand_host *host, int useirq)
394 {
395         int max_retries = 8000;
396
397         if (useirq) {
398                 if (!host->devtype_data->check_int(host)) {
399                         INIT_COMPLETION(host->op_completion);
400                         irq_control(host, 1);
401                         wait_for_completion(&host->op_completion);
402                 }
403         } else {
404                 while (max_retries-- > 0) {
405                         if (host->devtype_data->check_int(host))
406                                 break;
407
408                         udelay(1);
409                 }
410                 if (max_retries < 0)
411                         pr_debug("%s: INT not set\n", __func__);
412         }
413 }
414
415 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
416 {
417         /* fill command */
418         writel(cmd, NFC_V3_FLASH_CMD);
419
420         /* send out command */
421         writel(NFC_CMD, NFC_V3_LAUNCH);
422
423         /* Wait for operation to complete */
424         wait_op_done(host, useirq);
425 }
426
427 /* This function issues the specified command to the NAND device and
428  * waits for completion. */
429 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
430 {
431         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
432
433         writew(cmd, NFC_V1_V2_FLASH_CMD);
434         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
435
436         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
437                 int max_retries = 100;
438                 /* Reset completion is indicated by NFC_CONFIG2 */
439                 /* being set to 0 */
440                 while (max_retries-- > 0) {
441                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
442                                 break;
443                         }
444                         udelay(1);
445                 }
446                 if (max_retries < 0)
447                         pr_debug("%s: RESET failed\n", __func__);
448         } else {
449                 /* Wait for operation to complete */
450                 wait_op_done(host, useirq);
451         }
452 }
453
454 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
455 {
456         /* fill address */
457         writel(addr, NFC_V3_FLASH_ADDR0);
458
459         /* send out address */
460         writel(NFC_ADDR, NFC_V3_LAUNCH);
461
462         wait_op_done(host, 0);
463 }
464
465 /* This function sends an address (or partial address) to the
466  * NAND device. The address is used to select the source/destination for
467  * a NAND command. */
468 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
469 {
470         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
471
472         writew(addr, NFC_V1_V2_FLASH_ADDR);
473         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
474
475         /* Wait for operation to complete */
476         wait_op_done(host, islast);
477 }
478
479 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
480 {
481         struct nand_chip *nand_chip = mtd->priv;
482         struct mxc_nand_host *host = nand_chip->priv;
483         uint32_t tmp;
484
485         tmp = readl(NFC_V3_CONFIG1);
486         tmp &= ~(7 << 4);
487         writel(tmp, NFC_V3_CONFIG1);
488
489         /* transfer data from NFC ram to nand */
490         writel(ops, NFC_V3_LAUNCH);
491
492         wait_op_done(host, false);
493 }
494
495 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
496 {
497         struct nand_chip *nand_chip = mtd->priv;
498         struct mxc_nand_host *host = nand_chip->priv;
499
500         /* NANDFC buffer 0 is used for page read/write */
501         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
502
503         writew(ops, NFC_V1_V2_CONFIG2);
504
505         /* Wait for operation to complete */
506         wait_op_done(host, true);
507 }
508
509 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
510 {
511         struct nand_chip *nand_chip = mtd->priv;
512         struct mxc_nand_host *host = nand_chip->priv;
513         int bufs, i;
514
515         if (mtd->writesize > 512)
516                 bufs = 4;
517         else
518                 bufs = 1;
519
520         for (i = 0; i < bufs; i++) {
521
522                 /* NANDFC buffer 0 is used for page read/write */
523                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
524
525                 writew(ops, NFC_V1_V2_CONFIG2);
526
527                 /* Wait for operation to complete */
528                 wait_op_done(host, true);
529         }
530 }
531
532 static void send_read_id_v3(struct mxc_nand_host *host)
533 {
534         struct nand_chip *this = &host->nand;
535
536         /* Read ID into main buffer */
537         writel(NFC_ID, NFC_V3_LAUNCH);
538
539         wait_op_done(host, true);
540
541         memcpy32_fromio(host->data_buf, host->main_area0, 16);
542
543         if (this->options & NAND_BUSWIDTH_16) {
544                 /* compress the ID info */
545                 host->data_buf[1] = host->data_buf[2];
546                 host->data_buf[2] = host->data_buf[4];
547                 host->data_buf[3] = host->data_buf[6];
548                 host->data_buf[4] = host->data_buf[8];
549                 host->data_buf[5] = host->data_buf[10];
550         }
551 }
552
553 /* Request the NANDFC to perform a read of the NAND device ID. */
554 static void send_read_id_v1_v2(struct mxc_nand_host *host)
555 {
556         struct nand_chip *this = &host->nand;
557
558         /* NANDFC buffer 0 is used for device ID output */
559         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
560
561         writew(NFC_ID, NFC_V1_V2_CONFIG2);
562
563         /* Wait for operation to complete */
564         wait_op_done(host, true);
565
566         memcpy32_fromio(host->data_buf, host->main_area0, 16);
567
568         if (this->options & NAND_BUSWIDTH_16) {
569                 /* compress the ID info */
570                 host->data_buf[1] = host->data_buf[2];
571                 host->data_buf[2] = host->data_buf[4];
572                 host->data_buf[3] = host->data_buf[6];
573                 host->data_buf[4] = host->data_buf[8];
574                 host->data_buf[5] = host->data_buf[10];
575         }
576 }
577
578 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
579 {
580         writew(NFC_STATUS, NFC_V3_LAUNCH);
581         wait_op_done(host, true);
582
583         return readl(NFC_V3_CONFIG1) >> 16;
584 }
585
586 /* This function requests the NANDFC to perform a read of the
587  * NAND device status and returns the current status. */
588 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
589 {
590         void __iomem *main_buf = host->main_area0;
591         uint32_t store;
592         uint16_t ret;
593
594         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
595
596         /*
597          * The device status is stored in main_area0. To
598          * prevent corruption of the buffer save the value
599          * and restore it afterwards.
600          */
601         store = readl(main_buf);
602
603         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
604         wait_op_done(host, true);
605
606         ret = readw(main_buf);
607
608         writel(store, main_buf);
609
610         return ret;
611 }
612
613 /* This functions is used by upper layer to checks if device is ready */
614 static int mxc_nand_dev_ready(struct mtd_info *mtd)
615 {
616         /*
617          * NFC handles R/B internally. Therefore, this function
618          * always returns status as ready.
619          */
620         return 1;
621 }
622
623 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
624 {
625         /*
626          * If HW ECC is enabled, we turn it on during init. There is
627          * no need to enable again here.
628          */
629 }
630
631 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
632                                  u_char *read_ecc, u_char *calc_ecc)
633 {
634         struct nand_chip *nand_chip = mtd->priv;
635         struct mxc_nand_host *host = nand_chip->priv;
636
637         /*
638          * 1-Bit errors are automatically corrected in HW.  No need for
639          * additional correction.  2-Bit errors cannot be corrected by
640          * HW ECC, so we need to return failure
641          */
642         uint16_t ecc_status = get_ecc_status_v1(host);
643
644         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
645                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
646                 return -1;
647         }
648
649         return 0;
650 }
651
652 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
653                                  u_char *read_ecc, u_char *calc_ecc)
654 {
655         struct nand_chip *nand_chip = mtd->priv;
656         struct mxc_nand_host *host = nand_chip->priv;
657         u32 ecc_stat, err;
658         int no_subpages = 1;
659         int ret = 0;
660         u8 ecc_bit_mask, err_limit;
661
662         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
663         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
664
665         no_subpages = mtd->writesize >> 9;
666
667         ecc_stat = host->devtype_data->get_ecc_status(host);
668
669         do {
670                 err = ecc_stat & ecc_bit_mask;
671                 if (err > err_limit) {
672                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
673                         return -1;
674                 } else {
675                         ret += err;
676                 }
677                 ecc_stat >>= 4;
678         } while (--no_subpages);
679
680         mtd->ecc_stats.corrected += ret;
681         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
682
683         return ret;
684 }
685
686 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
687                                   u_char *ecc_code)
688 {
689         return 0;
690 }
691
692 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
693 {
694         struct nand_chip *nand_chip = mtd->priv;
695         struct mxc_nand_host *host = nand_chip->priv;
696         uint8_t ret;
697
698         /* Check for status request */
699         if (host->status_request)
700                 return host->devtype_data->get_dev_status(host) & 0xFF;
701
702         ret = *(uint8_t *)(host->data_buf + host->buf_start);
703         host->buf_start++;
704
705         return ret;
706 }
707
708 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
709 {
710         struct nand_chip *nand_chip = mtd->priv;
711         struct mxc_nand_host *host = nand_chip->priv;
712         uint16_t ret;
713
714         ret = *(uint16_t *)(host->data_buf + host->buf_start);
715         host->buf_start += 2;
716
717         return ret;
718 }
719
720 /* Write data of length len to buffer buf. The data to be
721  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
722  * Operation by the NFC, the data is written to NAND Flash */
723 static void mxc_nand_write_buf(struct mtd_info *mtd,
724                                 const u_char *buf, int len)
725 {
726         struct nand_chip *nand_chip = mtd->priv;
727         struct mxc_nand_host *host = nand_chip->priv;
728         u16 col = host->buf_start;
729         int n = mtd->oobsize + mtd->writesize - col;
730
731         n = min(n, len);
732
733         memcpy(host->data_buf + col, buf, n);
734
735         host->buf_start += n;
736 }
737
738 /* Read the data buffer from the NAND Flash. To read the data from NAND
739  * Flash first the data output cycle is initiated by the NFC, which copies
740  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
741  */
742 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
743 {
744         struct nand_chip *nand_chip = mtd->priv;
745         struct mxc_nand_host *host = nand_chip->priv;
746         u16 col = host->buf_start;
747         int n = mtd->oobsize + mtd->writesize - col;
748
749         n = min(n, len);
750
751         memcpy(buf, host->data_buf + col, n);
752
753         host->buf_start += n;
754 }
755
756 /* This function is used by upper layer for select and
757  * deselect of the NAND chip */
758 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
759 {
760         struct nand_chip *nand_chip = mtd->priv;
761         struct mxc_nand_host *host = nand_chip->priv;
762
763         if (chip == -1) {
764                 /* Disable the NFC clock */
765                 if (host->clk_act) {
766                         clk_disable_unprepare(host->clk);
767                         host->clk_act = 0;
768                 }
769                 return;
770         }
771
772         if (!host->clk_act) {
773                 /* Enable the NFC clock */
774                 clk_prepare_enable(host->clk);
775                 host->clk_act = 1;
776         }
777 }
778
779 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
780 {
781         struct nand_chip *nand_chip = mtd->priv;
782         struct mxc_nand_host *host = nand_chip->priv;
783
784         if (chip == -1) {
785                 /* Disable the NFC clock */
786                 if (host->clk_act) {
787                         clk_disable_unprepare(host->clk);
788                         host->clk_act = 0;
789                 }
790                 return;
791         }
792
793         if (!host->clk_act) {
794                 /* Enable the NFC clock */
795                 clk_prepare_enable(host->clk);
796                 host->clk_act = 1;
797         }
798
799         host->active_cs = chip;
800         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
801 }
802
803 /*
804  * Function to transfer data to/from spare area.
805  */
806 static void copy_spare(struct mtd_info *mtd, bool bfrom)
807 {
808         struct nand_chip *this = mtd->priv;
809         struct mxc_nand_host *host = this->priv;
810         u16 i, j;
811         u16 n = mtd->writesize >> 9;
812         u8 *d = host->data_buf + mtd->writesize;
813         u8 __iomem *s = host->spare0;
814         u16 t = host->devtype_data->spare_len;
815
816         j = (mtd->oobsize / n >> 1) << 1;
817
818         if (bfrom) {
819                 for (i = 0; i < n - 1; i++)
820                         memcpy32_fromio(d + i * j, s + i * t, j);
821
822                 /* the last section */
823                 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
824         } else {
825                 for (i = 0; i < n - 1; i++)
826                         memcpy32_toio(&s[i * t], &d[i * j], j);
827
828                 /* the last section */
829                 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
830         }
831 }
832
833 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
834 {
835         struct nand_chip *nand_chip = mtd->priv;
836         struct mxc_nand_host *host = nand_chip->priv;
837
838         /* Write out column address, if necessary */
839         if (column != -1) {
840                 /*
841                  * MXC NANDFC can only perform full page+spare or
842                  * spare-only read/write.  When the upper layers
843                  * perform a read/write buf operation, the saved column
844                   * address is used to index into the full page.
845                  */
846                 host->devtype_data->send_addr(host, 0, page_addr == -1);
847                 if (mtd->writesize > 512)
848                         /* another col addr cycle for 2k page */
849                         host->devtype_data->send_addr(host, 0, false);
850         }
851
852         /* Write out page address, if necessary */
853         if (page_addr != -1) {
854                 /* paddr_0 - p_addr_7 */
855                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
856
857                 if (mtd->writesize > 512) {
858                         if (mtd->size >= 0x10000000) {
859                                 /* paddr_8 - paddr_15 */
860                                 host->devtype_data->send_addr(host,
861                                                 (page_addr >> 8) & 0xff,
862                                                 false);
863                                 host->devtype_data->send_addr(host,
864                                                 (page_addr >> 16) & 0xff,
865                                                 true);
866                         } else
867                                 /* paddr_8 - paddr_15 */
868                                 host->devtype_data->send_addr(host,
869                                                 (page_addr >> 8) & 0xff, true);
870                 } else {
871                         /* One more address cycle for higher density devices */
872                         if (mtd->size >= 0x4000000) {
873                                 /* paddr_8 - paddr_15 */
874                                 host->devtype_data->send_addr(host,
875                                                 (page_addr >> 8) & 0xff,
876                                                 false);
877                                 host->devtype_data->send_addr(host,
878                                                 (page_addr >> 16) & 0xff,
879                                                 true);
880                         } else
881                                 /* paddr_8 - paddr_15 */
882                                 host->devtype_data->send_addr(host,
883                                                 (page_addr >> 8) & 0xff, true);
884                 }
885         }
886 }
887
888 /*
889  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
890  * on how much oob the nand chip has. For 8bit ecc we need at least
891  * 26 bytes of oob data per 512 byte block.
892  */
893 static int get_eccsize(struct mtd_info *mtd)
894 {
895         int oobbytes_per_512 = 0;
896
897         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
898
899         if (oobbytes_per_512 < 26)
900                 return 4;
901         else
902                 return 8;
903 }
904
905 static void preset_v1(struct mtd_info *mtd)
906 {
907         struct nand_chip *nand_chip = mtd->priv;
908         struct mxc_nand_host *host = nand_chip->priv;
909         uint16_t config1 = 0;
910
911         if (nand_chip->ecc.mode == NAND_ECC_HW)
912                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
913
914         if (!host->devtype_data->irqpending_quirk)
915                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
916
917         host->eccsize = 1;
918
919         writew(config1, NFC_V1_V2_CONFIG1);
920         /* preset operation */
921
922         /* Unlock the internal RAM Buffer */
923         writew(0x2, NFC_V1_V2_CONFIG);
924
925         /* Blocks to be unlocked */
926         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
927         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
928
929         /* Unlock Block Command for given address range */
930         writew(0x4, NFC_V1_V2_WRPROT);
931 }
932
933 static void preset_v2(struct mtd_info *mtd)
934 {
935         struct nand_chip *nand_chip = mtd->priv;
936         struct mxc_nand_host *host = nand_chip->priv;
937         uint16_t config1 = 0;
938
939         if (nand_chip->ecc.mode == NAND_ECC_HW)
940                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
941
942         config1 |= NFC_V2_CONFIG1_FP_INT;
943
944         if (!host->devtype_data->irqpending_quirk)
945                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
946
947         if (mtd->writesize) {
948                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
949
950                 host->eccsize = get_eccsize(mtd);
951                 if (host->eccsize == 4)
952                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
953
954                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
955         } else {
956                 host->eccsize = 1;
957         }
958
959         writew(config1, NFC_V1_V2_CONFIG1);
960         /* preset operation */
961
962         /* Unlock the internal RAM Buffer */
963         writew(0x2, NFC_V1_V2_CONFIG);
964
965         /* Blocks to be unlocked */
966         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
967         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
968         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
969         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
970         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
971         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
972         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
973         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
974
975         /* Unlock Block Command for given address range */
976         writew(0x4, NFC_V1_V2_WRPROT);
977 }
978
979 static void preset_v3(struct mtd_info *mtd)
980 {
981         struct nand_chip *chip = mtd->priv;
982         struct mxc_nand_host *host = chip->priv;
983         uint32_t config2, config3;
984         int i, addr_phases;
985
986         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
987         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
988
989         /* Unlock the internal RAM Buffer */
990         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
991                         NFC_V3_WRPROT);
992
993         /* Blocks to be unlocked */
994         for (i = 0; i < NAND_MAX_CHIPS; i++)
995                 writel(0x0 |    (0xffff << 16),
996                                 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
997
998         writel(0, NFC_V3_IPC);
999
1000         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1001                 NFC_V3_CONFIG2_2CMD_PHASES |
1002                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1003                 NFC_V3_CONFIG2_ST_CMD(0x70) |
1004                 NFC_V3_CONFIG2_INT_MSK |
1005                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1006
1007         if (chip->ecc.mode == NAND_ECC_HW)
1008                 config2 |= NFC_V3_CONFIG2_ECC_EN;
1009
1010         addr_phases = fls(chip->pagemask) >> 3;
1011
1012         if (mtd->writesize == 2048) {
1013                 config2 |= NFC_V3_CONFIG2_PS_2048;
1014                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1015         } else if (mtd->writesize == 4096) {
1016                 config2 |= NFC_V3_CONFIG2_PS_4096;
1017                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1018         } else {
1019                 config2 |= NFC_V3_CONFIG2_PS_512;
1020                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1021         }
1022
1023         if (mtd->writesize) {
1024                 config2 |= NFC_V3_CONFIG2_PPB(
1025                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1026                                 host->devtype_data->ppb_shift);
1027                 host->eccsize = get_eccsize(mtd);
1028                 if (host->eccsize == 8)
1029                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1030         }
1031
1032         writel(config2, NFC_V3_CONFIG2);
1033
1034         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1035                         NFC_V3_CONFIG3_NO_SDMA |
1036                         NFC_V3_CONFIG3_RBB_MODE |
1037                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1038                         NFC_V3_CONFIG3_ADD_OP(0);
1039
1040         if (!(chip->options & NAND_BUSWIDTH_16))
1041                 config3 |= NFC_V3_CONFIG3_FW8;
1042
1043         writel(config3, NFC_V3_CONFIG3);
1044
1045         writel(0, NFC_V3_DELAY_LINE);
1046 }
1047
1048 /* Used by the upper layer to write command to NAND Flash for
1049  * different operations to be carried out on NAND Flash */
1050 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1051                                 int column, int page_addr)
1052 {
1053         struct nand_chip *nand_chip = mtd->priv;
1054         struct mxc_nand_host *host = nand_chip->priv;
1055
1056         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1057               command, column, page_addr);
1058
1059         /* Reset command state information */
1060         host->status_request = false;
1061
1062         /* Command pre-processing step */
1063         switch (command) {
1064         case NAND_CMD_RESET:
1065                 host->devtype_data->preset(mtd);
1066                 host->devtype_data->send_cmd(host, command, false);
1067                 break;
1068
1069         case NAND_CMD_STATUS:
1070                 host->buf_start = 0;
1071                 host->status_request = true;
1072
1073                 host->devtype_data->send_cmd(host, command, true);
1074                 mxc_do_addr_cycle(mtd, column, page_addr);
1075                 break;
1076
1077         case NAND_CMD_READ0:
1078         case NAND_CMD_READOOB:
1079                 if (command == NAND_CMD_READ0)
1080                         host->buf_start = column;
1081                 else
1082                         host->buf_start = column + mtd->writesize;
1083
1084                 command = NAND_CMD_READ0; /* only READ0 is valid */
1085
1086                 host->devtype_data->send_cmd(host, command, false);
1087                 mxc_do_addr_cycle(mtd, column, page_addr);
1088
1089                 if (mtd->writesize > 512)
1090                         host->devtype_data->send_cmd(host,
1091                                         NAND_CMD_READSTART, true);
1092
1093                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1094
1095                 memcpy32_fromio(host->data_buf, host->main_area0,
1096                                 mtd->writesize);
1097                 copy_spare(mtd, true);
1098                 break;
1099
1100         case NAND_CMD_SEQIN:
1101                 if (column >= mtd->writesize)
1102                         /* call ourself to read a page */
1103                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1104
1105                 host->buf_start = column;
1106
1107                 host->devtype_data->send_cmd(host, command, false);
1108                 mxc_do_addr_cycle(mtd, column, page_addr);
1109                 break;
1110
1111         case NAND_CMD_PAGEPROG:
1112                 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1113                 copy_spare(mtd, false);
1114                 host->devtype_data->send_page(mtd, NFC_INPUT);
1115                 host->devtype_data->send_cmd(host, command, true);
1116                 mxc_do_addr_cycle(mtd, column, page_addr);
1117                 break;
1118
1119         case NAND_CMD_READID:
1120                 host->devtype_data->send_cmd(host, command, true);
1121                 mxc_do_addr_cycle(mtd, column, page_addr);
1122                 host->devtype_data->send_read_id(host);
1123                 host->buf_start = column;
1124                 break;
1125
1126         case NAND_CMD_ERASE1:
1127         case NAND_CMD_ERASE2:
1128                 host->devtype_data->send_cmd(host, command, false);
1129                 mxc_do_addr_cycle(mtd, column, page_addr);
1130
1131                 break;
1132         }
1133 }
1134
1135 /*
1136  * The generic flash bbt decriptors overlap with our ecc
1137  * hardware, so define some i.MX specific ones.
1138  */
1139 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1140 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1141
1142 static struct nand_bbt_descr bbt_main_descr = {
1143         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1144             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1145         .offs = 0,
1146         .len = 4,
1147         .veroffs = 4,
1148         .maxblocks = 4,
1149         .pattern = bbt_pattern,
1150 };
1151
1152 static struct nand_bbt_descr bbt_mirror_descr = {
1153         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1154             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1155         .offs = 0,
1156         .len = 4,
1157         .veroffs = 4,
1158         .maxblocks = 4,
1159         .pattern = mirror_pattern,
1160 };
1161
1162 /* v1 + irqpending_quirk: i.MX21 */
1163 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1164         .preset = preset_v1,
1165         .send_cmd = send_cmd_v1_v2,
1166         .send_addr = send_addr_v1_v2,
1167         .send_page = send_page_v1,
1168         .send_read_id = send_read_id_v1_v2,
1169         .get_dev_status = get_dev_status_v1_v2,
1170         .check_int = check_int_v1_v2,
1171         .irq_control = irq_control_v1_v2,
1172         .get_ecc_status = get_ecc_status_v1,
1173         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1174         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1175         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1176         .select_chip = mxc_nand_select_chip_v1_v3,
1177         .correct_data = mxc_nand_correct_data_v1,
1178         .irqpending_quirk = 1,
1179         .needs_ip = 0,
1180         .regs_offset = 0xe00,
1181         .spare0_offset = 0x800,
1182         .spare_len = 16,
1183         .eccbytes = 3,
1184         .eccsize = 1,
1185 };
1186
1187 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1188 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1189         .preset = preset_v1,
1190         .send_cmd = send_cmd_v1_v2,
1191         .send_addr = send_addr_v1_v2,
1192         .send_page = send_page_v1,
1193         .send_read_id = send_read_id_v1_v2,
1194         .get_dev_status = get_dev_status_v1_v2,
1195         .check_int = check_int_v1_v2,
1196         .irq_control = irq_control_v1_v2,
1197         .get_ecc_status = get_ecc_status_v1,
1198         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1199         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1200         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1201         .select_chip = mxc_nand_select_chip_v1_v3,
1202         .correct_data = mxc_nand_correct_data_v1,
1203         .irqpending_quirk = 0,
1204         .needs_ip = 0,
1205         .regs_offset = 0xe00,
1206         .spare0_offset = 0x800,
1207         .axi_offset = 0,
1208         .spare_len = 16,
1209         .eccbytes = 3,
1210         .eccsize = 1,
1211 };
1212
1213 /* v21: i.MX25, i.MX35 */
1214 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1215         .preset = preset_v2,
1216         .send_cmd = send_cmd_v1_v2,
1217         .send_addr = send_addr_v1_v2,
1218         .send_page = send_page_v2,
1219         .send_read_id = send_read_id_v1_v2,
1220         .get_dev_status = get_dev_status_v1_v2,
1221         .check_int = check_int_v1_v2,
1222         .irq_control = irq_control_v1_v2,
1223         .get_ecc_status = get_ecc_status_v2,
1224         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1225         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1226         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1227         .select_chip = mxc_nand_select_chip_v2,
1228         .correct_data = mxc_nand_correct_data_v2_v3,
1229         .irqpending_quirk = 0,
1230         .needs_ip = 0,
1231         .regs_offset = 0x1e00,
1232         .spare0_offset = 0x1000,
1233         .axi_offset = 0,
1234         .spare_len = 64,
1235         .eccbytes = 9,
1236         .eccsize = 0,
1237 };
1238
1239 /* v3.2a: i.MX51 */
1240 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1241         .preset = preset_v3,
1242         .send_cmd = send_cmd_v3,
1243         .send_addr = send_addr_v3,
1244         .send_page = send_page_v3,
1245         .send_read_id = send_read_id_v3,
1246         .get_dev_status = get_dev_status_v3,
1247         .check_int = check_int_v3,
1248         .irq_control = irq_control_v3,
1249         .get_ecc_status = get_ecc_status_v3,
1250         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1251         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1252         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1253         .select_chip = mxc_nand_select_chip_v1_v3,
1254         .correct_data = mxc_nand_correct_data_v2_v3,
1255         .irqpending_quirk = 0,
1256         .needs_ip = 1,
1257         .regs_offset = 0,
1258         .spare0_offset = 0x1000,
1259         .axi_offset = 0x1e00,
1260         .spare_len = 64,
1261         .eccbytes = 0,
1262         .eccsize = 0,
1263         .ppb_shift = 7,
1264 };
1265
1266 /* v3.2b: i.MX53 */
1267 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1268         .preset = preset_v3,
1269         .send_cmd = send_cmd_v3,
1270         .send_addr = send_addr_v3,
1271         .send_page = send_page_v3,
1272         .send_read_id = send_read_id_v3,
1273         .get_dev_status = get_dev_status_v3,
1274         .check_int = check_int_v3,
1275         .irq_control = irq_control_v3,
1276         .get_ecc_status = get_ecc_status_v3,
1277         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1278         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1279         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1280         .select_chip = mxc_nand_select_chip_v1_v3,
1281         .correct_data = mxc_nand_correct_data_v2_v3,
1282         .irqpending_quirk = 0,
1283         .needs_ip = 1,
1284         .regs_offset = 0,
1285         .spare0_offset = 0x1000,
1286         .axi_offset = 0x1e00,
1287         .spare_len = 64,
1288         .eccbytes = 0,
1289         .eccsize = 0,
1290         .ppb_shift = 8,
1291 };
1292
1293 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1294 {
1295         return host->devtype_data == &imx21_nand_devtype_data;
1296 }
1297
1298 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1299 {
1300         return host->devtype_data == &imx27_nand_devtype_data;
1301 }
1302
1303 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1304 {
1305         return host->devtype_data == &imx25_nand_devtype_data;
1306 }
1307
1308 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1309 {
1310         return host->devtype_data == &imx51_nand_devtype_data;
1311 }
1312
1313 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1314 {
1315         return host->devtype_data == &imx53_nand_devtype_data;
1316 }
1317
1318 static struct platform_device_id mxcnd_devtype[] = {
1319         {
1320                 .name = "imx21-nand",
1321                 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1322         }, {
1323                 .name = "imx27-nand",
1324                 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1325         }, {
1326                 .name = "imx25-nand",
1327                 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1328         }, {
1329                 .name = "imx51-nand",
1330                 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1331         }, {
1332                 .name = "imx53-nand",
1333                 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1334         }, {
1335                 /* sentinel */
1336         }
1337 };
1338 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1339
1340 #ifdef CONFIG_OF_MTD
1341 static const struct of_device_id mxcnd_dt_ids[] = {
1342         {
1343                 .compatible = "fsl,imx21-nand",
1344                 .data = &imx21_nand_devtype_data,
1345         }, {
1346                 .compatible = "fsl,imx27-nand",
1347                 .data = &imx27_nand_devtype_data,
1348         }, {
1349                 .compatible = "fsl,imx25-nand",
1350                 .data = &imx25_nand_devtype_data,
1351         }, {
1352                 .compatible = "fsl,imx51-nand",
1353                 .data = &imx51_nand_devtype_data,
1354         }, {
1355                 .compatible = "fsl,imx53-nand",
1356                 .data = &imx53_nand_devtype_data,
1357         },
1358         { /* sentinel */ }
1359 };
1360
1361 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1362 {
1363         struct device_node *np = host->dev->of_node;
1364         struct mxc_nand_platform_data *pdata = &host->pdata;
1365         const struct of_device_id *of_id =
1366                 of_match_device(mxcnd_dt_ids, host->dev);
1367         int buswidth;
1368
1369         if (!np)
1370                 return 1;
1371
1372         if (of_get_nand_ecc_mode(np) >= 0)
1373                 pdata->hw_ecc = 1;
1374
1375         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1376
1377         buswidth = of_get_nand_bus_width(np);
1378         if (buswidth < 0)
1379                 return buswidth;
1380
1381         pdata->width = buswidth / 8;
1382
1383         host->devtype_data = of_id->data;
1384
1385         return 0;
1386 }
1387 #else
1388 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1389 {
1390         return 1;
1391 }
1392 #endif
1393
1394 static int mxcnd_probe(struct platform_device *pdev)
1395 {
1396         struct nand_chip *this;
1397         struct mtd_info *mtd;
1398         struct mxc_nand_host *host;
1399         struct resource *res;
1400         int err = 0;
1401
1402         /* Allocate memory for MTD device structure and private data */
1403         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host) +
1404                         NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE, GFP_KERNEL);
1405         if (!host)
1406                 return -ENOMEM;
1407
1408         host->data_buf = (uint8_t *)(host + 1);
1409
1410         host->dev = &pdev->dev;
1411         /* structures must be linked */
1412         this = &host->nand;
1413         mtd = &host->mtd;
1414         mtd->priv = this;
1415         mtd->owner = THIS_MODULE;
1416         mtd->dev.parent = &pdev->dev;
1417         mtd->name = DRIVER_NAME;
1418
1419         /* 50 us command delay time */
1420         this->chip_delay = 5;
1421
1422         this->priv = host;
1423         this->dev_ready = mxc_nand_dev_ready;
1424         this->cmdfunc = mxc_nand_command;
1425         this->read_byte = mxc_nand_read_byte;
1426         this->read_word = mxc_nand_read_word;
1427         this->write_buf = mxc_nand_write_buf;
1428         this->read_buf = mxc_nand_read_buf;
1429
1430         host->clk = devm_clk_get(&pdev->dev, NULL);
1431         if (IS_ERR(host->clk))
1432                 return PTR_ERR(host->clk);
1433
1434         err = mxcnd_probe_dt(host);
1435         if (err > 0) {
1436                 struct mxc_nand_platform_data *pdata =
1437                                         dev_get_platdata(&pdev->dev);
1438                 if (pdata) {
1439                         host->pdata = *pdata;
1440                         host->devtype_data = (struct mxc_nand_devtype_data *)
1441                                                 pdev->id_entry->driver_data;
1442                 } else {
1443                         err = -ENODEV;
1444                 }
1445         }
1446         if (err < 0)
1447                 return err;
1448
1449         if (host->devtype_data->needs_ip) {
1450                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1451                 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1452                 if (IS_ERR(host->regs_ip))
1453                         return PTR_ERR(host->regs_ip);
1454
1455                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1456         } else {
1457                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1458         }
1459
1460         host->base = devm_ioremap_resource(&pdev->dev, res);
1461         if (IS_ERR(host->base))
1462                 return PTR_ERR(host->base);
1463
1464         host->main_area0 = host->base;
1465
1466         if (host->devtype_data->regs_offset)
1467                 host->regs = host->base + host->devtype_data->regs_offset;
1468         host->spare0 = host->base + host->devtype_data->spare0_offset;
1469         if (host->devtype_data->axi_offset)
1470                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1471
1472         this->ecc.bytes = host->devtype_data->eccbytes;
1473         host->eccsize = host->devtype_data->eccsize;
1474
1475         this->select_chip = host->devtype_data->select_chip;
1476         this->ecc.size = 512;
1477         this->ecc.layout = host->devtype_data->ecclayout_512;
1478
1479         if (host->pdata.hw_ecc) {
1480                 this->ecc.calculate = mxc_nand_calculate_ecc;
1481                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1482                 this->ecc.correct = host->devtype_data->correct_data;
1483                 this->ecc.mode = NAND_ECC_HW;
1484         } else {
1485                 this->ecc.mode = NAND_ECC_SOFT;
1486         }
1487
1488         /* NAND bus width determines access functions used by upper layer */
1489         if (host->pdata.width == 2)
1490                 this->options |= NAND_BUSWIDTH_16;
1491
1492         if (host->pdata.flash_bbt) {
1493                 this->bbt_td = &bbt_main_descr;
1494                 this->bbt_md = &bbt_mirror_descr;
1495                 /* update flash based bbt */
1496                 this->bbt_options |= NAND_BBT_USE_FLASH;
1497         }
1498
1499         init_completion(&host->op_completion);
1500
1501         host->irq = platform_get_irq(pdev, 0);
1502
1503         /*
1504          * Use host->devtype_data->irq_control() here instead of irq_control()
1505          * because we must not disable_irq_nosync without having requested the
1506          * irq.
1507          */
1508         host->devtype_data->irq_control(host, 0);
1509
1510         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1511                         0, DRIVER_NAME, host);
1512         if (err)
1513                 return err;
1514
1515         clk_prepare_enable(host->clk);
1516         host->clk_act = 1;
1517
1518         /*
1519          * Now that we "own" the interrupt make sure the interrupt mask bit is
1520          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1521          * on this machine.
1522          */
1523         if (host->devtype_data->irqpending_quirk) {
1524                 disable_irq_nosync(host->irq);
1525                 host->devtype_data->irq_control(host, 1);
1526         }
1527
1528         /* first scan to find the device and get the page size */
1529         if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1530                 err = -ENXIO;
1531                 goto escan;
1532         }
1533
1534         /* Call preset again, with correct writesize this time */
1535         host->devtype_data->preset(mtd);
1536
1537         if (mtd->writesize == 2048)
1538                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1539         else if (mtd->writesize == 4096)
1540                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1541
1542         if (this->ecc.mode == NAND_ECC_HW) {
1543                 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1544                         this->ecc.strength = 1;
1545                 else
1546                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1547         }
1548
1549         /* second phase scan */
1550         if (nand_scan_tail(mtd)) {
1551                 err = -ENXIO;
1552                 goto escan;
1553         }
1554
1555         /* Register the partitions */
1556         mtd_device_parse_register(mtd, part_probes,
1557                         &(struct mtd_part_parser_data){
1558                                 .of_node = pdev->dev.of_node,
1559                         },
1560                         host->pdata.parts,
1561                         host->pdata.nr_parts);
1562
1563         platform_set_drvdata(pdev, host);
1564
1565         return 0;
1566
1567 escan:
1568         if (host->clk_act)
1569                 clk_disable_unprepare(host->clk);
1570
1571         return err;
1572 }
1573
1574 static int mxcnd_remove(struct platform_device *pdev)
1575 {
1576         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1577
1578         nand_release(&host->mtd);
1579
1580         return 0;
1581 }
1582
1583 static struct platform_driver mxcnd_driver = {
1584         .driver = {
1585                    .name = DRIVER_NAME,
1586                    .owner = THIS_MODULE,
1587                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1588         },
1589         .id_table = mxcnd_devtype,
1590         .probe = mxcnd_probe,
1591         .remove = mxcnd_remove,
1592 };
1593 module_platform_driver(mxcnd_driver);
1594
1595 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1596 MODULE_DESCRIPTION("MXC NAND MTD driver");
1597 MODULE_LICENSE("GPL");