Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  Overview:
3  *   This is the generic MTD driver for NAND flash devices. It should be
4  *   capable of working with almost all NAND chips currently available.
5  *
6  *      Additional technical information is available on
7  *      http://www.linux-mtd.infradead.org/doc/nand.html
8  *
9  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
11  *
12  *  Credits:
13  *      David Woodhouse for adding multichip support
14  *
15  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16  *      rework for 2K page size chips
17  *
18  *  TODO:
19  *      Enable cached programming for 2k page size chips
20  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
21  *      if we have HW ECC support.
22  *      BBT table is not serialized, has to be fixed
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
46 #include <linux/leds.h>
47 #include <linux/io.h>
48 #include <linux/mtd/partitions.h>
49 #include <linux/of_mtd.h>
50
51 /* Define default oob placement schemes for large and small page devices */
52 static struct nand_ecclayout nand_oob_8 = {
53         .eccbytes = 3,
54         .eccpos = {0, 1, 2},
55         .oobfree = {
56                 {.offset = 3,
57                  .length = 2},
58                 {.offset = 6,
59                  .length = 2} }
60 };
61
62 static struct nand_ecclayout nand_oob_16 = {
63         .eccbytes = 6,
64         .eccpos = {0, 1, 2, 3, 6, 7},
65         .oobfree = {
66                 {.offset = 8,
67                  . length = 8} }
68 };
69
70 static struct nand_ecclayout nand_oob_64 = {
71         .eccbytes = 24,
72         .eccpos = {
73                    40, 41, 42, 43, 44, 45, 46, 47,
74                    48, 49, 50, 51, 52, 53, 54, 55,
75                    56, 57, 58, 59, 60, 61, 62, 63},
76         .oobfree = {
77                 {.offset = 2,
78                  .length = 38} }
79 };
80
81 static struct nand_ecclayout nand_oob_128 = {
82         .eccbytes = 48,
83         .eccpos = {
84                    80, 81, 82, 83, 84, 85, 86, 87,
85                    88, 89, 90, 91, 92, 93, 94, 95,
86                    96, 97, 98, 99, 100, 101, 102, 103,
87                    104, 105, 106, 107, 108, 109, 110, 111,
88                    112, 113, 114, 115, 116, 117, 118, 119,
89                    120, 121, 122, 123, 124, 125, 126, 127},
90         .oobfree = {
91                 {.offset = 2,
92                  .length = 78} }
93 };
94
95 static int nand_get_device(struct mtd_info *mtd, int new_state);
96
97 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98                              struct mtd_oob_ops *ops);
99
100 /*
101  * For devices which display every fart in the system on a separate LED. Is
102  * compiled away when LED support is disabled.
103  */
104 DEFINE_LED_TRIGGER(nand_led_trigger);
105
106 static int check_offs_len(struct mtd_info *mtd,
107                                         loff_t ofs, uint64_t len)
108 {
109         struct nand_chip *chip = mtd->priv;
110         int ret = 0;
111
112         /* Start address must align on block boundary */
113         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
114                 pr_debug("%s: unaligned address\n", __func__);
115                 ret = -EINVAL;
116         }
117
118         /* Length must align on block boundary */
119         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
120                 pr_debug("%s: length not block aligned\n", __func__);
121                 ret = -EINVAL;
122         }
123
124         return ret;
125 }
126
127 /**
128  * nand_release_device - [GENERIC] release chip
129  * @mtd: MTD device structure
130  *
131  * Release chip lock and wake up anyone waiting on the device.
132  */
133 static void nand_release_device(struct mtd_info *mtd)
134 {
135         struct nand_chip *chip = mtd->priv;
136
137         /* Release the controller and the chip */
138         spin_lock(&chip->controller->lock);
139         chip->controller->active = NULL;
140         chip->state = FL_READY;
141         wake_up(&chip->controller->wq);
142         spin_unlock(&chip->controller->lock);
143 }
144
145 /**
146  * nand_read_byte - [DEFAULT] read one byte from the chip
147  * @mtd: MTD device structure
148  *
149  * Default read function for 8bit buswidth
150  */
151 static uint8_t nand_read_byte(struct mtd_info *mtd)
152 {
153         struct nand_chip *chip = mtd->priv;
154         return readb(chip->IO_ADDR_R);
155 }
156
157 /**
158  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
159  * @mtd: MTD device structure
160  *
161  * Default read function for 16bit buswidth with endianness conversion.
162  *
163  */
164 static uint8_t nand_read_byte16(struct mtd_info *mtd)
165 {
166         struct nand_chip *chip = mtd->priv;
167         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
168 }
169
170 /**
171  * nand_read_word - [DEFAULT] read one word from the chip
172  * @mtd: MTD device structure
173  *
174  * Default read function for 16bit buswidth without endianness conversion.
175  */
176 static u16 nand_read_word(struct mtd_info *mtd)
177 {
178         struct nand_chip *chip = mtd->priv;
179         return readw(chip->IO_ADDR_R);
180 }
181
182 /**
183  * nand_select_chip - [DEFAULT] control CE line
184  * @mtd: MTD device structure
185  * @chipnr: chipnumber to select, -1 for deselect
186  *
187  * Default select function for 1 chip devices.
188  */
189 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
190 {
191         struct nand_chip *chip = mtd->priv;
192
193         switch (chipnr) {
194         case -1:
195                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
196                 break;
197         case 0:
198                 break;
199
200         default:
201                 BUG();
202         }
203 }
204
205 /**
206  * nand_write_byte - [DEFAULT] write single byte to chip
207  * @mtd: MTD device structure
208  * @byte: value to write
209  *
210  * Default function to write a byte to I/O[7:0]
211  */
212 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
213 {
214         struct nand_chip *chip = mtd->priv;
215
216         chip->write_buf(mtd, &byte, 1);
217 }
218
219 /**
220  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
221  * @mtd: MTD device structure
222  * @byte: value to write
223  *
224  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
225  */
226 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
227 {
228         struct nand_chip *chip = mtd->priv;
229         uint16_t word = byte;
230
231         /*
232          * It's not entirely clear what should happen to I/O[15:8] when writing
233          * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
234          *
235          *    When the host supports a 16-bit bus width, only data is
236          *    transferred at the 16-bit width. All address and command line
237          *    transfers shall use only the lower 8-bits of the data bus. During
238          *    command transfers, the host may place any value on the upper
239          *    8-bits of the data bus. During address transfers, the host shall
240          *    set the upper 8-bits of the data bus to 00h.
241          *
242          * One user of the write_byte callback is nand_onfi_set_features. The
243          * four parameters are specified to be written to I/O[7:0], but this is
244          * neither an address nor a command transfer. Let's assume a 0 on the
245          * upper I/O lines is OK.
246          */
247         chip->write_buf(mtd, (uint8_t *)&word, 2);
248 }
249
250 /**
251  * nand_write_buf - [DEFAULT] write buffer to chip
252  * @mtd: MTD device structure
253  * @buf: data buffer
254  * @len: number of bytes to write
255  *
256  * Default write function for 8bit buswidth.
257  */
258 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
259 {
260         struct nand_chip *chip = mtd->priv;
261
262         iowrite8_rep(chip->IO_ADDR_W, buf, len);
263 }
264
265 /**
266  * nand_read_buf - [DEFAULT] read chip data into buffer
267  * @mtd: MTD device structure
268  * @buf: buffer to store date
269  * @len: number of bytes to read
270  *
271  * Default read function for 8bit buswidth.
272  */
273 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
274 {
275         struct nand_chip *chip = mtd->priv;
276
277         ioread8_rep(chip->IO_ADDR_R, buf, len);
278 }
279
280 /**
281  * nand_write_buf16 - [DEFAULT] write buffer to chip
282  * @mtd: MTD device structure
283  * @buf: data buffer
284  * @len: number of bytes to write
285  *
286  * Default write function for 16bit buswidth.
287  */
288 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290         struct nand_chip *chip = mtd->priv;
291         u16 *p = (u16 *) buf;
292
293         iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
294 }
295
296 /**
297  * nand_read_buf16 - [DEFAULT] read chip data into buffer
298  * @mtd: MTD device structure
299  * @buf: buffer to store date
300  * @len: number of bytes to read
301  *
302  * Default read function for 16bit buswidth.
303  */
304 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
305 {
306         struct nand_chip *chip = mtd->priv;
307         u16 *p = (u16 *) buf;
308
309         ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
310 }
311
312 /**
313  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
314  * @mtd: MTD device structure
315  * @ofs: offset from device start
316  * @getchip: 0, if the chip is already selected
317  *
318  * Check, if the block is bad.
319  */
320 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
321 {
322         int page, chipnr, res = 0, i = 0;
323         struct nand_chip *chip = mtd->priv;
324         u16 bad;
325
326         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
327                 ofs += mtd->erasesize - mtd->writesize;
328
329         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
330
331         if (getchip) {
332                 chipnr = (int)(ofs >> chip->chip_shift);
333
334                 nand_get_device(mtd, FL_READING);
335
336                 /* Select the NAND device */
337                 chip->select_chip(mtd, chipnr);
338         }
339
340         do {
341                 if (chip->options & NAND_BUSWIDTH_16) {
342                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
343                                         chip->badblockpos & 0xFE, page);
344                         bad = cpu_to_le16(chip->read_word(mtd));
345                         if (chip->badblockpos & 0x1)
346                                 bad >>= 8;
347                         else
348                                 bad &= 0xFF;
349                 } else {
350                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
351                                         page);
352                         bad = chip->read_byte(mtd);
353                 }
354
355                 if (likely(chip->badblockbits == 8))
356                         res = bad != 0xFF;
357                 else
358                         res = hweight8(bad) < chip->badblockbits;
359                 ofs += mtd->writesize;
360                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
361                 i++;
362         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
363
364         if (getchip) {
365                 chip->select_chip(mtd, -1);
366                 nand_release_device(mtd);
367         }
368
369         return res;
370 }
371
372 /**
373  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
374  * @mtd: MTD device structure
375  * @ofs: offset from device start
376  *
377  * This is the default implementation, which can be overridden by a hardware
378  * specific driver. It provides the details for writing a bad block marker to a
379  * block.
380  */
381 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
382 {
383         struct nand_chip *chip = mtd->priv;
384         struct mtd_oob_ops ops;
385         uint8_t buf[2] = { 0, 0 };
386         int ret = 0, res, i = 0;
387
388         memset(&ops, 0, sizeof(ops));
389         ops.oobbuf = buf;
390         ops.ooboffs = chip->badblockpos;
391         if (chip->options & NAND_BUSWIDTH_16) {
392                 ops.ooboffs &= ~0x01;
393                 ops.len = ops.ooblen = 2;
394         } else {
395                 ops.len = ops.ooblen = 1;
396         }
397         ops.mode = MTD_OPS_PLACE_OOB;
398
399         /* Write to first/last page(s) if necessary */
400         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
401                 ofs += mtd->erasesize - mtd->writesize;
402         do {
403                 res = nand_do_write_oob(mtd, ofs, &ops);
404                 if (!ret)
405                         ret = res;
406
407                 i++;
408                 ofs += mtd->writesize;
409         } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
410
411         return ret;
412 }
413
414 /**
415  * nand_block_markbad_lowlevel - mark a block bad
416  * @mtd: MTD device structure
417  * @ofs: offset from device start
418  *
419  * This function performs the generic NAND bad block marking steps (i.e., bad
420  * block table(s) and/or marker(s)). We only allow the hardware driver to
421  * specify how to write bad block markers to OOB (chip->block_markbad).
422  *
423  * We try operations in the following order:
424  *  (1) erase the affected block, to allow OOB marker to be written cleanly
425  *  (2) write bad block marker to OOB area of affected block (unless flag
426  *      NAND_BBT_NO_OOB_BBM is present)
427  *  (3) update the BBT
428  * Note that we retain the first error encountered in (2) or (3), finish the
429  * procedures, and dump the error in the end.
430 */
431 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
432 {
433         struct nand_chip *chip = mtd->priv;
434         int res, ret = 0;
435
436         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
437                 struct erase_info einfo;
438
439                 /* Attempt erase before marking OOB */
440                 memset(&einfo, 0, sizeof(einfo));
441                 einfo.mtd = mtd;
442                 einfo.addr = ofs;
443                 einfo.len = 1ULL << chip->phys_erase_shift;
444                 nand_erase_nand(mtd, &einfo, 0);
445
446                 /* Write bad block marker to OOB */
447                 nand_get_device(mtd, FL_WRITING);
448                 ret = chip->block_markbad(mtd, ofs);
449                 nand_release_device(mtd);
450         }
451
452         /* Mark block bad in BBT */
453         if (chip->bbt) {
454                 res = nand_markbad_bbt(mtd, ofs);
455                 if (!ret)
456                         ret = res;
457         }
458
459         if (!ret)
460                 mtd->ecc_stats.badblocks++;
461
462         return ret;
463 }
464
465 /**
466  * nand_check_wp - [GENERIC] check if the chip is write protected
467  * @mtd: MTD device structure
468  *
469  * Check, if the device is write protected. The function expects, that the
470  * device is already selected.
471  */
472 static int nand_check_wp(struct mtd_info *mtd)
473 {
474         struct nand_chip *chip = mtd->priv;
475
476         /* Broken xD cards report WP despite being writable */
477         if (chip->options & NAND_BROKEN_XD)
478                 return 0;
479
480         /* Check the WP bit */
481         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
482         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
483 }
484
485 /**
486  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
487  * @mtd: MTD device structure
488  * @ofs: offset from device start
489  *
490  * Check if the block is marked as reserved.
491  */
492 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
493 {
494         struct nand_chip *chip = mtd->priv;
495
496         if (!chip->bbt)
497                 return 0;
498         /* Return info from the table */
499         return nand_isreserved_bbt(mtd, ofs);
500 }
501
502 /**
503  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
504  * @mtd: MTD device structure
505  * @ofs: offset from device start
506  * @getchip: 0, if the chip is already selected
507  * @allowbbt: 1, if its allowed to access the bbt area
508  *
509  * Check, if the block is bad. Either by reading the bad block table or
510  * calling of the scan function.
511  */
512 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
513                                int allowbbt)
514 {
515         struct nand_chip *chip = mtd->priv;
516
517         if (!chip->bbt)
518                 return chip->block_bad(mtd, ofs, getchip);
519
520         /* Return info from the table */
521         return nand_isbad_bbt(mtd, ofs, allowbbt);
522 }
523
524 /**
525  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
526  * @mtd: MTD device structure
527  * @timeo: Timeout
528  *
529  * Helper function for nand_wait_ready used when needing to wait in interrupt
530  * context.
531  */
532 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
533 {
534         struct nand_chip *chip = mtd->priv;
535         int i;
536
537         /* Wait for the device to get ready */
538         for (i = 0; i < timeo; i++) {
539                 if (chip->dev_ready(mtd))
540                         break;
541                 touch_softlockup_watchdog();
542                 mdelay(1);
543         }
544 }
545
546 /* Wait for the ready pin, after a command. The timeout is caught later. */
547 void nand_wait_ready(struct mtd_info *mtd)
548 {
549         struct nand_chip *chip = mtd->priv;
550         unsigned long timeo = jiffies + msecs_to_jiffies(20);
551
552         /* 400ms timeout */
553         if (in_interrupt() || oops_in_progress)
554                 return panic_nand_wait_ready(mtd, 400);
555
556         led_trigger_event(nand_led_trigger, LED_FULL);
557         /* Wait until command is processed or timeout occurs */
558         do {
559                 if (chip->dev_ready(mtd))
560                         break;
561                 touch_softlockup_watchdog();
562         } while (time_before(jiffies, timeo));
563         led_trigger_event(nand_led_trigger, LED_OFF);
564 }
565 EXPORT_SYMBOL_GPL(nand_wait_ready);
566
567 /**
568  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
569  * @mtd: MTD device structure
570  * @timeo: Timeout in ms
571  *
572  * Wait for status ready (i.e. command done) or timeout.
573  */
574 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
575 {
576         register struct nand_chip *chip = mtd->priv;
577
578         timeo = jiffies + msecs_to_jiffies(timeo);
579         do {
580                 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
581                         break;
582                 touch_softlockup_watchdog();
583         } while (time_before(jiffies, timeo));
584 };
585
586 /**
587  * nand_command - [DEFAULT] Send command to NAND device
588  * @mtd: MTD device structure
589  * @command: the command to be sent
590  * @column: the column address for this command, -1 if none
591  * @page_addr: the page address for this command, -1 if none
592  *
593  * Send command to NAND device. This function is used for small page devices
594  * (512 Bytes per page).
595  */
596 static void nand_command(struct mtd_info *mtd, unsigned int command,
597                          int column, int page_addr)
598 {
599         register struct nand_chip *chip = mtd->priv;
600         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
601
602         /* Write out the command to the device */
603         if (command == NAND_CMD_SEQIN) {
604                 int readcmd;
605
606                 if (column >= mtd->writesize) {
607                         /* OOB area */
608                         column -= mtd->writesize;
609                         readcmd = NAND_CMD_READOOB;
610                 } else if (column < 256) {
611                         /* First 256 bytes --> READ0 */
612                         readcmd = NAND_CMD_READ0;
613                 } else {
614                         column -= 256;
615                         readcmd = NAND_CMD_READ1;
616                 }
617                 chip->cmd_ctrl(mtd, readcmd, ctrl);
618                 ctrl &= ~NAND_CTRL_CHANGE;
619         }
620         chip->cmd_ctrl(mtd, command, ctrl);
621
622         /* Address cycle, when necessary */
623         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
624         /* Serially input address */
625         if (column != -1) {
626                 /* Adjust columns for 16 bit buswidth */
627                 if (chip->options & NAND_BUSWIDTH_16 &&
628                                 !nand_opcode_8bits(command))
629                         column >>= 1;
630                 chip->cmd_ctrl(mtd, column, ctrl);
631                 ctrl &= ~NAND_CTRL_CHANGE;
632         }
633         if (page_addr != -1) {
634                 chip->cmd_ctrl(mtd, page_addr, ctrl);
635                 ctrl &= ~NAND_CTRL_CHANGE;
636                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
637                 /* One more address cycle for devices > 32MiB */
638                 if (chip->chipsize > (32 << 20))
639                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
640         }
641         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
642
643         /*
644          * Program and erase have their own busy handlers status and sequential
645          * in needs no delay
646          */
647         switch (command) {
648
649         case NAND_CMD_PAGEPROG:
650         case NAND_CMD_ERASE1:
651         case NAND_CMD_ERASE2:
652         case NAND_CMD_SEQIN:
653         case NAND_CMD_STATUS:
654                 return;
655
656         case NAND_CMD_RESET:
657                 if (chip->dev_ready)
658                         break;
659                 udelay(chip->chip_delay);
660                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
661                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
662                 chip->cmd_ctrl(mtd,
663                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
664                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
665                 nand_wait_status_ready(mtd, 250);
666                 return;
667
668                 /* This applies to read commands */
669         default:
670                 /*
671                  * If we don't have access to the busy pin, we apply the given
672                  * command delay
673                  */
674                 if (!chip->dev_ready) {
675                         udelay(chip->chip_delay);
676                         return;
677                 }
678         }
679         /*
680          * Apply this short delay always to ensure that we do wait tWB in
681          * any case on any machine.
682          */
683         ndelay(100);
684
685         nand_wait_ready(mtd);
686 }
687
688 /**
689  * nand_command_lp - [DEFAULT] Send command to NAND large page device
690  * @mtd: MTD device structure
691  * @command: the command to be sent
692  * @column: the column address for this command, -1 if none
693  * @page_addr: the page address for this command, -1 if none
694  *
695  * Send command to NAND device. This is the version for the new large page
696  * devices. We don't have the separate regions as we have in the small page
697  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
698  */
699 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
700                             int column, int page_addr)
701 {
702         register struct nand_chip *chip = mtd->priv;
703
704         /* Emulate NAND_CMD_READOOB */
705         if (command == NAND_CMD_READOOB) {
706                 column += mtd->writesize;
707                 command = NAND_CMD_READ0;
708         }
709
710         /* Command latch cycle */
711         chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
712
713         if (column != -1 || page_addr != -1) {
714                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
715
716                 /* Serially input address */
717                 if (column != -1) {
718                         /* Adjust columns for 16 bit buswidth */
719                         if (chip->options & NAND_BUSWIDTH_16 &&
720                                         !nand_opcode_8bits(command))
721                                 column >>= 1;
722                         chip->cmd_ctrl(mtd, column, ctrl);
723                         ctrl &= ~NAND_CTRL_CHANGE;
724                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
725                 }
726                 if (page_addr != -1) {
727                         chip->cmd_ctrl(mtd, page_addr, ctrl);
728                         chip->cmd_ctrl(mtd, page_addr >> 8,
729                                        NAND_NCE | NAND_ALE);
730                         /* One more address cycle for devices > 128MiB */
731                         if (chip->chipsize > (128 << 20))
732                                 chip->cmd_ctrl(mtd, page_addr >> 16,
733                                                NAND_NCE | NAND_ALE);
734                 }
735         }
736         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
737
738         /*
739          * Program and erase have their own busy handlers status, sequential
740          * in and status need no delay.
741          */
742         switch (command) {
743
744         case NAND_CMD_CACHEDPROG:
745         case NAND_CMD_PAGEPROG:
746         case NAND_CMD_ERASE1:
747         case NAND_CMD_ERASE2:
748         case NAND_CMD_SEQIN:
749         case NAND_CMD_RNDIN:
750         case NAND_CMD_STATUS:
751                 return;
752
753         case NAND_CMD_RESET:
754                 if (chip->dev_ready)
755                         break;
756                 udelay(chip->chip_delay);
757                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
758                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
759                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
760                                NAND_NCE | NAND_CTRL_CHANGE);
761                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
762                 nand_wait_status_ready(mtd, 250);
763                 return;
764
765         case NAND_CMD_RNDOUT:
766                 /* No ready / busy check necessary */
767                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
768                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
769                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
770                                NAND_NCE | NAND_CTRL_CHANGE);
771                 return;
772
773         case NAND_CMD_READ0:
774                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
775                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
776                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
777                                NAND_NCE | NAND_CTRL_CHANGE);
778
779                 /* This applies to read commands */
780         default:
781                 /*
782                  * If we don't have access to the busy pin, we apply the given
783                  * command delay.
784                  */
785                 if (!chip->dev_ready) {
786                         udelay(chip->chip_delay);
787                         return;
788                 }
789         }
790
791         /*
792          * Apply this short delay always to ensure that we do wait tWB in
793          * any case on any machine.
794          */
795         ndelay(100);
796
797         nand_wait_ready(mtd);
798 }
799
800 /**
801  * panic_nand_get_device - [GENERIC] Get chip for selected access
802  * @chip: the nand chip descriptor
803  * @mtd: MTD device structure
804  * @new_state: the state which is requested
805  *
806  * Used when in panic, no locks are taken.
807  */
808 static void panic_nand_get_device(struct nand_chip *chip,
809                       struct mtd_info *mtd, int new_state)
810 {
811         /* Hardware controller shared among independent devices */
812         chip->controller->active = chip;
813         chip->state = new_state;
814 }
815
816 /**
817  * nand_get_device - [GENERIC] Get chip for selected access
818  * @mtd: MTD device structure
819  * @new_state: the state which is requested
820  *
821  * Get the device and lock it for exclusive access
822  */
823 static int
824 nand_get_device(struct mtd_info *mtd, int new_state)
825 {
826         struct nand_chip *chip = mtd->priv;
827         spinlock_t *lock = &chip->controller->lock;
828         wait_queue_head_t *wq = &chip->controller->wq;
829         DECLARE_WAITQUEUE(wait, current);
830 retry:
831         spin_lock(lock);
832
833         /* Hardware controller shared among independent devices */
834         if (!chip->controller->active)
835                 chip->controller->active = chip;
836
837         if (chip->controller->active == chip && chip->state == FL_READY) {
838                 chip->state = new_state;
839                 spin_unlock(lock);
840                 return 0;
841         }
842         if (new_state == FL_PM_SUSPENDED) {
843                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
844                         chip->state = FL_PM_SUSPENDED;
845                         spin_unlock(lock);
846                         return 0;
847                 }
848         }
849         set_current_state(TASK_UNINTERRUPTIBLE);
850         add_wait_queue(wq, &wait);
851         spin_unlock(lock);
852         schedule();
853         remove_wait_queue(wq, &wait);
854         goto retry;
855 }
856
857 /**
858  * panic_nand_wait - [GENERIC] wait until the command is done
859  * @mtd: MTD device structure
860  * @chip: NAND chip structure
861  * @timeo: timeout
862  *
863  * Wait for command done. This is a helper function for nand_wait used when
864  * we are in interrupt context. May happen when in panic and trying to write
865  * an oops through mtdoops.
866  */
867 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
868                             unsigned long timeo)
869 {
870         int i;
871         for (i = 0; i < timeo; i++) {
872                 if (chip->dev_ready) {
873                         if (chip->dev_ready(mtd))
874                                 break;
875                 } else {
876                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
877                                 break;
878                 }
879                 mdelay(1);
880         }
881 }
882
883 /**
884  * nand_wait - [DEFAULT] wait until the command is done
885  * @mtd: MTD device structure
886  * @chip: NAND chip structure
887  *
888  * Wait for command done. This applies to erase and program only. Erase can
889  * take up to 400ms and program up to 20ms according to general NAND and
890  * SmartMedia specs.
891  */
892 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
893 {
894
895         int status, state = chip->state;
896         unsigned long timeo = (state == FL_ERASING ? 400 : 20);
897
898         led_trigger_event(nand_led_trigger, LED_FULL);
899
900         /*
901          * Apply this short delay always to ensure that we do wait tWB in any
902          * case on any machine.
903          */
904         ndelay(100);
905
906         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
907
908         if (in_interrupt() || oops_in_progress)
909                 panic_nand_wait(mtd, chip, timeo);
910         else {
911                 timeo = jiffies + msecs_to_jiffies(timeo);
912                 while (time_before(jiffies, timeo)) {
913                         if (chip->dev_ready) {
914                                 if (chip->dev_ready(mtd))
915                                         break;
916                         } else {
917                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
918                                         break;
919                         }
920                         cond_resched();
921                 }
922         }
923         led_trigger_event(nand_led_trigger, LED_OFF);
924
925         status = (int)chip->read_byte(mtd);
926         /* This can happen if in case of timeout or buggy dev_ready */
927         WARN_ON(!(status & NAND_STATUS_READY));
928         return status;
929 }
930
931 /**
932  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
933  * @mtd: mtd info
934  * @ofs: offset to start unlock from
935  * @len: length to unlock
936  * @invert: when = 0, unlock the range of blocks within the lower and
937  *                    upper boundary address
938  *          when = 1, unlock the range of blocks outside the boundaries
939  *                    of the lower and upper boundary address
940  *
941  * Returs unlock status.
942  */
943 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
944                                         uint64_t len, int invert)
945 {
946         int ret = 0;
947         int status, page;
948         struct nand_chip *chip = mtd->priv;
949
950         /* Submit address of first page to unlock */
951         page = ofs >> chip->page_shift;
952         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
953
954         /* Submit address of last page to unlock */
955         page = (ofs + len) >> chip->page_shift;
956         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
957                                 (page | invert) & chip->pagemask);
958
959         /* Call wait ready function */
960         status = chip->waitfunc(mtd, chip);
961         /* See if device thinks it succeeded */
962         if (status & NAND_STATUS_FAIL) {
963                 pr_debug("%s: error status = 0x%08x\n",
964                                         __func__, status);
965                 ret = -EIO;
966         }
967
968         return ret;
969 }
970
971 /**
972  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
973  * @mtd: mtd info
974  * @ofs: offset to start unlock from
975  * @len: length to unlock
976  *
977  * Returns unlock status.
978  */
979 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
980 {
981         int ret = 0;
982         int chipnr;
983         struct nand_chip *chip = mtd->priv;
984
985         pr_debug("%s: start = 0x%012llx, len = %llu\n",
986                         __func__, (unsigned long long)ofs, len);
987
988         if (check_offs_len(mtd, ofs, len))
989                 return -EINVAL;
990
991         /* Align to last block address if size addresses end of the device */
992         if (ofs + len == mtd->size)
993                 len -= mtd->erasesize;
994
995         nand_get_device(mtd, FL_UNLOCKING);
996
997         /* Shift to get chip number */
998         chipnr = ofs >> chip->chip_shift;
999
1000         chip->select_chip(mtd, chipnr);
1001
1002         /*
1003          * Reset the chip.
1004          * If we want to check the WP through READ STATUS and check the bit 7
1005          * we must reset the chip
1006          * some operation can also clear the bit 7 of status register
1007          * eg. erase/program a locked block
1008          */
1009         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1010
1011         /* Check, if it is write protected */
1012         if (nand_check_wp(mtd)) {
1013                 pr_debug("%s: device is write protected!\n",
1014                                         __func__);
1015                 ret = -EIO;
1016                 goto out;
1017         }
1018
1019         ret = __nand_unlock(mtd, ofs, len, 0);
1020
1021 out:
1022         chip->select_chip(mtd, -1);
1023         nand_release_device(mtd);
1024
1025         return ret;
1026 }
1027 EXPORT_SYMBOL(nand_unlock);
1028
1029 /**
1030  * nand_lock - [REPLACEABLE] locks all blocks present in the device
1031  * @mtd: mtd info
1032  * @ofs: offset to start unlock from
1033  * @len: length to unlock
1034  *
1035  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1036  * have this feature, but it allows only to lock all blocks, not for specified
1037  * range for block. Implementing 'lock' feature by making use of 'unlock', for
1038  * now.
1039  *
1040  * Returns lock status.
1041  */
1042 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1043 {
1044         int ret = 0;
1045         int chipnr, status, page;
1046         struct nand_chip *chip = mtd->priv;
1047
1048         pr_debug("%s: start = 0x%012llx, len = %llu\n",
1049                         __func__, (unsigned long long)ofs, len);
1050
1051         if (check_offs_len(mtd, ofs, len))
1052                 return -EINVAL;
1053
1054         nand_get_device(mtd, FL_LOCKING);
1055
1056         /* Shift to get chip number */
1057         chipnr = ofs >> chip->chip_shift;
1058
1059         chip->select_chip(mtd, chipnr);
1060
1061         /*
1062          * Reset the chip.
1063          * If we want to check the WP through READ STATUS and check the bit 7
1064          * we must reset the chip
1065          * some operation can also clear the bit 7 of status register
1066          * eg. erase/program a locked block
1067          */
1068         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1069
1070         /* Check, if it is write protected */
1071         if (nand_check_wp(mtd)) {
1072                 pr_debug("%s: device is write protected!\n",
1073                                         __func__);
1074                 status = MTD_ERASE_FAILED;
1075                 ret = -EIO;
1076                 goto out;
1077         }
1078
1079         /* Submit address of first page to lock */
1080         page = ofs >> chip->page_shift;
1081         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1082
1083         /* Call wait ready function */
1084         status = chip->waitfunc(mtd, chip);
1085         /* See if device thinks it succeeded */
1086         if (status & NAND_STATUS_FAIL) {
1087                 pr_debug("%s: error status = 0x%08x\n",
1088                                         __func__, status);
1089                 ret = -EIO;
1090                 goto out;
1091         }
1092
1093         ret = __nand_unlock(mtd, ofs, len, 0x1);
1094
1095 out:
1096         chip->select_chip(mtd, -1);
1097         nand_release_device(mtd);
1098
1099         return ret;
1100 }
1101 EXPORT_SYMBOL(nand_lock);
1102
1103 /**
1104  * nand_read_page_raw - [INTERN] read raw page data without ecc
1105  * @mtd: mtd info structure
1106  * @chip: nand chip info structure
1107  * @buf: buffer to store read data
1108  * @oob_required: caller requires OOB data read to chip->oob_poi
1109  * @page: page number to read
1110  *
1111  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1112  */
1113 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1114                               uint8_t *buf, int oob_required, int page)
1115 {
1116         chip->read_buf(mtd, buf, mtd->writesize);
1117         if (oob_required)
1118                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1119         return 0;
1120 }
1121
1122 /**
1123  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1124  * @mtd: mtd info structure
1125  * @chip: nand chip info structure
1126  * @buf: buffer to store read data
1127  * @oob_required: caller requires OOB data read to chip->oob_poi
1128  * @page: page number to read
1129  *
1130  * We need a special oob layout and handling even when OOB isn't used.
1131  */
1132 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1133                                        struct nand_chip *chip, uint8_t *buf,
1134                                        int oob_required, int page)
1135 {
1136         int eccsize = chip->ecc.size;
1137         int eccbytes = chip->ecc.bytes;
1138         uint8_t *oob = chip->oob_poi;
1139         int steps, size;
1140
1141         for (steps = chip->ecc.steps; steps > 0; steps--) {
1142                 chip->read_buf(mtd, buf, eccsize);
1143                 buf += eccsize;
1144
1145                 if (chip->ecc.prepad) {
1146                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1147                         oob += chip->ecc.prepad;
1148                 }
1149
1150                 chip->read_buf(mtd, oob, eccbytes);
1151                 oob += eccbytes;
1152
1153                 if (chip->ecc.postpad) {
1154                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1155                         oob += chip->ecc.postpad;
1156                 }
1157         }
1158
1159         size = mtd->oobsize - (oob - chip->oob_poi);
1160         if (size)
1161                 chip->read_buf(mtd, oob, size);
1162
1163         return 0;
1164 }
1165
1166 /**
1167  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1168  * @mtd: mtd info structure
1169  * @chip: nand chip info structure
1170  * @buf: buffer to store read data
1171  * @oob_required: caller requires OOB data read to chip->oob_poi
1172  * @page: page number to read
1173  */
1174 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1175                                 uint8_t *buf, int oob_required, int page)
1176 {
1177         int i, eccsize = chip->ecc.size;
1178         int eccbytes = chip->ecc.bytes;
1179         int eccsteps = chip->ecc.steps;
1180         uint8_t *p = buf;
1181         uint8_t *ecc_calc = chip->buffers->ecccalc;
1182         uint8_t *ecc_code = chip->buffers->ecccode;
1183         uint32_t *eccpos = chip->ecc.layout->eccpos;
1184         unsigned int max_bitflips = 0;
1185
1186         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1187
1188         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1189                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1190
1191         for (i = 0; i < chip->ecc.total; i++)
1192                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1193
1194         eccsteps = chip->ecc.steps;
1195         p = buf;
1196
1197         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1198                 int stat;
1199
1200                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1201                 if (stat < 0) {
1202                         mtd->ecc_stats.failed++;
1203                 } else {
1204                         mtd->ecc_stats.corrected += stat;
1205                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1206                 }
1207         }
1208         return max_bitflips;
1209 }
1210
1211 /**
1212  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1213  * @mtd: mtd info structure
1214  * @chip: nand chip info structure
1215  * @data_offs: offset of requested data within the page
1216  * @readlen: data length
1217  * @bufpoi: buffer to store read data
1218  * @page: page number to read
1219  */
1220 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1221                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1222                         int page)
1223 {
1224         int start_step, end_step, num_steps;
1225         uint32_t *eccpos = chip->ecc.layout->eccpos;
1226         uint8_t *p;
1227         int data_col_addr, i, gaps = 0;
1228         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1229         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1230         int index;
1231         unsigned int max_bitflips = 0;
1232
1233         /* Column address within the page aligned to ECC size (256bytes) */
1234         start_step = data_offs / chip->ecc.size;
1235         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1236         num_steps = end_step - start_step + 1;
1237         index = start_step * chip->ecc.bytes;
1238
1239         /* Data size aligned to ECC ecc.size */
1240         datafrag_len = num_steps * chip->ecc.size;
1241         eccfrag_len = num_steps * chip->ecc.bytes;
1242
1243         data_col_addr = start_step * chip->ecc.size;
1244         /* If we read not a page aligned data */
1245         if (data_col_addr != 0)
1246                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1247
1248         p = bufpoi + data_col_addr;
1249         chip->read_buf(mtd, p, datafrag_len);
1250
1251         /* Calculate ECC */
1252         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1253                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1254
1255         /*
1256          * The performance is faster if we position offsets according to
1257          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1258          */
1259         for (i = 0; i < eccfrag_len - 1; i++) {
1260                 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1261                         gaps = 1;
1262                         break;
1263                 }
1264         }
1265         if (gaps) {
1266                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1267                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1268         } else {
1269                 /*
1270                  * Send the command to read the particular ECC bytes take care
1271                  * about buswidth alignment in read_buf.
1272                  */
1273                 aligned_pos = eccpos[index] & ~(busw - 1);
1274                 aligned_len = eccfrag_len;
1275                 if (eccpos[index] & (busw - 1))
1276                         aligned_len++;
1277                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1278                         aligned_len++;
1279
1280                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1281                                         mtd->writesize + aligned_pos, -1);
1282                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1283         }
1284
1285         for (i = 0; i < eccfrag_len; i++)
1286                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1287
1288         p = bufpoi + data_col_addr;
1289         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1290                 int stat;
1291
1292                 stat = chip->ecc.correct(mtd, p,
1293                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1294                 if (stat < 0) {
1295                         mtd->ecc_stats.failed++;
1296                 } else {
1297                         mtd->ecc_stats.corrected += stat;
1298                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1299                 }
1300         }
1301         return max_bitflips;
1302 }
1303
1304 /**
1305  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1306  * @mtd: mtd info structure
1307  * @chip: nand chip info structure
1308  * @buf: buffer to store read data
1309  * @oob_required: caller requires OOB data read to chip->oob_poi
1310  * @page: page number to read
1311  *
1312  * Not for syndrome calculating ECC controllers which need a special oob layout.
1313  */
1314 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1315                                 uint8_t *buf, int oob_required, int page)
1316 {
1317         int i, eccsize = chip->ecc.size;
1318         int eccbytes = chip->ecc.bytes;
1319         int eccsteps = chip->ecc.steps;
1320         uint8_t *p = buf;
1321         uint8_t *ecc_calc = chip->buffers->ecccalc;
1322         uint8_t *ecc_code = chip->buffers->ecccode;
1323         uint32_t *eccpos = chip->ecc.layout->eccpos;
1324         unsigned int max_bitflips = 0;
1325
1326         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1327                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1328                 chip->read_buf(mtd, p, eccsize);
1329                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1330         }
1331         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1332
1333         for (i = 0; i < chip->ecc.total; i++)
1334                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1335
1336         eccsteps = chip->ecc.steps;
1337         p = buf;
1338
1339         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1340                 int stat;
1341
1342                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1343                 if (stat < 0) {
1344                         mtd->ecc_stats.failed++;
1345                 } else {
1346                         mtd->ecc_stats.corrected += stat;
1347                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1348                 }
1349         }
1350         return max_bitflips;
1351 }
1352
1353 /**
1354  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1355  * @mtd: mtd info structure
1356  * @chip: nand chip info structure
1357  * @buf: buffer to store read data
1358  * @oob_required: caller requires OOB data read to chip->oob_poi
1359  * @page: page number to read
1360  *
1361  * Hardware ECC for large page chips, require OOB to be read first. For this
1362  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1363  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1364  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1365  * the data area, by overwriting the NAND manufacturer bad block markings.
1366  */
1367 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1368         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1369 {
1370         int i, eccsize = chip->ecc.size;
1371         int eccbytes = chip->ecc.bytes;
1372         int eccsteps = chip->ecc.steps;
1373         uint8_t *p = buf;
1374         uint8_t *ecc_code = chip->buffers->ecccode;
1375         uint32_t *eccpos = chip->ecc.layout->eccpos;
1376         uint8_t *ecc_calc = chip->buffers->ecccalc;
1377         unsigned int max_bitflips = 0;
1378
1379         /* Read the OOB area first */
1380         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1381         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1382         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1383
1384         for (i = 0; i < chip->ecc.total; i++)
1385                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1386
1387         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1388                 int stat;
1389
1390                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1391                 chip->read_buf(mtd, p, eccsize);
1392                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1393
1394                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1395                 if (stat < 0) {
1396                         mtd->ecc_stats.failed++;
1397                 } else {
1398                         mtd->ecc_stats.corrected += stat;
1399                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1400                 }
1401         }
1402         return max_bitflips;
1403 }
1404
1405 /**
1406  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1407  * @mtd: mtd info structure
1408  * @chip: nand chip info structure
1409  * @buf: buffer to store read data
1410  * @oob_required: caller requires OOB data read to chip->oob_poi
1411  * @page: page number to read
1412  *
1413  * The hw generator calculates the error syndrome automatically. Therefore we
1414  * need a special oob layout and handling.
1415  */
1416 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1417                                    uint8_t *buf, int oob_required, int page)
1418 {
1419         int i, eccsize = chip->ecc.size;
1420         int eccbytes = chip->ecc.bytes;
1421         int eccsteps = chip->ecc.steps;
1422         uint8_t *p = buf;
1423         uint8_t *oob = chip->oob_poi;
1424         unsigned int max_bitflips = 0;
1425
1426         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1427                 int stat;
1428
1429                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1430                 chip->read_buf(mtd, p, eccsize);
1431
1432                 if (chip->ecc.prepad) {
1433                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1434                         oob += chip->ecc.prepad;
1435                 }
1436
1437                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1438                 chip->read_buf(mtd, oob, eccbytes);
1439                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1440
1441                 if (stat < 0) {
1442                         mtd->ecc_stats.failed++;
1443                 } else {
1444                         mtd->ecc_stats.corrected += stat;
1445                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1446                 }
1447
1448                 oob += eccbytes;
1449
1450                 if (chip->ecc.postpad) {
1451                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1452                         oob += chip->ecc.postpad;
1453                 }
1454         }
1455
1456         /* Calculate remaining oob bytes */
1457         i = mtd->oobsize - (oob - chip->oob_poi);
1458         if (i)
1459                 chip->read_buf(mtd, oob, i);
1460
1461         return max_bitflips;
1462 }
1463
1464 /**
1465  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1466  * @chip: nand chip structure
1467  * @oob: oob destination address
1468  * @ops: oob ops structure
1469  * @len: size of oob to transfer
1470  */
1471 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1472                                   struct mtd_oob_ops *ops, size_t len)
1473 {
1474         switch (ops->mode) {
1475
1476         case MTD_OPS_PLACE_OOB:
1477         case MTD_OPS_RAW:
1478                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1479                 return oob + len;
1480
1481         case MTD_OPS_AUTO_OOB: {
1482                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1483                 uint32_t boffs = 0, roffs = ops->ooboffs;
1484                 size_t bytes = 0;
1485
1486                 for (; free->length && len; free++, len -= bytes) {
1487                         /* Read request not from offset 0? */
1488                         if (unlikely(roffs)) {
1489                                 if (roffs >= free->length) {
1490                                         roffs -= free->length;
1491                                         continue;
1492                                 }
1493                                 boffs = free->offset + roffs;
1494                                 bytes = min_t(size_t, len,
1495                                               (free->length - roffs));
1496                                 roffs = 0;
1497                         } else {
1498                                 bytes = min_t(size_t, len, free->length);
1499                                 boffs = free->offset;
1500                         }
1501                         memcpy(oob, chip->oob_poi + boffs, bytes);
1502                         oob += bytes;
1503                 }
1504                 return oob;
1505         }
1506         default:
1507                 BUG();
1508         }
1509         return NULL;
1510 }
1511
1512 /**
1513  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1514  * @mtd: MTD device structure
1515  * @retry_mode: the retry mode to use
1516  *
1517  * Some vendors supply a special command to shift the Vt threshold, to be used
1518  * when there are too many bitflips in a page (i.e., ECC error). After setting
1519  * a new threshold, the host should retry reading the page.
1520  */
1521 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1522 {
1523         struct nand_chip *chip = mtd->priv;
1524
1525         pr_debug("setting READ RETRY mode %d\n", retry_mode);
1526
1527         if (retry_mode >= chip->read_retries)
1528                 return -EINVAL;
1529
1530         if (!chip->setup_read_retry)
1531                 return -EOPNOTSUPP;
1532
1533         return chip->setup_read_retry(mtd, retry_mode);
1534 }
1535
1536 /**
1537  * nand_do_read_ops - [INTERN] Read data with ECC
1538  * @mtd: MTD device structure
1539  * @from: offset to read from
1540  * @ops: oob ops structure
1541  *
1542  * Internal function. Called with chip held.
1543  */
1544 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1545                             struct mtd_oob_ops *ops)
1546 {
1547         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1548         struct nand_chip *chip = mtd->priv;
1549         int ret = 0;
1550         uint32_t readlen = ops->len;
1551         uint32_t oobreadlen = ops->ooblen;
1552         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1553                 mtd->oobavail : mtd->oobsize;
1554
1555         uint8_t *bufpoi, *oob, *buf;
1556         int use_bufpoi;
1557         unsigned int max_bitflips = 0;
1558         int retry_mode = 0;
1559         bool ecc_fail = false;
1560
1561         chipnr = (int)(from >> chip->chip_shift);
1562         chip->select_chip(mtd, chipnr);
1563
1564         realpage = (int)(from >> chip->page_shift);
1565         page = realpage & chip->pagemask;
1566
1567         col = (int)(from & (mtd->writesize - 1));
1568
1569         buf = ops->datbuf;
1570         oob = ops->oobbuf;
1571         oob_required = oob ? 1 : 0;
1572
1573         while (1) {
1574                 unsigned int ecc_failures = mtd->ecc_stats.failed;
1575
1576                 bytes = min(mtd->writesize - col, readlen);
1577                 aligned = (bytes == mtd->writesize);
1578
1579                 if (!aligned)
1580                         use_bufpoi = 1;
1581                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1582                         use_bufpoi = !virt_addr_valid(buf);
1583                 else
1584                         use_bufpoi = 0;
1585
1586                 /* Is the current page in the buffer? */
1587                 if (realpage != chip->pagebuf || oob) {
1588                         bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1589
1590                         if (use_bufpoi && aligned)
1591                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
1592                                                  __func__, buf);
1593
1594 read_retry:
1595                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1596
1597                         /*
1598                          * Now read the page into the buffer.  Absent an error,
1599                          * the read methods return max bitflips per ecc step.
1600                          */
1601                         if (unlikely(ops->mode == MTD_OPS_RAW))
1602                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1603                                                               oob_required,
1604                                                               page);
1605                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1606                                  !oob)
1607                                 ret = chip->ecc.read_subpage(mtd, chip,
1608                                                         col, bytes, bufpoi,
1609                                                         page);
1610                         else
1611                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1612                                                           oob_required, page);
1613                         if (ret < 0) {
1614                                 if (use_bufpoi)
1615                                         /* Invalidate page cache */
1616                                         chip->pagebuf = -1;
1617                                 break;
1618                         }
1619
1620                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1621
1622                         /* Transfer not aligned data */
1623                         if (use_bufpoi) {
1624                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1625                                     !(mtd->ecc_stats.failed - ecc_failures) &&
1626                                     (ops->mode != MTD_OPS_RAW)) {
1627                                         chip->pagebuf = realpage;
1628                                         chip->pagebuf_bitflips = ret;
1629                                 } else {
1630                                         /* Invalidate page cache */
1631                                         chip->pagebuf = -1;
1632                                 }
1633                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1634                         }
1635
1636                         if (unlikely(oob)) {
1637                                 int toread = min(oobreadlen, max_oobsize);
1638
1639                                 if (toread) {
1640                                         oob = nand_transfer_oob(chip,
1641                                                 oob, ops, toread);
1642                                         oobreadlen -= toread;
1643                                 }
1644                         }
1645
1646                         if (chip->options & NAND_NEED_READRDY) {
1647                                 /* Apply delay or wait for ready/busy pin */
1648                                 if (!chip->dev_ready)
1649                                         udelay(chip->chip_delay);
1650                                 else
1651                                         nand_wait_ready(mtd);
1652                         }
1653
1654                         if (mtd->ecc_stats.failed - ecc_failures) {
1655                                 if (retry_mode + 1 < chip->read_retries) {
1656                                         retry_mode++;
1657                                         ret = nand_setup_read_retry(mtd,
1658                                                         retry_mode);
1659                                         if (ret < 0)
1660                                                 break;
1661
1662                                         /* Reset failures; retry */
1663                                         mtd->ecc_stats.failed = ecc_failures;
1664                                         goto read_retry;
1665                                 } else {
1666                                         /* No more retry modes; real failure */
1667                                         ecc_fail = true;
1668                                 }
1669                         }
1670
1671                         buf += bytes;
1672                 } else {
1673                         memcpy(buf, chip->buffers->databuf + col, bytes);
1674                         buf += bytes;
1675                         max_bitflips = max_t(unsigned int, max_bitflips,
1676                                              chip->pagebuf_bitflips);
1677                 }
1678
1679                 readlen -= bytes;
1680
1681                 /* Reset to retry mode 0 */
1682                 if (retry_mode) {
1683                         ret = nand_setup_read_retry(mtd, 0);
1684                         if (ret < 0)
1685                                 break;
1686                         retry_mode = 0;
1687                 }
1688
1689                 if (!readlen)
1690                         break;
1691
1692                 /* For subsequent reads align to page boundary */
1693                 col = 0;
1694                 /* Increment page address */
1695                 realpage++;
1696
1697                 page = realpage & chip->pagemask;
1698                 /* Check, if we cross a chip boundary */
1699                 if (!page) {
1700                         chipnr++;
1701                         chip->select_chip(mtd, -1);
1702                         chip->select_chip(mtd, chipnr);
1703                 }
1704         }
1705         chip->select_chip(mtd, -1);
1706
1707         ops->retlen = ops->len - (size_t) readlen;
1708         if (oob)
1709                 ops->oobretlen = ops->ooblen - oobreadlen;
1710
1711         if (ret < 0)
1712                 return ret;
1713
1714         if (ecc_fail)
1715                 return -EBADMSG;
1716
1717         return max_bitflips;
1718 }
1719
1720 /**
1721  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1722  * @mtd: MTD device structure
1723  * @from: offset to read from
1724  * @len: number of bytes to read
1725  * @retlen: pointer to variable to store the number of read bytes
1726  * @buf: the databuffer to put data
1727  *
1728  * Get hold of the chip and call nand_do_read.
1729  */
1730 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1731                      size_t *retlen, uint8_t *buf)
1732 {
1733         struct mtd_oob_ops ops;
1734         int ret;
1735
1736         nand_get_device(mtd, FL_READING);
1737         memset(&ops, 0, sizeof(ops));
1738         ops.len = len;
1739         ops.datbuf = buf;
1740         ops.mode = MTD_OPS_PLACE_OOB;
1741         ret = nand_do_read_ops(mtd, from, &ops);
1742         *retlen = ops.retlen;
1743         nand_release_device(mtd);
1744         return ret;
1745 }
1746
1747 /**
1748  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1749  * @mtd: mtd info structure
1750  * @chip: nand chip info structure
1751  * @page: page number to read
1752  */
1753 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1754                              int page)
1755 {
1756         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1757         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1758         return 0;
1759 }
1760
1761 /**
1762  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1763  *                          with syndromes
1764  * @mtd: mtd info structure
1765  * @chip: nand chip info structure
1766  * @page: page number to read
1767  */
1768 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1769                                   int page)
1770 {
1771         int length = mtd->oobsize;
1772         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1773         int eccsize = chip->ecc.size;
1774         uint8_t *bufpoi = chip->oob_poi;
1775         int i, toread, sndrnd = 0, pos;
1776
1777         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1778         for (i = 0; i < chip->ecc.steps; i++) {
1779                 if (sndrnd) {
1780                         pos = eccsize + i * (eccsize + chunk);
1781                         if (mtd->writesize > 512)
1782                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1783                         else
1784                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1785                 } else
1786                         sndrnd = 1;
1787                 toread = min_t(int, length, chunk);
1788                 chip->read_buf(mtd, bufpoi, toread);
1789                 bufpoi += toread;
1790                 length -= toread;
1791         }
1792         if (length > 0)
1793                 chip->read_buf(mtd, bufpoi, length);
1794
1795         return 0;
1796 }
1797
1798 /**
1799  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1800  * @mtd: mtd info structure
1801  * @chip: nand chip info structure
1802  * @page: page number to write
1803  */
1804 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1805                               int page)
1806 {
1807         int status = 0;
1808         const uint8_t *buf = chip->oob_poi;
1809         int length = mtd->oobsize;
1810
1811         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1812         chip->write_buf(mtd, buf, length);
1813         /* Send command to program the OOB data */
1814         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1815
1816         status = chip->waitfunc(mtd, chip);
1817
1818         return status & NAND_STATUS_FAIL ? -EIO : 0;
1819 }
1820
1821 /**
1822  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1823  *                           with syndrome - only for large page flash
1824  * @mtd: mtd info structure
1825  * @chip: nand chip info structure
1826  * @page: page number to write
1827  */
1828 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1829                                    struct nand_chip *chip, int page)
1830 {
1831         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1832         int eccsize = chip->ecc.size, length = mtd->oobsize;
1833         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1834         const uint8_t *bufpoi = chip->oob_poi;
1835
1836         /*
1837          * data-ecc-data-ecc ... ecc-oob
1838          * or
1839          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1840          */
1841         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1842                 pos = steps * (eccsize + chunk);
1843                 steps = 0;
1844         } else
1845                 pos = eccsize;
1846
1847         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1848         for (i = 0; i < steps; i++) {
1849                 if (sndcmd) {
1850                         if (mtd->writesize <= 512) {
1851                                 uint32_t fill = 0xFFFFFFFF;
1852
1853                                 len = eccsize;
1854                                 while (len > 0) {
1855                                         int num = min_t(int, len, 4);
1856                                         chip->write_buf(mtd, (uint8_t *)&fill,
1857                                                         num);
1858                                         len -= num;
1859                                 }
1860                         } else {
1861                                 pos = eccsize + i * (eccsize + chunk);
1862                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1863                         }
1864                 } else
1865                         sndcmd = 1;
1866                 len = min_t(int, length, chunk);
1867                 chip->write_buf(mtd, bufpoi, len);
1868                 bufpoi += len;
1869                 length -= len;
1870         }
1871         if (length > 0)
1872                 chip->write_buf(mtd, bufpoi, length);
1873
1874         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1875         status = chip->waitfunc(mtd, chip);
1876
1877         return status & NAND_STATUS_FAIL ? -EIO : 0;
1878 }
1879
1880 /**
1881  * nand_do_read_oob - [INTERN] NAND read out-of-band
1882  * @mtd: MTD device structure
1883  * @from: offset to read from
1884  * @ops: oob operations description structure
1885  *
1886  * NAND read out-of-band data from the spare area.
1887  */
1888 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1889                             struct mtd_oob_ops *ops)
1890 {
1891         int page, realpage, chipnr;
1892         struct nand_chip *chip = mtd->priv;
1893         struct mtd_ecc_stats stats;
1894         int readlen = ops->ooblen;
1895         int len;
1896         uint8_t *buf = ops->oobbuf;
1897         int ret = 0;
1898
1899         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1900                         __func__, (unsigned long long)from, readlen);
1901
1902         stats = mtd->ecc_stats;
1903
1904         if (ops->mode == MTD_OPS_AUTO_OOB)
1905                 len = chip->ecc.layout->oobavail;
1906         else
1907                 len = mtd->oobsize;
1908
1909         if (unlikely(ops->ooboffs >= len)) {
1910                 pr_debug("%s: attempt to start read outside oob\n",
1911                                 __func__);
1912                 return -EINVAL;
1913         }
1914
1915         /* Do not allow reads past end of device */
1916         if (unlikely(from >= mtd->size ||
1917                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1918                                         (from >> chip->page_shift)) * len)) {
1919                 pr_debug("%s: attempt to read beyond end of device\n",
1920                                 __func__);
1921                 return -EINVAL;
1922         }
1923
1924         chipnr = (int)(from >> chip->chip_shift);
1925         chip->select_chip(mtd, chipnr);
1926
1927         /* Shift to get page */
1928         realpage = (int)(from >> chip->page_shift);
1929         page = realpage & chip->pagemask;
1930
1931         while (1) {
1932                 if (ops->mode == MTD_OPS_RAW)
1933                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
1934                 else
1935                         ret = chip->ecc.read_oob(mtd, chip, page);
1936
1937                 if (ret < 0)
1938                         break;
1939
1940                 len = min(len, readlen);
1941                 buf = nand_transfer_oob(chip, buf, ops, len);
1942
1943                 if (chip->options & NAND_NEED_READRDY) {
1944                         /* Apply delay or wait for ready/busy pin */
1945                         if (!chip->dev_ready)
1946                                 udelay(chip->chip_delay);
1947                         else
1948                                 nand_wait_ready(mtd);
1949                 }
1950
1951                 readlen -= len;
1952                 if (!readlen)
1953                         break;
1954
1955                 /* Increment page address */
1956                 realpage++;
1957
1958                 page = realpage & chip->pagemask;
1959                 /* Check, if we cross a chip boundary */
1960                 if (!page) {
1961                         chipnr++;
1962                         chip->select_chip(mtd, -1);
1963                         chip->select_chip(mtd, chipnr);
1964                 }
1965         }
1966         chip->select_chip(mtd, -1);
1967
1968         ops->oobretlen = ops->ooblen - readlen;
1969
1970         if (ret < 0)
1971                 return ret;
1972
1973         if (mtd->ecc_stats.failed - stats.failed)
1974                 return -EBADMSG;
1975
1976         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1977 }
1978
1979 /**
1980  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1981  * @mtd: MTD device structure
1982  * @from: offset to read from
1983  * @ops: oob operation description structure
1984  *
1985  * NAND read data and/or out-of-band data.
1986  */
1987 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1988                          struct mtd_oob_ops *ops)
1989 {
1990         int ret = -ENOTSUPP;
1991
1992         ops->retlen = 0;
1993
1994         /* Do not allow reads past end of device */
1995         if (ops->datbuf && (from + ops->len) > mtd->size) {
1996                 pr_debug("%s: attempt to read beyond end of device\n",
1997                                 __func__);
1998                 return -EINVAL;
1999         }
2000
2001         nand_get_device(mtd, FL_READING);
2002
2003         switch (ops->mode) {
2004         case MTD_OPS_PLACE_OOB:
2005         case MTD_OPS_AUTO_OOB:
2006         case MTD_OPS_RAW:
2007                 break;
2008
2009         default:
2010                 goto out;
2011         }
2012
2013         if (!ops->datbuf)
2014                 ret = nand_do_read_oob(mtd, from, ops);
2015         else
2016                 ret = nand_do_read_ops(mtd, from, ops);
2017
2018 out:
2019         nand_release_device(mtd);
2020         return ret;
2021 }
2022
2023
2024 /**
2025  * nand_write_page_raw - [INTERN] raw page write function
2026  * @mtd: mtd info structure
2027  * @chip: nand chip info structure
2028  * @buf: data buffer
2029  * @oob_required: must write chip->oob_poi to OOB
2030  *
2031  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2032  */
2033 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2034                                 const uint8_t *buf, int oob_required)
2035 {
2036         chip->write_buf(mtd, buf, mtd->writesize);
2037         if (oob_required)
2038                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2039
2040         return 0;
2041 }
2042
2043 /**
2044  * nand_write_page_raw_syndrome - [INTERN] raw page write function
2045  * @mtd: mtd info structure
2046  * @chip: nand chip info structure
2047  * @buf: data buffer
2048  * @oob_required: must write chip->oob_poi to OOB
2049  *
2050  * We need a special oob layout and handling even when ECC isn't checked.
2051  */
2052 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2053                                         struct nand_chip *chip,
2054                                         const uint8_t *buf, int oob_required)
2055 {
2056         int eccsize = chip->ecc.size;
2057         int eccbytes = chip->ecc.bytes;
2058         uint8_t *oob = chip->oob_poi;
2059         int steps, size;
2060
2061         for (steps = chip->ecc.steps; steps > 0; steps--) {
2062                 chip->write_buf(mtd, buf, eccsize);
2063                 buf += eccsize;
2064
2065                 if (chip->ecc.prepad) {
2066                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2067                         oob += chip->ecc.prepad;
2068                 }
2069
2070                 chip->write_buf(mtd, oob, eccbytes);
2071                 oob += eccbytes;
2072
2073                 if (chip->ecc.postpad) {
2074                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2075                         oob += chip->ecc.postpad;
2076                 }
2077         }
2078
2079         size = mtd->oobsize - (oob - chip->oob_poi);
2080         if (size)
2081                 chip->write_buf(mtd, oob, size);
2082
2083         return 0;
2084 }
2085 /**
2086  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2087  * @mtd: mtd info structure
2088  * @chip: nand chip info structure
2089  * @buf: data buffer
2090  * @oob_required: must write chip->oob_poi to OOB
2091  */
2092 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2093                                   const uint8_t *buf, int oob_required)
2094 {
2095         int i, eccsize = chip->ecc.size;
2096         int eccbytes = chip->ecc.bytes;
2097         int eccsteps = chip->ecc.steps;
2098         uint8_t *ecc_calc = chip->buffers->ecccalc;
2099         const uint8_t *p = buf;
2100         uint32_t *eccpos = chip->ecc.layout->eccpos;
2101
2102         /* Software ECC calculation */
2103         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2104                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2105
2106         for (i = 0; i < chip->ecc.total; i++)
2107                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2108
2109         return chip->ecc.write_page_raw(mtd, chip, buf, 1);
2110 }
2111
2112 /**
2113  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2114  * @mtd: mtd info structure
2115  * @chip: nand chip info structure
2116  * @buf: data buffer
2117  * @oob_required: must write chip->oob_poi to OOB
2118  */
2119 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2120                                   const uint8_t *buf, int oob_required)
2121 {
2122         int i, eccsize = chip->ecc.size;
2123         int eccbytes = chip->ecc.bytes;
2124         int eccsteps = chip->ecc.steps;
2125         uint8_t *ecc_calc = chip->buffers->ecccalc;
2126         const uint8_t *p = buf;
2127         uint32_t *eccpos = chip->ecc.layout->eccpos;
2128
2129         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2130                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2131                 chip->write_buf(mtd, p, eccsize);
2132                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2133         }
2134
2135         for (i = 0; i < chip->ecc.total; i++)
2136                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2137
2138         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2139
2140         return 0;
2141 }
2142
2143
2144 /**
2145  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2146  * @mtd:        mtd info structure
2147  * @chip:       nand chip info structure
2148  * @offset:     column address of subpage within the page
2149  * @data_len:   data length
2150  * @buf:        data buffer
2151  * @oob_required: must write chip->oob_poi to OOB
2152  */
2153 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2154                                 struct nand_chip *chip, uint32_t offset,
2155                                 uint32_t data_len, const uint8_t *buf,
2156                                 int oob_required)
2157 {
2158         uint8_t *oob_buf  = chip->oob_poi;
2159         uint8_t *ecc_calc = chip->buffers->ecccalc;
2160         int ecc_size      = chip->ecc.size;
2161         int ecc_bytes     = chip->ecc.bytes;
2162         int ecc_steps     = chip->ecc.steps;
2163         uint32_t *eccpos  = chip->ecc.layout->eccpos;
2164         uint32_t start_step = offset / ecc_size;
2165         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2166         int oob_bytes       = mtd->oobsize / ecc_steps;
2167         int step, i;
2168
2169         for (step = 0; step < ecc_steps; step++) {
2170                 /* configure controller for WRITE access */
2171                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2172
2173                 /* write data (untouched subpages already masked by 0xFF) */
2174                 chip->write_buf(mtd, buf, ecc_size);
2175
2176                 /* mask ECC of un-touched subpages by padding 0xFF */
2177                 if ((step < start_step) || (step > end_step))
2178                         memset(ecc_calc, 0xff, ecc_bytes);
2179                 else
2180                         chip->ecc.calculate(mtd, buf, ecc_calc);
2181
2182                 /* mask OOB of un-touched subpages by padding 0xFF */
2183                 /* if oob_required, preserve OOB metadata of written subpage */
2184                 if (!oob_required || (step < start_step) || (step > end_step))
2185                         memset(oob_buf, 0xff, oob_bytes);
2186
2187                 buf += ecc_size;
2188                 ecc_calc += ecc_bytes;
2189                 oob_buf  += oob_bytes;
2190         }
2191
2192         /* copy calculated ECC for whole page to chip->buffer->oob */
2193         /* this include masked-value(0xFF) for unwritten subpages */
2194         ecc_calc = chip->buffers->ecccalc;
2195         for (i = 0; i < chip->ecc.total; i++)
2196                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2197
2198         /* write OOB buffer to NAND device */
2199         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2200
2201         return 0;
2202 }
2203
2204
2205 /**
2206  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2207  * @mtd: mtd info structure
2208  * @chip: nand chip info structure
2209  * @buf: data buffer
2210  * @oob_required: must write chip->oob_poi to OOB
2211  *
2212  * The hw generator calculates the error syndrome automatically. Therefore we
2213  * need a special oob layout and handling.
2214  */
2215 static int nand_write_page_syndrome(struct mtd_info *mtd,
2216                                     struct nand_chip *chip,
2217                                     const uint8_t *buf, int oob_required)
2218 {
2219         int i, eccsize = chip->ecc.size;
2220         int eccbytes = chip->ecc.bytes;
2221         int eccsteps = chip->ecc.steps;
2222         const uint8_t *p = buf;
2223         uint8_t *oob = chip->oob_poi;
2224
2225         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2226
2227                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2228                 chip->write_buf(mtd, p, eccsize);
2229
2230                 if (chip->ecc.prepad) {
2231                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2232                         oob += chip->ecc.prepad;
2233                 }
2234
2235                 chip->ecc.calculate(mtd, p, oob);
2236                 chip->write_buf(mtd, oob, eccbytes);
2237                 oob += eccbytes;
2238
2239                 if (chip->ecc.postpad) {
2240                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2241                         oob += chip->ecc.postpad;
2242                 }
2243         }
2244
2245         /* Calculate remaining oob bytes */
2246         i = mtd->oobsize - (oob - chip->oob_poi);
2247         if (i)
2248                 chip->write_buf(mtd, oob, i);
2249
2250         return 0;
2251 }
2252
2253 /**
2254  * nand_write_page - [REPLACEABLE] write one page
2255  * @mtd: MTD device structure
2256  * @chip: NAND chip descriptor
2257  * @offset: address offset within the page
2258  * @data_len: length of actual data to be written
2259  * @buf: the data to write
2260  * @oob_required: must write chip->oob_poi to OOB
2261  * @page: page number to write
2262  * @cached: cached programming
2263  * @raw: use _raw version of write_page
2264  */
2265 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2266                 uint32_t offset, int data_len, const uint8_t *buf,
2267                 int oob_required, int page, int cached, int raw)
2268 {
2269         int status, subpage;
2270
2271         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2272                 chip->ecc.write_subpage)
2273                 subpage = offset || (data_len < mtd->writesize);
2274         else
2275                 subpage = 0;
2276
2277         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2278
2279         if (unlikely(raw))
2280                 status = chip->ecc.write_page_raw(mtd, chip, buf,
2281                                                         oob_required);
2282         else if (subpage)
2283                 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2284                                                          buf, oob_required);
2285         else
2286                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2287
2288         if (status < 0)
2289                 return status;
2290
2291         /*
2292          * Cached progamming disabled for now. Not sure if it's worth the
2293          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2294          */
2295         cached = 0;
2296
2297         if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2298
2299                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2300                 status = chip->waitfunc(mtd, chip);
2301                 /*
2302                  * See if operation failed and additional status checks are
2303                  * available.
2304                  */
2305                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2306                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2307                                                page);
2308
2309                 if (status & NAND_STATUS_FAIL)
2310                         return -EIO;
2311         } else {
2312                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2313                 status = chip->waitfunc(mtd, chip);
2314         }
2315
2316         return 0;
2317 }
2318
2319 /**
2320  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2321  * @mtd: MTD device structure
2322  * @oob: oob data buffer
2323  * @len: oob data write length
2324  * @ops: oob ops structure
2325  */
2326 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2327                               struct mtd_oob_ops *ops)
2328 {
2329         struct nand_chip *chip = mtd->priv;
2330
2331         /*
2332          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2333          * data from a previous OOB read.
2334          */
2335         memset(chip->oob_poi, 0xff, mtd->oobsize);
2336
2337         switch (ops->mode) {
2338
2339         case MTD_OPS_PLACE_OOB:
2340         case MTD_OPS_RAW:
2341                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2342                 return oob + len;
2343
2344         case MTD_OPS_AUTO_OOB: {
2345                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2346                 uint32_t boffs = 0, woffs = ops->ooboffs;
2347                 size_t bytes = 0;
2348
2349                 for (; free->length && len; free++, len -= bytes) {
2350                         /* Write request not from offset 0? */
2351                         if (unlikely(woffs)) {
2352                                 if (woffs >= free->length) {
2353                                         woffs -= free->length;
2354                                         continue;
2355                                 }
2356                                 boffs = free->offset + woffs;
2357                                 bytes = min_t(size_t, len,
2358                                               (free->length - woffs));
2359                                 woffs = 0;
2360                         } else {
2361                                 bytes = min_t(size_t, len, free->length);
2362                                 boffs = free->offset;
2363                         }
2364                         memcpy(chip->oob_poi + boffs, oob, bytes);
2365                         oob += bytes;
2366                 }
2367                 return oob;
2368         }
2369         default:
2370                 BUG();
2371         }
2372         return NULL;
2373 }
2374
2375 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2376
2377 /**
2378  * nand_do_write_ops - [INTERN] NAND write with ECC
2379  * @mtd: MTD device structure
2380  * @to: offset to write to
2381  * @ops: oob operations description structure
2382  *
2383  * NAND write with ECC.
2384  */
2385 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2386                              struct mtd_oob_ops *ops)
2387 {
2388         int chipnr, realpage, page, blockmask, column;
2389         struct nand_chip *chip = mtd->priv;
2390         uint32_t writelen = ops->len;
2391
2392         uint32_t oobwritelen = ops->ooblen;
2393         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2394                                 mtd->oobavail : mtd->oobsize;
2395
2396         uint8_t *oob = ops->oobbuf;
2397         uint8_t *buf = ops->datbuf;
2398         int ret;
2399         int oob_required = oob ? 1 : 0;
2400
2401         ops->retlen = 0;
2402         if (!writelen)
2403                 return 0;
2404
2405         /* Reject writes, which are not page aligned */
2406         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2407                 pr_notice("%s: attempt to write non page aligned data\n",
2408                            __func__);
2409                 return -EINVAL;
2410         }
2411
2412         column = to & (mtd->writesize - 1);
2413
2414         chipnr = (int)(to >> chip->chip_shift);
2415         chip->select_chip(mtd, chipnr);
2416
2417         /* Check, if it is write protected */
2418         if (nand_check_wp(mtd)) {
2419                 ret = -EIO;
2420                 goto err_out;
2421         }
2422
2423         realpage = (int)(to >> chip->page_shift);
2424         page = realpage & chip->pagemask;
2425         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2426
2427         /* Invalidate the page cache, when we write to the cached page */
2428         if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2429             ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2430                 chip->pagebuf = -1;
2431
2432         /* Don't allow multipage oob writes with offset */
2433         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2434                 ret = -EINVAL;
2435                 goto err_out;
2436         }
2437
2438         while (1) {
2439                 int bytes = mtd->writesize;
2440                 int cached = writelen > bytes && page != blockmask;
2441                 uint8_t *wbuf = buf;
2442                 int use_bufpoi;
2443                 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2444
2445                 if (part_pagewr)
2446                         use_bufpoi = 1;
2447                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2448                         use_bufpoi = !virt_addr_valid(buf);
2449                 else
2450                         use_bufpoi = 0;
2451
2452                 /* Partial page write?, or need to use bounce buffer */
2453                 if (use_bufpoi) {
2454                         pr_debug("%s: using write bounce buffer for buf@%p\n",
2455                                          __func__, buf);
2456                         cached = 0;
2457                         if (part_pagewr)
2458                                 bytes = min_t(int, bytes - column, writelen);
2459                         chip->pagebuf = -1;
2460                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2461                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2462                         wbuf = chip->buffers->databuf;
2463                 }
2464
2465                 if (unlikely(oob)) {
2466                         size_t len = min(oobwritelen, oobmaxlen);
2467                         oob = nand_fill_oob(mtd, oob, len, ops);
2468                         oobwritelen -= len;
2469                 } else {
2470                         /* We still need to erase leftover OOB data */
2471                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2472                 }
2473                 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2474                                         oob_required, page, cached,
2475                                         (ops->mode == MTD_OPS_RAW));
2476                 if (ret)
2477                         break;
2478
2479                 writelen -= bytes;
2480                 if (!writelen)
2481                         break;
2482
2483                 column = 0;
2484                 buf += bytes;
2485                 realpage++;
2486
2487                 page = realpage & chip->pagemask;
2488                 /* Check, if we cross a chip boundary */
2489                 if (!page) {
2490                         chipnr++;
2491                         chip->select_chip(mtd, -1);
2492                         chip->select_chip(mtd, chipnr);
2493                 }
2494         }
2495
2496         ops->retlen = ops->len - writelen;
2497         if (unlikely(oob))
2498                 ops->oobretlen = ops->ooblen;
2499
2500 err_out:
2501         chip->select_chip(mtd, -1);
2502         return ret;
2503 }
2504
2505 /**
2506  * panic_nand_write - [MTD Interface] NAND write with ECC
2507  * @mtd: MTD device structure
2508  * @to: offset to write to
2509  * @len: number of bytes to write
2510  * @retlen: pointer to variable to store the number of written bytes
2511  * @buf: the data to write
2512  *
2513  * NAND write with ECC. Used when performing writes in interrupt context, this
2514  * may for example be called by mtdoops when writing an oops while in panic.
2515  */
2516 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2517                             size_t *retlen, const uint8_t *buf)
2518 {
2519         struct nand_chip *chip = mtd->priv;
2520         struct mtd_oob_ops ops;
2521         int ret;
2522
2523         /* Wait for the device to get ready */
2524         panic_nand_wait(mtd, chip, 400);
2525
2526         /* Grab the device */
2527         panic_nand_get_device(chip, mtd, FL_WRITING);
2528
2529         memset(&ops, 0, sizeof(ops));
2530         ops.len = len;
2531         ops.datbuf = (uint8_t *)buf;
2532         ops.mode = MTD_OPS_PLACE_OOB;
2533
2534         ret = nand_do_write_ops(mtd, to, &ops);
2535
2536         *retlen = ops.retlen;
2537         return ret;
2538 }
2539
2540 /**
2541  * nand_write - [MTD Interface] NAND write with ECC
2542  * @mtd: MTD device structure
2543  * @to: offset to write to
2544  * @len: number of bytes to write
2545  * @retlen: pointer to variable to store the number of written bytes
2546  * @buf: the data to write
2547  *
2548  * NAND write with ECC.
2549  */
2550 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2551                           size_t *retlen, const uint8_t *buf)
2552 {
2553         struct mtd_oob_ops ops;
2554         int ret;
2555
2556         nand_get_device(mtd, FL_WRITING);
2557         memset(&ops, 0, sizeof(ops));
2558         ops.len = len;
2559         ops.datbuf = (uint8_t *)buf;
2560         ops.mode = MTD_OPS_PLACE_OOB;
2561         ret = nand_do_write_ops(mtd, to, &ops);
2562         *retlen = ops.retlen;
2563         nand_release_device(mtd);
2564         return ret;
2565 }
2566
2567 /**
2568  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2569  * @mtd: MTD device structure
2570  * @to: offset to write to
2571  * @ops: oob operation description structure
2572  *
2573  * NAND write out-of-band.
2574  */
2575 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2576                              struct mtd_oob_ops *ops)
2577 {
2578         int chipnr, page, status, len;
2579         struct nand_chip *chip = mtd->priv;
2580
2581         pr_debug("%s: to = 0x%08x, len = %i\n",
2582                          __func__, (unsigned int)to, (int)ops->ooblen);
2583
2584         if (ops->mode == MTD_OPS_AUTO_OOB)
2585                 len = chip->ecc.layout->oobavail;
2586         else
2587                 len = mtd->oobsize;
2588
2589         /* Do not allow write past end of page */
2590         if ((ops->ooboffs + ops->ooblen) > len) {
2591                 pr_debug("%s: attempt to write past end of page\n",
2592                                 __func__);
2593                 return -EINVAL;
2594         }
2595
2596         if (unlikely(ops->ooboffs >= len)) {
2597                 pr_debug("%s: attempt to start write outside oob\n",
2598                                 __func__);
2599                 return -EINVAL;
2600         }
2601
2602         /* Do not allow write past end of device */
2603         if (unlikely(to >= mtd->size ||
2604                      ops->ooboffs + ops->ooblen >
2605                         ((mtd->size >> chip->page_shift) -
2606                          (to >> chip->page_shift)) * len)) {
2607                 pr_debug("%s: attempt to write beyond end of device\n",
2608                                 __func__);
2609                 return -EINVAL;
2610         }
2611
2612         chipnr = (int)(to >> chip->chip_shift);
2613         chip->select_chip(mtd, chipnr);
2614
2615         /* Shift to get page */
2616         page = (int)(to >> chip->page_shift);
2617
2618         /*
2619          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2620          * of my DiskOnChip 2000 test units) will clear the whole data page too
2621          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2622          * it in the doc2000 driver in August 1999.  dwmw2.
2623          */
2624         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2625
2626         /* Check, if it is write protected */
2627         if (nand_check_wp(mtd)) {
2628                 chip->select_chip(mtd, -1);
2629                 return -EROFS;
2630         }
2631
2632         /* Invalidate the page cache, if we write to the cached page */
2633         if (page == chip->pagebuf)
2634                 chip->pagebuf = -1;
2635
2636         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2637
2638         if (ops->mode == MTD_OPS_RAW)
2639                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2640         else
2641                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2642
2643         chip->select_chip(mtd, -1);
2644
2645         if (status)
2646                 return status;
2647
2648         ops->oobretlen = ops->ooblen;
2649
2650         return 0;
2651 }
2652
2653 /**
2654  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2655  * @mtd: MTD device structure
2656  * @to: offset to write to
2657  * @ops: oob operation description structure
2658  */
2659 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2660                           struct mtd_oob_ops *ops)
2661 {
2662         int ret = -ENOTSUPP;
2663
2664         ops->retlen = 0;
2665
2666         /* Do not allow writes past end of device */
2667         if (ops->datbuf && (to + ops->len) > mtd->size) {
2668                 pr_debug("%s: attempt to write beyond end of device\n",
2669                                 __func__);
2670                 return -EINVAL;
2671         }
2672
2673         nand_get_device(mtd, FL_WRITING);
2674
2675         switch (ops->mode) {
2676         case MTD_OPS_PLACE_OOB:
2677         case MTD_OPS_AUTO_OOB:
2678         case MTD_OPS_RAW:
2679                 break;
2680
2681         default:
2682                 goto out;
2683         }
2684
2685         if (!ops->datbuf)
2686                 ret = nand_do_write_oob(mtd, to, ops);
2687         else
2688                 ret = nand_do_write_ops(mtd, to, ops);
2689
2690 out:
2691         nand_release_device(mtd);
2692         return ret;
2693 }
2694
2695 /**
2696  * single_erase - [GENERIC] NAND standard block erase command function
2697  * @mtd: MTD device structure
2698  * @page: the page address of the block which will be erased
2699  *
2700  * Standard erase command for NAND chips. Returns NAND status.
2701  */
2702 static int single_erase(struct mtd_info *mtd, int page)
2703 {
2704         struct nand_chip *chip = mtd->priv;
2705         /* Send commands to erase a block */
2706         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2707         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2708
2709         return chip->waitfunc(mtd, chip);
2710 }
2711
2712 /**
2713  * nand_erase - [MTD Interface] erase block(s)
2714  * @mtd: MTD device structure
2715  * @instr: erase instruction
2716  *
2717  * Erase one ore more blocks.
2718  */
2719 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2720 {
2721         return nand_erase_nand(mtd, instr, 0);
2722 }
2723
2724 /**
2725  * nand_erase_nand - [INTERN] erase block(s)
2726  * @mtd: MTD device structure
2727  * @instr: erase instruction
2728  * @allowbbt: allow erasing the bbt area
2729  *
2730  * Erase one ore more blocks.
2731  */
2732 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2733                     int allowbbt)
2734 {
2735         int page, status, pages_per_block, ret, chipnr;
2736         struct nand_chip *chip = mtd->priv;
2737         loff_t len;
2738
2739         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2740                         __func__, (unsigned long long)instr->addr,
2741                         (unsigned long long)instr->len);
2742
2743         if (check_offs_len(mtd, instr->addr, instr->len))
2744                 return -EINVAL;
2745
2746         /* Grab the lock and see if the device is available */
2747         nand_get_device(mtd, FL_ERASING);
2748
2749         /* Shift to get first page */
2750         page = (int)(instr->addr >> chip->page_shift);
2751         chipnr = (int)(instr->addr >> chip->chip_shift);
2752
2753         /* Calculate pages in each block */
2754         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2755
2756         /* Select the NAND device */
2757         chip->select_chip(mtd, chipnr);
2758
2759         /* Check, if it is write protected */
2760         if (nand_check_wp(mtd)) {
2761                 pr_debug("%s: device is write protected!\n",
2762                                 __func__);
2763                 instr->state = MTD_ERASE_FAILED;
2764                 goto erase_exit;
2765         }
2766
2767         /* Loop through the pages */
2768         len = instr->len;
2769
2770         instr->state = MTD_ERASING;
2771
2772         while (len) {
2773                 /* Check if we have a bad block, we do not erase bad blocks! */
2774                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2775                                         chip->page_shift, 0, allowbbt)) {
2776                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2777                                     __func__, page);
2778                         instr->state = MTD_ERASE_FAILED;
2779                         goto erase_exit;
2780                 }
2781
2782                 /*
2783                  * Invalidate the page cache, if we erase the block which
2784                  * contains the current cached page.
2785                  */
2786                 if (page <= chip->pagebuf && chip->pagebuf <
2787                     (page + pages_per_block))
2788                         chip->pagebuf = -1;
2789
2790                 status = chip->erase(mtd, page & chip->pagemask);
2791
2792                 /*
2793                  * See if operation failed and additional status checks are
2794                  * available
2795                  */
2796                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2797                         status = chip->errstat(mtd, chip, FL_ERASING,
2798                                                status, page);
2799
2800                 /* See if block erase succeeded */
2801                 if (status & NAND_STATUS_FAIL) {
2802                         pr_debug("%s: failed erase, page 0x%08x\n",
2803                                         __func__, page);
2804                         instr->state = MTD_ERASE_FAILED;
2805                         instr->fail_addr =
2806                                 ((loff_t)page << chip->page_shift);
2807                         goto erase_exit;
2808                 }
2809
2810                 /* Increment page address and decrement length */
2811                 len -= (1ULL << chip->phys_erase_shift);
2812                 page += pages_per_block;
2813
2814                 /* Check, if we cross a chip boundary */
2815                 if (len && !(page & chip->pagemask)) {
2816                         chipnr++;
2817                         chip->select_chip(mtd, -1);
2818                         chip->select_chip(mtd, chipnr);
2819                 }
2820         }
2821         instr->state = MTD_ERASE_DONE;
2822
2823 erase_exit:
2824
2825         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2826
2827         /* Deselect and wake up anyone waiting on the device */
2828         chip->select_chip(mtd, -1);
2829         nand_release_device(mtd);
2830
2831         /* Do call back function */
2832         if (!ret)
2833                 mtd_erase_callback(instr);
2834
2835         /* Return more or less happy */
2836         return ret;
2837 }
2838
2839 /**
2840  * nand_sync - [MTD Interface] sync
2841  * @mtd: MTD device structure
2842  *
2843  * Sync is actually a wait for chip ready function.
2844  */
2845 static void nand_sync(struct mtd_info *mtd)
2846 {
2847         pr_debug("%s: called\n", __func__);
2848
2849         /* Grab the lock and see if the device is available */
2850         nand_get_device(mtd, FL_SYNCING);
2851         /* Release it and go back */
2852         nand_release_device(mtd);
2853 }
2854
2855 /**
2856  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2857  * @mtd: MTD device structure
2858  * @offs: offset relative to mtd start
2859  */
2860 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2861 {
2862         return nand_block_checkbad(mtd, offs, 1, 0);
2863 }
2864
2865 /**
2866  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2867  * @mtd: MTD device structure
2868  * @ofs: offset relative to mtd start
2869  */
2870 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2871 {
2872         int ret;
2873
2874         ret = nand_block_isbad(mtd, ofs);
2875         if (ret) {
2876                 /* If it was bad already, return success and do nothing */
2877                 if (ret > 0)
2878                         return 0;
2879                 return ret;
2880         }
2881
2882         return nand_block_markbad_lowlevel(mtd, ofs);
2883 }
2884
2885 /**
2886  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2887  * @mtd: MTD device structure
2888  * @chip: nand chip info structure
2889  * @addr: feature address.
2890  * @subfeature_param: the subfeature parameters, a four bytes array.
2891  */
2892 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2893                         int addr, uint8_t *subfeature_param)
2894 {
2895         int status;
2896         int i;
2897
2898         if (!chip->onfi_version ||
2899             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2900               & ONFI_OPT_CMD_SET_GET_FEATURES))
2901                 return -EINVAL;
2902
2903         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2904         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2905                 chip->write_byte(mtd, subfeature_param[i]);
2906
2907         status = chip->waitfunc(mtd, chip);
2908         if (status & NAND_STATUS_FAIL)
2909                 return -EIO;
2910         return 0;
2911 }
2912
2913 /**
2914  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2915  * @mtd: MTD device structure
2916  * @chip: nand chip info structure
2917  * @addr: feature address.
2918  * @subfeature_param: the subfeature parameters, a four bytes array.
2919  */
2920 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2921                         int addr, uint8_t *subfeature_param)
2922 {
2923         int i;
2924
2925         if (!chip->onfi_version ||
2926             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2927               & ONFI_OPT_CMD_SET_GET_FEATURES))
2928                 return -EINVAL;
2929
2930         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2931         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2932                 *subfeature_param++ = chip->read_byte(mtd);
2933         return 0;
2934 }
2935
2936 /**
2937  * nand_suspend - [MTD Interface] Suspend the NAND flash
2938  * @mtd: MTD device structure
2939  */
2940 static int nand_suspend(struct mtd_info *mtd)
2941 {
2942         return nand_get_device(mtd, FL_PM_SUSPENDED);
2943 }
2944
2945 /**
2946  * nand_resume - [MTD Interface] Resume the NAND flash
2947  * @mtd: MTD device structure
2948  */
2949 static void nand_resume(struct mtd_info *mtd)
2950 {
2951         struct nand_chip *chip = mtd->priv;
2952
2953         if (chip->state == FL_PM_SUSPENDED)
2954                 nand_release_device(mtd);
2955         else
2956                 pr_err("%s called for a chip which is not in suspended state\n",
2957                         __func__);
2958 }
2959
2960 /**
2961  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
2962  *                 prevent further operations
2963  * @mtd: MTD device structure
2964  */
2965 static void nand_shutdown(struct mtd_info *mtd)
2966 {
2967         nand_get_device(mtd, FL_SHUTDOWN);
2968 }
2969
2970 /* Set default functions */
2971 static void nand_set_defaults(struct nand_chip *chip, int busw)
2972 {
2973         /* check for proper chip_delay setup, set 20us if not */
2974         if (!chip->chip_delay)
2975                 chip->chip_delay = 20;
2976
2977         /* check, if a user supplied command function given */
2978         if (chip->cmdfunc == NULL)
2979                 chip->cmdfunc = nand_command;
2980
2981         /* check, if a user supplied wait function given */
2982         if (chip->waitfunc == NULL)
2983                 chip->waitfunc = nand_wait;
2984
2985         if (!chip->select_chip)
2986                 chip->select_chip = nand_select_chip;
2987
2988         /* set for ONFI nand */
2989         if (!chip->onfi_set_features)
2990                 chip->onfi_set_features = nand_onfi_set_features;
2991         if (!chip->onfi_get_features)
2992                 chip->onfi_get_features = nand_onfi_get_features;
2993
2994         /* If called twice, pointers that depend on busw may need to be reset */
2995         if (!chip->read_byte || chip->read_byte == nand_read_byte)
2996                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2997         if (!chip->read_word)
2998                 chip->read_word = nand_read_word;
2999         if (!chip->block_bad)
3000                 chip->block_bad = nand_block_bad;
3001         if (!chip->block_markbad)
3002                 chip->block_markbad = nand_default_block_markbad;
3003         if (!chip->write_buf || chip->write_buf == nand_write_buf)
3004                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3005         if (!chip->write_byte || chip->write_byte == nand_write_byte)
3006                 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3007         if (!chip->read_buf || chip->read_buf == nand_read_buf)
3008                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3009         if (!chip->scan_bbt)
3010                 chip->scan_bbt = nand_default_bbt;
3011
3012         if (!chip->controller) {
3013                 chip->controller = &chip->hwcontrol;
3014                 spin_lock_init(&chip->controller->lock);
3015                 init_waitqueue_head(&chip->controller->wq);
3016         }
3017
3018 }
3019
3020 /* Sanitize ONFI strings so we can safely print them */
3021 static void sanitize_string(uint8_t *s, size_t len)
3022 {
3023         ssize_t i;
3024
3025         /* Null terminate */
3026         s[len - 1] = 0;
3027
3028         /* Remove non printable chars */
3029         for (i = 0; i < len - 1; i++) {
3030                 if (s[i] < ' ' || s[i] > 127)
3031                         s[i] = '?';
3032         }
3033
3034         /* Remove trailing spaces */
3035         strim(s);
3036 }
3037
3038 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3039 {
3040         int i;
3041         while (len--) {
3042                 crc ^= *p++ << 8;
3043                 for (i = 0; i < 8; i++)
3044                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3045         }
3046
3047         return crc;
3048 }
3049
3050 /* Parse the Extended Parameter Page. */
3051 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3052                 struct nand_chip *chip, struct nand_onfi_params *p)
3053 {
3054         struct onfi_ext_param_page *ep;
3055         struct onfi_ext_section *s;
3056         struct onfi_ext_ecc_info *ecc;
3057         uint8_t *cursor;
3058         int ret = -EINVAL;
3059         int len;
3060         int i;
3061
3062         len = le16_to_cpu(p->ext_param_page_length) * 16;
3063         ep = kmalloc(len, GFP_KERNEL);
3064         if (!ep)
3065                 return -ENOMEM;
3066
3067         /* Send our own NAND_CMD_PARAM. */
3068         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3069
3070         /* Use the Change Read Column command to skip the ONFI param pages. */
3071         chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3072                         sizeof(*p) * p->num_of_param_pages , -1);
3073
3074         /* Read out the Extended Parameter Page. */
3075         chip->read_buf(mtd, (uint8_t *)ep, len);
3076         if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3077                 != le16_to_cpu(ep->crc))) {
3078                 pr_debug("fail in the CRC.\n");
3079                 goto ext_out;
3080         }
3081
3082         /*
3083          * Check the signature.
3084          * Do not strictly follow the ONFI spec, maybe changed in future.
3085          */
3086         if (strncmp(ep->sig, "EPPS", 4)) {
3087                 pr_debug("The signature is invalid.\n");
3088                 goto ext_out;
3089         }
3090
3091         /* find the ECC section. */
3092         cursor = (uint8_t *)(ep + 1);
3093         for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3094                 s = ep->sections + i;
3095                 if (s->type == ONFI_SECTION_TYPE_2)
3096                         break;
3097                 cursor += s->length * 16;
3098         }
3099         if (i == ONFI_EXT_SECTION_MAX) {
3100                 pr_debug("We can not find the ECC section.\n");
3101                 goto ext_out;
3102         }
3103
3104         /* get the info we want. */
3105         ecc = (struct onfi_ext_ecc_info *)cursor;
3106
3107         if (!ecc->codeword_size) {
3108                 pr_debug("Invalid codeword size\n");
3109                 goto ext_out;
3110         }
3111
3112         chip->ecc_strength_ds = ecc->ecc_bits;
3113         chip->ecc_step_ds = 1 << ecc->codeword_size;
3114         ret = 0;
3115
3116 ext_out:
3117         kfree(ep);
3118         return ret;
3119 }
3120
3121 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3122 {
3123         struct nand_chip *chip = mtd->priv;
3124         uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3125
3126         return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3127                         feature);
3128 }
3129
3130 /*
3131  * Configure chip properties from Micron vendor-specific ONFI table
3132  */
3133 static void nand_onfi_detect_micron(struct nand_chip *chip,
3134                 struct nand_onfi_params *p)
3135 {
3136         struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3137
3138         if (le16_to_cpu(p->vendor_revision) < 1)
3139                 return;
3140
3141         chip->read_retries = micron->read_retry_options;
3142         chip->setup_read_retry = nand_setup_read_retry_micron;
3143 }
3144
3145 /*
3146  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3147  */
3148 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3149                                         int *busw)
3150 {
3151         struct nand_onfi_params *p = &chip->onfi_params;
3152         int i, j;
3153         int val;
3154
3155         /* Try ONFI for unknown chip or LP */
3156         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3157         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3158                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3159                 return 0;
3160
3161         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3162         for (i = 0; i < 3; i++) {
3163                 for (j = 0; j < sizeof(*p); j++)
3164                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3165                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3166                                 le16_to_cpu(p->crc)) {
3167                         break;
3168                 }
3169         }
3170
3171         if (i == 3) {
3172                 pr_err("Could not find valid ONFI parameter page; aborting\n");
3173                 return 0;
3174         }
3175
3176         /* Check version */
3177         val = le16_to_cpu(p->revision);
3178         if (val & (1 << 5))
3179                 chip->onfi_version = 23;
3180         else if (val & (1 << 4))
3181                 chip->onfi_version = 22;
3182         else if (val & (1 << 3))
3183                 chip->onfi_version = 21;
3184         else if (val & (1 << 2))
3185                 chip->onfi_version = 20;
3186         else if (val & (1 << 1))
3187                 chip->onfi_version = 10;
3188
3189         if (!chip->onfi_version) {
3190                 pr_info("unsupported ONFI version: %d\n", val);
3191                 return 0;
3192         }
3193
3194         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3195         sanitize_string(p->model, sizeof(p->model));
3196         if (!mtd->name)
3197                 mtd->name = p->model;
3198
3199         mtd->writesize = le32_to_cpu(p->byte_per_page);
3200
3201         /*
3202          * pages_per_block and blocks_per_lun may not be a power-of-2 size
3203          * (don't ask me who thought of this...). MTD assumes that these
3204          * dimensions will be power-of-2, so just truncate the remaining area.
3205          */
3206         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3207         mtd->erasesize *= mtd->writesize;
3208
3209         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3210
3211         /* See erasesize comment */
3212         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3213         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3214         chip->bits_per_cell = p->bits_per_cell;
3215
3216         if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3217                 *busw = NAND_BUSWIDTH_16;
3218         else
3219                 *busw = 0;
3220
3221         if (p->ecc_bits != 0xff) {
3222                 chip->ecc_strength_ds = p->ecc_bits;
3223                 chip->ecc_step_ds = 512;
3224         } else if (chip->onfi_version >= 21 &&
3225                 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3226
3227                 /*
3228                  * The nand_flash_detect_ext_param_page() uses the
3229                  * Change Read Column command which maybe not supported
3230                  * by the chip->cmdfunc. So try to update the chip->cmdfunc
3231                  * now. We do not replace user supplied command function.
3232                  */
3233                 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3234                         chip->cmdfunc = nand_command_lp;
3235
3236                 /* The Extended Parameter Page is supported since ONFI 2.1. */
3237                 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3238                         pr_warn("Failed to detect ONFI extended param page\n");
3239         } else {
3240                 pr_warn("Could not retrieve ONFI ECC requirements\n");
3241         }
3242
3243         if (p->jedec_id == NAND_MFR_MICRON)
3244                 nand_onfi_detect_micron(chip, p);
3245
3246         return 1;
3247 }
3248
3249 /*
3250  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3251  */
3252 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3253                                         int *busw)
3254 {
3255         struct nand_jedec_params *p = &chip->jedec_params;
3256         struct jedec_ecc_info *ecc;
3257         int val;
3258         int i, j;
3259
3260         /* Try JEDEC for unknown chip or LP */
3261         chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3262         if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3263                 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3264                 chip->read_byte(mtd) != 'C')
3265                 return 0;
3266
3267         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3268         for (i = 0; i < 3; i++) {
3269                 for (j = 0; j < sizeof(*p); j++)
3270                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3271
3272                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3273                                 le16_to_cpu(p->crc))
3274                         break;
3275         }
3276
3277         if (i == 3) {
3278                 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3279                 return 0;
3280         }
3281
3282         /* Check version */
3283         val = le16_to_cpu(p->revision);
3284         if (val & (1 << 2))
3285                 chip->jedec_version = 10;
3286         else if (val & (1 << 1))
3287                 chip->jedec_version = 1; /* vendor specific version */
3288
3289         if (!chip->jedec_version) {
3290                 pr_info("unsupported JEDEC version: %d\n", val);
3291                 return 0;
3292         }
3293
3294         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3295         sanitize_string(p->model, sizeof(p->model));
3296         if (!mtd->name)
3297                 mtd->name = p->model;
3298
3299         mtd->writesize = le32_to_cpu(p->byte_per_page);
3300
3301         /* Please reference to the comment for nand_flash_detect_onfi. */
3302         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3303         mtd->erasesize *= mtd->writesize;
3304
3305         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3306
3307         /* Please reference to the comment for nand_flash_detect_onfi. */
3308         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3309         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3310         chip->bits_per_cell = p->bits_per_cell;
3311
3312         if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3313                 *busw = NAND_BUSWIDTH_16;
3314         else
3315                 *busw = 0;
3316
3317         /* ECC info */
3318         ecc = &p->ecc_info[0];
3319
3320         if (ecc->codeword_size >= 9) {
3321                 chip->ecc_strength_ds = ecc->ecc_bits;
3322                 chip->ecc_step_ds = 1 << ecc->codeword_size;
3323         } else {
3324                 pr_warn("Invalid codeword size\n");
3325         }
3326
3327         return 1;
3328 }
3329
3330 /*
3331  * nand_id_has_period - Check if an ID string has a given wraparound period
3332  * @id_data: the ID string
3333  * @arrlen: the length of the @id_data array
3334  * @period: the period of repitition
3335  *
3336  * Check if an ID string is repeated within a given sequence of bytes at
3337  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3338  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3339  * if the repetition has a period of @period; otherwise, returns zero.
3340  */
3341 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3342 {
3343         int i, j;
3344         for (i = 0; i < period; i++)
3345                 for (j = i + period; j < arrlen; j += period)
3346                         if (id_data[i] != id_data[j])
3347                                 return 0;
3348         return 1;
3349 }
3350
3351 /*
3352  * nand_id_len - Get the length of an ID string returned by CMD_READID
3353  * @id_data: the ID string
3354  * @arrlen: the length of the @id_data array
3355
3356  * Returns the length of the ID string, according to known wraparound/trailing
3357  * zero patterns. If no pattern exists, returns the length of the array.
3358  */
3359 static int nand_id_len(u8 *id_data, int arrlen)
3360 {
3361         int last_nonzero, period;
3362
3363         /* Find last non-zero byte */
3364         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3365                 if (id_data[last_nonzero])
3366                         break;
3367
3368         /* All zeros */
3369         if (last_nonzero < 0)
3370                 return 0;
3371
3372         /* Calculate wraparound period */
3373         for (period = 1; period < arrlen; period++)
3374                 if (nand_id_has_period(id_data, arrlen, period))
3375                         break;
3376
3377         /* There's a repeated pattern */
3378         if (period < arrlen)
3379                 return period;
3380
3381         /* There are trailing zeros */
3382         if (last_nonzero < arrlen - 1)
3383                 return last_nonzero + 1;
3384
3385         /* No pattern detected */
3386         return arrlen;
3387 }
3388
3389 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3390 static int nand_get_bits_per_cell(u8 cellinfo)
3391 {
3392         int bits;
3393
3394         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3395         bits >>= NAND_CI_CELLTYPE_SHIFT;
3396         return bits + 1;
3397 }
3398
3399 /*
3400  * Many new NAND share similar device ID codes, which represent the size of the
3401  * chip. The rest of the parameters must be decoded according to generic or
3402  * manufacturer-specific "extended ID" decoding patterns.
3403  */
3404 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3405                                 u8 id_data[8], int *busw)
3406 {
3407         int extid, id_len;
3408         /* The 3rd id byte holds MLC / multichip data */
3409         chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3410         /* The 4th id byte is the important one */
3411         extid = id_data[3];
3412
3413         id_len = nand_id_len(id_data, 8);
3414
3415         /*
3416          * Field definitions are in the following datasheets:
3417          * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3418          * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3419          * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3420          *
3421          * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3422          * ID to decide what to do.
3423          */
3424         if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3425                         !nand_is_slc(chip) && id_data[5] != 0x00) {
3426                 /* Calc pagesize */
3427                 mtd->writesize = 2048 << (extid & 0x03);
3428                 extid >>= 2;
3429                 /* Calc oobsize */
3430                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3431                 case 1:
3432                         mtd->oobsize = 128;
3433                         break;
3434                 case 2:
3435                         mtd->oobsize = 218;
3436                         break;
3437                 case 3:
3438                         mtd->oobsize = 400;
3439                         break;
3440                 case 4:
3441                         mtd->oobsize = 436;
3442                         break;
3443                 case 5:
3444                         mtd->oobsize = 512;
3445                         break;
3446                 case 6:
3447                         mtd->oobsize = 640;
3448                         break;
3449                 case 7:
3450                 default: /* Other cases are "reserved" (unknown) */
3451                         mtd->oobsize = 1024;
3452                         break;
3453                 }
3454                 extid >>= 2;
3455                 /* Calc blocksize */
3456                 mtd->erasesize = (128 * 1024) <<
3457                         (((extid >> 1) & 0x04) | (extid & 0x03));
3458                 *busw = 0;
3459         } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3460                         !nand_is_slc(chip)) {
3461                 unsigned int tmp;
3462
3463                 /* Calc pagesize */
3464                 mtd->writesize = 2048 << (extid & 0x03);
3465                 extid >>= 2;
3466                 /* Calc oobsize */
3467                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3468                 case 0:
3469                         mtd->oobsize = 128;
3470                         break;
3471                 case 1:
3472                         mtd->oobsize = 224;
3473                         break;
3474                 case 2:
3475                         mtd->oobsize = 448;
3476                         break;
3477                 case 3:
3478                         mtd->oobsize = 64;
3479                         break;
3480                 case 4:
3481                         mtd->oobsize = 32;
3482                         break;
3483                 case 5:
3484                         mtd->oobsize = 16;
3485                         break;
3486                 default:
3487                         mtd->oobsize = 640;
3488                         break;
3489                 }
3490                 extid >>= 2;
3491                 /* Calc blocksize */
3492                 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3493                 if (tmp < 0x03)
3494                         mtd->erasesize = (128 * 1024) << tmp;
3495                 else if (tmp == 0x03)
3496                         mtd->erasesize = 768 * 1024;
3497                 else
3498                         mtd->erasesize = (64 * 1024) << tmp;
3499                 *busw = 0;
3500         } else {
3501                 /* Calc pagesize */
3502                 mtd->writesize = 1024 << (extid & 0x03);
3503                 extid >>= 2;
3504                 /* Calc oobsize */
3505                 mtd->oobsize = (8 << (extid & 0x01)) *
3506                         (mtd->writesize >> 9);
3507                 extid >>= 2;
3508                 /* Calc blocksize. Blocksize is multiples of 64KiB */
3509                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3510                 extid >>= 2;
3511                 /* Get buswidth information */
3512                 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3513
3514                 /*
3515                  * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3516                  * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3517                  * follows:
3518                  * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3519                  *                         110b -> 24nm
3520                  * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3521                  */
3522                 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3523                                 nand_is_slc(chip) &&
3524                                 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3525                                 !(id_data[4] & 0x80) /* !BENAND */) {
3526                         mtd->oobsize = 32 * mtd->writesize >> 9;
3527                 }
3528
3529         }
3530 }
3531
3532 /*
3533  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3534  * decodes a matching ID table entry and assigns the MTD size parameters for
3535  * the chip.
3536  */
3537 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3538                                 struct nand_flash_dev *type, u8 id_data[8],
3539                                 int *busw)
3540 {
3541         int maf_id = id_data[0];
3542
3543         mtd->erasesize = type->erasesize;
3544         mtd->writesize = type->pagesize;
3545         mtd->oobsize = mtd->writesize / 32;
3546         *busw = type->options & NAND_BUSWIDTH_16;
3547
3548         /* All legacy ID NAND are small-page, SLC */
3549         chip->bits_per_cell = 1;
3550
3551         /*
3552          * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3553          * some Spansion chips have erasesize that conflicts with size
3554          * listed in nand_ids table.
3555          * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3556          */
3557         if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3558                         && id_data[6] == 0x00 && id_data[7] == 0x00
3559                         && mtd->writesize == 512) {
3560                 mtd->erasesize = 128 * 1024;
3561                 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3562         }
3563 }
3564
3565 /*
3566  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3567  * heuristic patterns using various detected parameters (e.g., manufacturer,
3568  * page size, cell-type information).
3569  */
3570 static void nand_decode_bbm_options(struct mtd_info *mtd,
3571                                     struct nand_chip *chip, u8 id_data[8])
3572 {
3573         int maf_id = id_data[0];
3574
3575         /* Set the bad block position */
3576         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3577                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3578         else
3579                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3580
3581         /*
3582          * Bad block marker is stored in the last page of each block on Samsung
3583          * and Hynix MLC devices; stored in first two pages of each block on
3584          * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3585          * AMD/Spansion, and Macronix.  All others scan only the first page.
3586          */
3587         if (!nand_is_slc(chip) &&
3588                         (maf_id == NAND_MFR_SAMSUNG ||
3589                          maf_id == NAND_MFR_HYNIX))
3590                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3591         else if ((nand_is_slc(chip) &&
3592                                 (maf_id == NAND_MFR_SAMSUNG ||
3593                                  maf_id == NAND_MFR_HYNIX ||
3594                                  maf_id == NAND_MFR_TOSHIBA ||
3595                                  maf_id == NAND_MFR_AMD ||
3596                                  maf_id == NAND_MFR_MACRONIX)) ||
3597                         (mtd->writesize == 2048 &&
3598                          maf_id == NAND_MFR_MICRON))
3599                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3600 }
3601
3602 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3603 {
3604         return type->id_len;
3605 }
3606
3607 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3608                    struct nand_flash_dev *type, u8 *id_data, int *busw)
3609 {
3610         if (!strncmp(type->id, id_data, type->id_len)) {
3611                 mtd->writesize = type->pagesize;
3612                 mtd->erasesize = type->erasesize;
3613                 mtd->oobsize = type->oobsize;
3614
3615                 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3616                 chip->chipsize = (uint64_t)type->chipsize << 20;
3617                 chip->options |= type->options;
3618                 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3619                 chip->ecc_step_ds = NAND_ECC_STEP(type);
3620                 chip->onfi_timing_mode_default =
3621                                         type->onfi_timing_mode_default;
3622
3623                 *busw = type->options & NAND_BUSWIDTH_16;
3624
3625                 if (!mtd->name)
3626                         mtd->name = type->name;
3627
3628                 return true;
3629         }
3630         return false;
3631 }
3632
3633 /*
3634  * Get the flash and manufacturer id and lookup if the type is supported.
3635  */
3636 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3637                                                   struct nand_chip *chip,
3638                                                   int *maf_id, int *dev_id,
3639                                                   struct nand_flash_dev *type)
3640 {
3641         int busw;
3642         int i, maf_idx;
3643         u8 id_data[8];
3644
3645         /* Select the device */
3646         chip->select_chip(mtd, 0);
3647
3648         /*
3649          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3650          * after power-up.
3651          */
3652         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3653
3654         /* Send the command for reading device ID */
3655         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3656
3657         /* Read manufacturer and device IDs */
3658         *maf_id = chip->read_byte(mtd);
3659         *dev_id = chip->read_byte(mtd);
3660
3661         /*
3662          * Try again to make sure, as some systems the bus-hold or other
3663          * interface concerns can cause random data which looks like a
3664          * possibly credible NAND flash to appear. If the two results do
3665          * not match, ignore the device completely.
3666          */
3667
3668         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3669
3670         /* Read entire ID string */
3671         for (i = 0; i < 8; i++)
3672                 id_data[i] = chip->read_byte(mtd);
3673
3674         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3675                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3676                         *maf_id, *dev_id, id_data[0], id_data[1]);
3677                 return ERR_PTR(-ENODEV);
3678         }
3679
3680         if (!type)
3681                 type = nand_flash_ids;
3682
3683         for (; type->name != NULL; type++) {
3684                 if (is_full_id_nand(type)) {
3685                         if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3686                                 goto ident_done;
3687                 } else if (*dev_id == type->dev_id) {
3688                         break;
3689                 }
3690         }
3691
3692         chip->onfi_version = 0;
3693         if (!type->name || !type->pagesize) {
3694                 /* Check if the chip is ONFI compliant */
3695                 if (nand_flash_detect_onfi(mtd, chip, &busw))
3696                         goto ident_done;
3697
3698                 /* Check if the chip is JEDEC compliant */
3699                 if (nand_flash_detect_jedec(mtd, chip, &busw))
3700                         goto ident_done;
3701         }
3702
3703         if (!type->name)
3704                 return ERR_PTR(-ENODEV);
3705
3706         if (!mtd->name)
3707                 mtd->name = type->name;
3708
3709         chip->chipsize = (uint64_t)type->chipsize << 20;
3710
3711         if (!type->pagesize && chip->init_size) {
3712                 /* Set the pagesize, oobsize, erasesize by the driver */
3713                 busw = chip->init_size(mtd, chip, id_data);
3714         } else if (!type->pagesize) {
3715                 /* Decode parameters from extended ID */
3716                 nand_decode_ext_id(mtd, chip, id_data, &busw);
3717         } else {
3718                 nand_decode_id(mtd, chip, type, id_data, &busw);
3719         }
3720         /* Get chip options */
3721         chip->options |= type->options;
3722
3723         /*
3724          * Check if chip is not a Samsung device. Do not clear the
3725          * options for chips which do not have an extended id.
3726          */
3727         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3728                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3729 ident_done:
3730
3731         /* Try to identify manufacturer */
3732         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3733                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3734                         break;
3735         }
3736
3737         if (chip->options & NAND_BUSWIDTH_AUTO) {
3738                 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3739                 chip->options |= busw;
3740                 nand_set_defaults(chip, busw);
3741         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3742                 /*
3743                  * Check, if buswidth is correct. Hardware drivers should set
3744                  * chip correct!
3745                  */
3746                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3747                         *maf_id, *dev_id);
3748                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3749                 pr_warn("bus width %d instead %d bit\n",
3750                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3751                            busw ? 16 : 8);
3752                 return ERR_PTR(-EINVAL);
3753         }
3754
3755         nand_decode_bbm_options(mtd, chip, id_data);
3756
3757         /* Calculate the address shift from the page size */
3758         chip->page_shift = ffs(mtd->writesize) - 1;
3759         /* Convert chipsize to number of pages per chip -1 */
3760         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3761
3762         chip->bbt_erase_shift = chip->phys_erase_shift =
3763                 ffs(mtd->erasesize) - 1;
3764         if (chip->chipsize & 0xffffffff)
3765                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3766         else {
3767                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3768                 chip->chip_shift += 32 - 1;
3769         }
3770
3771         chip->badblockbits = 8;
3772         chip->erase = single_erase;
3773
3774         /* Do not replace user supplied command function! */
3775         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3776                 chip->cmdfunc = nand_command_lp;
3777
3778         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3779                 *maf_id, *dev_id);
3780
3781         if (chip->onfi_version)
3782                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3783                                 chip->onfi_params.model);
3784         else if (chip->jedec_version)
3785                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3786                                 chip->jedec_params.model);
3787         else
3788                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3789                                 type->name);
3790
3791         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3792                 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3793                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3794         return type;
3795 }
3796
3797 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip,
3798                         struct device_node *dn)
3799 {
3800         int ecc_mode, ecc_strength, ecc_step;
3801
3802         if (of_get_nand_bus_width(dn) == 16)
3803                 chip->options |= NAND_BUSWIDTH_16;
3804
3805         if (of_get_nand_on_flash_bbt(dn))
3806                 chip->bbt_options |= NAND_BBT_USE_FLASH;
3807
3808         ecc_mode = of_get_nand_ecc_mode(dn);
3809         ecc_strength = of_get_nand_ecc_strength(dn);
3810         ecc_step = of_get_nand_ecc_step_size(dn);
3811
3812         if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3813             (!(ecc_step >= 0) && ecc_strength >= 0)) {
3814                 pr_err("must set both strength and step size in DT\n");
3815                 return -EINVAL;
3816         }
3817
3818         if (ecc_mode >= 0)
3819                 chip->ecc.mode = ecc_mode;
3820
3821         if (ecc_strength >= 0)
3822                 chip->ecc.strength = ecc_strength;
3823
3824         if (ecc_step > 0)
3825                 chip->ecc.size = ecc_step;
3826
3827         return 0;
3828 }
3829
3830 /**
3831  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3832  * @mtd: MTD device structure
3833  * @maxchips: number of chips to scan for
3834  * @table: alternative NAND ID table
3835  *
3836  * This is the first phase of the normal nand_scan() function. It reads the
3837  * flash ID and sets up MTD fields accordingly.
3838  *
3839  * The mtd->owner field must be set to the module of the caller.
3840  */
3841 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3842                     struct nand_flash_dev *table)
3843 {
3844         int i, nand_maf_id, nand_dev_id;
3845         struct nand_chip *chip = mtd->priv;
3846         struct nand_flash_dev *type;
3847         int ret;
3848
3849         if (chip->dn) {
3850                 ret = nand_dt_init(mtd, chip, chip->dn);
3851                 if (ret)
3852                         return ret;
3853         }
3854
3855         /* Set the default functions */
3856         nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3857
3858         /* Read the flash type */
3859         type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3860                                    &nand_dev_id, table);
3861
3862         if (IS_ERR(type)) {
3863                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3864                         pr_warn("No NAND device found\n");
3865                 chip->select_chip(mtd, -1);
3866                 return PTR_ERR(type);
3867         }
3868
3869         chip->select_chip(mtd, -1);
3870
3871         /* Check for a chip array */
3872         for (i = 1; i < maxchips; i++) {
3873                 chip->select_chip(mtd, i);
3874                 /* See comment in nand_get_flash_type for reset */
3875                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3876                 /* Send the command for reading device ID */
3877                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3878                 /* Read manufacturer and device IDs */
3879                 if (nand_maf_id != chip->read_byte(mtd) ||
3880                     nand_dev_id != chip->read_byte(mtd)) {
3881                         chip->select_chip(mtd, -1);
3882                         break;
3883                 }
3884                 chip->select_chip(mtd, -1);
3885         }
3886         if (i > 1)
3887                 pr_info("%d chips detected\n", i);
3888
3889         /* Store the number of chips and calc total size for mtd */
3890         chip->numchips = i;
3891         mtd->size = i * chip->chipsize;
3892
3893         return 0;
3894 }
3895 EXPORT_SYMBOL(nand_scan_ident);
3896
3897 /*
3898  * Check if the chip configuration meet the datasheet requirements.
3899
3900  * If our configuration corrects A bits per B bytes and the minimum
3901  * required correction level is X bits per Y bytes, then we must ensure
3902  * both of the following are true:
3903  *
3904  * (1) A / B >= X / Y
3905  * (2) A >= X
3906  *
3907  * Requirement (1) ensures we can correct for the required bitflip density.
3908  * Requirement (2) ensures we can correct even when all bitflips are clumped
3909  * in the same sector.
3910  */
3911 static bool nand_ecc_strength_good(struct mtd_info *mtd)
3912 {
3913         struct nand_chip *chip = mtd->priv;
3914         struct nand_ecc_ctrl *ecc = &chip->ecc;
3915         int corr, ds_corr;
3916
3917         if (ecc->size == 0 || chip->ecc_step_ds == 0)
3918                 /* Not enough information */
3919                 return true;
3920
3921         /*
3922          * We get the number of corrected bits per page to compare
3923          * the correction density.
3924          */
3925         corr = (mtd->writesize * ecc->strength) / ecc->size;
3926         ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3927
3928         return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3929 }
3930
3931 /**
3932  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3933  * @mtd: MTD device structure
3934  *
3935  * This is the second phase of the normal nand_scan() function. It fills out
3936  * all the uninitialized function pointers with the defaults and scans for a
3937  * bad block table if appropriate.
3938  */
3939 int nand_scan_tail(struct mtd_info *mtd)
3940 {
3941         int i;
3942         struct nand_chip *chip = mtd->priv;
3943         struct nand_ecc_ctrl *ecc = &chip->ecc;
3944         struct nand_buffers *nbuf;
3945
3946         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3947         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3948                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3949
3950         if (!(chip->options & NAND_OWN_BUFFERS)) {
3951                 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3952                                 + mtd->oobsize * 3, GFP_KERNEL);
3953                 if (!nbuf)
3954                         return -ENOMEM;
3955                 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3956                 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3957                 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3958
3959                 chip->buffers = nbuf;
3960         } else {
3961                 if (!chip->buffers)
3962                         return -ENOMEM;
3963         }
3964
3965         /* Set the internal oob buffer location, just after the page data */
3966         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3967
3968         /*
3969          * If no default placement scheme is given, select an appropriate one.
3970          */
3971         if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3972                 switch (mtd->oobsize) {
3973                 case 8:
3974                         ecc->layout = &nand_oob_8;
3975                         break;
3976                 case 16:
3977                         ecc->layout = &nand_oob_16;
3978                         break;
3979                 case 64:
3980                         ecc->layout = &nand_oob_64;
3981                         break;
3982                 case 128:
3983                         ecc->layout = &nand_oob_128;
3984                         break;
3985                 default:
3986                         pr_warn("No oob scheme defined for oobsize %d\n",
3987                                    mtd->oobsize);
3988                         BUG();
3989                 }
3990         }
3991
3992         if (!chip->write_page)
3993                 chip->write_page = nand_write_page;
3994
3995         /*
3996          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3997          * selected and we have 256 byte pagesize fallback to software ECC
3998          */
3999
4000         switch (ecc->mode) {
4001         case NAND_ECC_HW_OOB_FIRST:
4002                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4003                 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4004                         pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4005                         BUG();
4006                 }
4007                 if (!ecc->read_page)
4008                         ecc->read_page = nand_read_page_hwecc_oob_first;
4009
4010         case NAND_ECC_HW:
4011                 /* Use standard hwecc read page function? */
4012                 if (!ecc->read_page)
4013                         ecc->read_page = nand_read_page_hwecc;
4014                 if (!ecc->write_page)
4015                         ecc->write_page = nand_write_page_hwecc;
4016                 if (!ecc->read_page_raw)
4017                         ecc->read_page_raw = nand_read_page_raw;
4018                 if (!ecc->write_page_raw)
4019                         ecc->write_page_raw = nand_write_page_raw;
4020                 if (!ecc->read_oob)
4021                         ecc->read_oob = nand_read_oob_std;
4022                 if (!ecc->write_oob)
4023                         ecc->write_oob = nand_write_oob_std;
4024                 if (!ecc->read_subpage)
4025                         ecc->read_subpage = nand_read_subpage;
4026                 if (!ecc->write_subpage)
4027                         ecc->write_subpage = nand_write_subpage_hwecc;
4028
4029         case NAND_ECC_HW_SYNDROME:
4030                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4031                     (!ecc->read_page ||
4032                      ecc->read_page == nand_read_page_hwecc ||
4033                      !ecc->write_page ||
4034                      ecc->write_page == nand_write_page_hwecc)) {
4035                         pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4036                         BUG();
4037                 }
4038                 /* Use standard syndrome read/write page function? */
4039                 if (!ecc->read_page)
4040                         ecc->read_page = nand_read_page_syndrome;
4041                 if (!ecc->write_page)
4042                         ecc->write_page = nand_write_page_syndrome;
4043                 if (!ecc->read_page_raw)
4044                         ecc->read_page_raw = nand_read_page_raw_syndrome;
4045                 if (!ecc->write_page_raw)
4046                         ecc->write_page_raw = nand_write_page_raw_syndrome;
4047                 if (!ecc->read_oob)
4048                         ecc->read_oob = nand_read_oob_syndrome;
4049                 if (!ecc->write_oob)
4050                         ecc->write_oob = nand_write_oob_syndrome;
4051
4052                 if (mtd->writesize >= ecc->size) {
4053                         if (!ecc->strength) {
4054                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4055                                 BUG();
4056                         }
4057                         break;
4058                 }
4059                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4060                         ecc->size, mtd->writesize);
4061                 ecc->mode = NAND_ECC_SOFT;
4062
4063         case NAND_ECC_SOFT:
4064                 ecc->calculate = nand_calculate_ecc;
4065                 ecc->correct = nand_correct_data;
4066                 ecc->read_page = nand_read_page_swecc;
4067                 ecc->read_subpage = nand_read_subpage;
4068                 ecc->write_page = nand_write_page_swecc;
4069                 ecc->read_page_raw = nand_read_page_raw;
4070                 ecc->write_page_raw = nand_write_page_raw;
4071                 ecc->read_oob = nand_read_oob_std;
4072                 ecc->write_oob = nand_write_oob_std;
4073                 if (!ecc->size)
4074                         ecc->size = 256;
4075                 ecc->bytes = 3;
4076                 ecc->strength = 1;
4077                 break;
4078
4079         case NAND_ECC_SOFT_BCH:
4080                 if (!mtd_nand_has_bch()) {
4081                         pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4082                         BUG();
4083                 }
4084                 ecc->calculate = nand_bch_calculate_ecc;
4085                 ecc->correct = nand_bch_correct_data;
4086                 ecc->read_page = nand_read_page_swecc;
4087                 ecc->read_subpage = nand_read_subpage;
4088                 ecc->write_page = nand_write_page_swecc;
4089                 ecc->read_page_raw = nand_read_page_raw;
4090                 ecc->write_page_raw = nand_write_page_raw;
4091                 ecc->read_oob = nand_read_oob_std;
4092                 ecc->write_oob = nand_write_oob_std;
4093                 /*
4094                  * Board driver should supply ecc.size and ecc.strength values
4095                  * to select how many bits are correctable. Otherwise, default
4096                  * to 4 bits for large page devices.
4097                  */
4098                 if (!ecc->size && (mtd->oobsize >= 64)) {
4099                         ecc->size = 512;
4100                         ecc->strength = 4;
4101                 }
4102
4103                 /* See nand_bch_init() for details. */
4104                 ecc->bytes = DIV_ROUND_UP(
4105                                 ecc->strength * fls(8 * ecc->size), 8);
4106                 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4107                                                &ecc->layout);
4108                 if (!ecc->priv) {
4109                         pr_warn("BCH ECC initialization failed!\n");
4110                         BUG();
4111                 }
4112                 break;
4113
4114         case NAND_ECC_NONE:
4115                 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4116                 ecc->read_page = nand_read_page_raw;
4117                 ecc->write_page = nand_write_page_raw;
4118                 ecc->read_oob = nand_read_oob_std;
4119                 ecc->read_page_raw = nand_read_page_raw;
4120                 ecc->write_page_raw = nand_write_page_raw;
4121                 ecc->write_oob = nand_write_oob_std;
4122                 ecc->size = mtd->writesize;
4123                 ecc->bytes = 0;
4124                 ecc->strength = 0;
4125                 break;
4126
4127         default:
4128                 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4129                 BUG();
4130         }
4131
4132         /* For many systems, the standard OOB write also works for raw */
4133         if (!ecc->read_oob_raw)
4134                 ecc->read_oob_raw = ecc->read_oob;
4135         if (!ecc->write_oob_raw)
4136                 ecc->write_oob_raw = ecc->write_oob;
4137
4138         /*
4139          * The number of bytes available for a client to place data into
4140          * the out of band area.
4141          */
4142         ecc->layout->oobavail = 0;
4143         for (i = 0; ecc->layout->oobfree[i].length
4144                         && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4145                 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4146         mtd->oobavail = ecc->layout->oobavail;
4147
4148         /* ECC sanity check: warn if it's too weak */
4149         if (!nand_ecc_strength_good(mtd))
4150                 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4151                         mtd->name);
4152
4153         /*
4154          * Set the number of read / write steps for one page depending on ECC
4155          * mode.
4156          */
4157         ecc->steps = mtd->writesize / ecc->size;
4158         if (ecc->steps * ecc->size != mtd->writesize) {
4159                 pr_warn("Invalid ECC parameters\n");
4160                 BUG();
4161         }
4162         ecc->total = ecc->steps * ecc->bytes;
4163
4164         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4165         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4166                 switch (ecc->steps) {
4167                 case 2:
4168                         mtd->subpage_sft = 1;
4169                         break;
4170                 case 4:
4171                 case 8:
4172                 case 16:
4173                         mtd->subpage_sft = 2;
4174                         break;
4175                 }
4176         }
4177         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4178
4179         /* Initialize state */
4180         chip->state = FL_READY;
4181
4182         /* Invalidate the pagebuffer reference */
4183         chip->pagebuf = -1;
4184
4185         /* Large page NAND with SOFT_ECC should support subpage reads */
4186         switch (ecc->mode) {
4187         case NAND_ECC_SOFT:
4188         case NAND_ECC_SOFT_BCH:
4189                 if (chip->page_shift > 9)
4190                         chip->options |= NAND_SUBPAGE_READ;
4191                 break;
4192
4193         default:
4194                 break;
4195         }
4196
4197         /* Fill in remaining MTD driver data */
4198         mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4199         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4200                                                 MTD_CAP_NANDFLASH;
4201         mtd->_erase = nand_erase;
4202         mtd->_point = NULL;
4203         mtd->_unpoint = NULL;
4204         mtd->_read = nand_read;
4205         mtd->_write = nand_write;
4206         mtd->_panic_write = panic_nand_write;
4207         mtd->_read_oob = nand_read_oob;
4208         mtd->_write_oob = nand_write_oob;
4209         mtd->_sync = nand_sync;
4210         mtd->_lock = NULL;
4211         mtd->_unlock = NULL;
4212         mtd->_suspend = nand_suspend;
4213         mtd->_resume = nand_resume;
4214         mtd->_reboot = nand_shutdown;
4215         mtd->_block_isreserved = nand_block_isreserved;
4216         mtd->_block_isbad = nand_block_isbad;
4217         mtd->_block_markbad = nand_block_markbad;
4218         mtd->writebufsize = mtd->writesize;
4219
4220         /* propagate ecc info to mtd_info */
4221         mtd->ecclayout = ecc->layout;
4222         mtd->ecc_strength = ecc->strength;
4223         mtd->ecc_step_size = ecc->size;
4224         /*
4225          * Initialize bitflip_threshold to its default prior scan_bbt() call.
4226          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4227          * properly set.
4228          */
4229         if (!mtd->bitflip_threshold)
4230                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4231
4232         /* Check, if we should skip the bad block table scan */
4233         if (chip->options & NAND_SKIP_BBTSCAN)
4234                 return 0;
4235
4236         /* Build bad block table */
4237         return chip->scan_bbt(mtd);
4238 }
4239 EXPORT_SYMBOL(nand_scan_tail);
4240
4241 /*
4242  * is_module_text_address() isn't exported, and it's mostly a pointless
4243  * test if this is a module _anyway_ -- they'd have to try _really_ hard
4244  * to call us from in-kernel code if the core NAND support is modular.
4245  */
4246 #ifdef MODULE
4247 #define caller_is_module() (1)
4248 #else
4249 #define caller_is_module() \
4250         is_module_text_address((unsigned long)__builtin_return_address(0))
4251 #endif
4252
4253 /**
4254  * nand_scan - [NAND Interface] Scan for the NAND device
4255  * @mtd: MTD device structure
4256  * @maxchips: number of chips to scan for
4257  *
4258  * This fills out all the uninitialized function pointers with the defaults.
4259  * The flash ID is read and the mtd/chip structures are filled with the
4260  * appropriate values. The mtd->owner field must be set to the module of the
4261  * caller.
4262  */
4263 int nand_scan(struct mtd_info *mtd, int maxchips)
4264 {
4265         int ret;
4266
4267         /* Many callers got this wrong, so check for it for a while... */
4268         if (!mtd->owner && caller_is_module()) {
4269                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4270                 BUG();
4271         }
4272
4273         ret = nand_scan_ident(mtd, maxchips, NULL);
4274         if (!ret)
4275                 ret = nand_scan_tail(mtd);
4276         return ret;
4277 }
4278 EXPORT_SYMBOL(nand_scan);
4279
4280 /**
4281  * nand_release - [NAND Interface] Free resources held by the NAND device
4282  * @mtd: MTD device structure
4283  */
4284 void nand_release(struct mtd_info *mtd)
4285 {
4286         struct nand_chip *chip = mtd->priv;
4287
4288         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4289                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4290
4291         mtd_device_unregister(mtd);
4292
4293         /* Free bad block table memory */
4294         kfree(chip->bbt);
4295         if (!(chip->options & NAND_OWN_BUFFERS))
4296                 kfree(chip->buffers);
4297
4298         /* Free bad block descriptor memory */
4299         if (chip->badblock_pattern && chip->badblock_pattern->options
4300                         & NAND_BBT_DYNAMICSTRUCT)
4301                 kfree(chip->badblock_pattern);
4302 }
4303 EXPORT_SYMBOL_GPL(nand_release);
4304
4305 static int __init nand_base_init(void)
4306 {
4307         led_trigger_register_simple("nand-disk", &nand_led_trigger);
4308         return 0;
4309 }
4310
4311 static void __exit nand_base_exit(void)
4312 {
4313         led_trigger_unregister_simple(nand_led_trigger);
4314 }
4315
4316 module_init(nand_base_init);
4317 module_exit(nand_base_exit);
4318
4319 MODULE_LICENSE("GPL");
4320 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4321 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4322 MODULE_DESCRIPTION("Generic NAND flash driver code");