Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *
8  *      Additional technical information is available on
9  *      http://www.linux-mtd.infradead.org/doc/nand.html
10  *
11  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
13  *
14  *  Credits:
15  *      David Woodhouse for adding multichip support
16  *
17  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18  *      rework for 2K page size chips
19  *
20  *  TODO:
21  *      Enable cached programming for 2k page size chips
22  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
23  *      if we have HW ECC support.
24  *      BBT table is not serialized, has to be fixed
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License version 2 as
28  * published by the Free Software Foundation.
29  *
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/mm.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54         .eccbytes = 3,
55         .eccpos = {0, 1, 2},
56         .oobfree = {
57                 {.offset = 3,
58                  .length = 2},
59                 {.offset = 6,
60                  .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64         .eccbytes = 6,
65         .eccpos = {0, 1, 2, 3, 6, 7},
66         .oobfree = {
67                 {.offset = 8,
68                  . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72         .eccbytes = 24,
73         .eccpos = {
74                    40, 41, 42, 43, 44, 45, 46, 47,
75                    48, 49, 50, 51, 52, 53, 54, 55,
76                    56, 57, 58, 59, 60, 61, 62, 63},
77         .oobfree = {
78                 {.offset = 2,
79                  .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83         .eccbytes = 48,
84         .eccpos = {
85                    80, 81, 82, 83, 84, 85, 86, 87,
86                    88, 89, 90, 91, 92, 93, 94, 95,
87                    96, 97, 98, 99, 100, 101, 102, 103,
88                    104, 105, 106, 107, 108, 109, 110, 111,
89                    112, 113, 114, 115, 116, 117, 118, 119,
90                    120, 121, 122, 123, 124, 125, 126, 127},
91         .oobfree = {
92                 {.offset = 2,
93                  .length = 78} }
94 };
95
96 static int nand_get_device(struct mtd_info *mtd, int new_state);
97
98 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99                              struct mtd_oob_ops *ops);
100
101 /*
102  * For devices which display every fart in the system on a separate LED. Is
103  * compiled away when LED support is disabled.
104  */
105 DEFINE_LED_TRIGGER(nand_led_trigger);
106
107 static int check_offs_len(struct mtd_info *mtd,
108                                         loff_t ofs, uint64_t len)
109 {
110         struct nand_chip *chip = mtd->priv;
111         int ret = 0;
112
113         /* Start address must align on block boundary */
114         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
115                 pr_debug("%s: unaligned address\n", __func__);
116                 ret = -EINVAL;
117         }
118
119         /* Length must align on block boundary */
120         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
121                 pr_debug("%s: length not block aligned\n", __func__);
122                 ret = -EINVAL;
123         }
124
125         return ret;
126 }
127
128 /**
129  * nand_release_device - [GENERIC] release chip
130  * @mtd: MTD device structure
131  *
132  * Release chip lock and wake up anyone waiting on the device.
133  */
134 static void nand_release_device(struct mtd_info *mtd)
135 {
136         struct nand_chip *chip = mtd->priv;
137
138         /* Release the controller and the chip */
139         spin_lock(&chip->controller->lock);
140         chip->controller->active = NULL;
141         chip->state = FL_READY;
142         wake_up(&chip->controller->wq);
143         spin_unlock(&chip->controller->lock);
144 }
145
146 /**
147  * nand_read_byte - [DEFAULT] read one byte from the chip
148  * @mtd: MTD device structure
149  *
150  * Default read function for 8bit buswidth
151  */
152 static uint8_t nand_read_byte(struct mtd_info *mtd)
153 {
154         struct nand_chip *chip = mtd->priv;
155         return readb(chip->IO_ADDR_R);
156 }
157
158 /**
159  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160  * @mtd: MTD device structure
161  *
162  * Default read function for 16bit buswidth with endianness conversion.
163  *
164  */
165 static uint8_t nand_read_byte16(struct mtd_info *mtd)
166 {
167         struct nand_chip *chip = mtd->priv;
168         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
169 }
170
171 /**
172  * nand_read_word - [DEFAULT] read one word from the chip
173  * @mtd: MTD device structure
174  *
175  * Default read function for 16bit buswidth without endianness conversion.
176  */
177 static u16 nand_read_word(struct mtd_info *mtd)
178 {
179         struct nand_chip *chip = mtd->priv;
180         return readw(chip->IO_ADDR_R);
181 }
182
183 /**
184  * nand_select_chip - [DEFAULT] control CE line
185  * @mtd: MTD device structure
186  * @chipnr: chipnumber to select, -1 for deselect
187  *
188  * Default select function for 1 chip devices.
189  */
190 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
191 {
192         struct nand_chip *chip = mtd->priv;
193
194         switch (chipnr) {
195         case -1:
196                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
197                 break;
198         case 0:
199                 break;
200
201         default:
202                 BUG();
203         }
204 }
205
206 /**
207  * nand_write_byte - [DEFAULT] write single byte to chip
208  * @mtd: MTD device structure
209  * @byte: value to write
210  *
211  * Default function to write a byte to I/O[7:0]
212  */
213 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
214 {
215         struct nand_chip *chip = mtd->priv;
216
217         chip->write_buf(mtd, &byte, 1);
218 }
219
220 /**
221  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
222  * @mtd: MTD device structure
223  * @byte: value to write
224  *
225  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
226  */
227 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
228 {
229         struct nand_chip *chip = mtd->priv;
230         uint16_t word = byte;
231
232         /*
233          * It's not entirely clear what should happen to I/O[15:8] when writing
234          * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
235          *
236          *    When the host supports a 16-bit bus width, only data is
237          *    transferred at the 16-bit width. All address and command line
238          *    transfers shall use only the lower 8-bits of the data bus. During
239          *    command transfers, the host may place any value on the upper
240          *    8-bits of the data bus. During address transfers, the host shall
241          *    set the upper 8-bits of the data bus to 00h.
242          *
243          * One user of the write_byte callback is nand_onfi_set_features. The
244          * four parameters are specified to be written to I/O[7:0], but this is
245          * neither an address nor a command transfer. Let's assume a 0 on the
246          * upper I/O lines is OK.
247          */
248         chip->write_buf(mtd, (uint8_t *)&word, 2);
249 }
250
251 /**
252  * nand_write_buf - [DEFAULT] write buffer to chip
253  * @mtd: MTD device structure
254  * @buf: data buffer
255  * @len: number of bytes to write
256  *
257  * Default write function for 8bit buswidth.
258  */
259 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
260 {
261         struct nand_chip *chip = mtd->priv;
262
263         iowrite8_rep(chip->IO_ADDR_W, buf, len);
264 }
265
266 /**
267  * nand_read_buf - [DEFAULT] read chip data into buffer
268  * @mtd: MTD device structure
269  * @buf: buffer to store date
270  * @len: number of bytes to read
271  *
272  * Default read function for 8bit buswidth.
273  */
274 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
275 {
276         struct nand_chip *chip = mtd->priv;
277
278         ioread8_rep(chip->IO_ADDR_R, buf, len);
279 }
280
281 /**
282  * nand_write_buf16 - [DEFAULT] write buffer to chip
283  * @mtd: MTD device structure
284  * @buf: data buffer
285  * @len: number of bytes to write
286  *
287  * Default write function for 16bit buswidth.
288  */
289 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
290 {
291         struct nand_chip *chip = mtd->priv;
292         u16 *p = (u16 *) buf;
293
294         iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
295 }
296
297 /**
298  * nand_read_buf16 - [DEFAULT] read chip data into buffer
299  * @mtd: MTD device structure
300  * @buf: buffer to store date
301  * @len: number of bytes to read
302  *
303  * Default read function for 16bit buswidth.
304  */
305 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
306 {
307         struct nand_chip *chip = mtd->priv;
308         u16 *p = (u16 *) buf;
309
310         ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
311 }
312
313 /**
314  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
315  * @mtd: MTD device structure
316  * @ofs: offset from device start
317  * @getchip: 0, if the chip is already selected
318  *
319  * Check, if the block is bad.
320  */
321 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
322 {
323         int page, chipnr, res = 0, i = 0;
324         struct nand_chip *chip = mtd->priv;
325         u16 bad;
326
327         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
328                 ofs += mtd->erasesize - mtd->writesize;
329
330         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
331
332         if (getchip) {
333                 chipnr = (int)(ofs >> chip->chip_shift);
334
335                 nand_get_device(mtd, FL_READING);
336
337                 /* Select the NAND device */
338                 chip->select_chip(mtd, chipnr);
339         }
340
341         do {
342                 if (chip->options & NAND_BUSWIDTH_16) {
343                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
344                                         chip->badblockpos & 0xFE, page);
345                         bad = cpu_to_le16(chip->read_word(mtd));
346                         if (chip->badblockpos & 0x1)
347                                 bad >>= 8;
348                         else
349                                 bad &= 0xFF;
350                 } else {
351                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
352                                         page);
353                         bad = chip->read_byte(mtd);
354                 }
355
356                 if (likely(chip->badblockbits == 8))
357                         res = bad != 0xFF;
358                 else
359                         res = hweight8(bad) < chip->badblockbits;
360                 ofs += mtd->writesize;
361                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
362                 i++;
363         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
364
365         if (getchip) {
366                 chip->select_chip(mtd, -1);
367                 nand_release_device(mtd);
368         }
369
370         return res;
371 }
372
373 /**
374  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
375  * @mtd: MTD device structure
376  * @ofs: offset from device start
377  *
378  * This is the default implementation, which can be overridden by a hardware
379  * specific driver. It provides the details for writing a bad block marker to a
380  * block.
381  */
382 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
383 {
384         struct nand_chip *chip = mtd->priv;
385         struct mtd_oob_ops ops;
386         uint8_t buf[2] = { 0, 0 };
387         int ret = 0, res, i = 0;
388
389         ops.datbuf = NULL;
390         ops.oobbuf = buf;
391         ops.ooboffs = chip->badblockpos;
392         if (chip->options & NAND_BUSWIDTH_16) {
393                 ops.ooboffs &= ~0x01;
394                 ops.len = ops.ooblen = 2;
395         } else {
396                 ops.len = ops.ooblen = 1;
397         }
398         ops.mode = MTD_OPS_PLACE_OOB;
399
400         /* Write to first/last page(s) if necessary */
401         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
402                 ofs += mtd->erasesize - mtd->writesize;
403         do {
404                 res = nand_do_write_oob(mtd, ofs, &ops);
405                 if (!ret)
406                         ret = res;
407
408                 i++;
409                 ofs += mtd->writesize;
410         } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
411
412         return ret;
413 }
414
415 /**
416  * nand_block_markbad_lowlevel - mark a block bad
417  * @mtd: MTD device structure
418  * @ofs: offset from device start
419  *
420  * This function performs the generic NAND bad block marking steps (i.e., bad
421  * block table(s) and/or marker(s)). We only allow the hardware driver to
422  * specify how to write bad block markers to OOB (chip->block_markbad).
423  *
424  * We try operations in the following order:
425  *  (1) erase the affected block, to allow OOB marker to be written cleanly
426  *  (2) write bad block marker to OOB area of affected block (unless flag
427  *      NAND_BBT_NO_OOB_BBM is present)
428  *  (3) update the BBT
429  * Note that we retain the first error encountered in (2) or (3), finish the
430  * procedures, and dump the error in the end.
431 */
432 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
433 {
434         struct nand_chip *chip = mtd->priv;
435         int res, ret = 0;
436
437         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
438                 struct erase_info einfo;
439
440                 /* Attempt erase before marking OOB */
441                 memset(&einfo, 0, sizeof(einfo));
442                 einfo.mtd = mtd;
443                 einfo.addr = ofs;
444                 einfo.len = 1ULL << chip->phys_erase_shift;
445                 nand_erase_nand(mtd, &einfo, 0);
446
447                 /* Write bad block marker to OOB */
448                 nand_get_device(mtd, FL_WRITING);
449                 ret = chip->block_markbad(mtd, ofs);
450                 nand_release_device(mtd);
451         }
452
453         /* Mark block bad in BBT */
454         if (chip->bbt) {
455                 res = nand_markbad_bbt(mtd, ofs);
456                 if (!ret)
457                         ret = res;
458         }
459
460         if (!ret)
461                 mtd->ecc_stats.badblocks++;
462
463         return ret;
464 }
465
466 /**
467  * nand_check_wp - [GENERIC] check if the chip is write protected
468  * @mtd: MTD device structure
469  *
470  * Check, if the device is write protected. The function expects, that the
471  * device is already selected.
472  */
473 static int nand_check_wp(struct mtd_info *mtd)
474 {
475         struct nand_chip *chip = mtd->priv;
476
477         /* Broken xD cards report WP despite being writable */
478         if (chip->options & NAND_BROKEN_XD)
479                 return 0;
480
481         /* Check the WP bit */
482         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
483         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
484 }
485
486 /**
487  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
488  * @mtd: MTD device structure
489  * @ofs: offset from device start
490  *
491  * Check if the block is marked as reserved.
492  */
493 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
494 {
495         struct nand_chip *chip = mtd->priv;
496
497         if (!chip->bbt)
498                 return 0;
499         /* Return info from the table */
500         return nand_isreserved_bbt(mtd, ofs);
501 }
502
503 /**
504  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
505  * @mtd: MTD device structure
506  * @ofs: offset from device start
507  * @getchip: 0, if the chip is already selected
508  * @allowbbt: 1, if its allowed to access the bbt area
509  *
510  * Check, if the block is bad. Either by reading the bad block table or
511  * calling of the scan function.
512  */
513 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
514                                int allowbbt)
515 {
516         struct nand_chip *chip = mtd->priv;
517
518         if (!chip->bbt)
519                 return chip->block_bad(mtd, ofs, getchip);
520
521         /* Return info from the table */
522         return nand_isbad_bbt(mtd, ofs, allowbbt);
523 }
524
525 /**
526  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
527  * @mtd: MTD device structure
528  * @timeo: Timeout
529  *
530  * Helper function for nand_wait_ready used when needing to wait in interrupt
531  * context.
532  */
533 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
534 {
535         struct nand_chip *chip = mtd->priv;
536         int i;
537
538         /* Wait for the device to get ready */
539         for (i = 0; i < timeo; i++) {
540                 if (chip->dev_ready(mtd))
541                         break;
542                 touch_softlockup_watchdog();
543                 mdelay(1);
544         }
545 }
546
547 /* Wait for the ready pin, after a command. The timeout is caught later. */
548 void nand_wait_ready(struct mtd_info *mtd)
549 {
550         struct nand_chip *chip = mtd->priv;
551         unsigned long timeo = jiffies + msecs_to_jiffies(20);
552
553         /* 400ms timeout */
554         if (in_interrupt() || oops_in_progress)
555                 return panic_nand_wait_ready(mtd, 400);
556
557         led_trigger_event(nand_led_trigger, LED_FULL);
558         /* Wait until command is processed or timeout occurs */
559         do {
560                 if (chip->dev_ready(mtd))
561                         break;
562                 touch_softlockup_watchdog();
563         } while (time_before(jiffies, timeo));
564         led_trigger_event(nand_led_trigger, LED_OFF);
565 }
566 EXPORT_SYMBOL_GPL(nand_wait_ready);
567
568 /**
569  * nand_command - [DEFAULT] Send command to NAND device
570  * @mtd: MTD device structure
571  * @command: the command to be sent
572  * @column: the column address for this command, -1 if none
573  * @page_addr: the page address for this command, -1 if none
574  *
575  * Send command to NAND device. This function is used for small page devices
576  * (512 Bytes per page).
577  */
578 static void nand_command(struct mtd_info *mtd, unsigned int command,
579                          int column, int page_addr)
580 {
581         register struct nand_chip *chip = mtd->priv;
582         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
583
584         /* Write out the command to the device */
585         if (command == NAND_CMD_SEQIN) {
586                 int readcmd;
587
588                 if (column >= mtd->writesize) {
589                         /* OOB area */
590                         column -= mtd->writesize;
591                         readcmd = NAND_CMD_READOOB;
592                 } else if (column < 256) {
593                         /* First 256 bytes --> READ0 */
594                         readcmd = NAND_CMD_READ0;
595                 } else {
596                         column -= 256;
597                         readcmd = NAND_CMD_READ1;
598                 }
599                 chip->cmd_ctrl(mtd, readcmd, ctrl);
600                 ctrl &= ~NAND_CTRL_CHANGE;
601         }
602         chip->cmd_ctrl(mtd, command, ctrl);
603
604         /* Address cycle, when necessary */
605         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
606         /* Serially input address */
607         if (column != -1) {
608                 /* Adjust columns for 16 bit buswidth */
609                 if (chip->options & NAND_BUSWIDTH_16 &&
610                                 !nand_opcode_8bits(command))
611                         column >>= 1;
612                 chip->cmd_ctrl(mtd, column, ctrl);
613                 ctrl &= ~NAND_CTRL_CHANGE;
614         }
615         if (page_addr != -1) {
616                 chip->cmd_ctrl(mtd, page_addr, ctrl);
617                 ctrl &= ~NAND_CTRL_CHANGE;
618                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
619                 /* One more address cycle for devices > 32MiB */
620                 if (chip->chipsize > (32 << 20))
621                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
622         }
623         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
624
625         /*
626          * Program and erase have their own busy handlers status and sequential
627          * in needs no delay
628          */
629         switch (command) {
630
631         case NAND_CMD_PAGEPROG:
632         case NAND_CMD_ERASE1:
633         case NAND_CMD_ERASE2:
634         case NAND_CMD_SEQIN:
635         case NAND_CMD_STATUS:
636                 return;
637
638         case NAND_CMD_RESET:
639                 if (chip->dev_ready)
640                         break;
641                 udelay(chip->chip_delay);
642                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
643                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
644                 chip->cmd_ctrl(mtd,
645                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
646                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
647                                 ;
648                 return;
649
650                 /* This applies to read commands */
651         default:
652                 /*
653                  * If we don't have access to the busy pin, we apply the given
654                  * command delay
655                  */
656                 if (!chip->dev_ready) {
657                         udelay(chip->chip_delay);
658                         return;
659                 }
660         }
661         /*
662          * Apply this short delay always to ensure that we do wait tWB in
663          * any case on any machine.
664          */
665         ndelay(100);
666
667         nand_wait_ready(mtd);
668 }
669
670 /**
671  * nand_command_lp - [DEFAULT] Send command to NAND large page device
672  * @mtd: MTD device structure
673  * @command: the command to be sent
674  * @column: the column address for this command, -1 if none
675  * @page_addr: the page address for this command, -1 if none
676  *
677  * Send command to NAND device. This is the version for the new large page
678  * devices. We don't have the separate regions as we have in the small page
679  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
680  */
681 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
682                             int column, int page_addr)
683 {
684         register struct nand_chip *chip = mtd->priv;
685
686         /* Emulate NAND_CMD_READOOB */
687         if (command == NAND_CMD_READOOB) {
688                 column += mtd->writesize;
689                 command = NAND_CMD_READ0;
690         }
691
692         /* Command latch cycle */
693         chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
694
695         if (column != -1 || page_addr != -1) {
696                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
697
698                 /* Serially input address */
699                 if (column != -1) {
700                         /* Adjust columns for 16 bit buswidth */
701                         if (chip->options & NAND_BUSWIDTH_16 &&
702                                         !nand_opcode_8bits(command))
703                                 column >>= 1;
704                         chip->cmd_ctrl(mtd, column, ctrl);
705                         ctrl &= ~NAND_CTRL_CHANGE;
706                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
707                 }
708                 if (page_addr != -1) {
709                         chip->cmd_ctrl(mtd, page_addr, ctrl);
710                         chip->cmd_ctrl(mtd, page_addr >> 8,
711                                        NAND_NCE | NAND_ALE);
712                         /* One more address cycle for devices > 128MiB */
713                         if (chip->chipsize > (128 << 20))
714                                 chip->cmd_ctrl(mtd, page_addr >> 16,
715                                                NAND_NCE | NAND_ALE);
716                 }
717         }
718         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
719
720         /*
721          * Program and erase have their own busy handlers status, sequential
722          * in and status need no delay.
723          */
724         switch (command) {
725
726         case NAND_CMD_CACHEDPROG:
727         case NAND_CMD_PAGEPROG:
728         case NAND_CMD_ERASE1:
729         case NAND_CMD_ERASE2:
730         case NAND_CMD_SEQIN:
731         case NAND_CMD_RNDIN:
732         case NAND_CMD_STATUS:
733                 return;
734
735         case NAND_CMD_RESET:
736                 if (chip->dev_ready)
737                         break;
738                 udelay(chip->chip_delay);
739                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
740                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
741                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
742                                NAND_NCE | NAND_CTRL_CHANGE);
743                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
744                                 ;
745                 return;
746
747         case NAND_CMD_RNDOUT:
748                 /* No ready / busy check necessary */
749                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
750                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
751                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
752                                NAND_NCE | NAND_CTRL_CHANGE);
753                 return;
754
755         case NAND_CMD_READ0:
756                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
757                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
758                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
759                                NAND_NCE | NAND_CTRL_CHANGE);
760
761                 /* This applies to read commands */
762         default:
763                 /*
764                  * If we don't have access to the busy pin, we apply the given
765                  * command delay.
766                  */
767                 if (!chip->dev_ready) {
768                         udelay(chip->chip_delay);
769                         return;
770                 }
771         }
772
773         /*
774          * Apply this short delay always to ensure that we do wait tWB in
775          * any case on any machine.
776          */
777         ndelay(100);
778
779         nand_wait_ready(mtd);
780 }
781
782 /**
783  * panic_nand_get_device - [GENERIC] Get chip for selected access
784  * @chip: the nand chip descriptor
785  * @mtd: MTD device structure
786  * @new_state: the state which is requested
787  *
788  * Used when in panic, no locks are taken.
789  */
790 static void panic_nand_get_device(struct nand_chip *chip,
791                       struct mtd_info *mtd, int new_state)
792 {
793         /* Hardware controller shared among independent devices */
794         chip->controller->active = chip;
795         chip->state = new_state;
796 }
797
798 /**
799  * nand_get_device - [GENERIC] Get chip for selected access
800  * @mtd: MTD device structure
801  * @new_state: the state which is requested
802  *
803  * Get the device and lock it for exclusive access
804  */
805 static int
806 nand_get_device(struct mtd_info *mtd, int new_state)
807 {
808         struct nand_chip *chip = mtd->priv;
809         spinlock_t *lock = &chip->controller->lock;
810         wait_queue_head_t *wq = &chip->controller->wq;
811         DECLARE_WAITQUEUE(wait, current);
812 retry:
813         spin_lock(lock);
814
815         /* Hardware controller shared among independent devices */
816         if (!chip->controller->active)
817                 chip->controller->active = chip;
818
819         if (chip->controller->active == chip && chip->state == FL_READY) {
820                 chip->state = new_state;
821                 spin_unlock(lock);
822                 return 0;
823         }
824         if (new_state == FL_PM_SUSPENDED) {
825                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
826                         chip->state = FL_PM_SUSPENDED;
827                         spin_unlock(lock);
828                         return 0;
829                 }
830         }
831         set_current_state(TASK_UNINTERRUPTIBLE);
832         add_wait_queue(wq, &wait);
833         spin_unlock(lock);
834         schedule();
835         remove_wait_queue(wq, &wait);
836         goto retry;
837 }
838
839 /**
840  * panic_nand_wait - [GENERIC] wait until the command is done
841  * @mtd: MTD device structure
842  * @chip: NAND chip structure
843  * @timeo: timeout
844  *
845  * Wait for command done. This is a helper function for nand_wait used when
846  * we are in interrupt context. May happen when in panic and trying to write
847  * an oops through mtdoops.
848  */
849 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
850                             unsigned long timeo)
851 {
852         int i;
853         for (i = 0; i < timeo; i++) {
854                 if (chip->dev_ready) {
855                         if (chip->dev_ready(mtd))
856                                 break;
857                 } else {
858                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
859                                 break;
860                 }
861                 mdelay(1);
862         }
863 }
864
865 /**
866  * nand_wait - [DEFAULT] wait until the command is done
867  * @mtd: MTD device structure
868  * @chip: NAND chip structure
869  *
870  * Wait for command done. This applies to erase and program only. Erase can
871  * take up to 400ms and program up to 20ms according to general NAND and
872  * SmartMedia specs.
873  */
874 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
875 {
876
877         int status, state = chip->state;
878         unsigned long timeo = (state == FL_ERASING ? 400 : 20);
879
880         led_trigger_event(nand_led_trigger, LED_FULL);
881
882         /*
883          * Apply this short delay always to ensure that we do wait tWB in any
884          * case on any machine.
885          */
886         ndelay(100);
887
888         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
889
890         if (in_interrupt() || oops_in_progress)
891                 panic_nand_wait(mtd, chip, timeo);
892         else {
893                 timeo = jiffies + msecs_to_jiffies(timeo);
894                 while (time_before(jiffies, timeo)) {
895                         if (chip->dev_ready) {
896                                 if (chip->dev_ready(mtd))
897                                         break;
898                         } else {
899                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
900                                         break;
901                         }
902                         cond_resched();
903                 }
904         }
905         led_trigger_event(nand_led_trigger, LED_OFF);
906
907         status = (int)chip->read_byte(mtd);
908         /* This can happen if in case of timeout or buggy dev_ready */
909         WARN_ON(!(status & NAND_STATUS_READY));
910         return status;
911 }
912
913 /**
914  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
915  * @mtd: mtd info
916  * @ofs: offset to start unlock from
917  * @len: length to unlock
918  * @invert: when = 0, unlock the range of blocks within the lower and
919  *                    upper boundary address
920  *          when = 1, unlock the range of blocks outside the boundaries
921  *                    of the lower and upper boundary address
922  *
923  * Returs unlock status.
924  */
925 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
926                                         uint64_t len, int invert)
927 {
928         int ret = 0;
929         int status, page;
930         struct nand_chip *chip = mtd->priv;
931
932         /* Submit address of first page to unlock */
933         page = ofs >> chip->page_shift;
934         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
935
936         /* Submit address of last page to unlock */
937         page = (ofs + len) >> chip->page_shift;
938         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
939                                 (page | invert) & chip->pagemask);
940
941         /* Call wait ready function */
942         status = chip->waitfunc(mtd, chip);
943         /* See if device thinks it succeeded */
944         if (status & NAND_STATUS_FAIL) {
945                 pr_debug("%s: error status = 0x%08x\n",
946                                         __func__, status);
947                 ret = -EIO;
948         }
949
950         return ret;
951 }
952
953 /**
954  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
955  * @mtd: mtd info
956  * @ofs: offset to start unlock from
957  * @len: length to unlock
958  *
959  * Returns unlock status.
960  */
961 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
962 {
963         int ret = 0;
964         int chipnr;
965         struct nand_chip *chip = mtd->priv;
966
967         pr_debug("%s: start = 0x%012llx, len = %llu\n",
968                         __func__, (unsigned long long)ofs, len);
969
970         if (check_offs_len(mtd, ofs, len))
971                 ret = -EINVAL;
972
973         /* Align to last block address if size addresses end of the device */
974         if (ofs + len == mtd->size)
975                 len -= mtd->erasesize;
976
977         nand_get_device(mtd, FL_UNLOCKING);
978
979         /* Shift to get chip number */
980         chipnr = ofs >> chip->chip_shift;
981
982         chip->select_chip(mtd, chipnr);
983
984         /*
985          * Reset the chip.
986          * If we want to check the WP through READ STATUS and check the bit 7
987          * we must reset the chip
988          * some operation can also clear the bit 7 of status register
989          * eg. erase/program a locked block
990          */
991         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
992
993         /* Check, if it is write protected */
994         if (nand_check_wp(mtd)) {
995                 pr_debug("%s: device is write protected!\n",
996                                         __func__);
997                 ret = -EIO;
998                 goto out;
999         }
1000
1001         ret = __nand_unlock(mtd, ofs, len, 0);
1002
1003 out:
1004         chip->select_chip(mtd, -1);
1005         nand_release_device(mtd);
1006
1007         return ret;
1008 }
1009 EXPORT_SYMBOL(nand_unlock);
1010
1011 /**
1012  * nand_lock - [REPLACEABLE] locks all blocks present in the device
1013  * @mtd: mtd info
1014  * @ofs: offset to start unlock from
1015  * @len: length to unlock
1016  *
1017  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1018  * have this feature, but it allows only to lock all blocks, not for specified
1019  * range for block. Implementing 'lock' feature by making use of 'unlock', for
1020  * now.
1021  *
1022  * Returns lock status.
1023  */
1024 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1025 {
1026         int ret = 0;
1027         int chipnr, status, page;
1028         struct nand_chip *chip = mtd->priv;
1029
1030         pr_debug("%s: start = 0x%012llx, len = %llu\n",
1031                         __func__, (unsigned long long)ofs, len);
1032
1033         if (check_offs_len(mtd, ofs, len))
1034                 ret = -EINVAL;
1035
1036         nand_get_device(mtd, FL_LOCKING);
1037
1038         /* Shift to get chip number */
1039         chipnr = ofs >> chip->chip_shift;
1040
1041         chip->select_chip(mtd, chipnr);
1042
1043         /*
1044          * Reset the chip.
1045          * If we want to check the WP through READ STATUS and check the bit 7
1046          * we must reset the chip
1047          * some operation can also clear the bit 7 of status register
1048          * eg. erase/program a locked block
1049          */
1050         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1051
1052         /* Check, if it is write protected */
1053         if (nand_check_wp(mtd)) {
1054                 pr_debug("%s: device is write protected!\n",
1055                                         __func__);
1056                 status = MTD_ERASE_FAILED;
1057                 ret = -EIO;
1058                 goto out;
1059         }
1060
1061         /* Submit address of first page to lock */
1062         page = ofs >> chip->page_shift;
1063         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1064
1065         /* Call wait ready function */
1066         status = chip->waitfunc(mtd, chip);
1067         /* See if device thinks it succeeded */
1068         if (status & NAND_STATUS_FAIL) {
1069                 pr_debug("%s: error status = 0x%08x\n",
1070                                         __func__, status);
1071                 ret = -EIO;
1072                 goto out;
1073         }
1074
1075         ret = __nand_unlock(mtd, ofs, len, 0x1);
1076
1077 out:
1078         chip->select_chip(mtd, -1);
1079         nand_release_device(mtd);
1080
1081         return ret;
1082 }
1083 EXPORT_SYMBOL(nand_lock);
1084
1085 /**
1086  * nand_read_page_raw - [INTERN] read raw page data without ecc
1087  * @mtd: mtd info structure
1088  * @chip: nand chip info structure
1089  * @buf: buffer to store read data
1090  * @oob_required: caller requires OOB data read to chip->oob_poi
1091  * @page: page number to read
1092  *
1093  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1094  */
1095 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1096                               uint8_t *buf, int oob_required, int page)
1097 {
1098         chip->read_buf(mtd, buf, mtd->writesize);
1099         if (oob_required)
1100                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1101         return 0;
1102 }
1103
1104 /**
1105  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1106  * @mtd: mtd info structure
1107  * @chip: nand chip info structure
1108  * @buf: buffer to store read data
1109  * @oob_required: caller requires OOB data read to chip->oob_poi
1110  * @page: page number to read
1111  *
1112  * We need a special oob layout and handling even when OOB isn't used.
1113  */
1114 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1115                                        struct nand_chip *chip, uint8_t *buf,
1116                                        int oob_required, int page)
1117 {
1118         int eccsize = chip->ecc.size;
1119         int eccbytes = chip->ecc.bytes;
1120         uint8_t *oob = chip->oob_poi;
1121         int steps, size;
1122
1123         for (steps = chip->ecc.steps; steps > 0; steps--) {
1124                 chip->read_buf(mtd, buf, eccsize);
1125                 buf += eccsize;
1126
1127                 if (chip->ecc.prepad) {
1128                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1129                         oob += chip->ecc.prepad;
1130                 }
1131
1132                 chip->read_buf(mtd, oob, eccbytes);
1133                 oob += eccbytes;
1134
1135                 if (chip->ecc.postpad) {
1136                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1137                         oob += chip->ecc.postpad;
1138                 }
1139         }
1140
1141         size = mtd->oobsize - (oob - chip->oob_poi);
1142         if (size)
1143                 chip->read_buf(mtd, oob, size);
1144
1145         return 0;
1146 }
1147
1148 /**
1149  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1150  * @mtd: mtd info structure
1151  * @chip: nand chip info structure
1152  * @buf: buffer to store read data
1153  * @oob_required: caller requires OOB data read to chip->oob_poi
1154  * @page: page number to read
1155  */
1156 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1157                                 uint8_t *buf, int oob_required, int page)
1158 {
1159         int i, eccsize = chip->ecc.size;
1160         int eccbytes = chip->ecc.bytes;
1161         int eccsteps = chip->ecc.steps;
1162         uint8_t *p = buf;
1163         uint8_t *ecc_calc = chip->buffers->ecccalc;
1164         uint8_t *ecc_code = chip->buffers->ecccode;
1165         uint32_t *eccpos = chip->ecc.layout->eccpos;
1166         unsigned int max_bitflips = 0;
1167
1168         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1169
1170         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1171                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1172
1173         for (i = 0; i < chip->ecc.total; i++)
1174                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1175
1176         eccsteps = chip->ecc.steps;
1177         p = buf;
1178
1179         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1180                 int stat;
1181
1182                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1183                 if (stat < 0) {
1184                         mtd->ecc_stats.failed++;
1185                 } else {
1186                         mtd->ecc_stats.corrected += stat;
1187                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1188                 }
1189         }
1190         return max_bitflips;
1191 }
1192
1193 /**
1194  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1195  * @mtd: mtd info structure
1196  * @chip: nand chip info structure
1197  * @data_offs: offset of requested data within the page
1198  * @readlen: data length
1199  * @bufpoi: buffer to store read data
1200  * @page: page number to read
1201  */
1202 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1203                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1204                         int page)
1205 {
1206         int start_step, end_step, num_steps;
1207         uint32_t *eccpos = chip->ecc.layout->eccpos;
1208         uint8_t *p;
1209         int data_col_addr, i, gaps = 0;
1210         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1211         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1212         int index;
1213         unsigned int max_bitflips = 0;
1214
1215         /* Column address within the page aligned to ECC size (256bytes) */
1216         start_step = data_offs / chip->ecc.size;
1217         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1218         num_steps = end_step - start_step + 1;
1219         index = start_step * chip->ecc.bytes;
1220
1221         /* Data size aligned to ECC ecc.size */
1222         datafrag_len = num_steps * chip->ecc.size;
1223         eccfrag_len = num_steps * chip->ecc.bytes;
1224
1225         data_col_addr = start_step * chip->ecc.size;
1226         /* If we read not a page aligned data */
1227         if (data_col_addr != 0)
1228                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1229
1230         p = bufpoi + data_col_addr;
1231         chip->read_buf(mtd, p, datafrag_len);
1232
1233         /* Calculate ECC */
1234         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1235                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1236
1237         /*
1238          * The performance is faster if we position offsets according to
1239          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1240          */
1241         for (i = 0; i < eccfrag_len - 1; i++) {
1242                 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1243                         gaps = 1;
1244                         break;
1245                 }
1246         }
1247         if (gaps) {
1248                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1249                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1250         } else {
1251                 /*
1252                  * Send the command to read the particular ECC bytes take care
1253                  * about buswidth alignment in read_buf.
1254                  */
1255                 aligned_pos = eccpos[index] & ~(busw - 1);
1256                 aligned_len = eccfrag_len;
1257                 if (eccpos[index] & (busw - 1))
1258                         aligned_len++;
1259                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1260                         aligned_len++;
1261
1262                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1263                                         mtd->writesize + aligned_pos, -1);
1264                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1265         }
1266
1267         for (i = 0; i < eccfrag_len; i++)
1268                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1269
1270         p = bufpoi + data_col_addr;
1271         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1272                 int stat;
1273
1274                 stat = chip->ecc.correct(mtd, p,
1275                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1276                 if (stat < 0) {
1277                         mtd->ecc_stats.failed++;
1278                 } else {
1279                         mtd->ecc_stats.corrected += stat;
1280                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1281                 }
1282         }
1283         return max_bitflips;
1284 }
1285
1286 /**
1287  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1288  * @mtd: mtd info structure
1289  * @chip: nand chip info structure
1290  * @buf: buffer to store read data
1291  * @oob_required: caller requires OOB data read to chip->oob_poi
1292  * @page: page number to read
1293  *
1294  * Not for syndrome calculating ECC controllers which need a special oob layout.
1295  */
1296 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1297                                 uint8_t *buf, int oob_required, int page)
1298 {
1299         int i, eccsize = chip->ecc.size;
1300         int eccbytes = chip->ecc.bytes;
1301         int eccsteps = chip->ecc.steps;
1302         uint8_t *p = buf;
1303         uint8_t *ecc_calc = chip->buffers->ecccalc;
1304         uint8_t *ecc_code = chip->buffers->ecccode;
1305         uint32_t *eccpos = chip->ecc.layout->eccpos;
1306         unsigned int max_bitflips = 0;
1307
1308         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1309                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1310                 chip->read_buf(mtd, p, eccsize);
1311                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1312         }
1313         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1314
1315         for (i = 0; i < chip->ecc.total; i++)
1316                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1317
1318         eccsteps = chip->ecc.steps;
1319         p = buf;
1320
1321         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1322                 int stat;
1323
1324                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1325                 if (stat < 0) {
1326                         mtd->ecc_stats.failed++;
1327                 } else {
1328                         mtd->ecc_stats.corrected += stat;
1329                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1330                 }
1331         }
1332         return max_bitflips;
1333 }
1334
1335 /**
1336  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1337  * @mtd: mtd info structure
1338  * @chip: nand chip info structure
1339  * @buf: buffer to store read data
1340  * @oob_required: caller requires OOB data read to chip->oob_poi
1341  * @page: page number to read
1342  *
1343  * Hardware ECC for large page chips, require OOB to be read first. For this
1344  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1345  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1346  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1347  * the data area, by overwriting the NAND manufacturer bad block markings.
1348  */
1349 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1350         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1351 {
1352         int i, eccsize = chip->ecc.size;
1353         int eccbytes = chip->ecc.bytes;
1354         int eccsteps = chip->ecc.steps;
1355         uint8_t *p = buf;
1356         uint8_t *ecc_code = chip->buffers->ecccode;
1357         uint32_t *eccpos = chip->ecc.layout->eccpos;
1358         uint8_t *ecc_calc = chip->buffers->ecccalc;
1359         unsigned int max_bitflips = 0;
1360
1361         /* Read the OOB area first */
1362         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1363         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1364         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1365
1366         for (i = 0; i < chip->ecc.total; i++)
1367                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1368
1369         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1370                 int stat;
1371
1372                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1373                 chip->read_buf(mtd, p, eccsize);
1374                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1375
1376                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1377                 if (stat < 0) {
1378                         mtd->ecc_stats.failed++;
1379                 } else {
1380                         mtd->ecc_stats.corrected += stat;
1381                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1382                 }
1383         }
1384         return max_bitflips;
1385 }
1386
1387 /**
1388  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1389  * @mtd: mtd info structure
1390  * @chip: nand chip info structure
1391  * @buf: buffer to store read data
1392  * @oob_required: caller requires OOB data read to chip->oob_poi
1393  * @page: page number to read
1394  *
1395  * The hw generator calculates the error syndrome automatically. Therefore we
1396  * need a special oob layout and handling.
1397  */
1398 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1399                                    uint8_t *buf, int oob_required, int page)
1400 {
1401         int i, eccsize = chip->ecc.size;
1402         int eccbytes = chip->ecc.bytes;
1403         int eccsteps = chip->ecc.steps;
1404         uint8_t *p = buf;
1405         uint8_t *oob = chip->oob_poi;
1406         unsigned int max_bitflips = 0;
1407
1408         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1409                 int stat;
1410
1411                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1412                 chip->read_buf(mtd, p, eccsize);
1413
1414                 if (chip->ecc.prepad) {
1415                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1416                         oob += chip->ecc.prepad;
1417                 }
1418
1419                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1420                 chip->read_buf(mtd, oob, eccbytes);
1421                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1422
1423                 if (stat < 0) {
1424                         mtd->ecc_stats.failed++;
1425                 } else {
1426                         mtd->ecc_stats.corrected += stat;
1427                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1428                 }
1429
1430                 oob += eccbytes;
1431
1432                 if (chip->ecc.postpad) {
1433                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1434                         oob += chip->ecc.postpad;
1435                 }
1436         }
1437
1438         /* Calculate remaining oob bytes */
1439         i = mtd->oobsize - (oob - chip->oob_poi);
1440         if (i)
1441                 chip->read_buf(mtd, oob, i);
1442
1443         return max_bitflips;
1444 }
1445
1446 /**
1447  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1448  * @chip: nand chip structure
1449  * @oob: oob destination address
1450  * @ops: oob ops structure
1451  * @len: size of oob to transfer
1452  */
1453 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1454                                   struct mtd_oob_ops *ops, size_t len)
1455 {
1456         switch (ops->mode) {
1457
1458         case MTD_OPS_PLACE_OOB:
1459         case MTD_OPS_RAW:
1460                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1461                 return oob + len;
1462
1463         case MTD_OPS_AUTO_OOB: {
1464                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1465                 uint32_t boffs = 0, roffs = ops->ooboffs;
1466                 size_t bytes = 0;
1467
1468                 for (; free->length && len; free++, len -= bytes) {
1469                         /* Read request not from offset 0? */
1470                         if (unlikely(roffs)) {
1471                                 if (roffs >= free->length) {
1472                                         roffs -= free->length;
1473                                         continue;
1474                                 }
1475                                 boffs = free->offset + roffs;
1476                                 bytes = min_t(size_t, len,
1477                                               (free->length - roffs));
1478                                 roffs = 0;
1479                         } else {
1480                                 bytes = min_t(size_t, len, free->length);
1481                                 boffs = free->offset;
1482                         }
1483                         memcpy(oob, chip->oob_poi + boffs, bytes);
1484                         oob += bytes;
1485                 }
1486                 return oob;
1487         }
1488         default:
1489                 BUG();
1490         }
1491         return NULL;
1492 }
1493
1494 /**
1495  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1496  * @mtd: MTD device structure
1497  * @retry_mode: the retry mode to use
1498  *
1499  * Some vendors supply a special command to shift the Vt threshold, to be used
1500  * when there are too many bitflips in a page (i.e., ECC error). After setting
1501  * a new threshold, the host should retry reading the page.
1502  */
1503 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1504 {
1505         struct nand_chip *chip = mtd->priv;
1506
1507         pr_debug("setting READ RETRY mode %d\n", retry_mode);
1508
1509         if (retry_mode >= chip->read_retries)
1510                 return -EINVAL;
1511
1512         if (!chip->setup_read_retry)
1513                 return -EOPNOTSUPP;
1514
1515         return chip->setup_read_retry(mtd, retry_mode);
1516 }
1517
1518 /**
1519  * nand_do_read_ops - [INTERN] Read data with ECC
1520  * @mtd: MTD device structure
1521  * @from: offset to read from
1522  * @ops: oob ops structure
1523  *
1524  * Internal function. Called with chip held.
1525  */
1526 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1527                             struct mtd_oob_ops *ops)
1528 {
1529         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1530         struct nand_chip *chip = mtd->priv;
1531         int ret = 0;
1532         uint32_t readlen = ops->len;
1533         uint32_t oobreadlen = ops->ooblen;
1534         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1535                 mtd->oobavail : mtd->oobsize;
1536
1537         uint8_t *bufpoi, *oob, *buf;
1538         int use_bufpoi;
1539         unsigned int max_bitflips = 0;
1540         int retry_mode = 0;
1541         bool ecc_fail = false;
1542
1543         chipnr = (int)(from >> chip->chip_shift);
1544         chip->select_chip(mtd, chipnr);
1545
1546         realpage = (int)(from >> chip->page_shift);
1547         page = realpage & chip->pagemask;
1548
1549         col = (int)(from & (mtd->writesize - 1));
1550
1551         buf = ops->datbuf;
1552         oob = ops->oobbuf;
1553         oob_required = oob ? 1 : 0;
1554
1555         while (1) {
1556                 unsigned int ecc_failures = mtd->ecc_stats.failed;
1557
1558                 bytes = min(mtd->writesize - col, readlen);
1559                 aligned = (bytes == mtd->writesize);
1560
1561                 if (!aligned)
1562                         use_bufpoi = 1;
1563                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1564                         use_bufpoi = !virt_addr_valid(buf);
1565                 else
1566                         use_bufpoi = 0;
1567
1568                 /* Is the current page in the buffer? */
1569                 if (realpage != chip->pagebuf || oob) {
1570                         bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1571
1572                         if (use_bufpoi && aligned)
1573                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
1574                                                  __func__, buf);
1575
1576 read_retry:
1577                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1578
1579                         /*
1580                          * Now read the page into the buffer.  Absent an error,
1581                          * the read methods return max bitflips per ecc step.
1582                          */
1583                         if (unlikely(ops->mode == MTD_OPS_RAW))
1584                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1585                                                               oob_required,
1586                                                               page);
1587                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1588                                  !oob)
1589                                 ret = chip->ecc.read_subpage(mtd, chip,
1590                                                         col, bytes, bufpoi,
1591                                                         page);
1592                         else
1593                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1594                                                           oob_required, page);
1595                         if (ret < 0) {
1596                                 if (use_bufpoi)
1597                                         /* Invalidate page cache */
1598                                         chip->pagebuf = -1;
1599                                 break;
1600                         }
1601
1602                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1603
1604                         /* Transfer not aligned data */
1605                         if (use_bufpoi) {
1606                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1607                                     !(mtd->ecc_stats.failed - ecc_failures) &&
1608                                     (ops->mode != MTD_OPS_RAW)) {
1609                                         chip->pagebuf = realpage;
1610                                         chip->pagebuf_bitflips = ret;
1611                                 } else {
1612                                         /* Invalidate page cache */
1613                                         chip->pagebuf = -1;
1614                                 }
1615                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1616                         }
1617
1618                         if (unlikely(oob)) {
1619                                 int toread = min(oobreadlen, max_oobsize);
1620
1621                                 if (toread) {
1622                                         oob = nand_transfer_oob(chip,
1623                                                 oob, ops, toread);
1624                                         oobreadlen -= toread;
1625                                 }
1626                         }
1627
1628                         if (chip->options & NAND_NEED_READRDY) {
1629                                 /* Apply delay or wait for ready/busy pin */
1630                                 if (!chip->dev_ready)
1631                                         udelay(chip->chip_delay);
1632                                 else
1633                                         nand_wait_ready(mtd);
1634                         }
1635
1636                         if (mtd->ecc_stats.failed - ecc_failures) {
1637                                 if (retry_mode + 1 < chip->read_retries) {
1638                                         retry_mode++;
1639                                         ret = nand_setup_read_retry(mtd,
1640                                                         retry_mode);
1641                                         if (ret < 0)
1642                                                 break;
1643
1644                                         /* Reset failures; retry */
1645                                         mtd->ecc_stats.failed = ecc_failures;
1646                                         goto read_retry;
1647                                 } else {
1648                                         /* No more retry modes; real failure */
1649                                         ecc_fail = true;
1650                                 }
1651                         }
1652
1653                         buf += bytes;
1654                 } else {
1655                         memcpy(buf, chip->buffers->databuf + col, bytes);
1656                         buf += bytes;
1657                         max_bitflips = max_t(unsigned int, max_bitflips,
1658                                              chip->pagebuf_bitflips);
1659                 }
1660
1661                 readlen -= bytes;
1662
1663                 /* Reset to retry mode 0 */
1664                 if (retry_mode) {
1665                         ret = nand_setup_read_retry(mtd, 0);
1666                         if (ret < 0)
1667                                 break;
1668                         retry_mode = 0;
1669                 }
1670
1671                 if (!readlen)
1672                         break;
1673
1674                 /* For subsequent reads align to page boundary */
1675                 col = 0;
1676                 /* Increment page address */
1677                 realpage++;
1678
1679                 page = realpage & chip->pagemask;
1680                 /* Check, if we cross a chip boundary */
1681                 if (!page) {
1682                         chipnr++;
1683                         chip->select_chip(mtd, -1);
1684                         chip->select_chip(mtd, chipnr);
1685                 }
1686         }
1687         chip->select_chip(mtd, -1);
1688
1689         ops->retlen = ops->len - (size_t) readlen;
1690         if (oob)
1691                 ops->oobretlen = ops->ooblen - oobreadlen;
1692
1693         if (ret < 0)
1694                 return ret;
1695
1696         if (ecc_fail)
1697                 return -EBADMSG;
1698
1699         return max_bitflips;
1700 }
1701
1702 /**
1703  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1704  * @mtd: MTD device structure
1705  * @from: offset to read from
1706  * @len: number of bytes to read
1707  * @retlen: pointer to variable to store the number of read bytes
1708  * @buf: the databuffer to put data
1709  *
1710  * Get hold of the chip and call nand_do_read.
1711  */
1712 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1713                      size_t *retlen, uint8_t *buf)
1714 {
1715         struct mtd_oob_ops ops;
1716         int ret;
1717
1718         nand_get_device(mtd, FL_READING);
1719         ops.len = len;
1720         ops.datbuf = buf;
1721         ops.oobbuf = NULL;
1722         ops.mode = MTD_OPS_PLACE_OOB;
1723         ret = nand_do_read_ops(mtd, from, &ops);
1724         *retlen = ops.retlen;
1725         nand_release_device(mtd);
1726         return ret;
1727 }
1728
1729 /**
1730  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1731  * @mtd: mtd info structure
1732  * @chip: nand chip info structure
1733  * @page: page number to read
1734  */
1735 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1736                              int page)
1737 {
1738         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1739         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1740         return 0;
1741 }
1742
1743 /**
1744  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1745  *                          with syndromes
1746  * @mtd: mtd info structure
1747  * @chip: nand chip info structure
1748  * @page: page number to read
1749  */
1750 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1751                                   int page)
1752 {
1753         int length = mtd->oobsize;
1754         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1755         int eccsize = chip->ecc.size;
1756         uint8_t *bufpoi = chip->oob_poi;
1757         int i, toread, sndrnd = 0, pos;
1758
1759         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1760         for (i = 0; i < chip->ecc.steps; i++) {
1761                 if (sndrnd) {
1762                         pos = eccsize + i * (eccsize + chunk);
1763                         if (mtd->writesize > 512)
1764                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1765                         else
1766                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1767                 } else
1768                         sndrnd = 1;
1769                 toread = min_t(int, length, chunk);
1770                 chip->read_buf(mtd, bufpoi, toread);
1771                 bufpoi += toread;
1772                 length -= toread;
1773         }
1774         if (length > 0)
1775                 chip->read_buf(mtd, bufpoi, length);
1776
1777         return 0;
1778 }
1779
1780 /**
1781  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1782  * @mtd: mtd info structure
1783  * @chip: nand chip info structure
1784  * @page: page number to write
1785  */
1786 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1787                               int page)
1788 {
1789         int status = 0;
1790         const uint8_t *buf = chip->oob_poi;
1791         int length = mtd->oobsize;
1792
1793         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1794         chip->write_buf(mtd, buf, length);
1795         /* Send command to program the OOB data */
1796         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1797
1798         status = chip->waitfunc(mtd, chip);
1799
1800         return status & NAND_STATUS_FAIL ? -EIO : 0;
1801 }
1802
1803 /**
1804  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1805  *                           with syndrome - only for large page flash
1806  * @mtd: mtd info structure
1807  * @chip: nand chip info structure
1808  * @page: page number to write
1809  */
1810 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1811                                    struct nand_chip *chip, int page)
1812 {
1813         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1814         int eccsize = chip->ecc.size, length = mtd->oobsize;
1815         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1816         const uint8_t *bufpoi = chip->oob_poi;
1817
1818         /*
1819          * data-ecc-data-ecc ... ecc-oob
1820          * or
1821          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1822          */
1823         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1824                 pos = steps * (eccsize + chunk);
1825                 steps = 0;
1826         } else
1827                 pos = eccsize;
1828
1829         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1830         for (i = 0; i < steps; i++) {
1831                 if (sndcmd) {
1832                         if (mtd->writesize <= 512) {
1833                                 uint32_t fill = 0xFFFFFFFF;
1834
1835                                 len = eccsize;
1836                                 while (len > 0) {
1837                                         int num = min_t(int, len, 4);
1838                                         chip->write_buf(mtd, (uint8_t *)&fill,
1839                                                         num);
1840                                         len -= num;
1841                                 }
1842                         } else {
1843                                 pos = eccsize + i * (eccsize + chunk);
1844                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1845                         }
1846                 } else
1847                         sndcmd = 1;
1848                 len = min_t(int, length, chunk);
1849                 chip->write_buf(mtd, bufpoi, len);
1850                 bufpoi += len;
1851                 length -= len;
1852         }
1853         if (length > 0)
1854                 chip->write_buf(mtd, bufpoi, length);
1855
1856         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1857         status = chip->waitfunc(mtd, chip);
1858
1859         return status & NAND_STATUS_FAIL ? -EIO : 0;
1860 }
1861
1862 /**
1863  * nand_do_read_oob - [INTERN] NAND read out-of-band
1864  * @mtd: MTD device structure
1865  * @from: offset to read from
1866  * @ops: oob operations description structure
1867  *
1868  * NAND read out-of-band data from the spare area.
1869  */
1870 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1871                             struct mtd_oob_ops *ops)
1872 {
1873         int page, realpage, chipnr;
1874         struct nand_chip *chip = mtd->priv;
1875         struct mtd_ecc_stats stats;
1876         int readlen = ops->ooblen;
1877         int len;
1878         uint8_t *buf = ops->oobbuf;
1879         int ret = 0;
1880
1881         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1882                         __func__, (unsigned long long)from, readlen);
1883
1884         stats = mtd->ecc_stats;
1885
1886         if (ops->mode == MTD_OPS_AUTO_OOB)
1887                 len = chip->ecc.layout->oobavail;
1888         else
1889                 len = mtd->oobsize;
1890
1891         if (unlikely(ops->ooboffs >= len)) {
1892                 pr_debug("%s: attempt to start read outside oob\n",
1893                                 __func__);
1894                 return -EINVAL;
1895         }
1896
1897         /* Do not allow reads past end of device */
1898         if (unlikely(from >= mtd->size ||
1899                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1900                                         (from >> chip->page_shift)) * len)) {
1901                 pr_debug("%s: attempt to read beyond end of device\n",
1902                                 __func__);
1903                 return -EINVAL;
1904         }
1905
1906         chipnr = (int)(from >> chip->chip_shift);
1907         chip->select_chip(mtd, chipnr);
1908
1909         /* Shift to get page */
1910         realpage = (int)(from >> chip->page_shift);
1911         page = realpage & chip->pagemask;
1912
1913         while (1) {
1914                 if (ops->mode == MTD_OPS_RAW)
1915                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
1916                 else
1917                         ret = chip->ecc.read_oob(mtd, chip, page);
1918
1919                 if (ret < 0)
1920                         break;
1921
1922                 len = min(len, readlen);
1923                 buf = nand_transfer_oob(chip, buf, ops, len);
1924
1925                 if (chip->options & NAND_NEED_READRDY) {
1926                         /* Apply delay or wait for ready/busy pin */
1927                         if (!chip->dev_ready)
1928                                 udelay(chip->chip_delay);
1929                         else
1930                                 nand_wait_ready(mtd);
1931                 }
1932
1933                 readlen -= len;
1934                 if (!readlen)
1935                         break;
1936
1937                 /* Increment page address */
1938                 realpage++;
1939
1940                 page = realpage & chip->pagemask;
1941                 /* Check, if we cross a chip boundary */
1942                 if (!page) {
1943                         chipnr++;
1944                         chip->select_chip(mtd, -1);
1945                         chip->select_chip(mtd, chipnr);
1946                 }
1947         }
1948         chip->select_chip(mtd, -1);
1949
1950         ops->oobretlen = ops->ooblen - readlen;
1951
1952         if (ret < 0)
1953                 return ret;
1954
1955         if (mtd->ecc_stats.failed - stats.failed)
1956                 return -EBADMSG;
1957
1958         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1959 }
1960
1961 /**
1962  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1963  * @mtd: MTD device structure
1964  * @from: offset to read from
1965  * @ops: oob operation description structure
1966  *
1967  * NAND read data and/or out-of-band data.
1968  */
1969 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1970                          struct mtd_oob_ops *ops)
1971 {
1972         int ret = -ENOTSUPP;
1973
1974         ops->retlen = 0;
1975
1976         /* Do not allow reads past end of device */
1977         if (ops->datbuf && (from + ops->len) > mtd->size) {
1978                 pr_debug("%s: attempt to read beyond end of device\n",
1979                                 __func__);
1980                 return -EINVAL;
1981         }
1982
1983         nand_get_device(mtd, FL_READING);
1984
1985         switch (ops->mode) {
1986         case MTD_OPS_PLACE_OOB:
1987         case MTD_OPS_AUTO_OOB:
1988         case MTD_OPS_RAW:
1989                 break;
1990
1991         default:
1992                 goto out;
1993         }
1994
1995         if (!ops->datbuf)
1996                 ret = nand_do_read_oob(mtd, from, ops);
1997         else
1998                 ret = nand_do_read_ops(mtd, from, ops);
1999
2000 out:
2001         nand_release_device(mtd);
2002         return ret;
2003 }
2004
2005
2006 /**
2007  * nand_write_page_raw - [INTERN] raw page write function
2008  * @mtd: mtd info structure
2009  * @chip: nand chip info structure
2010  * @buf: data buffer
2011  * @oob_required: must write chip->oob_poi to OOB
2012  *
2013  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2014  */
2015 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2016                                 const uint8_t *buf, int oob_required)
2017 {
2018         chip->write_buf(mtd, buf, mtd->writesize);
2019         if (oob_required)
2020                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2021
2022         return 0;
2023 }
2024
2025 /**
2026  * nand_write_page_raw_syndrome - [INTERN] raw page write function
2027  * @mtd: mtd info structure
2028  * @chip: nand chip info structure
2029  * @buf: data buffer
2030  * @oob_required: must write chip->oob_poi to OOB
2031  *
2032  * We need a special oob layout and handling even when ECC isn't checked.
2033  */
2034 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2035                                         struct nand_chip *chip,
2036                                         const uint8_t *buf, int oob_required)
2037 {
2038         int eccsize = chip->ecc.size;
2039         int eccbytes = chip->ecc.bytes;
2040         uint8_t *oob = chip->oob_poi;
2041         int steps, size;
2042
2043         for (steps = chip->ecc.steps; steps > 0; steps--) {
2044                 chip->write_buf(mtd, buf, eccsize);
2045                 buf += eccsize;
2046
2047                 if (chip->ecc.prepad) {
2048                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2049                         oob += chip->ecc.prepad;
2050                 }
2051
2052                 chip->write_buf(mtd, oob, eccbytes);
2053                 oob += eccbytes;
2054
2055                 if (chip->ecc.postpad) {
2056                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2057                         oob += chip->ecc.postpad;
2058                 }
2059         }
2060
2061         size = mtd->oobsize - (oob - chip->oob_poi);
2062         if (size)
2063                 chip->write_buf(mtd, oob, size);
2064
2065         return 0;
2066 }
2067 /**
2068  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2069  * @mtd: mtd info structure
2070  * @chip: nand chip info structure
2071  * @buf: data buffer
2072  * @oob_required: must write chip->oob_poi to OOB
2073  */
2074 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2075                                   const uint8_t *buf, int oob_required)
2076 {
2077         int i, eccsize = chip->ecc.size;
2078         int eccbytes = chip->ecc.bytes;
2079         int eccsteps = chip->ecc.steps;
2080         uint8_t *ecc_calc = chip->buffers->ecccalc;
2081         const uint8_t *p = buf;
2082         uint32_t *eccpos = chip->ecc.layout->eccpos;
2083
2084         /* Software ECC calculation */
2085         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2086                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2087
2088         for (i = 0; i < chip->ecc.total; i++)
2089                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2090
2091         return chip->ecc.write_page_raw(mtd, chip, buf, 1);
2092 }
2093
2094 /**
2095  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2096  * @mtd: mtd info structure
2097  * @chip: nand chip info structure
2098  * @buf: data buffer
2099  * @oob_required: must write chip->oob_poi to OOB
2100  */
2101 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2102                                   const uint8_t *buf, int oob_required)
2103 {
2104         int i, eccsize = chip->ecc.size;
2105         int eccbytes = chip->ecc.bytes;
2106         int eccsteps = chip->ecc.steps;
2107         uint8_t *ecc_calc = chip->buffers->ecccalc;
2108         const uint8_t *p = buf;
2109         uint32_t *eccpos = chip->ecc.layout->eccpos;
2110
2111         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2112                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2113                 chip->write_buf(mtd, p, eccsize);
2114                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2115         }
2116
2117         for (i = 0; i < chip->ecc.total; i++)
2118                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2119
2120         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2121
2122         return 0;
2123 }
2124
2125
2126 /**
2127  * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2128  * @mtd:        mtd info structure
2129  * @chip:       nand chip info structure
2130  * @offset:     column address of subpage within the page
2131  * @data_len:   data length
2132  * @buf:        data buffer
2133  * @oob_required: must write chip->oob_poi to OOB
2134  */
2135 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2136                                 struct nand_chip *chip, uint32_t offset,
2137                                 uint32_t data_len, const uint8_t *buf,
2138                                 int oob_required)
2139 {
2140         uint8_t *oob_buf  = chip->oob_poi;
2141         uint8_t *ecc_calc = chip->buffers->ecccalc;
2142         int ecc_size      = chip->ecc.size;
2143         int ecc_bytes     = chip->ecc.bytes;
2144         int ecc_steps     = chip->ecc.steps;
2145         uint32_t *eccpos  = chip->ecc.layout->eccpos;
2146         uint32_t start_step = offset / ecc_size;
2147         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2148         int oob_bytes       = mtd->oobsize / ecc_steps;
2149         int step, i;
2150
2151         for (step = 0; step < ecc_steps; step++) {
2152                 /* configure controller for WRITE access */
2153                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2154
2155                 /* write data (untouched subpages already masked by 0xFF) */
2156                 chip->write_buf(mtd, buf, ecc_size);
2157
2158                 /* mask ECC of un-touched subpages by padding 0xFF */
2159                 if ((step < start_step) || (step > end_step))
2160                         memset(ecc_calc, 0xff, ecc_bytes);
2161                 else
2162                         chip->ecc.calculate(mtd, buf, ecc_calc);
2163
2164                 /* mask OOB of un-touched subpages by padding 0xFF */
2165                 /* if oob_required, preserve OOB metadata of written subpage */
2166                 if (!oob_required || (step < start_step) || (step > end_step))
2167                         memset(oob_buf, 0xff, oob_bytes);
2168
2169                 buf += ecc_size;
2170                 ecc_calc += ecc_bytes;
2171                 oob_buf  += oob_bytes;
2172         }
2173
2174         /* copy calculated ECC for whole page to chip->buffer->oob */
2175         /* this include masked-value(0xFF) for unwritten subpages */
2176         ecc_calc = chip->buffers->ecccalc;
2177         for (i = 0; i < chip->ecc.total; i++)
2178                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2179
2180         /* write OOB buffer to NAND device */
2181         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2182
2183         return 0;
2184 }
2185
2186
2187 /**
2188  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2189  * @mtd: mtd info structure
2190  * @chip: nand chip info structure
2191  * @buf: data buffer
2192  * @oob_required: must write chip->oob_poi to OOB
2193  *
2194  * The hw generator calculates the error syndrome automatically. Therefore we
2195  * need a special oob layout and handling.
2196  */
2197 static int nand_write_page_syndrome(struct mtd_info *mtd,
2198                                     struct nand_chip *chip,
2199                                     const uint8_t *buf, int oob_required)
2200 {
2201         int i, eccsize = chip->ecc.size;
2202         int eccbytes = chip->ecc.bytes;
2203         int eccsteps = chip->ecc.steps;
2204         const uint8_t *p = buf;
2205         uint8_t *oob = chip->oob_poi;
2206
2207         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2208
2209                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2210                 chip->write_buf(mtd, p, eccsize);
2211
2212                 if (chip->ecc.prepad) {
2213                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2214                         oob += chip->ecc.prepad;
2215                 }
2216
2217                 chip->ecc.calculate(mtd, p, oob);
2218                 chip->write_buf(mtd, oob, eccbytes);
2219                 oob += eccbytes;
2220
2221                 if (chip->ecc.postpad) {
2222                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2223                         oob += chip->ecc.postpad;
2224                 }
2225         }
2226
2227         /* Calculate remaining oob bytes */
2228         i = mtd->oobsize - (oob - chip->oob_poi);
2229         if (i)
2230                 chip->write_buf(mtd, oob, i);
2231
2232         return 0;
2233 }
2234
2235 /**
2236  * nand_write_page - [REPLACEABLE] write one page
2237  * @mtd: MTD device structure
2238  * @chip: NAND chip descriptor
2239  * @offset: address offset within the page
2240  * @data_len: length of actual data to be written
2241  * @buf: the data to write
2242  * @oob_required: must write chip->oob_poi to OOB
2243  * @page: page number to write
2244  * @cached: cached programming
2245  * @raw: use _raw version of write_page
2246  */
2247 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2248                 uint32_t offset, int data_len, const uint8_t *buf,
2249                 int oob_required, int page, int cached, int raw)
2250 {
2251         int status, subpage;
2252
2253         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2254                 chip->ecc.write_subpage)
2255                 subpage = offset || (data_len < mtd->writesize);
2256         else
2257                 subpage = 0;
2258
2259         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2260
2261         if (unlikely(raw))
2262                 status = chip->ecc.write_page_raw(mtd, chip, buf,
2263                                                         oob_required);
2264         else if (subpage)
2265                 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2266                                                          buf, oob_required);
2267         else
2268                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2269
2270         if (status < 0)
2271                 return status;
2272
2273         /*
2274          * Cached progamming disabled for now. Not sure if it's worth the
2275          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2276          */
2277         cached = 0;
2278
2279         if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2280
2281                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2282                 status = chip->waitfunc(mtd, chip);
2283                 /*
2284                  * See if operation failed and additional status checks are
2285                  * available.
2286                  */
2287                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2288                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2289                                                page);
2290
2291                 if (status & NAND_STATUS_FAIL)
2292                         return -EIO;
2293         } else {
2294                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2295                 status = chip->waitfunc(mtd, chip);
2296         }
2297
2298         return 0;
2299 }
2300
2301 /**
2302  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2303  * @mtd: MTD device structure
2304  * @oob: oob data buffer
2305  * @len: oob data write length
2306  * @ops: oob ops structure
2307  */
2308 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2309                               struct mtd_oob_ops *ops)
2310 {
2311         struct nand_chip *chip = mtd->priv;
2312
2313         /*
2314          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2315          * data from a previous OOB read.
2316          */
2317         memset(chip->oob_poi, 0xff, mtd->oobsize);
2318
2319         switch (ops->mode) {
2320
2321         case MTD_OPS_PLACE_OOB:
2322         case MTD_OPS_RAW:
2323                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2324                 return oob + len;
2325
2326         case MTD_OPS_AUTO_OOB: {
2327                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2328                 uint32_t boffs = 0, woffs = ops->ooboffs;
2329                 size_t bytes = 0;
2330
2331                 for (; free->length && len; free++, len -= bytes) {
2332                         /* Write request not from offset 0? */
2333                         if (unlikely(woffs)) {
2334                                 if (woffs >= free->length) {
2335                                         woffs -= free->length;
2336                                         continue;
2337                                 }
2338                                 boffs = free->offset + woffs;
2339                                 bytes = min_t(size_t, len,
2340                                               (free->length - woffs));
2341                                 woffs = 0;
2342                         } else {
2343                                 bytes = min_t(size_t, len, free->length);
2344                                 boffs = free->offset;
2345                         }
2346                         memcpy(chip->oob_poi + boffs, oob, bytes);
2347                         oob += bytes;
2348                 }
2349                 return oob;
2350         }
2351         default:
2352                 BUG();
2353         }
2354         return NULL;
2355 }
2356
2357 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2358
2359 /**
2360  * nand_do_write_ops - [INTERN] NAND write with ECC
2361  * @mtd: MTD device structure
2362  * @to: offset to write to
2363  * @ops: oob operations description structure
2364  *
2365  * NAND write with ECC.
2366  */
2367 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2368                              struct mtd_oob_ops *ops)
2369 {
2370         int chipnr, realpage, page, blockmask, column;
2371         struct nand_chip *chip = mtd->priv;
2372         uint32_t writelen = ops->len;
2373
2374         uint32_t oobwritelen = ops->ooblen;
2375         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2376                                 mtd->oobavail : mtd->oobsize;
2377
2378         uint8_t *oob = ops->oobbuf;
2379         uint8_t *buf = ops->datbuf;
2380         int ret;
2381         int oob_required = oob ? 1 : 0;
2382
2383         ops->retlen = 0;
2384         if (!writelen)
2385                 return 0;
2386
2387         /* Reject writes, which are not page aligned */
2388         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2389                 pr_notice("%s: attempt to write non page aligned data\n",
2390                            __func__);
2391                 return -EINVAL;
2392         }
2393
2394         column = to & (mtd->writesize - 1);
2395
2396         chipnr = (int)(to >> chip->chip_shift);
2397         chip->select_chip(mtd, chipnr);
2398
2399         /* Check, if it is write protected */
2400         if (nand_check_wp(mtd)) {
2401                 ret = -EIO;
2402                 goto err_out;
2403         }
2404
2405         realpage = (int)(to >> chip->page_shift);
2406         page = realpage & chip->pagemask;
2407         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2408
2409         /* Invalidate the page cache, when we write to the cached page */
2410         if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2411             ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2412                 chip->pagebuf = -1;
2413
2414         /* Don't allow multipage oob writes with offset */
2415         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2416                 ret = -EINVAL;
2417                 goto err_out;
2418         }
2419
2420         while (1) {
2421                 int bytes = mtd->writesize;
2422                 int cached = writelen > bytes && page != blockmask;
2423                 uint8_t *wbuf = buf;
2424                 int use_bufpoi;
2425                 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2426
2427                 if (part_pagewr)
2428                         use_bufpoi = 1;
2429                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2430                         use_bufpoi = !virt_addr_valid(buf);
2431                 else
2432                         use_bufpoi = 0;
2433
2434                 /* Partial page write?, or need to use bounce buffer */
2435                 if (use_bufpoi) {
2436                         pr_debug("%s: using write bounce buffer for buf@%p\n",
2437                                          __func__, buf);
2438                         cached = 0;
2439                         if (part_pagewr)
2440                                 bytes = min_t(int, bytes - column, writelen);
2441                         chip->pagebuf = -1;
2442                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2443                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2444                         wbuf = chip->buffers->databuf;
2445                 }
2446
2447                 if (unlikely(oob)) {
2448                         size_t len = min(oobwritelen, oobmaxlen);
2449                         oob = nand_fill_oob(mtd, oob, len, ops);
2450                         oobwritelen -= len;
2451                 } else {
2452                         /* We still need to erase leftover OOB data */
2453                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2454                 }
2455                 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2456                                         oob_required, page, cached,
2457                                         (ops->mode == MTD_OPS_RAW));
2458                 if (ret)
2459                         break;
2460
2461                 writelen -= bytes;
2462                 if (!writelen)
2463                         break;
2464
2465                 column = 0;
2466                 buf += bytes;
2467                 realpage++;
2468
2469                 page = realpage & chip->pagemask;
2470                 /* Check, if we cross a chip boundary */
2471                 if (!page) {
2472                         chipnr++;
2473                         chip->select_chip(mtd, -1);
2474                         chip->select_chip(mtd, chipnr);
2475                 }
2476         }
2477
2478         ops->retlen = ops->len - writelen;
2479         if (unlikely(oob))
2480                 ops->oobretlen = ops->ooblen;
2481
2482 err_out:
2483         chip->select_chip(mtd, -1);
2484         return ret;
2485 }
2486
2487 /**
2488  * panic_nand_write - [MTD Interface] NAND write with ECC
2489  * @mtd: MTD device structure
2490  * @to: offset to write to
2491  * @len: number of bytes to write
2492  * @retlen: pointer to variable to store the number of written bytes
2493  * @buf: the data to write
2494  *
2495  * NAND write with ECC. Used when performing writes in interrupt context, this
2496  * may for example be called by mtdoops when writing an oops while in panic.
2497  */
2498 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2499                             size_t *retlen, const uint8_t *buf)
2500 {
2501         struct nand_chip *chip = mtd->priv;
2502         struct mtd_oob_ops ops;
2503         int ret;
2504
2505         /* Wait for the device to get ready */
2506         panic_nand_wait(mtd, chip, 400);
2507
2508         /* Grab the device */
2509         panic_nand_get_device(chip, mtd, FL_WRITING);
2510
2511         ops.len = len;
2512         ops.datbuf = (uint8_t *)buf;
2513         ops.oobbuf = NULL;
2514         ops.mode = MTD_OPS_PLACE_OOB;
2515
2516         ret = nand_do_write_ops(mtd, to, &ops);
2517
2518         *retlen = ops.retlen;
2519         return ret;
2520 }
2521
2522 /**
2523  * nand_write - [MTD Interface] NAND write with ECC
2524  * @mtd: MTD device structure
2525  * @to: offset to write to
2526  * @len: number of bytes to write
2527  * @retlen: pointer to variable to store the number of written bytes
2528  * @buf: the data to write
2529  *
2530  * NAND write with ECC.
2531  */
2532 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2533                           size_t *retlen, const uint8_t *buf)
2534 {
2535         struct mtd_oob_ops ops;
2536         int ret;
2537
2538         nand_get_device(mtd, FL_WRITING);
2539         ops.len = len;
2540         ops.datbuf = (uint8_t *)buf;
2541         ops.oobbuf = NULL;
2542         ops.mode = MTD_OPS_PLACE_OOB;
2543         ret = nand_do_write_ops(mtd, to, &ops);
2544         *retlen = ops.retlen;
2545         nand_release_device(mtd);
2546         return ret;
2547 }
2548
2549 /**
2550  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2551  * @mtd: MTD device structure
2552  * @to: offset to write to
2553  * @ops: oob operation description structure
2554  *
2555  * NAND write out-of-band.
2556  */
2557 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2558                              struct mtd_oob_ops *ops)
2559 {
2560         int chipnr, page, status, len;
2561         struct nand_chip *chip = mtd->priv;
2562
2563         pr_debug("%s: to = 0x%08x, len = %i\n",
2564                          __func__, (unsigned int)to, (int)ops->ooblen);
2565
2566         if (ops->mode == MTD_OPS_AUTO_OOB)
2567                 len = chip->ecc.layout->oobavail;
2568         else
2569                 len = mtd->oobsize;
2570
2571         /* Do not allow write past end of page */
2572         if ((ops->ooboffs + ops->ooblen) > len) {
2573                 pr_debug("%s: attempt to write past end of page\n",
2574                                 __func__);
2575                 return -EINVAL;
2576         }
2577
2578         if (unlikely(ops->ooboffs >= len)) {
2579                 pr_debug("%s: attempt to start write outside oob\n",
2580                                 __func__);
2581                 return -EINVAL;
2582         }
2583
2584         /* Do not allow write past end of device */
2585         if (unlikely(to >= mtd->size ||
2586                      ops->ooboffs + ops->ooblen >
2587                         ((mtd->size >> chip->page_shift) -
2588                          (to >> chip->page_shift)) * len)) {
2589                 pr_debug("%s: attempt to write beyond end of device\n",
2590                                 __func__);
2591                 return -EINVAL;
2592         }
2593
2594         chipnr = (int)(to >> chip->chip_shift);
2595         chip->select_chip(mtd, chipnr);
2596
2597         /* Shift to get page */
2598         page = (int)(to >> chip->page_shift);
2599
2600         /*
2601          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2602          * of my DiskOnChip 2000 test units) will clear the whole data page too
2603          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2604          * it in the doc2000 driver in August 1999.  dwmw2.
2605          */
2606         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2607
2608         /* Check, if it is write protected */
2609         if (nand_check_wp(mtd)) {
2610                 chip->select_chip(mtd, -1);
2611                 return -EROFS;
2612         }
2613
2614         /* Invalidate the page cache, if we write to the cached page */
2615         if (page == chip->pagebuf)
2616                 chip->pagebuf = -1;
2617
2618         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2619
2620         if (ops->mode == MTD_OPS_RAW)
2621                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2622         else
2623                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2624
2625         chip->select_chip(mtd, -1);
2626
2627         if (status)
2628                 return status;
2629
2630         ops->oobretlen = ops->ooblen;
2631
2632         return 0;
2633 }
2634
2635 /**
2636  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2637  * @mtd: MTD device structure
2638  * @to: offset to write to
2639  * @ops: oob operation description structure
2640  */
2641 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2642                           struct mtd_oob_ops *ops)
2643 {
2644         int ret = -ENOTSUPP;
2645
2646         ops->retlen = 0;
2647
2648         /* Do not allow writes past end of device */
2649         if (ops->datbuf && (to + ops->len) > mtd->size) {
2650                 pr_debug("%s: attempt to write beyond end of device\n",
2651                                 __func__);
2652                 return -EINVAL;
2653         }
2654
2655         nand_get_device(mtd, FL_WRITING);
2656
2657         switch (ops->mode) {
2658         case MTD_OPS_PLACE_OOB:
2659         case MTD_OPS_AUTO_OOB:
2660         case MTD_OPS_RAW:
2661                 break;
2662
2663         default:
2664                 goto out;
2665         }
2666
2667         if (!ops->datbuf)
2668                 ret = nand_do_write_oob(mtd, to, ops);
2669         else
2670                 ret = nand_do_write_ops(mtd, to, ops);
2671
2672 out:
2673         nand_release_device(mtd);
2674         return ret;
2675 }
2676
2677 /**
2678  * single_erase - [GENERIC] NAND standard block erase command function
2679  * @mtd: MTD device structure
2680  * @page: the page address of the block which will be erased
2681  *
2682  * Standard erase command for NAND chips. Returns NAND status.
2683  */
2684 static int single_erase(struct mtd_info *mtd, int page)
2685 {
2686         struct nand_chip *chip = mtd->priv;
2687         /* Send commands to erase a block */
2688         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2689         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2690
2691         return chip->waitfunc(mtd, chip);
2692 }
2693
2694 /**
2695  * nand_erase - [MTD Interface] erase block(s)
2696  * @mtd: MTD device structure
2697  * @instr: erase instruction
2698  *
2699  * Erase one ore more blocks.
2700  */
2701 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2702 {
2703         return nand_erase_nand(mtd, instr, 0);
2704 }
2705
2706 /**
2707  * nand_erase_nand - [INTERN] erase block(s)
2708  * @mtd: MTD device structure
2709  * @instr: erase instruction
2710  * @allowbbt: allow erasing the bbt area
2711  *
2712  * Erase one ore more blocks.
2713  */
2714 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2715                     int allowbbt)
2716 {
2717         int page, status, pages_per_block, ret, chipnr;
2718         struct nand_chip *chip = mtd->priv;
2719         loff_t len;
2720
2721         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2722                         __func__, (unsigned long long)instr->addr,
2723                         (unsigned long long)instr->len);
2724
2725         if (check_offs_len(mtd, instr->addr, instr->len))
2726                 return -EINVAL;
2727
2728         /* Grab the lock and see if the device is available */
2729         nand_get_device(mtd, FL_ERASING);
2730
2731         /* Shift to get first page */
2732         page = (int)(instr->addr >> chip->page_shift);
2733         chipnr = (int)(instr->addr >> chip->chip_shift);
2734
2735         /* Calculate pages in each block */
2736         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2737
2738         /* Select the NAND device */
2739         chip->select_chip(mtd, chipnr);
2740
2741         /* Check, if it is write protected */
2742         if (nand_check_wp(mtd)) {
2743                 pr_debug("%s: device is write protected!\n",
2744                                 __func__);
2745                 instr->state = MTD_ERASE_FAILED;
2746                 goto erase_exit;
2747         }
2748
2749         /* Loop through the pages */
2750         len = instr->len;
2751
2752         instr->state = MTD_ERASING;
2753
2754         while (len) {
2755                 /* Check if we have a bad block, we do not erase bad blocks! */
2756                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2757                                         chip->page_shift, 0, allowbbt)) {
2758                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2759                                     __func__, page);
2760                         instr->state = MTD_ERASE_FAILED;
2761                         goto erase_exit;
2762                 }
2763
2764                 /*
2765                  * Invalidate the page cache, if we erase the block which
2766                  * contains the current cached page.
2767                  */
2768                 if (page <= chip->pagebuf && chip->pagebuf <
2769                     (page + pages_per_block))
2770                         chip->pagebuf = -1;
2771
2772                 status = chip->erase(mtd, page & chip->pagemask);
2773
2774                 /*
2775                  * See if operation failed and additional status checks are
2776                  * available
2777                  */
2778                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2779                         status = chip->errstat(mtd, chip, FL_ERASING,
2780                                                status, page);
2781
2782                 /* See if block erase succeeded */
2783                 if (status & NAND_STATUS_FAIL) {
2784                         pr_debug("%s: failed erase, page 0x%08x\n",
2785                                         __func__, page);
2786                         instr->state = MTD_ERASE_FAILED;
2787                         instr->fail_addr =
2788                                 ((loff_t)page << chip->page_shift);
2789                         goto erase_exit;
2790                 }
2791
2792                 /* Increment page address and decrement length */
2793                 len -= (1ULL << chip->phys_erase_shift);
2794                 page += pages_per_block;
2795
2796                 /* Check, if we cross a chip boundary */
2797                 if (len && !(page & chip->pagemask)) {
2798                         chipnr++;
2799                         chip->select_chip(mtd, -1);
2800                         chip->select_chip(mtd, chipnr);
2801                 }
2802         }
2803         instr->state = MTD_ERASE_DONE;
2804
2805 erase_exit:
2806
2807         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2808
2809         /* Deselect and wake up anyone waiting on the device */
2810         chip->select_chip(mtd, -1);
2811         nand_release_device(mtd);
2812
2813         /* Do call back function */
2814         if (!ret)
2815                 mtd_erase_callback(instr);
2816
2817         /* Return more or less happy */
2818         return ret;
2819 }
2820
2821 /**
2822  * nand_sync - [MTD Interface] sync
2823  * @mtd: MTD device structure
2824  *
2825  * Sync is actually a wait for chip ready function.
2826  */
2827 static void nand_sync(struct mtd_info *mtd)
2828 {
2829         pr_debug("%s: called\n", __func__);
2830
2831         /* Grab the lock and see if the device is available */
2832         nand_get_device(mtd, FL_SYNCING);
2833         /* Release it and go back */
2834         nand_release_device(mtd);
2835 }
2836
2837 /**
2838  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2839  * @mtd: MTD device structure
2840  * @offs: offset relative to mtd start
2841  */
2842 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2843 {
2844         return nand_block_checkbad(mtd, offs, 1, 0);
2845 }
2846
2847 /**
2848  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2849  * @mtd: MTD device structure
2850  * @ofs: offset relative to mtd start
2851  */
2852 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2853 {
2854         int ret;
2855
2856         ret = nand_block_isbad(mtd, ofs);
2857         if (ret) {
2858                 /* If it was bad already, return success and do nothing */
2859                 if (ret > 0)
2860                         return 0;
2861                 return ret;
2862         }
2863
2864         return nand_block_markbad_lowlevel(mtd, ofs);
2865 }
2866
2867 /**
2868  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2869  * @mtd: MTD device structure
2870  * @chip: nand chip info structure
2871  * @addr: feature address.
2872  * @subfeature_param: the subfeature parameters, a four bytes array.
2873  */
2874 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2875                         int addr, uint8_t *subfeature_param)
2876 {
2877         int status;
2878         int i;
2879
2880         if (!chip->onfi_version ||
2881             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2882               & ONFI_OPT_CMD_SET_GET_FEATURES))
2883                 return -EINVAL;
2884
2885         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2886         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2887                 chip->write_byte(mtd, subfeature_param[i]);
2888
2889         status = chip->waitfunc(mtd, chip);
2890         if (status & NAND_STATUS_FAIL)
2891                 return -EIO;
2892         return 0;
2893 }
2894
2895 /**
2896  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2897  * @mtd: MTD device structure
2898  * @chip: nand chip info structure
2899  * @addr: feature address.
2900  * @subfeature_param: the subfeature parameters, a four bytes array.
2901  */
2902 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2903                         int addr, uint8_t *subfeature_param)
2904 {
2905         int i;
2906
2907         if (!chip->onfi_version ||
2908             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2909               & ONFI_OPT_CMD_SET_GET_FEATURES))
2910                 return -EINVAL;
2911
2912         /* clear the sub feature parameters */
2913         memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2914
2915         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2916         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2917                 *subfeature_param++ = chip->read_byte(mtd);
2918         return 0;
2919 }
2920
2921 /**
2922  * nand_suspend - [MTD Interface] Suspend the NAND flash
2923  * @mtd: MTD device structure
2924  */
2925 static int nand_suspend(struct mtd_info *mtd)
2926 {
2927         return nand_get_device(mtd, FL_PM_SUSPENDED);
2928 }
2929
2930 /**
2931  * nand_resume - [MTD Interface] Resume the NAND flash
2932  * @mtd: MTD device structure
2933  */
2934 static void nand_resume(struct mtd_info *mtd)
2935 {
2936         struct nand_chip *chip = mtd->priv;
2937
2938         if (chip->state == FL_PM_SUSPENDED)
2939                 nand_release_device(mtd);
2940         else
2941                 pr_err("%s called for a chip which is not in suspended state\n",
2942                         __func__);
2943 }
2944
2945 /**
2946  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
2947  *                 prevent further operations
2948  * @mtd: MTD device structure
2949  */
2950 static void nand_shutdown(struct mtd_info *mtd)
2951 {
2952         nand_get_device(mtd, FL_SHUTDOWN);
2953 }
2954
2955 /* Set default functions */
2956 static void nand_set_defaults(struct nand_chip *chip, int busw)
2957 {
2958         /* check for proper chip_delay setup, set 20us if not */
2959         if (!chip->chip_delay)
2960                 chip->chip_delay = 20;
2961
2962         /* check, if a user supplied command function given */
2963         if (chip->cmdfunc == NULL)
2964                 chip->cmdfunc = nand_command;
2965
2966         /* check, if a user supplied wait function given */
2967         if (chip->waitfunc == NULL)
2968                 chip->waitfunc = nand_wait;
2969
2970         if (!chip->select_chip)
2971                 chip->select_chip = nand_select_chip;
2972
2973         /* set for ONFI nand */
2974         if (!chip->onfi_set_features)
2975                 chip->onfi_set_features = nand_onfi_set_features;
2976         if (!chip->onfi_get_features)
2977                 chip->onfi_get_features = nand_onfi_get_features;
2978
2979         /* If called twice, pointers that depend on busw may need to be reset */
2980         if (!chip->read_byte || chip->read_byte == nand_read_byte)
2981                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2982         if (!chip->read_word)
2983                 chip->read_word = nand_read_word;
2984         if (!chip->block_bad)
2985                 chip->block_bad = nand_block_bad;
2986         if (!chip->block_markbad)
2987                 chip->block_markbad = nand_default_block_markbad;
2988         if (!chip->write_buf || chip->write_buf == nand_write_buf)
2989                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2990         if (!chip->write_byte || chip->write_byte == nand_write_byte)
2991                 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2992         if (!chip->read_buf || chip->read_buf == nand_read_buf)
2993                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2994         if (!chip->scan_bbt)
2995                 chip->scan_bbt = nand_default_bbt;
2996
2997         if (!chip->controller) {
2998                 chip->controller = &chip->hwcontrol;
2999                 spin_lock_init(&chip->controller->lock);
3000                 init_waitqueue_head(&chip->controller->wq);
3001         }
3002
3003 }
3004
3005 /* Sanitize ONFI strings so we can safely print them */
3006 static void sanitize_string(uint8_t *s, size_t len)
3007 {
3008         ssize_t i;
3009
3010         /* Null terminate */
3011         s[len - 1] = 0;
3012
3013         /* Remove non printable chars */
3014         for (i = 0; i < len - 1; i++) {
3015                 if (s[i] < ' ' || s[i] > 127)
3016                         s[i] = '?';
3017         }
3018
3019         /* Remove trailing spaces */
3020         strim(s);
3021 }
3022
3023 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3024 {
3025         int i;
3026         while (len--) {
3027                 crc ^= *p++ << 8;
3028                 for (i = 0; i < 8; i++)
3029                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3030         }
3031
3032         return crc;
3033 }
3034
3035 /* Parse the Extended Parameter Page. */
3036 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3037                 struct nand_chip *chip, struct nand_onfi_params *p)
3038 {
3039         struct onfi_ext_param_page *ep;
3040         struct onfi_ext_section *s;
3041         struct onfi_ext_ecc_info *ecc;
3042         uint8_t *cursor;
3043         int ret = -EINVAL;
3044         int len;
3045         int i;
3046
3047         len = le16_to_cpu(p->ext_param_page_length) * 16;
3048         ep = kmalloc(len, GFP_KERNEL);
3049         if (!ep)
3050                 return -ENOMEM;
3051
3052         /* Send our own NAND_CMD_PARAM. */
3053         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3054
3055         /* Use the Change Read Column command to skip the ONFI param pages. */
3056         chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3057                         sizeof(*p) * p->num_of_param_pages , -1);
3058
3059         /* Read out the Extended Parameter Page. */
3060         chip->read_buf(mtd, (uint8_t *)ep, len);
3061         if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3062                 != le16_to_cpu(ep->crc))) {
3063                 pr_debug("fail in the CRC.\n");
3064                 goto ext_out;
3065         }
3066
3067         /*
3068          * Check the signature.
3069          * Do not strictly follow the ONFI spec, maybe changed in future.
3070          */
3071         if (strncmp(ep->sig, "EPPS", 4)) {
3072                 pr_debug("The signature is invalid.\n");
3073                 goto ext_out;
3074         }
3075
3076         /* find the ECC section. */
3077         cursor = (uint8_t *)(ep + 1);
3078         for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3079                 s = ep->sections + i;
3080                 if (s->type == ONFI_SECTION_TYPE_2)
3081                         break;
3082                 cursor += s->length * 16;
3083         }
3084         if (i == ONFI_EXT_SECTION_MAX) {
3085                 pr_debug("We can not find the ECC section.\n");
3086                 goto ext_out;
3087         }
3088
3089         /* get the info we want. */
3090         ecc = (struct onfi_ext_ecc_info *)cursor;
3091
3092         if (!ecc->codeword_size) {
3093                 pr_debug("Invalid codeword size\n");
3094                 goto ext_out;
3095         }
3096
3097         chip->ecc_strength_ds = ecc->ecc_bits;
3098         chip->ecc_step_ds = 1 << ecc->codeword_size;
3099         ret = 0;
3100
3101 ext_out:
3102         kfree(ep);
3103         return ret;
3104 }
3105
3106 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3107 {
3108         struct nand_chip *chip = mtd->priv;
3109         uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3110
3111         return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3112                         feature);
3113 }
3114
3115 /*
3116  * Configure chip properties from Micron vendor-specific ONFI table
3117  */
3118 static void nand_onfi_detect_micron(struct nand_chip *chip,
3119                 struct nand_onfi_params *p)
3120 {
3121         struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3122
3123         if (le16_to_cpu(p->vendor_revision) < 1)
3124                 return;
3125
3126         chip->read_retries = micron->read_retry_options;
3127         chip->setup_read_retry = nand_setup_read_retry_micron;
3128 }
3129
3130 /*
3131  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3132  */
3133 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3134                                         int *busw)
3135 {
3136         struct nand_onfi_params *p = &chip->onfi_params;
3137         int i, j;
3138         int val;
3139
3140         /* Try ONFI for unknown chip or LP */
3141         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3142         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3143                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3144                 return 0;
3145
3146         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3147         for (i = 0; i < 3; i++) {
3148                 for (j = 0; j < sizeof(*p); j++)
3149                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3150                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3151                                 le16_to_cpu(p->crc)) {
3152                         break;
3153                 }
3154         }
3155
3156         if (i == 3) {
3157                 pr_err("Could not find valid ONFI parameter page; aborting\n");
3158                 return 0;
3159         }
3160
3161         /* Check version */
3162         val = le16_to_cpu(p->revision);
3163         if (val & (1 << 5))
3164                 chip->onfi_version = 23;
3165         else if (val & (1 << 4))
3166                 chip->onfi_version = 22;
3167         else if (val & (1 << 3))
3168                 chip->onfi_version = 21;
3169         else if (val & (1 << 2))
3170                 chip->onfi_version = 20;
3171         else if (val & (1 << 1))
3172                 chip->onfi_version = 10;
3173
3174         if (!chip->onfi_version) {
3175                 pr_info("unsupported ONFI version: %d\n", val);
3176                 return 0;
3177         }
3178
3179         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3180         sanitize_string(p->model, sizeof(p->model));
3181         if (!mtd->name)
3182                 mtd->name = p->model;
3183
3184         mtd->writesize = le32_to_cpu(p->byte_per_page);
3185
3186         /*
3187          * pages_per_block and blocks_per_lun may not be a power-of-2 size
3188          * (don't ask me who thought of this...). MTD assumes that these
3189          * dimensions will be power-of-2, so just truncate the remaining area.
3190          */
3191         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3192         mtd->erasesize *= mtd->writesize;
3193
3194         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3195
3196         /* See erasesize comment */
3197         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3198         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3199         chip->bits_per_cell = p->bits_per_cell;
3200
3201         if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3202                 *busw = NAND_BUSWIDTH_16;
3203         else
3204                 *busw = 0;
3205
3206         if (p->ecc_bits != 0xff) {
3207                 chip->ecc_strength_ds = p->ecc_bits;
3208                 chip->ecc_step_ds = 512;
3209         } else if (chip->onfi_version >= 21 &&
3210                 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3211
3212                 /*
3213                  * The nand_flash_detect_ext_param_page() uses the
3214                  * Change Read Column command which maybe not supported
3215                  * by the chip->cmdfunc. So try to update the chip->cmdfunc
3216                  * now. We do not replace user supplied command function.
3217                  */
3218                 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3219                         chip->cmdfunc = nand_command_lp;
3220
3221                 /* The Extended Parameter Page is supported since ONFI 2.1. */
3222                 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3223                         pr_warn("Failed to detect ONFI extended param page\n");
3224         } else {
3225                 pr_warn("Could not retrieve ONFI ECC requirements\n");
3226         }
3227
3228         if (p->jedec_id == NAND_MFR_MICRON)
3229                 nand_onfi_detect_micron(chip, p);
3230
3231         return 1;
3232 }
3233
3234 /*
3235  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3236  */
3237 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3238                                         int *busw)
3239 {
3240         struct nand_jedec_params *p = &chip->jedec_params;
3241         struct jedec_ecc_info *ecc;
3242         int val;
3243         int i, j;
3244
3245         /* Try JEDEC for unknown chip or LP */
3246         chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3247         if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3248                 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3249                 chip->read_byte(mtd) != 'C')
3250                 return 0;
3251
3252         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3253         for (i = 0; i < 3; i++) {
3254                 for (j = 0; j < sizeof(*p); j++)
3255                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3256
3257                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3258                                 le16_to_cpu(p->crc))
3259                         break;
3260         }
3261
3262         if (i == 3) {
3263                 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3264                 return 0;
3265         }
3266
3267         /* Check version */
3268         val = le16_to_cpu(p->revision);
3269         if (val & (1 << 2))
3270                 chip->jedec_version = 10;
3271         else if (val & (1 << 1))
3272                 chip->jedec_version = 1; /* vendor specific version */
3273
3274         if (!chip->jedec_version) {
3275                 pr_info("unsupported JEDEC version: %d\n", val);
3276                 return 0;
3277         }
3278
3279         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3280         sanitize_string(p->model, sizeof(p->model));
3281         if (!mtd->name)
3282                 mtd->name = p->model;
3283
3284         mtd->writesize = le32_to_cpu(p->byte_per_page);
3285
3286         /* Please reference to the comment for nand_flash_detect_onfi. */
3287         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3288         mtd->erasesize *= mtd->writesize;
3289
3290         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3291
3292         /* Please reference to the comment for nand_flash_detect_onfi. */
3293         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3294         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3295         chip->bits_per_cell = p->bits_per_cell;
3296
3297         if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3298                 *busw = NAND_BUSWIDTH_16;
3299         else
3300                 *busw = 0;
3301
3302         /* ECC info */
3303         ecc = &p->ecc_info[0];
3304
3305         if (ecc->codeword_size >= 9) {
3306                 chip->ecc_strength_ds = ecc->ecc_bits;
3307                 chip->ecc_step_ds = 1 << ecc->codeword_size;
3308         } else {
3309                 pr_warn("Invalid codeword size\n");
3310         }
3311
3312         return 1;
3313 }
3314
3315 /*
3316  * nand_id_has_period - Check if an ID string has a given wraparound period
3317  * @id_data: the ID string
3318  * @arrlen: the length of the @id_data array
3319  * @period: the period of repitition
3320  *
3321  * Check if an ID string is repeated within a given sequence of bytes at
3322  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3323  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3324  * if the repetition has a period of @period; otherwise, returns zero.
3325  */
3326 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3327 {
3328         int i, j;
3329         for (i = 0; i < period; i++)
3330                 for (j = i + period; j < arrlen; j += period)
3331                         if (id_data[i] != id_data[j])
3332                                 return 0;
3333         return 1;
3334 }
3335
3336 /*
3337  * nand_id_len - Get the length of an ID string returned by CMD_READID
3338  * @id_data: the ID string
3339  * @arrlen: the length of the @id_data array
3340
3341  * Returns the length of the ID string, according to known wraparound/trailing
3342  * zero patterns. If no pattern exists, returns the length of the array.
3343  */
3344 static int nand_id_len(u8 *id_data, int arrlen)
3345 {
3346         int last_nonzero, period;
3347
3348         /* Find last non-zero byte */
3349         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3350                 if (id_data[last_nonzero])
3351                         break;
3352
3353         /* All zeros */
3354         if (last_nonzero < 0)
3355                 return 0;
3356
3357         /* Calculate wraparound period */
3358         for (period = 1; period < arrlen; period++)
3359                 if (nand_id_has_period(id_data, arrlen, period))
3360                         break;
3361
3362         /* There's a repeated pattern */
3363         if (period < arrlen)
3364                 return period;
3365
3366         /* There are trailing zeros */
3367         if (last_nonzero < arrlen - 1)
3368                 return last_nonzero + 1;
3369
3370         /* No pattern detected */
3371         return arrlen;
3372 }
3373
3374 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3375 static int nand_get_bits_per_cell(u8 cellinfo)
3376 {
3377         int bits;
3378
3379         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3380         bits >>= NAND_CI_CELLTYPE_SHIFT;
3381         return bits + 1;
3382 }
3383
3384 /*
3385  * Many new NAND share similar device ID codes, which represent the size of the
3386  * chip. The rest of the parameters must be decoded according to generic or
3387  * manufacturer-specific "extended ID" decoding patterns.
3388  */
3389 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3390                                 u8 id_data[8], int *busw)
3391 {
3392         int extid, id_len;
3393         /* The 3rd id byte holds MLC / multichip data */
3394         chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3395         /* The 4th id byte is the important one */
3396         extid = id_data[3];
3397
3398         id_len = nand_id_len(id_data, 8);
3399
3400         /*
3401          * Field definitions are in the following datasheets:
3402          * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3403          * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3404          * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3405          *
3406          * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3407          * ID to decide what to do.
3408          */
3409         if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3410                         !nand_is_slc(chip) && id_data[5] != 0x00) {
3411                 /* Calc pagesize */
3412                 mtd->writesize = 2048 << (extid & 0x03);
3413                 extid >>= 2;
3414                 /* Calc oobsize */
3415                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3416                 case 1:
3417                         mtd->oobsize = 128;
3418                         break;
3419                 case 2:
3420                         mtd->oobsize = 218;
3421                         break;
3422                 case 3:
3423                         mtd->oobsize = 400;
3424                         break;
3425                 case 4:
3426                         mtd->oobsize = 436;
3427                         break;
3428                 case 5:
3429                         mtd->oobsize = 512;
3430                         break;
3431                 case 6:
3432                         mtd->oobsize = 640;
3433                         break;
3434                 case 7:
3435                 default: /* Other cases are "reserved" (unknown) */
3436                         mtd->oobsize = 1024;
3437                         break;
3438                 }
3439                 extid >>= 2;
3440                 /* Calc blocksize */
3441                 mtd->erasesize = (128 * 1024) <<
3442                         (((extid >> 1) & 0x04) | (extid & 0x03));
3443                 *busw = 0;
3444         } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3445                         !nand_is_slc(chip)) {
3446                 unsigned int tmp;
3447
3448                 /* Calc pagesize */
3449                 mtd->writesize = 2048 << (extid & 0x03);
3450                 extid >>= 2;
3451                 /* Calc oobsize */
3452                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3453                 case 0:
3454                         mtd->oobsize = 128;
3455                         break;
3456                 case 1:
3457                         mtd->oobsize = 224;
3458                         break;
3459                 case 2:
3460                         mtd->oobsize = 448;
3461                         break;
3462                 case 3:
3463                         mtd->oobsize = 64;
3464                         break;
3465                 case 4:
3466                         mtd->oobsize = 32;
3467                         break;
3468                 case 5:
3469                         mtd->oobsize = 16;
3470                         break;
3471                 default:
3472                         mtd->oobsize = 640;
3473                         break;
3474                 }
3475                 extid >>= 2;
3476                 /* Calc blocksize */
3477                 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3478                 if (tmp < 0x03)
3479                         mtd->erasesize = (128 * 1024) << tmp;
3480                 else if (tmp == 0x03)
3481                         mtd->erasesize = 768 * 1024;
3482                 else
3483                         mtd->erasesize = (64 * 1024) << tmp;
3484                 *busw = 0;
3485         } else {
3486                 /* Calc pagesize */
3487                 mtd->writesize = 1024 << (extid & 0x03);
3488                 extid >>= 2;
3489                 /* Calc oobsize */
3490                 mtd->oobsize = (8 << (extid & 0x01)) *
3491                         (mtd->writesize >> 9);
3492                 extid >>= 2;
3493                 /* Calc blocksize. Blocksize is multiples of 64KiB */
3494                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3495                 extid >>= 2;
3496                 /* Get buswidth information */
3497                 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3498
3499                 /*
3500                  * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3501                  * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3502                  * follows:
3503                  * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3504                  *                         110b -> 24nm
3505                  * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3506                  */
3507                 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3508                                 nand_is_slc(chip) &&
3509                                 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3510                                 !(id_data[4] & 0x80) /* !BENAND */) {
3511                         mtd->oobsize = 32 * mtd->writesize >> 9;
3512                 }
3513
3514         }
3515 }
3516
3517 /*
3518  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3519  * decodes a matching ID table entry and assigns the MTD size parameters for
3520  * the chip.
3521  */
3522 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3523                                 struct nand_flash_dev *type, u8 id_data[8],
3524                                 int *busw)
3525 {
3526         int maf_id = id_data[0];
3527
3528         mtd->erasesize = type->erasesize;
3529         mtd->writesize = type->pagesize;
3530         mtd->oobsize = mtd->writesize / 32;
3531         *busw = type->options & NAND_BUSWIDTH_16;
3532
3533         /* All legacy ID NAND are small-page, SLC */
3534         chip->bits_per_cell = 1;
3535
3536         /*
3537          * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3538          * some Spansion chips have erasesize that conflicts with size
3539          * listed in nand_ids table.
3540          * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3541          */
3542         if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3543                         && id_data[6] == 0x00 && id_data[7] == 0x00
3544                         && mtd->writesize == 512) {
3545                 mtd->erasesize = 128 * 1024;
3546                 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3547         }
3548 }
3549
3550 /*
3551  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3552  * heuristic patterns using various detected parameters (e.g., manufacturer,
3553  * page size, cell-type information).
3554  */
3555 static void nand_decode_bbm_options(struct mtd_info *mtd,
3556                                     struct nand_chip *chip, u8 id_data[8])
3557 {
3558         int maf_id = id_data[0];
3559
3560         /* Set the bad block position */
3561         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3562                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3563         else
3564                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3565
3566         /*
3567          * Bad block marker is stored in the last page of each block on Samsung
3568          * and Hynix MLC devices; stored in first two pages of each block on
3569          * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3570          * AMD/Spansion, and Macronix.  All others scan only the first page.
3571          */
3572         if (!nand_is_slc(chip) &&
3573                         (maf_id == NAND_MFR_SAMSUNG ||
3574                          maf_id == NAND_MFR_HYNIX))
3575                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3576         else if ((nand_is_slc(chip) &&
3577                                 (maf_id == NAND_MFR_SAMSUNG ||
3578                                  maf_id == NAND_MFR_HYNIX ||
3579                                  maf_id == NAND_MFR_TOSHIBA ||
3580                                  maf_id == NAND_MFR_AMD ||
3581                                  maf_id == NAND_MFR_MACRONIX)) ||
3582                         (mtd->writesize == 2048 &&
3583                          maf_id == NAND_MFR_MICRON))
3584                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3585 }
3586
3587 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3588 {
3589         return type->id_len;
3590 }
3591
3592 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3593                    struct nand_flash_dev *type, u8 *id_data, int *busw)
3594 {
3595         if (!strncmp(type->id, id_data, type->id_len)) {
3596                 mtd->writesize = type->pagesize;
3597                 mtd->erasesize = type->erasesize;
3598                 mtd->oobsize = type->oobsize;
3599
3600                 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3601                 chip->chipsize = (uint64_t)type->chipsize << 20;
3602                 chip->options |= type->options;
3603                 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3604                 chip->ecc_step_ds = NAND_ECC_STEP(type);
3605                 chip->onfi_timing_mode_default =
3606                                         type->onfi_timing_mode_default;
3607
3608                 *busw = type->options & NAND_BUSWIDTH_16;
3609
3610                 if (!mtd->name)
3611                         mtd->name = type->name;
3612
3613                 return true;
3614         }
3615         return false;
3616 }
3617
3618 /*
3619  * Get the flash and manufacturer id and lookup if the type is supported.
3620  */
3621 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3622                                                   struct nand_chip *chip,
3623                                                   int *maf_id, int *dev_id,
3624                                                   struct nand_flash_dev *type)
3625 {
3626         int busw;
3627         int i, maf_idx;
3628         u8 id_data[8];
3629
3630         /* Select the device */
3631         chip->select_chip(mtd, 0);
3632
3633         /*
3634          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3635          * after power-up.
3636          */
3637         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3638
3639         /* Send the command for reading device ID */
3640         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3641
3642         /* Read manufacturer and device IDs */
3643         *maf_id = chip->read_byte(mtd);
3644         *dev_id = chip->read_byte(mtd);
3645
3646         /*
3647          * Try again to make sure, as some systems the bus-hold or other
3648          * interface concerns can cause random data which looks like a
3649          * possibly credible NAND flash to appear. If the two results do
3650          * not match, ignore the device completely.
3651          */
3652
3653         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3654
3655         /* Read entire ID string */
3656         for (i = 0; i < 8; i++)
3657                 id_data[i] = chip->read_byte(mtd);
3658
3659         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3660                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3661                         *maf_id, *dev_id, id_data[0], id_data[1]);
3662                 return ERR_PTR(-ENODEV);
3663         }
3664
3665         if (!type)
3666                 type = nand_flash_ids;
3667
3668         for (; type->name != NULL; type++) {
3669                 if (is_full_id_nand(type)) {
3670                         if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3671                                 goto ident_done;
3672                 } else if (*dev_id == type->dev_id) {
3673                                 break;
3674                 }
3675         }
3676
3677         chip->onfi_version = 0;
3678         if (!type->name || !type->pagesize) {
3679                 /* Check if the chip is ONFI compliant */
3680                 if (nand_flash_detect_onfi(mtd, chip, &busw))
3681                         goto ident_done;
3682
3683                 /* Check if the chip is JEDEC compliant */
3684                 if (nand_flash_detect_jedec(mtd, chip, &busw))
3685                         goto ident_done;
3686         }
3687
3688         if (!type->name)
3689                 return ERR_PTR(-ENODEV);
3690
3691         if (!mtd->name)
3692                 mtd->name = type->name;
3693
3694         chip->chipsize = (uint64_t)type->chipsize << 20;
3695
3696         if (!type->pagesize && chip->init_size) {
3697                 /* Set the pagesize, oobsize, erasesize by the driver */
3698                 busw = chip->init_size(mtd, chip, id_data);
3699         } else if (!type->pagesize) {
3700                 /* Decode parameters from extended ID */
3701                 nand_decode_ext_id(mtd, chip, id_data, &busw);
3702         } else {
3703                 nand_decode_id(mtd, chip, type, id_data, &busw);
3704         }
3705         /* Get chip options */
3706         chip->options |= type->options;
3707
3708         /*
3709          * Check if chip is not a Samsung device. Do not clear the
3710          * options for chips which do not have an extended id.
3711          */
3712         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3713                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3714 ident_done:
3715
3716         /* Try to identify manufacturer */
3717         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3718                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3719                         break;
3720         }
3721
3722         if (chip->options & NAND_BUSWIDTH_AUTO) {
3723                 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3724                 chip->options |= busw;
3725                 nand_set_defaults(chip, busw);
3726         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3727                 /*
3728                  * Check, if buswidth is correct. Hardware drivers should set
3729                  * chip correct!
3730                  */
3731                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3732                         *maf_id, *dev_id);
3733                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3734                 pr_warn("bus width %d instead %d bit\n",
3735                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3736                            busw ? 16 : 8);
3737                 return ERR_PTR(-EINVAL);
3738         }
3739
3740         nand_decode_bbm_options(mtd, chip, id_data);
3741
3742         /* Calculate the address shift from the page size */
3743         chip->page_shift = ffs(mtd->writesize) - 1;
3744         /* Convert chipsize to number of pages per chip -1 */
3745         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3746
3747         chip->bbt_erase_shift = chip->phys_erase_shift =
3748                 ffs(mtd->erasesize) - 1;
3749         if (chip->chipsize & 0xffffffff)
3750                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3751         else {
3752                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3753                 chip->chip_shift += 32 - 1;
3754         }
3755
3756         chip->badblockbits = 8;
3757         chip->erase = single_erase;
3758
3759         /* Do not replace user supplied command function! */
3760         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3761                 chip->cmdfunc = nand_command_lp;
3762
3763         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3764                 *maf_id, *dev_id);
3765
3766         if (chip->onfi_version)
3767                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3768                                 chip->onfi_params.model);
3769         else if (chip->jedec_version)
3770                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3771                                 chip->jedec_params.model);
3772         else
3773                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3774                                 type->name);
3775
3776         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3777                 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3778                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3779         return type;
3780 }
3781
3782 /**
3783  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3784  * @mtd: MTD device structure
3785  * @maxchips: number of chips to scan for
3786  * @table: alternative NAND ID table
3787  *
3788  * This is the first phase of the normal nand_scan() function. It reads the
3789  * flash ID and sets up MTD fields accordingly.
3790  *
3791  * The mtd->owner field must be set to the module of the caller.
3792  */
3793 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3794                     struct nand_flash_dev *table)
3795 {
3796         int i, nand_maf_id, nand_dev_id;
3797         struct nand_chip *chip = mtd->priv;
3798         struct nand_flash_dev *type;
3799
3800         /* Set the default functions */
3801         nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3802
3803         /* Read the flash type */
3804         type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3805                                    &nand_dev_id, table);
3806
3807         if (IS_ERR(type)) {
3808                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3809                         pr_warn("No NAND device found\n");
3810                 chip->select_chip(mtd, -1);
3811                 return PTR_ERR(type);
3812         }
3813
3814         chip->select_chip(mtd, -1);
3815
3816         /* Check for a chip array */
3817         for (i = 1; i < maxchips; i++) {
3818                 chip->select_chip(mtd, i);
3819                 /* See comment in nand_get_flash_type for reset */
3820                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3821                 /* Send the command for reading device ID */
3822                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3823                 /* Read manufacturer and device IDs */
3824                 if (nand_maf_id != chip->read_byte(mtd) ||
3825                     nand_dev_id != chip->read_byte(mtd)) {
3826                         chip->select_chip(mtd, -1);
3827                         break;
3828                 }
3829                 chip->select_chip(mtd, -1);
3830         }
3831         if (i > 1)
3832                 pr_info("%d chips detected\n", i);
3833
3834         /* Store the number of chips and calc total size for mtd */
3835         chip->numchips = i;
3836         mtd->size = i * chip->chipsize;
3837
3838         return 0;
3839 }
3840 EXPORT_SYMBOL(nand_scan_ident);
3841
3842 /*
3843  * Check if the chip configuration meet the datasheet requirements.
3844
3845  * If our configuration corrects A bits per B bytes and the minimum
3846  * required correction level is X bits per Y bytes, then we must ensure
3847  * both of the following are true:
3848  *
3849  * (1) A / B >= X / Y
3850  * (2) A >= X
3851  *
3852  * Requirement (1) ensures we can correct for the required bitflip density.
3853  * Requirement (2) ensures we can correct even when all bitflips are clumped
3854  * in the same sector.
3855  */
3856 static bool nand_ecc_strength_good(struct mtd_info *mtd)
3857 {
3858         struct nand_chip *chip = mtd->priv;
3859         struct nand_ecc_ctrl *ecc = &chip->ecc;
3860         int corr, ds_corr;
3861
3862         if (ecc->size == 0 || chip->ecc_step_ds == 0)
3863                 /* Not enough information */
3864                 return true;
3865
3866         /*
3867          * We get the number of corrected bits per page to compare
3868          * the correction density.
3869          */
3870         corr = (mtd->writesize * ecc->strength) / ecc->size;
3871         ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3872
3873         return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3874 }
3875
3876 /**
3877  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3878  * @mtd: MTD device structure
3879  *
3880  * This is the second phase of the normal nand_scan() function. It fills out
3881  * all the uninitialized function pointers with the defaults and scans for a
3882  * bad block table if appropriate.
3883  */
3884 int nand_scan_tail(struct mtd_info *mtd)
3885 {
3886         int i;
3887         struct nand_chip *chip = mtd->priv;
3888         struct nand_ecc_ctrl *ecc = &chip->ecc;
3889         struct nand_buffers *nbuf;
3890
3891         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3892         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3893                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3894
3895         if (!(chip->options & NAND_OWN_BUFFERS)) {
3896                 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3897                                 + mtd->oobsize * 3, GFP_KERNEL);
3898                 if (!nbuf)
3899                         return -ENOMEM;
3900                 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3901                 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3902                 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3903
3904                 chip->buffers = nbuf;
3905         } else {
3906                 if (!chip->buffers)
3907                         return -ENOMEM;
3908         }
3909
3910         /* Set the internal oob buffer location, just after the page data */
3911         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3912
3913         /*
3914          * If no default placement scheme is given, select an appropriate one.
3915          */
3916         if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3917                 switch (mtd->oobsize) {
3918                 case 8:
3919                         ecc->layout = &nand_oob_8;
3920                         break;
3921                 case 16:
3922                         ecc->layout = &nand_oob_16;
3923                         break;
3924                 case 64:
3925                         ecc->layout = &nand_oob_64;
3926                         break;
3927                 case 128:
3928                         ecc->layout = &nand_oob_128;
3929                         break;
3930                 default:
3931                         pr_warn("No oob scheme defined for oobsize %d\n",
3932                                    mtd->oobsize);
3933                         BUG();
3934                 }
3935         }
3936
3937         if (!chip->write_page)
3938                 chip->write_page = nand_write_page;
3939
3940         /*
3941          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3942          * selected and we have 256 byte pagesize fallback to software ECC
3943          */
3944
3945         switch (ecc->mode) {
3946         case NAND_ECC_HW_OOB_FIRST:
3947                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3948                 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3949                         pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3950                         BUG();
3951                 }
3952                 if (!ecc->read_page)
3953                         ecc->read_page = nand_read_page_hwecc_oob_first;
3954
3955         case NAND_ECC_HW:
3956                 /* Use standard hwecc read page function? */
3957                 if (!ecc->read_page)
3958                         ecc->read_page = nand_read_page_hwecc;
3959                 if (!ecc->write_page)
3960                         ecc->write_page = nand_write_page_hwecc;
3961                 if (!ecc->read_page_raw)
3962                         ecc->read_page_raw = nand_read_page_raw;
3963                 if (!ecc->write_page_raw)
3964                         ecc->write_page_raw = nand_write_page_raw;
3965                 if (!ecc->read_oob)
3966                         ecc->read_oob = nand_read_oob_std;
3967                 if (!ecc->write_oob)
3968                         ecc->write_oob = nand_write_oob_std;
3969                 if (!ecc->read_subpage)
3970                         ecc->read_subpage = nand_read_subpage;
3971                 if (!ecc->write_subpage)
3972                         ecc->write_subpage = nand_write_subpage_hwecc;
3973
3974         case NAND_ECC_HW_SYNDROME:
3975                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3976                     (!ecc->read_page ||
3977                      ecc->read_page == nand_read_page_hwecc ||
3978                      !ecc->write_page ||
3979                      ecc->write_page == nand_write_page_hwecc)) {
3980                         pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3981                         BUG();
3982                 }
3983                 /* Use standard syndrome read/write page function? */
3984                 if (!ecc->read_page)
3985                         ecc->read_page = nand_read_page_syndrome;
3986                 if (!ecc->write_page)
3987                         ecc->write_page = nand_write_page_syndrome;
3988                 if (!ecc->read_page_raw)
3989                         ecc->read_page_raw = nand_read_page_raw_syndrome;
3990                 if (!ecc->write_page_raw)
3991                         ecc->write_page_raw = nand_write_page_raw_syndrome;
3992                 if (!ecc->read_oob)
3993                         ecc->read_oob = nand_read_oob_syndrome;
3994                 if (!ecc->write_oob)
3995                         ecc->write_oob = nand_write_oob_syndrome;
3996
3997                 if (mtd->writesize >= ecc->size) {
3998                         if (!ecc->strength) {
3999                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4000                                 BUG();
4001                         }
4002                         break;
4003                 }
4004                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4005                         ecc->size, mtd->writesize);
4006                 ecc->mode = NAND_ECC_SOFT;
4007
4008         case NAND_ECC_SOFT:
4009                 ecc->calculate = nand_calculate_ecc;
4010                 ecc->correct = nand_correct_data;
4011                 ecc->read_page = nand_read_page_swecc;
4012                 ecc->read_subpage = nand_read_subpage;
4013                 ecc->write_page = nand_write_page_swecc;
4014                 ecc->read_page_raw = nand_read_page_raw;
4015                 ecc->write_page_raw = nand_write_page_raw;
4016                 ecc->read_oob = nand_read_oob_std;
4017                 ecc->write_oob = nand_write_oob_std;
4018                 if (!ecc->size)
4019                         ecc->size = 256;
4020                 ecc->bytes = 3;
4021                 ecc->strength = 1;
4022                 break;
4023
4024         case NAND_ECC_SOFT_BCH:
4025                 if (!mtd_nand_has_bch()) {
4026                         pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4027                         BUG();
4028                 }
4029                 ecc->calculate = nand_bch_calculate_ecc;
4030                 ecc->correct = nand_bch_correct_data;
4031                 ecc->read_page = nand_read_page_swecc;
4032                 ecc->read_subpage = nand_read_subpage;
4033                 ecc->write_page = nand_write_page_swecc;
4034                 ecc->read_page_raw = nand_read_page_raw;
4035                 ecc->write_page_raw = nand_write_page_raw;
4036                 ecc->read_oob = nand_read_oob_std;
4037                 ecc->write_oob = nand_write_oob_std;
4038                 /*
4039                  * Board driver should supply ecc.size and ecc.strength values
4040                  * to select how many bits are correctable. Otherwise, default
4041                  * to 4 bits for large page devices.
4042                  */
4043                 if (!ecc->size && (mtd->oobsize >= 64)) {
4044                         ecc->size = 512;
4045                         ecc->strength = 4;
4046                 }
4047
4048                 /* See nand_bch_init() for details. */
4049                 ecc->bytes = DIV_ROUND_UP(
4050                                 ecc->strength * fls(8 * ecc->size), 8);
4051                 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4052                                                &ecc->layout);
4053                 if (!ecc->priv) {
4054                         pr_warn("BCH ECC initialization failed!\n");
4055                         BUG();
4056                 }
4057                 break;
4058
4059         case NAND_ECC_NONE:
4060                 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4061                 ecc->read_page = nand_read_page_raw;
4062                 ecc->write_page = nand_write_page_raw;
4063                 ecc->read_oob = nand_read_oob_std;
4064                 ecc->read_page_raw = nand_read_page_raw;
4065                 ecc->write_page_raw = nand_write_page_raw;
4066                 ecc->write_oob = nand_write_oob_std;
4067                 ecc->size = mtd->writesize;
4068                 ecc->bytes = 0;
4069                 ecc->strength = 0;
4070                 break;
4071
4072         default:
4073                 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4074                 BUG();
4075         }
4076
4077         /* For many systems, the standard OOB write also works for raw */
4078         if (!ecc->read_oob_raw)
4079                 ecc->read_oob_raw = ecc->read_oob;
4080         if (!ecc->write_oob_raw)
4081                 ecc->write_oob_raw = ecc->write_oob;
4082
4083         /*
4084          * The number of bytes available for a client to place data into
4085          * the out of band area.
4086          */
4087         ecc->layout->oobavail = 0;
4088         for (i = 0; ecc->layout->oobfree[i].length
4089                         && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4090                 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4091         mtd->oobavail = ecc->layout->oobavail;
4092
4093         /* ECC sanity check: warn if it's too weak */
4094         if (!nand_ecc_strength_good(mtd))
4095                 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4096                         mtd->name);
4097
4098         /*
4099          * Set the number of read / write steps for one page depending on ECC
4100          * mode.
4101          */
4102         ecc->steps = mtd->writesize / ecc->size;
4103         if (ecc->steps * ecc->size != mtd->writesize) {
4104                 pr_warn("Invalid ECC parameters\n");
4105                 BUG();
4106         }
4107         ecc->total = ecc->steps * ecc->bytes;
4108
4109         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4110         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4111                 switch (ecc->steps) {
4112                 case 2:
4113                         mtd->subpage_sft = 1;
4114                         break;
4115                 case 4:
4116                 case 8:
4117                 case 16:
4118                         mtd->subpage_sft = 2;
4119                         break;
4120                 }
4121         }
4122         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4123
4124         /* Initialize state */
4125         chip->state = FL_READY;
4126
4127         /* Invalidate the pagebuffer reference */
4128         chip->pagebuf = -1;
4129
4130         /* Large page NAND with SOFT_ECC should support subpage reads */
4131         switch (ecc->mode) {
4132         case NAND_ECC_SOFT:
4133         case NAND_ECC_SOFT_BCH:
4134                 if (chip->page_shift > 9)
4135                         chip->options |= NAND_SUBPAGE_READ;
4136                 break;
4137
4138         default:
4139                 break;
4140         }
4141
4142         /* Fill in remaining MTD driver data */
4143         mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4144         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4145                                                 MTD_CAP_NANDFLASH;
4146         mtd->_erase = nand_erase;
4147         mtd->_point = NULL;
4148         mtd->_unpoint = NULL;
4149         mtd->_read = nand_read;
4150         mtd->_write = nand_write;
4151         mtd->_panic_write = panic_nand_write;
4152         mtd->_read_oob = nand_read_oob;
4153         mtd->_write_oob = nand_write_oob;
4154         mtd->_sync = nand_sync;
4155         mtd->_lock = NULL;
4156         mtd->_unlock = NULL;
4157         mtd->_suspend = nand_suspend;
4158         mtd->_resume = nand_resume;
4159         mtd->_reboot = nand_shutdown;
4160         mtd->_block_isreserved = nand_block_isreserved;
4161         mtd->_block_isbad = nand_block_isbad;
4162         mtd->_block_markbad = nand_block_markbad;
4163         mtd->writebufsize = mtd->writesize;
4164
4165         /* propagate ecc info to mtd_info */
4166         mtd->ecclayout = ecc->layout;
4167         mtd->ecc_strength = ecc->strength;
4168         mtd->ecc_step_size = ecc->size;
4169         /*
4170          * Initialize bitflip_threshold to its default prior scan_bbt() call.
4171          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4172          * properly set.
4173          */
4174         if (!mtd->bitflip_threshold)
4175                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4176
4177         /* Check, if we should skip the bad block table scan */
4178         if (chip->options & NAND_SKIP_BBTSCAN)
4179                 return 0;
4180
4181         /* Build bad block table */
4182         return chip->scan_bbt(mtd);
4183 }
4184 EXPORT_SYMBOL(nand_scan_tail);
4185
4186 /*
4187  * is_module_text_address() isn't exported, and it's mostly a pointless
4188  * test if this is a module _anyway_ -- they'd have to try _really_ hard
4189  * to call us from in-kernel code if the core NAND support is modular.
4190  */
4191 #ifdef MODULE
4192 #define caller_is_module() (1)
4193 #else
4194 #define caller_is_module() \
4195         is_module_text_address((unsigned long)__builtin_return_address(0))
4196 #endif
4197
4198 /**
4199  * nand_scan - [NAND Interface] Scan for the NAND device
4200  * @mtd: MTD device structure
4201  * @maxchips: number of chips to scan for
4202  *
4203  * This fills out all the uninitialized function pointers with the defaults.
4204  * The flash ID is read and the mtd/chip structures are filled with the
4205  * appropriate values. The mtd->owner field must be set to the module of the
4206  * caller.
4207  */
4208 int nand_scan(struct mtd_info *mtd, int maxchips)
4209 {
4210         int ret;
4211
4212         /* Many callers got this wrong, so check for it for a while... */
4213         if (!mtd->owner && caller_is_module()) {
4214                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4215                 BUG();
4216         }
4217
4218         ret = nand_scan_ident(mtd, maxchips, NULL);
4219         if (!ret)
4220                 ret = nand_scan_tail(mtd);
4221         return ret;
4222 }
4223 EXPORT_SYMBOL(nand_scan);
4224
4225 /**
4226  * nand_release - [NAND Interface] Free resources held by the NAND device
4227  * @mtd: MTD device structure
4228  */
4229 void nand_release(struct mtd_info *mtd)
4230 {
4231         struct nand_chip *chip = mtd->priv;
4232
4233         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4234                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4235
4236         mtd_device_unregister(mtd);
4237
4238         /* Free bad block table memory */
4239         kfree(chip->bbt);
4240         if (!(chip->options & NAND_OWN_BUFFERS))
4241                 kfree(chip->buffers);
4242
4243         /* Free bad block descriptor memory */
4244         if (chip->badblock_pattern && chip->badblock_pattern->options
4245                         & NAND_BBT_DYNAMICSTRUCT)
4246                 kfree(chip->badblock_pattern);
4247 }
4248 EXPORT_SYMBOL_GPL(nand_release);
4249
4250 static int __init nand_base_init(void)
4251 {
4252         led_trigger_register_simple("nand-disk", &nand_led_trigger);
4253         return 0;
4254 }
4255
4256 static void __exit nand_base_exit(void)
4257 {
4258         led_trigger_unregister_simple(nand_led_trigger);
4259 }
4260
4261 module_init(nand_base_init);
4262 module_exit(nand_base_exit);
4263
4264 MODULE_LICENSE("GPL");
4265 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4266 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4267 MODULE_DESCRIPTION("Generic NAND flash driver code");