Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/math64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/nand_bch.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/sched.h>
43 #include <linux/fs.h>
44 #include <linux/pagemap.h>
45 #include <linux/seq_file.h>
46 #include <linux/debugfs.h>
47
48 /* Default simulator parameters values */
49 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
50     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
52     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
54 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
56 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57 #endif
58
59 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
60 #define CONFIG_NANDSIM_ACCESS_DELAY 25
61 #endif
62 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64 #endif
65 #ifndef CONFIG_NANDSIM_ERASE_DELAY
66 #define CONFIG_NANDSIM_ERASE_DELAY 2
67 #endif
68 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70 #endif
71 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
72 #define CONFIG_NANDSIM_INPUT_CYCLE  50
73 #endif
74 #ifndef CONFIG_NANDSIM_BUS_WIDTH
75 #define CONFIG_NANDSIM_BUS_WIDTH  8
76 #endif
77 #ifndef CONFIG_NANDSIM_DO_DELAYS
78 #define CONFIG_NANDSIM_DO_DELAYS  0
79 #endif
80 #ifndef CONFIG_NANDSIM_LOG
81 #define CONFIG_NANDSIM_LOG        0
82 #endif
83 #ifndef CONFIG_NANDSIM_DBG
84 #define CONFIG_NANDSIM_DBG        0
85 #endif
86 #ifndef CONFIG_NANDSIM_MAX_PARTS
87 #define CONFIG_NANDSIM_MAX_PARTS  32
88 #endif
89
90 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
91 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
92 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
93 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
94 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
95 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
96 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
97 static uint log            = CONFIG_NANDSIM_LOG;
98 static uint dbg            = CONFIG_NANDSIM_DBG;
99 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
100 static unsigned int parts_num;
101 static char *badblocks = NULL;
102 static char *weakblocks = NULL;
103 static char *weakpages = NULL;
104 static unsigned int bitflips = 0;
105 static char *gravepages = NULL;
106 static unsigned int overridesize = 0;
107 static char *cache_file = NULL;
108 static unsigned int bbt;
109 static unsigned int bch;
110 static u_char id_bytes[8] = {
111         [0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
112         [1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
113         [2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
114         [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
115         [4 ... 7] = 0xFF,
116 };
117
118 module_param_array(id_bytes, byte, NULL, 0400);
119 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
120 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
121 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
122 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
123 module_param(access_delay,   uint, 0400);
124 module_param(programm_delay, uint, 0400);
125 module_param(erase_delay,    uint, 0400);
126 module_param(output_cycle,   uint, 0400);
127 module_param(input_cycle,    uint, 0400);
128 module_param(bus_width,      uint, 0400);
129 module_param(do_delays,      uint, 0400);
130 module_param(log,            uint, 0400);
131 module_param(dbg,            uint, 0400);
132 module_param_array(parts, ulong, &parts_num, 0400);
133 module_param(badblocks,      charp, 0400);
134 module_param(weakblocks,     charp, 0400);
135 module_param(weakpages,      charp, 0400);
136 module_param(bitflips,       uint, 0400);
137 module_param(gravepages,     charp, 0400);
138 module_param(overridesize,   uint, 0400);
139 module_param(cache_file,     charp, 0400);
140 module_param(bbt,            uint, 0400);
141 module_param(bch,            uint, 0400);
142
143 MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
144 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
145 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
146 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
147 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
148 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
149 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
150 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
151 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
152 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
153 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
154 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
155 MODULE_PARM_DESC(log,            "Perform logging if not zero");
156 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
157 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
158 /* Page and erase block positions for the following parameters are independent of any partitions */
159 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
160 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
161                                  " separated by commas e.g. 113:2 means eb 113"
162                                  " can be erased only twice before failing");
163 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
164                                  " separated by commas e.g. 1401:2 means page 1401"
165                                  " can be written only twice before failing");
166 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
167 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
168                                  " separated by commas e.g. 1401:2 means page 1401"
169                                  " can be read only twice before failing");
170 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
171                                  "The size is specified in erase blocks and as the exponent of a power of two"
172                                  " e.g. 5 means a size of 32 erase blocks");
173 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
174 MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
175 MODULE_PARM_DESC(bch,            "Enable BCH ecc and set how many bits should "
176                                  "be correctable in 512-byte blocks");
177
178 /* The largest possible page size */
179 #define NS_LARGEST_PAGE_SIZE    4096
180
181 /* The prefix for simulator output */
182 #define NS_OUTPUT_PREFIX "[nandsim]"
183
184 /* Simulator's output macros (logging, debugging, warning, error) */
185 #define NS_LOG(args...) \
186         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
187 #define NS_DBG(args...) \
188         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
189 #define NS_WARN(args...) \
190         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
191 #define NS_ERR(args...) \
192         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
193 #define NS_INFO(args...) \
194         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
195
196 /* Busy-wait delay macros (microseconds, milliseconds) */
197 #define NS_UDELAY(us) \
198         do { if (do_delays) udelay(us); } while(0)
199 #define NS_MDELAY(us) \
200         do { if (do_delays) mdelay(us); } while(0)
201
202 /* Is the nandsim structure initialized ? */
203 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
204
205 /* Good operation completion status */
206 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
207
208 /* Operation failed completion status */
209 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
210
211 /* Calculate the page offset in flash RAM image by (row, column) address */
212 #define NS_RAW_OFFSET(ns) \
213         (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
214
215 /* Calculate the OOB offset in flash RAM image by (row, column) address */
216 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
217
218 /* After a command is input, the simulator goes to one of the following states */
219 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
220 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
221 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
222 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
223 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
224 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
225 #define STATE_CMD_STATUS       0x00000007 /* read status */
226 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
227 #define STATE_CMD_READID       0x0000000A /* read ID */
228 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
229 #define STATE_CMD_RESET        0x0000000C /* reset */
230 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
231 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
232 #define STATE_CMD_MASK         0x0000000F /* command states mask */
233
234 /* After an address is input, the simulator goes to one of these states */
235 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
236 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
237 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
238 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
239 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
240
241 /* During data input/output the simulator is in these states */
242 #define STATE_DATAIN           0x00000100 /* waiting for data input */
243 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
244
245 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
246 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
247 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
248 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
249
250 /* Previous operation is done, ready to accept new requests */
251 #define STATE_READY            0x00000000
252
253 /* This state is used to mark that the next state isn't known yet */
254 #define STATE_UNKNOWN          0x10000000
255
256 /* Simulator's actions bit masks */
257 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
258 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
259 #define ACTION_SECERASE  0x00300000 /* erase sector */
260 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
261 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
262 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
263 #define ACTION_MASK      0x00700000 /* action mask */
264
265 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
266 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
267
268 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
269 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
270 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
271 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
273 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
275
276 /* Remove action bits from state */
277 #define NS_STATE(x) ((x) & ~ACTION_MASK)
278
279 /*
280  * Maximum previous states which need to be saved. Currently saving is
281  * only needed for page program operation with preceded read command
282  * (which is only valid for 512-byte pages).
283  */
284 #define NS_MAX_PREVSTATES 1
285
286 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287 #define NS_MAX_HELD_PAGES 16
288
289 struct nandsim_debug_info {
290         struct dentry *dfs_root;
291         struct dentry *dfs_wear_report;
292 };
293
294 /*
295  * A union to represent flash memory contents and flash buffer.
296  */
297 union ns_mem {
298         u_char *byte;    /* for byte access */
299         uint16_t *word;  /* for 16-bit word access */
300 };
301
302 /*
303  * The structure which describes all the internal simulator data.
304  */
305 struct nandsim {
306         struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
307         unsigned int nbparts;
308
309         uint busw;              /* flash chip bus width (8 or 16) */
310         u_char ids[8];          /* chip's ID bytes */
311         uint32_t options;       /* chip's characteristic bits */
312         uint32_t state;         /* current chip state */
313         uint32_t nxstate;       /* next expected state */
314
315         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
316         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
317         uint16_t npstates;      /* number of previous states saved */
318         uint16_t stateidx;      /* current state index */
319
320         /* The simulated NAND flash pages array */
321         union ns_mem *pages;
322
323         /* Slab allocator for nand pages */
324         struct kmem_cache *nand_pages_slab;
325
326         /* Internal buffer of page + OOB size bytes */
327         union ns_mem buf;
328
329         /* NAND flash "geometry" */
330         struct {
331                 uint64_t totsz;     /* total flash size, bytes */
332                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
333                 uint pgsz;          /* NAND flash page size, bytes */
334                 uint oobsz;         /* page OOB area size, bytes */
335                 uint64_t totszoob;  /* total flash size including OOB, bytes */
336                 uint pgszoob;       /* page size including OOB , bytes*/
337                 uint secszoob;      /* sector size including OOB, bytes */
338                 uint pgnum;         /* total number of pages */
339                 uint pgsec;         /* number of pages per sector */
340                 uint secshift;      /* bits number in sector size */
341                 uint pgshift;       /* bits number in page size */
342                 uint pgaddrbytes;   /* bytes per page address */
343                 uint secaddrbytes;  /* bytes per sector address */
344                 uint idbytes;       /* the number ID bytes that this chip outputs */
345         } geom;
346
347         /* NAND flash internal registers */
348         struct {
349                 unsigned command; /* the command register */
350                 u_char   status;  /* the status register */
351                 uint     row;     /* the page number */
352                 uint     column;  /* the offset within page */
353                 uint     count;   /* internal counter */
354                 uint     num;     /* number of bytes which must be processed */
355                 uint     off;     /* fixed page offset */
356         } regs;
357
358         /* NAND flash lines state */
359         struct {
360                 int ce;  /* chip Enable */
361                 int cle; /* command Latch Enable */
362                 int ale; /* address Latch Enable */
363                 int wp;  /* write Protect */
364         } lines;
365
366         /* Fields needed when using a cache file */
367         struct file *cfile; /* Open file */
368         unsigned long *pages_written; /* Which pages have been written */
369         void *file_buf;
370         struct page *held_pages[NS_MAX_HELD_PAGES];
371         int held_cnt;
372
373         struct nandsim_debug_info dbg;
374 };
375
376 /*
377  * Operations array. To perform any operation the simulator must pass
378  * through the correspondent states chain.
379  */
380 static struct nandsim_operations {
381         uint32_t reqopts;  /* options which are required to perform the operation */
382         uint32_t states[NS_OPER_STATES]; /* operation's states */
383 } ops[NS_OPER_NUM] = {
384         /* Read page + OOB from the beginning */
385         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
386                         STATE_DATAOUT, STATE_READY}},
387         /* Read page + OOB from the second half */
388         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
389                         STATE_DATAOUT, STATE_READY}},
390         /* Read OOB */
391         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
392                         STATE_DATAOUT, STATE_READY}},
393         /* Program page starting from the beginning */
394         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
395                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396         /* Program page starting from the beginning */
397         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
398                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399         /* Program page starting from the second half */
400         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
401                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
402         /* Program OOB */
403         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
404                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
405         /* Erase sector */
406         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
407         /* Read status */
408         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
409         /* Read ID */
410         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
411         /* Large page devices read page */
412         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
413                                STATE_DATAOUT, STATE_READY}},
414         /* Large page devices random page read */
415         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
416                                STATE_DATAOUT, STATE_READY}},
417 };
418
419 struct weak_block {
420         struct list_head list;
421         unsigned int erase_block_no;
422         unsigned int max_erases;
423         unsigned int erases_done;
424 };
425
426 static LIST_HEAD(weak_blocks);
427
428 struct weak_page {
429         struct list_head list;
430         unsigned int page_no;
431         unsigned int max_writes;
432         unsigned int writes_done;
433 };
434
435 static LIST_HEAD(weak_pages);
436
437 struct grave_page {
438         struct list_head list;
439         unsigned int page_no;
440         unsigned int max_reads;
441         unsigned int reads_done;
442 };
443
444 static LIST_HEAD(grave_pages);
445
446 static unsigned long *erase_block_wear = NULL;
447 static unsigned int wear_eb_count = 0;
448 static unsigned long total_wear = 0;
449
450 /* MTD structure for NAND controller */
451 static struct mtd_info *nsmtd;
452
453 static int nandsim_debugfs_show(struct seq_file *m, void *private)
454 {
455         unsigned long wmin = -1, wmax = 0, avg;
456         unsigned long deciles[10], decile_max[10], tot = 0;
457         unsigned int i;
458
459         /* Calc wear stats */
460         for (i = 0; i < wear_eb_count; ++i) {
461                 unsigned long wear = erase_block_wear[i];
462                 if (wear < wmin)
463                         wmin = wear;
464                 if (wear > wmax)
465                         wmax = wear;
466                 tot += wear;
467         }
468
469         for (i = 0; i < 9; ++i) {
470                 deciles[i] = 0;
471                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
472         }
473         deciles[9] = 0;
474         decile_max[9] = wmax;
475         for (i = 0; i < wear_eb_count; ++i) {
476                 int d;
477                 unsigned long wear = erase_block_wear[i];
478                 for (d = 0; d < 10; ++d)
479                         if (wear <= decile_max[d]) {
480                                 deciles[d] += 1;
481                                 break;
482                         }
483         }
484         avg = tot / wear_eb_count;
485
486         /* Output wear report */
487         seq_printf(m, "Total numbers of erases:  %lu\n", tot);
488         seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
489         seq_printf(m, "Average number of erases: %lu\n", avg);
490         seq_printf(m, "Maximum number of erases: %lu\n", wmax);
491         seq_printf(m, "Minimum number of erases: %lu\n", wmin);
492         for (i = 0; i < 10; ++i) {
493                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
494                 if (from > decile_max[i])
495                         continue;
496                 seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
497                         from,
498                         decile_max[i],
499                         deciles[i]);
500         }
501
502         return 0;
503 }
504
505 static int nandsim_debugfs_open(struct inode *inode, struct file *file)
506 {
507         return single_open(file, nandsim_debugfs_show, inode->i_private);
508 }
509
510 static const struct file_operations dfs_fops = {
511         .open           = nandsim_debugfs_open,
512         .read           = seq_read,
513         .llseek         = seq_lseek,
514         .release        = single_release,
515 };
516
517 /**
518  * nandsim_debugfs_create - initialize debugfs
519  * @dev: nandsim device description object
520  *
521  * This function creates all debugfs files for UBI device @ubi. Returns zero in
522  * case of success and a negative error code in case of failure.
523  */
524 static int nandsim_debugfs_create(struct nandsim *dev)
525 {
526         struct nandsim_debug_info *dbg = &dev->dbg;
527         struct dentry *dent;
528         int err;
529
530         if (!IS_ENABLED(CONFIG_DEBUG_FS))
531                 return 0;
532
533         dent = debugfs_create_dir("nandsim", NULL);
534         if (IS_ERR_OR_NULL(dent)) {
535                 int err = dent ? -ENODEV : PTR_ERR(dent);
536
537                 NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
538                         err);
539                 return err;
540         }
541         dbg->dfs_root = dent;
542
543         dent = debugfs_create_file("wear_report", S_IRUSR,
544                                    dbg->dfs_root, dev, &dfs_fops);
545         if (IS_ERR_OR_NULL(dent))
546                 goto out_remove;
547         dbg->dfs_wear_report = dent;
548
549         return 0;
550
551 out_remove:
552         debugfs_remove_recursive(dbg->dfs_root);
553         err = dent ? PTR_ERR(dent) : -ENODEV;
554         return err;
555 }
556
557 /**
558  * nandsim_debugfs_remove - destroy all debugfs files
559  */
560 static void nandsim_debugfs_remove(struct nandsim *ns)
561 {
562         if (IS_ENABLED(CONFIG_DEBUG_FS))
563                 debugfs_remove_recursive(ns->dbg.dfs_root);
564 }
565
566 /*
567  * Allocate array of page pointers, create slab allocation for an array
568  * and initialize the array by NULL pointers.
569  *
570  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
571  */
572 static int alloc_device(struct nandsim *ns)
573 {
574         struct file *cfile;
575         int i, err;
576
577         if (cache_file) {
578                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
579                 if (IS_ERR(cfile))
580                         return PTR_ERR(cfile);
581                 if (!(cfile->f_mode & FMODE_CAN_READ)) {
582                         NS_ERR("alloc_device: cache file not readable\n");
583                         err = -EINVAL;
584                         goto err_close;
585                 }
586                 if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
587                         NS_ERR("alloc_device: cache file not writeable\n");
588                         err = -EINVAL;
589                         goto err_close;
590                 }
591                 ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
592                                             sizeof(unsigned long));
593                 if (!ns->pages_written) {
594                         NS_ERR("alloc_device: unable to allocate pages written array\n");
595                         err = -ENOMEM;
596                         goto err_close;
597                 }
598                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
599                 if (!ns->file_buf) {
600                         NS_ERR("alloc_device: unable to allocate file buf\n");
601                         err = -ENOMEM;
602                         goto err_free;
603                 }
604                 ns->cfile = cfile;
605                 return 0;
606         }
607
608         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
609         if (!ns->pages) {
610                 NS_ERR("alloc_device: unable to allocate page array\n");
611                 return -ENOMEM;
612         }
613         for (i = 0; i < ns->geom.pgnum; i++) {
614                 ns->pages[i].byte = NULL;
615         }
616         ns->nand_pages_slab = kmem_cache_create("nandsim",
617                                                 ns->geom.pgszoob, 0, 0, NULL);
618         if (!ns->nand_pages_slab) {
619                 NS_ERR("cache_create: unable to create kmem_cache\n");
620                 return -ENOMEM;
621         }
622
623         return 0;
624
625 err_free:
626         vfree(ns->pages_written);
627 err_close:
628         filp_close(cfile, NULL);
629         return err;
630 }
631
632 /*
633  * Free any allocated pages, and free the array of page pointers.
634  */
635 static void free_device(struct nandsim *ns)
636 {
637         int i;
638
639         if (ns->cfile) {
640                 kfree(ns->file_buf);
641                 vfree(ns->pages_written);
642                 filp_close(ns->cfile, NULL);
643                 return;
644         }
645
646         if (ns->pages) {
647                 for (i = 0; i < ns->geom.pgnum; i++) {
648                         if (ns->pages[i].byte)
649                                 kmem_cache_free(ns->nand_pages_slab,
650                                                 ns->pages[i].byte);
651                 }
652                 kmem_cache_destroy(ns->nand_pages_slab);
653                 vfree(ns->pages);
654         }
655 }
656
657 static char *get_partition_name(int i)
658 {
659         return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
660 }
661
662 /*
663  * Initialize the nandsim structure.
664  *
665  * RETURNS: 0 if success, -ERRNO if failure.
666  */
667 static int init_nandsim(struct mtd_info *mtd)
668 {
669         struct nand_chip *chip = mtd->priv;
670         struct nandsim   *ns   = chip->priv;
671         int i, ret = 0;
672         uint64_t remains;
673         uint64_t next_offset;
674
675         if (NS_IS_INITIALIZED(ns)) {
676                 NS_ERR("init_nandsim: nandsim is already initialized\n");
677                 return -EIO;
678         }
679
680         /* Force mtd to not do delays */
681         chip->chip_delay = 0;
682
683         /* Initialize the NAND flash parameters */
684         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
685         ns->geom.totsz    = mtd->size;
686         ns->geom.pgsz     = mtd->writesize;
687         ns->geom.oobsz    = mtd->oobsize;
688         ns->geom.secsz    = mtd->erasesize;
689         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
690         ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
691         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
692         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
693         ns->geom.pgshift  = chip->page_shift;
694         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
695         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
696         ns->options = 0;
697
698         if (ns->geom.pgsz == 512) {
699                 ns->options |= OPT_PAGE512;
700                 if (ns->busw == 8)
701                         ns->options |= OPT_PAGE512_8BIT;
702         } else if (ns->geom.pgsz == 2048) {
703                 ns->options |= OPT_PAGE2048;
704         } else if (ns->geom.pgsz == 4096) {
705                 ns->options |= OPT_PAGE4096;
706         } else {
707                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
708                 return -EIO;
709         }
710
711         if (ns->options & OPT_SMALLPAGE) {
712                 if (ns->geom.totsz <= (32 << 20)) {
713                         ns->geom.pgaddrbytes  = 3;
714                         ns->geom.secaddrbytes = 2;
715                 } else {
716                         ns->geom.pgaddrbytes  = 4;
717                         ns->geom.secaddrbytes = 3;
718                 }
719         } else {
720                 if (ns->geom.totsz <= (128 << 20)) {
721                         ns->geom.pgaddrbytes  = 4;
722                         ns->geom.secaddrbytes = 2;
723                 } else {
724                         ns->geom.pgaddrbytes  = 5;
725                         ns->geom.secaddrbytes = 3;
726                 }
727         }
728
729         /* Fill the partition_info structure */
730         if (parts_num > ARRAY_SIZE(ns->partitions)) {
731                 NS_ERR("too many partitions.\n");
732                 ret = -EINVAL;
733                 goto error;
734         }
735         remains = ns->geom.totsz;
736         next_offset = 0;
737         for (i = 0; i < parts_num; ++i) {
738                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
739
740                 if (!part_sz || part_sz > remains) {
741                         NS_ERR("bad partition size.\n");
742                         ret = -EINVAL;
743                         goto error;
744                 }
745                 ns->partitions[i].name   = get_partition_name(i);
746                 if (!ns->partitions[i].name) {
747                         NS_ERR("unable to allocate memory.\n");
748                         ret = -ENOMEM;
749                         goto error;
750                 }
751                 ns->partitions[i].offset = next_offset;
752                 ns->partitions[i].size   = part_sz;
753                 next_offset += ns->partitions[i].size;
754                 remains -= ns->partitions[i].size;
755         }
756         ns->nbparts = parts_num;
757         if (remains) {
758                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
759                         NS_ERR("too many partitions.\n");
760                         ret = -EINVAL;
761                         goto error;
762                 }
763                 ns->partitions[i].name   = get_partition_name(i);
764                 if (!ns->partitions[i].name) {
765                         NS_ERR("unable to allocate memory.\n");
766                         ret = -ENOMEM;
767                         goto error;
768                 }
769                 ns->partitions[i].offset = next_offset;
770                 ns->partitions[i].size   = remains;
771                 ns->nbparts += 1;
772         }
773
774         if (ns->busw == 16)
775                 NS_WARN("16-bit flashes support wasn't tested\n");
776
777         printk("flash size: %llu MiB\n",
778                         (unsigned long long)ns->geom.totsz >> 20);
779         printk("page size: %u bytes\n",         ns->geom.pgsz);
780         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
781         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
782         printk("pages number: %u\n",            ns->geom.pgnum);
783         printk("pages per sector: %u\n",        ns->geom.pgsec);
784         printk("bus width: %u\n",               ns->busw);
785         printk("bits in sector size: %u\n",     ns->geom.secshift);
786         printk("bits in page size: %u\n",       ns->geom.pgshift);
787         printk("bits in OOB size: %u\n",        ffs(ns->geom.oobsz) - 1);
788         printk("flash size with OOB: %llu KiB\n",
789                         (unsigned long long)ns->geom.totszoob >> 10);
790         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
791         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
792         printk("options: %#x\n",                ns->options);
793
794         if ((ret = alloc_device(ns)) != 0)
795                 goto error;
796
797         /* Allocate / initialize the internal buffer */
798         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
799         if (!ns->buf.byte) {
800                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
801                         ns->geom.pgszoob);
802                 ret = -ENOMEM;
803                 goto error;
804         }
805         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
806
807         return 0;
808
809 error:
810         free_device(ns);
811
812         return ret;
813 }
814
815 /*
816  * Free the nandsim structure.
817  */
818 static void free_nandsim(struct nandsim *ns)
819 {
820         kfree(ns->buf.byte);
821         free_device(ns);
822
823         return;
824 }
825
826 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
827 {
828         char *w;
829         int zero_ok;
830         unsigned int erase_block_no;
831         loff_t offset;
832
833         if (!badblocks)
834                 return 0;
835         w = badblocks;
836         do {
837                 zero_ok = (*w == '0' ? 1 : 0);
838                 erase_block_no = simple_strtoul(w, &w, 0);
839                 if (!zero_ok && !erase_block_no) {
840                         NS_ERR("invalid badblocks.\n");
841                         return -EINVAL;
842                 }
843                 offset = (loff_t)erase_block_no * ns->geom.secsz;
844                 if (mtd_block_markbad(mtd, offset)) {
845                         NS_ERR("invalid badblocks.\n");
846                         return -EINVAL;
847                 }
848                 if (*w == ',')
849                         w += 1;
850         } while (*w);
851         return 0;
852 }
853
854 static int parse_weakblocks(void)
855 {
856         char *w;
857         int zero_ok;
858         unsigned int erase_block_no;
859         unsigned int max_erases;
860         struct weak_block *wb;
861
862         if (!weakblocks)
863                 return 0;
864         w = weakblocks;
865         do {
866                 zero_ok = (*w == '0' ? 1 : 0);
867                 erase_block_no = simple_strtoul(w, &w, 0);
868                 if (!zero_ok && !erase_block_no) {
869                         NS_ERR("invalid weakblocks.\n");
870                         return -EINVAL;
871                 }
872                 max_erases = 3;
873                 if (*w == ':') {
874                         w += 1;
875                         max_erases = simple_strtoul(w, &w, 0);
876                 }
877                 if (*w == ',')
878                         w += 1;
879                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
880                 if (!wb) {
881                         NS_ERR("unable to allocate memory.\n");
882                         return -ENOMEM;
883                 }
884                 wb->erase_block_no = erase_block_no;
885                 wb->max_erases = max_erases;
886                 list_add(&wb->list, &weak_blocks);
887         } while (*w);
888         return 0;
889 }
890
891 static int erase_error(unsigned int erase_block_no)
892 {
893         struct weak_block *wb;
894
895         list_for_each_entry(wb, &weak_blocks, list)
896                 if (wb->erase_block_no == erase_block_no) {
897                         if (wb->erases_done >= wb->max_erases)
898                                 return 1;
899                         wb->erases_done += 1;
900                         return 0;
901                 }
902         return 0;
903 }
904
905 static int parse_weakpages(void)
906 {
907         char *w;
908         int zero_ok;
909         unsigned int page_no;
910         unsigned int max_writes;
911         struct weak_page *wp;
912
913         if (!weakpages)
914                 return 0;
915         w = weakpages;
916         do {
917                 zero_ok = (*w == '0' ? 1 : 0);
918                 page_no = simple_strtoul(w, &w, 0);
919                 if (!zero_ok && !page_no) {
920                         NS_ERR("invalid weakpagess.\n");
921                         return -EINVAL;
922                 }
923                 max_writes = 3;
924                 if (*w == ':') {
925                         w += 1;
926                         max_writes = simple_strtoul(w, &w, 0);
927                 }
928                 if (*w == ',')
929                         w += 1;
930                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
931                 if (!wp) {
932                         NS_ERR("unable to allocate memory.\n");
933                         return -ENOMEM;
934                 }
935                 wp->page_no = page_no;
936                 wp->max_writes = max_writes;
937                 list_add(&wp->list, &weak_pages);
938         } while (*w);
939         return 0;
940 }
941
942 static int write_error(unsigned int page_no)
943 {
944         struct weak_page *wp;
945
946         list_for_each_entry(wp, &weak_pages, list)
947                 if (wp->page_no == page_no) {
948                         if (wp->writes_done >= wp->max_writes)
949                                 return 1;
950                         wp->writes_done += 1;
951                         return 0;
952                 }
953         return 0;
954 }
955
956 static int parse_gravepages(void)
957 {
958         char *g;
959         int zero_ok;
960         unsigned int page_no;
961         unsigned int max_reads;
962         struct grave_page *gp;
963
964         if (!gravepages)
965                 return 0;
966         g = gravepages;
967         do {
968                 zero_ok = (*g == '0' ? 1 : 0);
969                 page_no = simple_strtoul(g, &g, 0);
970                 if (!zero_ok && !page_no) {
971                         NS_ERR("invalid gravepagess.\n");
972                         return -EINVAL;
973                 }
974                 max_reads = 3;
975                 if (*g == ':') {
976                         g += 1;
977                         max_reads = simple_strtoul(g, &g, 0);
978                 }
979                 if (*g == ',')
980                         g += 1;
981                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
982                 if (!gp) {
983                         NS_ERR("unable to allocate memory.\n");
984                         return -ENOMEM;
985                 }
986                 gp->page_no = page_no;
987                 gp->max_reads = max_reads;
988                 list_add(&gp->list, &grave_pages);
989         } while (*g);
990         return 0;
991 }
992
993 static int read_error(unsigned int page_no)
994 {
995         struct grave_page *gp;
996
997         list_for_each_entry(gp, &grave_pages, list)
998                 if (gp->page_no == page_no) {
999                         if (gp->reads_done >= gp->max_reads)
1000                                 return 1;
1001                         gp->reads_done += 1;
1002                         return 0;
1003                 }
1004         return 0;
1005 }
1006
1007 static void free_lists(void)
1008 {
1009         struct list_head *pos, *n;
1010         list_for_each_safe(pos, n, &weak_blocks) {
1011                 list_del(pos);
1012                 kfree(list_entry(pos, struct weak_block, list));
1013         }
1014         list_for_each_safe(pos, n, &weak_pages) {
1015                 list_del(pos);
1016                 kfree(list_entry(pos, struct weak_page, list));
1017         }
1018         list_for_each_safe(pos, n, &grave_pages) {
1019                 list_del(pos);
1020                 kfree(list_entry(pos, struct grave_page, list));
1021         }
1022         kfree(erase_block_wear);
1023 }
1024
1025 static int setup_wear_reporting(struct mtd_info *mtd)
1026 {
1027         size_t mem;
1028
1029         wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1030         mem = wear_eb_count * sizeof(unsigned long);
1031         if (mem / sizeof(unsigned long) != wear_eb_count) {
1032                 NS_ERR("Too many erase blocks for wear reporting\n");
1033                 return -ENOMEM;
1034         }
1035         erase_block_wear = kzalloc(mem, GFP_KERNEL);
1036         if (!erase_block_wear) {
1037                 NS_ERR("Too many erase blocks for wear reporting\n");
1038                 return -ENOMEM;
1039         }
1040         return 0;
1041 }
1042
1043 static void update_wear(unsigned int erase_block_no)
1044 {
1045         if (!erase_block_wear)
1046                 return;
1047         total_wear += 1;
1048         /*
1049          * TODO: Notify this through a debugfs entry,
1050          * instead of showing an error message.
1051          */
1052         if (total_wear == 0)
1053                 NS_ERR("Erase counter total overflow\n");
1054         erase_block_wear[erase_block_no] += 1;
1055         if (erase_block_wear[erase_block_no] == 0)
1056                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1057 }
1058
1059 /*
1060  * Returns the string representation of 'state' state.
1061  */
1062 static char *get_state_name(uint32_t state)
1063 {
1064         switch (NS_STATE(state)) {
1065                 case STATE_CMD_READ0:
1066                         return "STATE_CMD_READ0";
1067                 case STATE_CMD_READ1:
1068                         return "STATE_CMD_READ1";
1069                 case STATE_CMD_PAGEPROG:
1070                         return "STATE_CMD_PAGEPROG";
1071                 case STATE_CMD_READOOB:
1072                         return "STATE_CMD_READOOB";
1073                 case STATE_CMD_READSTART:
1074                         return "STATE_CMD_READSTART";
1075                 case STATE_CMD_ERASE1:
1076                         return "STATE_CMD_ERASE1";
1077                 case STATE_CMD_STATUS:
1078                         return "STATE_CMD_STATUS";
1079                 case STATE_CMD_SEQIN:
1080                         return "STATE_CMD_SEQIN";
1081                 case STATE_CMD_READID:
1082                         return "STATE_CMD_READID";
1083                 case STATE_CMD_ERASE2:
1084                         return "STATE_CMD_ERASE2";
1085                 case STATE_CMD_RESET:
1086                         return "STATE_CMD_RESET";
1087                 case STATE_CMD_RNDOUT:
1088                         return "STATE_CMD_RNDOUT";
1089                 case STATE_CMD_RNDOUTSTART:
1090                         return "STATE_CMD_RNDOUTSTART";
1091                 case STATE_ADDR_PAGE:
1092                         return "STATE_ADDR_PAGE";
1093                 case STATE_ADDR_SEC:
1094                         return "STATE_ADDR_SEC";
1095                 case STATE_ADDR_ZERO:
1096                         return "STATE_ADDR_ZERO";
1097                 case STATE_ADDR_COLUMN:
1098                         return "STATE_ADDR_COLUMN";
1099                 case STATE_DATAIN:
1100                         return "STATE_DATAIN";
1101                 case STATE_DATAOUT:
1102                         return "STATE_DATAOUT";
1103                 case STATE_DATAOUT_ID:
1104                         return "STATE_DATAOUT_ID";
1105                 case STATE_DATAOUT_STATUS:
1106                         return "STATE_DATAOUT_STATUS";
1107                 case STATE_READY:
1108                         return "STATE_READY";
1109                 case STATE_UNKNOWN:
1110                         return "STATE_UNKNOWN";
1111         }
1112
1113         NS_ERR("get_state_name: unknown state, BUG\n");
1114         return NULL;
1115 }
1116
1117 /*
1118  * Check if command is valid.
1119  *
1120  * RETURNS: 1 if wrong command, 0 if right.
1121  */
1122 static int check_command(int cmd)
1123 {
1124         switch (cmd) {
1125
1126         case NAND_CMD_READ0:
1127         case NAND_CMD_READ1:
1128         case NAND_CMD_READSTART:
1129         case NAND_CMD_PAGEPROG:
1130         case NAND_CMD_READOOB:
1131         case NAND_CMD_ERASE1:
1132         case NAND_CMD_STATUS:
1133         case NAND_CMD_SEQIN:
1134         case NAND_CMD_READID:
1135         case NAND_CMD_ERASE2:
1136         case NAND_CMD_RESET:
1137         case NAND_CMD_RNDOUT:
1138         case NAND_CMD_RNDOUTSTART:
1139                 return 0;
1140
1141         default:
1142                 return 1;
1143         }
1144 }
1145
1146 /*
1147  * Returns state after command is accepted by command number.
1148  */
1149 static uint32_t get_state_by_command(unsigned command)
1150 {
1151         switch (command) {
1152                 case NAND_CMD_READ0:
1153                         return STATE_CMD_READ0;
1154                 case NAND_CMD_READ1:
1155                         return STATE_CMD_READ1;
1156                 case NAND_CMD_PAGEPROG:
1157                         return STATE_CMD_PAGEPROG;
1158                 case NAND_CMD_READSTART:
1159                         return STATE_CMD_READSTART;
1160                 case NAND_CMD_READOOB:
1161                         return STATE_CMD_READOOB;
1162                 case NAND_CMD_ERASE1:
1163                         return STATE_CMD_ERASE1;
1164                 case NAND_CMD_STATUS:
1165                         return STATE_CMD_STATUS;
1166                 case NAND_CMD_SEQIN:
1167                         return STATE_CMD_SEQIN;
1168                 case NAND_CMD_READID:
1169                         return STATE_CMD_READID;
1170                 case NAND_CMD_ERASE2:
1171                         return STATE_CMD_ERASE2;
1172                 case NAND_CMD_RESET:
1173                         return STATE_CMD_RESET;
1174                 case NAND_CMD_RNDOUT:
1175                         return STATE_CMD_RNDOUT;
1176                 case NAND_CMD_RNDOUTSTART:
1177                         return STATE_CMD_RNDOUTSTART;
1178         }
1179
1180         NS_ERR("get_state_by_command: unknown command, BUG\n");
1181         return 0;
1182 }
1183
1184 /*
1185  * Move an address byte to the correspondent internal register.
1186  */
1187 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1188 {
1189         uint byte = (uint)bt;
1190
1191         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1192                 ns->regs.column |= (byte << 8 * ns->regs.count);
1193         else {
1194                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1195                                                 ns->geom.pgaddrbytes +
1196                                                 ns->geom.secaddrbytes));
1197         }
1198
1199         return;
1200 }
1201
1202 /*
1203  * Switch to STATE_READY state.
1204  */
1205 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1206 {
1207         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1208
1209         ns->state       = STATE_READY;
1210         ns->nxstate     = STATE_UNKNOWN;
1211         ns->op          = NULL;
1212         ns->npstates    = 0;
1213         ns->stateidx    = 0;
1214         ns->regs.num    = 0;
1215         ns->regs.count  = 0;
1216         ns->regs.off    = 0;
1217         ns->regs.row    = 0;
1218         ns->regs.column = 0;
1219         ns->regs.status = status;
1220 }
1221
1222 /*
1223  * If the operation isn't known yet, try to find it in the global array
1224  * of supported operations.
1225  *
1226  * Operation can be unknown because of the following.
1227  *   1. New command was accepted and this is the first call to find the
1228  *      correspondent states chain. In this case ns->npstates = 0;
1229  *   2. There are several operations which begin with the same command(s)
1230  *      (for example program from the second half and read from the
1231  *      second half operations both begin with the READ1 command). In this
1232  *      case the ns->pstates[] array contains previous states.
1233  *
1234  * Thus, the function tries to find operation containing the following
1235  * states (if the 'flag' parameter is 0):
1236  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1237  *
1238  * If (one and only one) matching operation is found, it is accepted (
1239  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1240  * zeroed).
1241  *
1242  * If there are several matches, the current state is pushed to the
1243  * ns->pstates.
1244  *
1245  * The operation can be unknown only while commands are input to the chip.
1246  * As soon as address command is accepted, the operation must be known.
1247  * In such situation the function is called with 'flag' != 0, and the
1248  * operation is searched using the following pattern:
1249  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1250  *
1251  * It is supposed that this pattern must either match one operation or
1252  * none. There can't be ambiguity in that case.
1253  *
1254  * If no matches found, the function does the following:
1255  *   1. if there are saved states present, try to ignore them and search
1256  *      again only using the last command. If nothing was found, switch
1257  *      to the STATE_READY state.
1258  *   2. if there are no saved states, switch to the STATE_READY state.
1259  *
1260  * RETURNS: -2 - no matched operations found.
1261  *          -1 - several matches.
1262  *           0 - operation is found.
1263  */
1264 static int find_operation(struct nandsim *ns, uint32_t flag)
1265 {
1266         int opsfound = 0;
1267         int i, j, idx = 0;
1268
1269         for (i = 0; i < NS_OPER_NUM; i++) {
1270
1271                 int found = 1;
1272
1273                 if (!(ns->options & ops[i].reqopts))
1274                         /* Ignore operations we can't perform */
1275                         continue;
1276
1277                 if (flag) {
1278                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1279                                 continue;
1280                 } else {
1281                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1282                                 continue;
1283                 }
1284
1285                 for (j = 0; j < ns->npstates; j++)
1286                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1287                                 && (ns->options & ops[idx].reqopts)) {
1288                                 found = 0;
1289                                 break;
1290                         }
1291
1292                 if (found) {
1293                         idx = i;
1294                         opsfound += 1;
1295                 }
1296         }
1297
1298         if (opsfound == 1) {
1299                 /* Exact match */
1300                 ns->op = &ops[idx].states[0];
1301                 if (flag) {
1302                         /*
1303                          * In this case the find_operation function was
1304                          * called when address has just began input. But it isn't
1305                          * yet fully input and the current state must
1306                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1307                          * state must be the next state (ns->nxstate).
1308                          */
1309                         ns->stateidx = ns->npstates - 1;
1310                 } else {
1311                         ns->stateidx = ns->npstates;
1312                 }
1313                 ns->npstates = 0;
1314                 ns->state = ns->op[ns->stateidx];
1315                 ns->nxstate = ns->op[ns->stateidx + 1];
1316                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1317                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1318                 return 0;
1319         }
1320
1321         if (opsfound == 0) {
1322                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1323                 if (ns->npstates != 0) {
1324                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1325                                         get_state_name(ns->state));
1326                         ns->npstates = 0;
1327                         return find_operation(ns, 0);
1328
1329                 }
1330                 NS_DBG("find_operation: no operations found\n");
1331                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1332                 return -2;
1333         }
1334
1335         if (flag) {
1336                 /* This shouldn't happen */
1337                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1338                 return -2;
1339         }
1340
1341         NS_DBG("find_operation: there is still ambiguity\n");
1342
1343         ns->pstates[ns->npstates++] = ns->state;
1344
1345         return -1;
1346 }
1347
1348 static void put_pages(struct nandsim *ns)
1349 {
1350         int i;
1351
1352         for (i = 0; i < ns->held_cnt; i++)
1353                 page_cache_release(ns->held_pages[i]);
1354 }
1355
1356 /* Get page cache pages in advance to provide NOFS memory allocation */
1357 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1358 {
1359         pgoff_t index, start_index, end_index;
1360         struct page *page;
1361         struct address_space *mapping = file->f_mapping;
1362
1363         start_index = pos >> PAGE_CACHE_SHIFT;
1364         end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1365         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1366                 return -EINVAL;
1367         ns->held_cnt = 0;
1368         for (index = start_index; index <= end_index; index++) {
1369                 page = find_get_page(mapping, index);
1370                 if (page == NULL) {
1371                         page = find_or_create_page(mapping, index, GFP_NOFS);
1372                         if (page == NULL) {
1373                                 write_inode_now(mapping->host, 1);
1374                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1375                         }
1376                         if (page == NULL) {
1377                                 put_pages(ns);
1378                                 return -ENOMEM;
1379                         }
1380                         unlock_page(page);
1381                 }
1382                 ns->held_pages[ns->held_cnt++] = page;
1383         }
1384         return 0;
1385 }
1386
1387 static int set_memalloc(void)
1388 {
1389         if (current->flags & PF_MEMALLOC)
1390                 return 0;
1391         current->flags |= PF_MEMALLOC;
1392         return 1;
1393 }
1394
1395 static void clear_memalloc(int memalloc)
1396 {
1397         if (memalloc)
1398                 current->flags &= ~PF_MEMALLOC;
1399 }
1400
1401 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1402 {
1403         ssize_t tx;
1404         int err, memalloc;
1405
1406         err = get_pages(ns, file, count, pos);
1407         if (err)
1408                 return err;
1409         memalloc = set_memalloc();
1410         tx = kernel_read(file, pos, buf, count);
1411         clear_memalloc(memalloc);
1412         put_pages(ns);
1413         return tx;
1414 }
1415
1416 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1417 {
1418         ssize_t tx;
1419         int err, memalloc;
1420
1421         err = get_pages(ns, file, count, pos);
1422         if (err)
1423                 return err;
1424         memalloc = set_memalloc();
1425         tx = kernel_write(file, buf, count, pos);
1426         clear_memalloc(memalloc);
1427         put_pages(ns);
1428         return tx;
1429 }
1430
1431 /*
1432  * Returns a pointer to the current page.
1433  */
1434 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1435 {
1436         return &(ns->pages[ns->regs.row]);
1437 }
1438
1439 /*
1440  * Retuns a pointer to the current byte, within the current page.
1441  */
1442 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1443 {
1444         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1445 }
1446
1447 static int do_read_error(struct nandsim *ns, int num)
1448 {
1449         unsigned int page_no = ns->regs.row;
1450
1451         if (read_error(page_no)) {
1452                 prandom_bytes(ns->buf.byte, num);
1453                 NS_WARN("simulating read error in page %u\n", page_no);
1454                 return 1;
1455         }
1456         return 0;
1457 }
1458
1459 static void do_bit_flips(struct nandsim *ns, int num)
1460 {
1461         if (bitflips && prandom_u32() < (1 << 22)) {
1462                 int flips = 1;
1463                 if (bitflips > 1)
1464                         flips = (prandom_u32() % (int) bitflips) + 1;
1465                 while (flips--) {
1466                         int pos = prandom_u32() % (num * 8);
1467                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1468                         NS_WARN("read_page: flipping bit %d in page %d "
1469                                 "reading from %d ecc: corrected=%u failed=%u\n",
1470                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1471                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1472                 }
1473         }
1474 }
1475
1476 /*
1477  * Fill the NAND buffer with data read from the specified page.
1478  */
1479 static void read_page(struct nandsim *ns, int num)
1480 {
1481         union ns_mem *mypage;
1482
1483         if (ns->cfile) {
1484                 if (!test_bit(ns->regs.row, ns->pages_written)) {
1485                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1486                         memset(ns->buf.byte, 0xFF, num);
1487                 } else {
1488                         loff_t pos;
1489                         ssize_t tx;
1490
1491                         NS_DBG("read_page: page %d written, reading from %d\n",
1492                                 ns->regs.row, ns->regs.column + ns->regs.off);
1493                         if (do_read_error(ns, num))
1494                                 return;
1495                         pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1496                         tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1497                         if (tx != num) {
1498                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1499                                 return;
1500                         }
1501                         do_bit_flips(ns, num);
1502                 }
1503                 return;
1504         }
1505
1506         mypage = NS_GET_PAGE(ns);
1507         if (mypage->byte == NULL) {
1508                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1509                 memset(ns->buf.byte, 0xFF, num);
1510         } else {
1511                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1512                         ns->regs.row, ns->regs.column + ns->regs.off);
1513                 if (do_read_error(ns, num))
1514                         return;
1515                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1516                 do_bit_flips(ns, num);
1517         }
1518 }
1519
1520 /*
1521  * Erase all pages in the specified sector.
1522  */
1523 static void erase_sector(struct nandsim *ns)
1524 {
1525         union ns_mem *mypage;
1526         int i;
1527
1528         if (ns->cfile) {
1529                 for (i = 0; i < ns->geom.pgsec; i++)
1530                         if (__test_and_clear_bit(ns->regs.row + i,
1531                                                  ns->pages_written)) {
1532                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1533                         }
1534                 return;
1535         }
1536
1537         mypage = NS_GET_PAGE(ns);
1538         for (i = 0; i < ns->geom.pgsec; i++) {
1539                 if (mypage->byte != NULL) {
1540                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1541                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1542                         mypage->byte = NULL;
1543                 }
1544                 mypage++;
1545         }
1546 }
1547
1548 /*
1549  * Program the specified page with the contents from the NAND buffer.
1550  */
1551 static int prog_page(struct nandsim *ns, int num)
1552 {
1553         int i;
1554         union ns_mem *mypage;
1555         u_char *pg_off;
1556
1557         if (ns->cfile) {
1558                 loff_t off;
1559                 ssize_t tx;
1560                 int all;
1561
1562                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1563                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1564                 off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1565                 if (!test_bit(ns->regs.row, ns->pages_written)) {
1566                         all = 1;
1567                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1568                 } else {
1569                         all = 0;
1570                         tx = read_file(ns, ns->cfile, pg_off, num, off);
1571                         if (tx != num) {
1572                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1573                                 return -1;
1574                         }
1575                 }
1576                 for (i = 0; i < num; i++)
1577                         pg_off[i] &= ns->buf.byte[i];
1578                 if (all) {
1579                         loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1580                         tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1581                         if (tx != ns->geom.pgszoob) {
1582                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1583                                 return -1;
1584                         }
1585                         __set_bit(ns->regs.row, ns->pages_written);
1586                 } else {
1587                         tx = write_file(ns, ns->cfile, pg_off, num, off);
1588                         if (tx != num) {
1589                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1590                                 return -1;
1591                         }
1592                 }
1593                 return 0;
1594         }
1595
1596         mypage = NS_GET_PAGE(ns);
1597         if (mypage->byte == NULL) {
1598                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1599                 /*
1600                  * We allocate memory with GFP_NOFS because a flash FS may
1601                  * utilize this. If it is holding an FS lock, then gets here,
1602                  * then kernel memory alloc runs writeback which goes to the FS
1603                  * again and deadlocks. This was seen in practice.
1604                  */
1605                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1606                 if (mypage->byte == NULL) {
1607                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1608                         return -1;
1609                 }
1610                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1611         }
1612
1613         pg_off = NS_PAGE_BYTE_OFF(ns);
1614         for (i = 0; i < num; i++)
1615                 pg_off[i] &= ns->buf.byte[i];
1616
1617         return 0;
1618 }
1619
1620 /*
1621  * If state has any action bit, perform this action.
1622  *
1623  * RETURNS: 0 if success, -1 if error.
1624  */
1625 static int do_state_action(struct nandsim *ns, uint32_t action)
1626 {
1627         int num;
1628         int busdiv = ns->busw == 8 ? 1 : 2;
1629         unsigned int erase_block_no, page_no;
1630
1631         action &= ACTION_MASK;
1632
1633         /* Check that page address input is correct */
1634         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1635                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1636                 return -1;
1637         }
1638
1639         switch (action) {
1640
1641         case ACTION_CPY:
1642                 /*
1643                  * Copy page data to the internal buffer.
1644                  */
1645
1646                 /* Column shouldn't be very large */
1647                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1648                         NS_ERR("do_state_action: column number is too large\n");
1649                         break;
1650                 }
1651                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1652                 read_page(ns, num);
1653
1654                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1655                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1656
1657                 if (ns->regs.off == 0)
1658                         NS_LOG("read page %d\n", ns->regs.row);
1659                 else if (ns->regs.off < ns->geom.pgsz)
1660                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1661                 else
1662                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1663
1664                 NS_UDELAY(access_delay);
1665                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1666
1667                 break;
1668
1669         case ACTION_SECERASE:
1670                 /*
1671                  * Erase sector.
1672                  */
1673
1674                 if (ns->lines.wp) {
1675                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1676                         return -1;
1677                 }
1678
1679                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1680                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1681                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1682                         return -1;
1683                 }
1684
1685                 ns->regs.row = (ns->regs.row <<
1686                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1687                 ns->regs.column = 0;
1688
1689                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1690
1691                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1692                                 ns->regs.row, NS_RAW_OFFSET(ns));
1693                 NS_LOG("erase sector %u\n", erase_block_no);
1694
1695                 erase_sector(ns);
1696
1697                 NS_MDELAY(erase_delay);
1698
1699                 if (erase_block_wear)
1700                         update_wear(erase_block_no);
1701
1702                 if (erase_error(erase_block_no)) {
1703                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1704                         return -1;
1705                 }
1706
1707                 break;
1708
1709         case ACTION_PRGPAGE:
1710                 /*
1711                  * Program page - move internal buffer data to the page.
1712                  */
1713
1714                 if (ns->lines.wp) {
1715                         NS_WARN("do_state_action: device is write-protected, programm\n");
1716                         return -1;
1717                 }
1718
1719                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1720                 if (num != ns->regs.count) {
1721                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1722                                         ns->regs.count, num);
1723                         return -1;
1724                 }
1725
1726                 if (prog_page(ns, num) == -1)
1727                         return -1;
1728
1729                 page_no = ns->regs.row;
1730
1731                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1732                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1733                 NS_LOG("programm page %d\n", ns->regs.row);
1734
1735                 NS_UDELAY(programm_delay);
1736                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1737
1738                 if (write_error(page_no)) {
1739                         NS_WARN("simulating write failure in page %u\n", page_no);
1740                         return -1;
1741                 }
1742
1743                 break;
1744
1745         case ACTION_ZEROOFF:
1746                 NS_DBG("do_state_action: set internal offset to 0\n");
1747                 ns->regs.off = 0;
1748                 break;
1749
1750         case ACTION_HALFOFF:
1751                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1752                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1753                                 "byte page size 8x chips\n");
1754                         return -1;
1755                 }
1756                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1757                 ns->regs.off = ns->geom.pgsz/2;
1758                 break;
1759
1760         case ACTION_OOBOFF:
1761                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1762                 ns->regs.off = ns->geom.pgsz;
1763                 break;
1764
1765         default:
1766                 NS_DBG("do_state_action: BUG! unknown action\n");
1767         }
1768
1769         return 0;
1770 }
1771
1772 /*
1773  * Switch simulator's state.
1774  */
1775 static void switch_state(struct nandsim *ns)
1776 {
1777         if (ns->op) {
1778                 /*
1779                  * The current operation have already been identified.
1780                  * Just follow the states chain.
1781                  */
1782
1783                 ns->stateidx += 1;
1784                 ns->state = ns->nxstate;
1785                 ns->nxstate = ns->op[ns->stateidx + 1];
1786
1787                 NS_DBG("switch_state: operation is known, switch to the next state, "
1788                         "state: %s, nxstate: %s\n",
1789                         get_state_name(ns->state), get_state_name(ns->nxstate));
1790
1791                 /* See, whether we need to do some action */
1792                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1793                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1794                         return;
1795                 }
1796
1797         } else {
1798                 /*
1799                  * We don't yet know which operation we perform.
1800                  * Try to identify it.
1801                  */
1802
1803                 /*
1804                  *  The only event causing the switch_state function to
1805                  *  be called with yet unknown operation is new command.
1806                  */
1807                 ns->state = get_state_by_command(ns->regs.command);
1808
1809                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1810
1811                 if (find_operation(ns, 0) != 0)
1812                         return;
1813
1814                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1815                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1816                         return;
1817                 }
1818         }
1819
1820         /* For 16x devices column means the page offset in words */
1821         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1822                 NS_DBG("switch_state: double the column number for 16x device\n");
1823                 ns->regs.column <<= 1;
1824         }
1825
1826         if (NS_STATE(ns->nxstate) == STATE_READY) {
1827                 /*
1828                  * The current state is the last. Return to STATE_READY
1829                  */
1830
1831                 u_char status = NS_STATUS_OK(ns);
1832
1833                 /* In case of data states, see if all bytes were input/output */
1834                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1835                         && ns->regs.count != ns->regs.num) {
1836                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1837                                         ns->regs.num - ns->regs.count);
1838                         status = NS_STATUS_FAILED(ns);
1839                 }
1840
1841                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1842
1843                 switch_to_ready_state(ns, status);
1844
1845                 return;
1846         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1847                 /*
1848                  * If the next state is data input/output, switch to it now
1849                  */
1850
1851                 ns->state      = ns->nxstate;
1852                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1853                 ns->regs.num   = ns->regs.count = 0;
1854
1855                 NS_DBG("switch_state: the next state is data I/O, switch, "
1856                         "state: %s, nxstate: %s\n",
1857                         get_state_name(ns->state), get_state_name(ns->nxstate));
1858
1859                 /*
1860                  * Set the internal register to the count of bytes which
1861                  * are expected to be input or output
1862                  */
1863                 switch (NS_STATE(ns->state)) {
1864                         case STATE_DATAIN:
1865                         case STATE_DATAOUT:
1866                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1867                                 break;
1868
1869                         case STATE_DATAOUT_ID:
1870                                 ns->regs.num = ns->geom.idbytes;
1871                                 break;
1872
1873                         case STATE_DATAOUT_STATUS:
1874                                 ns->regs.count = ns->regs.num = 0;
1875                                 break;
1876
1877                         default:
1878                                 NS_ERR("switch_state: BUG! unknown data state\n");
1879                 }
1880
1881         } else if (ns->nxstate & STATE_ADDR_MASK) {
1882                 /*
1883                  * If the next state is address input, set the internal
1884                  * register to the number of expected address bytes
1885                  */
1886
1887                 ns->regs.count = 0;
1888
1889                 switch (NS_STATE(ns->nxstate)) {
1890                         case STATE_ADDR_PAGE:
1891                                 ns->regs.num = ns->geom.pgaddrbytes;
1892
1893                                 break;
1894                         case STATE_ADDR_SEC:
1895                                 ns->regs.num = ns->geom.secaddrbytes;
1896                                 break;
1897
1898                         case STATE_ADDR_ZERO:
1899                                 ns->regs.num = 1;
1900                                 break;
1901
1902                         case STATE_ADDR_COLUMN:
1903                                 /* Column address is always 2 bytes */
1904                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1905                                 break;
1906
1907                         default:
1908                                 NS_ERR("switch_state: BUG! unknown address state\n");
1909                 }
1910         } else {
1911                 /*
1912                  * Just reset internal counters.
1913                  */
1914
1915                 ns->regs.num = 0;
1916                 ns->regs.count = 0;
1917         }
1918 }
1919
1920 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1921 {
1922         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1923         u_char outb = 0x00;
1924
1925         /* Sanity and correctness checks */
1926         if (!ns->lines.ce) {
1927                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1928                 return outb;
1929         }
1930         if (ns->lines.ale || ns->lines.cle) {
1931                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1932                 return outb;
1933         }
1934         if (!(ns->state & STATE_DATAOUT_MASK)) {
1935                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1936                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1937                 return outb;
1938         }
1939
1940         /* Status register may be read as many times as it is wanted */
1941         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1942                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1943                 return ns->regs.status;
1944         }
1945
1946         /* Check if there is any data in the internal buffer which may be read */
1947         if (ns->regs.count == ns->regs.num) {
1948                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1949                 return outb;
1950         }
1951
1952         switch (NS_STATE(ns->state)) {
1953                 case STATE_DATAOUT:
1954                         if (ns->busw == 8) {
1955                                 outb = ns->buf.byte[ns->regs.count];
1956                                 ns->regs.count += 1;
1957                         } else {
1958                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1959                                 ns->regs.count += 2;
1960                         }
1961                         break;
1962                 case STATE_DATAOUT_ID:
1963                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1964                         outb = ns->ids[ns->regs.count];
1965                         ns->regs.count += 1;
1966                         break;
1967                 default:
1968                         BUG();
1969         }
1970
1971         if (ns->regs.count == ns->regs.num) {
1972                 NS_DBG("read_byte: all bytes were read\n");
1973
1974                 if (NS_STATE(ns->nxstate) == STATE_READY)
1975                         switch_state(ns);
1976         }
1977
1978         return outb;
1979 }
1980
1981 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1982 {
1983         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1984
1985         /* Sanity and correctness checks */
1986         if (!ns->lines.ce) {
1987                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1988                 return;
1989         }
1990         if (ns->lines.ale && ns->lines.cle) {
1991                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1992                 return;
1993         }
1994
1995         if (ns->lines.cle == 1) {
1996                 /*
1997                  * The byte written is a command.
1998                  */
1999
2000                 if (byte == NAND_CMD_RESET) {
2001                         NS_LOG("reset chip\n");
2002                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
2003                         return;
2004                 }
2005
2006                 /* Check that the command byte is correct */
2007                 if (check_command(byte)) {
2008                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
2009                         return;
2010                 }
2011
2012                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2013                         || NS_STATE(ns->state) == STATE_DATAOUT) {
2014                         int row = ns->regs.row;
2015
2016                         switch_state(ns);
2017                         if (byte == NAND_CMD_RNDOUT)
2018                                 ns->regs.row = row;
2019                 }
2020
2021                 /* Check if chip is expecting command */
2022                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2023                         /* Do not warn if only 2 id bytes are read */
2024                         if (!(ns->regs.command == NAND_CMD_READID &&
2025                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2026                                 /*
2027                                  * We are in situation when something else (not command)
2028                                  * was expected but command was input. In this case ignore
2029                                  * previous command(s)/state(s) and accept the last one.
2030                                  */
2031                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2032                                         "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2033                         }
2034                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2035                 }
2036
2037                 NS_DBG("command byte corresponding to %s state accepted\n",
2038                         get_state_name(get_state_by_command(byte)));
2039                 ns->regs.command = byte;
2040                 switch_state(ns);
2041
2042         } else if (ns->lines.ale == 1) {
2043                 /*
2044                  * The byte written is an address.
2045                  */
2046
2047                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2048
2049                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2050
2051                         if (find_operation(ns, 1) < 0)
2052                                 return;
2053
2054                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2055                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2056                                 return;
2057                         }
2058
2059                         ns->regs.count = 0;
2060                         switch (NS_STATE(ns->nxstate)) {
2061                                 case STATE_ADDR_PAGE:
2062                                         ns->regs.num = ns->geom.pgaddrbytes;
2063                                         break;
2064                                 case STATE_ADDR_SEC:
2065                                         ns->regs.num = ns->geom.secaddrbytes;
2066                                         break;
2067                                 case STATE_ADDR_ZERO:
2068                                         ns->regs.num = 1;
2069                                         break;
2070                                 default:
2071                                         BUG();
2072                         }
2073                 }
2074
2075                 /* Check that chip is expecting address */
2076                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2077                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2078                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2079                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2080                         return;
2081                 }
2082
2083                 /* Check if this is expected byte */
2084                 if (ns->regs.count == ns->regs.num) {
2085                         NS_ERR("write_byte: no more address bytes expected\n");
2086                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2087                         return;
2088                 }
2089
2090                 accept_addr_byte(ns, byte);
2091
2092                 ns->regs.count += 1;
2093
2094                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2095                                 (uint)byte, ns->regs.count, ns->regs.num);
2096
2097                 if (ns->regs.count == ns->regs.num) {
2098                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2099                         switch_state(ns);
2100                 }
2101
2102         } else {
2103                 /*
2104                  * The byte written is an input data.
2105                  */
2106
2107                 /* Check that chip is expecting data input */
2108                 if (!(ns->state & STATE_DATAIN_MASK)) {
2109                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2110                                 "switch to %s\n", (uint)byte,
2111                                 get_state_name(ns->state), get_state_name(STATE_READY));
2112                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2113                         return;
2114                 }
2115
2116                 /* Check if this is expected byte */
2117                 if (ns->regs.count == ns->regs.num) {
2118                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2119                                         ns->regs.num);
2120                         return;
2121                 }
2122
2123                 if (ns->busw == 8) {
2124                         ns->buf.byte[ns->regs.count] = byte;
2125                         ns->regs.count += 1;
2126                 } else {
2127                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2128                         ns->regs.count += 2;
2129                 }
2130         }
2131
2132         return;
2133 }
2134
2135 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2136 {
2137         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2138
2139         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2140         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2141         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2142
2143         if (cmd != NAND_CMD_NONE)
2144                 ns_nand_write_byte(mtd, cmd);
2145 }
2146
2147 static int ns_device_ready(struct mtd_info *mtd)
2148 {
2149         NS_DBG("device_ready\n");
2150         return 1;
2151 }
2152
2153 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2154 {
2155         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2156
2157         NS_DBG("read_word\n");
2158
2159         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2160 }
2161
2162 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2163 {
2164         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2165
2166         /* Check that chip is expecting data input */
2167         if (!(ns->state & STATE_DATAIN_MASK)) {
2168                 NS_ERR("write_buf: data input isn't expected, state is %s, "
2169                         "switch to STATE_READY\n", get_state_name(ns->state));
2170                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2171                 return;
2172         }
2173
2174         /* Check if these are expected bytes */
2175         if (ns->regs.count + len > ns->regs.num) {
2176                 NS_ERR("write_buf: too many input bytes\n");
2177                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2178                 return;
2179         }
2180
2181         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2182         ns->regs.count += len;
2183
2184         if (ns->regs.count == ns->regs.num) {
2185                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2186         }
2187 }
2188
2189 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2190 {
2191         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2192
2193         /* Sanity and correctness checks */
2194         if (!ns->lines.ce) {
2195                 NS_ERR("read_buf: chip is disabled\n");
2196                 return;
2197         }
2198         if (ns->lines.ale || ns->lines.cle) {
2199                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2200                 return;
2201         }
2202         if (!(ns->state & STATE_DATAOUT_MASK)) {
2203                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2204                         get_state_name(ns->state));
2205                 return;
2206         }
2207
2208         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2209                 int i;
2210
2211                 for (i = 0; i < len; i++)
2212                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2213
2214                 return;
2215         }
2216
2217         /* Check if these are expected bytes */
2218         if (ns->regs.count + len > ns->regs.num) {
2219                 NS_ERR("read_buf: too many bytes to read\n");
2220                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2221                 return;
2222         }
2223
2224         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2225         ns->regs.count += len;
2226
2227         if (ns->regs.count == ns->regs.num) {
2228                 if (NS_STATE(ns->nxstate) == STATE_READY)
2229                         switch_state(ns);
2230         }
2231
2232         return;
2233 }
2234
2235 /*
2236  * Module initialization function
2237  */
2238 static int __init ns_init_module(void)
2239 {
2240         struct nand_chip *chip;
2241         struct nandsim *nand;
2242         int retval = -ENOMEM, i;
2243
2244         if (bus_width != 8 && bus_width != 16) {
2245                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2246                 return -EINVAL;
2247         }
2248
2249         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2250         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2251                                 + sizeof(struct nandsim), GFP_KERNEL);
2252         if (!nsmtd) {
2253                 NS_ERR("unable to allocate core structures.\n");
2254                 return -ENOMEM;
2255         }
2256         chip        = (struct nand_chip *)(nsmtd + 1);
2257         nsmtd->priv = (void *)chip;
2258         nand        = (struct nandsim *)(chip + 1);
2259         chip->priv  = (void *)nand;
2260
2261         /*
2262          * Register simulator's callbacks.
2263          */
2264         chip->cmd_ctrl   = ns_hwcontrol;
2265         chip->read_byte  = ns_nand_read_byte;
2266         chip->dev_ready  = ns_device_ready;
2267         chip->write_buf  = ns_nand_write_buf;
2268         chip->read_buf   = ns_nand_read_buf;
2269         chip->read_word  = ns_nand_read_word;
2270         chip->ecc.mode   = NAND_ECC_SOFT;
2271         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2272         /* and 'badblocks' parameters to work */
2273         chip->options   |= NAND_SKIP_BBTSCAN;
2274
2275         switch (bbt) {
2276         case 2:
2277                  chip->bbt_options |= NAND_BBT_NO_OOB;
2278         case 1:
2279                  chip->bbt_options |= NAND_BBT_USE_FLASH;
2280         case 0:
2281                 break;
2282         default:
2283                 NS_ERR("bbt has to be 0..2\n");
2284                 retval = -EINVAL;
2285                 goto error;
2286         }
2287         /*
2288          * Perform minimum nandsim structure initialization to handle
2289          * the initial ID read command correctly
2290          */
2291         if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2292                 nand->geom.idbytes = 8;
2293         else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2294                 nand->geom.idbytes = 6;
2295         else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2296                 nand->geom.idbytes = 4;
2297         else
2298                 nand->geom.idbytes = 2;
2299         nand->regs.status = NS_STATUS_OK(nand);
2300         nand->nxstate = STATE_UNKNOWN;
2301         nand->options |= OPT_PAGE512; /* temporary value */
2302         memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2303         if (bus_width == 16) {
2304                 nand->busw = 16;
2305                 chip->options |= NAND_BUSWIDTH_16;
2306         }
2307
2308         nsmtd->owner = THIS_MODULE;
2309
2310         if ((retval = parse_weakblocks()) != 0)
2311                 goto error;
2312
2313         if ((retval = parse_weakpages()) != 0)
2314                 goto error;
2315
2316         if ((retval = parse_gravepages()) != 0)
2317                 goto error;
2318
2319         retval = nand_scan_ident(nsmtd, 1, NULL);
2320         if (retval) {
2321                 NS_ERR("cannot scan NAND Simulator device\n");
2322                 if (retval > 0)
2323                         retval = -ENXIO;
2324                 goto error;
2325         }
2326
2327         if (bch) {
2328                 unsigned int eccsteps, eccbytes;
2329                 if (!mtd_nand_has_bch()) {
2330                         NS_ERR("BCH ECC support is disabled\n");
2331                         retval = -EINVAL;
2332                         goto error;
2333                 }
2334                 /* use 512-byte ecc blocks */
2335                 eccsteps = nsmtd->writesize/512;
2336                 eccbytes = (bch*13+7)/8;
2337                 /* do not bother supporting small page devices */
2338                 if ((nsmtd->oobsize < 64) || !eccsteps) {
2339                         NS_ERR("bch not available on small page devices\n");
2340                         retval = -EINVAL;
2341                         goto error;
2342                 }
2343                 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2344                         NS_ERR("invalid bch value %u\n", bch);
2345                         retval = -EINVAL;
2346                         goto error;
2347                 }
2348                 chip->ecc.mode = NAND_ECC_SOFT_BCH;
2349                 chip->ecc.size = 512;
2350                 chip->ecc.strength = bch;
2351                 chip->ecc.bytes = eccbytes;
2352                 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2353         }
2354
2355         retval = nand_scan_tail(nsmtd);
2356         if (retval) {
2357                 NS_ERR("can't register NAND Simulator\n");
2358                 if (retval > 0)
2359                         retval = -ENXIO;
2360                 goto error;
2361         }
2362
2363         if (overridesize) {
2364                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2365                 if (new_size >> overridesize != nsmtd->erasesize) {
2366                         NS_ERR("overridesize is too big\n");
2367                         retval = -EINVAL;
2368                         goto err_exit;
2369                 }
2370                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2371                 nsmtd->size = new_size;
2372                 chip->chipsize = new_size;
2373                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2374                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2375         }
2376
2377         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2378                 goto err_exit;
2379
2380         if ((retval = nandsim_debugfs_create(nand)) != 0)
2381                 goto err_exit;
2382
2383         if ((retval = init_nandsim(nsmtd)) != 0)
2384                 goto err_exit;
2385
2386         if ((retval = chip->scan_bbt(nsmtd)) != 0)
2387                 goto err_exit;
2388
2389         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2390                 goto err_exit;
2391
2392         /* Register NAND partitions */
2393         retval = mtd_device_register(nsmtd, &nand->partitions[0],
2394                                      nand->nbparts);
2395         if (retval != 0)
2396                 goto err_exit;
2397
2398         return 0;
2399
2400 err_exit:
2401         free_nandsim(nand);
2402         nand_release(nsmtd);
2403         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2404                 kfree(nand->partitions[i].name);
2405 error:
2406         kfree(nsmtd);
2407         free_lists();
2408
2409         return retval;
2410 }
2411
2412 module_init(ns_init_module);
2413
2414 /*
2415  * Module clean-up function
2416  */
2417 static void __exit ns_cleanup_module(void)
2418 {
2419         struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2420         int i;
2421
2422         nandsim_debugfs_remove(ns);
2423         free_nandsim(ns);    /* Free nandsim private resources */
2424         nand_release(nsmtd); /* Unregister driver */
2425         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2426                 kfree(ns->partitions[i].name);
2427         kfree(nsmtd);        /* Free other structures */
2428         free_lists();
2429 }
2430
2431 module_exit(ns_cleanup_module);
2432
2433 MODULE_LICENSE ("GPL");
2434 MODULE_AUTHOR ("Artem B. Bityuckiy");
2435 MODULE_DESCRIPTION ("The NAND flash simulator");