553b24d93335ba3279c9e5c969f5b6131668ccb1
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/onenand.h>
20 #include <linux/mtd/partitions.h>
21
22 #include <asm/io.h>
23
24 /**
25  * onenand_oob_64 - oob info for large (2KB) page
26  */
27 static struct nand_ecclayout onenand_oob_64 = {
28         .eccbytes       = 20,
29         .eccpos         = {
30                 8, 9, 10, 11, 12,
31                 24, 25, 26, 27, 28,
32                 40, 41, 42, 43, 44,
33                 56, 57, 58, 59, 60,
34                 },
35         .oobfree        = {
36                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
37                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
38         }
39 };
40
41 /**
42  * onenand_oob_32 - oob info for middle (1KB) page
43  */
44 static struct nand_ecclayout onenand_oob_32 = {
45         .eccbytes       = 10,
46         .eccpos         = {
47                 8, 9, 10, 11, 12,
48                 24, 25, 26, 27, 28,
49                 },
50         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
51 };
52
53 static const unsigned char ffchars[] = {
54         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
55         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
56         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
57         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
58         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
59         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
60         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
62 };
63
64 /**
65  * onenand_readw - [OneNAND Interface] Read OneNAND register
66  * @param addr          address to read
67  *
68  * Read OneNAND register
69  */
70 static unsigned short onenand_readw(void __iomem *addr)
71 {
72         return readw(addr);
73 }
74
75 /**
76  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
77  * @param value         value to write
78  * @param addr          address to write
79  *
80  * Write OneNAND register with value
81  */
82 static void onenand_writew(unsigned short value, void __iomem *addr)
83 {
84         writew(value, addr);
85 }
86
87 /**
88  * onenand_block_address - [DEFAULT] Get block address
89  * @param this          onenand chip data structure
90  * @param block         the block
91  * @return              translated block address if DDP, otherwise same
92  *
93  * Setup Start Address 1 Register (F100h)
94  */
95 static int onenand_block_address(struct onenand_chip *this, int block)
96 {
97         /* Device Flash Core select, NAND Flash Block Address */
98         if (block & this->density_mask)
99                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
100
101         return block;
102 }
103
104 /**
105  * onenand_bufferram_address - [DEFAULT] Get bufferram address
106  * @param this          onenand chip data structure
107  * @param block         the block
108  * @return              set DBS value if DDP, otherwise 0
109  *
110  * Setup Start Address 2 Register (F101h) for DDP
111  */
112 static int onenand_bufferram_address(struct onenand_chip *this, int block)
113 {
114         /* Device BufferRAM Select */
115         if (block & this->density_mask)
116                 return ONENAND_DDP_CHIP1;
117
118         return ONENAND_DDP_CHIP0;
119 }
120
121 /**
122  * onenand_page_address - [DEFAULT] Get page address
123  * @param page          the page address
124  * @param sector        the sector address
125  * @return              combined page and sector address
126  *
127  * Setup Start Address 8 Register (F107h)
128  */
129 static int onenand_page_address(int page, int sector)
130 {
131         /* Flash Page Address, Flash Sector Address */
132         int fpa, fsa;
133
134         fpa = page & ONENAND_FPA_MASK;
135         fsa = sector & ONENAND_FSA_MASK;
136
137         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
138 }
139
140 /**
141  * onenand_buffer_address - [DEFAULT] Get buffer address
142  * @param dataram1      DataRAM index
143  * @param sectors       the sector address
144  * @param count         the number of sectors
145  * @return              the start buffer value
146  *
147  * Setup Start Buffer Register (F200h)
148  */
149 static int onenand_buffer_address(int dataram1, int sectors, int count)
150 {
151         int bsa, bsc;
152
153         /* BufferRAM Sector Address */
154         bsa = sectors & ONENAND_BSA_MASK;
155
156         if (dataram1)
157                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
158         else
159                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
160
161         /* BufferRAM Sector Count */
162         bsc = count & ONENAND_BSC_MASK;
163
164         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
165 }
166
167 /**
168  * onenand_command - [DEFAULT] Send command to OneNAND device
169  * @param mtd           MTD device structure
170  * @param cmd           the command to be sent
171  * @param addr          offset to read from or write to
172  * @param len           number of bytes to read or write
173  *
174  * Send command to OneNAND device. This function is used for middle/large page
175  * devices (1KB/2KB Bytes per page)
176  */
177 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
178 {
179         struct onenand_chip *this = mtd->priv;
180         int value, readcmd = 0, block_cmd = 0;
181         int block, page;
182
183         /* Address translation */
184         switch (cmd) {
185         case ONENAND_CMD_UNLOCK:
186         case ONENAND_CMD_LOCK:
187         case ONENAND_CMD_LOCK_TIGHT:
188         case ONENAND_CMD_UNLOCK_ALL:
189                 block = -1;
190                 page = -1;
191                 break;
192
193         case ONENAND_CMD_ERASE:
194         case ONENAND_CMD_BUFFERRAM:
195         case ONENAND_CMD_OTP_ACCESS:
196                 block_cmd = 1;
197                 block = (int) (addr >> this->erase_shift);
198                 page = -1;
199                 break;
200
201         default:
202                 block = (int) (addr >> this->erase_shift);
203                 page = (int) (addr >> this->page_shift);
204                 page &= this->page_mask;
205                 break;
206         }
207
208         /* NOTE: The setting order of the registers is very important! */
209         if (cmd == ONENAND_CMD_BUFFERRAM) {
210                 /* Select DataRAM for DDP */
211                 value = onenand_bufferram_address(this, block);
212                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
213
214                 /* Switch to the next data buffer */
215                 ONENAND_SET_NEXT_BUFFERRAM(this);
216
217                 return 0;
218         }
219
220         if (block != -1) {
221                 /* Write 'DFS, FBA' of Flash */
222                 value = onenand_block_address(this, block);
223                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
224
225                 if (block_cmd) {
226                         /* Select DataRAM for DDP */
227                         value = onenand_bufferram_address(this, block);
228                         this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
229                 }
230         }
231
232         if (page != -1) {
233                 /* Now we use page size operation */
234                 int sectors = 4, count = 4;
235                 int dataram;
236
237                 switch (cmd) {
238                 case ONENAND_CMD_READ:
239                 case ONENAND_CMD_READOOB:
240                         dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
241                         readcmd = 1;
242                         break;
243
244                 default:
245                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
246                         break;
247                 }
248
249                 /* Write 'FPA, FSA' of Flash */
250                 value = onenand_page_address(page, sectors);
251                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
252
253                 /* Write 'BSA, BSC' of DataRAM */
254                 value = onenand_buffer_address(dataram, sectors, count);
255                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
256
257                 if (readcmd) {
258                         /* Select DataRAM for DDP */
259                         value = onenand_bufferram_address(this, block);
260                         this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
261                 }
262         }
263
264         /* Interrupt clear */
265         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
266
267         /* Write command */
268         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
269
270         return 0;
271 }
272
273 /**
274  * onenand_wait - [DEFAULT] wait until the command is done
275  * @param mtd           MTD device structure
276  * @param state         state to select the max. timeout value
277  *
278  * Wait for command done. This applies to all OneNAND command
279  * Read can take up to 30us, erase up to 2ms and program up to 350us
280  * according to general OneNAND specs
281  */
282 static int onenand_wait(struct mtd_info *mtd, int state)
283 {
284         struct onenand_chip * this = mtd->priv;
285         unsigned long timeout;
286         unsigned int flags = ONENAND_INT_MASTER;
287         unsigned int interrupt = 0;
288         unsigned int ctrl;
289
290         /* The 20 msec is enough */
291         timeout = jiffies + msecs_to_jiffies(20);
292         while (time_before(jiffies, timeout)) {
293                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
294
295                 if (interrupt & flags)
296                         break;
297
298                 if (state != FL_READING)
299                         cond_resched();
300         }
301         /* To get correct interrupt status in timeout case */
302         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
303
304         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
305
306         if (ctrl & ONENAND_CTRL_ERROR) {
307                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl);
308                 if (ctrl & ONENAND_CTRL_LOCK)
309                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error.\n");
310                 return ctrl;
311         }
312
313         if (interrupt & ONENAND_INT_READ) {
314                 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
315                 if (ecc) {
316                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc);
317                         if (ecc & ONENAND_ECC_2BIT_ALL) {
318                                 mtd->ecc_stats.failed++;
319                                 return ecc;
320                         } else if (ecc & ONENAND_ECC_1BIT_ALL)
321                                 mtd->ecc_stats.corrected++;
322                 }
323         } else if (state == FL_READING) {
324                 printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
325                 return -EIO;
326         }
327
328         return 0;
329 }
330
331 /*
332  * onenand_interrupt - [DEFAULT] onenand interrupt handler
333  * @param irq           onenand interrupt number
334  * @param dev_id        interrupt data
335  *
336  * complete the work
337  */
338 static irqreturn_t onenand_interrupt(int irq, void *data)
339 {
340         struct onenand_chip *this = (struct onenand_chip *) data;
341
342         /* To handle shared interrupt */
343         if (!this->complete.done)
344                 complete(&this->complete);
345
346         return IRQ_HANDLED;
347 }
348
349 /*
350  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
351  * @param mtd           MTD device structure
352  * @param state         state to select the max. timeout value
353  *
354  * Wait for command done.
355  */
356 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
357 {
358         struct onenand_chip *this = mtd->priv;
359
360         wait_for_completion(&this->complete);
361
362         return onenand_wait(mtd, state);
363 }
364
365 /*
366  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
367  * @param mtd           MTD device structure
368  * @param state         state to select the max. timeout value
369  *
370  * Try interrupt based wait (It is used one-time)
371  */
372 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
373 {
374         struct onenand_chip *this = mtd->priv;
375         unsigned long remain, timeout;
376
377         /* We use interrupt wait first */
378         this->wait = onenand_interrupt_wait;
379
380         timeout = msecs_to_jiffies(100);
381         remain = wait_for_completion_timeout(&this->complete, timeout);
382         if (!remain) {
383                 printk(KERN_INFO "OneNAND: There's no interrupt. "
384                                 "We use the normal wait\n");
385
386                 /* Release the irq */
387                 free_irq(this->irq, this);
388
389                 this->wait = onenand_wait;
390         }
391
392         return onenand_wait(mtd, state);
393 }
394
395 /*
396  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
397  * @param mtd           MTD device structure
398  *
399  * There's two method to wait onenand work
400  * 1. polling - read interrupt status register
401  * 2. interrupt - use the kernel interrupt method
402  */
403 static void onenand_setup_wait(struct mtd_info *mtd)
404 {
405         struct onenand_chip *this = mtd->priv;
406         int syscfg;
407
408         init_completion(&this->complete);
409
410         if (this->irq <= 0) {
411                 this->wait = onenand_wait;
412                 return;
413         }
414
415         if (request_irq(this->irq, &onenand_interrupt,
416                                 IRQF_SHARED, "onenand", this)) {
417                 /* If we can't get irq, use the normal wait */
418                 this->wait = onenand_wait;
419                 return;
420         }
421
422         /* Enable interrupt */
423         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
424         syscfg |= ONENAND_SYS_CFG1_IOBE;
425         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
426
427         this->wait = onenand_try_interrupt_wait;
428 }
429
430 /**
431  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
432  * @param mtd           MTD data structure
433  * @param area          BufferRAM area
434  * @return              offset given area
435  *
436  * Return BufferRAM offset given area
437  */
438 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
439 {
440         struct onenand_chip *this = mtd->priv;
441
442         if (ONENAND_CURRENT_BUFFERRAM(this)) {
443                 if (area == ONENAND_DATARAM)
444                         return mtd->writesize;
445                 if (area == ONENAND_SPARERAM)
446                         return mtd->oobsize;
447         }
448
449         return 0;
450 }
451
452 /**
453  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
454  * @param mtd           MTD data structure
455  * @param area          BufferRAM area
456  * @param buffer        the databuffer to put/get data
457  * @param offset        offset to read from or write to
458  * @param count         number of bytes to read/write
459  *
460  * Read the BufferRAM area
461  */
462 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
463                 unsigned char *buffer, int offset, size_t count)
464 {
465         struct onenand_chip *this = mtd->priv;
466         void __iomem *bufferram;
467
468         bufferram = this->base + area;
469
470         bufferram += onenand_bufferram_offset(mtd, area);
471
472         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
473                 unsigned short word;
474
475                 /* Align with word(16-bit) size */
476                 count--;
477
478                 /* Read word and save byte */
479                 word = this->read_word(bufferram + offset + count);
480                 buffer[count] = (word & 0xff);
481         }
482
483         memcpy(buffer, bufferram + offset, count);
484
485         return 0;
486 }
487
488 /**
489  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
490  * @param mtd           MTD data structure
491  * @param area          BufferRAM area
492  * @param buffer        the databuffer to put/get data
493  * @param offset        offset to read from or write to
494  * @param count         number of bytes to read/write
495  *
496  * Read the BufferRAM area with Sync. Burst Mode
497  */
498 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
499                 unsigned char *buffer, int offset, size_t count)
500 {
501         struct onenand_chip *this = mtd->priv;
502         void __iomem *bufferram;
503
504         bufferram = this->base + area;
505
506         bufferram += onenand_bufferram_offset(mtd, area);
507
508         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
509
510         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
511                 unsigned short word;
512
513                 /* Align with word(16-bit) size */
514                 count--;
515
516                 /* Read word and save byte */
517                 word = this->read_word(bufferram + offset + count);
518                 buffer[count] = (word & 0xff);
519         }
520
521         memcpy(buffer, bufferram + offset, count);
522
523         this->mmcontrol(mtd, 0);
524
525         return 0;
526 }
527
528 /**
529  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
530  * @param mtd           MTD data structure
531  * @param area          BufferRAM area
532  * @param buffer        the databuffer to put/get data
533  * @param offset        offset to read from or write to
534  * @param count         number of bytes to read/write
535  *
536  * Write the BufferRAM area
537  */
538 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
539                 const unsigned char *buffer, int offset, size_t count)
540 {
541         struct onenand_chip *this = mtd->priv;
542         void __iomem *bufferram;
543
544         bufferram = this->base + area;
545
546         bufferram += onenand_bufferram_offset(mtd, area);
547
548         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
549                 unsigned short word;
550                 int byte_offset;
551
552                 /* Align with word(16-bit) size */
553                 count--;
554
555                 /* Calculate byte access offset */
556                 byte_offset = offset + count;
557
558                 /* Read word and save byte */
559                 word = this->read_word(bufferram + byte_offset);
560                 word = (word & ~0xff) | buffer[count];
561                 this->write_word(word, bufferram + byte_offset);
562         }
563
564         memcpy(bufferram + offset, buffer, count);
565
566         return 0;
567 }
568
569 /**
570  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
571  * @param mtd           MTD data structure
572  * @param addr          address to check
573  * @return              1 if there are valid data, otherwise 0
574  *
575  * Check bufferram if there is data we required
576  */
577 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
578 {
579         struct onenand_chip *this = mtd->priv;
580         int blockpage;
581         unsigned int i;
582
583         blockpage = (int) (addr >> this->page_shift);
584
585         /* Is there valid data? */
586         i = ONENAND_CURRENT_BUFFERRAM(this);
587         if (this->bufferram[i].blockpage == blockpage)
588                 return 1;
589
590         /* Check another BufferRAM */
591         i = ONENAND_NEXT_BUFFERRAM(this);
592         if (this->bufferram[i].blockpage == blockpage) {
593                 ONENAND_SET_NEXT_BUFFERRAM(this);
594                 return 1;
595         }
596
597         return 0;
598 }
599
600 /**
601  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
602  * @param mtd           MTD data structure
603  * @param addr          address to update
604  * @param valid         valid flag
605  *
606  * Update BufferRAM information
607  */
608 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
609                 int valid)
610 {
611         struct onenand_chip *this = mtd->priv;
612         int blockpage;
613         unsigned int i;
614
615         blockpage = (int) (addr >> this->page_shift);
616
617         /* Invalidate another BufferRAM */
618         i = ONENAND_NEXT_BUFFERRAM(this);
619         if (this->bufferram[i].blockpage == blockpage)
620                 this->bufferram[i].blockpage = -1;
621
622         /* Update BufferRAM */
623         i = ONENAND_CURRENT_BUFFERRAM(this);
624         if (valid)
625                 this->bufferram[i].blockpage = blockpage;
626         else
627                 this->bufferram[i].blockpage = -1;
628 }
629
630 /**
631  * onenand_get_device - [GENERIC] Get chip for selected access
632  * @param mtd           MTD device structure
633  * @param new_state     the state which is requested
634  *
635  * Get the device and lock it for exclusive access
636  */
637 static int onenand_get_device(struct mtd_info *mtd, int new_state)
638 {
639         struct onenand_chip *this = mtd->priv;
640         DECLARE_WAITQUEUE(wait, current);
641
642         /*
643          * Grab the lock and see if the device is available
644          */
645         while (1) {
646                 spin_lock(&this->chip_lock);
647                 if (this->state == FL_READY) {
648                         this->state = new_state;
649                         spin_unlock(&this->chip_lock);
650                         break;
651                 }
652                 if (new_state == FL_PM_SUSPENDED) {
653                         spin_unlock(&this->chip_lock);
654                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
655                 }
656                 set_current_state(TASK_UNINTERRUPTIBLE);
657                 add_wait_queue(&this->wq, &wait);
658                 spin_unlock(&this->chip_lock);
659                 schedule();
660                 remove_wait_queue(&this->wq, &wait);
661         }
662
663         return 0;
664 }
665
666 /**
667  * onenand_release_device - [GENERIC] release chip
668  * @param mtd           MTD device structure
669  *
670  * Deselect, release chip lock and wake up anyone waiting on the device
671  */
672 static void onenand_release_device(struct mtd_info *mtd)
673 {
674         struct onenand_chip *this = mtd->priv;
675
676         /* Release the chip */
677         spin_lock(&this->chip_lock);
678         this->state = FL_READY;
679         wake_up(&this->wq);
680         spin_unlock(&this->chip_lock);
681 }
682
683 /**
684  * onenand_read - [MTD Interface] Read data from flash
685  * @param mtd           MTD device structure
686  * @param from          offset to read from
687  * @param len           number of bytes to read
688  * @param retlen        pointer to variable to store the number of read bytes
689  * @param buf           the databuffer to put data
690  *
691  * Read with ecc
692 */
693 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
694         size_t *retlen, u_char *buf)
695 {
696         struct onenand_chip *this = mtd->priv;
697         struct mtd_ecc_stats stats;
698         int read = 0, column;
699         int thislen;
700         int ret = 0, boundary = 0;
701
702         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
703
704         /* Do not allow reads past end of device */
705         if ((from + len) > mtd->size) {
706                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read: Attempt read beyond end of device\n");
707                 *retlen = 0;
708                 return -EINVAL;
709         }
710
711         /* Grab the lock and see if the device is available */
712         onenand_get_device(mtd, FL_READING);
713
714         stats = mtd->ecc_stats;
715
716         /* Read-while-load method */
717
718         /* Do first load to bufferRAM */
719         if (read < len) {
720                 if (!onenand_check_bufferram(mtd, from)) {
721                         this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
722                         ret = this->wait(mtd, FL_READING);
723                         onenand_update_bufferram(mtd, from, !ret);
724                 }
725         }
726
727         thislen = min_t(int, mtd->writesize, len - read);
728         column = from & (mtd->writesize - 1);
729         if (column + thislen > mtd->writesize)
730                 thislen = mtd->writesize - column;
731
732         while (!ret) {
733                 /* If there is more to load then start next load */
734                 from += thislen;
735                 if (read + thislen < len) {
736                         this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
737                         /*
738                          * Chip boundary handling in DDP
739                          * Now we issued chip 1 read and pointed chip 1
740                          * bufferam so we have to point chip 0 bufferam.
741                          */
742                         if (ONENAND_IS_DDP(this) &&
743                             unlikely(from == (this->chipsize >> 1))) {
744                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
745                                 boundary = 1;
746                         } else
747                                 boundary = 0;
748                         ONENAND_SET_PREV_BUFFERRAM(this);
749                 }
750                 /* While load is going, read from last bufferRAM */
751                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
752                 /* See if we are done */
753                 read += thislen;
754                 if (read == len)
755                         break;
756                 /* Set up for next read from bufferRAM */
757                 if (unlikely(boundary))
758                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
759                 ONENAND_SET_NEXT_BUFFERRAM(this);
760                 buf += thislen;
761                 thislen = min_t(int, mtd->writesize, len - read);
762                 column = 0;
763                 cond_resched();
764                 /* Now wait for load */
765                 ret = this->wait(mtd, FL_READING);
766                 onenand_update_bufferram(mtd, from, !ret);
767         }
768
769         /* Deselect and wake up anyone waiting on the device */
770         onenand_release_device(mtd);
771
772         /*
773          * Return success, if no ECC failures, else -EBADMSG
774          * fs driver will take care of that, because
775          * retlen == desired len and result == -EBADMSG
776          */
777         *retlen = read;
778
779         if (mtd->ecc_stats.failed - stats.failed)
780                 return -EBADMSG;
781
782         if (ret)
783                 return ret;
784
785         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
786 }
787
788 /**
789  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
790  * @param mtd           MTD device structure
791  * @param buf           destination address
792  * @param column        oob offset to read from
793  * @param thislen       oob length to read
794  */
795 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
796                                 int thislen)
797 {
798         struct onenand_chip *this = mtd->priv;
799         struct nand_oobfree *free;
800         int readcol = column;
801         int readend = column + thislen;
802         int lastgap = 0;
803         uint8_t *oob_buf = this->page_buf + mtd->writesize;
804
805         for (free = this->ecclayout->oobfree; free->length; ++free) {
806                 if (readcol >= lastgap)
807                         readcol += free->offset - lastgap;
808                 if (readend >= lastgap)
809                         readend += free->offset - lastgap;
810                 lastgap = free->offset + free->length;
811         }
812         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
813         for (free = this->ecclayout->oobfree; free->length; ++free) {
814                 int free_end = free->offset + free->length;
815                 if (free->offset < readend && free_end > readcol) {
816                         int st = max_t(int,free->offset,readcol);
817                         int ed = min_t(int,free_end,readend);
818                         int n = ed - st;
819                         memcpy(buf, oob_buf + st, n);
820                         buf += n;
821                 }
822         }
823         return 0;
824 }
825
826 /**
827  * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
828  * @param mtd           MTD device structure
829  * @param from          offset to read from
830  * @param len           number of bytes to read
831  * @param retlen        pointer to variable to store the number of read bytes
832  * @param buf           the databuffer to put data
833  * @param mode          operation mode
834  *
835  * OneNAND read out-of-band data from the spare area
836  */
837 int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
838                         size_t *retlen, u_char *buf, mtd_oob_mode_t mode)
839 {
840         struct onenand_chip *this = mtd->priv;
841         int read = 0, thislen, column, oobsize;
842         int ret = 0;
843
844         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
845
846         /* Initialize return length value */
847         *retlen = 0;
848
849         if (mode == MTD_OOB_AUTO)
850                 oobsize = this->ecclayout->oobavail;
851         else
852                 oobsize = mtd->oobsize;
853
854         column = from & (mtd->oobsize - 1);
855
856         if (unlikely(column >= oobsize)) {
857                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempted to start read outside oob\n");
858                 return -EINVAL;
859         }
860
861         /* Do not allow reads past end of device */
862         if (unlikely(from >= mtd->size ||
863                      column + len > ((mtd->size >> this->page_shift) -
864                                      (from >> this->page_shift)) * oobsize)) {
865                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempted to read beyond end of device\n");
866                 return -EINVAL;
867         }
868
869         /* Grab the lock and see if the device is available */
870         onenand_get_device(mtd, FL_READING);
871
872         while (read < len) {
873                 cond_resched();
874
875                 thislen = oobsize - column;
876                 thislen = min_t(int, thislen, len);
877
878                 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
879
880                 onenand_update_bufferram(mtd, from, 0);
881
882                 ret = this->wait(mtd, FL_READING);
883                 /* First copy data and check return value for ECC handling */
884
885                 if (mode == MTD_OOB_AUTO)
886                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
887                 else
888                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
889
890                 if (ret) {
891                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = 0x%x\n", ret);
892                         break;
893                 }
894
895                 read += thislen;
896
897                 if (read == len)
898                         break;
899
900                 buf += thislen;
901
902                 /* Read more? */
903                 if (read < len) {
904                         /* Page size */
905                         from += mtd->writesize;
906                         column = 0;
907                 }
908         }
909
910         /* Deselect and wake up anyone waiting on the device */
911         onenand_release_device(mtd);
912
913         *retlen = read;
914         return ret;
915 }
916
917 /**
918  * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
919  * @mtd:        MTD device structure
920  * @from:       offset to read from
921  * @ops:        oob operation description structure
922  */
923 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
924                             struct mtd_oob_ops *ops)
925 {
926         switch (ops->mode) {
927         case MTD_OOB_PLACE:
928         case MTD_OOB_AUTO:
929                 break;
930         case MTD_OOB_RAW:
931                 /* Not implemented yet */
932         default:
933                 return -EINVAL;
934         }
935         return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->ooblen,
936                                    &ops->oobretlen, ops->oobbuf, ops->mode);
937 }
938
939 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
940 /**
941  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
942  * @param mtd           MTD device structure
943  * @param buf           the databuffer to verify
944  * @param to            offset to read from
945  *
946  */
947 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
948 {
949         struct onenand_chip *this = mtd->priv;
950         char *readp = this->page_buf + mtd->writesize;
951         int status, i;
952
953         this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
954         onenand_update_bufferram(mtd, to, 0);
955         status = this->wait(mtd, FL_READING);
956         if (status)
957                 return status;
958
959         this->read_bufferram(mtd, ONENAND_SPARERAM, readp, 0, mtd->oobsize);
960         for(i = 0; i < mtd->oobsize; i++)
961                 if (buf[i] != 0xFF && buf[i] != readp[i])
962                         return -EBADMSG;
963
964         return 0;
965 }
966
967 /**
968  * onenand_verify - [GENERIC] verify the chip contents after a write
969  * @param mtd          MTD device structure
970  * @param buf          the databuffer to verify
971  * @param addr         offset to read from
972  * @param len          number of bytes to read and compare
973  *
974  */
975 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
976 {
977         struct onenand_chip *this = mtd->priv;
978         void __iomem *dataram;
979         int ret = 0;
980         int thislen, column;
981
982         while (len != 0) {
983                 thislen = min_t(int, mtd->writesize, len);
984                 column = addr & (mtd->writesize - 1);
985                 if (column + thislen > mtd->writesize)
986                         thislen = mtd->writesize - column;
987
988                 this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
989
990                 onenand_update_bufferram(mtd, addr, 0);
991
992                 ret = this->wait(mtd, FL_READING);
993                 if (ret)
994                         return ret;
995
996                 onenand_update_bufferram(mtd, addr, 1);
997
998                 dataram = this->base + ONENAND_DATARAM;
999                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1000
1001                 if (memcmp(buf, dataram + column, thislen))
1002                         return -EBADMSG;
1003
1004                 len -= thislen;
1005                 buf += thislen;
1006                 addr += thislen;
1007         }
1008
1009         return 0;
1010 }
1011 #else
1012 #define onenand_verify(...)             (0)
1013 #define onenand_verify_oob(...)         (0)
1014 #endif
1015
1016 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1017
1018 /**
1019  * onenand_write - [MTD Interface] write buffer to FLASH
1020  * @param mtd           MTD device structure
1021  * @param to            offset to write to
1022  * @param len           number of bytes to write
1023  * @param retlen        pointer to variable to store the number of written bytes
1024  * @param buf           the data to write
1025  *
1026  * Write with ECC
1027  */
1028 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1029         size_t *retlen, const u_char *buf)
1030 {
1031         struct onenand_chip *this = mtd->priv;
1032         int written = 0;
1033         int ret = 0;
1034         int column, subpage;
1035
1036         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1037
1038         /* Initialize retlen, in case of early exit */
1039         *retlen = 0;
1040
1041         /* Do not allow writes past end of device */
1042         if (unlikely((to + len) > mtd->size)) {
1043                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt write to past end of device\n");
1044                 return -EINVAL;
1045         }
1046
1047         /* Reject writes, which are not page aligned */
1048         if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1049                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt to write not page aligned data\n");
1050                 return -EINVAL;
1051         }
1052
1053         column = to & (mtd->writesize - 1);
1054         subpage = column || (len & (mtd->writesize - 1));
1055
1056         /* Grab the lock and see if the device is available */
1057         onenand_get_device(mtd, FL_WRITING);
1058
1059         /* Loop until all data write */
1060         while (written < len) {
1061                 int bytes = mtd->writesize;
1062                 int thislen = min_t(int, bytes, len - written);
1063                 u_char *wbuf = (u_char *) buf;
1064
1065                 cond_resched();
1066
1067                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, bytes);
1068
1069                 /* Partial page write */
1070                 if (subpage) {
1071                         bytes = min_t(int, bytes - column, (int) len);
1072                         memset(this->page_buf, 0xff, mtd->writesize);
1073                         memcpy(this->page_buf + column, buf, bytes);
1074                         wbuf = this->page_buf;
1075                         /* Even though partial write, we need page size */
1076                         thislen = mtd->writesize;
1077                 }
1078
1079                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, thislen);
1080                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1081
1082                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1083
1084                 /* In partial page write we don't update bufferram */
1085                 onenand_update_bufferram(mtd, to, !subpage);
1086
1087                 ret = this->wait(mtd, FL_WRITING);
1088                 if (ret) {
1089                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: write filaed %d\n", ret);
1090                         break;
1091                 }
1092
1093                 /* Only check verify write turn on */
1094                 ret = onenand_verify(mtd, (u_char *) wbuf, to, thislen);
1095                 if (ret) {
1096                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: verify failed %d\n", ret);
1097                         break;
1098                 }
1099
1100                 written += thislen;
1101                 if (written == len)
1102                         break;
1103
1104                 column = 0;
1105                 to += thislen;
1106                 buf += thislen;
1107         }
1108
1109         /* Deselect and wake up anyone waiting on the device */
1110         onenand_release_device(mtd);
1111
1112         *retlen = written;
1113
1114         return ret;
1115 }
1116
1117 /**
1118  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1119  * @param mtd           MTD device structure
1120  * @param oob_buf       oob buffer
1121  * @param buf           source address
1122  * @param column        oob offset to write to
1123  * @param thislen       oob length to write
1124  */
1125 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1126                                   const u_char *buf, int column, int thislen)
1127 {
1128         struct onenand_chip *this = mtd->priv;
1129         struct nand_oobfree *free;
1130         int writecol = column;
1131         int writeend = column + thislen;
1132         int lastgap = 0;
1133
1134         for (free = this->ecclayout->oobfree; free->length; ++free) {
1135                 if (writecol >= lastgap)
1136                         writecol += free->offset - lastgap;
1137                 if (writeend >= lastgap)
1138                         writeend += free->offset - lastgap;
1139                 lastgap = free->offset + free->length;
1140         }
1141         for (free = this->ecclayout->oobfree; free->length; ++free) {
1142                 int free_end = free->offset + free->length;
1143                 if (free->offset < writeend && free_end > writecol) {
1144                         int st = max_t(int,free->offset,writecol);
1145                         int ed = min_t(int,free_end,writeend);
1146                         int n = ed - st;
1147                         memcpy(oob_buf + st, buf, n);
1148                         buf += n;
1149                 }
1150         }
1151         return 0;
1152 }
1153
1154 /**
1155  * onenand_do_write_oob - [Internal] OneNAND write out-of-band
1156  * @param mtd           MTD device structure
1157  * @param to            offset to write to
1158  * @param len           number of bytes to write
1159  * @param retlen        pointer to variable to store the number of written bytes
1160  * @param buf           the data to write
1161  * @param mode          operation mode
1162  *
1163  * OneNAND write out-of-band
1164  */
1165 static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
1166                                 size_t *retlen, const u_char *buf, mtd_oob_mode_t mode)
1167 {
1168         struct onenand_chip *this = mtd->priv;
1169         int column, ret = 0, oobsize;
1170         int written = 0;
1171
1172         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1173
1174         /* Initialize retlen, in case of early exit */
1175         *retlen = 0;
1176
1177         if (mode == MTD_OOB_AUTO)
1178                 oobsize = this->ecclayout->oobavail;
1179         else
1180                 oobsize = mtd->oobsize;
1181
1182         column = to & (mtd->oobsize - 1);
1183
1184         if (unlikely(column >= oobsize)) {
1185                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempted to start write outside oob\n");
1186                 return -EINVAL;
1187         }
1188
1189         /* For compatibility with NAND: Do not allow write past end of page */
1190         if (column + len > oobsize) {
1191                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: "
1192                       "Attempt to write past end of page\n");
1193                 return -EINVAL;
1194         }
1195
1196         /* Do not allow reads past end of device */
1197         if (unlikely(to >= mtd->size ||
1198                      column + len > ((mtd->size >> this->page_shift) -
1199                                      (to >> this->page_shift)) * oobsize)) {
1200                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempted to write past end of device\n");
1201                 return -EINVAL;
1202         }
1203
1204         /* Grab the lock and see if the device is available */
1205         onenand_get_device(mtd, FL_WRITING);
1206
1207         /* Loop until all data write */
1208         while (written < len) {
1209                 int thislen = min_t(int, oobsize, len - written);
1210
1211                 cond_resched();
1212
1213                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1214
1215                 /* We send data to spare ram with oobsize
1216                  * to prevent byte access */
1217                 memset(this->page_buf, 0xff, mtd->oobsize);
1218                 if (mode == MTD_OOB_AUTO)
1219                         onenand_fill_auto_oob(mtd, this->page_buf, buf, column, thislen);
1220                 else
1221                         memcpy(this->page_buf + column, buf, thislen);
1222                 this->write_bufferram(mtd, ONENAND_SPARERAM, this->page_buf, 0, mtd->oobsize);
1223
1224                 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1225
1226                 onenand_update_bufferram(mtd, to, 0);
1227
1228                 ret = this->wait(mtd, FL_WRITING);
1229                 if (ret) {
1230                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: write failed %d\n", ret);
1231                         break;
1232                 }
1233
1234                 ret = onenand_verify_oob(mtd, this->page_buf, to);
1235                 if (ret) {
1236                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: verify failed %d\n", ret);
1237                         break;
1238                 }
1239
1240                 written += thislen;
1241                 if (written == len)
1242                         break;
1243
1244                 to += mtd->writesize;
1245                 buf += thislen;
1246                 column = 0;
1247         }
1248
1249         /* Deselect and wake up anyone waiting on the device */
1250         onenand_release_device(mtd);
1251
1252         *retlen = written;
1253
1254         return ret;
1255 }
1256
1257 /**
1258  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1259  * @mtd:        MTD device structure
1260  * @from:       offset to read from
1261  * @ops:        oob operation description structure
1262  */
1263 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1264                              struct mtd_oob_ops *ops)
1265 {
1266         switch (ops->mode) {
1267         case MTD_OOB_PLACE:
1268         case MTD_OOB_AUTO:
1269                 break;
1270         case MTD_OOB_RAW:
1271                 /* Not implemented yet */
1272         default:
1273                 return -EINVAL;
1274         }
1275         return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->ooblen,
1276                                     &ops->oobretlen, ops->oobbuf, ops->mode);
1277 }
1278
1279 /**
1280  * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1281  * @param mtd           MTD device structure
1282  * @param ofs           offset from device start
1283  * @param getchip       0, if the chip is already selected
1284  * @param allowbbt      1, if its allowed to access the bbt area
1285  *
1286  * Check, if the block is bad. Either by reading the bad block table or
1287  * calling of the scan function.
1288  */
1289 static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1290 {
1291         struct onenand_chip *this = mtd->priv;
1292         struct bbm_info *bbm = this->bbm;
1293
1294         /* Return info from the table */
1295         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1296 }
1297
1298 /**
1299  * onenand_erase - [MTD Interface] erase block(s)
1300  * @param mtd           MTD device structure
1301  * @param instr         erase instruction
1302  *
1303  * Erase one ore more blocks
1304  */
1305 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1306 {
1307         struct onenand_chip *this = mtd->priv;
1308         unsigned int block_size;
1309         loff_t addr;
1310         int len;
1311         int ret = 0;
1312
1313         DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1314
1315         block_size = (1 << this->erase_shift);
1316
1317         /* Start address must align on block boundary */
1318         if (unlikely(instr->addr & (block_size - 1))) {
1319                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
1320                 return -EINVAL;
1321         }
1322
1323         /* Length must align on block boundary */
1324         if (unlikely(instr->len & (block_size - 1))) {
1325                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n");
1326                 return -EINVAL;
1327         }
1328
1329         /* Do not allow erase past end of device */
1330         if (unlikely((instr->len + instr->addr) > mtd->size)) {
1331                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n");
1332                 return -EINVAL;
1333         }
1334
1335         instr->fail_addr = 0xffffffff;
1336
1337         /* Grab the lock and see if the device is available */
1338         onenand_get_device(mtd, FL_ERASING);
1339
1340         /* Loop throught the pages */
1341         len = instr->len;
1342         addr = instr->addr;
1343
1344         instr->state = MTD_ERASING;
1345
1346         while (len) {
1347                 cond_resched();
1348
1349                 /* Check if we have a bad block, we do not erase bad blocks */
1350                 if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1351                         printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1352                         instr->state = MTD_ERASE_FAILED;
1353                         goto erase_exit;
1354                 }
1355
1356                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1357
1358                 ret = this->wait(mtd, FL_ERASING);
1359                 /* Check, if it is write protected */
1360                 if (ret) {
1361                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1362                         instr->state = MTD_ERASE_FAILED;
1363                         instr->fail_addr = addr;
1364                         goto erase_exit;
1365                 }
1366
1367                 len -= block_size;
1368                 addr += block_size;
1369         }
1370
1371         instr->state = MTD_ERASE_DONE;
1372
1373 erase_exit:
1374
1375         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1376         /* Do call back function */
1377         if (!ret)
1378                 mtd_erase_callback(instr);
1379
1380         /* Deselect and wake up anyone waiting on the device */
1381         onenand_release_device(mtd);
1382
1383         return ret;
1384 }
1385
1386 /**
1387  * onenand_sync - [MTD Interface] sync
1388  * @param mtd           MTD device structure
1389  *
1390  * Sync is actually a wait for chip ready function
1391  */
1392 static void onenand_sync(struct mtd_info *mtd)
1393 {
1394         DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1395
1396         /* Grab the lock and see if the device is available */
1397         onenand_get_device(mtd, FL_SYNCING);
1398
1399         /* Release it and go back */
1400         onenand_release_device(mtd);
1401 }
1402
1403 /**
1404  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1405  * @param mtd           MTD device structure
1406  * @param ofs           offset relative to mtd start
1407  *
1408  * Check whether the block is bad
1409  */
1410 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1411 {
1412         /* Check for invalid offset */
1413         if (ofs > mtd->size)
1414                 return -EINVAL;
1415
1416         return onenand_block_checkbad(mtd, ofs, 1, 0);
1417 }
1418
1419 /**
1420  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1421  * @param mtd           MTD device structure
1422  * @param ofs           offset from device start
1423  *
1424  * This is the default implementation, which can be overridden by
1425  * a hardware specific driver.
1426  */
1427 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1428 {
1429         struct onenand_chip *this = mtd->priv;
1430         struct bbm_info *bbm = this->bbm;
1431         u_char buf[2] = {0, 0};
1432         size_t retlen;
1433         int block;
1434
1435         /* Get block number */
1436         block = ((int) ofs) >> bbm->bbt_erase_shift;
1437         if (bbm->bbt)
1438                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1439
1440         /* We write two bytes, so we dont have to mess with 16 bit access */
1441         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1442         return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf, MTD_OOB_PLACE);
1443 }
1444
1445 /**
1446  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1447  * @param mtd           MTD device structure
1448  * @param ofs           offset relative to mtd start
1449  *
1450  * Mark the block as bad
1451  */
1452 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1453 {
1454         struct onenand_chip *this = mtd->priv;
1455         int ret;
1456
1457         ret = onenand_block_isbad(mtd, ofs);
1458         if (ret) {
1459                 /* If it was bad already, return success and do nothing */
1460                 if (ret > 0)
1461                         return 0;
1462                 return ret;
1463         }
1464
1465         return this->block_markbad(mtd, ofs);
1466 }
1467
1468 /**
1469  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1470  * @param mtd           MTD device structure
1471  * @param ofs           offset relative to mtd start
1472  * @param len           number of bytes to lock or unlock
1473  *
1474  * Lock or unlock one or more blocks
1475  */
1476 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1477 {
1478         struct onenand_chip *this = mtd->priv;
1479         int start, end, block, value, status;
1480         int wp_status_mask;
1481
1482         start = ofs >> this->erase_shift;
1483         end = len >> this->erase_shift;
1484
1485         if (cmd == ONENAND_CMD_LOCK)
1486                 wp_status_mask = ONENAND_WP_LS;
1487         else
1488                 wp_status_mask = ONENAND_WP_US;
1489
1490         /* Continuous lock scheme */
1491         if (this->options & ONENAND_HAS_CONT_LOCK) {
1492                 /* Set start block address */
1493                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1494                 /* Set end block address */
1495                 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1496                 /* Write lock command */
1497                 this->command(mtd, cmd, 0, 0);
1498
1499                 /* There's no return value */
1500                 this->wait(mtd, FL_LOCKING);
1501
1502                 /* Sanity check */
1503                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1504                     & ONENAND_CTRL_ONGO)
1505                         continue;
1506
1507                 /* Check lock status */
1508                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1509                 if (!(status & wp_status_mask))
1510                         printk(KERN_ERR "wp status = 0x%x\n", status);
1511
1512                 return 0;
1513         }
1514
1515         /* Block lock scheme */
1516         for (block = start; block < start + end; block++) {
1517                 /* Set block address */
1518                 value = onenand_block_address(this, block);
1519                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1520                 /* Select DataRAM for DDP */
1521                 value = onenand_bufferram_address(this, block);
1522                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1523                 /* Set start block address */
1524                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1525                 /* Write lock command */
1526                 this->command(mtd, cmd, 0, 0);
1527
1528                 /* There's no return value */
1529                 this->wait(mtd, FL_LOCKING);
1530
1531                 /* Sanity check */
1532                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1533                     & ONENAND_CTRL_ONGO)
1534                         continue;
1535
1536                 /* Check lock status */
1537                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1538                 if (!(status & wp_status_mask))
1539                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1540         }
1541
1542         return 0;
1543 }
1544
1545 /**
1546  * onenand_lock - [MTD Interface] Lock block(s)
1547  * @param mtd           MTD device structure
1548  * @param ofs           offset relative to mtd start
1549  * @param len           number of bytes to unlock
1550  *
1551  * Lock one or more blocks
1552  */
1553 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1554 {
1555         return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1556 }
1557
1558 /**
1559  * onenand_unlock - [MTD Interface] Unlock block(s)
1560  * @param mtd           MTD device structure
1561  * @param ofs           offset relative to mtd start
1562  * @param len           number of bytes to unlock
1563  *
1564  * Unlock one or more blocks
1565  */
1566 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1567 {
1568         return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1569 }
1570
1571 /**
1572  * onenand_check_lock_status - [OneNAND Interface] Check lock status
1573  * @param this          onenand chip data structure
1574  *
1575  * Check lock status
1576  */
1577 static void onenand_check_lock_status(struct onenand_chip *this)
1578 {
1579         unsigned int value, block, status;
1580         unsigned int end;
1581
1582         end = this->chipsize >> this->erase_shift;
1583         for (block = 0; block < end; block++) {
1584                 /* Set block address */
1585                 value = onenand_block_address(this, block);
1586                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1587                 /* Select DataRAM for DDP */
1588                 value = onenand_bufferram_address(this, block);
1589                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1590                 /* Set start block address */
1591                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1592
1593                 /* Check lock status */
1594                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1595                 if (!(status & ONENAND_WP_US))
1596                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1597         }
1598 }
1599
1600 /**
1601  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1602  * @param mtd           MTD device structure
1603  *
1604  * Unlock all blocks
1605  */
1606 static int onenand_unlock_all(struct mtd_info *mtd)
1607 {
1608         struct onenand_chip *this = mtd->priv;
1609
1610         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1611                 /* Set start block address */
1612                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1613                 /* Write unlock command */
1614                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1615
1616                 /* There's no return value */
1617                 this->wait(mtd, FL_LOCKING);
1618
1619                 /* Sanity check */
1620                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1621                     & ONENAND_CTRL_ONGO)
1622                         continue;
1623
1624                 /* Workaround for all block unlock in DDP */
1625                 if (ONENAND_IS_DDP(this)) {
1626                         /* 1st block on another chip */
1627                         loff_t ofs = this->chipsize >> 1;
1628                         size_t len = mtd->erasesize;
1629
1630                         onenand_unlock(mtd, ofs, len);
1631                 }
1632
1633                 onenand_check_lock_status(this);
1634
1635                 return 0;
1636         }
1637
1638         onenand_unlock(mtd, 0x0, this->chipsize);
1639
1640         return 0;
1641 }
1642
1643 #ifdef CONFIG_MTD_ONENAND_OTP
1644
1645 /* Interal OTP operation */
1646 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
1647                 size_t *retlen, u_char *buf);
1648
1649 /**
1650  * do_otp_read - [DEFAULT] Read OTP block area
1651  * @param mtd           MTD device structure
1652  * @param from          The offset to read
1653  * @param len           number of bytes to read
1654  * @param retlen        pointer to variable to store the number of readbytes
1655  * @param buf           the databuffer to put/get data
1656  *
1657  * Read OTP block area.
1658  */
1659 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
1660                 size_t *retlen, u_char *buf)
1661 {
1662         struct onenand_chip *this = mtd->priv;
1663         int ret;
1664
1665         /* Enter OTP access mode */
1666         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1667         this->wait(mtd, FL_OTPING);
1668
1669         ret = mtd->read(mtd, from, len, retlen, buf);
1670
1671         /* Exit OTP access mode */
1672         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1673         this->wait(mtd, FL_RESETING);
1674
1675         return ret;
1676 }
1677
1678 /**
1679  * do_otp_write - [DEFAULT] Write OTP block area
1680  * @param mtd           MTD device structure
1681  * @param from          The offset to write
1682  * @param len           number of bytes to write
1683  * @param retlen        pointer to variable to store the number of write bytes
1684  * @param buf           the databuffer to put/get data
1685  *
1686  * Write OTP block area.
1687  */
1688 static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
1689                 size_t *retlen, u_char *buf)
1690 {
1691         struct onenand_chip *this = mtd->priv;
1692         unsigned char *pbuf = buf;
1693         int ret;
1694
1695         /* Force buffer page aligned */
1696         if (len < mtd->writesize) {
1697                 memcpy(this->page_buf, buf, len);
1698                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
1699                 pbuf = this->page_buf;
1700                 len = mtd->writesize;
1701         }
1702
1703         /* Enter OTP access mode */
1704         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1705         this->wait(mtd, FL_OTPING);
1706
1707         ret = mtd->write(mtd, from, len, retlen, pbuf);
1708
1709         /* Exit OTP access mode */
1710         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1711         this->wait(mtd, FL_RESETING);
1712
1713         return ret;
1714 }
1715
1716 /**
1717  * do_otp_lock - [DEFAULT] Lock OTP block area
1718  * @param mtd           MTD device structure
1719  * @param from          The offset to lock
1720  * @param len           number of bytes to lock
1721  * @param retlen        pointer to variable to store the number of lock bytes
1722  * @param buf           the databuffer to put/get data
1723  *
1724  * Lock OTP block area.
1725  */
1726 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
1727                 size_t *retlen, u_char *buf)
1728 {
1729         struct onenand_chip *this = mtd->priv;
1730         int ret;
1731
1732         /* Enter OTP access mode */
1733         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1734         this->wait(mtd, FL_OTPING);
1735
1736         ret = onenand_do_write_oob(mtd, from, len, retlen, buf, MTD_OOB_PLACE);
1737
1738         /* Exit OTP access mode */
1739         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1740         this->wait(mtd, FL_RESETING);
1741
1742         return ret;
1743 }
1744
1745 /**
1746  * onenand_otp_walk - [DEFAULT] Handle OTP operation
1747  * @param mtd           MTD device structure
1748  * @param from          The offset to read/write
1749  * @param len           number of bytes to read/write
1750  * @param retlen        pointer to variable to store the number of read bytes
1751  * @param buf           the databuffer to put/get data
1752  * @param action        do given action
1753  * @param mode          specify user and factory
1754  *
1755  * Handle OTP operation.
1756  */
1757 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1758                         size_t *retlen, u_char *buf,
1759                         otp_op_t action, int mode)
1760 {
1761         struct onenand_chip *this = mtd->priv;
1762         int otp_pages;
1763         int density;
1764         int ret = 0;
1765
1766         *retlen = 0;
1767
1768         density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1769         if (density < ONENAND_DEVICE_DENSITY_512Mb)
1770                 otp_pages = 20;
1771         else
1772                 otp_pages = 10;
1773
1774         if (mode == MTD_OTP_FACTORY) {
1775                 from += mtd->writesize * otp_pages;
1776                 otp_pages = 64 - otp_pages;
1777         }
1778
1779         /* Check User/Factory boundary */
1780         if (((mtd->writesize * otp_pages) - (from + len)) < 0)
1781                 return 0;
1782
1783         while (len > 0 && otp_pages > 0) {
1784                 if (!action) {  /* OTP Info functions */
1785                         struct otp_info *otpinfo;
1786
1787                         len -= sizeof(struct otp_info);
1788                         if (len <= 0)
1789                                 return -ENOSPC;
1790
1791                         otpinfo = (struct otp_info *) buf;
1792                         otpinfo->start = from;
1793                         otpinfo->length = mtd->writesize;
1794                         otpinfo->locked = 0;
1795
1796                         from += mtd->writesize;
1797                         buf += sizeof(struct otp_info);
1798                         *retlen += sizeof(struct otp_info);
1799                 } else {
1800                         size_t tmp_retlen;
1801                         int size = len;
1802
1803                         ret = action(mtd, from, len, &tmp_retlen, buf);
1804
1805                         buf += size;
1806                         len -= size;
1807                         *retlen += size;
1808
1809                         if (ret < 0)
1810                                 return ret;
1811                 }
1812                 otp_pages--;
1813         }
1814
1815         return 0;
1816 }
1817
1818 /**
1819  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
1820  * @param mtd           MTD device structure
1821  * @param buf           the databuffer to put/get data
1822  * @param len           number of bytes to read
1823  *
1824  * Read factory OTP info.
1825  */
1826 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
1827                         struct otp_info *buf, size_t len)
1828 {
1829         size_t retlen;
1830         int ret;
1831
1832         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
1833
1834         return ret ? : retlen;
1835 }
1836
1837 /**
1838  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
1839  * @param mtd           MTD device structure
1840  * @param from          The offset to read
1841  * @param len           number of bytes to read
1842  * @param retlen        pointer to variable to store the number of read bytes
1843  * @param buf           the databuffer to put/get data
1844  *
1845  * Read factory OTP area.
1846  */
1847 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1848                         size_t len, size_t *retlen, u_char *buf)
1849 {
1850         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
1851 }
1852
1853 /**
1854  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
1855  * @param mtd           MTD device structure
1856  * @param buf           the databuffer to put/get data
1857  * @param len           number of bytes to read
1858  *
1859  * Read user OTP info.
1860  */
1861 static int onenand_get_user_prot_info(struct mtd_info *mtd,
1862                         struct otp_info *buf, size_t len)
1863 {
1864         size_t retlen;
1865         int ret;
1866
1867         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
1868
1869         return ret ? : retlen;
1870 }
1871
1872 /**
1873  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
1874  * @param mtd           MTD device structure
1875  * @param from          The offset to read
1876  * @param len           number of bytes to read
1877  * @param retlen        pointer to variable to store the number of read bytes
1878  * @param buf           the databuffer to put/get data
1879  *
1880  * Read user OTP area.
1881  */
1882 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1883                         size_t len, size_t *retlen, u_char *buf)
1884 {
1885         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
1886 }
1887
1888 /**
1889  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
1890  * @param mtd           MTD device structure
1891  * @param from          The offset to write
1892  * @param len           number of bytes to write
1893  * @param retlen        pointer to variable to store the number of write bytes
1894  * @param buf           the databuffer to put/get data
1895  *
1896  * Write user OTP area.
1897  */
1898 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1899                         size_t len, size_t *retlen, u_char *buf)
1900 {
1901         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
1902 }
1903
1904 /**
1905  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
1906  * @param mtd           MTD device structure
1907  * @param from          The offset to lock
1908  * @param len           number of bytes to unlock
1909  *
1910  * Write lock mark on spare area in page 0 in OTP block
1911  */
1912 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1913                         size_t len)
1914 {
1915         unsigned char oob_buf[64];
1916         size_t retlen;
1917         int ret;
1918
1919         memset(oob_buf, 0xff, mtd->oobsize);
1920         /*
1921          * Note: OTP lock operation
1922          *       OTP block : 0xXXFC
1923          *       1st block : 0xXXF3 (If chip support)
1924          *       Both      : 0xXXF0 (If chip support)
1925          */
1926         oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
1927
1928         /*
1929          * Write lock mark to 8th word of sector0 of page0 of the spare0.
1930          * We write 16 bytes spare area instead of 2 bytes.
1931          */
1932         from = 0;
1933         len = 16;
1934
1935         ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
1936
1937         return ret ? : retlen;
1938 }
1939 #endif  /* CONFIG_MTD_ONENAND_OTP */
1940
1941 /**
1942  * onenand_check_features - Check and set OneNAND features
1943  * @param mtd           MTD data structure
1944  *
1945  * Check and set OneNAND features
1946  * - lock scheme
1947  */
1948 static void onenand_check_features(struct mtd_info *mtd)
1949 {
1950         struct onenand_chip *this = mtd->priv;
1951         unsigned int density, process;
1952
1953         /* Lock scheme depends on density and process */
1954         density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1955         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
1956
1957         /* Lock scheme */
1958         if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
1959                 /* A-Die has all block unlock */
1960                 if (process) {
1961                         printk(KERN_DEBUG "Chip support all block unlock\n");
1962                         this->options |= ONENAND_HAS_UNLOCK_ALL;
1963                 }
1964         } else {
1965                 /* Some OneNAND has continues lock scheme */
1966                 if (!process) {
1967                         printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
1968                         this->options |= ONENAND_HAS_CONT_LOCK;
1969                 }
1970         }
1971 }
1972
1973 /**
1974  * onenand_print_device_info - Print device ID
1975  * @param device        device ID
1976  *
1977  * Print device ID
1978  */
1979 static void onenand_print_device_info(int device, int version)
1980 {
1981         int vcc, demuxed, ddp, density;
1982
1983         vcc = device & ONENAND_DEVICE_VCC_MASK;
1984         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
1985         ddp = device & ONENAND_DEVICE_IS_DDP;
1986         density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
1987         printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
1988                 demuxed ? "" : "Muxed ",
1989                 ddp ? "(DDP)" : "",
1990                 (16 << density),
1991                 vcc ? "2.65/3.3" : "1.8",
1992                 device);
1993         printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
1994 }
1995
1996 static const struct onenand_manufacturers onenand_manuf_ids[] = {
1997         {ONENAND_MFR_SAMSUNG, "Samsung"},
1998 };
1999
2000 /**
2001  * onenand_check_maf - Check manufacturer ID
2002  * @param manuf         manufacturer ID
2003  *
2004  * Check manufacturer ID
2005  */
2006 static int onenand_check_maf(int manuf)
2007 {
2008         int size = ARRAY_SIZE(onenand_manuf_ids);
2009         char *name;
2010         int i;
2011
2012         for (i = 0; i < size; i++)
2013                 if (manuf == onenand_manuf_ids[i].id)
2014                         break;
2015
2016         if (i < size)
2017                 name = onenand_manuf_ids[i].name;
2018         else
2019                 name = "Unknown";
2020
2021         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2022
2023         return (i == size);
2024 }
2025
2026 /**
2027  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2028  * @param mtd           MTD device structure
2029  *
2030  * OneNAND detection method:
2031  *   Compare the the values from command with ones from register
2032  */
2033 static int onenand_probe(struct mtd_info *mtd)
2034 {
2035         struct onenand_chip *this = mtd->priv;
2036         int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2037         int density;
2038         int syscfg;
2039
2040         /* Save system configuration 1 */
2041         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2042         /* Clear Sync. Burst Read mode to read BootRAM */
2043         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2044
2045         /* Send the command for reading device ID from BootRAM */
2046         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2047
2048         /* Read manufacturer and device IDs from BootRAM */
2049         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2050         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2051
2052         /* Reset OneNAND to read default register values */
2053         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2054         /* Wait reset */
2055         this->wait(mtd, FL_RESETING);
2056
2057         /* Restore system configuration 1 */
2058         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2059
2060         /* Check manufacturer ID */
2061         if (onenand_check_maf(bram_maf_id))
2062                 return -ENXIO;
2063
2064         /* Read manufacturer and device IDs from Register */
2065         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2066         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2067         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2068
2069         /* Check OneNAND device */
2070         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2071                 return -ENXIO;
2072
2073         /* Flash device information */
2074         onenand_print_device_info(dev_id, ver_id);
2075         this->device_id = dev_id;
2076         this->version_id = ver_id;
2077
2078         density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2079         this->chipsize = (16 << density) << 20;
2080         /* Set density mask. it is used for DDP */
2081         if (ONENAND_IS_DDP(this))
2082                 this->density_mask = (1 << (density + 6));
2083         else
2084                 this->density_mask = 0;
2085
2086         /* OneNAND page size & block size */
2087         /* The data buffer size is equal to page size */
2088         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2089         mtd->oobsize = mtd->writesize >> 5;
2090         /* Pages per a block are always 64 in OneNAND */
2091         mtd->erasesize = mtd->writesize << 6;
2092
2093         this->erase_shift = ffs(mtd->erasesize) - 1;
2094         this->page_shift = ffs(mtd->writesize) - 1;
2095         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2096
2097         /* REVIST: Multichip handling */
2098
2099         mtd->size = this->chipsize;
2100
2101         /* Check OneNAND features */
2102         onenand_check_features(mtd);
2103
2104         return 0;
2105 }
2106
2107 /**
2108  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
2109  * @param mtd           MTD device structure
2110  */
2111 static int onenand_suspend(struct mtd_info *mtd)
2112 {
2113         return onenand_get_device(mtd, FL_PM_SUSPENDED);
2114 }
2115
2116 /**
2117  * onenand_resume - [MTD Interface] Resume the OneNAND flash
2118  * @param mtd           MTD device structure
2119  */
2120 static void onenand_resume(struct mtd_info *mtd)
2121 {
2122         struct onenand_chip *this = mtd->priv;
2123
2124         if (this->state == FL_PM_SUSPENDED)
2125                 onenand_release_device(mtd);
2126         else
2127                 printk(KERN_ERR "resume() called for the chip which is not"
2128                                 "in suspended state\n");
2129 }
2130
2131 /**
2132  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2133  * @param mtd           MTD device structure
2134  * @param maxchips      Number of chips to scan for
2135  *
2136  * This fills out all the not initialized function pointers
2137  * with the defaults.
2138  * The flash ID is read and the mtd/chip structures are
2139  * filled with the appropriate values.
2140  */
2141 int onenand_scan(struct mtd_info *mtd, int maxchips)
2142 {
2143         int i;
2144         struct onenand_chip *this = mtd->priv;
2145
2146         if (!this->read_word)
2147                 this->read_word = onenand_readw;
2148         if (!this->write_word)
2149                 this->write_word = onenand_writew;
2150
2151         if (!this->command)
2152                 this->command = onenand_command;
2153         if (!this->wait)
2154                 onenand_setup_wait(mtd);
2155
2156         if (!this->read_bufferram)
2157                 this->read_bufferram = onenand_read_bufferram;
2158         if (!this->write_bufferram)
2159                 this->write_bufferram = onenand_write_bufferram;
2160
2161         if (!this->block_markbad)
2162                 this->block_markbad = onenand_default_block_markbad;
2163         if (!this->scan_bbt)
2164                 this->scan_bbt = onenand_default_bbt;
2165
2166         if (onenand_probe(mtd))
2167                 return -ENXIO;
2168
2169         /* Set Sync. Burst Read after probing */
2170         if (this->mmcontrol) {
2171                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2172                 this->read_bufferram = onenand_sync_read_bufferram;
2173         }
2174
2175         /* Allocate buffers, if necessary */
2176         if (!this->page_buf) {
2177                 size_t len;
2178                 len = mtd->writesize + mtd->oobsize;
2179                 this->page_buf = kmalloc(len, GFP_KERNEL);
2180                 if (!this->page_buf) {
2181                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2182                         return -ENOMEM;
2183                 }
2184                 this->options |= ONENAND_PAGEBUF_ALLOC;
2185         }
2186
2187         this->state = FL_READY;
2188         init_waitqueue_head(&this->wq);
2189         spin_lock_init(&this->chip_lock);
2190
2191         /*
2192          * Allow subpage writes up to oobsize.
2193          */
2194         switch (mtd->oobsize) {
2195         case 64:
2196                 this->ecclayout = &onenand_oob_64;
2197                 mtd->subpage_sft = 2;
2198                 break;
2199
2200         case 32:
2201                 this->ecclayout = &onenand_oob_32;
2202                 mtd->subpage_sft = 1;
2203                 break;
2204
2205         default:
2206                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2207                         mtd->oobsize);
2208                 mtd->subpage_sft = 0;
2209                 /* To prevent kernel oops */
2210                 this->ecclayout = &onenand_oob_32;
2211                 break;
2212         }
2213
2214         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2215
2216         /*
2217          * The number of bytes available for a client to place data into
2218          * the out of band area
2219          */
2220         this->ecclayout->oobavail = 0;
2221         for (i = 0; this->ecclayout->oobfree[i].length; i++)
2222                 this->ecclayout->oobavail +=
2223                         this->ecclayout->oobfree[i].length;
2224
2225         mtd->ecclayout = this->ecclayout;
2226
2227         /* Fill in remaining MTD driver data */
2228         mtd->type = MTD_NANDFLASH;
2229         mtd->flags = MTD_CAP_NANDFLASH;
2230         mtd->ecctype = MTD_ECC_SW;
2231         mtd->erase = onenand_erase;
2232         mtd->point = NULL;
2233         mtd->unpoint = NULL;
2234         mtd->read = onenand_read;
2235         mtd->write = onenand_write;
2236         mtd->read_oob = onenand_read_oob;
2237         mtd->write_oob = onenand_write_oob;
2238 #ifdef CONFIG_MTD_ONENAND_OTP
2239         mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2240         mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2241         mtd->get_user_prot_info = onenand_get_user_prot_info;
2242         mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2243         mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2244         mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2245 #endif
2246         mtd->sync = onenand_sync;
2247         mtd->lock = onenand_lock;
2248         mtd->unlock = onenand_unlock;
2249         mtd->suspend = onenand_suspend;
2250         mtd->resume = onenand_resume;
2251         mtd->block_isbad = onenand_block_isbad;
2252         mtd->block_markbad = onenand_block_markbad;
2253         mtd->owner = THIS_MODULE;
2254
2255         /* Unlock whole block */
2256         onenand_unlock_all(mtd);
2257
2258         return this->scan_bbt(mtd);
2259 }
2260
2261 /**
2262  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2263  * @param mtd           MTD device structure
2264  */
2265 void onenand_release(struct mtd_info *mtd)
2266 {
2267         struct onenand_chip *this = mtd->priv;
2268
2269 #ifdef CONFIG_MTD_PARTITIONS
2270         /* Deregister partitions */
2271         del_mtd_partitions (mtd);
2272 #endif
2273         /* Deregister the device */
2274         del_mtd_device (mtd);
2275
2276         /* Free bad block table memory, if allocated */
2277         if (this->bbm) {
2278                 struct bbm_info *bbm = this->bbm;
2279                 kfree(bbm->bbt);
2280                 kfree(this->bbm);
2281         }
2282         /* Buffer allocated by onenand_scan */
2283         if (this->options & ONENAND_PAGEBUF_ALLOC)
2284                 kfree(this->page_buf);
2285 }
2286
2287 EXPORT_SYMBOL_GPL(onenand_scan);
2288 EXPORT_SYMBOL_GPL(onenand_release);
2289
2290 MODULE_LICENSE("GPL");
2291 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2292 MODULE_DESCRIPTION("Generic OneNAND flash driver code");