UBI: Fastmap: Fix races in ubi_wl_get_peb()
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139                                  struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141                             struct ubi_wl_entry *e);
142
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150         struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151         ubi_update_fastmap(ubi);
152         spin_lock(&ubi->wl_lock);
153         ubi->fm_work_scheduled = 0;
154         spin_unlock(&ubi->wl_lock);
155 }
156
157 /**
158  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
159  *  @ubi: UBI device description object
160  *  @pnum: the to be checked PEB
161  */
162 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
163 {
164         int i;
165
166         if (!ubi->fm)
167                 return 0;
168
169         for (i = 0; i < ubi->fm->used_blocks; i++)
170                 if (ubi->fm->e[i]->pnum == pnum)
171                         return 1;
172
173         return 0;
174 }
175 #else
176 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
177 {
178         return 0;
179 }
180 #endif
181
182 /**
183  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
184  * @e: the wear-leveling entry to add
185  * @root: the root of the tree
186  *
187  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
188  * the @ubi->used and @ubi->free RB-trees.
189  */
190 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
191 {
192         struct rb_node **p, *parent = NULL;
193
194         p = &root->rb_node;
195         while (*p) {
196                 struct ubi_wl_entry *e1;
197
198                 parent = *p;
199                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
200
201                 if (e->ec < e1->ec)
202                         p = &(*p)->rb_left;
203                 else if (e->ec > e1->ec)
204                         p = &(*p)->rb_right;
205                 else {
206                         ubi_assert(e->pnum != e1->pnum);
207                         if (e->pnum < e1->pnum)
208                                 p = &(*p)->rb_left;
209                         else
210                                 p = &(*p)->rb_right;
211                 }
212         }
213
214         rb_link_node(&e->u.rb, parent, p);
215         rb_insert_color(&e->u.rb, root);
216 }
217
218 /**
219  * do_work - do one pending work.
220  * @ubi: UBI device description object
221  *
222  * This function returns zero in case of success and a negative error code in
223  * case of failure.
224  */
225 static int do_work(struct ubi_device *ubi)
226 {
227         int err;
228         struct ubi_work *wrk;
229
230         cond_resched();
231
232         /*
233          * @ubi->work_sem is used to synchronize with the workers. Workers take
234          * it in read mode, so many of them may be doing works at a time. But
235          * the queue flush code has to be sure the whole queue of works is
236          * done, and it takes the mutex in write mode.
237          */
238         down_read(&ubi->work_sem);
239         spin_lock(&ubi->wl_lock);
240         if (list_empty(&ubi->works)) {
241                 spin_unlock(&ubi->wl_lock);
242                 up_read(&ubi->work_sem);
243                 return 0;
244         }
245
246         wrk = list_entry(ubi->works.next, struct ubi_work, list);
247         list_del(&wrk->list);
248         ubi->works_count -= 1;
249         ubi_assert(ubi->works_count >= 0);
250         spin_unlock(&ubi->wl_lock);
251
252         /*
253          * Call the worker function. Do not touch the work structure
254          * after this call as it will have been freed or reused by that
255          * time by the worker function.
256          */
257         err = wrk->func(ubi, wrk, 0);
258         if (err)
259                 ubi_err(ubi, "work failed with error code %d", err);
260         up_read(&ubi->work_sem);
261
262         return err;
263 }
264
265 /**
266  * produce_free_peb - produce a free physical eraseblock.
267  * @ubi: UBI device description object
268  *
269  * This function tries to make a free PEB by means of synchronous execution of
270  * pending works. This may be needed if, for example the background thread is
271  * disabled. Returns zero in case of success and a negative error code in case
272  * of failure.
273  */
274 static int produce_free_peb(struct ubi_device *ubi)
275 {
276         int err;
277
278         while (!ubi->free.rb_node && ubi->works_count) {
279                 spin_unlock(&ubi->wl_lock);
280
281                 dbg_wl("do one work synchronously");
282                 err = do_work(ubi);
283
284                 spin_lock(&ubi->wl_lock);
285                 if (err)
286                         return err;
287         }
288
289         return 0;
290 }
291
292 /**
293  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
294  * @e: the wear-leveling entry to check
295  * @root: the root of the tree
296  *
297  * This function returns non-zero if @e is in the @root RB-tree and zero if it
298  * is not.
299  */
300 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
301 {
302         struct rb_node *p;
303
304         p = root->rb_node;
305         while (p) {
306                 struct ubi_wl_entry *e1;
307
308                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
309
310                 if (e->pnum == e1->pnum) {
311                         ubi_assert(e == e1);
312                         return 1;
313                 }
314
315                 if (e->ec < e1->ec)
316                         p = p->rb_left;
317                 else if (e->ec > e1->ec)
318                         p = p->rb_right;
319                 else {
320                         ubi_assert(e->pnum != e1->pnum);
321                         if (e->pnum < e1->pnum)
322                                 p = p->rb_left;
323                         else
324                                 p = p->rb_right;
325                 }
326         }
327
328         return 0;
329 }
330
331 /**
332  * prot_queue_add - add physical eraseblock to the protection queue.
333  * @ubi: UBI device description object
334  * @e: the physical eraseblock to add
335  *
336  * This function adds @e to the tail of the protection queue @ubi->pq, where
337  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
338  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
339  * be locked.
340  */
341 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
342 {
343         int pq_tail = ubi->pq_head - 1;
344
345         if (pq_tail < 0)
346                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
347         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
348         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
349         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
350 }
351
352 /**
353  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
354  * @ubi: UBI device description object
355  * @root: the RB-tree where to look for
356  * @diff: maximum possible difference from the smallest erase counter
357  *
358  * This function looks for a wear leveling entry with erase counter closest to
359  * min + @diff, where min is the smallest erase counter.
360  */
361 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
362                                           struct rb_root *root, int diff)
363 {
364         struct rb_node *p;
365         struct ubi_wl_entry *e, *prev_e = NULL;
366         int max;
367
368         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
369         max = e->ec + diff;
370
371         p = root->rb_node;
372         while (p) {
373                 struct ubi_wl_entry *e1;
374
375                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
376                 if (e1->ec >= max)
377                         p = p->rb_left;
378                 else {
379                         p = p->rb_right;
380                         prev_e = e;
381                         e = e1;
382                 }
383         }
384
385         /* If no fastmap has been written and this WL entry can be used
386          * as anchor PEB, hold it back and return the second best WL entry
387          * such that fastmap can use the anchor PEB later. */
388         if (prev_e && !ubi->fm_disabled &&
389             !ubi->fm && e->pnum < UBI_FM_MAX_START)
390                 return prev_e;
391
392         return e;
393 }
394
395 /**
396  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
397  * @ubi: UBI device description object
398  * @root: the RB-tree where to look for
399  *
400  * This function looks for a wear leveling entry with medium erase counter,
401  * but not greater or equivalent than the lowest erase counter plus
402  * %WL_FREE_MAX_DIFF/2.
403  */
404 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
405                                                struct rb_root *root)
406 {
407         struct ubi_wl_entry *e, *first, *last;
408
409         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
410         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
411
412         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
413                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
414
415 #ifdef CONFIG_MTD_UBI_FASTMAP
416                 /* If no fastmap has been written and this WL entry can be used
417                  * as anchor PEB, hold it back and return the second best
418                  * WL entry such that fastmap can use the anchor PEB later. */
419                 if (e && !ubi->fm_disabled && !ubi->fm &&
420                     e->pnum < UBI_FM_MAX_START)
421                         e = rb_entry(rb_next(root->rb_node),
422                                      struct ubi_wl_entry, u.rb);
423 #endif
424         } else
425                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
426
427         return e;
428 }
429
430 #ifdef CONFIG_MTD_UBI_FASTMAP
431 /**
432  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
433  * @root: the RB-tree where to look for
434  */
435 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
436 {
437         struct rb_node *p;
438         struct ubi_wl_entry *e, *victim = NULL;
439         int max_ec = UBI_MAX_ERASECOUNTER;
440
441         ubi_rb_for_each_entry(p, e, root, u.rb) {
442                 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
443                         victim = e;
444                         max_ec = e->ec;
445                 }
446         }
447
448         return victim;
449 }
450
451 static int anchor_pebs_avalible(struct rb_root *root)
452 {
453         struct rb_node *p;
454         struct ubi_wl_entry *e;
455
456         ubi_rb_for_each_entry(p, e, root, u.rb)
457                 if (e->pnum < UBI_FM_MAX_START)
458                         return 1;
459
460         return 0;
461 }
462
463 /**
464  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
465  * @ubi: UBI device description object
466  * @anchor: This PEB will be used as anchor PEB by fastmap
467  *
468  * The function returns a physical erase block with a given maximal number
469  * and removes it from the wl subsystem.
470  * Must be called with wl_lock held!
471  */
472 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
473 {
474         struct ubi_wl_entry *e = NULL;
475
476         if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
477                 goto out;
478
479         if (anchor)
480                 e = find_anchor_wl_entry(&ubi->free);
481         else
482                 e = find_mean_wl_entry(ubi, &ubi->free);
483
484         if (!e)
485                 goto out;
486
487         self_check_in_wl_tree(ubi, e, &ubi->free);
488
489         /* remove it from the free list,
490          * the wl subsystem does no longer know this erase block */
491         rb_erase(&e->u.rb, &ubi->free);
492         ubi->free_count--;
493 out:
494         return e;
495 }
496 #endif
497
498 /**
499  * __wl_get_peb - get a physical eraseblock.
500  * @ubi: UBI device description object
501  *
502  * This function returns a physical eraseblock in case of success and a
503  * negative error code in case of failure.
504  */
505 static int __wl_get_peb(struct ubi_device *ubi)
506 {
507         int err;
508         struct ubi_wl_entry *e;
509
510 retry:
511         if (!ubi->free.rb_node) {
512                 if (ubi->works_count == 0) {
513                         ubi_err(ubi, "no free eraseblocks");
514                         ubi_assert(list_empty(&ubi->works));
515                         return -ENOSPC;
516                 }
517
518                 err = produce_free_peb(ubi);
519                 if (err < 0)
520                         return err;
521                 goto retry;
522         }
523
524         e = find_mean_wl_entry(ubi, &ubi->free);
525         if (!e) {
526                 ubi_err(ubi, "no free eraseblocks");
527                 return -ENOSPC;
528         }
529
530         self_check_in_wl_tree(ubi, e, &ubi->free);
531
532         /*
533          * Move the physical eraseblock to the protection queue where it will
534          * be protected from being moved for some time.
535          */
536         rb_erase(&e->u.rb, &ubi->free);
537         ubi->free_count--;
538         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
539 #ifndef CONFIG_MTD_UBI_FASTMAP
540         /* We have to enqueue e only if fastmap is disabled,
541          * is fastmap enabled prot_queue_add() will be called by
542          * ubi_wl_get_peb() after removing e from the pool. */
543         prot_queue_add(ubi, e);
544 #endif
545         return e->pnum;
546 }
547
548 #ifdef CONFIG_MTD_UBI_FASTMAP
549 /**
550  * return_unused_pool_pebs - returns unused PEB to the free tree.
551  * @ubi: UBI device description object
552  * @pool: fastmap pool description object
553  */
554 static void return_unused_pool_pebs(struct ubi_device *ubi,
555                                     struct ubi_fm_pool *pool)
556 {
557         int i;
558         struct ubi_wl_entry *e;
559
560         for (i = pool->used; i < pool->size; i++) {
561                 e = ubi->lookuptbl[pool->pebs[i]];
562                 wl_tree_add(e, &ubi->free);
563                 ubi->free_count++;
564         }
565 }
566
567 /**
568  * refill_wl_pool - refills all the fastmap pool used by the
569  * WL sub-system.
570  * @ubi: UBI device description object
571  */
572 static void refill_wl_pool(struct ubi_device *ubi)
573 {
574         struct ubi_wl_entry *e;
575         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
576
577         return_unused_pool_pebs(ubi, pool);
578
579         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
580                 if (!ubi->free.rb_node ||
581                    (ubi->free_count - ubi->beb_rsvd_pebs < 5))
582                         break;
583
584                 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
585                 self_check_in_wl_tree(ubi, e, &ubi->free);
586                 rb_erase(&e->u.rb, &ubi->free);
587                 ubi->free_count--;
588
589                 pool->pebs[pool->size] = e->pnum;
590         }
591         pool->used = 0;
592 }
593
594 /**
595  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
596  * @ubi: UBI device description object
597  */
598 static void refill_wl_user_pool(struct ubi_device *ubi)
599 {
600         struct ubi_fm_pool *pool = &ubi->fm_pool;
601
602         return_unused_pool_pebs(ubi, pool);
603
604         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
605                 pool->pebs[pool->size] = __wl_get_peb(ubi);
606                 if (pool->pebs[pool->size] < 0)
607                         break;
608         }
609         pool->used = 0;
610 }
611
612 /**
613  * ubi_refill_pools - refills all fastmap PEB pools.
614  * @ubi: UBI device description object
615  */
616 void ubi_refill_pools(struct ubi_device *ubi)
617 {
618         spin_lock(&ubi->wl_lock);
619         refill_wl_pool(ubi);
620         refill_wl_user_pool(ubi);
621         spin_unlock(&ubi->wl_lock);
622 }
623
624 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
625  * the fastmap pool.
626  */
627 int ubi_wl_get_peb(struct ubi_device *ubi)
628 {
629         int ret, retried = 0;
630         struct ubi_fm_pool *pool = &ubi->fm_pool;
631         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
632
633 again:
634         spin_lock(&ubi->wl_lock);
635         /* We check here also for the WL pool because at this point we can
636          * refill the WL pool synchronous. */
637         if (pool->used == pool->size || wl_pool->used == wl_pool->size) {
638                 spin_unlock(&ubi->wl_lock);
639                 ubi_update_fastmap(ubi);
640                 spin_lock(&ubi->wl_lock);
641         }
642
643         if (pool->used == pool->size) {
644                 spin_unlock(&ubi->wl_lock);
645                 if (retried) {
646                         ubi_err(ubi, "Unable to get a free PEB from user WL pool");
647                         ret = -ENOSPC;
648                         goto out;
649                 }
650                 retried = 1;
651                 goto again;
652         }
653
654         ubi_assert(pool->used < pool->size);
655         ret = pool->pebs[pool->used++];
656         prot_queue_add(ubi, ubi->lookuptbl[ret]);
657         spin_unlock(&ubi->wl_lock);
658 out:
659         return ret;
660 }
661
662 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
663  *
664  * @ubi: UBI device description object
665  */
666 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
667 {
668         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
669         int pnum;
670
671         if (pool->used == pool->size) {
672                 /* We cannot update the fastmap here because this
673                  * function is called in atomic context.
674                  * Let's fail here and refill/update it as soon as possible. */
675                 if (!ubi->fm_work_scheduled) {
676                         ubi->fm_work_scheduled = 1;
677                         schedule_work(&ubi->fm_work);
678                 }
679                 return NULL;
680         } else {
681                 pnum = pool->pebs[pool->used++];
682                 return ubi->lookuptbl[pnum];
683         }
684 }
685 #else
686 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
687 {
688         struct ubi_wl_entry *e;
689
690         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
691         self_check_in_wl_tree(ubi, e, &ubi->free);
692         ubi->free_count--;
693         ubi_assert(ubi->free_count >= 0);
694         rb_erase(&e->u.rb, &ubi->free);
695
696         return e;
697 }
698
699 int ubi_wl_get_peb(struct ubi_device *ubi)
700 {
701         int peb, err;
702
703         spin_lock(&ubi->wl_lock);
704         peb = __wl_get_peb(ubi);
705         spin_unlock(&ubi->wl_lock);
706
707         if (peb < 0)
708                 return peb;
709
710         err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
711                                     ubi->peb_size - ubi->vid_hdr_aloffset);
712         if (err) {
713                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes",
714                         peb);
715                 return err;
716         }
717
718         return peb;
719 }
720 #endif
721
722 /**
723  * prot_queue_del - remove a physical eraseblock from the protection queue.
724  * @ubi: UBI device description object
725  * @pnum: the physical eraseblock to remove
726  *
727  * This function deletes PEB @pnum from the protection queue and returns zero
728  * in case of success and %-ENODEV if the PEB was not found.
729  */
730 static int prot_queue_del(struct ubi_device *ubi, int pnum)
731 {
732         struct ubi_wl_entry *e;
733
734         e = ubi->lookuptbl[pnum];
735         if (!e)
736                 return -ENODEV;
737
738         if (self_check_in_pq(ubi, e))
739                 return -ENODEV;
740
741         list_del(&e->u.list);
742         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
743         return 0;
744 }
745
746 /**
747  * sync_erase - synchronously erase a physical eraseblock.
748  * @ubi: UBI device description object
749  * @e: the the physical eraseblock to erase
750  * @torture: if the physical eraseblock has to be tortured
751  *
752  * This function returns zero in case of success and a negative error code in
753  * case of failure.
754  */
755 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
756                       int torture)
757 {
758         int err;
759         struct ubi_ec_hdr *ec_hdr;
760         unsigned long long ec = e->ec;
761
762         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
763
764         err = self_check_ec(ubi, e->pnum, e->ec);
765         if (err)
766                 return -EINVAL;
767
768         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
769         if (!ec_hdr)
770                 return -ENOMEM;
771
772         err = ubi_io_sync_erase(ubi, e->pnum, torture);
773         if (err < 0)
774                 goto out_free;
775
776         ec += err;
777         if (ec > UBI_MAX_ERASECOUNTER) {
778                 /*
779                  * Erase counter overflow. Upgrade UBI and use 64-bit
780                  * erase counters internally.
781                  */
782                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
783                         e->pnum, ec);
784                 err = -EINVAL;
785                 goto out_free;
786         }
787
788         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
789
790         ec_hdr->ec = cpu_to_be64(ec);
791
792         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
793         if (err)
794                 goto out_free;
795
796         e->ec = ec;
797         spin_lock(&ubi->wl_lock);
798         if (e->ec > ubi->max_ec)
799                 ubi->max_ec = e->ec;
800         spin_unlock(&ubi->wl_lock);
801
802 out_free:
803         kfree(ec_hdr);
804         return err;
805 }
806
807 /**
808  * serve_prot_queue - check if it is time to stop protecting PEBs.
809  * @ubi: UBI device description object
810  *
811  * This function is called after each erase operation and removes PEBs from the
812  * tail of the protection queue. These PEBs have been protected for long enough
813  * and should be moved to the used tree.
814  */
815 static void serve_prot_queue(struct ubi_device *ubi)
816 {
817         struct ubi_wl_entry *e, *tmp;
818         int count;
819
820         /*
821          * There may be several protected physical eraseblock to remove,
822          * process them all.
823          */
824 repeat:
825         count = 0;
826         spin_lock(&ubi->wl_lock);
827         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
828                 dbg_wl("PEB %d EC %d protection over, move to used tree",
829                         e->pnum, e->ec);
830
831                 list_del(&e->u.list);
832                 wl_tree_add(e, &ubi->used);
833                 if (count++ > 32) {
834                         /*
835                          * Let's be nice and avoid holding the spinlock for
836                          * too long.
837                          */
838                         spin_unlock(&ubi->wl_lock);
839                         cond_resched();
840                         goto repeat;
841                 }
842         }
843
844         ubi->pq_head += 1;
845         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
846                 ubi->pq_head = 0;
847         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
848         spin_unlock(&ubi->wl_lock);
849 }
850
851 /**
852  * __schedule_ubi_work - schedule a work.
853  * @ubi: UBI device description object
854  * @wrk: the work to schedule
855  *
856  * This function adds a work defined by @wrk to the tail of the pending works
857  * list. Can only be used if ubi->work_sem is already held in read mode!
858  */
859 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
860 {
861         spin_lock(&ubi->wl_lock);
862         list_add_tail(&wrk->list, &ubi->works);
863         ubi_assert(ubi->works_count >= 0);
864         ubi->works_count += 1;
865         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
866                 wake_up_process(ubi->bgt_thread);
867         spin_unlock(&ubi->wl_lock);
868 }
869
870 /**
871  * schedule_ubi_work - schedule a work.
872  * @ubi: UBI device description object
873  * @wrk: the work to schedule
874  *
875  * This function adds a work defined by @wrk to the tail of the pending works
876  * list.
877  */
878 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
879 {
880         down_read(&ubi->work_sem);
881         __schedule_ubi_work(ubi, wrk);
882         up_read(&ubi->work_sem);
883 }
884
885 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
886                         int shutdown);
887
888 #ifdef CONFIG_MTD_UBI_FASTMAP
889 /**
890  * ubi_is_erase_work - checks whether a work is erase work.
891  * @wrk: The work object to be checked
892  */
893 int ubi_is_erase_work(struct ubi_work *wrk)
894 {
895         return wrk->func == erase_worker;
896 }
897 #endif
898
899 /**
900  * schedule_erase - schedule an erase work.
901  * @ubi: UBI device description object
902  * @e: the WL entry of the physical eraseblock to erase
903  * @vol_id: the volume ID that last used this PEB
904  * @lnum: the last used logical eraseblock number for the PEB
905  * @torture: if the physical eraseblock has to be tortured
906  *
907  * This function returns zero in case of success and a %-ENOMEM in case of
908  * failure.
909  */
910 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
911                           int vol_id, int lnum, int torture)
912 {
913         struct ubi_work *wl_wrk;
914
915         ubi_assert(e);
916         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
917
918         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
919                e->pnum, e->ec, torture);
920
921         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
922         if (!wl_wrk)
923                 return -ENOMEM;
924
925         wl_wrk->func = &erase_worker;
926         wl_wrk->e = e;
927         wl_wrk->vol_id = vol_id;
928         wl_wrk->lnum = lnum;
929         wl_wrk->torture = torture;
930
931         schedule_ubi_work(ubi, wl_wrk);
932         return 0;
933 }
934
935 /**
936  * do_sync_erase - run the erase worker synchronously.
937  * @ubi: UBI device description object
938  * @e: the WL entry of the physical eraseblock to erase
939  * @vol_id: the volume ID that last used this PEB
940  * @lnum: the last used logical eraseblock number for the PEB
941  * @torture: if the physical eraseblock has to be tortured
942  *
943  */
944 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
945                          int vol_id, int lnum, int torture)
946 {
947         struct ubi_work *wl_wrk;
948
949         dbg_wl("sync erase of PEB %i", e->pnum);
950
951         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
952         if (!wl_wrk)
953                 return -ENOMEM;
954
955         wl_wrk->e = e;
956         wl_wrk->vol_id = vol_id;
957         wl_wrk->lnum = lnum;
958         wl_wrk->torture = torture;
959
960         return erase_worker(ubi, wl_wrk, 0);
961 }
962
963 #ifdef CONFIG_MTD_UBI_FASTMAP
964 /**
965  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
966  * sub-system.
967  * see: ubi_wl_put_peb()
968  *
969  * @ubi: UBI device description object
970  * @fm_e: physical eraseblock to return
971  * @lnum: the last used logical eraseblock number for the PEB
972  * @torture: if this physical eraseblock has to be tortured
973  */
974 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
975                       int lnum, int torture)
976 {
977         struct ubi_wl_entry *e;
978         int vol_id, pnum = fm_e->pnum;
979
980         dbg_wl("PEB %d", pnum);
981
982         ubi_assert(pnum >= 0);
983         ubi_assert(pnum < ubi->peb_count);
984
985         spin_lock(&ubi->wl_lock);
986         e = ubi->lookuptbl[pnum];
987
988         /* This can happen if we recovered from a fastmap the very
989          * first time and writing now a new one. In this case the wl system
990          * has never seen any PEB used by the original fastmap.
991          */
992         if (!e) {
993                 e = fm_e;
994                 ubi_assert(e->ec >= 0);
995                 ubi->lookuptbl[pnum] = e;
996         } else {
997                 e->ec = fm_e->ec;
998                 kfree(fm_e);
999         }
1000
1001         spin_unlock(&ubi->wl_lock);
1002
1003         vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
1004         return schedule_erase(ubi, e, vol_id, lnum, torture);
1005 }
1006 #endif
1007
1008 /**
1009  * wear_leveling_worker - wear-leveling worker function.
1010  * @ubi: UBI device description object
1011  * @wrk: the work object
1012  * @shutdown: non-zero if the worker has to free memory and exit
1013  * because the WL-subsystem is shutting down
1014  *
1015  * This function copies a more worn out physical eraseblock to a less worn out
1016  * one. Returns zero in case of success and a negative error code in case of
1017  * failure.
1018  */
1019 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1020                                 int shutdown)
1021 {
1022         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1023         int vol_id = -1, lnum = -1;
1024 #ifdef CONFIG_MTD_UBI_FASTMAP
1025         int anchor = wrk->anchor;
1026 #endif
1027         struct ubi_wl_entry *e1, *e2;
1028         struct ubi_vid_hdr *vid_hdr;
1029
1030         kfree(wrk);
1031         if (shutdown)
1032                 return 0;
1033
1034         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1035         if (!vid_hdr)
1036                 return -ENOMEM;
1037
1038         mutex_lock(&ubi->move_mutex);
1039         spin_lock(&ubi->wl_lock);
1040         ubi_assert(!ubi->move_from && !ubi->move_to);
1041         ubi_assert(!ubi->move_to_put);
1042
1043         if (!ubi->free.rb_node ||
1044             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1045                 /*
1046                  * No free physical eraseblocks? Well, they must be waiting in
1047                  * the queue to be erased. Cancel movement - it will be
1048                  * triggered again when a free physical eraseblock appears.
1049                  *
1050                  * No used physical eraseblocks? They must be temporarily
1051                  * protected from being moved. They will be moved to the
1052                  * @ubi->used tree later and the wear-leveling will be
1053                  * triggered again.
1054                  */
1055                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1056                        !ubi->free.rb_node, !ubi->used.rb_node);
1057                 goto out_cancel;
1058         }
1059
1060 #ifdef CONFIG_MTD_UBI_FASTMAP
1061         /* Check whether we need to produce an anchor PEB */
1062         if (!anchor)
1063                 anchor = !anchor_pebs_avalible(&ubi->free);
1064
1065         if (anchor) {
1066                 e1 = find_anchor_wl_entry(&ubi->used);
1067                 if (!e1)
1068                         goto out_cancel;
1069                 e2 = get_peb_for_wl(ubi);
1070                 if (!e2)
1071                         goto out_cancel;
1072
1073                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1074                 rb_erase(&e1->u.rb, &ubi->used);
1075                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1076         } else if (!ubi->scrub.rb_node) {
1077 #else
1078         if (!ubi->scrub.rb_node) {
1079 #endif
1080                 /*
1081                  * Now pick the least worn-out used physical eraseblock and a
1082                  * highly worn-out free physical eraseblock. If the erase
1083                  * counters differ much enough, start wear-leveling.
1084                  */
1085                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1086                 e2 = get_peb_for_wl(ubi);
1087                 if (!e2)
1088                         goto out_cancel;
1089
1090                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1091                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
1092                                e1->ec, e2->ec);
1093
1094                         /* Give the unused PEB back */
1095                         wl_tree_add(e2, &ubi->free);
1096                         ubi->free_count++;
1097                         goto out_cancel;
1098                 }
1099                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1100                 rb_erase(&e1->u.rb, &ubi->used);
1101                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1102                        e1->pnum, e1->ec, e2->pnum, e2->ec);
1103         } else {
1104                 /* Perform scrubbing */
1105                 scrubbing = 1;
1106                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1107                 e2 = get_peb_for_wl(ubi);
1108                 if (!e2)
1109                         goto out_cancel;
1110
1111                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1112                 rb_erase(&e1->u.rb, &ubi->scrub);
1113                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1114         }
1115
1116         ubi->move_from = e1;
1117         ubi->move_to = e2;
1118         spin_unlock(&ubi->wl_lock);
1119
1120         /*
1121          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1122          * We so far do not know which logical eraseblock our physical
1123          * eraseblock (@e1) belongs to. We have to read the volume identifier
1124          * header first.
1125          *
1126          * Note, we are protected from this PEB being unmapped and erased. The
1127          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1128          * which is being moved was unmapped.
1129          */
1130
1131         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1132         if (err && err != UBI_IO_BITFLIPS) {
1133                 if (err == UBI_IO_FF) {
1134                         /*
1135                          * We are trying to move PEB without a VID header. UBI
1136                          * always write VID headers shortly after the PEB was
1137                          * given, so we have a situation when it has not yet
1138                          * had a chance to write it, because it was preempted.
1139                          * So add this PEB to the protection queue so far,
1140                          * because presumably more data will be written there
1141                          * (including the missing VID header), and then we'll
1142                          * move it.
1143                          */
1144                         dbg_wl("PEB %d has no VID header", e1->pnum);
1145                         protect = 1;
1146                         goto out_not_moved;
1147                 } else if (err == UBI_IO_FF_BITFLIPS) {
1148                         /*
1149                          * The same situation as %UBI_IO_FF, but bit-flips were
1150                          * detected. It is better to schedule this PEB for
1151                          * scrubbing.
1152                          */
1153                         dbg_wl("PEB %d has no VID header but has bit-flips",
1154                                e1->pnum);
1155                         scrubbing = 1;
1156                         goto out_not_moved;
1157                 }
1158
1159                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
1160                         err, e1->pnum);
1161                 goto out_error;
1162         }
1163
1164         vol_id = be32_to_cpu(vid_hdr->vol_id);
1165         lnum = be32_to_cpu(vid_hdr->lnum);
1166
1167         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1168         if (err) {
1169                 if (err == MOVE_CANCEL_RACE) {
1170                         /*
1171                          * The LEB has not been moved because the volume is
1172                          * being deleted or the PEB has been put meanwhile. We
1173                          * should prevent this PEB from being selected for
1174                          * wear-leveling movement again, so put it to the
1175                          * protection queue.
1176                          */
1177                         protect = 1;
1178                         goto out_not_moved;
1179                 }
1180                 if (err == MOVE_RETRY) {
1181                         scrubbing = 1;
1182                         goto out_not_moved;
1183                 }
1184                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1185                     err == MOVE_TARGET_RD_ERR) {
1186                         /*
1187                          * Target PEB had bit-flips or write error - torture it.
1188                          */
1189                         torture = 1;
1190                         goto out_not_moved;
1191                 }
1192
1193                 if (err == MOVE_SOURCE_RD_ERR) {
1194                         /*
1195                          * An error happened while reading the source PEB. Do
1196                          * not switch to R/O mode in this case, and give the
1197                          * upper layers a possibility to recover from this,
1198                          * e.g. by unmapping corresponding LEB. Instead, just
1199                          * put this PEB to the @ubi->erroneous list to prevent
1200                          * UBI from trying to move it over and over again.
1201                          */
1202                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1203                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
1204                                         ubi->erroneous_peb_count);
1205                                 goto out_error;
1206                         }
1207                         erroneous = 1;
1208                         goto out_not_moved;
1209                 }
1210
1211                 if (err < 0)
1212                         goto out_error;
1213
1214                 ubi_assert(0);
1215         }
1216
1217         /* The PEB has been successfully moved */
1218         if (scrubbing)
1219                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1220                         e1->pnum, vol_id, lnum, e2->pnum);
1221         ubi_free_vid_hdr(ubi, vid_hdr);
1222
1223         spin_lock(&ubi->wl_lock);
1224         if (!ubi->move_to_put) {
1225                 wl_tree_add(e2, &ubi->used);
1226                 e2 = NULL;
1227         }
1228         ubi->move_from = ubi->move_to = NULL;
1229         ubi->move_to_put = ubi->wl_scheduled = 0;
1230         spin_unlock(&ubi->wl_lock);
1231
1232         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1233         if (err) {
1234                 if (e2)
1235                         kmem_cache_free(ubi_wl_entry_slab, e2);
1236                 goto out_ro;
1237         }
1238
1239         if (e2) {
1240                 /*
1241                  * Well, the target PEB was put meanwhile, schedule it for
1242                  * erasure.
1243                  */
1244                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1245                        e2->pnum, vol_id, lnum);
1246                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1247                 if (err)
1248                         goto out_ro;
1249         }
1250
1251         dbg_wl("done");
1252         mutex_unlock(&ubi->move_mutex);
1253         return 0;
1254
1255         /*
1256          * For some reasons the LEB was not moved, might be an error, might be
1257          * something else. @e1 was not changed, so return it back. @e2 might
1258          * have been changed, schedule it for erasure.
1259          */
1260 out_not_moved:
1261         if (vol_id != -1)
1262                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1263                        e1->pnum, vol_id, lnum, e2->pnum, err);
1264         else
1265                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1266                        e1->pnum, e2->pnum, err);
1267         spin_lock(&ubi->wl_lock);
1268         if (protect)
1269                 prot_queue_add(ubi, e1);
1270         else if (erroneous) {
1271                 wl_tree_add(e1, &ubi->erroneous);
1272                 ubi->erroneous_peb_count += 1;
1273         } else if (scrubbing)
1274                 wl_tree_add(e1, &ubi->scrub);
1275         else
1276                 wl_tree_add(e1, &ubi->used);
1277         ubi_assert(!ubi->move_to_put);
1278         ubi->move_from = ubi->move_to = NULL;
1279         ubi->wl_scheduled = 0;
1280         spin_unlock(&ubi->wl_lock);
1281
1282         ubi_free_vid_hdr(ubi, vid_hdr);
1283         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1284         if (err)
1285                 goto out_ro;
1286
1287         mutex_unlock(&ubi->move_mutex);
1288         return 0;
1289
1290 out_error:
1291         if (vol_id != -1)
1292                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
1293                         err, e1->pnum, e2->pnum);
1294         else
1295                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1296                         err, e1->pnum, vol_id, lnum, e2->pnum);
1297         spin_lock(&ubi->wl_lock);
1298         ubi->move_from = ubi->move_to = NULL;
1299         ubi->move_to_put = ubi->wl_scheduled = 0;
1300         spin_unlock(&ubi->wl_lock);
1301
1302         ubi_free_vid_hdr(ubi, vid_hdr);
1303         kmem_cache_free(ubi_wl_entry_slab, e1);
1304         kmem_cache_free(ubi_wl_entry_slab, e2);
1305
1306 out_ro:
1307         ubi_ro_mode(ubi);
1308         mutex_unlock(&ubi->move_mutex);
1309         ubi_assert(err != 0);
1310         return err < 0 ? err : -EIO;
1311
1312 out_cancel:
1313         ubi->wl_scheduled = 0;
1314         spin_unlock(&ubi->wl_lock);
1315         mutex_unlock(&ubi->move_mutex);
1316         ubi_free_vid_hdr(ubi, vid_hdr);
1317         return 0;
1318 }
1319
1320 /**
1321  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1322  * @ubi: UBI device description object
1323  * @nested: set to non-zero if this function is called from UBI worker
1324  *
1325  * This function checks if it is time to start wear-leveling and schedules it
1326  * if yes. This function returns zero in case of success and a negative error
1327  * code in case of failure.
1328  */
1329 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1330 {
1331         int err = 0;
1332         struct ubi_wl_entry *e1;
1333         struct ubi_wl_entry *e2;
1334         struct ubi_work *wrk;
1335
1336         spin_lock(&ubi->wl_lock);
1337         if (ubi->wl_scheduled)
1338                 /* Wear-leveling is already in the work queue */
1339                 goto out_unlock;
1340
1341         /*
1342          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1343          * the WL worker has to be scheduled anyway.
1344          */
1345         if (!ubi->scrub.rb_node) {
1346                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1347                         /* No physical eraseblocks - no deal */
1348                         goto out_unlock;
1349
1350                 /*
1351                  * We schedule wear-leveling only if the difference between the
1352                  * lowest erase counter of used physical eraseblocks and a high
1353                  * erase counter of free physical eraseblocks is greater than
1354                  * %UBI_WL_THRESHOLD.
1355                  */
1356                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1357                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1358
1359                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1360                         goto out_unlock;
1361                 dbg_wl("schedule wear-leveling");
1362         } else
1363                 dbg_wl("schedule scrubbing");
1364
1365         ubi->wl_scheduled = 1;
1366         spin_unlock(&ubi->wl_lock);
1367
1368         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1369         if (!wrk) {
1370                 err = -ENOMEM;
1371                 goto out_cancel;
1372         }
1373
1374         wrk->anchor = 0;
1375         wrk->func = &wear_leveling_worker;
1376         if (nested)
1377                 __schedule_ubi_work(ubi, wrk);
1378         else
1379                 schedule_ubi_work(ubi, wrk);
1380         return err;
1381
1382 out_cancel:
1383         spin_lock(&ubi->wl_lock);
1384         ubi->wl_scheduled = 0;
1385 out_unlock:
1386         spin_unlock(&ubi->wl_lock);
1387         return err;
1388 }
1389
1390 #ifdef CONFIG_MTD_UBI_FASTMAP
1391 /**
1392  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1393  * @ubi: UBI device description object
1394  */
1395 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1396 {
1397         struct ubi_work *wrk;
1398
1399         spin_lock(&ubi->wl_lock);
1400         if (ubi->wl_scheduled) {
1401                 spin_unlock(&ubi->wl_lock);
1402                 return 0;
1403         }
1404         ubi->wl_scheduled = 1;
1405         spin_unlock(&ubi->wl_lock);
1406
1407         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1408         if (!wrk) {
1409                 spin_lock(&ubi->wl_lock);
1410                 ubi->wl_scheduled = 0;
1411                 spin_unlock(&ubi->wl_lock);
1412                 return -ENOMEM;
1413         }
1414
1415         wrk->anchor = 1;
1416         wrk->func = &wear_leveling_worker;
1417         schedule_ubi_work(ubi, wrk);
1418         return 0;
1419 }
1420 #endif
1421
1422 /**
1423  * erase_worker - physical eraseblock erase worker function.
1424  * @ubi: UBI device description object
1425  * @wl_wrk: the work object
1426  * @shutdown: non-zero if the worker has to free memory and exit
1427  * because the WL sub-system is shutting down
1428  *
1429  * This function erases a physical eraseblock and perform torture testing if
1430  * needed. It also takes care about marking the physical eraseblock bad if
1431  * needed. Returns zero in case of success and a negative error code in case of
1432  * failure.
1433  */
1434 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1435                         int shutdown)
1436 {
1437         struct ubi_wl_entry *e = wl_wrk->e;
1438         int pnum = e->pnum;
1439         int vol_id = wl_wrk->vol_id;
1440         int lnum = wl_wrk->lnum;
1441         int err, available_consumed = 0;
1442
1443         if (shutdown) {
1444                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1445                 kfree(wl_wrk);
1446                 kmem_cache_free(ubi_wl_entry_slab, e);
1447                 return 0;
1448         }
1449
1450         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1451                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1452
1453         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1454
1455         err = sync_erase(ubi, e, wl_wrk->torture);
1456         if (!err) {
1457                 /* Fine, we've erased it successfully */
1458                 kfree(wl_wrk);
1459
1460                 spin_lock(&ubi->wl_lock);
1461                 wl_tree_add(e, &ubi->free);
1462                 ubi->free_count++;
1463                 spin_unlock(&ubi->wl_lock);
1464
1465                 /*
1466                  * One more erase operation has happened, take care about
1467                  * protected physical eraseblocks.
1468                  */
1469                 serve_prot_queue(ubi);
1470
1471                 /* And take care about wear-leveling */
1472                 err = ensure_wear_leveling(ubi, 1);
1473                 return err;
1474         }
1475
1476         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1477         kfree(wl_wrk);
1478
1479         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1480             err == -EBUSY) {
1481                 int err1;
1482
1483                 /* Re-schedule the LEB for erasure */
1484                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1485                 if (err1) {
1486                         err = err1;
1487                         goto out_ro;
1488                 }
1489                 return err;
1490         }
1491
1492         kmem_cache_free(ubi_wl_entry_slab, e);
1493         if (err != -EIO)
1494                 /*
1495                  * If this is not %-EIO, we have no idea what to do. Scheduling
1496                  * this physical eraseblock for erasure again would cause
1497                  * errors again and again. Well, lets switch to R/O mode.
1498                  */
1499                 goto out_ro;
1500
1501         /* It is %-EIO, the PEB went bad */
1502
1503         if (!ubi->bad_allowed) {
1504                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1505                 goto out_ro;
1506         }
1507
1508         spin_lock(&ubi->volumes_lock);
1509         if (ubi->beb_rsvd_pebs == 0) {
1510                 if (ubi->avail_pebs == 0) {
1511                         spin_unlock(&ubi->volumes_lock);
1512                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1513                         goto out_ro;
1514                 }
1515                 ubi->avail_pebs -= 1;
1516                 available_consumed = 1;
1517         }
1518         spin_unlock(&ubi->volumes_lock);
1519
1520         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1521         err = ubi_io_mark_bad(ubi, pnum);
1522         if (err)
1523                 goto out_ro;
1524
1525         spin_lock(&ubi->volumes_lock);
1526         if (ubi->beb_rsvd_pebs > 0) {
1527                 if (available_consumed) {
1528                         /*
1529                          * The amount of reserved PEBs increased since we last
1530                          * checked.
1531                          */
1532                         ubi->avail_pebs += 1;
1533                         available_consumed = 0;
1534                 }
1535                 ubi->beb_rsvd_pebs -= 1;
1536         }
1537         ubi->bad_peb_count += 1;
1538         ubi->good_peb_count -= 1;
1539         ubi_calculate_reserved(ubi);
1540         if (available_consumed)
1541                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1542         else if (ubi->beb_rsvd_pebs)
1543                 ubi_msg(ubi, "%d PEBs left in the reserve",
1544                         ubi->beb_rsvd_pebs);
1545         else
1546                 ubi_warn(ubi, "last PEB from the reserve was used");
1547         spin_unlock(&ubi->volumes_lock);
1548
1549         return err;
1550
1551 out_ro:
1552         if (available_consumed) {
1553                 spin_lock(&ubi->volumes_lock);
1554                 ubi->avail_pebs += 1;
1555                 spin_unlock(&ubi->volumes_lock);
1556         }
1557         ubi_ro_mode(ubi);
1558         return err;
1559 }
1560
1561 /**
1562  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1563  * @ubi: UBI device description object
1564  * @vol_id: the volume ID that last used this PEB
1565  * @lnum: the last used logical eraseblock number for the PEB
1566  * @pnum: physical eraseblock to return
1567  * @torture: if this physical eraseblock has to be tortured
1568  *
1569  * This function is called to return physical eraseblock @pnum to the pool of
1570  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1571  * occurred to this @pnum and it has to be tested. This function returns zero
1572  * in case of success, and a negative error code in case of failure.
1573  */
1574 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1575                    int pnum, int torture)
1576 {
1577         int err;
1578         struct ubi_wl_entry *e;
1579
1580         dbg_wl("PEB %d", pnum);
1581         ubi_assert(pnum >= 0);
1582         ubi_assert(pnum < ubi->peb_count);
1583
1584 retry:
1585         spin_lock(&ubi->wl_lock);
1586         e = ubi->lookuptbl[pnum];
1587         if (e == ubi->move_from) {
1588                 /*
1589                  * User is putting the physical eraseblock which was selected to
1590                  * be moved. It will be scheduled for erasure in the
1591                  * wear-leveling worker.
1592                  */
1593                 dbg_wl("PEB %d is being moved, wait", pnum);
1594                 spin_unlock(&ubi->wl_lock);
1595
1596                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1597                 mutex_lock(&ubi->move_mutex);
1598                 mutex_unlock(&ubi->move_mutex);
1599                 goto retry;
1600         } else if (e == ubi->move_to) {
1601                 /*
1602                  * User is putting the physical eraseblock which was selected
1603                  * as the target the data is moved to. It may happen if the EBA
1604                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1605                  * but the WL sub-system has not put the PEB to the "used" tree
1606                  * yet, but it is about to do this. So we just set a flag which
1607                  * will tell the WL worker that the PEB is not needed anymore
1608                  * and should be scheduled for erasure.
1609                  */
1610                 dbg_wl("PEB %d is the target of data moving", pnum);
1611                 ubi_assert(!ubi->move_to_put);
1612                 ubi->move_to_put = 1;
1613                 spin_unlock(&ubi->wl_lock);
1614                 return 0;
1615         } else {
1616                 if (in_wl_tree(e, &ubi->used)) {
1617                         self_check_in_wl_tree(ubi, e, &ubi->used);
1618                         rb_erase(&e->u.rb, &ubi->used);
1619                 } else if (in_wl_tree(e, &ubi->scrub)) {
1620                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1621                         rb_erase(&e->u.rb, &ubi->scrub);
1622                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1623                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1624                         rb_erase(&e->u.rb, &ubi->erroneous);
1625                         ubi->erroneous_peb_count -= 1;
1626                         ubi_assert(ubi->erroneous_peb_count >= 0);
1627                         /* Erroneous PEBs should be tortured */
1628                         torture = 1;
1629                 } else {
1630                         err = prot_queue_del(ubi, e->pnum);
1631                         if (err) {
1632                                 ubi_err(ubi, "PEB %d not found", pnum);
1633                                 ubi_ro_mode(ubi);
1634                                 spin_unlock(&ubi->wl_lock);
1635                                 return err;
1636                         }
1637                 }
1638         }
1639         spin_unlock(&ubi->wl_lock);
1640
1641         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1642         if (err) {
1643                 spin_lock(&ubi->wl_lock);
1644                 wl_tree_add(e, &ubi->used);
1645                 spin_unlock(&ubi->wl_lock);
1646         }
1647
1648         return err;
1649 }
1650
1651 /**
1652  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1653  * @ubi: UBI device description object
1654  * @pnum: the physical eraseblock to schedule
1655  *
1656  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1657  * needs scrubbing. This function schedules a physical eraseblock for
1658  * scrubbing which is done in background. This function returns zero in case of
1659  * success and a negative error code in case of failure.
1660  */
1661 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1662 {
1663         struct ubi_wl_entry *e;
1664
1665         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1666
1667 retry:
1668         spin_lock(&ubi->wl_lock);
1669         e = ubi->lookuptbl[pnum];
1670         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1671                                    in_wl_tree(e, &ubi->erroneous)) {
1672                 spin_unlock(&ubi->wl_lock);
1673                 return 0;
1674         }
1675
1676         if (e == ubi->move_to) {
1677                 /*
1678                  * This physical eraseblock was used to move data to. The data
1679                  * was moved but the PEB was not yet inserted to the proper
1680                  * tree. We should just wait a little and let the WL worker
1681                  * proceed.
1682                  */
1683                 spin_unlock(&ubi->wl_lock);
1684                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1685                 yield();
1686                 goto retry;
1687         }
1688
1689         if (in_wl_tree(e, &ubi->used)) {
1690                 self_check_in_wl_tree(ubi, e, &ubi->used);
1691                 rb_erase(&e->u.rb, &ubi->used);
1692         } else {
1693                 int err;
1694
1695                 err = prot_queue_del(ubi, e->pnum);
1696                 if (err) {
1697                         ubi_err(ubi, "PEB %d not found", pnum);
1698                         ubi_ro_mode(ubi);
1699                         spin_unlock(&ubi->wl_lock);
1700                         return err;
1701                 }
1702         }
1703
1704         wl_tree_add(e, &ubi->scrub);
1705         spin_unlock(&ubi->wl_lock);
1706
1707         /*
1708          * Technically scrubbing is the same as wear-leveling, so it is done
1709          * by the WL worker.
1710          */
1711         return ensure_wear_leveling(ubi, 0);
1712 }
1713
1714 /**
1715  * ubi_wl_flush - flush all pending works.
1716  * @ubi: UBI device description object
1717  * @vol_id: the volume id to flush for
1718  * @lnum: the logical eraseblock number to flush for
1719  *
1720  * This function executes all pending works for a particular volume id /
1721  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1722  * acts as a wildcard for all of the corresponding volume numbers or logical
1723  * eraseblock numbers. It returns zero in case of success and a negative error
1724  * code in case of failure.
1725  */
1726 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1727 {
1728         int err = 0;
1729         int found = 1;
1730
1731         /*
1732          * Erase while the pending works queue is not empty, but not more than
1733          * the number of currently pending works.
1734          */
1735         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1736                vol_id, lnum, ubi->works_count);
1737
1738         while (found) {
1739                 struct ubi_work *wrk, *tmp;
1740                 found = 0;
1741
1742                 down_read(&ubi->work_sem);
1743                 spin_lock(&ubi->wl_lock);
1744                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1745                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1746                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1747                                 list_del(&wrk->list);
1748                                 ubi->works_count -= 1;
1749                                 ubi_assert(ubi->works_count >= 0);
1750                                 spin_unlock(&ubi->wl_lock);
1751
1752                                 err = wrk->func(ubi, wrk, 0);
1753                                 if (err) {
1754                                         up_read(&ubi->work_sem);
1755                                         return err;
1756                                 }
1757
1758                                 spin_lock(&ubi->wl_lock);
1759                                 found = 1;
1760                                 break;
1761                         }
1762                 }
1763                 spin_unlock(&ubi->wl_lock);
1764                 up_read(&ubi->work_sem);
1765         }
1766
1767         /*
1768          * Make sure all the works which have been done in parallel are
1769          * finished.
1770          */
1771         down_write(&ubi->work_sem);
1772         up_write(&ubi->work_sem);
1773
1774         return err;
1775 }
1776
1777 /**
1778  * tree_destroy - destroy an RB-tree.
1779  * @root: the root of the tree to destroy
1780  */
1781 static void tree_destroy(struct rb_root *root)
1782 {
1783         struct rb_node *rb;
1784         struct ubi_wl_entry *e;
1785
1786         rb = root->rb_node;
1787         while (rb) {
1788                 if (rb->rb_left)
1789                         rb = rb->rb_left;
1790                 else if (rb->rb_right)
1791                         rb = rb->rb_right;
1792                 else {
1793                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1794
1795                         rb = rb_parent(rb);
1796                         if (rb) {
1797                                 if (rb->rb_left == &e->u.rb)
1798                                         rb->rb_left = NULL;
1799                                 else
1800                                         rb->rb_right = NULL;
1801                         }
1802
1803                         kmem_cache_free(ubi_wl_entry_slab, e);
1804                 }
1805         }
1806 }
1807
1808 /**
1809  * ubi_thread - UBI background thread.
1810  * @u: the UBI device description object pointer
1811  */
1812 int ubi_thread(void *u)
1813 {
1814         int failures = 0;
1815         struct ubi_device *ubi = u;
1816
1817         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1818                 ubi->bgt_name, task_pid_nr(current));
1819
1820         set_freezable();
1821         for (;;) {
1822                 int err;
1823
1824                 if (kthread_should_stop())
1825                         break;
1826
1827                 if (try_to_freeze())
1828                         continue;
1829
1830                 spin_lock(&ubi->wl_lock);
1831                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1832                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1833                         set_current_state(TASK_INTERRUPTIBLE);
1834                         spin_unlock(&ubi->wl_lock);
1835                         schedule();
1836                         continue;
1837                 }
1838                 spin_unlock(&ubi->wl_lock);
1839
1840                 err = do_work(ubi);
1841                 if (err) {
1842                         ubi_err(ubi, "%s: work failed with error code %d",
1843                                 ubi->bgt_name, err);
1844                         if (failures++ > WL_MAX_FAILURES) {
1845                                 /*
1846                                  * Too many failures, disable the thread and
1847                                  * switch to read-only mode.
1848                                  */
1849                                 ubi_msg(ubi, "%s: %d consecutive failures",
1850                                         ubi->bgt_name, WL_MAX_FAILURES);
1851                                 ubi_ro_mode(ubi);
1852                                 ubi->thread_enabled = 0;
1853                                 continue;
1854                         }
1855                 } else
1856                         failures = 0;
1857
1858                 cond_resched();
1859         }
1860
1861         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1862         return 0;
1863 }
1864
1865 /**
1866  * shutdown_work - shutdown all pending works.
1867  * @ubi: UBI device description object
1868  */
1869 static void shutdown_work(struct ubi_device *ubi)
1870 {
1871 #ifdef CONFIG_MTD_UBI_FASTMAP
1872         flush_work(&ubi->fm_work);
1873 #endif
1874         while (!list_empty(&ubi->works)) {
1875                 struct ubi_work *wrk;
1876
1877                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1878                 list_del(&wrk->list);
1879                 wrk->func(ubi, wrk, 1);
1880                 ubi->works_count -= 1;
1881                 ubi_assert(ubi->works_count >= 0);
1882         }
1883 }
1884
1885 /**
1886  * ubi_wl_init - initialize the WL sub-system using attaching information.
1887  * @ubi: UBI device description object
1888  * @ai: attaching information
1889  *
1890  * This function returns zero in case of success, and a negative error code in
1891  * case of failure.
1892  */
1893 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1894 {
1895         int err, i, reserved_pebs, found_pebs = 0;
1896         struct rb_node *rb1, *rb2;
1897         struct ubi_ainf_volume *av;
1898         struct ubi_ainf_peb *aeb, *tmp;
1899         struct ubi_wl_entry *e;
1900
1901         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1902         spin_lock_init(&ubi->wl_lock);
1903         mutex_init(&ubi->move_mutex);
1904         init_rwsem(&ubi->work_sem);
1905         ubi->max_ec = ai->max_ec;
1906         INIT_LIST_HEAD(&ubi->works);
1907 #ifdef CONFIG_MTD_UBI_FASTMAP
1908         INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1909 #endif
1910
1911         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1912
1913         err = -ENOMEM;
1914         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1915         if (!ubi->lookuptbl)
1916                 return err;
1917
1918         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1919                 INIT_LIST_HEAD(&ubi->pq[i]);
1920         ubi->pq_head = 0;
1921
1922         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1923                 cond_resched();
1924
1925                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1926                 if (!e)
1927                         goto out_free;
1928
1929                 e->pnum = aeb->pnum;
1930                 e->ec = aeb->ec;
1931                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1932                 ubi->lookuptbl[e->pnum] = e;
1933                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1934                         kmem_cache_free(ubi_wl_entry_slab, e);
1935                         goto out_free;
1936                 }
1937
1938                 found_pebs++;
1939         }
1940
1941         ubi->free_count = 0;
1942         list_for_each_entry(aeb, &ai->free, u.list) {
1943                 cond_resched();
1944
1945                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1946                 if (!e)
1947                         goto out_free;
1948
1949                 e->pnum = aeb->pnum;
1950                 e->ec = aeb->ec;
1951                 ubi_assert(e->ec >= 0);
1952                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1953
1954                 wl_tree_add(e, &ubi->free);
1955                 ubi->free_count++;
1956
1957                 ubi->lookuptbl[e->pnum] = e;
1958
1959                 found_pebs++;
1960         }
1961
1962         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1963                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1964                         cond_resched();
1965
1966                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1967                         if (!e)
1968                                 goto out_free;
1969
1970                         e->pnum = aeb->pnum;
1971                         e->ec = aeb->ec;
1972                         ubi->lookuptbl[e->pnum] = e;
1973
1974                         if (!aeb->scrub) {
1975                                 dbg_wl("add PEB %d EC %d to the used tree",
1976                                        e->pnum, e->ec);
1977                                 wl_tree_add(e, &ubi->used);
1978                         } else {
1979                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1980                                        e->pnum, e->ec);
1981                                 wl_tree_add(e, &ubi->scrub);
1982                         }
1983
1984                         found_pebs++;
1985                 }
1986         }
1987
1988         dbg_wl("found %i PEBs", found_pebs);
1989
1990         if (ubi->fm)
1991                 ubi_assert(ubi->good_peb_count == \
1992                            found_pebs + ubi->fm->used_blocks);
1993         else
1994                 ubi_assert(ubi->good_peb_count == found_pebs);
1995
1996         reserved_pebs = WL_RESERVED_PEBS;
1997 #ifdef CONFIG_MTD_UBI_FASTMAP
1998         /* Reserve enough LEBs to store two fastmaps. */
1999         reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
2000 #endif
2001
2002         if (ubi->avail_pebs < reserved_pebs) {
2003                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
2004                         ubi->avail_pebs, reserved_pebs);
2005                 if (ubi->corr_peb_count)
2006                         ubi_err(ubi, "%d PEBs are corrupted and not used",
2007                                 ubi->corr_peb_count);
2008                 goto out_free;
2009         }
2010         ubi->avail_pebs -= reserved_pebs;
2011         ubi->rsvd_pebs += reserved_pebs;
2012
2013         /* Schedule wear-leveling if needed */
2014         err = ensure_wear_leveling(ubi, 0);
2015         if (err)
2016                 goto out_free;
2017
2018         return 0;
2019
2020 out_free:
2021         shutdown_work(ubi);
2022         tree_destroy(&ubi->used);
2023         tree_destroy(&ubi->free);
2024         tree_destroy(&ubi->scrub);
2025         kfree(ubi->lookuptbl);
2026         return err;
2027 }
2028
2029 /**
2030  * protection_queue_destroy - destroy the protection queue.
2031  * @ubi: UBI device description object
2032  */
2033 static void protection_queue_destroy(struct ubi_device *ubi)
2034 {
2035         int i;
2036         struct ubi_wl_entry *e, *tmp;
2037
2038         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2039                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2040                         list_del(&e->u.list);
2041                         kmem_cache_free(ubi_wl_entry_slab, e);
2042                 }
2043         }
2044 }
2045
2046 /**
2047  * ubi_wl_close - close the wear-leveling sub-system.
2048  * @ubi: UBI device description object
2049  */
2050 void ubi_wl_close(struct ubi_device *ubi)
2051 {
2052         dbg_wl("close the WL sub-system");
2053         shutdown_work(ubi);
2054         protection_queue_destroy(ubi);
2055         tree_destroy(&ubi->used);
2056         tree_destroy(&ubi->erroneous);
2057         tree_destroy(&ubi->free);
2058         tree_destroy(&ubi->scrub);
2059         kfree(ubi->lookuptbl);
2060 }
2061
2062 /**
2063  * self_check_ec - make sure that the erase counter of a PEB is correct.
2064  * @ubi: UBI device description object
2065  * @pnum: the physical eraseblock number to check
2066  * @ec: the erase counter to check
2067  *
2068  * This function returns zero if the erase counter of physical eraseblock @pnum
2069  * is equivalent to @ec, and a negative error code if not or if an error
2070  * occurred.
2071  */
2072 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2073 {
2074         int err;
2075         long long read_ec;
2076         struct ubi_ec_hdr *ec_hdr;
2077
2078         if (!ubi_dbg_chk_gen(ubi))
2079                 return 0;
2080
2081         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2082         if (!ec_hdr)
2083                 return -ENOMEM;
2084
2085         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2086         if (err && err != UBI_IO_BITFLIPS) {
2087                 /* The header does not have to exist */
2088                 err = 0;
2089                 goto out_free;
2090         }
2091
2092         read_ec = be64_to_cpu(ec_hdr->ec);
2093         if (ec != read_ec && read_ec - ec > 1) {
2094                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2095                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2096                 dump_stack();
2097                 err = 1;
2098         } else
2099                 err = 0;
2100
2101 out_free:
2102         kfree(ec_hdr);
2103         return err;
2104 }
2105
2106 /**
2107  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2108  * @ubi: UBI device description object
2109  * @e: the wear-leveling entry to check
2110  * @root: the root of the tree
2111  *
2112  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2113  * is not.
2114  */
2115 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2116                                  struct ubi_wl_entry *e, struct rb_root *root)
2117 {
2118         if (!ubi_dbg_chk_gen(ubi))
2119                 return 0;
2120
2121         if (in_wl_tree(e, root))
2122                 return 0;
2123
2124         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2125                 e->pnum, e->ec, root);
2126         dump_stack();
2127         return -EINVAL;
2128 }
2129
2130 /**
2131  * self_check_in_pq - check if wear-leveling entry is in the protection
2132  *                        queue.
2133  * @ubi: UBI device description object
2134  * @e: the wear-leveling entry to check
2135  *
2136  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2137  */
2138 static int self_check_in_pq(const struct ubi_device *ubi,
2139                             struct ubi_wl_entry *e)
2140 {
2141         struct ubi_wl_entry *p;
2142         int i;
2143
2144         if (!ubi_dbg_chk_gen(ubi))
2145                 return 0;
2146
2147         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2148                 list_for_each_entry(p, &ubi->pq[i], u.list)
2149                         if (p == e)
2150                                 return 0;
2151
2152         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2153                 e->pnum, e->ec);
2154         dump_stack();
2155         return -EINVAL;
2156 }