34a8ec44cc591d1af2eb072e58d80c905c65530b
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139                                  struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141                             struct ubi_wl_entry *e);
142
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150         struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151         ubi_update_fastmap(ubi);
152         spin_lock(&ubi->wl_lock);
153         ubi->fm_work_scheduled = 0;
154         spin_unlock(&ubi->wl_lock);
155 }
156
157 /**
158  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
159  *  @ubi: UBI device description object
160  *  @pnum: the to be checked PEB
161  */
162 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
163 {
164         int i;
165
166         if (!ubi->fm)
167                 return 0;
168
169         for (i = 0; i < ubi->fm->used_blocks; i++)
170                 if (ubi->fm->e[i]->pnum == pnum)
171                         return 1;
172
173         return 0;
174 }
175 #else
176 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
177 {
178         return 0;
179 }
180 #endif
181
182 /**
183  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
184  * @e: the wear-leveling entry to add
185  * @root: the root of the tree
186  *
187  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
188  * the @ubi->used and @ubi->free RB-trees.
189  */
190 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
191 {
192         struct rb_node **p, *parent = NULL;
193
194         p = &root->rb_node;
195         while (*p) {
196                 struct ubi_wl_entry *e1;
197
198                 parent = *p;
199                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
200
201                 if (e->ec < e1->ec)
202                         p = &(*p)->rb_left;
203                 else if (e->ec > e1->ec)
204                         p = &(*p)->rb_right;
205                 else {
206                         ubi_assert(e->pnum != e1->pnum);
207                         if (e->pnum < e1->pnum)
208                                 p = &(*p)->rb_left;
209                         else
210                                 p = &(*p)->rb_right;
211                 }
212         }
213
214         rb_link_node(&e->u.rb, parent, p);
215         rb_insert_color(&e->u.rb, root);
216 }
217
218 /**
219  * do_work - do one pending work.
220  * @ubi: UBI device description object
221  *
222  * This function returns zero in case of success and a negative error code in
223  * case of failure.
224  */
225 static int do_work(struct ubi_device *ubi)
226 {
227         int err;
228         struct ubi_work *wrk;
229
230         cond_resched();
231
232         /*
233          * @ubi->work_sem is used to synchronize with the workers. Workers take
234          * it in read mode, so many of them may be doing works at a time. But
235          * the queue flush code has to be sure the whole queue of works is
236          * done, and it takes the mutex in write mode.
237          */
238         down_read(&ubi->work_sem);
239         spin_lock(&ubi->wl_lock);
240         if (list_empty(&ubi->works)) {
241                 spin_unlock(&ubi->wl_lock);
242                 up_read(&ubi->work_sem);
243                 return 0;
244         }
245
246         wrk = list_entry(ubi->works.next, struct ubi_work, list);
247         list_del(&wrk->list);
248         ubi->works_count -= 1;
249         ubi_assert(ubi->works_count >= 0);
250         spin_unlock(&ubi->wl_lock);
251
252         /*
253          * Call the worker function. Do not touch the work structure
254          * after this call as it will have been freed or reused by that
255          * time by the worker function.
256          */
257         err = wrk->func(ubi, wrk, 0);
258         if (err)
259                 ubi_err(ubi, "work failed with error code %d", err);
260         up_read(&ubi->work_sem);
261
262         return err;
263 }
264
265 /**
266  * produce_free_peb - produce a free physical eraseblock.
267  * @ubi: UBI device description object
268  *
269  * This function tries to make a free PEB by means of synchronous execution of
270  * pending works. This may be needed if, for example the background thread is
271  * disabled. Returns zero in case of success and a negative error code in case
272  * of failure.
273  */
274 static int produce_free_peb(struct ubi_device *ubi)
275 {
276         int err;
277
278         while (!ubi->free.rb_node && ubi->works_count) {
279                 spin_unlock(&ubi->wl_lock);
280
281                 dbg_wl("do one work synchronously");
282                 err = do_work(ubi);
283
284                 spin_lock(&ubi->wl_lock);
285                 if (err)
286                         return err;
287         }
288
289         return 0;
290 }
291
292 /**
293  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
294  * @e: the wear-leveling entry to check
295  * @root: the root of the tree
296  *
297  * This function returns non-zero if @e is in the @root RB-tree and zero if it
298  * is not.
299  */
300 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
301 {
302         struct rb_node *p;
303
304         p = root->rb_node;
305         while (p) {
306                 struct ubi_wl_entry *e1;
307
308                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
309
310                 if (e->pnum == e1->pnum) {
311                         ubi_assert(e == e1);
312                         return 1;
313                 }
314
315                 if (e->ec < e1->ec)
316                         p = p->rb_left;
317                 else if (e->ec > e1->ec)
318                         p = p->rb_right;
319                 else {
320                         ubi_assert(e->pnum != e1->pnum);
321                         if (e->pnum < e1->pnum)
322                                 p = p->rb_left;
323                         else
324                                 p = p->rb_right;
325                 }
326         }
327
328         return 0;
329 }
330
331 /**
332  * prot_queue_add - add physical eraseblock to the protection queue.
333  * @ubi: UBI device description object
334  * @e: the physical eraseblock to add
335  *
336  * This function adds @e to the tail of the protection queue @ubi->pq, where
337  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
338  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
339  * be locked.
340  */
341 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
342 {
343         int pq_tail = ubi->pq_head - 1;
344
345         if (pq_tail < 0)
346                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
347         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
348         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
349         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
350 }
351
352 /**
353  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
354  * @ubi: UBI device description object
355  * @root: the RB-tree where to look for
356  * @diff: maximum possible difference from the smallest erase counter
357  *
358  * This function looks for a wear leveling entry with erase counter closest to
359  * min + @diff, where min is the smallest erase counter.
360  */
361 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
362                                           struct rb_root *root, int diff)
363 {
364         struct rb_node *p;
365         struct ubi_wl_entry *e, *prev_e = NULL;
366         int max;
367
368         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
369         max = e->ec + diff;
370
371         p = root->rb_node;
372         while (p) {
373                 struct ubi_wl_entry *e1;
374
375                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
376                 if (e1->ec >= max)
377                         p = p->rb_left;
378                 else {
379                         p = p->rb_right;
380                         prev_e = e;
381                         e = e1;
382                 }
383         }
384
385         /* If no fastmap has been written and this WL entry can be used
386          * as anchor PEB, hold it back and return the second best WL entry
387          * such that fastmap can use the anchor PEB later. */
388         if (prev_e && !ubi->fm_disabled &&
389             !ubi->fm && e->pnum < UBI_FM_MAX_START)
390                 return prev_e;
391
392         return e;
393 }
394
395 /**
396  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
397  * @ubi: UBI device description object
398  * @root: the RB-tree where to look for
399  *
400  * This function looks for a wear leveling entry with medium erase counter,
401  * but not greater or equivalent than the lowest erase counter plus
402  * %WL_FREE_MAX_DIFF/2.
403  */
404 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
405                                                struct rb_root *root)
406 {
407         struct ubi_wl_entry *e, *first, *last;
408
409         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
410         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
411
412         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
413                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
414
415 #ifdef CONFIG_MTD_UBI_FASTMAP
416                 /* If no fastmap has been written and this WL entry can be used
417                  * as anchor PEB, hold it back and return the second best
418                  * WL entry such that fastmap can use the anchor PEB later. */
419                 if (e && !ubi->fm_disabled && !ubi->fm &&
420                     e->pnum < UBI_FM_MAX_START)
421                         e = rb_entry(rb_next(root->rb_node),
422                                      struct ubi_wl_entry, u.rb);
423 #endif
424         } else
425                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
426
427         return e;
428 }
429
430 #ifdef CONFIG_MTD_UBI_FASTMAP
431 /**
432  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
433  * @root: the RB-tree where to look for
434  */
435 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
436 {
437         struct rb_node *p;
438         struct ubi_wl_entry *e, *victim = NULL;
439         int max_ec = UBI_MAX_ERASECOUNTER;
440
441         ubi_rb_for_each_entry(p, e, root, u.rb) {
442                 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
443                         victim = e;
444                         max_ec = e->ec;
445                 }
446         }
447
448         return victim;
449 }
450
451 static int anchor_pebs_avalible(struct rb_root *root)
452 {
453         struct rb_node *p;
454         struct ubi_wl_entry *e;
455
456         ubi_rb_for_each_entry(p, e, root, u.rb)
457                 if (e->pnum < UBI_FM_MAX_START)
458                         return 1;
459
460         return 0;
461 }
462
463 /**
464  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
465  * @ubi: UBI device description object
466  * @anchor: This PEB will be used as anchor PEB by fastmap
467  *
468  * The function returns a physical erase block with a given maximal number
469  * and removes it from the wl subsystem.
470  * Must be called with wl_lock held!
471  */
472 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
473 {
474         struct ubi_wl_entry *e = NULL;
475
476         if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
477                 goto out;
478
479         if (anchor)
480                 e = find_anchor_wl_entry(&ubi->free);
481         else
482                 e = find_mean_wl_entry(ubi, &ubi->free);
483
484         if (!e)
485                 goto out;
486
487         self_check_in_wl_tree(ubi, e, &ubi->free);
488
489         /* remove it from the free list,
490          * the wl subsystem does no longer know this erase block */
491         rb_erase(&e->u.rb, &ubi->free);
492         ubi->free_count--;
493 out:
494         return e;
495 }
496 #endif
497
498 /**
499  * wl_get_wle - get a mean wl entry to be used by wl_get_peb() or
500  * refill_wl_user_pool().
501  * @ubi: UBI device description object
502  *
503  * This function returns a a wear leveling entry in case of success and
504  * NULL in case of failure.
505  */
506 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
507 {
508         struct ubi_wl_entry *e;
509
510         e = find_mean_wl_entry(ubi, &ubi->free);
511         if (!e) {
512                 ubi_err(ubi, "no free eraseblocks");
513                 return NULL;
514         }
515
516         self_check_in_wl_tree(ubi, e, &ubi->free);
517
518         /*
519          * Move the physical eraseblock to the protection queue where it will
520          * be protected from being moved for some time.
521          */
522         rb_erase(&e->u.rb, &ubi->free);
523         ubi->free_count--;
524         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
525
526         return e;
527 }
528
529 /**
530  * wl_get_peb - get a physical eraseblock.
531  * @ubi: UBI device description object
532  *
533  * This function returns a physical eraseblock in case of success and a
534  * negative error code in case of failure.
535  * It is the low level component of ubi_wl_get_peb() in the non-fastmap
536  * case.
537  */
538 static int wl_get_peb(struct ubi_device *ubi)
539 {
540         int err;
541         struct ubi_wl_entry *e;
542
543 retry:
544         if (!ubi->free.rb_node) {
545                 if (ubi->works_count == 0) {
546                         ubi_err(ubi, "no free eraseblocks");
547                         ubi_assert(list_empty(&ubi->works));
548                         return -ENOSPC;
549                 }
550
551                 err = produce_free_peb(ubi);
552                 if (err < 0)
553                         return err;
554                 goto retry;
555         }
556
557         e = wl_get_wle(ubi);
558         prot_queue_add(ubi, e);
559
560         return e->pnum;
561 }
562
563 #ifdef CONFIG_MTD_UBI_FASTMAP
564 /**
565  * return_unused_pool_pebs - returns unused PEB to the free tree.
566  * @ubi: UBI device description object
567  * @pool: fastmap pool description object
568  */
569 static void return_unused_pool_pebs(struct ubi_device *ubi,
570                                     struct ubi_fm_pool *pool)
571 {
572         int i;
573         struct ubi_wl_entry *e;
574
575         for (i = pool->used; i < pool->size; i++) {
576                 e = ubi->lookuptbl[pool->pebs[i]];
577                 wl_tree_add(e, &ubi->free);
578                 ubi->free_count++;
579         }
580 }
581
582 /**
583  * ubi_refill_pools - refills all fastmap PEB pools.
584  * @ubi: UBI device description object
585  */
586 void ubi_refill_pools(struct ubi_device *ubi)
587 {
588         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
589         struct ubi_fm_pool *pool = &ubi->fm_pool;
590         struct ubi_wl_entry *e;
591         int enough;
592
593         spin_lock(&ubi->wl_lock);
594
595         return_unused_pool_pebs(ubi, wl_pool);
596         return_unused_pool_pebs(ubi, pool);
597
598         wl_pool->size = 0;
599         pool->size = 0;
600
601         for (;;) {
602                 enough = 0;
603                 if (pool->size < pool->max_size) {
604                         if (!ubi->free.rb_node ||
605                            (ubi->free_count - ubi->beb_rsvd_pebs < 5))
606                                 break;
607
608                         e = wl_get_wle(ubi);
609                         if (!e)
610                                 break;
611
612                         pool->pebs[pool->size] = e->pnum;
613                         pool->size++;
614                 } else
615                         enough++;
616
617                 if (wl_pool->size < wl_pool->max_size) {
618                         if (!ubi->free.rb_node ||
619                            (ubi->free_count - ubi->beb_rsvd_pebs < 5))
620                                 break;
621
622                         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
623                         self_check_in_wl_tree(ubi, e, &ubi->free);
624                         rb_erase(&e->u.rb, &ubi->free);
625                         ubi->free_count--;
626
627                         wl_pool->pebs[wl_pool->size] = e->pnum;
628                         wl_pool->size++;
629                 } else
630                         enough++;
631
632                 if (enough == 2)
633                         break;
634         }
635
636         wl_pool->used = 0;
637         pool->used = 0;
638
639         spin_unlock(&ubi->wl_lock);
640 }
641
642 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
643  * the fastmap pool.
644  */
645 int ubi_wl_get_peb(struct ubi_device *ubi)
646 {
647         int ret, retried = 0;
648         struct ubi_fm_pool *pool = &ubi->fm_pool;
649         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
650
651 again:
652         spin_lock(&ubi->wl_lock);
653         /* We check here also for the WL pool because at this point we can
654          * refill the WL pool synchronous. */
655         if (pool->used == pool->size || wl_pool->used == wl_pool->size) {
656                 spin_unlock(&ubi->wl_lock);
657                 ubi_update_fastmap(ubi);
658                 spin_lock(&ubi->wl_lock);
659         }
660
661         if (pool->used == pool->size) {
662                 spin_unlock(&ubi->wl_lock);
663                 if (retried) {
664                         ubi_err(ubi, "Unable to get a free PEB from user WL pool");
665                         ret = -ENOSPC;
666                         goto out;
667                 }
668                 retried = 1;
669                 goto again;
670         }
671
672         ubi_assert(pool->used < pool->size);
673         ret = pool->pebs[pool->used++];
674         prot_queue_add(ubi, ubi->lookuptbl[ret]);
675         spin_unlock(&ubi->wl_lock);
676 out:
677         return ret;
678 }
679
680 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
681  *
682  * @ubi: UBI device description object
683  */
684 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
685 {
686         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
687         int pnum;
688
689         if (pool->used == pool->size) {
690                 /* We cannot update the fastmap here because this
691                  * function is called in atomic context.
692                  * Let's fail here and refill/update it as soon as possible. */
693                 if (!ubi->fm_work_scheduled) {
694                         ubi->fm_work_scheduled = 1;
695                         schedule_work(&ubi->fm_work);
696                 }
697                 return NULL;
698         } else {
699                 pnum = pool->pebs[pool->used++];
700                 return ubi->lookuptbl[pnum];
701         }
702 }
703 #else
704 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
705 {
706         struct ubi_wl_entry *e;
707
708         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
709         self_check_in_wl_tree(ubi, e, &ubi->free);
710         ubi->free_count--;
711         ubi_assert(ubi->free_count >= 0);
712         rb_erase(&e->u.rb, &ubi->free);
713
714         return e;
715 }
716
717 int ubi_wl_get_peb(struct ubi_device *ubi)
718 {
719         int peb, err;
720
721         spin_lock(&ubi->wl_lock);
722         peb = wl_get_peb(ubi);
723         spin_unlock(&ubi->wl_lock);
724
725         if (peb < 0)
726                 return peb;
727
728         err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
729                                     ubi->peb_size - ubi->vid_hdr_aloffset);
730         if (err) {
731                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes",
732                         peb);
733                 return err;
734         }
735
736         return peb;
737 }
738 #endif
739
740 /**
741  * prot_queue_del - remove a physical eraseblock from the protection queue.
742  * @ubi: UBI device description object
743  * @pnum: the physical eraseblock to remove
744  *
745  * This function deletes PEB @pnum from the protection queue and returns zero
746  * in case of success and %-ENODEV if the PEB was not found.
747  */
748 static int prot_queue_del(struct ubi_device *ubi, int pnum)
749 {
750         struct ubi_wl_entry *e;
751
752         e = ubi->lookuptbl[pnum];
753         if (!e)
754                 return -ENODEV;
755
756         if (self_check_in_pq(ubi, e))
757                 return -ENODEV;
758
759         list_del(&e->u.list);
760         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
761         return 0;
762 }
763
764 /**
765  * sync_erase - synchronously erase a physical eraseblock.
766  * @ubi: UBI device description object
767  * @e: the the physical eraseblock to erase
768  * @torture: if the physical eraseblock has to be tortured
769  *
770  * This function returns zero in case of success and a negative error code in
771  * case of failure.
772  */
773 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
774                       int torture)
775 {
776         int err;
777         struct ubi_ec_hdr *ec_hdr;
778         unsigned long long ec = e->ec;
779
780         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
781
782         err = self_check_ec(ubi, e->pnum, e->ec);
783         if (err)
784                 return -EINVAL;
785
786         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
787         if (!ec_hdr)
788                 return -ENOMEM;
789
790         err = ubi_io_sync_erase(ubi, e->pnum, torture);
791         if (err < 0)
792                 goto out_free;
793
794         ec += err;
795         if (ec > UBI_MAX_ERASECOUNTER) {
796                 /*
797                  * Erase counter overflow. Upgrade UBI and use 64-bit
798                  * erase counters internally.
799                  */
800                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
801                         e->pnum, ec);
802                 err = -EINVAL;
803                 goto out_free;
804         }
805
806         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
807
808         ec_hdr->ec = cpu_to_be64(ec);
809
810         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
811         if (err)
812                 goto out_free;
813
814         e->ec = ec;
815         spin_lock(&ubi->wl_lock);
816         if (e->ec > ubi->max_ec)
817                 ubi->max_ec = e->ec;
818         spin_unlock(&ubi->wl_lock);
819
820 out_free:
821         kfree(ec_hdr);
822         return err;
823 }
824
825 /**
826  * serve_prot_queue - check if it is time to stop protecting PEBs.
827  * @ubi: UBI device description object
828  *
829  * This function is called after each erase operation and removes PEBs from the
830  * tail of the protection queue. These PEBs have been protected for long enough
831  * and should be moved to the used tree.
832  */
833 static void serve_prot_queue(struct ubi_device *ubi)
834 {
835         struct ubi_wl_entry *e, *tmp;
836         int count;
837
838         /*
839          * There may be several protected physical eraseblock to remove,
840          * process them all.
841          */
842 repeat:
843         count = 0;
844         spin_lock(&ubi->wl_lock);
845         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
846                 dbg_wl("PEB %d EC %d protection over, move to used tree",
847                         e->pnum, e->ec);
848
849                 list_del(&e->u.list);
850                 wl_tree_add(e, &ubi->used);
851                 if (count++ > 32) {
852                         /*
853                          * Let's be nice and avoid holding the spinlock for
854                          * too long.
855                          */
856                         spin_unlock(&ubi->wl_lock);
857                         cond_resched();
858                         goto repeat;
859                 }
860         }
861
862         ubi->pq_head += 1;
863         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
864                 ubi->pq_head = 0;
865         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
866         spin_unlock(&ubi->wl_lock);
867 }
868
869 /**
870  * __schedule_ubi_work - schedule a work.
871  * @ubi: UBI device description object
872  * @wrk: the work to schedule
873  *
874  * This function adds a work defined by @wrk to the tail of the pending works
875  * list. Can only be used if ubi->work_sem is already held in read mode!
876  */
877 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
878 {
879         spin_lock(&ubi->wl_lock);
880         list_add_tail(&wrk->list, &ubi->works);
881         ubi_assert(ubi->works_count >= 0);
882         ubi->works_count += 1;
883         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
884                 wake_up_process(ubi->bgt_thread);
885         spin_unlock(&ubi->wl_lock);
886 }
887
888 /**
889  * schedule_ubi_work - schedule a work.
890  * @ubi: UBI device description object
891  * @wrk: the work to schedule
892  *
893  * This function adds a work defined by @wrk to the tail of the pending works
894  * list.
895  */
896 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
897 {
898         down_read(&ubi->work_sem);
899         __schedule_ubi_work(ubi, wrk);
900         up_read(&ubi->work_sem);
901 }
902
903 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
904                         int shutdown);
905
906 #ifdef CONFIG_MTD_UBI_FASTMAP
907 /**
908  * ubi_is_erase_work - checks whether a work is erase work.
909  * @wrk: The work object to be checked
910  */
911 int ubi_is_erase_work(struct ubi_work *wrk)
912 {
913         return wrk->func == erase_worker;
914 }
915 #endif
916
917 /**
918  * schedule_erase - schedule an erase work.
919  * @ubi: UBI device description object
920  * @e: the WL entry of the physical eraseblock to erase
921  * @vol_id: the volume ID that last used this PEB
922  * @lnum: the last used logical eraseblock number for the PEB
923  * @torture: if the physical eraseblock has to be tortured
924  *
925  * This function returns zero in case of success and a %-ENOMEM in case of
926  * failure.
927  */
928 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
929                           int vol_id, int lnum, int torture)
930 {
931         struct ubi_work *wl_wrk;
932
933         ubi_assert(e);
934         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
935
936         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
937                e->pnum, e->ec, torture);
938
939         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
940         if (!wl_wrk)
941                 return -ENOMEM;
942
943         wl_wrk->func = &erase_worker;
944         wl_wrk->e = e;
945         wl_wrk->vol_id = vol_id;
946         wl_wrk->lnum = lnum;
947         wl_wrk->torture = torture;
948
949         schedule_ubi_work(ubi, wl_wrk);
950         return 0;
951 }
952
953 /**
954  * do_sync_erase - run the erase worker synchronously.
955  * @ubi: UBI device description object
956  * @e: the WL entry of the physical eraseblock to erase
957  * @vol_id: the volume ID that last used this PEB
958  * @lnum: the last used logical eraseblock number for the PEB
959  * @torture: if the physical eraseblock has to be tortured
960  *
961  */
962 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
963                          int vol_id, int lnum, int torture)
964 {
965         struct ubi_work *wl_wrk;
966
967         dbg_wl("sync erase of PEB %i", e->pnum);
968
969         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
970         if (!wl_wrk)
971                 return -ENOMEM;
972
973         wl_wrk->e = e;
974         wl_wrk->vol_id = vol_id;
975         wl_wrk->lnum = lnum;
976         wl_wrk->torture = torture;
977
978         return erase_worker(ubi, wl_wrk, 0);
979 }
980
981 #ifdef CONFIG_MTD_UBI_FASTMAP
982 /**
983  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
984  * sub-system.
985  * see: ubi_wl_put_peb()
986  *
987  * @ubi: UBI device description object
988  * @fm_e: physical eraseblock to return
989  * @lnum: the last used logical eraseblock number for the PEB
990  * @torture: if this physical eraseblock has to be tortured
991  */
992 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
993                       int lnum, int torture)
994 {
995         struct ubi_wl_entry *e;
996         int vol_id, pnum = fm_e->pnum;
997
998         dbg_wl("PEB %d", pnum);
999
1000         ubi_assert(pnum >= 0);
1001         ubi_assert(pnum < ubi->peb_count);
1002
1003         spin_lock(&ubi->wl_lock);
1004         e = ubi->lookuptbl[pnum];
1005
1006         /* This can happen if we recovered from a fastmap the very
1007          * first time and writing now a new one. In this case the wl system
1008          * has never seen any PEB used by the original fastmap.
1009          */
1010         if (!e) {
1011                 e = fm_e;
1012                 ubi_assert(e->ec >= 0);
1013                 ubi->lookuptbl[pnum] = e;
1014         }
1015
1016         spin_unlock(&ubi->wl_lock);
1017
1018         vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
1019         return schedule_erase(ubi, e, vol_id, lnum, torture);
1020 }
1021 #endif
1022
1023 /**
1024  * wear_leveling_worker - wear-leveling worker function.
1025  * @ubi: UBI device description object
1026  * @wrk: the work object
1027  * @shutdown: non-zero if the worker has to free memory and exit
1028  * because the WL-subsystem is shutting down
1029  *
1030  * This function copies a more worn out physical eraseblock to a less worn out
1031  * one. Returns zero in case of success and a negative error code in case of
1032  * failure.
1033  */
1034 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1035                                 int shutdown)
1036 {
1037         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1038         int vol_id = -1, lnum = -1;
1039 #ifdef CONFIG_MTD_UBI_FASTMAP
1040         int anchor = wrk->anchor;
1041 #endif
1042         struct ubi_wl_entry *e1, *e2;
1043         struct ubi_vid_hdr *vid_hdr;
1044
1045         kfree(wrk);
1046         if (shutdown)
1047                 return 0;
1048
1049         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1050         if (!vid_hdr)
1051                 return -ENOMEM;
1052
1053         mutex_lock(&ubi->move_mutex);
1054         spin_lock(&ubi->wl_lock);
1055         ubi_assert(!ubi->move_from && !ubi->move_to);
1056         ubi_assert(!ubi->move_to_put);
1057
1058         if (!ubi->free.rb_node ||
1059             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1060                 /*
1061                  * No free physical eraseblocks? Well, they must be waiting in
1062                  * the queue to be erased. Cancel movement - it will be
1063                  * triggered again when a free physical eraseblock appears.
1064                  *
1065                  * No used physical eraseblocks? They must be temporarily
1066                  * protected from being moved. They will be moved to the
1067                  * @ubi->used tree later and the wear-leveling will be
1068                  * triggered again.
1069                  */
1070                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1071                        !ubi->free.rb_node, !ubi->used.rb_node);
1072                 goto out_cancel;
1073         }
1074
1075 #ifdef CONFIG_MTD_UBI_FASTMAP
1076         /* Check whether we need to produce an anchor PEB */
1077         if (!anchor)
1078                 anchor = !anchor_pebs_avalible(&ubi->free);
1079
1080         if (anchor) {
1081                 e1 = find_anchor_wl_entry(&ubi->used);
1082                 if (!e1)
1083                         goto out_cancel;
1084                 e2 = get_peb_for_wl(ubi);
1085                 if (!e2)
1086                         goto out_cancel;
1087
1088                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1089                 rb_erase(&e1->u.rb, &ubi->used);
1090                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1091         } else if (!ubi->scrub.rb_node) {
1092 #else
1093         if (!ubi->scrub.rb_node) {
1094 #endif
1095                 /*
1096                  * Now pick the least worn-out used physical eraseblock and a
1097                  * highly worn-out free physical eraseblock. If the erase
1098                  * counters differ much enough, start wear-leveling.
1099                  */
1100                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1101                 e2 = get_peb_for_wl(ubi);
1102                 if (!e2)
1103                         goto out_cancel;
1104
1105                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1106                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
1107                                e1->ec, e2->ec);
1108
1109                         /* Give the unused PEB back */
1110                         wl_tree_add(e2, &ubi->free);
1111                         ubi->free_count++;
1112                         goto out_cancel;
1113                 }
1114                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1115                 rb_erase(&e1->u.rb, &ubi->used);
1116                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1117                        e1->pnum, e1->ec, e2->pnum, e2->ec);
1118         } else {
1119                 /* Perform scrubbing */
1120                 scrubbing = 1;
1121                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1122                 e2 = get_peb_for_wl(ubi);
1123                 if (!e2)
1124                         goto out_cancel;
1125
1126                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1127                 rb_erase(&e1->u.rb, &ubi->scrub);
1128                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1129         }
1130
1131         ubi->move_from = e1;
1132         ubi->move_to = e2;
1133         spin_unlock(&ubi->wl_lock);
1134
1135         /*
1136          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1137          * We so far do not know which logical eraseblock our physical
1138          * eraseblock (@e1) belongs to. We have to read the volume identifier
1139          * header first.
1140          *
1141          * Note, we are protected from this PEB being unmapped and erased. The
1142          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1143          * which is being moved was unmapped.
1144          */
1145
1146         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1147         if (err && err != UBI_IO_BITFLIPS) {
1148                 if (err == UBI_IO_FF) {
1149                         /*
1150                          * We are trying to move PEB without a VID header. UBI
1151                          * always write VID headers shortly after the PEB was
1152                          * given, so we have a situation when it has not yet
1153                          * had a chance to write it, because it was preempted.
1154                          * So add this PEB to the protection queue so far,
1155                          * because presumably more data will be written there
1156                          * (including the missing VID header), and then we'll
1157                          * move it.
1158                          */
1159                         dbg_wl("PEB %d has no VID header", e1->pnum);
1160                         protect = 1;
1161                         goto out_not_moved;
1162                 } else if (err == UBI_IO_FF_BITFLIPS) {
1163                         /*
1164                          * The same situation as %UBI_IO_FF, but bit-flips were
1165                          * detected. It is better to schedule this PEB for
1166                          * scrubbing.
1167                          */
1168                         dbg_wl("PEB %d has no VID header but has bit-flips",
1169                                e1->pnum);
1170                         scrubbing = 1;
1171                         goto out_not_moved;
1172                 }
1173
1174                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
1175                         err, e1->pnum);
1176                 goto out_error;
1177         }
1178
1179         vol_id = be32_to_cpu(vid_hdr->vol_id);
1180         lnum = be32_to_cpu(vid_hdr->lnum);
1181
1182         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1183         if (err) {
1184                 if (err == MOVE_CANCEL_RACE) {
1185                         /*
1186                          * The LEB has not been moved because the volume is
1187                          * being deleted or the PEB has been put meanwhile. We
1188                          * should prevent this PEB from being selected for
1189                          * wear-leveling movement again, so put it to the
1190                          * protection queue.
1191                          */
1192                         protect = 1;
1193                         goto out_not_moved;
1194                 }
1195                 if (err == MOVE_RETRY) {
1196                         scrubbing = 1;
1197                         goto out_not_moved;
1198                 }
1199                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1200                     err == MOVE_TARGET_RD_ERR) {
1201                         /*
1202                          * Target PEB had bit-flips or write error - torture it.
1203                          */
1204                         torture = 1;
1205                         goto out_not_moved;
1206                 }
1207
1208                 if (err == MOVE_SOURCE_RD_ERR) {
1209                         /*
1210                          * An error happened while reading the source PEB. Do
1211                          * not switch to R/O mode in this case, and give the
1212                          * upper layers a possibility to recover from this,
1213                          * e.g. by unmapping corresponding LEB. Instead, just
1214                          * put this PEB to the @ubi->erroneous list to prevent
1215                          * UBI from trying to move it over and over again.
1216                          */
1217                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1218                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
1219                                         ubi->erroneous_peb_count);
1220                                 goto out_error;
1221                         }
1222                         erroneous = 1;
1223                         goto out_not_moved;
1224                 }
1225
1226                 if (err < 0)
1227                         goto out_error;
1228
1229                 ubi_assert(0);
1230         }
1231
1232         /* The PEB has been successfully moved */
1233         if (scrubbing)
1234                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1235                         e1->pnum, vol_id, lnum, e2->pnum);
1236         ubi_free_vid_hdr(ubi, vid_hdr);
1237
1238         spin_lock(&ubi->wl_lock);
1239         if (!ubi->move_to_put) {
1240                 wl_tree_add(e2, &ubi->used);
1241                 e2 = NULL;
1242         }
1243         ubi->move_from = ubi->move_to = NULL;
1244         ubi->move_to_put = ubi->wl_scheduled = 0;
1245         spin_unlock(&ubi->wl_lock);
1246
1247         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1248         if (err) {
1249                 if (e2)
1250                         kmem_cache_free(ubi_wl_entry_slab, e2);
1251                 goto out_ro;
1252         }
1253
1254         if (e2) {
1255                 /*
1256                  * Well, the target PEB was put meanwhile, schedule it for
1257                  * erasure.
1258                  */
1259                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1260                        e2->pnum, vol_id, lnum);
1261                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1262                 if (err)
1263                         goto out_ro;
1264         }
1265
1266         dbg_wl("done");
1267         mutex_unlock(&ubi->move_mutex);
1268         return 0;
1269
1270         /*
1271          * For some reasons the LEB was not moved, might be an error, might be
1272          * something else. @e1 was not changed, so return it back. @e2 might
1273          * have been changed, schedule it for erasure.
1274          */
1275 out_not_moved:
1276         if (vol_id != -1)
1277                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1278                        e1->pnum, vol_id, lnum, e2->pnum, err);
1279         else
1280                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1281                        e1->pnum, e2->pnum, err);
1282         spin_lock(&ubi->wl_lock);
1283         if (protect)
1284                 prot_queue_add(ubi, e1);
1285         else if (erroneous) {
1286                 wl_tree_add(e1, &ubi->erroneous);
1287                 ubi->erroneous_peb_count += 1;
1288         } else if (scrubbing)
1289                 wl_tree_add(e1, &ubi->scrub);
1290         else
1291                 wl_tree_add(e1, &ubi->used);
1292         ubi_assert(!ubi->move_to_put);
1293         ubi->move_from = ubi->move_to = NULL;
1294         ubi->wl_scheduled = 0;
1295         spin_unlock(&ubi->wl_lock);
1296
1297         ubi_free_vid_hdr(ubi, vid_hdr);
1298         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1299         if (err)
1300                 goto out_ro;
1301
1302         mutex_unlock(&ubi->move_mutex);
1303         return 0;
1304
1305 out_error:
1306         if (vol_id != -1)
1307                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
1308                         err, e1->pnum, e2->pnum);
1309         else
1310                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1311                         err, e1->pnum, vol_id, lnum, e2->pnum);
1312         spin_lock(&ubi->wl_lock);
1313         ubi->move_from = ubi->move_to = NULL;
1314         ubi->move_to_put = ubi->wl_scheduled = 0;
1315         spin_unlock(&ubi->wl_lock);
1316
1317         ubi_free_vid_hdr(ubi, vid_hdr);
1318         kmem_cache_free(ubi_wl_entry_slab, e1);
1319         kmem_cache_free(ubi_wl_entry_slab, e2);
1320
1321 out_ro:
1322         ubi_ro_mode(ubi);
1323         mutex_unlock(&ubi->move_mutex);
1324         ubi_assert(err != 0);
1325         return err < 0 ? err : -EIO;
1326
1327 out_cancel:
1328         ubi->wl_scheduled = 0;
1329         spin_unlock(&ubi->wl_lock);
1330         mutex_unlock(&ubi->move_mutex);
1331         ubi_free_vid_hdr(ubi, vid_hdr);
1332         return 0;
1333 }
1334
1335 /**
1336  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1337  * @ubi: UBI device description object
1338  * @nested: set to non-zero if this function is called from UBI worker
1339  *
1340  * This function checks if it is time to start wear-leveling and schedules it
1341  * if yes. This function returns zero in case of success and a negative error
1342  * code in case of failure.
1343  */
1344 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1345 {
1346         int err = 0;
1347         struct ubi_wl_entry *e1;
1348         struct ubi_wl_entry *e2;
1349         struct ubi_work *wrk;
1350
1351         spin_lock(&ubi->wl_lock);
1352         if (ubi->wl_scheduled)
1353                 /* Wear-leveling is already in the work queue */
1354                 goto out_unlock;
1355
1356         /*
1357          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1358          * the WL worker has to be scheduled anyway.
1359          */
1360         if (!ubi->scrub.rb_node) {
1361                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1362                         /* No physical eraseblocks - no deal */
1363                         goto out_unlock;
1364
1365                 /*
1366                  * We schedule wear-leveling only if the difference between the
1367                  * lowest erase counter of used physical eraseblocks and a high
1368                  * erase counter of free physical eraseblocks is greater than
1369                  * %UBI_WL_THRESHOLD.
1370                  */
1371                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1372                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1373
1374                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1375                         goto out_unlock;
1376                 dbg_wl("schedule wear-leveling");
1377         } else
1378                 dbg_wl("schedule scrubbing");
1379
1380         ubi->wl_scheduled = 1;
1381         spin_unlock(&ubi->wl_lock);
1382
1383         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1384         if (!wrk) {
1385                 err = -ENOMEM;
1386                 goto out_cancel;
1387         }
1388
1389         wrk->anchor = 0;
1390         wrk->func = &wear_leveling_worker;
1391         if (nested)
1392                 __schedule_ubi_work(ubi, wrk);
1393         else
1394                 schedule_ubi_work(ubi, wrk);
1395         return err;
1396
1397 out_cancel:
1398         spin_lock(&ubi->wl_lock);
1399         ubi->wl_scheduled = 0;
1400 out_unlock:
1401         spin_unlock(&ubi->wl_lock);
1402         return err;
1403 }
1404
1405 #ifdef CONFIG_MTD_UBI_FASTMAP
1406 /**
1407  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1408  * @ubi: UBI device description object
1409  */
1410 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1411 {
1412         struct ubi_work *wrk;
1413
1414         spin_lock(&ubi->wl_lock);
1415         if (ubi->wl_scheduled) {
1416                 spin_unlock(&ubi->wl_lock);
1417                 return 0;
1418         }
1419         ubi->wl_scheduled = 1;
1420         spin_unlock(&ubi->wl_lock);
1421
1422         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1423         if (!wrk) {
1424                 spin_lock(&ubi->wl_lock);
1425                 ubi->wl_scheduled = 0;
1426                 spin_unlock(&ubi->wl_lock);
1427                 return -ENOMEM;
1428         }
1429
1430         wrk->anchor = 1;
1431         wrk->func = &wear_leveling_worker;
1432         schedule_ubi_work(ubi, wrk);
1433         return 0;
1434 }
1435 #endif
1436
1437 /**
1438  * erase_worker - physical eraseblock erase worker function.
1439  * @ubi: UBI device description object
1440  * @wl_wrk: the work object
1441  * @shutdown: non-zero if the worker has to free memory and exit
1442  * because the WL sub-system is shutting down
1443  *
1444  * This function erases a physical eraseblock and perform torture testing if
1445  * needed. It also takes care about marking the physical eraseblock bad if
1446  * needed. Returns zero in case of success and a negative error code in case of
1447  * failure.
1448  */
1449 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1450                         int shutdown)
1451 {
1452         struct ubi_wl_entry *e = wl_wrk->e;
1453         int pnum = e->pnum;
1454         int vol_id = wl_wrk->vol_id;
1455         int lnum = wl_wrk->lnum;
1456         int err, available_consumed = 0;
1457
1458         if (shutdown) {
1459                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1460                 kfree(wl_wrk);
1461                 kmem_cache_free(ubi_wl_entry_slab, e);
1462                 return 0;
1463         }
1464
1465         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1466                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1467
1468         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1469
1470         err = sync_erase(ubi, e, wl_wrk->torture);
1471         if (!err) {
1472                 /* Fine, we've erased it successfully */
1473                 kfree(wl_wrk);
1474
1475                 spin_lock(&ubi->wl_lock);
1476                 wl_tree_add(e, &ubi->free);
1477                 ubi->free_count++;
1478                 spin_unlock(&ubi->wl_lock);
1479
1480                 /*
1481                  * One more erase operation has happened, take care about
1482                  * protected physical eraseblocks.
1483                  */
1484                 serve_prot_queue(ubi);
1485
1486                 /* And take care about wear-leveling */
1487                 err = ensure_wear_leveling(ubi, 1);
1488                 return err;
1489         }
1490
1491         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1492         kfree(wl_wrk);
1493
1494         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1495             err == -EBUSY) {
1496                 int err1;
1497
1498                 /* Re-schedule the LEB for erasure */
1499                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1500                 if (err1) {
1501                         err = err1;
1502                         goto out_ro;
1503                 }
1504                 return err;
1505         }
1506
1507         kmem_cache_free(ubi_wl_entry_slab, e);
1508         if (err != -EIO)
1509                 /*
1510                  * If this is not %-EIO, we have no idea what to do. Scheduling
1511                  * this physical eraseblock for erasure again would cause
1512                  * errors again and again. Well, lets switch to R/O mode.
1513                  */
1514                 goto out_ro;
1515
1516         /* It is %-EIO, the PEB went bad */
1517
1518         if (!ubi->bad_allowed) {
1519                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1520                 goto out_ro;
1521         }
1522
1523         spin_lock(&ubi->volumes_lock);
1524         if (ubi->beb_rsvd_pebs == 0) {
1525                 if (ubi->avail_pebs == 0) {
1526                         spin_unlock(&ubi->volumes_lock);
1527                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1528                         goto out_ro;
1529                 }
1530                 ubi->avail_pebs -= 1;
1531                 available_consumed = 1;
1532         }
1533         spin_unlock(&ubi->volumes_lock);
1534
1535         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1536         err = ubi_io_mark_bad(ubi, pnum);
1537         if (err)
1538                 goto out_ro;
1539
1540         spin_lock(&ubi->volumes_lock);
1541         if (ubi->beb_rsvd_pebs > 0) {
1542                 if (available_consumed) {
1543                         /*
1544                          * The amount of reserved PEBs increased since we last
1545                          * checked.
1546                          */
1547                         ubi->avail_pebs += 1;
1548                         available_consumed = 0;
1549                 }
1550                 ubi->beb_rsvd_pebs -= 1;
1551         }
1552         ubi->bad_peb_count += 1;
1553         ubi->good_peb_count -= 1;
1554         ubi_calculate_reserved(ubi);
1555         if (available_consumed)
1556                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1557         else if (ubi->beb_rsvd_pebs)
1558                 ubi_msg(ubi, "%d PEBs left in the reserve",
1559                         ubi->beb_rsvd_pebs);
1560         else
1561                 ubi_warn(ubi, "last PEB from the reserve was used");
1562         spin_unlock(&ubi->volumes_lock);
1563
1564         return err;
1565
1566 out_ro:
1567         if (available_consumed) {
1568                 spin_lock(&ubi->volumes_lock);
1569                 ubi->avail_pebs += 1;
1570                 spin_unlock(&ubi->volumes_lock);
1571         }
1572         ubi_ro_mode(ubi);
1573         return err;
1574 }
1575
1576 /**
1577  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1578  * @ubi: UBI device description object
1579  * @vol_id: the volume ID that last used this PEB
1580  * @lnum: the last used logical eraseblock number for the PEB
1581  * @pnum: physical eraseblock to return
1582  * @torture: if this physical eraseblock has to be tortured
1583  *
1584  * This function is called to return physical eraseblock @pnum to the pool of
1585  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1586  * occurred to this @pnum and it has to be tested. This function returns zero
1587  * in case of success, and a negative error code in case of failure.
1588  */
1589 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1590                    int pnum, int torture)
1591 {
1592         int err;
1593         struct ubi_wl_entry *e;
1594
1595         dbg_wl("PEB %d", pnum);
1596         ubi_assert(pnum >= 0);
1597         ubi_assert(pnum < ubi->peb_count);
1598
1599 retry:
1600         spin_lock(&ubi->wl_lock);
1601         e = ubi->lookuptbl[pnum];
1602         if (e == ubi->move_from) {
1603                 /*
1604                  * User is putting the physical eraseblock which was selected to
1605                  * be moved. It will be scheduled for erasure in the
1606                  * wear-leveling worker.
1607                  */
1608                 dbg_wl("PEB %d is being moved, wait", pnum);
1609                 spin_unlock(&ubi->wl_lock);
1610
1611                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1612                 mutex_lock(&ubi->move_mutex);
1613                 mutex_unlock(&ubi->move_mutex);
1614                 goto retry;
1615         } else if (e == ubi->move_to) {
1616                 /*
1617                  * User is putting the physical eraseblock which was selected
1618                  * as the target the data is moved to. It may happen if the EBA
1619                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1620                  * but the WL sub-system has not put the PEB to the "used" tree
1621                  * yet, but it is about to do this. So we just set a flag which
1622                  * will tell the WL worker that the PEB is not needed anymore
1623                  * and should be scheduled for erasure.
1624                  */
1625                 dbg_wl("PEB %d is the target of data moving", pnum);
1626                 ubi_assert(!ubi->move_to_put);
1627                 ubi->move_to_put = 1;
1628                 spin_unlock(&ubi->wl_lock);
1629                 return 0;
1630         } else {
1631                 if (in_wl_tree(e, &ubi->used)) {
1632                         self_check_in_wl_tree(ubi, e, &ubi->used);
1633                         rb_erase(&e->u.rb, &ubi->used);
1634                 } else if (in_wl_tree(e, &ubi->scrub)) {
1635                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1636                         rb_erase(&e->u.rb, &ubi->scrub);
1637                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1638                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1639                         rb_erase(&e->u.rb, &ubi->erroneous);
1640                         ubi->erroneous_peb_count -= 1;
1641                         ubi_assert(ubi->erroneous_peb_count >= 0);
1642                         /* Erroneous PEBs should be tortured */
1643                         torture = 1;
1644                 } else {
1645                         err = prot_queue_del(ubi, e->pnum);
1646                         if (err) {
1647                                 ubi_err(ubi, "PEB %d not found", pnum);
1648                                 ubi_ro_mode(ubi);
1649                                 spin_unlock(&ubi->wl_lock);
1650                                 return err;
1651                         }
1652                 }
1653         }
1654         spin_unlock(&ubi->wl_lock);
1655
1656         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1657         if (err) {
1658                 spin_lock(&ubi->wl_lock);
1659                 wl_tree_add(e, &ubi->used);
1660                 spin_unlock(&ubi->wl_lock);
1661         }
1662
1663         return err;
1664 }
1665
1666 /**
1667  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1668  * @ubi: UBI device description object
1669  * @pnum: the physical eraseblock to schedule
1670  *
1671  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1672  * needs scrubbing. This function schedules a physical eraseblock for
1673  * scrubbing which is done in background. This function returns zero in case of
1674  * success and a negative error code in case of failure.
1675  */
1676 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1677 {
1678         struct ubi_wl_entry *e;
1679
1680         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1681
1682 retry:
1683         spin_lock(&ubi->wl_lock);
1684         e = ubi->lookuptbl[pnum];
1685         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1686                                    in_wl_tree(e, &ubi->erroneous)) {
1687                 spin_unlock(&ubi->wl_lock);
1688                 return 0;
1689         }
1690
1691         if (e == ubi->move_to) {
1692                 /*
1693                  * This physical eraseblock was used to move data to. The data
1694                  * was moved but the PEB was not yet inserted to the proper
1695                  * tree. We should just wait a little and let the WL worker
1696                  * proceed.
1697                  */
1698                 spin_unlock(&ubi->wl_lock);
1699                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1700                 yield();
1701                 goto retry;
1702         }
1703
1704         if (in_wl_tree(e, &ubi->used)) {
1705                 self_check_in_wl_tree(ubi, e, &ubi->used);
1706                 rb_erase(&e->u.rb, &ubi->used);
1707         } else {
1708                 int err;
1709
1710                 err = prot_queue_del(ubi, e->pnum);
1711                 if (err) {
1712                         ubi_err(ubi, "PEB %d not found", pnum);
1713                         ubi_ro_mode(ubi);
1714                         spin_unlock(&ubi->wl_lock);
1715                         return err;
1716                 }
1717         }
1718
1719         wl_tree_add(e, &ubi->scrub);
1720         spin_unlock(&ubi->wl_lock);
1721
1722         /*
1723          * Technically scrubbing is the same as wear-leveling, so it is done
1724          * by the WL worker.
1725          */
1726         return ensure_wear_leveling(ubi, 0);
1727 }
1728
1729 /**
1730  * ubi_wl_flush - flush all pending works.
1731  * @ubi: UBI device description object
1732  * @vol_id: the volume id to flush for
1733  * @lnum: the logical eraseblock number to flush for
1734  *
1735  * This function executes all pending works for a particular volume id /
1736  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1737  * acts as a wildcard for all of the corresponding volume numbers or logical
1738  * eraseblock numbers. It returns zero in case of success and a negative error
1739  * code in case of failure.
1740  */
1741 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1742 {
1743         int err = 0;
1744         int found = 1;
1745
1746         /*
1747          * Erase while the pending works queue is not empty, but not more than
1748          * the number of currently pending works.
1749          */
1750         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1751                vol_id, lnum, ubi->works_count);
1752
1753         while (found) {
1754                 struct ubi_work *wrk, *tmp;
1755                 found = 0;
1756
1757                 down_read(&ubi->work_sem);
1758                 spin_lock(&ubi->wl_lock);
1759                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1760                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1761                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1762                                 list_del(&wrk->list);
1763                                 ubi->works_count -= 1;
1764                                 ubi_assert(ubi->works_count >= 0);
1765                                 spin_unlock(&ubi->wl_lock);
1766
1767                                 err = wrk->func(ubi, wrk, 0);
1768                                 if (err) {
1769                                         up_read(&ubi->work_sem);
1770                                         return err;
1771                                 }
1772
1773                                 spin_lock(&ubi->wl_lock);
1774                                 found = 1;
1775                                 break;
1776                         }
1777                 }
1778                 spin_unlock(&ubi->wl_lock);
1779                 up_read(&ubi->work_sem);
1780         }
1781
1782         /*
1783          * Make sure all the works which have been done in parallel are
1784          * finished.
1785          */
1786         down_write(&ubi->work_sem);
1787         up_write(&ubi->work_sem);
1788
1789         return err;
1790 }
1791
1792 /**
1793  * tree_destroy - destroy an RB-tree.
1794  * @root: the root of the tree to destroy
1795  */
1796 static void tree_destroy(struct rb_root *root)
1797 {
1798         struct rb_node *rb;
1799         struct ubi_wl_entry *e;
1800
1801         rb = root->rb_node;
1802         while (rb) {
1803                 if (rb->rb_left)
1804                         rb = rb->rb_left;
1805                 else if (rb->rb_right)
1806                         rb = rb->rb_right;
1807                 else {
1808                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1809
1810                         rb = rb_parent(rb);
1811                         if (rb) {
1812                                 if (rb->rb_left == &e->u.rb)
1813                                         rb->rb_left = NULL;
1814                                 else
1815                                         rb->rb_right = NULL;
1816                         }
1817
1818                         kmem_cache_free(ubi_wl_entry_slab, e);
1819                 }
1820         }
1821 }
1822
1823 /**
1824  * ubi_thread - UBI background thread.
1825  * @u: the UBI device description object pointer
1826  */
1827 int ubi_thread(void *u)
1828 {
1829         int failures = 0;
1830         struct ubi_device *ubi = u;
1831
1832         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1833                 ubi->bgt_name, task_pid_nr(current));
1834
1835         set_freezable();
1836         for (;;) {
1837                 int err;
1838
1839                 if (kthread_should_stop())
1840                         break;
1841
1842                 if (try_to_freeze())
1843                         continue;
1844
1845                 spin_lock(&ubi->wl_lock);
1846                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1847                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1848                         set_current_state(TASK_INTERRUPTIBLE);
1849                         spin_unlock(&ubi->wl_lock);
1850                         schedule();
1851                         continue;
1852                 }
1853                 spin_unlock(&ubi->wl_lock);
1854
1855                 err = do_work(ubi);
1856                 if (err) {
1857                         ubi_err(ubi, "%s: work failed with error code %d",
1858                                 ubi->bgt_name, err);
1859                         if (failures++ > WL_MAX_FAILURES) {
1860                                 /*
1861                                  * Too many failures, disable the thread and
1862                                  * switch to read-only mode.
1863                                  */
1864                                 ubi_msg(ubi, "%s: %d consecutive failures",
1865                                         ubi->bgt_name, WL_MAX_FAILURES);
1866                                 ubi_ro_mode(ubi);
1867                                 ubi->thread_enabled = 0;
1868                                 continue;
1869                         }
1870                 } else
1871                         failures = 0;
1872
1873                 cond_resched();
1874         }
1875
1876         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1877         return 0;
1878 }
1879
1880 /**
1881  * shutdown_work - shutdown all pending works.
1882  * @ubi: UBI device description object
1883  */
1884 static void shutdown_work(struct ubi_device *ubi)
1885 {
1886 #ifdef CONFIG_MTD_UBI_FASTMAP
1887         flush_work(&ubi->fm_work);
1888 #endif
1889         while (!list_empty(&ubi->works)) {
1890                 struct ubi_work *wrk;
1891
1892                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1893                 list_del(&wrk->list);
1894                 wrk->func(ubi, wrk, 1);
1895                 ubi->works_count -= 1;
1896                 ubi_assert(ubi->works_count >= 0);
1897         }
1898 }
1899
1900 /**
1901  * ubi_wl_init - initialize the WL sub-system using attaching information.
1902  * @ubi: UBI device description object
1903  * @ai: attaching information
1904  *
1905  * This function returns zero in case of success, and a negative error code in
1906  * case of failure.
1907  */
1908 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1909 {
1910         int err, i, reserved_pebs, found_pebs = 0;
1911         struct rb_node *rb1, *rb2;
1912         struct ubi_ainf_volume *av;
1913         struct ubi_ainf_peb *aeb, *tmp;
1914         struct ubi_wl_entry *e;
1915
1916         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1917         spin_lock_init(&ubi->wl_lock);
1918         mutex_init(&ubi->move_mutex);
1919         init_rwsem(&ubi->work_sem);
1920         ubi->max_ec = ai->max_ec;
1921         INIT_LIST_HEAD(&ubi->works);
1922 #ifdef CONFIG_MTD_UBI_FASTMAP
1923         INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1924 #endif
1925
1926         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1927
1928         err = -ENOMEM;
1929         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1930         if (!ubi->lookuptbl)
1931                 return err;
1932
1933         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1934                 INIT_LIST_HEAD(&ubi->pq[i]);
1935         ubi->pq_head = 0;
1936
1937         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1938                 cond_resched();
1939
1940                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1941                 if (!e)
1942                         goto out_free;
1943
1944                 e->pnum = aeb->pnum;
1945                 e->ec = aeb->ec;
1946                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1947                 ubi->lookuptbl[e->pnum] = e;
1948                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1949                         kmem_cache_free(ubi_wl_entry_slab, e);
1950                         goto out_free;
1951                 }
1952
1953                 found_pebs++;
1954         }
1955
1956         ubi->free_count = 0;
1957         list_for_each_entry(aeb, &ai->free, u.list) {
1958                 cond_resched();
1959
1960                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1961                 if (!e)
1962                         goto out_free;
1963
1964                 e->pnum = aeb->pnum;
1965                 e->ec = aeb->ec;
1966                 ubi_assert(e->ec >= 0);
1967                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1968
1969                 wl_tree_add(e, &ubi->free);
1970                 ubi->free_count++;
1971
1972                 ubi->lookuptbl[e->pnum] = e;
1973
1974                 found_pebs++;
1975         }
1976
1977         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1978                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1979                         cond_resched();
1980
1981                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1982                         if (!e)
1983                                 goto out_free;
1984
1985                         e->pnum = aeb->pnum;
1986                         e->ec = aeb->ec;
1987                         ubi->lookuptbl[e->pnum] = e;
1988
1989                         if (!aeb->scrub) {
1990                                 dbg_wl("add PEB %d EC %d to the used tree",
1991                                        e->pnum, e->ec);
1992                                 wl_tree_add(e, &ubi->used);
1993                         } else {
1994                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1995                                        e->pnum, e->ec);
1996                                 wl_tree_add(e, &ubi->scrub);
1997                         }
1998
1999                         found_pebs++;
2000                 }
2001         }
2002
2003         dbg_wl("found %i PEBs", found_pebs);
2004
2005         if (ubi->fm) {
2006                 ubi_assert(ubi->good_peb_count == \
2007                            found_pebs + ubi->fm->used_blocks);
2008
2009                 for (i = 0; i < ubi->fm->used_blocks; i++) {
2010                         e = ubi->fm->e[i];
2011                         ubi->lookuptbl[e->pnum] = e;
2012                 }
2013         }
2014         else
2015                 ubi_assert(ubi->good_peb_count == found_pebs);
2016
2017         reserved_pebs = WL_RESERVED_PEBS;
2018 #ifdef CONFIG_MTD_UBI_FASTMAP
2019         /* Reserve enough LEBs to store two fastmaps. */
2020         reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
2021 #endif
2022
2023         if (ubi->avail_pebs < reserved_pebs) {
2024                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
2025                         ubi->avail_pebs, reserved_pebs);
2026                 if (ubi->corr_peb_count)
2027                         ubi_err(ubi, "%d PEBs are corrupted and not used",
2028                                 ubi->corr_peb_count);
2029                 goto out_free;
2030         }
2031         ubi->avail_pebs -= reserved_pebs;
2032         ubi->rsvd_pebs += reserved_pebs;
2033
2034         /* Schedule wear-leveling if needed */
2035         err = ensure_wear_leveling(ubi, 0);
2036         if (err)
2037                 goto out_free;
2038
2039         return 0;
2040
2041 out_free:
2042         shutdown_work(ubi);
2043         tree_destroy(&ubi->used);
2044         tree_destroy(&ubi->free);
2045         tree_destroy(&ubi->scrub);
2046         kfree(ubi->lookuptbl);
2047         return err;
2048 }
2049
2050 /**
2051  * protection_queue_destroy - destroy the protection queue.
2052  * @ubi: UBI device description object
2053  */
2054 static void protection_queue_destroy(struct ubi_device *ubi)
2055 {
2056         int i;
2057         struct ubi_wl_entry *e, *tmp;
2058
2059         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2060                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2061                         list_del(&e->u.list);
2062                         kmem_cache_free(ubi_wl_entry_slab, e);
2063                 }
2064         }
2065 }
2066
2067 /**
2068  * ubi_wl_close - close the wear-leveling sub-system.
2069  * @ubi: UBI device description object
2070  */
2071 void ubi_wl_close(struct ubi_device *ubi)
2072 {
2073         dbg_wl("close the WL sub-system");
2074         shutdown_work(ubi);
2075         protection_queue_destroy(ubi);
2076         tree_destroy(&ubi->used);
2077         tree_destroy(&ubi->erroneous);
2078         tree_destroy(&ubi->free);
2079         tree_destroy(&ubi->scrub);
2080         kfree(ubi->lookuptbl);
2081 }
2082
2083 /**
2084  * self_check_ec - make sure that the erase counter of a PEB is correct.
2085  * @ubi: UBI device description object
2086  * @pnum: the physical eraseblock number to check
2087  * @ec: the erase counter to check
2088  *
2089  * This function returns zero if the erase counter of physical eraseblock @pnum
2090  * is equivalent to @ec, and a negative error code if not or if an error
2091  * occurred.
2092  */
2093 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2094 {
2095         int err;
2096         long long read_ec;
2097         struct ubi_ec_hdr *ec_hdr;
2098
2099         if (!ubi_dbg_chk_gen(ubi))
2100                 return 0;
2101
2102         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2103         if (!ec_hdr)
2104                 return -ENOMEM;
2105
2106         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2107         if (err && err != UBI_IO_BITFLIPS) {
2108                 /* The header does not have to exist */
2109                 err = 0;
2110                 goto out_free;
2111         }
2112
2113         read_ec = be64_to_cpu(ec_hdr->ec);
2114         if (ec != read_ec && read_ec - ec > 1) {
2115                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2116                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2117                 dump_stack();
2118                 err = 1;
2119         } else
2120                 err = 0;
2121
2122 out_free:
2123         kfree(ec_hdr);
2124         return err;
2125 }
2126
2127 /**
2128  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2129  * @ubi: UBI device description object
2130  * @e: the wear-leveling entry to check
2131  * @root: the root of the tree
2132  *
2133  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2134  * is not.
2135  */
2136 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2137                                  struct ubi_wl_entry *e, struct rb_root *root)
2138 {
2139         if (!ubi_dbg_chk_gen(ubi))
2140                 return 0;
2141
2142         if (in_wl_tree(e, root))
2143                 return 0;
2144
2145         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2146                 e->pnum, e->ec, root);
2147         dump_stack();
2148         return -EINVAL;
2149 }
2150
2151 /**
2152  * self_check_in_pq - check if wear-leveling entry is in the protection
2153  *                        queue.
2154  * @ubi: UBI device description object
2155  * @e: the wear-leveling entry to check
2156  *
2157  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2158  */
2159 static int self_check_in_pq(const struct ubi_device *ubi,
2160                             struct ubi_wl_entry *e)
2161 {
2162         struct ubi_wl_entry *p;
2163         int i;
2164
2165         if (!ubi_dbg_chk_gen(ubi))
2166                 return 0;
2167
2168         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2169                 list_for_each_entry(p, &ubi->pq[i], u.list)
2170                         if (p == e)
2171                                 return 0;
2172
2173         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2174                 e->pnum, e->ec);
2175         dump_stack();
2176         return -EINVAL;
2177 }