UBI: Fastmap: Notify user in case of an ubi_update_fastmap() failure
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139                                  struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141                             struct ubi_wl_entry *e);
142
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150         struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151         ubi_update_fastmap(ubi);
152         spin_lock(&ubi->wl_lock);
153         ubi->fm_work_scheduled = 0;
154         spin_unlock(&ubi->wl_lock);
155 }
156
157 /**
158  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
159  *  @ubi: UBI device description object
160  *  @pnum: the to be checked PEB
161  */
162 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
163 {
164         int i;
165
166         if (!ubi->fm)
167                 return 0;
168
169         for (i = 0; i < ubi->fm->used_blocks; i++)
170                 if (ubi->fm->e[i]->pnum == pnum)
171                         return 1;
172
173         return 0;
174 }
175 #else
176 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
177 {
178         return 0;
179 }
180 #endif
181
182 /**
183  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
184  * @e: the wear-leveling entry to add
185  * @root: the root of the tree
186  *
187  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
188  * the @ubi->used and @ubi->free RB-trees.
189  */
190 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
191 {
192         struct rb_node **p, *parent = NULL;
193
194         p = &root->rb_node;
195         while (*p) {
196                 struct ubi_wl_entry *e1;
197
198                 parent = *p;
199                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
200
201                 if (e->ec < e1->ec)
202                         p = &(*p)->rb_left;
203                 else if (e->ec > e1->ec)
204                         p = &(*p)->rb_right;
205                 else {
206                         ubi_assert(e->pnum != e1->pnum);
207                         if (e->pnum < e1->pnum)
208                                 p = &(*p)->rb_left;
209                         else
210                                 p = &(*p)->rb_right;
211                 }
212         }
213
214         rb_link_node(&e->u.rb, parent, p);
215         rb_insert_color(&e->u.rb, root);
216 }
217
218 /**
219  * do_work - do one pending work.
220  * @ubi: UBI device description object
221  *
222  * This function returns zero in case of success and a negative error code in
223  * case of failure.
224  */
225 static int do_work(struct ubi_device *ubi)
226 {
227         int err;
228         struct ubi_work *wrk;
229
230         cond_resched();
231
232         /*
233          * @ubi->work_sem is used to synchronize with the workers. Workers take
234          * it in read mode, so many of them may be doing works at a time. But
235          * the queue flush code has to be sure the whole queue of works is
236          * done, and it takes the mutex in write mode.
237          */
238         down_read(&ubi->work_sem);
239         spin_lock(&ubi->wl_lock);
240         if (list_empty(&ubi->works)) {
241                 spin_unlock(&ubi->wl_lock);
242                 up_read(&ubi->work_sem);
243                 return 0;
244         }
245
246         wrk = list_entry(ubi->works.next, struct ubi_work, list);
247         list_del(&wrk->list);
248         ubi->works_count -= 1;
249         ubi_assert(ubi->works_count >= 0);
250         spin_unlock(&ubi->wl_lock);
251
252         /*
253          * Call the worker function. Do not touch the work structure
254          * after this call as it will have been freed or reused by that
255          * time by the worker function.
256          */
257         err = wrk->func(ubi, wrk, 0);
258         if (err)
259                 ubi_err(ubi, "work failed with error code %d", err);
260         up_read(&ubi->work_sem);
261
262         return err;
263 }
264
265 /**
266  * produce_free_peb - produce a free physical eraseblock.
267  * @ubi: UBI device description object
268  *
269  * This function tries to make a free PEB by means of synchronous execution of
270  * pending works. This may be needed if, for example the background thread is
271  * disabled. Returns zero in case of success and a negative error code in case
272  * of failure.
273  */
274 static int produce_free_peb(struct ubi_device *ubi)
275 {
276         int err;
277
278         while (!ubi->free.rb_node && ubi->works_count) {
279                 spin_unlock(&ubi->wl_lock);
280
281                 dbg_wl("do one work synchronously");
282                 err = do_work(ubi);
283
284                 spin_lock(&ubi->wl_lock);
285                 if (err)
286                         return err;
287         }
288
289         return 0;
290 }
291
292 /**
293  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
294  * @e: the wear-leveling entry to check
295  * @root: the root of the tree
296  *
297  * This function returns non-zero if @e is in the @root RB-tree and zero if it
298  * is not.
299  */
300 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
301 {
302         struct rb_node *p;
303
304         p = root->rb_node;
305         while (p) {
306                 struct ubi_wl_entry *e1;
307
308                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
309
310                 if (e->pnum == e1->pnum) {
311                         ubi_assert(e == e1);
312                         return 1;
313                 }
314
315                 if (e->ec < e1->ec)
316                         p = p->rb_left;
317                 else if (e->ec > e1->ec)
318                         p = p->rb_right;
319                 else {
320                         ubi_assert(e->pnum != e1->pnum);
321                         if (e->pnum < e1->pnum)
322                                 p = p->rb_left;
323                         else
324                                 p = p->rb_right;
325                 }
326         }
327
328         return 0;
329 }
330
331 /**
332  * prot_queue_add - add physical eraseblock to the protection queue.
333  * @ubi: UBI device description object
334  * @e: the physical eraseblock to add
335  *
336  * This function adds @e to the tail of the protection queue @ubi->pq, where
337  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
338  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
339  * be locked.
340  */
341 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
342 {
343         int pq_tail = ubi->pq_head - 1;
344
345         if (pq_tail < 0)
346                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
347         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
348         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
349         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
350 }
351
352 /**
353  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
354  * @ubi: UBI device description object
355  * @root: the RB-tree where to look for
356  * @diff: maximum possible difference from the smallest erase counter
357  *
358  * This function looks for a wear leveling entry with erase counter closest to
359  * min + @diff, where min is the smallest erase counter.
360  */
361 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
362                                           struct rb_root *root, int diff)
363 {
364         struct rb_node *p;
365         struct ubi_wl_entry *e, *prev_e = NULL;
366         int max;
367
368         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
369         max = e->ec + diff;
370
371         p = root->rb_node;
372         while (p) {
373                 struct ubi_wl_entry *e1;
374
375                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
376                 if (e1->ec >= max)
377                         p = p->rb_left;
378                 else {
379                         p = p->rb_right;
380                         prev_e = e;
381                         e = e1;
382                 }
383         }
384
385         /* If no fastmap has been written and this WL entry can be used
386          * as anchor PEB, hold it back and return the second best WL entry
387          * such that fastmap can use the anchor PEB later. */
388         if (prev_e && !ubi->fm_disabled &&
389             !ubi->fm && e->pnum < UBI_FM_MAX_START)
390                 return prev_e;
391
392         return e;
393 }
394
395 /**
396  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
397  * @ubi: UBI device description object
398  * @root: the RB-tree where to look for
399  *
400  * This function looks for a wear leveling entry with medium erase counter,
401  * but not greater or equivalent than the lowest erase counter plus
402  * %WL_FREE_MAX_DIFF/2.
403  */
404 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
405                                                struct rb_root *root)
406 {
407         struct ubi_wl_entry *e, *first, *last;
408
409         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
410         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
411
412         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
413                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
414
415 #ifdef CONFIG_MTD_UBI_FASTMAP
416                 /* If no fastmap has been written and this WL entry can be used
417                  * as anchor PEB, hold it back and return the second best
418                  * WL entry such that fastmap can use the anchor PEB later. */
419                 if (e && !ubi->fm_disabled && !ubi->fm &&
420                     e->pnum < UBI_FM_MAX_START)
421                         e = rb_entry(rb_next(root->rb_node),
422                                      struct ubi_wl_entry, u.rb);
423 #endif
424         } else
425                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
426
427         return e;
428 }
429
430 #ifdef CONFIG_MTD_UBI_FASTMAP
431 /**
432  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
433  * @root: the RB-tree where to look for
434  */
435 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
436 {
437         struct rb_node *p;
438         struct ubi_wl_entry *e, *victim = NULL;
439         int max_ec = UBI_MAX_ERASECOUNTER;
440
441         ubi_rb_for_each_entry(p, e, root, u.rb) {
442                 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
443                         victim = e;
444                         max_ec = e->ec;
445                 }
446         }
447
448         return victim;
449 }
450
451 static int anchor_pebs_avalible(struct rb_root *root)
452 {
453         struct rb_node *p;
454         struct ubi_wl_entry *e;
455
456         ubi_rb_for_each_entry(p, e, root, u.rb)
457                 if (e->pnum < UBI_FM_MAX_START)
458                         return 1;
459
460         return 0;
461 }
462
463 /**
464  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
465  * @ubi: UBI device description object
466  * @anchor: This PEB will be used as anchor PEB by fastmap
467  *
468  * The function returns a physical erase block with a given maximal number
469  * and removes it from the wl subsystem.
470  * Must be called with wl_lock held!
471  */
472 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
473 {
474         struct ubi_wl_entry *e = NULL;
475
476         if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
477                 goto out;
478
479         if (anchor)
480                 e = find_anchor_wl_entry(&ubi->free);
481         else
482                 e = find_mean_wl_entry(ubi, &ubi->free);
483
484         if (!e)
485                 goto out;
486
487         self_check_in_wl_tree(ubi, e, &ubi->free);
488
489         /* remove it from the free list,
490          * the wl subsystem does no longer know this erase block */
491         rb_erase(&e->u.rb, &ubi->free);
492         ubi->free_count--;
493 out:
494         return e;
495 }
496 #endif
497
498 /**
499  * wl_get_wle - get a mean wl entry to be used by wl_get_peb() or
500  * refill_wl_user_pool().
501  * @ubi: UBI device description object
502  *
503  * This function returns a a wear leveling entry in case of success and
504  * NULL in case of failure.
505  */
506 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
507 {
508         struct ubi_wl_entry *e;
509
510         e = find_mean_wl_entry(ubi, &ubi->free);
511         if (!e) {
512                 ubi_err(ubi, "no free eraseblocks");
513                 return NULL;
514         }
515
516         self_check_in_wl_tree(ubi, e, &ubi->free);
517
518         /*
519          * Move the physical eraseblock to the protection queue where it will
520          * be protected from being moved for some time.
521          */
522         rb_erase(&e->u.rb, &ubi->free);
523         ubi->free_count--;
524         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
525
526         return e;
527 }
528
529 /**
530  * wl_get_peb - get a physical eraseblock.
531  * @ubi: UBI device description object
532  *
533  * This function returns a physical eraseblock in case of success and a
534  * negative error code in case of failure.
535  * It is the low level component of ubi_wl_get_peb() in the non-fastmap
536  * case.
537  */
538 static int wl_get_peb(struct ubi_device *ubi)
539 {
540         int err;
541         struct ubi_wl_entry *e;
542
543 retry:
544         if (!ubi->free.rb_node) {
545                 if (ubi->works_count == 0) {
546                         ubi_err(ubi, "no free eraseblocks");
547                         ubi_assert(list_empty(&ubi->works));
548                         return -ENOSPC;
549                 }
550
551                 err = produce_free_peb(ubi);
552                 if (err < 0)
553                         return err;
554                 goto retry;
555         }
556
557         e = wl_get_wle(ubi);
558         prot_queue_add(ubi, e);
559
560         return e->pnum;
561 }
562
563 #ifdef CONFIG_MTD_UBI_FASTMAP
564 /**
565  * return_unused_pool_pebs - returns unused PEB to the free tree.
566  * @ubi: UBI device description object
567  * @pool: fastmap pool description object
568  */
569 static void return_unused_pool_pebs(struct ubi_device *ubi,
570                                     struct ubi_fm_pool *pool)
571 {
572         int i;
573         struct ubi_wl_entry *e;
574
575         for (i = pool->used; i < pool->size; i++) {
576                 e = ubi->lookuptbl[pool->pebs[i]];
577                 wl_tree_add(e, &ubi->free);
578                 ubi->free_count++;
579         }
580 }
581
582 /**
583  * ubi_refill_pools - refills all fastmap PEB pools.
584  * @ubi: UBI device description object
585  */
586 void ubi_refill_pools(struct ubi_device *ubi)
587 {
588         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
589         struct ubi_fm_pool *pool = &ubi->fm_pool;
590         struct ubi_wl_entry *e;
591         int enough;
592
593         spin_lock(&ubi->wl_lock);
594
595         return_unused_pool_pebs(ubi, wl_pool);
596         return_unused_pool_pebs(ubi, pool);
597
598         wl_pool->size = 0;
599         pool->size = 0;
600
601         for (;;) {
602                 enough = 0;
603                 if (pool->size < pool->max_size) {
604                         if (!ubi->free.rb_node ||
605                            (ubi->free_count - ubi->beb_rsvd_pebs < 5))
606                                 break;
607
608                         e = wl_get_wle(ubi);
609                         if (!e)
610                                 break;
611
612                         pool->pebs[pool->size] = e->pnum;
613                         pool->size++;
614                 } else
615                         enough++;
616
617                 if (wl_pool->size < wl_pool->max_size) {
618                         if (!ubi->free.rb_node ||
619                            (ubi->free_count - ubi->beb_rsvd_pebs < 5))
620                                 break;
621
622                         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
623                         self_check_in_wl_tree(ubi, e, &ubi->free);
624                         rb_erase(&e->u.rb, &ubi->free);
625                         ubi->free_count--;
626
627                         wl_pool->pebs[wl_pool->size] = e->pnum;
628                         wl_pool->size++;
629                 } else
630                         enough++;
631
632                 if (enough == 2)
633                         break;
634         }
635
636         wl_pool->used = 0;
637         pool->used = 0;
638
639         spin_unlock(&ubi->wl_lock);
640 }
641
642 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
643  * the fastmap pool.
644  */
645 int ubi_wl_get_peb(struct ubi_device *ubi)
646 {
647         int ret, retried = 0;
648         struct ubi_fm_pool *pool = &ubi->fm_pool;
649         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
650
651 again:
652         spin_lock(&ubi->wl_lock);
653         /* We check here also for the WL pool because at this point we can
654          * refill the WL pool synchronous. */
655         if (pool->used == pool->size || wl_pool->used == wl_pool->size) {
656                 spin_unlock(&ubi->wl_lock);
657                 ret = ubi_update_fastmap(ubi);
658                 if (ret) {
659                         ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
660                         return -ENOSPC;
661                 }
662                 spin_lock(&ubi->wl_lock);
663         }
664
665         if (pool->used == pool->size) {
666                 spin_unlock(&ubi->wl_lock);
667                 if (retried) {
668                         ubi_err(ubi, "Unable to get a free PEB from user WL pool");
669                         ret = -ENOSPC;
670                         goto out;
671                 }
672                 retried = 1;
673                 goto again;
674         }
675
676         ubi_assert(pool->used < pool->size);
677         ret = pool->pebs[pool->used++];
678         prot_queue_add(ubi, ubi->lookuptbl[ret]);
679         spin_unlock(&ubi->wl_lock);
680 out:
681         return ret;
682 }
683
684 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
685  *
686  * @ubi: UBI device description object
687  */
688 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
689 {
690         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
691         int pnum;
692
693         if (pool->used == pool->size) {
694                 /* We cannot update the fastmap here because this
695                  * function is called in atomic context.
696                  * Let's fail here and refill/update it as soon as possible. */
697                 if (!ubi->fm_work_scheduled) {
698                         ubi->fm_work_scheduled = 1;
699                         schedule_work(&ubi->fm_work);
700                 }
701                 return NULL;
702         } else {
703                 pnum = pool->pebs[pool->used++];
704                 return ubi->lookuptbl[pnum];
705         }
706 }
707 #else
708 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
709 {
710         struct ubi_wl_entry *e;
711
712         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
713         self_check_in_wl_tree(ubi, e, &ubi->free);
714         ubi->free_count--;
715         ubi_assert(ubi->free_count >= 0);
716         rb_erase(&e->u.rb, &ubi->free);
717
718         return e;
719 }
720
721 int ubi_wl_get_peb(struct ubi_device *ubi)
722 {
723         int peb, err;
724
725         spin_lock(&ubi->wl_lock);
726         peb = wl_get_peb(ubi);
727         spin_unlock(&ubi->wl_lock);
728
729         if (peb < 0)
730                 return peb;
731
732         err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
733                                     ubi->peb_size - ubi->vid_hdr_aloffset);
734         if (err) {
735                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes",
736                         peb);
737                 return err;
738         }
739
740         return peb;
741 }
742 #endif
743
744 /**
745  * prot_queue_del - remove a physical eraseblock from the protection queue.
746  * @ubi: UBI device description object
747  * @pnum: the physical eraseblock to remove
748  *
749  * This function deletes PEB @pnum from the protection queue and returns zero
750  * in case of success and %-ENODEV if the PEB was not found.
751  */
752 static int prot_queue_del(struct ubi_device *ubi, int pnum)
753 {
754         struct ubi_wl_entry *e;
755
756         e = ubi->lookuptbl[pnum];
757         if (!e)
758                 return -ENODEV;
759
760         if (self_check_in_pq(ubi, e))
761                 return -ENODEV;
762
763         list_del(&e->u.list);
764         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
765         return 0;
766 }
767
768 /**
769  * sync_erase - synchronously erase a physical eraseblock.
770  * @ubi: UBI device description object
771  * @e: the the physical eraseblock to erase
772  * @torture: if the physical eraseblock has to be tortured
773  *
774  * This function returns zero in case of success and a negative error code in
775  * case of failure.
776  */
777 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
778                       int torture)
779 {
780         int err;
781         struct ubi_ec_hdr *ec_hdr;
782         unsigned long long ec = e->ec;
783
784         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
785
786         err = self_check_ec(ubi, e->pnum, e->ec);
787         if (err)
788                 return -EINVAL;
789
790         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
791         if (!ec_hdr)
792                 return -ENOMEM;
793
794         err = ubi_io_sync_erase(ubi, e->pnum, torture);
795         if (err < 0)
796                 goto out_free;
797
798         ec += err;
799         if (ec > UBI_MAX_ERASECOUNTER) {
800                 /*
801                  * Erase counter overflow. Upgrade UBI and use 64-bit
802                  * erase counters internally.
803                  */
804                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
805                         e->pnum, ec);
806                 err = -EINVAL;
807                 goto out_free;
808         }
809
810         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
811
812         ec_hdr->ec = cpu_to_be64(ec);
813
814         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
815         if (err)
816                 goto out_free;
817
818         e->ec = ec;
819         spin_lock(&ubi->wl_lock);
820         if (e->ec > ubi->max_ec)
821                 ubi->max_ec = e->ec;
822         spin_unlock(&ubi->wl_lock);
823
824 out_free:
825         kfree(ec_hdr);
826         return err;
827 }
828
829 /**
830  * serve_prot_queue - check if it is time to stop protecting PEBs.
831  * @ubi: UBI device description object
832  *
833  * This function is called after each erase operation and removes PEBs from the
834  * tail of the protection queue. These PEBs have been protected for long enough
835  * and should be moved to the used tree.
836  */
837 static void serve_prot_queue(struct ubi_device *ubi)
838 {
839         struct ubi_wl_entry *e, *tmp;
840         int count;
841
842         /*
843          * There may be several protected physical eraseblock to remove,
844          * process them all.
845          */
846 repeat:
847         count = 0;
848         spin_lock(&ubi->wl_lock);
849         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
850                 dbg_wl("PEB %d EC %d protection over, move to used tree",
851                         e->pnum, e->ec);
852
853                 list_del(&e->u.list);
854                 wl_tree_add(e, &ubi->used);
855                 if (count++ > 32) {
856                         /*
857                          * Let's be nice and avoid holding the spinlock for
858                          * too long.
859                          */
860                         spin_unlock(&ubi->wl_lock);
861                         cond_resched();
862                         goto repeat;
863                 }
864         }
865
866         ubi->pq_head += 1;
867         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
868                 ubi->pq_head = 0;
869         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
870         spin_unlock(&ubi->wl_lock);
871 }
872
873 /**
874  * __schedule_ubi_work - schedule a work.
875  * @ubi: UBI device description object
876  * @wrk: the work to schedule
877  *
878  * This function adds a work defined by @wrk to the tail of the pending works
879  * list. Can only be used if ubi->work_sem is already held in read mode!
880  */
881 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
882 {
883         spin_lock(&ubi->wl_lock);
884         list_add_tail(&wrk->list, &ubi->works);
885         ubi_assert(ubi->works_count >= 0);
886         ubi->works_count += 1;
887         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
888                 wake_up_process(ubi->bgt_thread);
889         spin_unlock(&ubi->wl_lock);
890 }
891
892 /**
893  * schedule_ubi_work - schedule a work.
894  * @ubi: UBI device description object
895  * @wrk: the work to schedule
896  *
897  * This function adds a work defined by @wrk to the tail of the pending works
898  * list.
899  */
900 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
901 {
902         down_read(&ubi->work_sem);
903         __schedule_ubi_work(ubi, wrk);
904         up_read(&ubi->work_sem);
905 }
906
907 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
908                         int shutdown);
909
910 #ifdef CONFIG_MTD_UBI_FASTMAP
911 /**
912  * ubi_is_erase_work - checks whether a work is erase work.
913  * @wrk: The work object to be checked
914  */
915 int ubi_is_erase_work(struct ubi_work *wrk)
916 {
917         return wrk->func == erase_worker;
918 }
919 #endif
920
921 /**
922  * schedule_erase - schedule an erase work.
923  * @ubi: UBI device description object
924  * @e: the WL entry of the physical eraseblock to erase
925  * @vol_id: the volume ID that last used this PEB
926  * @lnum: the last used logical eraseblock number for the PEB
927  * @torture: if the physical eraseblock has to be tortured
928  *
929  * This function returns zero in case of success and a %-ENOMEM in case of
930  * failure.
931  */
932 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
933                           int vol_id, int lnum, int torture)
934 {
935         struct ubi_work *wl_wrk;
936
937         ubi_assert(e);
938         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
939
940         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
941                e->pnum, e->ec, torture);
942
943         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
944         if (!wl_wrk)
945                 return -ENOMEM;
946
947         wl_wrk->func = &erase_worker;
948         wl_wrk->e = e;
949         wl_wrk->vol_id = vol_id;
950         wl_wrk->lnum = lnum;
951         wl_wrk->torture = torture;
952
953         schedule_ubi_work(ubi, wl_wrk);
954         return 0;
955 }
956
957 /**
958  * do_sync_erase - run the erase worker synchronously.
959  * @ubi: UBI device description object
960  * @e: the WL entry of the physical eraseblock to erase
961  * @vol_id: the volume ID that last used this PEB
962  * @lnum: the last used logical eraseblock number for the PEB
963  * @torture: if the physical eraseblock has to be tortured
964  *
965  */
966 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
967                          int vol_id, int lnum, int torture)
968 {
969         struct ubi_work *wl_wrk;
970
971         dbg_wl("sync erase of PEB %i", e->pnum);
972
973         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
974         if (!wl_wrk)
975                 return -ENOMEM;
976
977         wl_wrk->e = e;
978         wl_wrk->vol_id = vol_id;
979         wl_wrk->lnum = lnum;
980         wl_wrk->torture = torture;
981
982         return erase_worker(ubi, wl_wrk, 0);
983 }
984
985 #ifdef CONFIG_MTD_UBI_FASTMAP
986 /**
987  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
988  * sub-system.
989  * see: ubi_wl_put_peb()
990  *
991  * @ubi: UBI device description object
992  * @fm_e: physical eraseblock to return
993  * @lnum: the last used logical eraseblock number for the PEB
994  * @torture: if this physical eraseblock has to be tortured
995  */
996 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
997                       int lnum, int torture)
998 {
999         struct ubi_wl_entry *e;
1000         int vol_id, pnum = fm_e->pnum;
1001
1002         dbg_wl("PEB %d", pnum);
1003
1004         ubi_assert(pnum >= 0);
1005         ubi_assert(pnum < ubi->peb_count);
1006
1007         spin_lock(&ubi->wl_lock);
1008         e = ubi->lookuptbl[pnum];
1009
1010         /* This can happen if we recovered from a fastmap the very
1011          * first time and writing now a new one. In this case the wl system
1012          * has never seen any PEB used by the original fastmap.
1013          */
1014         if (!e) {
1015                 e = fm_e;
1016                 ubi_assert(e->ec >= 0);
1017                 ubi->lookuptbl[pnum] = e;
1018         }
1019
1020         spin_unlock(&ubi->wl_lock);
1021
1022         vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
1023         return schedule_erase(ubi, e, vol_id, lnum, torture);
1024 }
1025 #endif
1026
1027 /**
1028  * wear_leveling_worker - wear-leveling worker function.
1029  * @ubi: UBI device description object
1030  * @wrk: the work object
1031  * @shutdown: non-zero if the worker has to free memory and exit
1032  * because the WL-subsystem is shutting down
1033  *
1034  * This function copies a more worn out physical eraseblock to a less worn out
1035  * one. Returns zero in case of success and a negative error code in case of
1036  * failure.
1037  */
1038 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1039                                 int shutdown)
1040 {
1041         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1042         int vol_id = -1, lnum = -1;
1043 #ifdef CONFIG_MTD_UBI_FASTMAP
1044         int anchor = wrk->anchor;
1045 #endif
1046         struct ubi_wl_entry *e1, *e2;
1047         struct ubi_vid_hdr *vid_hdr;
1048
1049         kfree(wrk);
1050         if (shutdown)
1051                 return 0;
1052
1053         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1054         if (!vid_hdr)
1055                 return -ENOMEM;
1056
1057         mutex_lock(&ubi->move_mutex);
1058         spin_lock(&ubi->wl_lock);
1059         ubi_assert(!ubi->move_from && !ubi->move_to);
1060         ubi_assert(!ubi->move_to_put);
1061
1062         if (!ubi->free.rb_node ||
1063             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1064                 /*
1065                  * No free physical eraseblocks? Well, they must be waiting in
1066                  * the queue to be erased. Cancel movement - it will be
1067                  * triggered again when a free physical eraseblock appears.
1068                  *
1069                  * No used physical eraseblocks? They must be temporarily
1070                  * protected from being moved. They will be moved to the
1071                  * @ubi->used tree later and the wear-leveling will be
1072                  * triggered again.
1073                  */
1074                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1075                        !ubi->free.rb_node, !ubi->used.rb_node);
1076                 goto out_cancel;
1077         }
1078
1079 #ifdef CONFIG_MTD_UBI_FASTMAP
1080         /* Check whether we need to produce an anchor PEB */
1081         if (!anchor)
1082                 anchor = !anchor_pebs_avalible(&ubi->free);
1083
1084         if (anchor) {
1085                 e1 = find_anchor_wl_entry(&ubi->used);
1086                 if (!e1)
1087                         goto out_cancel;
1088                 e2 = get_peb_for_wl(ubi);
1089                 if (!e2)
1090                         goto out_cancel;
1091
1092                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1093                 rb_erase(&e1->u.rb, &ubi->used);
1094                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1095         } else if (!ubi->scrub.rb_node) {
1096 #else
1097         if (!ubi->scrub.rb_node) {
1098 #endif
1099                 /*
1100                  * Now pick the least worn-out used physical eraseblock and a
1101                  * highly worn-out free physical eraseblock. If the erase
1102                  * counters differ much enough, start wear-leveling.
1103                  */
1104                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1105                 e2 = get_peb_for_wl(ubi);
1106                 if (!e2)
1107                         goto out_cancel;
1108
1109                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1110                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
1111                                e1->ec, e2->ec);
1112
1113                         /* Give the unused PEB back */
1114                         wl_tree_add(e2, &ubi->free);
1115                         ubi->free_count++;
1116                         goto out_cancel;
1117                 }
1118                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1119                 rb_erase(&e1->u.rb, &ubi->used);
1120                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1121                        e1->pnum, e1->ec, e2->pnum, e2->ec);
1122         } else {
1123                 /* Perform scrubbing */
1124                 scrubbing = 1;
1125                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1126                 e2 = get_peb_for_wl(ubi);
1127                 if (!e2)
1128                         goto out_cancel;
1129
1130                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1131                 rb_erase(&e1->u.rb, &ubi->scrub);
1132                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1133         }
1134
1135         ubi->move_from = e1;
1136         ubi->move_to = e2;
1137         spin_unlock(&ubi->wl_lock);
1138
1139         /*
1140          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1141          * We so far do not know which logical eraseblock our physical
1142          * eraseblock (@e1) belongs to. We have to read the volume identifier
1143          * header first.
1144          *
1145          * Note, we are protected from this PEB being unmapped and erased. The
1146          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1147          * which is being moved was unmapped.
1148          */
1149
1150         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1151         if (err && err != UBI_IO_BITFLIPS) {
1152                 if (err == UBI_IO_FF) {
1153                         /*
1154                          * We are trying to move PEB without a VID header. UBI
1155                          * always write VID headers shortly after the PEB was
1156                          * given, so we have a situation when it has not yet
1157                          * had a chance to write it, because it was preempted.
1158                          * So add this PEB to the protection queue so far,
1159                          * because presumably more data will be written there
1160                          * (including the missing VID header), and then we'll
1161                          * move it.
1162                          */
1163                         dbg_wl("PEB %d has no VID header", e1->pnum);
1164                         protect = 1;
1165                         goto out_not_moved;
1166                 } else if (err == UBI_IO_FF_BITFLIPS) {
1167                         /*
1168                          * The same situation as %UBI_IO_FF, but bit-flips were
1169                          * detected. It is better to schedule this PEB for
1170                          * scrubbing.
1171                          */
1172                         dbg_wl("PEB %d has no VID header but has bit-flips",
1173                                e1->pnum);
1174                         scrubbing = 1;
1175                         goto out_not_moved;
1176                 }
1177
1178                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
1179                         err, e1->pnum);
1180                 goto out_error;
1181         }
1182
1183         vol_id = be32_to_cpu(vid_hdr->vol_id);
1184         lnum = be32_to_cpu(vid_hdr->lnum);
1185
1186         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1187         if (err) {
1188                 if (err == MOVE_CANCEL_RACE) {
1189                         /*
1190                          * The LEB has not been moved because the volume is
1191                          * being deleted or the PEB has been put meanwhile. We
1192                          * should prevent this PEB from being selected for
1193                          * wear-leveling movement again, so put it to the
1194                          * protection queue.
1195                          */
1196                         protect = 1;
1197                         goto out_not_moved;
1198                 }
1199                 if (err == MOVE_RETRY) {
1200                         scrubbing = 1;
1201                         goto out_not_moved;
1202                 }
1203                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1204                     err == MOVE_TARGET_RD_ERR) {
1205                         /*
1206                          * Target PEB had bit-flips or write error - torture it.
1207                          */
1208                         torture = 1;
1209                         goto out_not_moved;
1210                 }
1211
1212                 if (err == MOVE_SOURCE_RD_ERR) {
1213                         /*
1214                          * An error happened while reading the source PEB. Do
1215                          * not switch to R/O mode in this case, and give the
1216                          * upper layers a possibility to recover from this,
1217                          * e.g. by unmapping corresponding LEB. Instead, just
1218                          * put this PEB to the @ubi->erroneous list to prevent
1219                          * UBI from trying to move it over and over again.
1220                          */
1221                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1222                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
1223                                         ubi->erroneous_peb_count);
1224                                 goto out_error;
1225                         }
1226                         erroneous = 1;
1227                         goto out_not_moved;
1228                 }
1229
1230                 if (err < 0)
1231                         goto out_error;
1232
1233                 ubi_assert(0);
1234         }
1235
1236         /* The PEB has been successfully moved */
1237         if (scrubbing)
1238                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1239                         e1->pnum, vol_id, lnum, e2->pnum);
1240         ubi_free_vid_hdr(ubi, vid_hdr);
1241
1242         spin_lock(&ubi->wl_lock);
1243         if (!ubi->move_to_put) {
1244                 wl_tree_add(e2, &ubi->used);
1245                 e2 = NULL;
1246         }
1247         ubi->move_from = ubi->move_to = NULL;
1248         ubi->move_to_put = ubi->wl_scheduled = 0;
1249         spin_unlock(&ubi->wl_lock);
1250
1251         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1252         if (err) {
1253                 if (e2)
1254                         kmem_cache_free(ubi_wl_entry_slab, e2);
1255                 goto out_ro;
1256         }
1257
1258         if (e2) {
1259                 /*
1260                  * Well, the target PEB was put meanwhile, schedule it for
1261                  * erasure.
1262                  */
1263                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1264                        e2->pnum, vol_id, lnum);
1265                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1266                 if (err)
1267                         goto out_ro;
1268         }
1269
1270         dbg_wl("done");
1271         mutex_unlock(&ubi->move_mutex);
1272         return 0;
1273
1274         /*
1275          * For some reasons the LEB was not moved, might be an error, might be
1276          * something else. @e1 was not changed, so return it back. @e2 might
1277          * have been changed, schedule it for erasure.
1278          */
1279 out_not_moved:
1280         if (vol_id != -1)
1281                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1282                        e1->pnum, vol_id, lnum, e2->pnum, err);
1283         else
1284                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1285                        e1->pnum, e2->pnum, err);
1286         spin_lock(&ubi->wl_lock);
1287         if (protect)
1288                 prot_queue_add(ubi, e1);
1289         else if (erroneous) {
1290                 wl_tree_add(e1, &ubi->erroneous);
1291                 ubi->erroneous_peb_count += 1;
1292         } else if (scrubbing)
1293                 wl_tree_add(e1, &ubi->scrub);
1294         else
1295                 wl_tree_add(e1, &ubi->used);
1296         ubi_assert(!ubi->move_to_put);
1297         ubi->move_from = ubi->move_to = NULL;
1298         ubi->wl_scheduled = 0;
1299         spin_unlock(&ubi->wl_lock);
1300
1301         ubi_free_vid_hdr(ubi, vid_hdr);
1302         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1303         if (err)
1304                 goto out_ro;
1305
1306         mutex_unlock(&ubi->move_mutex);
1307         return 0;
1308
1309 out_error:
1310         if (vol_id != -1)
1311                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
1312                         err, e1->pnum, e2->pnum);
1313         else
1314                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1315                         err, e1->pnum, vol_id, lnum, e2->pnum);
1316         spin_lock(&ubi->wl_lock);
1317         ubi->move_from = ubi->move_to = NULL;
1318         ubi->move_to_put = ubi->wl_scheduled = 0;
1319         spin_unlock(&ubi->wl_lock);
1320
1321         ubi_free_vid_hdr(ubi, vid_hdr);
1322         kmem_cache_free(ubi_wl_entry_slab, e1);
1323         kmem_cache_free(ubi_wl_entry_slab, e2);
1324
1325 out_ro:
1326         ubi_ro_mode(ubi);
1327         mutex_unlock(&ubi->move_mutex);
1328         ubi_assert(err != 0);
1329         return err < 0 ? err : -EIO;
1330
1331 out_cancel:
1332         ubi->wl_scheduled = 0;
1333         spin_unlock(&ubi->wl_lock);
1334         mutex_unlock(&ubi->move_mutex);
1335         ubi_free_vid_hdr(ubi, vid_hdr);
1336         return 0;
1337 }
1338
1339 /**
1340  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1341  * @ubi: UBI device description object
1342  * @nested: set to non-zero if this function is called from UBI worker
1343  *
1344  * This function checks if it is time to start wear-leveling and schedules it
1345  * if yes. This function returns zero in case of success and a negative error
1346  * code in case of failure.
1347  */
1348 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1349 {
1350         int err = 0;
1351         struct ubi_wl_entry *e1;
1352         struct ubi_wl_entry *e2;
1353         struct ubi_work *wrk;
1354
1355         spin_lock(&ubi->wl_lock);
1356         if (ubi->wl_scheduled)
1357                 /* Wear-leveling is already in the work queue */
1358                 goto out_unlock;
1359
1360         /*
1361          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1362          * the WL worker has to be scheduled anyway.
1363          */
1364         if (!ubi->scrub.rb_node) {
1365                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1366                         /* No physical eraseblocks - no deal */
1367                         goto out_unlock;
1368
1369                 /*
1370                  * We schedule wear-leveling only if the difference between the
1371                  * lowest erase counter of used physical eraseblocks and a high
1372                  * erase counter of free physical eraseblocks is greater than
1373                  * %UBI_WL_THRESHOLD.
1374                  */
1375                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1376                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1377
1378                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1379                         goto out_unlock;
1380                 dbg_wl("schedule wear-leveling");
1381         } else
1382                 dbg_wl("schedule scrubbing");
1383
1384         ubi->wl_scheduled = 1;
1385         spin_unlock(&ubi->wl_lock);
1386
1387         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1388         if (!wrk) {
1389                 err = -ENOMEM;
1390                 goto out_cancel;
1391         }
1392
1393         wrk->anchor = 0;
1394         wrk->func = &wear_leveling_worker;
1395         if (nested)
1396                 __schedule_ubi_work(ubi, wrk);
1397         else
1398                 schedule_ubi_work(ubi, wrk);
1399         return err;
1400
1401 out_cancel:
1402         spin_lock(&ubi->wl_lock);
1403         ubi->wl_scheduled = 0;
1404 out_unlock:
1405         spin_unlock(&ubi->wl_lock);
1406         return err;
1407 }
1408
1409 #ifdef CONFIG_MTD_UBI_FASTMAP
1410 /**
1411  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1412  * @ubi: UBI device description object
1413  */
1414 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1415 {
1416         struct ubi_work *wrk;
1417
1418         spin_lock(&ubi->wl_lock);
1419         if (ubi->wl_scheduled) {
1420                 spin_unlock(&ubi->wl_lock);
1421                 return 0;
1422         }
1423         ubi->wl_scheduled = 1;
1424         spin_unlock(&ubi->wl_lock);
1425
1426         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1427         if (!wrk) {
1428                 spin_lock(&ubi->wl_lock);
1429                 ubi->wl_scheduled = 0;
1430                 spin_unlock(&ubi->wl_lock);
1431                 return -ENOMEM;
1432         }
1433
1434         wrk->anchor = 1;
1435         wrk->func = &wear_leveling_worker;
1436         schedule_ubi_work(ubi, wrk);
1437         return 0;
1438 }
1439 #endif
1440
1441 /**
1442  * erase_worker - physical eraseblock erase worker function.
1443  * @ubi: UBI device description object
1444  * @wl_wrk: the work object
1445  * @shutdown: non-zero if the worker has to free memory and exit
1446  * because the WL sub-system is shutting down
1447  *
1448  * This function erases a physical eraseblock and perform torture testing if
1449  * needed. It also takes care about marking the physical eraseblock bad if
1450  * needed. Returns zero in case of success and a negative error code in case of
1451  * failure.
1452  */
1453 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1454                         int shutdown)
1455 {
1456         struct ubi_wl_entry *e = wl_wrk->e;
1457         int pnum = e->pnum;
1458         int vol_id = wl_wrk->vol_id;
1459         int lnum = wl_wrk->lnum;
1460         int err, available_consumed = 0;
1461
1462         if (shutdown) {
1463                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1464                 kfree(wl_wrk);
1465                 kmem_cache_free(ubi_wl_entry_slab, e);
1466                 return 0;
1467         }
1468
1469         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1470                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1471
1472         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1473
1474         err = sync_erase(ubi, e, wl_wrk->torture);
1475         if (!err) {
1476                 /* Fine, we've erased it successfully */
1477                 kfree(wl_wrk);
1478
1479                 spin_lock(&ubi->wl_lock);
1480                 wl_tree_add(e, &ubi->free);
1481                 ubi->free_count++;
1482                 spin_unlock(&ubi->wl_lock);
1483
1484                 /*
1485                  * One more erase operation has happened, take care about
1486                  * protected physical eraseblocks.
1487                  */
1488                 serve_prot_queue(ubi);
1489
1490                 /* And take care about wear-leveling */
1491                 err = ensure_wear_leveling(ubi, 1);
1492                 return err;
1493         }
1494
1495         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1496         kfree(wl_wrk);
1497
1498         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1499             err == -EBUSY) {
1500                 int err1;
1501
1502                 /* Re-schedule the LEB for erasure */
1503                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1504                 if (err1) {
1505                         err = err1;
1506                         goto out_ro;
1507                 }
1508                 return err;
1509         }
1510
1511         kmem_cache_free(ubi_wl_entry_slab, e);
1512         if (err != -EIO)
1513                 /*
1514                  * If this is not %-EIO, we have no idea what to do. Scheduling
1515                  * this physical eraseblock for erasure again would cause
1516                  * errors again and again. Well, lets switch to R/O mode.
1517                  */
1518                 goto out_ro;
1519
1520         /* It is %-EIO, the PEB went bad */
1521
1522         if (!ubi->bad_allowed) {
1523                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1524                 goto out_ro;
1525         }
1526
1527         spin_lock(&ubi->volumes_lock);
1528         if (ubi->beb_rsvd_pebs == 0) {
1529                 if (ubi->avail_pebs == 0) {
1530                         spin_unlock(&ubi->volumes_lock);
1531                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1532                         goto out_ro;
1533                 }
1534                 ubi->avail_pebs -= 1;
1535                 available_consumed = 1;
1536         }
1537         spin_unlock(&ubi->volumes_lock);
1538
1539         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1540         err = ubi_io_mark_bad(ubi, pnum);
1541         if (err)
1542                 goto out_ro;
1543
1544         spin_lock(&ubi->volumes_lock);
1545         if (ubi->beb_rsvd_pebs > 0) {
1546                 if (available_consumed) {
1547                         /*
1548                          * The amount of reserved PEBs increased since we last
1549                          * checked.
1550                          */
1551                         ubi->avail_pebs += 1;
1552                         available_consumed = 0;
1553                 }
1554                 ubi->beb_rsvd_pebs -= 1;
1555         }
1556         ubi->bad_peb_count += 1;
1557         ubi->good_peb_count -= 1;
1558         ubi_calculate_reserved(ubi);
1559         if (available_consumed)
1560                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1561         else if (ubi->beb_rsvd_pebs)
1562                 ubi_msg(ubi, "%d PEBs left in the reserve",
1563                         ubi->beb_rsvd_pebs);
1564         else
1565                 ubi_warn(ubi, "last PEB from the reserve was used");
1566         spin_unlock(&ubi->volumes_lock);
1567
1568         return err;
1569
1570 out_ro:
1571         if (available_consumed) {
1572                 spin_lock(&ubi->volumes_lock);
1573                 ubi->avail_pebs += 1;
1574                 spin_unlock(&ubi->volumes_lock);
1575         }
1576         ubi_ro_mode(ubi);
1577         return err;
1578 }
1579
1580 /**
1581  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1582  * @ubi: UBI device description object
1583  * @vol_id: the volume ID that last used this PEB
1584  * @lnum: the last used logical eraseblock number for the PEB
1585  * @pnum: physical eraseblock to return
1586  * @torture: if this physical eraseblock has to be tortured
1587  *
1588  * This function is called to return physical eraseblock @pnum to the pool of
1589  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1590  * occurred to this @pnum and it has to be tested. This function returns zero
1591  * in case of success, and a negative error code in case of failure.
1592  */
1593 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1594                    int pnum, int torture)
1595 {
1596         int err;
1597         struct ubi_wl_entry *e;
1598
1599         dbg_wl("PEB %d", pnum);
1600         ubi_assert(pnum >= 0);
1601         ubi_assert(pnum < ubi->peb_count);
1602
1603 retry:
1604         spin_lock(&ubi->wl_lock);
1605         e = ubi->lookuptbl[pnum];
1606         if (e == ubi->move_from) {
1607                 /*
1608                  * User is putting the physical eraseblock which was selected to
1609                  * be moved. It will be scheduled for erasure in the
1610                  * wear-leveling worker.
1611                  */
1612                 dbg_wl("PEB %d is being moved, wait", pnum);
1613                 spin_unlock(&ubi->wl_lock);
1614
1615                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1616                 mutex_lock(&ubi->move_mutex);
1617                 mutex_unlock(&ubi->move_mutex);
1618                 goto retry;
1619         } else if (e == ubi->move_to) {
1620                 /*
1621                  * User is putting the physical eraseblock which was selected
1622                  * as the target the data is moved to. It may happen if the EBA
1623                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1624                  * but the WL sub-system has not put the PEB to the "used" tree
1625                  * yet, but it is about to do this. So we just set a flag which
1626                  * will tell the WL worker that the PEB is not needed anymore
1627                  * and should be scheduled for erasure.
1628                  */
1629                 dbg_wl("PEB %d is the target of data moving", pnum);
1630                 ubi_assert(!ubi->move_to_put);
1631                 ubi->move_to_put = 1;
1632                 spin_unlock(&ubi->wl_lock);
1633                 return 0;
1634         } else {
1635                 if (in_wl_tree(e, &ubi->used)) {
1636                         self_check_in_wl_tree(ubi, e, &ubi->used);
1637                         rb_erase(&e->u.rb, &ubi->used);
1638                 } else if (in_wl_tree(e, &ubi->scrub)) {
1639                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1640                         rb_erase(&e->u.rb, &ubi->scrub);
1641                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1642                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1643                         rb_erase(&e->u.rb, &ubi->erroneous);
1644                         ubi->erroneous_peb_count -= 1;
1645                         ubi_assert(ubi->erroneous_peb_count >= 0);
1646                         /* Erroneous PEBs should be tortured */
1647                         torture = 1;
1648                 } else {
1649                         err = prot_queue_del(ubi, e->pnum);
1650                         if (err) {
1651                                 ubi_err(ubi, "PEB %d not found", pnum);
1652                                 ubi_ro_mode(ubi);
1653                                 spin_unlock(&ubi->wl_lock);
1654                                 return err;
1655                         }
1656                 }
1657         }
1658         spin_unlock(&ubi->wl_lock);
1659
1660         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1661         if (err) {
1662                 spin_lock(&ubi->wl_lock);
1663                 wl_tree_add(e, &ubi->used);
1664                 spin_unlock(&ubi->wl_lock);
1665         }
1666
1667         return err;
1668 }
1669
1670 /**
1671  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1672  * @ubi: UBI device description object
1673  * @pnum: the physical eraseblock to schedule
1674  *
1675  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1676  * needs scrubbing. This function schedules a physical eraseblock for
1677  * scrubbing which is done in background. This function returns zero in case of
1678  * success and a negative error code in case of failure.
1679  */
1680 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1681 {
1682         struct ubi_wl_entry *e;
1683
1684         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1685
1686 retry:
1687         spin_lock(&ubi->wl_lock);
1688         e = ubi->lookuptbl[pnum];
1689         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1690                                    in_wl_tree(e, &ubi->erroneous)) {
1691                 spin_unlock(&ubi->wl_lock);
1692                 return 0;
1693         }
1694
1695         if (e == ubi->move_to) {
1696                 /*
1697                  * This physical eraseblock was used to move data to. The data
1698                  * was moved but the PEB was not yet inserted to the proper
1699                  * tree. We should just wait a little and let the WL worker
1700                  * proceed.
1701                  */
1702                 spin_unlock(&ubi->wl_lock);
1703                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1704                 yield();
1705                 goto retry;
1706         }
1707
1708         if (in_wl_tree(e, &ubi->used)) {
1709                 self_check_in_wl_tree(ubi, e, &ubi->used);
1710                 rb_erase(&e->u.rb, &ubi->used);
1711         } else {
1712                 int err;
1713
1714                 err = prot_queue_del(ubi, e->pnum);
1715                 if (err) {
1716                         ubi_err(ubi, "PEB %d not found", pnum);
1717                         ubi_ro_mode(ubi);
1718                         spin_unlock(&ubi->wl_lock);
1719                         return err;
1720                 }
1721         }
1722
1723         wl_tree_add(e, &ubi->scrub);
1724         spin_unlock(&ubi->wl_lock);
1725
1726         /*
1727          * Technically scrubbing is the same as wear-leveling, so it is done
1728          * by the WL worker.
1729          */
1730         return ensure_wear_leveling(ubi, 0);
1731 }
1732
1733 /**
1734  * ubi_wl_flush - flush all pending works.
1735  * @ubi: UBI device description object
1736  * @vol_id: the volume id to flush for
1737  * @lnum: the logical eraseblock number to flush for
1738  *
1739  * This function executes all pending works for a particular volume id /
1740  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1741  * acts as a wildcard for all of the corresponding volume numbers or logical
1742  * eraseblock numbers. It returns zero in case of success and a negative error
1743  * code in case of failure.
1744  */
1745 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1746 {
1747         int err = 0;
1748         int found = 1;
1749
1750         /*
1751          * Erase while the pending works queue is not empty, but not more than
1752          * the number of currently pending works.
1753          */
1754         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1755                vol_id, lnum, ubi->works_count);
1756
1757         while (found) {
1758                 struct ubi_work *wrk, *tmp;
1759                 found = 0;
1760
1761                 down_read(&ubi->work_sem);
1762                 spin_lock(&ubi->wl_lock);
1763                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1764                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1765                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1766                                 list_del(&wrk->list);
1767                                 ubi->works_count -= 1;
1768                                 ubi_assert(ubi->works_count >= 0);
1769                                 spin_unlock(&ubi->wl_lock);
1770
1771                                 err = wrk->func(ubi, wrk, 0);
1772                                 if (err) {
1773                                         up_read(&ubi->work_sem);
1774                                         return err;
1775                                 }
1776
1777                                 spin_lock(&ubi->wl_lock);
1778                                 found = 1;
1779                                 break;
1780                         }
1781                 }
1782                 spin_unlock(&ubi->wl_lock);
1783                 up_read(&ubi->work_sem);
1784         }
1785
1786         /*
1787          * Make sure all the works which have been done in parallel are
1788          * finished.
1789          */
1790         down_write(&ubi->work_sem);
1791         up_write(&ubi->work_sem);
1792
1793         return err;
1794 }
1795
1796 /**
1797  * tree_destroy - destroy an RB-tree.
1798  * @root: the root of the tree to destroy
1799  */
1800 static void tree_destroy(struct rb_root *root)
1801 {
1802         struct rb_node *rb;
1803         struct ubi_wl_entry *e;
1804
1805         rb = root->rb_node;
1806         while (rb) {
1807                 if (rb->rb_left)
1808                         rb = rb->rb_left;
1809                 else if (rb->rb_right)
1810                         rb = rb->rb_right;
1811                 else {
1812                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1813
1814                         rb = rb_parent(rb);
1815                         if (rb) {
1816                                 if (rb->rb_left == &e->u.rb)
1817                                         rb->rb_left = NULL;
1818                                 else
1819                                         rb->rb_right = NULL;
1820                         }
1821
1822                         kmem_cache_free(ubi_wl_entry_slab, e);
1823                 }
1824         }
1825 }
1826
1827 /**
1828  * ubi_thread - UBI background thread.
1829  * @u: the UBI device description object pointer
1830  */
1831 int ubi_thread(void *u)
1832 {
1833         int failures = 0;
1834         struct ubi_device *ubi = u;
1835
1836         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1837                 ubi->bgt_name, task_pid_nr(current));
1838
1839         set_freezable();
1840         for (;;) {
1841                 int err;
1842
1843                 if (kthread_should_stop())
1844                         break;
1845
1846                 if (try_to_freeze())
1847                         continue;
1848
1849                 spin_lock(&ubi->wl_lock);
1850                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1851                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1852                         set_current_state(TASK_INTERRUPTIBLE);
1853                         spin_unlock(&ubi->wl_lock);
1854                         schedule();
1855                         continue;
1856                 }
1857                 spin_unlock(&ubi->wl_lock);
1858
1859                 err = do_work(ubi);
1860                 if (err) {
1861                         ubi_err(ubi, "%s: work failed with error code %d",
1862                                 ubi->bgt_name, err);
1863                         if (failures++ > WL_MAX_FAILURES) {
1864                                 /*
1865                                  * Too many failures, disable the thread and
1866                                  * switch to read-only mode.
1867                                  */
1868                                 ubi_msg(ubi, "%s: %d consecutive failures",
1869                                         ubi->bgt_name, WL_MAX_FAILURES);
1870                                 ubi_ro_mode(ubi);
1871                                 ubi->thread_enabled = 0;
1872                                 continue;
1873                         }
1874                 } else
1875                         failures = 0;
1876
1877                 cond_resched();
1878         }
1879
1880         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1881         return 0;
1882 }
1883
1884 /**
1885  * shutdown_work - shutdown all pending works.
1886  * @ubi: UBI device description object
1887  */
1888 static void shutdown_work(struct ubi_device *ubi)
1889 {
1890 #ifdef CONFIG_MTD_UBI_FASTMAP
1891         flush_work(&ubi->fm_work);
1892 #endif
1893         while (!list_empty(&ubi->works)) {
1894                 struct ubi_work *wrk;
1895
1896                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1897                 list_del(&wrk->list);
1898                 wrk->func(ubi, wrk, 1);
1899                 ubi->works_count -= 1;
1900                 ubi_assert(ubi->works_count >= 0);
1901         }
1902 }
1903
1904 /**
1905  * ubi_wl_init - initialize the WL sub-system using attaching information.
1906  * @ubi: UBI device description object
1907  * @ai: attaching information
1908  *
1909  * This function returns zero in case of success, and a negative error code in
1910  * case of failure.
1911  */
1912 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1913 {
1914         int err, i, reserved_pebs, found_pebs = 0;
1915         struct rb_node *rb1, *rb2;
1916         struct ubi_ainf_volume *av;
1917         struct ubi_ainf_peb *aeb, *tmp;
1918         struct ubi_wl_entry *e;
1919
1920         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1921         spin_lock_init(&ubi->wl_lock);
1922         mutex_init(&ubi->move_mutex);
1923         init_rwsem(&ubi->work_sem);
1924         ubi->max_ec = ai->max_ec;
1925         INIT_LIST_HEAD(&ubi->works);
1926 #ifdef CONFIG_MTD_UBI_FASTMAP
1927         INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1928 #endif
1929
1930         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1931
1932         err = -ENOMEM;
1933         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1934         if (!ubi->lookuptbl)
1935                 return err;
1936
1937         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1938                 INIT_LIST_HEAD(&ubi->pq[i]);
1939         ubi->pq_head = 0;
1940
1941         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1942                 cond_resched();
1943
1944                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1945                 if (!e)
1946                         goto out_free;
1947
1948                 e->pnum = aeb->pnum;
1949                 e->ec = aeb->ec;
1950                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1951                 ubi->lookuptbl[e->pnum] = e;
1952                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1953                         kmem_cache_free(ubi_wl_entry_slab, e);
1954                         goto out_free;
1955                 }
1956
1957                 found_pebs++;
1958         }
1959
1960         ubi->free_count = 0;
1961         list_for_each_entry(aeb, &ai->free, u.list) {
1962                 cond_resched();
1963
1964                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1965                 if (!e)
1966                         goto out_free;
1967
1968                 e->pnum = aeb->pnum;
1969                 e->ec = aeb->ec;
1970                 ubi_assert(e->ec >= 0);
1971                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1972
1973                 wl_tree_add(e, &ubi->free);
1974                 ubi->free_count++;
1975
1976                 ubi->lookuptbl[e->pnum] = e;
1977
1978                 found_pebs++;
1979         }
1980
1981         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1982                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1983                         cond_resched();
1984
1985                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1986                         if (!e)
1987                                 goto out_free;
1988
1989                         e->pnum = aeb->pnum;
1990                         e->ec = aeb->ec;
1991                         ubi->lookuptbl[e->pnum] = e;
1992
1993                         if (!aeb->scrub) {
1994                                 dbg_wl("add PEB %d EC %d to the used tree",
1995                                        e->pnum, e->ec);
1996                                 wl_tree_add(e, &ubi->used);
1997                         } else {
1998                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1999                                        e->pnum, e->ec);
2000                                 wl_tree_add(e, &ubi->scrub);
2001                         }
2002
2003                         found_pebs++;
2004                 }
2005         }
2006
2007         dbg_wl("found %i PEBs", found_pebs);
2008
2009         if (ubi->fm) {
2010                 ubi_assert(ubi->good_peb_count == \
2011                            found_pebs + ubi->fm->used_blocks);
2012
2013                 for (i = 0; i < ubi->fm->used_blocks; i++) {
2014                         e = ubi->fm->e[i];
2015                         ubi->lookuptbl[e->pnum] = e;
2016                 }
2017         }
2018         else
2019                 ubi_assert(ubi->good_peb_count == found_pebs);
2020
2021         reserved_pebs = WL_RESERVED_PEBS;
2022 #ifdef CONFIG_MTD_UBI_FASTMAP
2023         /* Reserve enough LEBs to store two fastmaps. */
2024         reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
2025 #endif
2026
2027         if (ubi->avail_pebs < reserved_pebs) {
2028                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
2029                         ubi->avail_pebs, reserved_pebs);
2030                 if (ubi->corr_peb_count)
2031                         ubi_err(ubi, "%d PEBs are corrupted and not used",
2032                                 ubi->corr_peb_count);
2033                 goto out_free;
2034         }
2035         ubi->avail_pebs -= reserved_pebs;
2036         ubi->rsvd_pebs += reserved_pebs;
2037
2038         /* Schedule wear-leveling if needed */
2039         err = ensure_wear_leveling(ubi, 0);
2040         if (err)
2041                 goto out_free;
2042
2043         return 0;
2044
2045 out_free:
2046         shutdown_work(ubi);
2047         tree_destroy(&ubi->used);
2048         tree_destroy(&ubi->free);
2049         tree_destroy(&ubi->scrub);
2050         kfree(ubi->lookuptbl);
2051         return err;
2052 }
2053
2054 /**
2055  * protection_queue_destroy - destroy the protection queue.
2056  * @ubi: UBI device description object
2057  */
2058 static void protection_queue_destroy(struct ubi_device *ubi)
2059 {
2060         int i;
2061         struct ubi_wl_entry *e, *tmp;
2062
2063         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2064                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2065                         list_del(&e->u.list);
2066                         kmem_cache_free(ubi_wl_entry_slab, e);
2067                 }
2068         }
2069 }
2070
2071 static void ubi_fastmap_close(struct ubi_device *ubi)
2072 {
2073 #ifdef CONFIG_MTD_UBI_FASTMAP
2074         int i;
2075
2076         flush_work(&ubi->fm_work);
2077         return_unused_pool_pebs(ubi, &ubi->fm_pool);
2078         return_unused_pool_pebs(ubi, &ubi->fm_wl_pool);
2079
2080         if (ubi->fm) {
2081                 for (i = 0; i < ubi->fm->used_blocks; i++)
2082                         kfree(ubi->fm->e[i]);
2083         }
2084         kfree(ubi->fm);
2085 #endif
2086 }
2087
2088 /**
2089  * ubi_wl_close - close the wear-leveling sub-system.
2090  * @ubi: UBI device description object
2091  */
2092 void ubi_wl_close(struct ubi_device *ubi)
2093 {
2094         dbg_wl("close the WL sub-system");
2095         ubi_fastmap_close(ubi);
2096         shutdown_work(ubi);
2097         protection_queue_destroy(ubi);
2098         tree_destroy(&ubi->used);
2099         tree_destroy(&ubi->erroneous);
2100         tree_destroy(&ubi->free);
2101         tree_destroy(&ubi->scrub);
2102         kfree(ubi->lookuptbl);
2103 }
2104
2105 /**
2106  * self_check_ec - make sure that the erase counter of a PEB is correct.
2107  * @ubi: UBI device description object
2108  * @pnum: the physical eraseblock number to check
2109  * @ec: the erase counter to check
2110  *
2111  * This function returns zero if the erase counter of physical eraseblock @pnum
2112  * is equivalent to @ec, and a negative error code if not or if an error
2113  * occurred.
2114  */
2115 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2116 {
2117         int err;
2118         long long read_ec;
2119         struct ubi_ec_hdr *ec_hdr;
2120
2121         if (!ubi_dbg_chk_gen(ubi))
2122                 return 0;
2123
2124         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2125         if (!ec_hdr)
2126                 return -ENOMEM;
2127
2128         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2129         if (err && err != UBI_IO_BITFLIPS) {
2130                 /* The header does not have to exist */
2131                 err = 0;
2132                 goto out_free;
2133         }
2134
2135         read_ec = be64_to_cpu(ec_hdr->ec);
2136         if (ec != read_ec && read_ec - ec > 1) {
2137                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2138                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2139                 dump_stack();
2140                 err = 1;
2141         } else
2142                 err = 0;
2143
2144 out_free:
2145         kfree(ec_hdr);
2146         return err;
2147 }
2148
2149 /**
2150  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2151  * @ubi: UBI device description object
2152  * @e: the wear-leveling entry to check
2153  * @root: the root of the tree
2154  *
2155  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2156  * is not.
2157  */
2158 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2159                                  struct ubi_wl_entry *e, struct rb_root *root)
2160 {
2161         if (!ubi_dbg_chk_gen(ubi))
2162                 return 0;
2163
2164         if (in_wl_tree(e, root))
2165                 return 0;
2166
2167         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2168                 e->pnum, e->ec, root);
2169         dump_stack();
2170         return -EINVAL;
2171 }
2172
2173 /**
2174  * self_check_in_pq - check if wear-leveling entry is in the protection
2175  *                        queue.
2176  * @ubi: UBI device description object
2177  * @e: the wear-leveling entry to check
2178  *
2179  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2180  */
2181 static int self_check_in_pq(const struct ubi_device *ubi,
2182                             struct ubi_wl_entry *e)
2183 {
2184         struct ubi_wl_entry *p;
2185         int i;
2186
2187         if (!ubi_dbg_chk_gen(ubi))
2188                 return 0;
2189
2190         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2191                 list_for_each_entry(p, &ubi->pq[i], u.list)
2192                         if (p == e)
2193                                 return 0;
2194
2195         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2196                 e->pnum, e->ec);
2197         dump_stack();
2198         return -EINVAL;
2199 }