UBI: Fastmap: Ensure that all fastmap work is done upon WL shutdown
[firefly-linux-kernel-4.4.55.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139                                  struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141                             struct ubi_wl_entry *e);
142
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150         struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151         ubi_update_fastmap(ubi);
152         spin_lock(&ubi->wl_lock);
153         ubi->fm_work_scheduled = 0;
154         spin_unlock(&ubi->wl_lock);
155 }
156
157 /**
158  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
159  *  @ubi: UBI device description object
160  *  @pnum: the to be checked PEB
161  */
162 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
163 {
164         int i;
165
166         if (!ubi->fm)
167                 return 0;
168
169         for (i = 0; i < ubi->fm->used_blocks; i++)
170                 if (ubi->fm->e[i]->pnum == pnum)
171                         return 1;
172
173         return 0;
174 }
175 #else
176 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
177 {
178         return 0;
179 }
180 #endif
181
182 /**
183  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
184  * @e: the wear-leveling entry to add
185  * @root: the root of the tree
186  *
187  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
188  * the @ubi->used and @ubi->free RB-trees.
189  */
190 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
191 {
192         struct rb_node **p, *parent = NULL;
193
194         p = &root->rb_node;
195         while (*p) {
196                 struct ubi_wl_entry *e1;
197
198                 parent = *p;
199                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
200
201                 if (e->ec < e1->ec)
202                         p = &(*p)->rb_left;
203                 else if (e->ec > e1->ec)
204                         p = &(*p)->rb_right;
205                 else {
206                         ubi_assert(e->pnum != e1->pnum);
207                         if (e->pnum < e1->pnum)
208                                 p = &(*p)->rb_left;
209                         else
210                                 p = &(*p)->rb_right;
211                 }
212         }
213
214         rb_link_node(&e->u.rb, parent, p);
215         rb_insert_color(&e->u.rb, root);
216 }
217
218 /**
219  * do_work - do one pending work.
220  * @ubi: UBI device description object
221  *
222  * This function returns zero in case of success and a negative error code in
223  * case of failure.
224  */
225 static int do_work(struct ubi_device *ubi)
226 {
227         int err;
228         struct ubi_work *wrk;
229
230         cond_resched();
231
232         /*
233          * @ubi->work_sem is used to synchronize with the workers. Workers take
234          * it in read mode, so many of them may be doing works at a time. But
235          * the queue flush code has to be sure the whole queue of works is
236          * done, and it takes the mutex in write mode.
237          */
238         down_read(&ubi->work_sem);
239         spin_lock(&ubi->wl_lock);
240         if (list_empty(&ubi->works)) {
241                 spin_unlock(&ubi->wl_lock);
242                 up_read(&ubi->work_sem);
243                 return 0;
244         }
245
246         wrk = list_entry(ubi->works.next, struct ubi_work, list);
247         list_del(&wrk->list);
248         ubi->works_count -= 1;
249         ubi_assert(ubi->works_count >= 0);
250         spin_unlock(&ubi->wl_lock);
251
252         /*
253          * Call the worker function. Do not touch the work structure
254          * after this call as it will have been freed or reused by that
255          * time by the worker function.
256          */
257         err = wrk->func(ubi, wrk, 0);
258         if (err)
259                 ubi_err(ubi, "work failed with error code %d", err);
260         up_read(&ubi->work_sem);
261
262         return err;
263 }
264
265 /**
266  * produce_free_peb - produce a free physical eraseblock.
267  * @ubi: UBI device description object
268  *
269  * This function tries to make a free PEB by means of synchronous execution of
270  * pending works. This may be needed if, for example the background thread is
271  * disabled. Returns zero in case of success and a negative error code in case
272  * of failure.
273  */
274 static int produce_free_peb(struct ubi_device *ubi)
275 {
276         int err;
277
278         while (!ubi->free.rb_node && ubi->works_count) {
279                 spin_unlock(&ubi->wl_lock);
280
281                 dbg_wl("do one work synchronously");
282                 err = do_work(ubi);
283
284                 spin_lock(&ubi->wl_lock);
285                 if (err)
286                         return err;
287         }
288
289         return 0;
290 }
291
292 /**
293  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
294  * @e: the wear-leveling entry to check
295  * @root: the root of the tree
296  *
297  * This function returns non-zero if @e is in the @root RB-tree and zero if it
298  * is not.
299  */
300 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
301 {
302         struct rb_node *p;
303
304         p = root->rb_node;
305         while (p) {
306                 struct ubi_wl_entry *e1;
307
308                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
309
310                 if (e->pnum == e1->pnum) {
311                         ubi_assert(e == e1);
312                         return 1;
313                 }
314
315                 if (e->ec < e1->ec)
316                         p = p->rb_left;
317                 else if (e->ec > e1->ec)
318                         p = p->rb_right;
319                 else {
320                         ubi_assert(e->pnum != e1->pnum);
321                         if (e->pnum < e1->pnum)
322                                 p = p->rb_left;
323                         else
324                                 p = p->rb_right;
325                 }
326         }
327
328         return 0;
329 }
330
331 /**
332  * prot_queue_add - add physical eraseblock to the protection queue.
333  * @ubi: UBI device description object
334  * @e: the physical eraseblock to add
335  *
336  * This function adds @e to the tail of the protection queue @ubi->pq, where
337  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
338  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
339  * be locked.
340  */
341 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
342 {
343         int pq_tail = ubi->pq_head - 1;
344
345         if (pq_tail < 0)
346                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
347         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
348         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
349         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
350 }
351
352 /**
353  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
354  * @ubi: UBI device description object
355  * @root: the RB-tree where to look for
356  * @diff: maximum possible difference from the smallest erase counter
357  *
358  * This function looks for a wear leveling entry with erase counter closest to
359  * min + @diff, where min is the smallest erase counter.
360  */
361 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
362                                           struct rb_root *root, int diff)
363 {
364         struct rb_node *p;
365         struct ubi_wl_entry *e, *prev_e = NULL;
366         int max;
367
368         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
369         max = e->ec + diff;
370
371         p = root->rb_node;
372         while (p) {
373                 struct ubi_wl_entry *e1;
374
375                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
376                 if (e1->ec >= max)
377                         p = p->rb_left;
378                 else {
379                         p = p->rb_right;
380                         prev_e = e;
381                         e = e1;
382                 }
383         }
384
385         /* If no fastmap has been written and this WL entry can be used
386          * as anchor PEB, hold it back and return the second best WL entry
387          * such that fastmap can use the anchor PEB later. */
388         if (prev_e && !ubi->fm_disabled &&
389             !ubi->fm && e->pnum < UBI_FM_MAX_START)
390                 return prev_e;
391
392         return e;
393 }
394
395 /**
396  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
397  * @ubi: UBI device description object
398  * @root: the RB-tree where to look for
399  *
400  * This function looks for a wear leveling entry with medium erase counter,
401  * but not greater or equivalent than the lowest erase counter plus
402  * %WL_FREE_MAX_DIFF/2.
403  */
404 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
405                                                struct rb_root *root)
406 {
407         struct ubi_wl_entry *e, *first, *last;
408
409         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
410         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
411
412         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
413                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
414
415 #ifdef CONFIG_MTD_UBI_FASTMAP
416                 /* If no fastmap has been written and this WL entry can be used
417                  * as anchor PEB, hold it back and return the second best
418                  * WL entry such that fastmap can use the anchor PEB later. */
419                 if (e && !ubi->fm_disabled && !ubi->fm &&
420                     e->pnum < UBI_FM_MAX_START)
421                         e = rb_entry(rb_next(root->rb_node),
422                                      struct ubi_wl_entry, u.rb);
423 #endif
424         } else
425                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
426
427         return e;
428 }
429
430 #ifdef CONFIG_MTD_UBI_FASTMAP
431 /**
432  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
433  * @root: the RB-tree where to look for
434  */
435 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
436 {
437         struct rb_node *p;
438         struct ubi_wl_entry *e, *victim = NULL;
439         int max_ec = UBI_MAX_ERASECOUNTER;
440
441         ubi_rb_for_each_entry(p, e, root, u.rb) {
442                 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
443                         victim = e;
444                         max_ec = e->ec;
445                 }
446         }
447
448         return victim;
449 }
450
451 static int anchor_pebs_avalible(struct rb_root *root)
452 {
453         struct rb_node *p;
454         struct ubi_wl_entry *e;
455
456         ubi_rb_for_each_entry(p, e, root, u.rb)
457                 if (e->pnum < UBI_FM_MAX_START)
458                         return 1;
459
460         return 0;
461 }
462
463 /**
464  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
465  * @ubi: UBI device description object
466  * @anchor: This PEB will be used as anchor PEB by fastmap
467  *
468  * The function returns a physical erase block with a given maximal number
469  * and removes it from the wl subsystem.
470  * Must be called with wl_lock held!
471  */
472 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
473 {
474         struct ubi_wl_entry *e = NULL;
475
476         if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
477                 goto out;
478
479         if (anchor)
480                 e = find_anchor_wl_entry(&ubi->free);
481         else
482                 e = find_mean_wl_entry(ubi, &ubi->free);
483
484         if (!e)
485                 goto out;
486
487         self_check_in_wl_tree(ubi, e, &ubi->free);
488
489         /* remove it from the free list,
490          * the wl subsystem does no longer know this erase block */
491         rb_erase(&e->u.rb, &ubi->free);
492         ubi->free_count--;
493 out:
494         return e;
495 }
496 #endif
497
498 /**
499  * __wl_get_peb - get a physical eraseblock.
500  * @ubi: UBI device description object
501  *
502  * This function returns a physical eraseblock in case of success and a
503  * negative error code in case of failure.
504  */
505 static int __wl_get_peb(struct ubi_device *ubi)
506 {
507         int err;
508         struct ubi_wl_entry *e;
509
510 retry:
511         if (!ubi->free.rb_node) {
512                 if (ubi->works_count == 0) {
513                         ubi_err(ubi, "no free eraseblocks");
514                         ubi_assert(list_empty(&ubi->works));
515                         return -ENOSPC;
516                 }
517
518                 err = produce_free_peb(ubi);
519                 if (err < 0)
520                         return err;
521                 goto retry;
522         }
523
524         e = find_mean_wl_entry(ubi, &ubi->free);
525         if (!e) {
526                 ubi_err(ubi, "no free eraseblocks");
527                 return -ENOSPC;
528         }
529
530         self_check_in_wl_tree(ubi, e, &ubi->free);
531
532         /*
533          * Move the physical eraseblock to the protection queue where it will
534          * be protected from being moved for some time.
535          */
536         rb_erase(&e->u.rb, &ubi->free);
537         ubi->free_count--;
538         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
539 #ifndef CONFIG_MTD_UBI_FASTMAP
540         /* We have to enqueue e only if fastmap is disabled,
541          * is fastmap enabled prot_queue_add() will be called by
542          * ubi_wl_get_peb() after removing e from the pool. */
543         prot_queue_add(ubi, e);
544 #endif
545         return e->pnum;
546 }
547
548 #ifdef CONFIG_MTD_UBI_FASTMAP
549 /**
550  * return_unused_pool_pebs - returns unused PEB to the free tree.
551  * @ubi: UBI device description object
552  * @pool: fastmap pool description object
553  */
554 static void return_unused_pool_pebs(struct ubi_device *ubi,
555                                     struct ubi_fm_pool *pool)
556 {
557         int i;
558         struct ubi_wl_entry *e;
559
560         for (i = pool->used; i < pool->size; i++) {
561                 e = ubi->lookuptbl[pool->pebs[i]];
562                 wl_tree_add(e, &ubi->free);
563                 ubi->free_count++;
564         }
565 }
566
567 /**
568  * refill_wl_pool - refills all the fastmap pool used by the
569  * WL sub-system.
570  * @ubi: UBI device description object
571  */
572 static void refill_wl_pool(struct ubi_device *ubi)
573 {
574         struct ubi_wl_entry *e;
575         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
576
577         return_unused_pool_pebs(ubi, pool);
578
579         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
580                 if (!ubi->free.rb_node ||
581                    (ubi->free_count - ubi->beb_rsvd_pebs < 5))
582                         break;
583
584                 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
585                 self_check_in_wl_tree(ubi, e, &ubi->free);
586                 rb_erase(&e->u.rb, &ubi->free);
587                 ubi->free_count--;
588
589                 pool->pebs[pool->size] = e->pnum;
590         }
591         pool->used = 0;
592 }
593
594 /**
595  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
596  * @ubi: UBI device description object
597  */
598 static void refill_wl_user_pool(struct ubi_device *ubi)
599 {
600         struct ubi_fm_pool *pool = &ubi->fm_pool;
601
602         return_unused_pool_pebs(ubi, pool);
603
604         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
605                 pool->pebs[pool->size] = __wl_get_peb(ubi);
606                 if (pool->pebs[pool->size] < 0)
607                         break;
608         }
609         pool->used = 0;
610 }
611
612 /**
613  * ubi_refill_pools - refills all fastmap PEB pools.
614  * @ubi: UBI device description object
615  */
616 void ubi_refill_pools(struct ubi_device *ubi)
617 {
618         spin_lock(&ubi->wl_lock);
619         refill_wl_pool(ubi);
620         refill_wl_user_pool(ubi);
621         spin_unlock(&ubi->wl_lock);
622 }
623
624 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
625  * the fastmap pool.
626  */
627 int ubi_wl_get_peb(struct ubi_device *ubi)
628 {
629         int ret;
630         struct ubi_fm_pool *pool = &ubi->fm_pool;
631         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
632
633         if (!pool->size || !wl_pool->size || pool->used == pool->size ||
634             wl_pool->used == wl_pool->size)
635                 ubi_update_fastmap(ubi);
636
637         /* we got not a single free PEB */
638         if (!pool->size)
639                 ret = -ENOSPC;
640         else {
641                 spin_lock(&ubi->wl_lock);
642                 ret = pool->pebs[pool->used++];
643                 prot_queue_add(ubi, ubi->lookuptbl[ret]);
644                 spin_unlock(&ubi->wl_lock);
645         }
646
647         return ret;
648 }
649
650 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
651  *
652  * @ubi: UBI device description object
653  */
654 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
655 {
656         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
657         int pnum;
658
659         if (pool->used == pool->size || !pool->size) {
660                 /* We cannot update the fastmap here because this
661                  * function is called in atomic context.
662                  * Let's fail here and refill/update it as soon as possible. */
663                 if (!ubi->fm_work_scheduled) {
664                         ubi->fm_work_scheduled = 1;
665                         schedule_work(&ubi->fm_work);
666                 }
667                 return NULL;
668         } else {
669                 pnum = pool->pebs[pool->used++];
670                 return ubi->lookuptbl[pnum];
671         }
672 }
673 #else
674 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
675 {
676         struct ubi_wl_entry *e;
677
678         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
679         self_check_in_wl_tree(ubi, e, &ubi->free);
680         ubi->free_count--;
681         ubi_assert(ubi->free_count >= 0);
682         rb_erase(&e->u.rb, &ubi->free);
683
684         return e;
685 }
686
687 int ubi_wl_get_peb(struct ubi_device *ubi)
688 {
689         int peb, err;
690
691         spin_lock(&ubi->wl_lock);
692         peb = __wl_get_peb(ubi);
693         spin_unlock(&ubi->wl_lock);
694
695         if (peb < 0)
696                 return peb;
697
698         err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
699                                     ubi->peb_size - ubi->vid_hdr_aloffset);
700         if (err) {
701                 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes",
702                         peb);
703                 return err;
704         }
705
706         return peb;
707 }
708 #endif
709
710 /**
711  * prot_queue_del - remove a physical eraseblock from the protection queue.
712  * @ubi: UBI device description object
713  * @pnum: the physical eraseblock to remove
714  *
715  * This function deletes PEB @pnum from the protection queue and returns zero
716  * in case of success and %-ENODEV if the PEB was not found.
717  */
718 static int prot_queue_del(struct ubi_device *ubi, int pnum)
719 {
720         struct ubi_wl_entry *e;
721
722         e = ubi->lookuptbl[pnum];
723         if (!e)
724                 return -ENODEV;
725
726         if (self_check_in_pq(ubi, e))
727                 return -ENODEV;
728
729         list_del(&e->u.list);
730         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
731         return 0;
732 }
733
734 /**
735  * sync_erase - synchronously erase a physical eraseblock.
736  * @ubi: UBI device description object
737  * @e: the the physical eraseblock to erase
738  * @torture: if the physical eraseblock has to be tortured
739  *
740  * This function returns zero in case of success and a negative error code in
741  * case of failure.
742  */
743 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
744                       int torture)
745 {
746         int err;
747         struct ubi_ec_hdr *ec_hdr;
748         unsigned long long ec = e->ec;
749
750         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
751
752         err = self_check_ec(ubi, e->pnum, e->ec);
753         if (err)
754                 return -EINVAL;
755
756         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
757         if (!ec_hdr)
758                 return -ENOMEM;
759
760         err = ubi_io_sync_erase(ubi, e->pnum, torture);
761         if (err < 0)
762                 goto out_free;
763
764         ec += err;
765         if (ec > UBI_MAX_ERASECOUNTER) {
766                 /*
767                  * Erase counter overflow. Upgrade UBI and use 64-bit
768                  * erase counters internally.
769                  */
770                 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
771                         e->pnum, ec);
772                 err = -EINVAL;
773                 goto out_free;
774         }
775
776         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
777
778         ec_hdr->ec = cpu_to_be64(ec);
779
780         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
781         if (err)
782                 goto out_free;
783
784         e->ec = ec;
785         spin_lock(&ubi->wl_lock);
786         if (e->ec > ubi->max_ec)
787                 ubi->max_ec = e->ec;
788         spin_unlock(&ubi->wl_lock);
789
790 out_free:
791         kfree(ec_hdr);
792         return err;
793 }
794
795 /**
796  * serve_prot_queue - check if it is time to stop protecting PEBs.
797  * @ubi: UBI device description object
798  *
799  * This function is called after each erase operation and removes PEBs from the
800  * tail of the protection queue. These PEBs have been protected for long enough
801  * and should be moved to the used tree.
802  */
803 static void serve_prot_queue(struct ubi_device *ubi)
804 {
805         struct ubi_wl_entry *e, *tmp;
806         int count;
807
808         /*
809          * There may be several protected physical eraseblock to remove,
810          * process them all.
811          */
812 repeat:
813         count = 0;
814         spin_lock(&ubi->wl_lock);
815         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
816                 dbg_wl("PEB %d EC %d protection over, move to used tree",
817                         e->pnum, e->ec);
818
819                 list_del(&e->u.list);
820                 wl_tree_add(e, &ubi->used);
821                 if (count++ > 32) {
822                         /*
823                          * Let's be nice and avoid holding the spinlock for
824                          * too long.
825                          */
826                         spin_unlock(&ubi->wl_lock);
827                         cond_resched();
828                         goto repeat;
829                 }
830         }
831
832         ubi->pq_head += 1;
833         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
834                 ubi->pq_head = 0;
835         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
836         spin_unlock(&ubi->wl_lock);
837 }
838
839 /**
840  * __schedule_ubi_work - schedule a work.
841  * @ubi: UBI device description object
842  * @wrk: the work to schedule
843  *
844  * This function adds a work defined by @wrk to the tail of the pending works
845  * list. Can only be used if ubi->work_sem is already held in read mode!
846  */
847 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
848 {
849         spin_lock(&ubi->wl_lock);
850         list_add_tail(&wrk->list, &ubi->works);
851         ubi_assert(ubi->works_count >= 0);
852         ubi->works_count += 1;
853         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
854                 wake_up_process(ubi->bgt_thread);
855         spin_unlock(&ubi->wl_lock);
856 }
857
858 /**
859  * schedule_ubi_work - schedule a work.
860  * @ubi: UBI device description object
861  * @wrk: the work to schedule
862  *
863  * This function adds a work defined by @wrk to the tail of the pending works
864  * list.
865  */
866 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
867 {
868         down_read(&ubi->work_sem);
869         __schedule_ubi_work(ubi, wrk);
870         up_read(&ubi->work_sem);
871 }
872
873 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
874                         int shutdown);
875
876 #ifdef CONFIG_MTD_UBI_FASTMAP
877 /**
878  * ubi_is_erase_work - checks whether a work is erase work.
879  * @wrk: The work object to be checked
880  */
881 int ubi_is_erase_work(struct ubi_work *wrk)
882 {
883         return wrk->func == erase_worker;
884 }
885 #endif
886
887 /**
888  * schedule_erase - schedule an erase work.
889  * @ubi: UBI device description object
890  * @e: the WL entry of the physical eraseblock to erase
891  * @vol_id: the volume ID that last used this PEB
892  * @lnum: the last used logical eraseblock number for the PEB
893  * @torture: if the physical eraseblock has to be tortured
894  *
895  * This function returns zero in case of success and a %-ENOMEM in case of
896  * failure.
897  */
898 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
899                           int vol_id, int lnum, int torture)
900 {
901         struct ubi_work *wl_wrk;
902
903         ubi_assert(e);
904         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
905
906         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
907                e->pnum, e->ec, torture);
908
909         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
910         if (!wl_wrk)
911                 return -ENOMEM;
912
913         wl_wrk->func = &erase_worker;
914         wl_wrk->e = e;
915         wl_wrk->vol_id = vol_id;
916         wl_wrk->lnum = lnum;
917         wl_wrk->torture = torture;
918
919         schedule_ubi_work(ubi, wl_wrk);
920         return 0;
921 }
922
923 /**
924  * do_sync_erase - run the erase worker synchronously.
925  * @ubi: UBI device description object
926  * @e: the WL entry of the physical eraseblock to erase
927  * @vol_id: the volume ID that last used this PEB
928  * @lnum: the last used logical eraseblock number for the PEB
929  * @torture: if the physical eraseblock has to be tortured
930  *
931  */
932 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
933                          int vol_id, int lnum, int torture)
934 {
935         struct ubi_work *wl_wrk;
936
937         dbg_wl("sync erase of PEB %i", e->pnum);
938
939         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
940         if (!wl_wrk)
941                 return -ENOMEM;
942
943         wl_wrk->e = e;
944         wl_wrk->vol_id = vol_id;
945         wl_wrk->lnum = lnum;
946         wl_wrk->torture = torture;
947
948         return erase_worker(ubi, wl_wrk, 0);
949 }
950
951 #ifdef CONFIG_MTD_UBI_FASTMAP
952 /**
953  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
954  * sub-system.
955  * see: ubi_wl_put_peb()
956  *
957  * @ubi: UBI device description object
958  * @fm_e: physical eraseblock to return
959  * @lnum: the last used logical eraseblock number for the PEB
960  * @torture: if this physical eraseblock has to be tortured
961  */
962 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
963                       int lnum, int torture)
964 {
965         struct ubi_wl_entry *e;
966         int vol_id, pnum = fm_e->pnum;
967
968         dbg_wl("PEB %d", pnum);
969
970         ubi_assert(pnum >= 0);
971         ubi_assert(pnum < ubi->peb_count);
972
973         spin_lock(&ubi->wl_lock);
974         e = ubi->lookuptbl[pnum];
975
976         /* This can happen if we recovered from a fastmap the very
977          * first time and writing now a new one. In this case the wl system
978          * has never seen any PEB used by the original fastmap.
979          */
980         if (!e) {
981                 e = fm_e;
982                 ubi_assert(e->ec >= 0);
983                 ubi->lookuptbl[pnum] = e;
984         } else {
985                 e->ec = fm_e->ec;
986                 kfree(fm_e);
987         }
988
989         spin_unlock(&ubi->wl_lock);
990
991         vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
992         return schedule_erase(ubi, e, vol_id, lnum, torture);
993 }
994 #endif
995
996 /**
997  * wear_leveling_worker - wear-leveling worker function.
998  * @ubi: UBI device description object
999  * @wrk: the work object
1000  * @shutdown: non-zero if the worker has to free memory and exit
1001  * because the WL-subsystem is shutting down
1002  *
1003  * This function copies a more worn out physical eraseblock to a less worn out
1004  * one. Returns zero in case of success and a negative error code in case of
1005  * failure.
1006  */
1007 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1008                                 int shutdown)
1009 {
1010         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1011         int vol_id = -1, lnum = -1;
1012 #ifdef CONFIG_MTD_UBI_FASTMAP
1013         int anchor = wrk->anchor;
1014 #endif
1015         struct ubi_wl_entry *e1, *e2;
1016         struct ubi_vid_hdr *vid_hdr;
1017
1018         kfree(wrk);
1019         if (shutdown)
1020                 return 0;
1021
1022         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1023         if (!vid_hdr)
1024                 return -ENOMEM;
1025
1026         mutex_lock(&ubi->move_mutex);
1027         spin_lock(&ubi->wl_lock);
1028         ubi_assert(!ubi->move_from && !ubi->move_to);
1029         ubi_assert(!ubi->move_to_put);
1030
1031         if (!ubi->free.rb_node ||
1032             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1033                 /*
1034                  * No free physical eraseblocks? Well, they must be waiting in
1035                  * the queue to be erased. Cancel movement - it will be
1036                  * triggered again when a free physical eraseblock appears.
1037                  *
1038                  * No used physical eraseblocks? They must be temporarily
1039                  * protected from being moved. They will be moved to the
1040                  * @ubi->used tree later and the wear-leveling will be
1041                  * triggered again.
1042                  */
1043                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1044                        !ubi->free.rb_node, !ubi->used.rb_node);
1045                 goto out_cancel;
1046         }
1047
1048 #ifdef CONFIG_MTD_UBI_FASTMAP
1049         /* Check whether we need to produce an anchor PEB */
1050         if (!anchor)
1051                 anchor = !anchor_pebs_avalible(&ubi->free);
1052
1053         if (anchor) {
1054                 e1 = find_anchor_wl_entry(&ubi->used);
1055                 if (!e1)
1056                         goto out_cancel;
1057                 e2 = get_peb_for_wl(ubi);
1058                 if (!e2)
1059                         goto out_cancel;
1060
1061                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1062                 rb_erase(&e1->u.rb, &ubi->used);
1063                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1064         } else if (!ubi->scrub.rb_node) {
1065 #else
1066         if (!ubi->scrub.rb_node) {
1067 #endif
1068                 /*
1069                  * Now pick the least worn-out used physical eraseblock and a
1070                  * highly worn-out free physical eraseblock. If the erase
1071                  * counters differ much enough, start wear-leveling.
1072                  */
1073                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1074                 e2 = get_peb_for_wl(ubi);
1075                 if (!e2)
1076                         goto out_cancel;
1077
1078                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1079                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
1080                                e1->ec, e2->ec);
1081
1082                         /* Give the unused PEB back */
1083                         wl_tree_add(e2, &ubi->free);
1084                         ubi->free_count++;
1085                         goto out_cancel;
1086                 }
1087                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1088                 rb_erase(&e1->u.rb, &ubi->used);
1089                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1090                        e1->pnum, e1->ec, e2->pnum, e2->ec);
1091         } else {
1092                 /* Perform scrubbing */
1093                 scrubbing = 1;
1094                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1095                 e2 = get_peb_for_wl(ubi);
1096                 if (!e2)
1097                         goto out_cancel;
1098
1099                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1100                 rb_erase(&e1->u.rb, &ubi->scrub);
1101                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1102         }
1103
1104         ubi->move_from = e1;
1105         ubi->move_to = e2;
1106         spin_unlock(&ubi->wl_lock);
1107
1108         /*
1109          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1110          * We so far do not know which logical eraseblock our physical
1111          * eraseblock (@e1) belongs to. We have to read the volume identifier
1112          * header first.
1113          *
1114          * Note, we are protected from this PEB being unmapped and erased. The
1115          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1116          * which is being moved was unmapped.
1117          */
1118
1119         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1120         if (err && err != UBI_IO_BITFLIPS) {
1121                 if (err == UBI_IO_FF) {
1122                         /*
1123                          * We are trying to move PEB without a VID header. UBI
1124                          * always write VID headers shortly after the PEB was
1125                          * given, so we have a situation when it has not yet
1126                          * had a chance to write it, because it was preempted.
1127                          * So add this PEB to the protection queue so far,
1128                          * because presumably more data will be written there
1129                          * (including the missing VID header), and then we'll
1130                          * move it.
1131                          */
1132                         dbg_wl("PEB %d has no VID header", e1->pnum);
1133                         protect = 1;
1134                         goto out_not_moved;
1135                 } else if (err == UBI_IO_FF_BITFLIPS) {
1136                         /*
1137                          * The same situation as %UBI_IO_FF, but bit-flips were
1138                          * detected. It is better to schedule this PEB for
1139                          * scrubbing.
1140                          */
1141                         dbg_wl("PEB %d has no VID header but has bit-flips",
1142                                e1->pnum);
1143                         scrubbing = 1;
1144                         goto out_not_moved;
1145                 }
1146
1147                 ubi_err(ubi, "error %d while reading VID header from PEB %d",
1148                         err, e1->pnum);
1149                 goto out_error;
1150         }
1151
1152         vol_id = be32_to_cpu(vid_hdr->vol_id);
1153         lnum = be32_to_cpu(vid_hdr->lnum);
1154
1155         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1156         if (err) {
1157                 if (err == MOVE_CANCEL_RACE) {
1158                         /*
1159                          * The LEB has not been moved because the volume is
1160                          * being deleted or the PEB has been put meanwhile. We
1161                          * should prevent this PEB from being selected for
1162                          * wear-leveling movement again, so put it to the
1163                          * protection queue.
1164                          */
1165                         protect = 1;
1166                         goto out_not_moved;
1167                 }
1168                 if (err == MOVE_RETRY) {
1169                         scrubbing = 1;
1170                         goto out_not_moved;
1171                 }
1172                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1173                     err == MOVE_TARGET_RD_ERR) {
1174                         /*
1175                          * Target PEB had bit-flips or write error - torture it.
1176                          */
1177                         torture = 1;
1178                         goto out_not_moved;
1179                 }
1180
1181                 if (err == MOVE_SOURCE_RD_ERR) {
1182                         /*
1183                          * An error happened while reading the source PEB. Do
1184                          * not switch to R/O mode in this case, and give the
1185                          * upper layers a possibility to recover from this,
1186                          * e.g. by unmapping corresponding LEB. Instead, just
1187                          * put this PEB to the @ubi->erroneous list to prevent
1188                          * UBI from trying to move it over and over again.
1189                          */
1190                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1191                                 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
1192                                         ubi->erroneous_peb_count);
1193                                 goto out_error;
1194                         }
1195                         erroneous = 1;
1196                         goto out_not_moved;
1197                 }
1198
1199                 if (err < 0)
1200                         goto out_error;
1201
1202                 ubi_assert(0);
1203         }
1204
1205         /* The PEB has been successfully moved */
1206         if (scrubbing)
1207                 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1208                         e1->pnum, vol_id, lnum, e2->pnum);
1209         ubi_free_vid_hdr(ubi, vid_hdr);
1210
1211         spin_lock(&ubi->wl_lock);
1212         if (!ubi->move_to_put) {
1213                 wl_tree_add(e2, &ubi->used);
1214                 e2 = NULL;
1215         }
1216         ubi->move_from = ubi->move_to = NULL;
1217         ubi->move_to_put = ubi->wl_scheduled = 0;
1218         spin_unlock(&ubi->wl_lock);
1219
1220         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1221         if (err) {
1222                 if (e2)
1223                         kmem_cache_free(ubi_wl_entry_slab, e2);
1224                 goto out_ro;
1225         }
1226
1227         if (e2) {
1228                 /*
1229                  * Well, the target PEB was put meanwhile, schedule it for
1230                  * erasure.
1231                  */
1232                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1233                        e2->pnum, vol_id, lnum);
1234                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1235                 if (err)
1236                         goto out_ro;
1237         }
1238
1239         dbg_wl("done");
1240         mutex_unlock(&ubi->move_mutex);
1241         return 0;
1242
1243         /*
1244          * For some reasons the LEB was not moved, might be an error, might be
1245          * something else. @e1 was not changed, so return it back. @e2 might
1246          * have been changed, schedule it for erasure.
1247          */
1248 out_not_moved:
1249         if (vol_id != -1)
1250                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1251                        e1->pnum, vol_id, lnum, e2->pnum, err);
1252         else
1253                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1254                        e1->pnum, e2->pnum, err);
1255         spin_lock(&ubi->wl_lock);
1256         if (protect)
1257                 prot_queue_add(ubi, e1);
1258         else if (erroneous) {
1259                 wl_tree_add(e1, &ubi->erroneous);
1260                 ubi->erroneous_peb_count += 1;
1261         } else if (scrubbing)
1262                 wl_tree_add(e1, &ubi->scrub);
1263         else
1264                 wl_tree_add(e1, &ubi->used);
1265         ubi_assert(!ubi->move_to_put);
1266         ubi->move_from = ubi->move_to = NULL;
1267         ubi->wl_scheduled = 0;
1268         spin_unlock(&ubi->wl_lock);
1269
1270         ubi_free_vid_hdr(ubi, vid_hdr);
1271         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1272         if (err)
1273                 goto out_ro;
1274
1275         mutex_unlock(&ubi->move_mutex);
1276         return 0;
1277
1278 out_error:
1279         if (vol_id != -1)
1280                 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
1281                         err, e1->pnum, e2->pnum);
1282         else
1283                 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1284                         err, e1->pnum, vol_id, lnum, e2->pnum);
1285         spin_lock(&ubi->wl_lock);
1286         ubi->move_from = ubi->move_to = NULL;
1287         ubi->move_to_put = ubi->wl_scheduled = 0;
1288         spin_unlock(&ubi->wl_lock);
1289
1290         ubi_free_vid_hdr(ubi, vid_hdr);
1291         kmem_cache_free(ubi_wl_entry_slab, e1);
1292         kmem_cache_free(ubi_wl_entry_slab, e2);
1293
1294 out_ro:
1295         ubi_ro_mode(ubi);
1296         mutex_unlock(&ubi->move_mutex);
1297         ubi_assert(err != 0);
1298         return err < 0 ? err : -EIO;
1299
1300 out_cancel:
1301         ubi->wl_scheduled = 0;
1302         spin_unlock(&ubi->wl_lock);
1303         mutex_unlock(&ubi->move_mutex);
1304         ubi_free_vid_hdr(ubi, vid_hdr);
1305         return 0;
1306 }
1307
1308 /**
1309  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1310  * @ubi: UBI device description object
1311  * @nested: set to non-zero if this function is called from UBI worker
1312  *
1313  * This function checks if it is time to start wear-leveling and schedules it
1314  * if yes. This function returns zero in case of success and a negative error
1315  * code in case of failure.
1316  */
1317 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1318 {
1319         int err = 0;
1320         struct ubi_wl_entry *e1;
1321         struct ubi_wl_entry *e2;
1322         struct ubi_work *wrk;
1323
1324         spin_lock(&ubi->wl_lock);
1325         if (ubi->wl_scheduled)
1326                 /* Wear-leveling is already in the work queue */
1327                 goto out_unlock;
1328
1329         /*
1330          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1331          * the WL worker has to be scheduled anyway.
1332          */
1333         if (!ubi->scrub.rb_node) {
1334                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1335                         /* No physical eraseblocks - no deal */
1336                         goto out_unlock;
1337
1338                 /*
1339                  * We schedule wear-leveling only if the difference between the
1340                  * lowest erase counter of used physical eraseblocks and a high
1341                  * erase counter of free physical eraseblocks is greater than
1342                  * %UBI_WL_THRESHOLD.
1343                  */
1344                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1345                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1346
1347                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1348                         goto out_unlock;
1349                 dbg_wl("schedule wear-leveling");
1350         } else
1351                 dbg_wl("schedule scrubbing");
1352
1353         ubi->wl_scheduled = 1;
1354         spin_unlock(&ubi->wl_lock);
1355
1356         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1357         if (!wrk) {
1358                 err = -ENOMEM;
1359                 goto out_cancel;
1360         }
1361
1362         wrk->anchor = 0;
1363         wrk->func = &wear_leveling_worker;
1364         if (nested)
1365                 __schedule_ubi_work(ubi, wrk);
1366         else
1367                 schedule_ubi_work(ubi, wrk);
1368         return err;
1369
1370 out_cancel:
1371         spin_lock(&ubi->wl_lock);
1372         ubi->wl_scheduled = 0;
1373 out_unlock:
1374         spin_unlock(&ubi->wl_lock);
1375         return err;
1376 }
1377
1378 #ifdef CONFIG_MTD_UBI_FASTMAP
1379 /**
1380  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1381  * @ubi: UBI device description object
1382  */
1383 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1384 {
1385         struct ubi_work *wrk;
1386
1387         spin_lock(&ubi->wl_lock);
1388         if (ubi->wl_scheduled) {
1389                 spin_unlock(&ubi->wl_lock);
1390                 return 0;
1391         }
1392         ubi->wl_scheduled = 1;
1393         spin_unlock(&ubi->wl_lock);
1394
1395         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1396         if (!wrk) {
1397                 spin_lock(&ubi->wl_lock);
1398                 ubi->wl_scheduled = 0;
1399                 spin_unlock(&ubi->wl_lock);
1400                 return -ENOMEM;
1401         }
1402
1403         wrk->anchor = 1;
1404         wrk->func = &wear_leveling_worker;
1405         schedule_ubi_work(ubi, wrk);
1406         return 0;
1407 }
1408 #endif
1409
1410 /**
1411  * erase_worker - physical eraseblock erase worker function.
1412  * @ubi: UBI device description object
1413  * @wl_wrk: the work object
1414  * @shutdown: non-zero if the worker has to free memory and exit
1415  * because the WL sub-system is shutting down
1416  *
1417  * This function erases a physical eraseblock and perform torture testing if
1418  * needed. It also takes care about marking the physical eraseblock bad if
1419  * needed. Returns zero in case of success and a negative error code in case of
1420  * failure.
1421  */
1422 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1423                         int shutdown)
1424 {
1425         struct ubi_wl_entry *e = wl_wrk->e;
1426         int pnum = e->pnum;
1427         int vol_id = wl_wrk->vol_id;
1428         int lnum = wl_wrk->lnum;
1429         int err, available_consumed = 0;
1430
1431         if (shutdown) {
1432                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1433                 kfree(wl_wrk);
1434                 kmem_cache_free(ubi_wl_entry_slab, e);
1435                 return 0;
1436         }
1437
1438         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1439                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1440
1441         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1442
1443         err = sync_erase(ubi, e, wl_wrk->torture);
1444         if (!err) {
1445                 /* Fine, we've erased it successfully */
1446                 kfree(wl_wrk);
1447
1448                 spin_lock(&ubi->wl_lock);
1449                 wl_tree_add(e, &ubi->free);
1450                 ubi->free_count++;
1451                 spin_unlock(&ubi->wl_lock);
1452
1453                 /*
1454                  * One more erase operation has happened, take care about
1455                  * protected physical eraseblocks.
1456                  */
1457                 serve_prot_queue(ubi);
1458
1459                 /* And take care about wear-leveling */
1460                 err = ensure_wear_leveling(ubi, 1);
1461                 return err;
1462         }
1463
1464         ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1465         kfree(wl_wrk);
1466
1467         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1468             err == -EBUSY) {
1469                 int err1;
1470
1471                 /* Re-schedule the LEB for erasure */
1472                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1473                 if (err1) {
1474                         err = err1;
1475                         goto out_ro;
1476                 }
1477                 return err;
1478         }
1479
1480         kmem_cache_free(ubi_wl_entry_slab, e);
1481         if (err != -EIO)
1482                 /*
1483                  * If this is not %-EIO, we have no idea what to do. Scheduling
1484                  * this physical eraseblock for erasure again would cause
1485                  * errors again and again. Well, lets switch to R/O mode.
1486                  */
1487                 goto out_ro;
1488
1489         /* It is %-EIO, the PEB went bad */
1490
1491         if (!ubi->bad_allowed) {
1492                 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1493                 goto out_ro;
1494         }
1495
1496         spin_lock(&ubi->volumes_lock);
1497         if (ubi->beb_rsvd_pebs == 0) {
1498                 if (ubi->avail_pebs == 0) {
1499                         spin_unlock(&ubi->volumes_lock);
1500                         ubi_err(ubi, "no reserved/available physical eraseblocks");
1501                         goto out_ro;
1502                 }
1503                 ubi->avail_pebs -= 1;
1504                 available_consumed = 1;
1505         }
1506         spin_unlock(&ubi->volumes_lock);
1507
1508         ubi_msg(ubi, "mark PEB %d as bad", pnum);
1509         err = ubi_io_mark_bad(ubi, pnum);
1510         if (err)
1511                 goto out_ro;
1512
1513         spin_lock(&ubi->volumes_lock);
1514         if (ubi->beb_rsvd_pebs > 0) {
1515                 if (available_consumed) {
1516                         /*
1517                          * The amount of reserved PEBs increased since we last
1518                          * checked.
1519                          */
1520                         ubi->avail_pebs += 1;
1521                         available_consumed = 0;
1522                 }
1523                 ubi->beb_rsvd_pebs -= 1;
1524         }
1525         ubi->bad_peb_count += 1;
1526         ubi->good_peb_count -= 1;
1527         ubi_calculate_reserved(ubi);
1528         if (available_consumed)
1529                 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1530         else if (ubi->beb_rsvd_pebs)
1531                 ubi_msg(ubi, "%d PEBs left in the reserve",
1532                         ubi->beb_rsvd_pebs);
1533         else
1534                 ubi_warn(ubi, "last PEB from the reserve was used");
1535         spin_unlock(&ubi->volumes_lock);
1536
1537         return err;
1538
1539 out_ro:
1540         if (available_consumed) {
1541                 spin_lock(&ubi->volumes_lock);
1542                 ubi->avail_pebs += 1;
1543                 spin_unlock(&ubi->volumes_lock);
1544         }
1545         ubi_ro_mode(ubi);
1546         return err;
1547 }
1548
1549 /**
1550  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1551  * @ubi: UBI device description object
1552  * @vol_id: the volume ID that last used this PEB
1553  * @lnum: the last used logical eraseblock number for the PEB
1554  * @pnum: physical eraseblock to return
1555  * @torture: if this physical eraseblock has to be tortured
1556  *
1557  * This function is called to return physical eraseblock @pnum to the pool of
1558  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1559  * occurred to this @pnum and it has to be tested. This function returns zero
1560  * in case of success, and a negative error code in case of failure.
1561  */
1562 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1563                    int pnum, int torture)
1564 {
1565         int err;
1566         struct ubi_wl_entry *e;
1567
1568         dbg_wl("PEB %d", pnum);
1569         ubi_assert(pnum >= 0);
1570         ubi_assert(pnum < ubi->peb_count);
1571
1572 retry:
1573         spin_lock(&ubi->wl_lock);
1574         e = ubi->lookuptbl[pnum];
1575         if (e == ubi->move_from) {
1576                 /*
1577                  * User is putting the physical eraseblock which was selected to
1578                  * be moved. It will be scheduled for erasure in the
1579                  * wear-leveling worker.
1580                  */
1581                 dbg_wl("PEB %d is being moved, wait", pnum);
1582                 spin_unlock(&ubi->wl_lock);
1583
1584                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1585                 mutex_lock(&ubi->move_mutex);
1586                 mutex_unlock(&ubi->move_mutex);
1587                 goto retry;
1588         } else if (e == ubi->move_to) {
1589                 /*
1590                  * User is putting the physical eraseblock which was selected
1591                  * as the target the data is moved to. It may happen if the EBA
1592                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1593                  * but the WL sub-system has not put the PEB to the "used" tree
1594                  * yet, but it is about to do this. So we just set a flag which
1595                  * will tell the WL worker that the PEB is not needed anymore
1596                  * and should be scheduled for erasure.
1597                  */
1598                 dbg_wl("PEB %d is the target of data moving", pnum);
1599                 ubi_assert(!ubi->move_to_put);
1600                 ubi->move_to_put = 1;
1601                 spin_unlock(&ubi->wl_lock);
1602                 return 0;
1603         } else {
1604                 if (in_wl_tree(e, &ubi->used)) {
1605                         self_check_in_wl_tree(ubi, e, &ubi->used);
1606                         rb_erase(&e->u.rb, &ubi->used);
1607                 } else if (in_wl_tree(e, &ubi->scrub)) {
1608                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1609                         rb_erase(&e->u.rb, &ubi->scrub);
1610                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1611                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1612                         rb_erase(&e->u.rb, &ubi->erroneous);
1613                         ubi->erroneous_peb_count -= 1;
1614                         ubi_assert(ubi->erroneous_peb_count >= 0);
1615                         /* Erroneous PEBs should be tortured */
1616                         torture = 1;
1617                 } else {
1618                         err = prot_queue_del(ubi, e->pnum);
1619                         if (err) {
1620                                 ubi_err(ubi, "PEB %d not found", pnum);
1621                                 ubi_ro_mode(ubi);
1622                                 spin_unlock(&ubi->wl_lock);
1623                                 return err;
1624                         }
1625                 }
1626         }
1627         spin_unlock(&ubi->wl_lock);
1628
1629         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1630         if (err) {
1631                 spin_lock(&ubi->wl_lock);
1632                 wl_tree_add(e, &ubi->used);
1633                 spin_unlock(&ubi->wl_lock);
1634         }
1635
1636         return err;
1637 }
1638
1639 /**
1640  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1641  * @ubi: UBI device description object
1642  * @pnum: the physical eraseblock to schedule
1643  *
1644  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1645  * needs scrubbing. This function schedules a physical eraseblock for
1646  * scrubbing which is done in background. This function returns zero in case of
1647  * success and a negative error code in case of failure.
1648  */
1649 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1650 {
1651         struct ubi_wl_entry *e;
1652
1653         ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1654
1655 retry:
1656         spin_lock(&ubi->wl_lock);
1657         e = ubi->lookuptbl[pnum];
1658         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1659                                    in_wl_tree(e, &ubi->erroneous)) {
1660                 spin_unlock(&ubi->wl_lock);
1661                 return 0;
1662         }
1663
1664         if (e == ubi->move_to) {
1665                 /*
1666                  * This physical eraseblock was used to move data to. The data
1667                  * was moved but the PEB was not yet inserted to the proper
1668                  * tree. We should just wait a little and let the WL worker
1669                  * proceed.
1670                  */
1671                 spin_unlock(&ubi->wl_lock);
1672                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1673                 yield();
1674                 goto retry;
1675         }
1676
1677         if (in_wl_tree(e, &ubi->used)) {
1678                 self_check_in_wl_tree(ubi, e, &ubi->used);
1679                 rb_erase(&e->u.rb, &ubi->used);
1680         } else {
1681                 int err;
1682
1683                 err = prot_queue_del(ubi, e->pnum);
1684                 if (err) {
1685                         ubi_err(ubi, "PEB %d not found", pnum);
1686                         ubi_ro_mode(ubi);
1687                         spin_unlock(&ubi->wl_lock);
1688                         return err;
1689                 }
1690         }
1691
1692         wl_tree_add(e, &ubi->scrub);
1693         spin_unlock(&ubi->wl_lock);
1694
1695         /*
1696          * Technically scrubbing is the same as wear-leveling, so it is done
1697          * by the WL worker.
1698          */
1699         return ensure_wear_leveling(ubi, 0);
1700 }
1701
1702 /**
1703  * ubi_wl_flush - flush all pending works.
1704  * @ubi: UBI device description object
1705  * @vol_id: the volume id to flush for
1706  * @lnum: the logical eraseblock number to flush for
1707  *
1708  * This function executes all pending works for a particular volume id /
1709  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1710  * acts as a wildcard for all of the corresponding volume numbers or logical
1711  * eraseblock numbers. It returns zero in case of success and a negative error
1712  * code in case of failure.
1713  */
1714 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1715 {
1716         int err = 0;
1717         int found = 1;
1718
1719         /*
1720          * Erase while the pending works queue is not empty, but not more than
1721          * the number of currently pending works.
1722          */
1723         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1724                vol_id, lnum, ubi->works_count);
1725
1726         while (found) {
1727                 struct ubi_work *wrk, *tmp;
1728                 found = 0;
1729
1730                 down_read(&ubi->work_sem);
1731                 spin_lock(&ubi->wl_lock);
1732                 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1733                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1734                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1735                                 list_del(&wrk->list);
1736                                 ubi->works_count -= 1;
1737                                 ubi_assert(ubi->works_count >= 0);
1738                                 spin_unlock(&ubi->wl_lock);
1739
1740                                 err = wrk->func(ubi, wrk, 0);
1741                                 if (err) {
1742                                         up_read(&ubi->work_sem);
1743                                         return err;
1744                                 }
1745
1746                                 spin_lock(&ubi->wl_lock);
1747                                 found = 1;
1748                                 break;
1749                         }
1750                 }
1751                 spin_unlock(&ubi->wl_lock);
1752                 up_read(&ubi->work_sem);
1753         }
1754
1755         /*
1756          * Make sure all the works which have been done in parallel are
1757          * finished.
1758          */
1759         down_write(&ubi->work_sem);
1760         up_write(&ubi->work_sem);
1761
1762         return err;
1763 }
1764
1765 /**
1766  * tree_destroy - destroy an RB-tree.
1767  * @root: the root of the tree to destroy
1768  */
1769 static void tree_destroy(struct rb_root *root)
1770 {
1771         struct rb_node *rb;
1772         struct ubi_wl_entry *e;
1773
1774         rb = root->rb_node;
1775         while (rb) {
1776                 if (rb->rb_left)
1777                         rb = rb->rb_left;
1778                 else if (rb->rb_right)
1779                         rb = rb->rb_right;
1780                 else {
1781                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1782
1783                         rb = rb_parent(rb);
1784                         if (rb) {
1785                                 if (rb->rb_left == &e->u.rb)
1786                                         rb->rb_left = NULL;
1787                                 else
1788                                         rb->rb_right = NULL;
1789                         }
1790
1791                         kmem_cache_free(ubi_wl_entry_slab, e);
1792                 }
1793         }
1794 }
1795
1796 /**
1797  * ubi_thread - UBI background thread.
1798  * @u: the UBI device description object pointer
1799  */
1800 int ubi_thread(void *u)
1801 {
1802         int failures = 0;
1803         struct ubi_device *ubi = u;
1804
1805         ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1806                 ubi->bgt_name, task_pid_nr(current));
1807
1808         set_freezable();
1809         for (;;) {
1810                 int err;
1811
1812                 if (kthread_should_stop())
1813                         break;
1814
1815                 if (try_to_freeze())
1816                         continue;
1817
1818                 spin_lock(&ubi->wl_lock);
1819                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1820                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1821                         set_current_state(TASK_INTERRUPTIBLE);
1822                         spin_unlock(&ubi->wl_lock);
1823                         schedule();
1824                         continue;
1825                 }
1826                 spin_unlock(&ubi->wl_lock);
1827
1828                 err = do_work(ubi);
1829                 if (err) {
1830                         ubi_err(ubi, "%s: work failed with error code %d",
1831                                 ubi->bgt_name, err);
1832                         if (failures++ > WL_MAX_FAILURES) {
1833                                 /*
1834                                  * Too many failures, disable the thread and
1835                                  * switch to read-only mode.
1836                                  */
1837                                 ubi_msg(ubi, "%s: %d consecutive failures",
1838                                         ubi->bgt_name, WL_MAX_FAILURES);
1839                                 ubi_ro_mode(ubi);
1840                                 ubi->thread_enabled = 0;
1841                                 continue;
1842                         }
1843                 } else
1844                         failures = 0;
1845
1846                 cond_resched();
1847         }
1848
1849         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1850         return 0;
1851 }
1852
1853 /**
1854  * shutdown_work - shutdown all pending works.
1855  * @ubi: UBI device description object
1856  */
1857 static void shutdown_work(struct ubi_device *ubi)
1858 {
1859 #ifdef CONFIG_MTD_UBI_FASTMAP
1860         flush_work(&ubi->fm_work);
1861 #endif
1862         while (!list_empty(&ubi->works)) {
1863                 struct ubi_work *wrk;
1864
1865                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1866                 list_del(&wrk->list);
1867                 wrk->func(ubi, wrk, 1);
1868                 ubi->works_count -= 1;
1869                 ubi_assert(ubi->works_count >= 0);
1870         }
1871 }
1872
1873 /**
1874  * ubi_wl_init - initialize the WL sub-system using attaching information.
1875  * @ubi: UBI device description object
1876  * @ai: attaching information
1877  *
1878  * This function returns zero in case of success, and a negative error code in
1879  * case of failure.
1880  */
1881 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1882 {
1883         int err, i, reserved_pebs, found_pebs = 0;
1884         struct rb_node *rb1, *rb2;
1885         struct ubi_ainf_volume *av;
1886         struct ubi_ainf_peb *aeb, *tmp;
1887         struct ubi_wl_entry *e;
1888
1889         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1890         spin_lock_init(&ubi->wl_lock);
1891         mutex_init(&ubi->move_mutex);
1892         init_rwsem(&ubi->work_sem);
1893         ubi->max_ec = ai->max_ec;
1894         INIT_LIST_HEAD(&ubi->works);
1895 #ifdef CONFIG_MTD_UBI_FASTMAP
1896         INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1897 #endif
1898
1899         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1900
1901         err = -ENOMEM;
1902         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1903         if (!ubi->lookuptbl)
1904                 return err;
1905
1906         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1907                 INIT_LIST_HEAD(&ubi->pq[i]);
1908         ubi->pq_head = 0;
1909
1910         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1911                 cond_resched();
1912
1913                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1914                 if (!e)
1915                         goto out_free;
1916
1917                 e->pnum = aeb->pnum;
1918                 e->ec = aeb->ec;
1919                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1920                 ubi->lookuptbl[e->pnum] = e;
1921                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1922                         kmem_cache_free(ubi_wl_entry_slab, e);
1923                         goto out_free;
1924                 }
1925
1926                 found_pebs++;
1927         }
1928
1929         ubi->free_count = 0;
1930         list_for_each_entry(aeb, &ai->free, u.list) {
1931                 cond_resched();
1932
1933                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1934                 if (!e)
1935                         goto out_free;
1936
1937                 e->pnum = aeb->pnum;
1938                 e->ec = aeb->ec;
1939                 ubi_assert(e->ec >= 0);
1940                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1941
1942                 wl_tree_add(e, &ubi->free);
1943                 ubi->free_count++;
1944
1945                 ubi->lookuptbl[e->pnum] = e;
1946
1947                 found_pebs++;
1948         }
1949
1950         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1951                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1952                         cond_resched();
1953
1954                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1955                         if (!e)
1956                                 goto out_free;
1957
1958                         e->pnum = aeb->pnum;
1959                         e->ec = aeb->ec;
1960                         ubi->lookuptbl[e->pnum] = e;
1961
1962                         if (!aeb->scrub) {
1963                                 dbg_wl("add PEB %d EC %d to the used tree",
1964                                        e->pnum, e->ec);
1965                                 wl_tree_add(e, &ubi->used);
1966                         } else {
1967                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1968                                        e->pnum, e->ec);
1969                                 wl_tree_add(e, &ubi->scrub);
1970                         }
1971
1972                         found_pebs++;
1973                 }
1974         }
1975
1976         dbg_wl("found %i PEBs", found_pebs);
1977
1978         if (ubi->fm)
1979                 ubi_assert(ubi->good_peb_count == \
1980                            found_pebs + ubi->fm->used_blocks);
1981         else
1982                 ubi_assert(ubi->good_peb_count == found_pebs);
1983
1984         reserved_pebs = WL_RESERVED_PEBS;
1985 #ifdef CONFIG_MTD_UBI_FASTMAP
1986         /* Reserve enough LEBs to store two fastmaps. */
1987         reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1988 #endif
1989
1990         if (ubi->avail_pebs < reserved_pebs) {
1991                 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1992                         ubi->avail_pebs, reserved_pebs);
1993                 if (ubi->corr_peb_count)
1994                         ubi_err(ubi, "%d PEBs are corrupted and not used",
1995                                 ubi->corr_peb_count);
1996                 goto out_free;
1997         }
1998         ubi->avail_pebs -= reserved_pebs;
1999         ubi->rsvd_pebs += reserved_pebs;
2000
2001         /* Schedule wear-leveling if needed */
2002         err = ensure_wear_leveling(ubi, 0);
2003         if (err)
2004                 goto out_free;
2005
2006         return 0;
2007
2008 out_free:
2009         shutdown_work(ubi);
2010         tree_destroy(&ubi->used);
2011         tree_destroy(&ubi->free);
2012         tree_destroy(&ubi->scrub);
2013         kfree(ubi->lookuptbl);
2014         return err;
2015 }
2016
2017 /**
2018  * protection_queue_destroy - destroy the protection queue.
2019  * @ubi: UBI device description object
2020  */
2021 static void protection_queue_destroy(struct ubi_device *ubi)
2022 {
2023         int i;
2024         struct ubi_wl_entry *e, *tmp;
2025
2026         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2027                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2028                         list_del(&e->u.list);
2029                         kmem_cache_free(ubi_wl_entry_slab, e);
2030                 }
2031         }
2032 }
2033
2034 /**
2035  * ubi_wl_close - close the wear-leveling sub-system.
2036  * @ubi: UBI device description object
2037  */
2038 void ubi_wl_close(struct ubi_device *ubi)
2039 {
2040         dbg_wl("close the WL sub-system");
2041         shutdown_work(ubi);
2042         protection_queue_destroy(ubi);
2043         tree_destroy(&ubi->used);
2044         tree_destroy(&ubi->erroneous);
2045         tree_destroy(&ubi->free);
2046         tree_destroy(&ubi->scrub);
2047         kfree(ubi->lookuptbl);
2048 }
2049
2050 /**
2051  * self_check_ec - make sure that the erase counter of a PEB is correct.
2052  * @ubi: UBI device description object
2053  * @pnum: the physical eraseblock number to check
2054  * @ec: the erase counter to check
2055  *
2056  * This function returns zero if the erase counter of physical eraseblock @pnum
2057  * is equivalent to @ec, and a negative error code if not or if an error
2058  * occurred.
2059  */
2060 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2061 {
2062         int err;
2063         long long read_ec;
2064         struct ubi_ec_hdr *ec_hdr;
2065
2066         if (!ubi_dbg_chk_gen(ubi))
2067                 return 0;
2068
2069         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2070         if (!ec_hdr)
2071                 return -ENOMEM;
2072
2073         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2074         if (err && err != UBI_IO_BITFLIPS) {
2075                 /* The header does not have to exist */
2076                 err = 0;
2077                 goto out_free;
2078         }
2079
2080         read_ec = be64_to_cpu(ec_hdr->ec);
2081         if (ec != read_ec && read_ec - ec > 1) {
2082                 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2083                 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2084                 dump_stack();
2085                 err = 1;
2086         } else
2087                 err = 0;
2088
2089 out_free:
2090         kfree(ec_hdr);
2091         return err;
2092 }
2093
2094 /**
2095  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2096  * @ubi: UBI device description object
2097  * @e: the wear-leveling entry to check
2098  * @root: the root of the tree
2099  *
2100  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2101  * is not.
2102  */
2103 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2104                                  struct ubi_wl_entry *e, struct rb_root *root)
2105 {
2106         if (!ubi_dbg_chk_gen(ubi))
2107                 return 0;
2108
2109         if (in_wl_tree(e, root))
2110                 return 0;
2111
2112         ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2113                 e->pnum, e->ec, root);
2114         dump_stack();
2115         return -EINVAL;
2116 }
2117
2118 /**
2119  * self_check_in_pq - check if wear-leveling entry is in the protection
2120  *                        queue.
2121  * @ubi: UBI device description object
2122  * @e: the wear-leveling entry to check
2123  *
2124  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2125  */
2126 static int self_check_in_pq(const struct ubi_device *ubi,
2127                             struct ubi_wl_entry *e)
2128 {
2129         struct ubi_wl_entry *p;
2130         int i;
2131
2132         if (!ubi_dbg_chk_gen(ubi))
2133                 return 0;
2134
2135         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2136                 list_for_each_entry(p, &ubi->pq[i], u.list)
2137                         if (p == e)
2138                                 return 0;
2139
2140         ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2141                 e->pnum, e->ec);
2142         dump_stack();
2143         return -EINVAL;
2144 }