drivers/net: use vzalloc()
[firefly-linux-kernel-4.4.55.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k6-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_update_phy_info_task(struct work_struct *work);
127 static void e1000_watchdog(unsigned long data);
128 static void e1000_82547_tx_fifo_stall(unsigned long data);
129 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
130 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
131                                     struct net_device *netdev);
132 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
133 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
134 static int e1000_set_mac(struct net_device *netdev, void *p);
135 static irqreturn_t e1000_intr(int irq, void *data);
136 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
137                                struct e1000_tx_ring *tx_ring);
138 static int e1000_clean(struct napi_struct *napi, int budget);
139 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
140                                struct e1000_rx_ring *rx_ring,
141                                int *work_done, int work_to_do);
142 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
143                                      struct e1000_rx_ring *rx_ring,
144                                      int *work_done, int work_to_do);
145 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
146                                    struct e1000_rx_ring *rx_ring,
147                                    int cleaned_count);
148 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
149                                          struct e1000_rx_ring *rx_ring,
150                                          int cleaned_count);
151 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
152 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
153                            int cmd);
154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
155 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
156 static void e1000_tx_timeout(struct net_device *dev);
157 static void e1000_reset_task(struct work_struct *work);
158 static void e1000_smartspeed(struct e1000_adapter *adapter);
159 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
160                                        struct sk_buff *skb);
161
162 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
163 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
164 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
165 static void e1000_restore_vlan(struct e1000_adapter *adapter);
166
167 #ifdef CONFIG_PM
168 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
169 static int e1000_resume(struct pci_dev *pdev);
170 #endif
171 static void e1000_shutdown(struct pci_dev *pdev);
172
173 #ifdef CONFIG_NET_POLL_CONTROLLER
174 /* for netdump / net console */
175 static void e1000_netpoll (struct net_device *netdev);
176 #endif
177
178 #define COPYBREAK_DEFAULT 256
179 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
180 module_param(copybreak, uint, 0644);
181 MODULE_PARM_DESC(copybreak,
182         "Maximum size of packet that is copied to a new buffer on receive");
183
184 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
185                      pci_channel_state_t state);
186 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
187 static void e1000_io_resume(struct pci_dev *pdev);
188
189 static struct pci_error_handlers e1000_err_handler = {
190         .error_detected = e1000_io_error_detected,
191         .slot_reset = e1000_io_slot_reset,
192         .resume = e1000_io_resume,
193 };
194
195 static struct pci_driver e1000_driver = {
196         .name     = e1000_driver_name,
197         .id_table = e1000_pci_tbl,
198         .probe    = e1000_probe,
199         .remove   = __devexit_p(e1000_remove),
200 #ifdef CONFIG_PM
201         /* Power Managment Hooks */
202         .suspend  = e1000_suspend,
203         .resume   = e1000_resume,
204 #endif
205         .shutdown = e1000_shutdown,
206         .err_handler = &e1000_err_handler
207 };
208
209 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
210 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
211 MODULE_LICENSE("GPL");
212 MODULE_VERSION(DRV_VERSION);
213
214 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
215 module_param(debug, int, 0);
216 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
217
218 /**
219  * e1000_get_hw_dev - return device
220  * used by hardware layer to print debugging information
221  *
222  **/
223 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
224 {
225         struct e1000_adapter *adapter = hw->back;
226         return adapter->netdev;
227 }
228
229 /**
230  * e1000_init_module - Driver Registration Routine
231  *
232  * e1000_init_module is the first routine called when the driver is
233  * loaded. All it does is register with the PCI subsystem.
234  **/
235
236 static int __init e1000_init_module(void)
237 {
238         int ret;
239         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
240
241         pr_info("%s\n", e1000_copyright);
242
243         ret = pci_register_driver(&e1000_driver);
244         if (copybreak != COPYBREAK_DEFAULT) {
245                 if (copybreak == 0)
246                         pr_info("copybreak disabled\n");
247                 else
248                         pr_info("copybreak enabled for "
249                                    "packets <= %u bytes\n", copybreak);
250         }
251         return ret;
252 }
253
254 module_init(e1000_init_module);
255
256 /**
257  * e1000_exit_module - Driver Exit Cleanup Routine
258  *
259  * e1000_exit_module is called just before the driver is removed
260  * from memory.
261  **/
262
263 static void __exit e1000_exit_module(void)
264 {
265         pci_unregister_driver(&e1000_driver);
266 }
267
268 module_exit(e1000_exit_module);
269
270 static int e1000_request_irq(struct e1000_adapter *adapter)
271 {
272         struct net_device *netdev = adapter->netdev;
273         irq_handler_t handler = e1000_intr;
274         int irq_flags = IRQF_SHARED;
275         int err;
276
277         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
278                           netdev);
279         if (err) {
280                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
281         }
282
283         return err;
284 }
285
286 static void e1000_free_irq(struct e1000_adapter *adapter)
287 {
288         struct net_device *netdev = adapter->netdev;
289
290         free_irq(adapter->pdev->irq, netdev);
291 }
292
293 /**
294  * e1000_irq_disable - Mask off interrupt generation on the NIC
295  * @adapter: board private structure
296  **/
297
298 static void e1000_irq_disable(struct e1000_adapter *adapter)
299 {
300         struct e1000_hw *hw = &adapter->hw;
301
302         ew32(IMC, ~0);
303         E1000_WRITE_FLUSH();
304         synchronize_irq(adapter->pdev->irq);
305 }
306
307 /**
308  * e1000_irq_enable - Enable default interrupt generation settings
309  * @adapter: board private structure
310  **/
311
312 static void e1000_irq_enable(struct e1000_adapter *adapter)
313 {
314         struct e1000_hw *hw = &adapter->hw;
315
316         ew32(IMS, IMS_ENABLE_MASK);
317         E1000_WRITE_FLUSH();
318 }
319
320 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
321 {
322         struct e1000_hw *hw = &adapter->hw;
323         struct net_device *netdev = adapter->netdev;
324         u16 vid = hw->mng_cookie.vlan_id;
325         u16 old_vid = adapter->mng_vlan_id;
326         if (adapter->vlgrp) {
327                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
328                         if (hw->mng_cookie.status &
329                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
330                                 e1000_vlan_rx_add_vid(netdev, vid);
331                                 adapter->mng_vlan_id = vid;
332                         } else
333                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
334
335                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
336                                         (vid != old_vid) &&
337                             !vlan_group_get_device(adapter->vlgrp, old_vid))
338                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
339                 } else
340                         adapter->mng_vlan_id = vid;
341         }
342 }
343
344 static void e1000_init_manageability(struct e1000_adapter *adapter)
345 {
346         struct e1000_hw *hw = &adapter->hw;
347
348         if (adapter->en_mng_pt) {
349                 u32 manc = er32(MANC);
350
351                 /* disable hardware interception of ARP */
352                 manc &= ~(E1000_MANC_ARP_EN);
353
354                 ew32(MANC, manc);
355         }
356 }
357
358 static void e1000_release_manageability(struct e1000_adapter *adapter)
359 {
360         struct e1000_hw *hw = &adapter->hw;
361
362         if (adapter->en_mng_pt) {
363                 u32 manc = er32(MANC);
364
365                 /* re-enable hardware interception of ARP */
366                 manc |= E1000_MANC_ARP_EN;
367
368                 ew32(MANC, manc);
369         }
370 }
371
372 /**
373  * e1000_configure - configure the hardware for RX and TX
374  * @adapter = private board structure
375  **/
376 static void e1000_configure(struct e1000_adapter *adapter)
377 {
378         struct net_device *netdev = adapter->netdev;
379         int i;
380
381         e1000_set_rx_mode(netdev);
382
383         e1000_restore_vlan(adapter);
384         e1000_init_manageability(adapter);
385
386         e1000_configure_tx(adapter);
387         e1000_setup_rctl(adapter);
388         e1000_configure_rx(adapter);
389         /* call E1000_DESC_UNUSED which always leaves
390          * at least 1 descriptor unused to make sure
391          * next_to_use != next_to_clean */
392         for (i = 0; i < adapter->num_rx_queues; i++) {
393                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
394                 adapter->alloc_rx_buf(adapter, ring,
395                                       E1000_DESC_UNUSED(ring));
396         }
397 }
398
399 int e1000_up(struct e1000_adapter *adapter)
400 {
401         struct e1000_hw *hw = &adapter->hw;
402
403         /* hardware has been reset, we need to reload some things */
404         e1000_configure(adapter);
405
406         clear_bit(__E1000_DOWN, &adapter->flags);
407
408         napi_enable(&adapter->napi);
409
410         e1000_irq_enable(adapter);
411
412         netif_wake_queue(adapter->netdev);
413
414         /* fire a link change interrupt to start the watchdog */
415         ew32(ICS, E1000_ICS_LSC);
416         return 0;
417 }
418
419 /**
420  * e1000_power_up_phy - restore link in case the phy was powered down
421  * @adapter: address of board private structure
422  *
423  * The phy may be powered down to save power and turn off link when the
424  * driver is unloaded and wake on lan is not enabled (among others)
425  * *** this routine MUST be followed by a call to e1000_reset ***
426  *
427  **/
428
429 void e1000_power_up_phy(struct e1000_adapter *adapter)
430 {
431         struct e1000_hw *hw = &adapter->hw;
432         u16 mii_reg = 0;
433
434         /* Just clear the power down bit to wake the phy back up */
435         if (hw->media_type == e1000_media_type_copper) {
436                 /* according to the manual, the phy will retain its
437                  * settings across a power-down/up cycle */
438                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
439                 mii_reg &= ~MII_CR_POWER_DOWN;
440                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
441         }
442 }
443
444 static void e1000_power_down_phy(struct e1000_adapter *adapter)
445 {
446         struct e1000_hw *hw = &adapter->hw;
447
448         /* Power down the PHY so no link is implied when interface is down *
449          * The PHY cannot be powered down if any of the following is true *
450          * (a) WoL is enabled
451          * (b) AMT is active
452          * (c) SoL/IDER session is active */
453         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
454            hw->media_type == e1000_media_type_copper) {
455                 u16 mii_reg = 0;
456
457                 switch (hw->mac_type) {
458                 case e1000_82540:
459                 case e1000_82545:
460                 case e1000_82545_rev_3:
461                 case e1000_82546:
462                 case e1000_82546_rev_3:
463                 case e1000_82541:
464                 case e1000_82541_rev_2:
465                 case e1000_82547:
466                 case e1000_82547_rev_2:
467                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
468                                 goto out;
469                         break;
470                 default:
471                         goto out;
472                 }
473                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
474                 mii_reg |= MII_CR_POWER_DOWN;
475                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
476                 mdelay(1);
477         }
478 out:
479         return;
480 }
481
482 void e1000_down(struct e1000_adapter *adapter)
483 {
484         struct e1000_hw *hw = &adapter->hw;
485         struct net_device *netdev = adapter->netdev;
486         u32 rctl, tctl;
487
488         /* signal that we're down so the interrupt handler does not
489          * reschedule our watchdog timer */
490         set_bit(__E1000_DOWN, &adapter->flags);
491
492         /* disable receives in the hardware */
493         rctl = er32(RCTL);
494         ew32(RCTL, rctl & ~E1000_RCTL_EN);
495         /* flush and sleep below */
496
497         netif_tx_disable(netdev);
498
499         /* disable transmits in the hardware */
500         tctl = er32(TCTL);
501         tctl &= ~E1000_TCTL_EN;
502         ew32(TCTL, tctl);
503         /* flush both disables and wait for them to finish */
504         E1000_WRITE_FLUSH();
505         msleep(10);
506
507         napi_disable(&adapter->napi);
508
509         e1000_irq_disable(adapter);
510
511         del_timer_sync(&adapter->tx_fifo_stall_timer);
512         del_timer_sync(&adapter->watchdog_timer);
513         del_timer_sync(&adapter->phy_info_timer);
514
515         adapter->link_speed = 0;
516         adapter->link_duplex = 0;
517         netif_carrier_off(netdev);
518
519         e1000_reset(adapter);
520         e1000_clean_all_tx_rings(adapter);
521         e1000_clean_all_rx_rings(adapter);
522 }
523
524 static void e1000_reinit_safe(struct e1000_adapter *adapter)
525 {
526         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
527                 msleep(1);
528         rtnl_lock();
529         e1000_down(adapter);
530         e1000_up(adapter);
531         rtnl_unlock();
532         clear_bit(__E1000_RESETTING, &adapter->flags);
533 }
534
535 void e1000_reinit_locked(struct e1000_adapter *adapter)
536 {
537         /* if rtnl_lock is not held the call path is bogus */
538         ASSERT_RTNL();
539         WARN_ON(in_interrupt());
540         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
541                 msleep(1);
542         e1000_down(adapter);
543         e1000_up(adapter);
544         clear_bit(__E1000_RESETTING, &adapter->flags);
545 }
546
547 void e1000_reset(struct e1000_adapter *adapter)
548 {
549         struct e1000_hw *hw = &adapter->hw;
550         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
551         bool legacy_pba_adjust = false;
552         u16 hwm;
553
554         /* Repartition Pba for greater than 9k mtu
555          * To take effect CTRL.RST is required.
556          */
557
558         switch (hw->mac_type) {
559         case e1000_82542_rev2_0:
560         case e1000_82542_rev2_1:
561         case e1000_82543:
562         case e1000_82544:
563         case e1000_82540:
564         case e1000_82541:
565         case e1000_82541_rev_2:
566                 legacy_pba_adjust = true;
567                 pba = E1000_PBA_48K;
568                 break;
569         case e1000_82545:
570         case e1000_82545_rev_3:
571         case e1000_82546:
572         case e1000_82546_rev_3:
573                 pba = E1000_PBA_48K;
574                 break;
575         case e1000_82547:
576         case e1000_82547_rev_2:
577                 legacy_pba_adjust = true;
578                 pba = E1000_PBA_30K;
579                 break;
580         case e1000_undefined:
581         case e1000_num_macs:
582                 break;
583         }
584
585         if (legacy_pba_adjust) {
586                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
587                         pba -= 8; /* allocate more FIFO for Tx */
588
589                 if (hw->mac_type == e1000_82547) {
590                         adapter->tx_fifo_head = 0;
591                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
592                         adapter->tx_fifo_size =
593                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
594                         atomic_set(&adapter->tx_fifo_stall, 0);
595                 }
596         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
597                 /* adjust PBA for jumbo frames */
598                 ew32(PBA, pba);
599
600                 /* To maintain wire speed transmits, the Tx FIFO should be
601                  * large enough to accommodate two full transmit packets,
602                  * rounded up to the next 1KB and expressed in KB.  Likewise,
603                  * the Rx FIFO should be large enough to accommodate at least
604                  * one full receive packet and is similarly rounded up and
605                  * expressed in KB. */
606                 pba = er32(PBA);
607                 /* upper 16 bits has Tx packet buffer allocation size in KB */
608                 tx_space = pba >> 16;
609                 /* lower 16 bits has Rx packet buffer allocation size in KB */
610                 pba &= 0xffff;
611                 /*
612                  * the tx fifo also stores 16 bytes of information about the tx
613                  * but don't include ethernet FCS because hardware appends it
614                  */
615                 min_tx_space = (hw->max_frame_size +
616                                 sizeof(struct e1000_tx_desc) -
617                                 ETH_FCS_LEN) * 2;
618                 min_tx_space = ALIGN(min_tx_space, 1024);
619                 min_tx_space >>= 10;
620                 /* software strips receive CRC, so leave room for it */
621                 min_rx_space = hw->max_frame_size;
622                 min_rx_space = ALIGN(min_rx_space, 1024);
623                 min_rx_space >>= 10;
624
625                 /* If current Tx allocation is less than the min Tx FIFO size,
626                  * and the min Tx FIFO size is less than the current Rx FIFO
627                  * allocation, take space away from current Rx allocation */
628                 if (tx_space < min_tx_space &&
629                     ((min_tx_space - tx_space) < pba)) {
630                         pba = pba - (min_tx_space - tx_space);
631
632                         /* PCI/PCIx hardware has PBA alignment constraints */
633                         switch (hw->mac_type) {
634                         case e1000_82545 ... e1000_82546_rev_3:
635                                 pba &= ~(E1000_PBA_8K - 1);
636                                 break;
637                         default:
638                                 break;
639                         }
640
641                         /* if short on rx space, rx wins and must trump tx
642                          * adjustment or use Early Receive if available */
643                         if (pba < min_rx_space)
644                                 pba = min_rx_space;
645                 }
646         }
647
648         ew32(PBA, pba);
649
650         /*
651          * flow control settings:
652          * The high water mark must be low enough to fit one full frame
653          * (or the size used for early receive) above it in the Rx FIFO.
654          * Set it to the lower of:
655          * - 90% of the Rx FIFO size, and
656          * - the full Rx FIFO size minus the early receive size (for parts
657          *   with ERT support assuming ERT set to E1000_ERT_2048), or
658          * - the full Rx FIFO size minus one full frame
659          */
660         hwm = min(((pba << 10) * 9 / 10),
661                   ((pba << 10) - hw->max_frame_size));
662
663         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
664         hw->fc_low_water = hw->fc_high_water - 8;
665         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
666         hw->fc_send_xon = 1;
667         hw->fc = hw->original_fc;
668
669         /* Allow time for pending master requests to run */
670         e1000_reset_hw(hw);
671         if (hw->mac_type >= e1000_82544)
672                 ew32(WUC, 0);
673
674         if (e1000_init_hw(hw))
675                 e_dev_err("Hardware Error\n");
676         e1000_update_mng_vlan(adapter);
677
678         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
679         if (hw->mac_type >= e1000_82544 &&
680             hw->autoneg == 1 &&
681             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
682                 u32 ctrl = er32(CTRL);
683                 /* clear phy power management bit if we are in gig only mode,
684                  * which if enabled will attempt negotiation to 100Mb, which
685                  * can cause a loss of link at power off or driver unload */
686                 ctrl &= ~E1000_CTRL_SWDPIN3;
687                 ew32(CTRL, ctrl);
688         }
689
690         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
691         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
692
693         e1000_reset_adaptive(hw);
694         e1000_phy_get_info(hw, &adapter->phy_info);
695
696         e1000_release_manageability(adapter);
697 }
698
699 /**
700  *  Dump the eeprom for users having checksum issues
701  **/
702 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
703 {
704         struct net_device *netdev = adapter->netdev;
705         struct ethtool_eeprom eeprom;
706         const struct ethtool_ops *ops = netdev->ethtool_ops;
707         u8 *data;
708         int i;
709         u16 csum_old, csum_new = 0;
710
711         eeprom.len = ops->get_eeprom_len(netdev);
712         eeprom.offset = 0;
713
714         data = kmalloc(eeprom.len, GFP_KERNEL);
715         if (!data) {
716                 pr_err("Unable to allocate memory to dump EEPROM data\n");
717                 return;
718         }
719
720         ops->get_eeprom(netdev, &eeprom, data);
721
722         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
723                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
724         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
725                 csum_new += data[i] + (data[i + 1] << 8);
726         csum_new = EEPROM_SUM - csum_new;
727
728         pr_err("/*********************/\n");
729         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
730         pr_err("Calculated              : 0x%04x\n", csum_new);
731
732         pr_err("Offset    Values\n");
733         pr_err("========  ======\n");
734         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
735
736         pr_err("Include this output when contacting your support provider.\n");
737         pr_err("This is not a software error! Something bad happened to\n");
738         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
739         pr_err("result in further problems, possibly loss of data,\n");
740         pr_err("corruption or system hangs!\n");
741         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
742         pr_err("which is invalid and requires you to set the proper MAC\n");
743         pr_err("address manually before continuing to enable this network\n");
744         pr_err("device. Please inspect the EEPROM dump and report the\n");
745         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
746         pr_err("/*********************/\n");
747
748         kfree(data);
749 }
750
751 /**
752  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
753  * @pdev: PCI device information struct
754  *
755  * Return true if an adapter needs ioport resources
756  **/
757 static int e1000_is_need_ioport(struct pci_dev *pdev)
758 {
759         switch (pdev->device) {
760         case E1000_DEV_ID_82540EM:
761         case E1000_DEV_ID_82540EM_LOM:
762         case E1000_DEV_ID_82540EP:
763         case E1000_DEV_ID_82540EP_LOM:
764         case E1000_DEV_ID_82540EP_LP:
765         case E1000_DEV_ID_82541EI:
766         case E1000_DEV_ID_82541EI_MOBILE:
767         case E1000_DEV_ID_82541ER:
768         case E1000_DEV_ID_82541ER_LOM:
769         case E1000_DEV_ID_82541GI:
770         case E1000_DEV_ID_82541GI_LF:
771         case E1000_DEV_ID_82541GI_MOBILE:
772         case E1000_DEV_ID_82544EI_COPPER:
773         case E1000_DEV_ID_82544EI_FIBER:
774         case E1000_DEV_ID_82544GC_COPPER:
775         case E1000_DEV_ID_82544GC_LOM:
776         case E1000_DEV_ID_82545EM_COPPER:
777         case E1000_DEV_ID_82545EM_FIBER:
778         case E1000_DEV_ID_82546EB_COPPER:
779         case E1000_DEV_ID_82546EB_FIBER:
780         case E1000_DEV_ID_82546EB_QUAD_COPPER:
781                 return true;
782         default:
783                 return false;
784         }
785 }
786
787 static const struct net_device_ops e1000_netdev_ops = {
788         .ndo_open               = e1000_open,
789         .ndo_stop               = e1000_close,
790         .ndo_start_xmit         = e1000_xmit_frame,
791         .ndo_get_stats          = e1000_get_stats,
792         .ndo_set_rx_mode        = e1000_set_rx_mode,
793         .ndo_set_mac_address    = e1000_set_mac,
794         .ndo_tx_timeout         = e1000_tx_timeout,
795         .ndo_change_mtu         = e1000_change_mtu,
796         .ndo_do_ioctl           = e1000_ioctl,
797         .ndo_validate_addr      = eth_validate_addr,
798
799         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
800         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
801         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
802 #ifdef CONFIG_NET_POLL_CONTROLLER
803         .ndo_poll_controller    = e1000_netpoll,
804 #endif
805 };
806
807 /**
808  * e1000_init_hw_struct - initialize members of hw struct
809  * @adapter: board private struct
810  * @hw: structure used by e1000_hw.c
811  *
812  * Factors out initialization of the e1000_hw struct to its own function
813  * that can be called very early at init (just after struct allocation).
814  * Fields are initialized based on PCI device information and
815  * OS network device settings (MTU size).
816  * Returns negative error codes if MAC type setup fails.
817  */
818 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
819                                 struct e1000_hw *hw)
820 {
821         struct pci_dev *pdev = adapter->pdev;
822
823         /* PCI config space info */
824         hw->vendor_id = pdev->vendor;
825         hw->device_id = pdev->device;
826         hw->subsystem_vendor_id = pdev->subsystem_vendor;
827         hw->subsystem_id = pdev->subsystem_device;
828         hw->revision_id = pdev->revision;
829
830         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
831
832         hw->max_frame_size = adapter->netdev->mtu +
833                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
834         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
835
836         /* identify the MAC */
837         if (e1000_set_mac_type(hw)) {
838                 e_err(probe, "Unknown MAC Type\n");
839                 return -EIO;
840         }
841
842         switch (hw->mac_type) {
843         default:
844                 break;
845         case e1000_82541:
846         case e1000_82547:
847         case e1000_82541_rev_2:
848         case e1000_82547_rev_2:
849                 hw->phy_init_script = 1;
850                 break;
851         }
852
853         e1000_set_media_type(hw);
854         e1000_get_bus_info(hw);
855
856         hw->wait_autoneg_complete = false;
857         hw->tbi_compatibility_en = true;
858         hw->adaptive_ifs = true;
859
860         /* Copper options */
861
862         if (hw->media_type == e1000_media_type_copper) {
863                 hw->mdix = AUTO_ALL_MODES;
864                 hw->disable_polarity_correction = false;
865                 hw->master_slave = E1000_MASTER_SLAVE;
866         }
867
868         return 0;
869 }
870
871 /**
872  * e1000_probe - Device Initialization Routine
873  * @pdev: PCI device information struct
874  * @ent: entry in e1000_pci_tbl
875  *
876  * Returns 0 on success, negative on failure
877  *
878  * e1000_probe initializes an adapter identified by a pci_dev structure.
879  * The OS initialization, configuring of the adapter private structure,
880  * and a hardware reset occur.
881  **/
882 static int __devinit e1000_probe(struct pci_dev *pdev,
883                                  const struct pci_device_id *ent)
884 {
885         struct net_device *netdev;
886         struct e1000_adapter *adapter;
887         struct e1000_hw *hw;
888
889         static int cards_found = 0;
890         static int global_quad_port_a = 0; /* global ksp3 port a indication */
891         int i, err, pci_using_dac;
892         u16 eeprom_data = 0;
893         u16 eeprom_apme_mask = E1000_EEPROM_APME;
894         int bars, need_ioport;
895
896         /* do not allocate ioport bars when not needed */
897         need_ioport = e1000_is_need_ioport(pdev);
898         if (need_ioport) {
899                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
900                 err = pci_enable_device(pdev);
901         } else {
902                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
903                 err = pci_enable_device_mem(pdev);
904         }
905         if (err)
906                 return err;
907
908         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
909         if (err)
910                 goto err_pci_reg;
911
912         pci_set_master(pdev);
913         err = pci_save_state(pdev);
914         if (err)
915                 goto err_alloc_etherdev;
916
917         err = -ENOMEM;
918         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
919         if (!netdev)
920                 goto err_alloc_etherdev;
921
922         SET_NETDEV_DEV(netdev, &pdev->dev);
923
924         pci_set_drvdata(pdev, netdev);
925         adapter = netdev_priv(netdev);
926         adapter->netdev = netdev;
927         adapter->pdev = pdev;
928         adapter->msg_enable = (1 << debug) - 1;
929         adapter->bars = bars;
930         adapter->need_ioport = need_ioport;
931
932         hw = &adapter->hw;
933         hw->back = adapter;
934
935         err = -EIO;
936         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
937         if (!hw->hw_addr)
938                 goto err_ioremap;
939
940         if (adapter->need_ioport) {
941                 for (i = BAR_1; i <= BAR_5; i++) {
942                         if (pci_resource_len(pdev, i) == 0)
943                                 continue;
944                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
945                                 hw->io_base = pci_resource_start(pdev, i);
946                                 break;
947                         }
948                 }
949         }
950
951         /* make ready for any if (hw->...) below */
952         err = e1000_init_hw_struct(adapter, hw);
953         if (err)
954                 goto err_sw_init;
955
956         /*
957          * there is a workaround being applied below that limits
958          * 64-bit DMA addresses to 64-bit hardware.  There are some
959          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
960          */
961         pci_using_dac = 0;
962         if ((hw->bus_type == e1000_bus_type_pcix) &&
963             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
964                 /*
965                  * according to DMA-API-HOWTO, coherent calls will always
966                  * succeed if the set call did
967                  */
968                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
969                 pci_using_dac = 1;
970         } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
971                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
972         } else {
973                 pr_err("No usable DMA config, aborting\n");
974                 goto err_dma;
975         }
976
977         netdev->netdev_ops = &e1000_netdev_ops;
978         e1000_set_ethtool_ops(netdev);
979         netdev->watchdog_timeo = 5 * HZ;
980         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
981
982         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
983
984         adapter->bd_number = cards_found;
985
986         /* setup the private structure */
987
988         err = e1000_sw_init(adapter);
989         if (err)
990                 goto err_sw_init;
991
992         err = -EIO;
993
994         if (hw->mac_type >= e1000_82543) {
995                 netdev->features = NETIF_F_SG |
996                                    NETIF_F_HW_CSUM |
997                                    NETIF_F_HW_VLAN_TX |
998                                    NETIF_F_HW_VLAN_RX |
999                                    NETIF_F_HW_VLAN_FILTER;
1000         }
1001
1002         if ((hw->mac_type >= e1000_82544) &&
1003            (hw->mac_type != e1000_82547))
1004                 netdev->features |= NETIF_F_TSO;
1005
1006         if (pci_using_dac) {
1007                 netdev->features |= NETIF_F_HIGHDMA;
1008                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1009         }
1010
1011         netdev->vlan_features |= NETIF_F_TSO;
1012         netdev->vlan_features |= NETIF_F_HW_CSUM;
1013         netdev->vlan_features |= NETIF_F_SG;
1014
1015         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1016
1017         /* initialize eeprom parameters */
1018         if (e1000_init_eeprom_params(hw)) {
1019                 e_err(probe, "EEPROM initialization failed\n");
1020                 goto err_eeprom;
1021         }
1022
1023         /* before reading the EEPROM, reset the controller to
1024          * put the device in a known good starting state */
1025
1026         e1000_reset_hw(hw);
1027
1028         /* make sure the EEPROM is good */
1029         if (e1000_validate_eeprom_checksum(hw) < 0) {
1030                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1031                 e1000_dump_eeprom(adapter);
1032                 /*
1033                  * set MAC address to all zeroes to invalidate and temporary
1034                  * disable this device for the user. This blocks regular
1035                  * traffic while still permitting ethtool ioctls from reaching
1036                  * the hardware as well as allowing the user to run the
1037                  * interface after manually setting a hw addr using
1038                  * `ip set address`
1039                  */
1040                 memset(hw->mac_addr, 0, netdev->addr_len);
1041         } else {
1042                 /* copy the MAC address out of the EEPROM */
1043                 if (e1000_read_mac_addr(hw))
1044                         e_err(probe, "EEPROM Read Error\n");
1045         }
1046         /* don't block initalization here due to bad MAC address */
1047         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1048         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1049
1050         if (!is_valid_ether_addr(netdev->perm_addr))
1051                 e_err(probe, "Invalid MAC Address\n");
1052
1053         init_timer(&adapter->tx_fifo_stall_timer);
1054         adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1055         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1056
1057         init_timer(&adapter->watchdog_timer);
1058         adapter->watchdog_timer.function = e1000_watchdog;
1059         adapter->watchdog_timer.data = (unsigned long) adapter;
1060
1061         init_timer(&adapter->phy_info_timer);
1062         adapter->phy_info_timer.function = e1000_update_phy_info;
1063         adapter->phy_info_timer.data = (unsigned long)adapter;
1064
1065         INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1066         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1067         INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1068
1069         e1000_check_options(adapter);
1070
1071         /* Initial Wake on LAN setting
1072          * If APM wake is enabled in the EEPROM,
1073          * enable the ACPI Magic Packet filter
1074          */
1075
1076         switch (hw->mac_type) {
1077         case e1000_82542_rev2_0:
1078         case e1000_82542_rev2_1:
1079         case e1000_82543:
1080                 break;
1081         case e1000_82544:
1082                 e1000_read_eeprom(hw,
1083                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1084                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1085                 break;
1086         case e1000_82546:
1087         case e1000_82546_rev_3:
1088                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1089                         e1000_read_eeprom(hw,
1090                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1091                         break;
1092                 }
1093                 /* Fall Through */
1094         default:
1095                 e1000_read_eeprom(hw,
1096                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1097                 break;
1098         }
1099         if (eeprom_data & eeprom_apme_mask)
1100                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1101
1102         /* now that we have the eeprom settings, apply the special cases
1103          * where the eeprom may be wrong or the board simply won't support
1104          * wake on lan on a particular port */
1105         switch (pdev->device) {
1106         case E1000_DEV_ID_82546GB_PCIE:
1107                 adapter->eeprom_wol = 0;
1108                 break;
1109         case E1000_DEV_ID_82546EB_FIBER:
1110         case E1000_DEV_ID_82546GB_FIBER:
1111                 /* Wake events only supported on port A for dual fiber
1112                  * regardless of eeprom setting */
1113                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1114                         adapter->eeprom_wol = 0;
1115                 break;
1116         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1117                 /* if quad port adapter, disable WoL on all but port A */
1118                 if (global_quad_port_a != 0)
1119                         adapter->eeprom_wol = 0;
1120                 else
1121                         adapter->quad_port_a = 1;
1122                 /* Reset for multiple quad port adapters */
1123                 if (++global_quad_port_a == 4)
1124                         global_quad_port_a = 0;
1125                 break;
1126         }
1127
1128         /* initialize the wol settings based on the eeprom settings */
1129         adapter->wol = adapter->eeprom_wol;
1130         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1131
1132         /* reset the hardware with the new settings */
1133         e1000_reset(adapter);
1134
1135         strcpy(netdev->name, "eth%d");
1136         err = register_netdev(netdev);
1137         if (err)
1138                 goto err_register;
1139
1140         /* print bus type/speed/width info */
1141         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1142                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1143                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1144                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1145                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1146                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1147                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1148                netdev->dev_addr);
1149
1150         /* carrier off reporting is important to ethtool even BEFORE open */
1151         netif_carrier_off(netdev);
1152
1153         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1154
1155         cards_found++;
1156         return 0;
1157
1158 err_register:
1159 err_eeprom:
1160         e1000_phy_hw_reset(hw);
1161
1162         if (hw->flash_address)
1163                 iounmap(hw->flash_address);
1164         kfree(adapter->tx_ring);
1165         kfree(adapter->rx_ring);
1166 err_dma:
1167 err_sw_init:
1168         iounmap(hw->hw_addr);
1169 err_ioremap:
1170         free_netdev(netdev);
1171 err_alloc_etherdev:
1172         pci_release_selected_regions(pdev, bars);
1173 err_pci_reg:
1174         pci_disable_device(pdev);
1175         return err;
1176 }
1177
1178 /**
1179  * e1000_remove - Device Removal Routine
1180  * @pdev: PCI device information struct
1181  *
1182  * e1000_remove is called by the PCI subsystem to alert the driver
1183  * that it should release a PCI device.  The could be caused by a
1184  * Hot-Plug event, or because the driver is going to be removed from
1185  * memory.
1186  **/
1187
1188 static void __devexit e1000_remove(struct pci_dev *pdev)
1189 {
1190         struct net_device *netdev = pci_get_drvdata(pdev);
1191         struct e1000_adapter *adapter = netdev_priv(netdev);
1192         struct e1000_hw *hw = &adapter->hw;
1193
1194         set_bit(__E1000_DOWN, &adapter->flags);
1195         del_timer_sync(&adapter->tx_fifo_stall_timer);
1196         del_timer_sync(&adapter->watchdog_timer);
1197         del_timer_sync(&adapter->phy_info_timer);
1198
1199         cancel_work_sync(&adapter->reset_task);
1200
1201         e1000_release_manageability(adapter);
1202
1203         unregister_netdev(netdev);
1204
1205         e1000_phy_hw_reset(hw);
1206
1207         kfree(adapter->tx_ring);
1208         kfree(adapter->rx_ring);
1209
1210         iounmap(hw->hw_addr);
1211         if (hw->flash_address)
1212                 iounmap(hw->flash_address);
1213         pci_release_selected_regions(pdev, adapter->bars);
1214
1215         free_netdev(netdev);
1216
1217         pci_disable_device(pdev);
1218 }
1219
1220 /**
1221  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1222  * @adapter: board private structure to initialize
1223  *
1224  * e1000_sw_init initializes the Adapter private data structure.
1225  * e1000_init_hw_struct MUST be called before this function
1226  **/
1227
1228 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1229 {
1230         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1231
1232         adapter->num_tx_queues = 1;
1233         adapter->num_rx_queues = 1;
1234
1235         if (e1000_alloc_queues(adapter)) {
1236                 e_err(probe, "Unable to allocate memory for queues\n");
1237                 return -ENOMEM;
1238         }
1239
1240         /* Explicitly disable IRQ since the NIC can be in any state. */
1241         e1000_irq_disable(adapter);
1242
1243         spin_lock_init(&adapter->stats_lock);
1244
1245         set_bit(__E1000_DOWN, &adapter->flags);
1246
1247         return 0;
1248 }
1249
1250 /**
1251  * e1000_alloc_queues - Allocate memory for all rings
1252  * @adapter: board private structure to initialize
1253  *
1254  * We allocate one ring per queue at run-time since we don't know the
1255  * number of queues at compile-time.
1256  **/
1257
1258 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1259 {
1260         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1261                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1262         if (!adapter->tx_ring)
1263                 return -ENOMEM;
1264
1265         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1266                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1267         if (!adapter->rx_ring) {
1268                 kfree(adapter->tx_ring);
1269                 return -ENOMEM;
1270         }
1271
1272         return E1000_SUCCESS;
1273 }
1274
1275 /**
1276  * e1000_open - Called when a network interface is made active
1277  * @netdev: network interface device structure
1278  *
1279  * Returns 0 on success, negative value on failure
1280  *
1281  * The open entry point is called when a network interface is made
1282  * active by the system (IFF_UP).  At this point all resources needed
1283  * for transmit and receive operations are allocated, the interrupt
1284  * handler is registered with the OS, the watchdog timer is started,
1285  * and the stack is notified that the interface is ready.
1286  **/
1287
1288 static int e1000_open(struct net_device *netdev)
1289 {
1290         struct e1000_adapter *adapter = netdev_priv(netdev);
1291         struct e1000_hw *hw = &adapter->hw;
1292         int err;
1293
1294         /* disallow open during test */
1295         if (test_bit(__E1000_TESTING, &adapter->flags))
1296                 return -EBUSY;
1297
1298         netif_carrier_off(netdev);
1299
1300         /* allocate transmit descriptors */
1301         err = e1000_setup_all_tx_resources(adapter);
1302         if (err)
1303                 goto err_setup_tx;
1304
1305         /* allocate receive descriptors */
1306         err = e1000_setup_all_rx_resources(adapter);
1307         if (err)
1308                 goto err_setup_rx;
1309
1310         e1000_power_up_phy(adapter);
1311
1312         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1313         if ((hw->mng_cookie.status &
1314                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1315                 e1000_update_mng_vlan(adapter);
1316         }
1317
1318         /* before we allocate an interrupt, we must be ready to handle it.
1319          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1320          * as soon as we call pci_request_irq, so we have to setup our
1321          * clean_rx handler before we do so.  */
1322         e1000_configure(adapter);
1323
1324         err = e1000_request_irq(adapter);
1325         if (err)
1326                 goto err_req_irq;
1327
1328         /* From here on the code is the same as e1000_up() */
1329         clear_bit(__E1000_DOWN, &adapter->flags);
1330
1331         napi_enable(&adapter->napi);
1332
1333         e1000_irq_enable(adapter);
1334
1335         netif_start_queue(netdev);
1336
1337         /* fire a link status change interrupt to start the watchdog */
1338         ew32(ICS, E1000_ICS_LSC);
1339
1340         return E1000_SUCCESS;
1341
1342 err_req_irq:
1343         e1000_power_down_phy(adapter);
1344         e1000_free_all_rx_resources(adapter);
1345 err_setup_rx:
1346         e1000_free_all_tx_resources(adapter);
1347 err_setup_tx:
1348         e1000_reset(adapter);
1349
1350         return err;
1351 }
1352
1353 /**
1354  * e1000_close - Disables a network interface
1355  * @netdev: network interface device structure
1356  *
1357  * Returns 0, this is not allowed to fail
1358  *
1359  * The close entry point is called when an interface is de-activated
1360  * by the OS.  The hardware is still under the drivers control, but
1361  * needs to be disabled.  A global MAC reset is issued to stop the
1362  * hardware, and all transmit and receive resources are freed.
1363  **/
1364
1365 static int e1000_close(struct net_device *netdev)
1366 {
1367         struct e1000_adapter *adapter = netdev_priv(netdev);
1368         struct e1000_hw *hw = &adapter->hw;
1369
1370         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1371         e1000_down(adapter);
1372         e1000_power_down_phy(adapter);
1373         e1000_free_irq(adapter);
1374
1375         e1000_free_all_tx_resources(adapter);
1376         e1000_free_all_rx_resources(adapter);
1377
1378         /* kill manageability vlan ID if supported, but not if a vlan with
1379          * the same ID is registered on the host OS (let 8021q kill it) */
1380         if ((hw->mng_cookie.status &
1381                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1382              !(adapter->vlgrp &&
1383                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1384                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1385         }
1386
1387         return 0;
1388 }
1389
1390 /**
1391  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1392  * @adapter: address of board private structure
1393  * @start: address of beginning of memory
1394  * @len: length of memory
1395  **/
1396 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1397                                   unsigned long len)
1398 {
1399         struct e1000_hw *hw = &adapter->hw;
1400         unsigned long begin = (unsigned long)start;
1401         unsigned long end = begin + len;
1402
1403         /* First rev 82545 and 82546 need to not allow any memory
1404          * write location to cross 64k boundary due to errata 23 */
1405         if (hw->mac_type == e1000_82545 ||
1406             hw->mac_type == e1000_82546) {
1407                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1408         }
1409
1410         return true;
1411 }
1412
1413 /**
1414  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1415  * @adapter: board private structure
1416  * @txdr:    tx descriptor ring (for a specific queue) to setup
1417  *
1418  * Return 0 on success, negative on failure
1419  **/
1420
1421 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1422                                     struct e1000_tx_ring *txdr)
1423 {
1424         struct pci_dev *pdev = adapter->pdev;
1425         int size;
1426
1427         size = sizeof(struct e1000_buffer) * txdr->count;
1428         txdr->buffer_info = vzalloc(size);
1429         if (!txdr->buffer_info) {
1430                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1431                       "ring\n");
1432                 return -ENOMEM;
1433         }
1434
1435         /* round up to nearest 4K */
1436
1437         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1438         txdr->size = ALIGN(txdr->size, 4096);
1439
1440         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1441                                         GFP_KERNEL);
1442         if (!txdr->desc) {
1443 setup_tx_desc_die:
1444                 vfree(txdr->buffer_info);
1445                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1446                       "ring\n");
1447                 return -ENOMEM;
1448         }
1449
1450         /* Fix for errata 23, can't cross 64kB boundary */
1451         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1452                 void *olddesc = txdr->desc;
1453                 dma_addr_t olddma = txdr->dma;
1454                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1455                       txdr->size, txdr->desc);
1456                 /* Try again, without freeing the previous */
1457                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1458                                                 &txdr->dma, GFP_KERNEL);
1459                 /* Failed allocation, critical failure */
1460                 if (!txdr->desc) {
1461                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1462                                           olddma);
1463                         goto setup_tx_desc_die;
1464                 }
1465
1466                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1467                         /* give up */
1468                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1469                                           txdr->dma);
1470                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1471                                           olddma);
1472                         e_err(probe, "Unable to allocate aligned memory "
1473                               "for the transmit descriptor ring\n");
1474                         vfree(txdr->buffer_info);
1475                         return -ENOMEM;
1476                 } else {
1477                         /* Free old allocation, new allocation was successful */
1478                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1479                                           olddma);
1480                 }
1481         }
1482         memset(txdr->desc, 0, txdr->size);
1483
1484         txdr->next_to_use = 0;
1485         txdr->next_to_clean = 0;
1486
1487         return 0;
1488 }
1489
1490 /**
1491  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1492  *                                (Descriptors) for all queues
1493  * @adapter: board private structure
1494  *
1495  * Return 0 on success, negative on failure
1496  **/
1497
1498 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1499 {
1500         int i, err = 0;
1501
1502         for (i = 0; i < adapter->num_tx_queues; i++) {
1503                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1504                 if (err) {
1505                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1506                         for (i-- ; i >= 0; i--)
1507                                 e1000_free_tx_resources(adapter,
1508                                                         &adapter->tx_ring[i]);
1509                         break;
1510                 }
1511         }
1512
1513         return err;
1514 }
1515
1516 /**
1517  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1518  * @adapter: board private structure
1519  *
1520  * Configure the Tx unit of the MAC after a reset.
1521  **/
1522
1523 static void e1000_configure_tx(struct e1000_adapter *adapter)
1524 {
1525         u64 tdba;
1526         struct e1000_hw *hw = &adapter->hw;
1527         u32 tdlen, tctl, tipg;
1528         u32 ipgr1, ipgr2;
1529
1530         /* Setup the HW Tx Head and Tail descriptor pointers */
1531
1532         switch (adapter->num_tx_queues) {
1533         case 1:
1534         default:
1535                 tdba = adapter->tx_ring[0].dma;
1536                 tdlen = adapter->tx_ring[0].count *
1537                         sizeof(struct e1000_tx_desc);
1538                 ew32(TDLEN, tdlen);
1539                 ew32(TDBAH, (tdba >> 32));
1540                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1541                 ew32(TDT, 0);
1542                 ew32(TDH, 0);
1543                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1544                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1545                 break;
1546         }
1547
1548         /* Set the default values for the Tx Inter Packet Gap timer */
1549         if ((hw->media_type == e1000_media_type_fiber ||
1550              hw->media_type == e1000_media_type_internal_serdes))
1551                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1552         else
1553                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1554
1555         switch (hw->mac_type) {
1556         case e1000_82542_rev2_0:
1557         case e1000_82542_rev2_1:
1558                 tipg = DEFAULT_82542_TIPG_IPGT;
1559                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1560                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1561                 break;
1562         default:
1563                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1564                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1565                 break;
1566         }
1567         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1568         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1569         ew32(TIPG, tipg);
1570
1571         /* Set the Tx Interrupt Delay register */
1572
1573         ew32(TIDV, adapter->tx_int_delay);
1574         if (hw->mac_type >= e1000_82540)
1575                 ew32(TADV, adapter->tx_abs_int_delay);
1576
1577         /* Program the Transmit Control Register */
1578
1579         tctl = er32(TCTL);
1580         tctl &= ~E1000_TCTL_CT;
1581         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1582                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1583
1584         e1000_config_collision_dist(hw);
1585
1586         /* Setup Transmit Descriptor Settings for eop descriptor */
1587         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1588
1589         /* only set IDE if we are delaying interrupts using the timers */
1590         if (adapter->tx_int_delay)
1591                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1592
1593         if (hw->mac_type < e1000_82543)
1594                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1595         else
1596                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1597
1598         /* Cache if we're 82544 running in PCI-X because we'll
1599          * need this to apply a workaround later in the send path. */
1600         if (hw->mac_type == e1000_82544 &&
1601             hw->bus_type == e1000_bus_type_pcix)
1602                 adapter->pcix_82544 = 1;
1603
1604         ew32(TCTL, tctl);
1605
1606 }
1607
1608 /**
1609  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1610  * @adapter: board private structure
1611  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1612  *
1613  * Returns 0 on success, negative on failure
1614  **/
1615
1616 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1617                                     struct e1000_rx_ring *rxdr)
1618 {
1619         struct pci_dev *pdev = adapter->pdev;
1620         int size, desc_len;
1621
1622         size = sizeof(struct e1000_buffer) * rxdr->count;
1623         rxdr->buffer_info = vzalloc(size);
1624         if (!rxdr->buffer_info) {
1625                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1626                       "ring\n");
1627                 return -ENOMEM;
1628         }
1629
1630         desc_len = sizeof(struct e1000_rx_desc);
1631
1632         /* Round up to nearest 4K */
1633
1634         rxdr->size = rxdr->count * desc_len;
1635         rxdr->size = ALIGN(rxdr->size, 4096);
1636
1637         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1638                                         GFP_KERNEL);
1639
1640         if (!rxdr->desc) {
1641                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1642                       "ring\n");
1643 setup_rx_desc_die:
1644                 vfree(rxdr->buffer_info);
1645                 return -ENOMEM;
1646         }
1647
1648         /* Fix for errata 23, can't cross 64kB boundary */
1649         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1650                 void *olddesc = rxdr->desc;
1651                 dma_addr_t olddma = rxdr->dma;
1652                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1653                       rxdr->size, rxdr->desc);
1654                 /* Try again, without freeing the previous */
1655                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1656                                                 &rxdr->dma, GFP_KERNEL);
1657                 /* Failed allocation, critical failure */
1658                 if (!rxdr->desc) {
1659                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1660                                           olddma);
1661                         e_err(probe, "Unable to allocate memory for the Rx "
1662                               "descriptor ring\n");
1663                         goto setup_rx_desc_die;
1664                 }
1665
1666                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1667                         /* give up */
1668                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1669                                           rxdr->dma);
1670                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1671                                           olddma);
1672                         e_err(probe, "Unable to allocate aligned memory for "
1673                               "the Rx descriptor ring\n");
1674                         goto setup_rx_desc_die;
1675                 } else {
1676                         /* Free old allocation, new allocation was successful */
1677                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1678                                           olddma);
1679                 }
1680         }
1681         memset(rxdr->desc, 0, rxdr->size);
1682
1683         rxdr->next_to_clean = 0;
1684         rxdr->next_to_use = 0;
1685         rxdr->rx_skb_top = NULL;
1686
1687         return 0;
1688 }
1689
1690 /**
1691  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1692  *                                (Descriptors) for all queues
1693  * @adapter: board private structure
1694  *
1695  * Return 0 on success, negative on failure
1696  **/
1697
1698 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1699 {
1700         int i, err = 0;
1701
1702         for (i = 0; i < adapter->num_rx_queues; i++) {
1703                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1704                 if (err) {
1705                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1706                         for (i-- ; i >= 0; i--)
1707                                 e1000_free_rx_resources(adapter,
1708                                                         &adapter->rx_ring[i]);
1709                         break;
1710                 }
1711         }
1712
1713         return err;
1714 }
1715
1716 /**
1717  * e1000_setup_rctl - configure the receive control registers
1718  * @adapter: Board private structure
1719  **/
1720 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1721 {
1722         struct e1000_hw *hw = &adapter->hw;
1723         u32 rctl;
1724
1725         rctl = er32(RCTL);
1726
1727         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1728
1729         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1730                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1731                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1732
1733         if (hw->tbi_compatibility_on == 1)
1734                 rctl |= E1000_RCTL_SBP;
1735         else
1736                 rctl &= ~E1000_RCTL_SBP;
1737
1738         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1739                 rctl &= ~E1000_RCTL_LPE;
1740         else
1741                 rctl |= E1000_RCTL_LPE;
1742
1743         /* Setup buffer sizes */
1744         rctl &= ~E1000_RCTL_SZ_4096;
1745         rctl |= E1000_RCTL_BSEX;
1746         switch (adapter->rx_buffer_len) {
1747                 case E1000_RXBUFFER_2048:
1748                 default:
1749                         rctl |= E1000_RCTL_SZ_2048;
1750                         rctl &= ~E1000_RCTL_BSEX;
1751                         break;
1752                 case E1000_RXBUFFER_4096:
1753                         rctl |= E1000_RCTL_SZ_4096;
1754                         break;
1755                 case E1000_RXBUFFER_8192:
1756                         rctl |= E1000_RCTL_SZ_8192;
1757                         break;
1758                 case E1000_RXBUFFER_16384:
1759                         rctl |= E1000_RCTL_SZ_16384;
1760                         break;
1761         }
1762
1763         ew32(RCTL, rctl);
1764 }
1765
1766 /**
1767  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1768  * @adapter: board private structure
1769  *
1770  * Configure the Rx unit of the MAC after a reset.
1771  **/
1772
1773 static void e1000_configure_rx(struct e1000_adapter *adapter)
1774 {
1775         u64 rdba;
1776         struct e1000_hw *hw = &adapter->hw;
1777         u32 rdlen, rctl, rxcsum;
1778
1779         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1780                 rdlen = adapter->rx_ring[0].count *
1781                         sizeof(struct e1000_rx_desc);
1782                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1783                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1784         } else {
1785                 rdlen = adapter->rx_ring[0].count *
1786                         sizeof(struct e1000_rx_desc);
1787                 adapter->clean_rx = e1000_clean_rx_irq;
1788                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1789         }
1790
1791         /* disable receives while setting up the descriptors */
1792         rctl = er32(RCTL);
1793         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1794
1795         /* set the Receive Delay Timer Register */
1796         ew32(RDTR, adapter->rx_int_delay);
1797
1798         if (hw->mac_type >= e1000_82540) {
1799                 ew32(RADV, adapter->rx_abs_int_delay);
1800                 if (adapter->itr_setting != 0)
1801                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1802         }
1803
1804         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1805          * the Base and Length of the Rx Descriptor Ring */
1806         switch (adapter->num_rx_queues) {
1807         case 1:
1808         default:
1809                 rdba = adapter->rx_ring[0].dma;
1810                 ew32(RDLEN, rdlen);
1811                 ew32(RDBAH, (rdba >> 32));
1812                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1813                 ew32(RDT, 0);
1814                 ew32(RDH, 0);
1815                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1816                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1817                 break;
1818         }
1819
1820         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1821         if (hw->mac_type >= e1000_82543) {
1822                 rxcsum = er32(RXCSUM);
1823                 if (adapter->rx_csum)
1824                         rxcsum |= E1000_RXCSUM_TUOFL;
1825                 else
1826                         /* don't need to clear IPPCSE as it defaults to 0 */
1827                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1828                 ew32(RXCSUM, rxcsum);
1829         }
1830
1831         /* Enable Receives */
1832         ew32(RCTL, rctl);
1833 }
1834
1835 /**
1836  * e1000_free_tx_resources - Free Tx Resources per Queue
1837  * @adapter: board private structure
1838  * @tx_ring: Tx descriptor ring for a specific queue
1839  *
1840  * Free all transmit software resources
1841  **/
1842
1843 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1844                                     struct e1000_tx_ring *tx_ring)
1845 {
1846         struct pci_dev *pdev = adapter->pdev;
1847
1848         e1000_clean_tx_ring(adapter, tx_ring);
1849
1850         vfree(tx_ring->buffer_info);
1851         tx_ring->buffer_info = NULL;
1852
1853         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1854                           tx_ring->dma);
1855
1856         tx_ring->desc = NULL;
1857 }
1858
1859 /**
1860  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1861  * @adapter: board private structure
1862  *
1863  * Free all transmit software resources
1864  **/
1865
1866 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1867 {
1868         int i;
1869
1870         for (i = 0; i < adapter->num_tx_queues; i++)
1871                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1872 }
1873
1874 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1875                                              struct e1000_buffer *buffer_info)
1876 {
1877         if (buffer_info->dma) {
1878                 if (buffer_info->mapped_as_page)
1879                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1880                                        buffer_info->length, DMA_TO_DEVICE);
1881                 else
1882                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1883                                          buffer_info->length,
1884                                          DMA_TO_DEVICE);
1885                 buffer_info->dma = 0;
1886         }
1887         if (buffer_info->skb) {
1888                 dev_kfree_skb_any(buffer_info->skb);
1889                 buffer_info->skb = NULL;
1890         }
1891         buffer_info->time_stamp = 0;
1892         /* buffer_info must be completely set up in the transmit path */
1893 }
1894
1895 /**
1896  * e1000_clean_tx_ring - Free Tx Buffers
1897  * @adapter: board private structure
1898  * @tx_ring: ring to be cleaned
1899  **/
1900
1901 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1902                                 struct e1000_tx_ring *tx_ring)
1903 {
1904         struct e1000_hw *hw = &adapter->hw;
1905         struct e1000_buffer *buffer_info;
1906         unsigned long size;
1907         unsigned int i;
1908
1909         /* Free all the Tx ring sk_buffs */
1910
1911         for (i = 0; i < tx_ring->count; i++) {
1912                 buffer_info = &tx_ring->buffer_info[i];
1913                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1914         }
1915
1916         size = sizeof(struct e1000_buffer) * tx_ring->count;
1917         memset(tx_ring->buffer_info, 0, size);
1918
1919         /* Zero out the descriptor ring */
1920
1921         memset(tx_ring->desc, 0, tx_ring->size);
1922
1923         tx_ring->next_to_use = 0;
1924         tx_ring->next_to_clean = 0;
1925         tx_ring->last_tx_tso = 0;
1926
1927         writel(0, hw->hw_addr + tx_ring->tdh);
1928         writel(0, hw->hw_addr + tx_ring->tdt);
1929 }
1930
1931 /**
1932  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1933  * @adapter: board private structure
1934  **/
1935
1936 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1937 {
1938         int i;
1939
1940         for (i = 0; i < adapter->num_tx_queues; i++)
1941                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1942 }
1943
1944 /**
1945  * e1000_free_rx_resources - Free Rx Resources
1946  * @adapter: board private structure
1947  * @rx_ring: ring to clean the resources from
1948  *
1949  * Free all receive software resources
1950  **/
1951
1952 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1953                                     struct e1000_rx_ring *rx_ring)
1954 {
1955         struct pci_dev *pdev = adapter->pdev;
1956
1957         e1000_clean_rx_ring(adapter, rx_ring);
1958
1959         vfree(rx_ring->buffer_info);
1960         rx_ring->buffer_info = NULL;
1961
1962         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1963                           rx_ring->dma);
1964
1965         rx_ring->desc = NULL;
1966 }
1967
1968 /**
1969  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1970  * @adapter: board private structure
1971  *
1972  * Free all receive software resources
1973  **/
1974
1975 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1976 {
1977         int i;
1978
1979         for (i = 0; i < adapter->num_rx_queues; i++)
1980                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1981 }
1982
1983 /**
1984  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1985  * @adapter: board private structure
1986  * @rx_ring: ring to free buffers from
1987  **/
1988
1989 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1990                                 struct e1000_rx_ring *rx_ring)
1991 {
1992         struct e1000_hw *hw = &adapter->hw;
1993         struct e1000_buffer *buffer_info;
1994         struct pci_dev *pdev = adapter->pdev;
1995         unsigned long size;
1996         unsigned int i;
1997
1998         /* Free all the Rx ring sk_buffs */
1999         for (i = 0; i < rx_ring->count; i++) {
2000                 buffer_info = &rx_ring->buffer_info[i];
2001                 if (buffer_info->dma &&
2002                     adapter->clean_rx == e1000_clean_rx_irq) {
2003                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2004                                          buffer_info->length,
2005                                          DMA_FROM_DEVICE);
2006                 } else if (buffer_info->dma &&
2007                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2008                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2009                                        buffer_info->length,
2010                                        DMA_FROM_DEVICE);
2011                 }
2012
2013                 buffer_info->dma = 0;
2014                 if (buffer_info->page) {
2015                         put_page(buffer_info->page);
2016                         buffer_info->page = NULL;
2017                 }
2018                 if (buffer_info->skb) {
2019                         dev_kfree_skb(buffer_info->skb);
2020                         buffer_info->skb = NULL;
2021                 }
2022         }
2023
2024         /* there also may be some cached data from a chained receive */
2025         if (rx_ring->rx_skb_top) {
2026                 dev_kfree_skb(rx_ring->rx_skb_top);
2027                 rx_ring->rx_skb_top = NULL;
2028         }
2029
2030         size = sizeof(struct e1000_buffer) * rx_ring->count;
2031         memset(rx_ring->buffer_info, 0, size);
2032
2033         /* Zero out the descriptor ring */
2034         memset(rx_ring->desc, 0, rx_ring->size);
2035
2036         rx_ring->next_to_clean = 0;
2037         rx_ring->next_to_use = 0;
2038
2039         writel(0, hw->hw_addr + rx_ring->rdh);
2040         writel(0, hw->hw_addr + rx_ring->rdt);
2041 }
2042
2043 /**
2044  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2045  * @adapter: board private structure
2046  **/
2047
2048 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2049 {
2050         int i;
2051
2052         for (i = 0; i < adapter->num_rx_queues; i++)
2053                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2054 }
2055
2056 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2057  * and memory write and invalidate disabled for certain operations
2058  */
2059 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2060 {
2061         struct e1000_hw *hw = &adapter->hw;
2062         struct net_device *netdev = adapter->netdev;
2063         u32 rctl;
2064
2065         e1000_pci_clear_mwi(hw);
2066
2067         rctl = er32(RCTL);
2068         rctl |= E1000_RCTL_RST;
2069         ew32(RCTL, rctl);
2070         E1000_WRITE_FLUSH();
2071         mdelay(5);
2072
2073         if (netif_running(netdev))
2074                 e1000_clean_all_rx_rings(adapter);
2075 }
2076
2077 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2078 {
2079         struct e1000_hw *hw = &adapter->hw;
2080         struct net_device *netdev = adapter->netdev;
2081         u32 rctl;
2082
2083         rctl = er32(RCTL);
2084         rctl &= ~E1000_RCTL_RST;
2085         ew32(RCTL, rctl);
2086         E1000_WRITE_FLUSH();
2087         mdelay(5);
2088
2089         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2090                 e1000_pci_set_mwi(hw);
2091
2092         if (netif_running(netdev)) {
2093                 /* No need to loop, because 82542 supports only 1 queue */
2094                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2095                 e1000_configure_rx(adapter);
2096                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2097         }
2098 }
2099
2100 /**
2101  * e1000_set_mac - Change the Ethernet Address of the NIC
2102  * @netdev: network interface device structure
2103  * @p: pointer to an address structure
2104  *
2105  * Returns 0 on success, negative on failure
2106  **/
2107
2108 static int e1000_set_mac(struct net_device *netdev, void *p)
2109 {
2110         struct e1000_adapter *adapter = netdev_priv(netdev);
2111         struct e1000_hw *hw = &adapter->hw;
2112         struct sockaddr *addr = p;
2113
2114         if (!is_valid_ether_addr(addr->sa_data))
2115                 return -EADDRNOTAVAIL;
2116
2117         /* 82542 2.0 needs to be in reset to write receive address registers */
2118
2119         if (hw->mac_type == e1000_82542_rev2_0)
2120                 e1000_enter_82542_rst(adapter);
2121
2122         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2123         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2124
2125         e1000_rar_set(hw, hw->mac_addr, 0);
2126
2127         if (hw->mac_type == e1000_82542_rev2_0)
2128                 e1000_leave_82542_rst(adapter);
2129
2130         return 0;
2131 }
2132
2133 /**
2134  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2135  * @netdev: network interface device structure
2136  *
2137  * The set_rx_mode entry point is called whenever the unicast or multicast
2138  * address lists or the network interface flags are updated. This routine is
2139  * responsible for configuring the hardware for proper unicast, multicast,
2140  * promiscuous mode, and all-multi behavior.
2141  **/
2142
2143 static void e1000_set_rx_mode(struct net_device *netdev)
2144 {
2145         struct e1000_adapter *adapter = netdev_priv(netdev);
2146         struct e1000_hw *hw = &adapter->hw;
2147         struct netdev_hw_addr *ha;
2148         bool use_uc = false;
2149         u32 rctl;
2150         u32 hash_value;
2151         int i, rar_entries = E1000_RAR_ENTRIES;
2152         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2153         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2154
2155         if (!mcarray) {
2156                 e_err(probe, "memory allocation failed\n");
2157                 return;
2158         }
2159
2160         /* Check for Promiscuous and All Multicast modes */
2161
2162         rctl = er32(RCTL);
2163
2164         if (netdev->flags & IFF_PROMISC) {
2165                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2166                 rctl &= ~E1000_RCTL_VFE;
2167         } else {
2168                 if (netdev->flags & IFF_ALLMULTI)
2169                         rctl |= E1000_RCTL_MPE;
2170                 else
2171                         rctl &= ~E1000_RCTL_MPE;
2172                 /* Enable VLAN filter if there is a VLAN */
2173                 if (adapter->vlgrp)
2174                         rctl |= E1000_RCTL_VFE;
2175         }
2176
2177         if (netdev_uc_count(netdev) > rar_entries - 1) {
2178                 rctl |= E1000_RCTL_UPE;
2179         } else if (!(netdev->flags & IFF_PROMISC)) {
2180                 rctl &= ~E1000_RCTL_UPE;
2181                 use_uc = true;
2182         }
2183
2184         ew32(RCTL, rctl);
2185
2186         /* 82542 2.0 needs to be in reset to write receive address registers */
2187
2188         if (hw->mac_type == e1000_82542_rev2_0)
2189                 e1000_enter_82542_rst(adapter);
2190
2191         /* load the first 14 addresses into the exact filters 1-14. Unicast
2192          * addresses take precedence to avoid disabling unicast filtering
2193          * when possible.
2194          *
2195          * RAR 0 is used for the station MAC adddress
2196          * if there are not 14 addresses, go ahead and clear the filters
2197          */
2198         i = 1;
2199         if (use_uc)
2200                 netdev_for_each_uc_addr(ha, netdev) {
2201                         if (i == rar_entries)
2202                                 break;
2203                         e1000_rar_set(hw, ha->addr, i++);
2204                 }
2205
2206         netdev_for_each_mc_addr(ha, netdev) {
2207                 if (i == rar_entries) {
2208                         /* load any remaining addresses into the hash table */
2209                         u32 hash_reg, hash_bit, mta;
2210                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2211                         hash_reg = (hash_value >> 5) & 0x7F;
2212                         hash_bit = hash_value & 0x1F;
2213                         mta = (1 << hash_bit);
2214                         mcarray[hash_reg] |= mta;
2215                 } else {
2216                         e1000_rar_set(hw, ha->addr, i++);
2217                 }
2218         }
2219
2220         for (; i < rar_entries; i++) {
2221                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2222                 E1000_WRITE_FLUSH();
2223                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2224                 E1000_WRITE_FLUSH();
2225         }
2226
2227         /* write the hash table completely, write from bottom to avoid
2228          * both stupid write combining chipsets, and flushing each write */
2229         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2230                 /*
2231                  * If we are on an 82544 has an errata where writing odd
2232                  * offsets overwrites the previous even offset, but writing
2233                  * backwards over the range solves the issue by always
2234                  * writing the odd offset first
2235                  */
2236                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2237         }
2238         E1000_WRITE_FLUSH();
2239
2240         if (hw->mac_type == e1000_82542_rev2_0)
2241                 e1000_leave_82542_rst(adapter);
2242
2243         kfree(mcarray);
2244 }
2245
2246 /* Need to wait a few seconds after link up to get diagnostic information from
2247  * the phy */
2248
2249 static void e1000_update_phy_info(unsigned long data)
2250 {
2251         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2252         schedule_work(&adapter->phy_info_task);
2253 }
2254
2255 static void e1000_update_phy_info_task(struct work_struct *work)
2256 {
2257         struct e1000_adapter *adapter = container_of(work,
2258                                                      struct e1000_adapter,
2259                                                      phy_info_task);
2260         struct e1000_hw *hw = &adapter->hw;
2261
2262         rtnl_lock();
2263         e1000_phy_get_info(hw, &adapter->phy_info);
2264         rtnl_unlock();
2265 }
2266
2267 /**
2268  * e1000_82547_tx_fifo_stall - Timer Call-back
2269  * @data: pointer to adapter cast into an unsigned long
2270  **/
2271 static void e1000_82547_tx_fifo_stall(unsigned long data)
2272 {
2273         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2274         schedule_work(&adapter->fifo_stall_task);
2275 }
2276
2277 /**
2278  * e1000_82547_tx_fifo_stall_task - task to complete work
2279  * @work: work struct contained inside adapter struct
2280  **/
2281 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2282 {
2283         struct e1000_adapter *adapter = container_of(work,
2284                                                      struct e1000_adapter,
2285                                                      fifo_stall_task);
2286         struct e1000_hw *hw = &adapter->hw;
2287         struct net_device *netdev = adapter->netdev;
2288         u32 tctl;
2289
2290         rtnl_lock();
2291         if (atomic_read(&adapter->tx_fifo_stall)) {
2292                 if ((er32(TDT) == er32(TDH)) &&
2293                    (er32(TDFT) == er32(TDFH)) &&
2294                    (er32(TDFTS) == er32(TDFHS))) {
2295                         tctl = er32(TCTL);
2296                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2297                         ew32(TDFT, adapter->tx_head_addr);
2298                         ew32(TDFH, adapter->tx_head_addr);
2299                         ew32(TDFTS, adapter->tx_head_addr);
2300                         ew32(TDFHS, adapter->tx_head_addr);
2301                         ew32(TCTL, tctl);
2302                         E1000_WRITE_FLUSH();
2303
2304                         adapter->tx_fifo_head = 0;
2305                         atomic_set(&adapter->tx_fifo_stall, 0);
2306                         netif_wake_queue(netdev);
2307                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2308                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2309                 }
2310         }
2311         rtnl_unlock();
2312 }
2313
2314 bool e1000_has_link(struct e1000_adapter *adapter)
2315 {
2316         struct e1000_hw *hw = &adapter->hw;
2317         bool link_active = false;
2318
2319         /* get_link_status is set on LSC (link status) interrupt or
2320          * rx sequence error interrupt.  get_link_status will stay
2321          * false until the e1000_check_for_link establishes link
2322          * for copper adapters ONLY
2323          */
2324         switch (hw->media_type) {
2325         case e1000_media_type_copper:
2326                 if (hw->get_link_status) {
2327                         e1000_check_for_link(hw);
2328                         link_active = !hw->get_link_status;
2329                 } else {
2330                         link_active = true;
2331                 }
2332                 break;
2333         case e1000_media_type_fiber:
2334                 e1000_check_for_link(hw);
2335                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2336                 break;
2337         case e1000_media_type_internal_serdes:
2338                 e1000_check_for_link(hw);
2339                 link_active = hw->serdes_has_link;
2340                 break;
2341         default:
2342                 break;
2343         }
2344
2345         return link_active;
2346 }
2347
2348 /**
2349  * e1000_watchdog - Timer Call-back
2350  * @data: pointer to adapter cast into an unsigned long
2351  **/
2352 static void e1000_watchdog(unsigned long data)
2353 {
2354         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2355         struct e1000_hw *hw = &adapter->hw;
2356         struct net_device *netdev = adapter->netdev;
2357         struct e1000_tx_ring *txdr = adapter->tx_ring;
2358         u32 link, tctl;
2359
2360         link = e1000_has_link(adapter);
2361         if ((netif_carrier_ok(netdev)) && link)
2362                 goto link_up;
2363
2364         if (link) {
2365                 if (!netif_carrier_ok(netdev)) {
2366                         u32 ctrl;
2367                         bool txb2b = true;
2368                         /* update snapshot of PHY registers on LSC */
2369                         e1000_get_speed_and_duplex(hw,
2370                                                    &adapter->link_speed,
2371                                                    &adapter->link_duplex);
2372
2373                         ctrl = er32(CTRL);
2374                         pr_info("%s NIC Link is Up %d Mbps %s, "
2375                                 "Flow Control: %s\n",
2376                                 netdev->name,
2377                                 adapter->link_speed,
2378                                 adapter->link_duplex == FULL_DUPLEX ?
2379                                 "Full Duplex" : "Half Duplex",
2380                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2381                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2382                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2383                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2384
2385                         /* adjust timeout factor according to speed/duplex */
2386                         adapter->tx_timeout_factor = 1;
2387                         switch (adapter->link_speed) {
2388                         case SPEED_10:
2389                                 txb2b = false;
2390                                 adapter->tx_timeout_factor = 16;
2391                                 break;
2392                         case SPEED_100:
2393                                 txb2b = false;
2394                                 /* maybe add some timeout factor ? */
2395                                 break;
2396                         }
2397
2398                         /* enable transmits in the hardware */
2399                         tctl = er32(TCTL);
2400                         tctl |= E1000_TCTL_EN;
2401                         ew32(TCTL, tctl);
2402
2403                         netif_carrier_on(netdev);
2404                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2405                                 mod_timer(&adapter->phy_info_timer,
2406                                           round_jiffies(jiffies + 2 * HZ));
2407                         adapter->smartspeed = 0;
2408                 }
2409         } else {
2410                 if (netif_carrier_ok(netdev)) {
2411                         adapter->link_speed = 0;
2412                         adapter->link_duplex = 0;
2413                         pr_info("%s NIC Link is Down\n",
2414                                 netdev->name);
2415                         netif_carrier_off(netdev);
2416
2417                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2418                                 mod_timer(&adapter->phy_info_timer,
2419                                           round_jiffies(jiffies + 2 * HZ));
2420                 }
2421
2422                 e1000_smartspeed(adapter);
2423         }
2424
2425 link_up:
2426         e1000_update_stats(adapter);
2427
2428         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2429         adapter->tpt_old = adapter->stats.tpt;
2430         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2431         adapter->colc_old = adapter->stats.colc;
2432
2433         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2434         adapter->gorcl_old = adapter->stats.gorcl;
2435         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2436         adapter->gotcl_old = adapter->stats.gotcl;
2437
2438         e1000_update_adaptive(hw);
2439
2440         if (!netif_carrier_ok(netdev)) {
2441                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2442                         /* We've lost link, so the controller stops DMA,
2443                          * but we've got queued Tx work that's never going
2444                          * to get done, so reset controller to flush Tx.
2445                          * (Do the reset outside of interrupt context). */
2446                         adapter->tx_timeout_count++;
2447                         schedule_work(&adapter->reset_task);
2448                         /* return immediately since reset is imminent */
2449                         return;
2450                 }
2451         }
2452
2453         /* Simple mode for Interrupt Throttle Rate (ITR) */
2454         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2455                 /*
2456                  * Symmetric Tx/Rx gets a reduced ITR=2000;
2457                  * Total asymmetrical Tx or Rx gets ITR=8000;
2458                  * everyone else is between 2000-8000.
2459                  */
2460                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2461                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2462                             adapter->gotcl - adapter->gorcl :
2463                             adapter->gorcl - adapter->gotcl) / 10000;
2464                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2465
2466                 ew32(ITR, 1000000000 / (itr * 256));
2467         }
2468
2469         /* Cause software interrupt to ensure rx ring is cleaned */
2470         ew32(ICS, E1000_ICS_RXDMT0);
2471
2472         /* Force detection of hung controller every watchdog period */
2473         adapter->detect_tx_hung = true;
2474
2475         /* Reset the timer */
2476         if (!test_bit(__E1000_DOWN, &adapter->flags))
2477                 mod_timer(&adapter->watchdog_timer,
2478                           round_jiffies(jiffies + 2 * HZ));
2479 }
2480
2481 enum latency_range {
2482         lowest_latency = 0,
2483         low_latency = 1,
2484         bulk_latency = 2,
2485         latency_invalid = 255
2486 };
2487
2488 /**
2489  * e1000_update_itr - update the dynamic ITR value based on statistics
2490  * @adapter: pointer to adapter
2491  * @itr_setting: current adapter->itr
2492  * @packets: the number of packets during this measurement interval
2493  * @bytes: the number of bytes during this measurement interval
2494  *
2495  *      Stores a new ITR value based on packets and byte
2496  *      counts during the last interrupt.  The advantage of per interrupt
2497  *      computation is faster updates and more accurate ITR for the current
2498  *      traffic pattern.  Constants in this function were computed
2499  *      based on theoretical maximum wire speed and thresholds were set based
2500  *      on testing data as well as attempting to minimize response time
2501  *      while increasing bulk throughput.
2502  *      this functionality is controlled by the InterruptThrottleRate module
2503  *      parameter (see e1000_param.c)
2504  **/
2505 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2506                                      u16 itr_setting, int packets, int bytes)
2507 {
2508         unsigned int retval = itr_setting;
2509         struct e1000_hw *hw = &adapter->hw;
2510
2511         if (unlikely(hw->mac_type < e1000_82540))
2512                 goto update_itr_done;
2513
2514         if (packets == 0)
2515                 goto update_itr_done;
2516
2517         switch (itr_setting) {
2518         case lowest_latency:
2519                 /* jumbo frames get bulk treatment*/
2520                 if (bytes/packets > 8000)
2521                         retval = bulk_latency;
2522                 else if ((packets < 5) && (bytes > 512))
2523                         retval = low_latency;
2524                 break;
2525         case low_latency:  /* 50 usec aka 20000 ints/s */
2526                 if (bytes > 10000) {
2527                         /* jumbo frames need bulk latency setting */
2528                         if (bytes/packets > 8000)
2529                                 retval = bulk_latency;
2530                         else if ((packets < 10) || ((bytes/packets) > 1200))
2531                                 retval = bulk_latency;
2532                         else if ((packets > 35))
2533                                 retval = lowest_latency;
2534                 } else if (bytes/packets > 2000)
2535                         retval = bulk_latency;
2536                 else if (packets <= 2 && bytes < 512)
2537                         retval = lowest_latency;
2538                 break;
2539         case bulk_latency: /* 250 usec aka 4000 ints/s */
2540                 if (bytes > 25000) {
2541                         if (packets > 35)
2542                                 retval = low_latency;
2543                 } else if (bytes < 6000) {
2544                         retval = low_latency;
2545                 }
2546                 break;
2547         }
2548
2549 update_itr_done:
2550         return retval;
2551 }
2552
2553 static void e1000_set_itr(struct e1000_adapter *adapter)
2554 {
2555         struct e1000_hw *hw = &adapter->hw;
2556         u16 current_itr;
2557         u32 new_itr = adapter->itr;
2558
2559         if (unlikely(hw->mac_type < e1000_82540))
2560                 return;
2561
2562         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2563         if (unlikely(adapter->link_speed != SPEED_1000)) {
2564                 current_itr = 0;
2565                 new_itr = 4000;
2566                 goto set_itr_now;
2567         }
2568
2569         adapter->tx_itr = e1000_update_itr(adapter,
2570                                     adapter->tx_itr,
2571                                     adapter->total_tx_packets,
2572                                     adapter->total_tx_bytes);
2573         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2574         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2575                 adapter->tx_itr = low_latency;
2576
2577         adapter->rx_itr = e1000_update_itr(adapter,
2578                                     adapter->rx_itr,
2579                                     adapter->total_rx_packets,
2580                                     adapter->total_rx_bytes);
2581         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2582         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2583                 adapter->rx_itr = low_latency;
2584
2585         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2586
2587         switch (current_itr) {
2588         /* counts and packets in update_itr are dependent on these numbers */
2589         case lowest_latency:
2590                 new_itr = 70000;
2591                 break;
2592         case low_latency:
2593                 new_itr = 20000; /* aka hwitr = ~200 */
2594                 break;
2595         case bulk_latency:
2596                 new_itr = 4000;
2597                 break;
2598         default:
2599                 break;
2600         }
2601
2602 set_itr_now:
2603         if (new_itr != adapter->itr) {
2604                 /* this attempts to bias the interrupt rate towards Bulk
2605                  * by adding intermediate steps when interrupt rate is
2606                  * increasing */
2607                 new_itr = new_itr > adapter->itr ?
2608                              min(adapter->itr + (new_itr >> 2), new_itr) :
2609                              new_itr;
2610                 adapter->itr = new_itr;
2611                 ew32(ITR, 1000000000 / (new_itr * 256));
2612         }
2613 }
2614
2615 #define E1000_TX_FLAGS_CSUM             0x00000001
2616 #define E1000_TX_FLAGS_VLAN             0x00000002
2617 #define E1000_TX_FLAGS_TSO              0x00000004
2618 #define E1000_TX_FLAGS_IPV4             0x00000008
2619 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2620 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2621
2622 static int e1000_tso(struct e1000_adapter *adapter,
2623                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2624 {
2625         struct e1000_context_desc *context_desc;
2626         struct e1000_buffer *buffer_info;
2627         unsigned int i;
2628         u32 cmd_length = 0;
2629         u16 ipcse = 0, tucse, mss;
2630         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2631         int err;
2632
2633         if (skb_is_gso(skb)) {
2634                 if (skb_header_cloned(skb)) {
2635                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2636                         if (err)
2637                                 return err;
2638                 }
2639
2640                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2641                 mss = skb_shinfo(skb)->gso_size;
2642                 if (skb->protocol == htons(ETH_P_IP)) {
2643                         struct iphdr *iph = ip_hdr(skb);
2644                         iph->tot_len = 0;
2645                         iph->check = 0;
2646                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2647                                                                  iph->daddr, 0,
2648                                                                  IPPROTO_TCP,
2649                                                                  0);
2650                         cmd_length = E1000_TXD_CMD_IP;
2651                         ipcse = skb_transport_offset(skb) - 1;
2652                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2653                         ipv6_hdr(skb)->payload_len = 0;
2654                         tcp_hdr(skb)->check =
2655                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2656                                                  &ipv6_hdr(skb)->daddr,
2657                                                  0, IPPROTO_TCP, 0);
2658                         ipcse = 0;
2659                 }
2660                 ipcss = skb_network_offset(skb);
2661                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2662                 tucss = skb_transport_offset(skb);
2663                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2664                 tucse = 0;
2665
2666                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2667                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2668
2669                 i = tx_ring->next_to_use;
2670                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2671                 buffer_info = &tx_ring->buffer_info[i];
2672
2673                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2674                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2675                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2676                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2677                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2678                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2679                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2680                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2681                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2682
2683                 buffer_info->time_stamp = jiffies;
2684                 buffer_info->next_to_watch = i;
2685
2686                 if (++i == tx_ring->count) i = 0;
2687                 tx_ring->next_to_use = i;
2688
2689                 return true;
2690         }
2691         return false;
2692 }
2693
2694 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2695                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2696 {
2697         struct e1000_context_desc *context_desc;
2698         struct e1000_buffer *buffer_info;
2699         unsigned int i;
2700         u8 css;
2701         u32 cmd_len = E1000_TXD_CMD_DEXT;
2702
2703         if (skb->ip_summed != CHECKSUM_PARTIAL)
2704                 return false;
2705
2706         switch (skb->protocol) {
2707         case cpu_to_be16(ETH_P_IP):
2708                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2709                         cmd_len |= E1000_TXD_CMD_TCP;
2710                 break;
2711         case cpu_to_be16(ETH_P_IPV6):
2712                 /* XXX not handling all IPV6 headers */
2713                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2714                         cmd_len |= E1000_TXD_CMD_TCP;
2715                 break;
2716         default:
2717                 if (unlikely(net_ratelimit()))
2718                         e_warn(drv, "checksum_partial proto=%x!\n",
2719                                skb->protocol);
2720                 break;
2721         }
2722
2723         css = skb_transport_offset(skb);
2724
2725         i = tx_ring->next_to_use;
2726         buffer_info = &tx_ring->buffer_info[i];
2727         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2728
2729         context_desc->lower_setup.ip_config = 0;
2730         context_desc->upper_setup.tcp_fields.tucss = css;
2731         context_desc->upper_setup.tcp_fields.tucso =
2732                 css + skb->csum_offset;
2733         context_desc->upper_setup.tcp_fields.tucse = 0;
2734         context_desc->tcp_seg_setup.data = 0;
2735         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2736
2737         buffer_info->time_stamp = jiffies;
2738         buffer_info->next_to_watch = i;
2739
2740         if (unlikely(++i == tx_ring->count)) i = 0;
2741         tx_ring->next_to_use = i;
2742
2743         return true;
2744 }
2745
2746 #define E1000_MAX_TXD_PWR       12
2747 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2748
2749 static int e1000_tx_map(struct e1000_adapter *adapter,
2750                         struct e1000_tx_ring *tx_ring,
2751                         struct sk_buff *skb, unsigned int first,
2752                         unsigned int max_per_txd, unsigned int nr_frags,
2753                         unsigned int mss)
2754 {
2755         struct e1000_hw *hw = &adapter->hw;
2756         struct pci_dev *pdev = adapter->pdev;
2757         struct e1000_buffer *buffer_info;
2758         unsigned int len = skb_headlen(skb);
2759         unsigned int offset = 0, size, count = 0, i;
2760         unsigned int f;
2761
2762         i = tx_ring->next_to_use;
2763
2764         while (len) {
2765                 buffer_info = &tx_ring->buffer_info[i];
2766                 size = min(len, max_per_txd);
2767                 /* Workaround for Controller erratum --
2768                  * descriptor for non-tso packet in a linear SKB that follows a
2769                  * tso gets written back prematurely before the data is fully
2770                  * DMA'd to the controller */
2771                 if (!skb->data_len && tx_ring->last_tx_tso &&
2772                     !skb_is_gso(skb)) {
2773                         tx_ring->last_tx_tso = 0;
2774                         size -= 4;
2775                 }
2776
2777                 /* Workaround for premature desc write-backs
2778                  * in TSO mode.  Append 4-byte sentinel desc */
2779                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2780                         size -= 4;
2781                 /* work-around for errata 10 and it applies
2782                  * to all controllers in PCI-X mode
2783                  * The fix is to make sure that the first descriptor of a
2784                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2785                  */
2786                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2787                                 (size > 2015) && count == 0))
2788                         size = 2015;
2789
2790                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2791                  * terminating buffers within evenly-aligned dwords. */
2792                 if (unlikely(adapter->pcix_82544 &&
2793                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2794                    size > 4))
2795                         size -= 4;
2796
2797                 buffer_info->length = size;
2798                 /* set time_stamp *before* dma to help avoid a possible race */
2799                 buffer_info->time_stamp = jiffies;
2800                 buffer_info->mapped_as_page = false;
2801                 buffer_info->dma = dma_map_single(&pdev->dev,
2802                                                   skb->data + offset,
2803                                                   size, DMA_TO_DEVICE);
2804                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2805                         goto dma_error;
2806                 buffer_info->next_to_watch = i;
2807
2808                 len -= size;
2809                 offset += size;
2810                 count++;
2811                 if (len) {
2812                         i++;
2813                         if (unlikely(i == tx_ring->count))
2814                                 i = 0;
2815                 }
2816         }
2817
2818         for (f = 0; f < nr_frags; f++) {
2819                 struct skb_frag_struct *frag;
2820
2821                 frag = &skb_shinfo(skb)->frags[f];
2822                 len = frag->size;
2823                 offset = frag->page_offset;
2824
2825                 while (len) {
2826                         i++;
2827                         if (unlikely(i == tx_ring->count))
2828                                 i = 0;
2829
2830                         buffer_info = &tx_ring->buffer_info[i];
2831                         size = min(len, max_per_txd);
2832                         /* Workaround for premature desc write-backs
2833                          * in TSO mode.  Append 4-byte sentinel desc */
2834                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2835                                 size -= 4;
2836                         /* Workaround for potential 82544 hang in PCI-X.
2837                          * Avoid terminating buffers within evenly-aligned
2838                          * dwords. */
2839                         if (unlikely(adapter->pcix_82544 &&
2840                             !((unsigned long)(page_to_phys(frag->page) + offset
2841                                               + size - 1) & 4) &&
2842                             size > 4))
2843                                 size -= 4;
2844
2845                         buffer_info->length = size;
2846                         buffer_info->time_stamp = jiffies;
2847                         buffer_info->mapped_as_page = true;
2848                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2849                                                         offset, size,
2850                                                         DMA_TO_DEVICE);
2851                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2852                                 goto dma_error;
2853                         buffer_info->next_to_watch = i;
2854
2855                         len -= size;
2856                         offset += size;
2857                         count++;
2858                 }
2859         }
2860
2861         tx_ring->buffer_info[i].skb = skb;
2862         tx_ring->buffer_info[first].next_to_watch = i;
2863
2864         return count;
2865
2866 dma_error:
2867         dev_err(&pdev->dev, "TX DMA map failed\n");
2868         buffer_info->dma = 0;
2869         if (count)
2870                 count--;
2871
2872         while (count--) {
2873                 if (i==0)
2874                         i += tx_ring->count;
2875                 i--;
2876                 buffer_info = &tx_ring->buffer_info[i];
2877                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2878         }
2879
2880         return 0;
2881 }
2882
2883 static void e1000_tx_queue(struct e1000_adapter *adapter,
2884                            struct e1000_tx_ring *tx_ring, int tx_flags,
2885                            int count)
2886 {
2887         struct e1000_hw *hw = &adapter->hw;
2888         struct e1000_tx_desc *tx_desc = NULL;
2889         struct e1000_buffer *buffer_info;
2890         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2891         unsigned int i;
2892
2893         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2894                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2895                              E1000_TXD_CMD_TSE;
2896                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2897
2898                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2899                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2900         }
2901
2902         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2903                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2904                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2905         }
2906
2907         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2908                 txd_lower |= E1000_TXD_CMD_VLE;
2909                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2910         }
2911
2912         i = tx_ring->next_to_use;
2913
2914         while (count--) {
2915                 buffer_info = &tx_ring->buffer_info[i];
2916                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2917                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2918                 tx_desc->lower.data =
2919                         cpu_to_le32(txd_lower | buffer_info->length);
2920                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2921                 if (unlikely(++i == tx_ring->count)) i = 0;
2922         }
2923
2924         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2925
2926         /* Force memory writes to complete before letting h/w
2927          * know there are new descriptors to fetch.  (Only
2928          * applicable for weak-ordered memory model archs,
2929          * such as IA-64). */
2930         wmb();
2931
2932         tx_ring->next_to_use = i;
2933         writel(i, hw->hw_addr + tx_ring->tdt);
2934         /* we need this if more than one processor can write to our tail
2935          * at a time, it syncronizes IO on IA64/Altix systems */
2936         mmiowb();
2937 }
2938
2939 /**
2940  * 82547 workaround to avoid controller hang in half-duplex environment.
2941  * The workaround is to avoid queuing a large packet that would span
2942  * the internal Tx FIFO ring boundary by notifying the stack to resend
2943  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2944  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2945  * to the beginning of the Tx FIFO.
2946  **/
2947
2948 #define E1000_FIFO_HDR                  0x10
2949 #define E1000_82547_PAD_LEN             0x3E0
2950
2951 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2952                                        struct sk_buff *skb)
2953 {
2954         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2955         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2956
2957         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2958
2959         if (adapter->link_duplex != HALF_DUPLEX)
2960                 goto no_fifo_stall_required;
2961
2962         if (atomic_read(&adapter->tx_fifo_stall))
2963                 return 1;
2964
2965         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2966                 atomic_set(&adapter->tx_fifo_stall, 1);
2967                 return 1;
2968         }
2969
2970 no_fifo_stall_required:
2971         adapter->tx_fifo_head += skb_fifo_len;
2972         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2973                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2974         return 0;
2975 }
2976
2977 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2978 {
2979         struct e1000_adapter *adapter = netdev_priv(netdev);
2980         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2981
2982         netif_stop_queue(netdev);
2983         /* Herbert's original patch had:
2984          *  smp_mb__after_netif_stop_queue();
2985          * but since that doesn't exist yet, just open code it. */
2986         smp_mb();
2987
2988         /* We need to check again in a case another CPU has just
2989          * made room available. */
2990         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2991                 return -EBUSY;
2992
2993         /* A reprieve! */
2994         netif_start_queue(netdev);
2995         ++adapter->restart_queue;
2996         return 0;
2997 }
2998
2999 static int e1000_maybe_stop_tx(struct net_device *netdev,
3000                                struct e1000_tx_ring *tx_ring, int size)
3001 {
3002         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3003                 return 0;
3004         return __e1000_maybe_stop_tx(netdev, size);
3005 }
3006
3007 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3008 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3009                                     struct net_device *netdev)
3010 {
3011         struct e1000_adapter *adapter = netdev_priv(netdev);
3012         struct e1000_hw *hw = &adapter->hw;
3013         struct e1000_tx_ring *tx_ring;
3014         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3015         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3016         unsigned int tx_flags = 0;
3017         unsigned int len = skb_headlen(skb);
3018         unsigned int nr_frags;
3019         unsigned int mss;
3020         int count = 0;
3021         int tso;
3022         unsigned int f;
3023
3024         /* This goes back to the question of how to logically map a tx queue
3025          * to a flow.  Right now, performance is impacted slightly negatively
3026          * if using multiple tx queues.  If the stack breaks away from a
3027          * single qdisc implementation, we can look at this again. */
3028         tx_ring = adapter->tx_ring;
3029
3030         if (unlikely(skb->len <= 0)) {
3031                 dev_kfree_skb_any(skb);
3032                 return NETDEV_TX_OK;
3033         }
3034
3035         mss = skb_shinfo(skb)->gso_size;
3036         /* The controller does a simple calculation to
3037          * make sure there is enough room in the FIFO before
3038          * initiating the DMA for each buffer.  The calc is:
3039          * 4 = ceil(buffer len/mss).  To make sure we don't
3040          * overrun the FIFO, adjust the max buffer len if mss
3041          * drops. */
3042         if (mss) {
3043                 u8 hdr_len;
3044                 max_per_txd = min(mss << 2, max_per_txd);
3045                 max_txd_pwr = fls(max_per_txd) - 1;
3046
3047                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3048                 if (skb->data_len && hdr_len == len) {
3049                         switch (hw->mac_type) {
3050                                 unsigned int pull_size;
3051                         case e1000_82544:
3052                                 /* Make sure we have room to chop off 4 bytes,
3053                                  * and that the end alignment will work out to
3054                                  * this hardware's requirements
3055                                  * NOTE: this is a TSO only workaround
3056                                  * if end byte alignment not correct move us
3057                                  * into the next dword */
3058                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3059                                         break;
3060                                 /* fall through */
3061                                 pull_size = min((unsigned int)4, skb->data_len);
3062                                 if (!__pskb_pull_tail(skb, pull_size)) {
3063                                         e_err(drv, "__pskb_pull_tail "
3064                                               "failed.\n");
3065                                         dev_kfree_skb_any(skb);
3066                                         return NETDEV_TX_OK;
3067                                 }
3068                                 len = skb_headlen(skb);
3069                                 break;
3070                         default:
3071                                 /* do nothing */
3072                                 break;
3073                         }
3074                 }
3075         }
3076
3077         /* reserve a descriptor for the offload context */
3078         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3079                 count++;
3080         count++;
3081
3082         /* Controller Erratum workaround */
3083         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3084                 count++;
3085
3086         count += TXD_USE_COUNT(len, max_txd_pwr);
3087
3088         if (adapter->pcix_82544)
3089                 count++;
3090
3091         /* work-around for errata 10 and it applies to all controllers
3092          * in PCI-X mode, so add one more descriptor to the count
3093          */
3094         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3095                         (len > 2015)))
3096                 count++;
3097
3098         nr_frags = skb_shinfo(skb)->nr_frags;
3099         for (f = 0; f < nr_frags; f++)
3100                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3101                                        max_txd_pwr);
3102         if (adapter->pcix_82544)
3103                 count += nr_frags;
3104
3105         /* need: count + 2 desc gap to keep tail from touching
3106          * head, otherwise try next time */
3107         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3108                 return NETDEV_TX_BUSY;
3109
3110         if (unlikely(hw->mac_type == e1000_82547)) {
3111                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3112                         netif_stop_queue(netdev);
3113                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3114                                 mod_timer(&adapter->tx_fifo_stall_timer,
3115                                           jiffies + 1);
3116                         return NETDEV_TX_BUSY;
3117                 }
3118         }
3119
3120         if (unlikely(vlan_tx_tag_present(skb))) {
3121                 tx_flags |= E1000_TX_FLAGS_VLAN;
3122                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3123         }
3124
3125         first = tx_ring->next_to_use;
3126
3127         tso = e1000_tso(adapter, tx_ring, skb);
3128         if (tso < 0) {
3129                 dev_kfree_skb_any(skb);
3130                 return NETDEV_TX_OK;
3131         }
3132
3133         if (likely(tso)) {
3134                 if (likely(hw->mac_type != e1000_82544))
3135                         tx_ring->last_tx_tso = 1;
3136                 tx_flags |= E1000_TX_FLAGS_TSO;
3137         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3138                 tx_flags |= E1000_TX_FLAGS_CSUM;
3139
3140         if (likely(skb->protocol == htons(ETH_P_IP)))
3141                 tx_flags |= E1000_TX_FLAGS_IPV4;
3142
3143         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3144                              nr_frags, mss);
3145
3146         if (count) {
3147                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3148                 /* Make sure there is space in the ring for the next send. */
3149                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3150
3151         } else {
3152                 dev_kfree_skb_any(skb);
3153                 tx_ring->buffer_info[first].time_stamp = 0;
3154                 tx_ring->next_to_use = first;
3155         }
3156
3157         return NETDEV_TX_OK;
3158 }
3159
3160 /**
3161  * e1000_tx_timeout - Respond to a Tx Hang
3162  * @netdev: network interface device structure
3163  **/
3164
3165 static void e1000_tx_timeout(struct net_device *netdev)
3166 {
3167         struct e1000_adapter *adapter = netdev_priv(netdev);
3168
3169         /* Do the reset outside of interrupt context */
3170         adapter->tx_timeout_count++;
3171         schedule_work(&adapter->reset_task);
3172 }
3173
3174 static void e1000_reset_task(struct work_struct *work)
3175 {
3176         struct e1000_adapter *adapter =
3177                 container_of(work, struct e1000_adapter, reset_task);
3178
3179         e1000_reinit_safe(adapter);
3180 }
3181
3182 /**
3183  * e1000_get_stats - Get System Network Statistics
3184  * @netdev: network interface device structure
3185  *
3186  * Returns the address of the device statistics structure.
3187  * The statistics are actually updated from the timer callback.
3188  **/
3189
3190 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3191 {
3192         /* only return the current stats */
3193         return &netdev->stats;
3194 }
3195
3196 /**
3197  * e1000_change_mtu - Change the Maximum Transfer Unit
3198  * @netdev: network interface device structure
3199  * @new_mtu: new value for maximum frame size
3200  *
3201  * Returns 0 on success, negative on failure
3202  **/
3203
3204 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3205 {
3206         struct e1000_adapter *adapter = netdev_priv(netdev);
3207         struct e1000_hw *hw = &adapter->hw;
3208         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3209
3210         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3211             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3212                 e_err(probe, "Invalid MTU setting\n");
3213                 return -EINVAL;
3214         }
3215
3216         /* Adapter-specific max frame size limits. */
3217         switch (hw->mac_type) {
3218         case e1000_undefined ... e1000_82542_rev2_1:
3219                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3220                         e_err(probe, "Jumbo Frames not supported.\n");
3221                         return -EINVAL;
3222                 }
3223                 break;
3224         default:
3225                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3226                 break;
3227         }
3228
3229         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3230                 msleep(1);
3231         /* e1000_down has a dependency on max_frame_size */
3232         hw->max_frame_size = max_frame;
3233         if (netif_running(netdev))
3234                 e1000_down(adapter);
3235
3236         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3237          * means we reserve 2 more, this pushes us to allocate from the next
3238          * larger slab size.
3239          * i.e. RXBUFFER_2048 --> size-4096 slab
3240          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3241          *  fragmented skbs */
3242
3243         if (max_frame <= E1000_RXBUFFER_2048)
3244                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3245         else
3246 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3247                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3248 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3249                 adapter->rx_buffer_len = PAGE_SIZE;
3250 #endif
3251
3252         /* adjust allocation if LPE protects us, and we aren't using SBP */
3253         if (!hw->tbi_compatibility_on &&
3254             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3255              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3256                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3257
3258         pr_info("%s changing MTU from %d to %d\n",
3259                 netdev->name, netdev->mtu, new_mtu);
3260         netdev->mtu = new_mtu;
3261
3262         if (netif_running(netdev))
3263                 e1000_up(adapter);
3264         else
3265                 e1000_reset(adapter);
3266
3267         clear_bit(__E1000_RESETTING, &adapter->flags);
3268
3269         return 0;
3270 }
3271
3272 /**
3273  * e1000_update_stats - Update the board statistics counters
3274  * @adapter: board private structure
3275  **/
3276
3277 void e1000_update_stats(struct e1000_adapter *adapter)
3278 {
3279         struct net_device *netdev = adapter->netdev;
3280         struct e1000_hw *hw = &adapter->hw;
3281         struct pci_dev *pdev = adapter->pdev;
3282         unsigned long flags;
3283         u16 phy_tmp;
3284
3285 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3286
3287         /*
3288          * Prevent stats update while adapter is being reset, or if the pci
3289          * connection is down.
3290          */
3291         if (adapter->link_speed == 0)
3292                 return;
3293         if (pci_channel_offline(pdev))
3294                 return;
3295
3296         spin_lock_irqsave(&adapter->stats_lock, flags);
3297
3298         /* these counters are modified from e1000_tbi_adjust_stats,
3299          * called from the interrupt context, so they must only
3300          * be written while holding adapter->stats_lock
3301          */
3302
3303         adapter->stats.crcerrs += er32(CRCERRS);
3304         adapter->stats.gprc += er32(GPRC);
3305         adapter->stats.gorcl += er32(GORCL);
3306         adapter->stats.gorch += er32(GORCH);
3307         adapter->stats.bprc += er32(BPRC);
3308         adapter->stats.mprc += er32(MPRC);
3309         adapter->stats.roc += er32(ROC);
3310
3311         adapter->stats.prc64 += er32(PRC64);
3312         adapter->stats.prc127 += er32(PRC127);
3313         adapter->stats.prc255 += er32(PRC255);
3314         adapter->stats.prc511 += er32(PRC511);
3315         adapter->stats.prc1023 += er32(PRC1023);
3316         adapter->stats.prc1522 += er32(PRC1522);
3317
3318         adapter->stats.symerrs += er32(SYMERRS);
3319         adapter->stats.mpc += er32(MPC);
3320         adapter->stats.scc += er32(SCC);
3321         adapter->stats.ecol += er32(ECOL);
3322         adapter->stats.mcc += er32(MCC);
3323         adapter->stats.latecol += er32(LATECOL);
3324         adapter->stats.dc += er32(DC);
3325         adapter->stats.sec += er32(SEC);
3326         adapter->stats.rlec += er32(RLEC);
3327         adapter->stats.xonrxc += er32(XONRXC);
3328         adapter->stats.xontxc += er32(XONTXC);
3329         adapter->stats.xoffrxc += er32(XOFFRXC);
3330         adapter->stats.xofftxc += er32(XOFFTXC);
3331         adapter->stats.fcruc += er32(FCRUC);
3332         adapter->stats.gptc += er32(GPTC);
3333         adapter->stats.gotcl += er32(GOTCL);
3334         adapter->stats.gotch += er32(GOTCH);
3335         adapter->stats.rnbc += er32(RNBC);
3336         adapter->stats.ruc += er32(RUC);
3337         adapter->stats.rfc += er32(RFC);
3338         adapter->stats.rjc += er32(RJC);
3339         adapter->stats.torl += er32(TORL);
3340         adapter->stats.torh += er32(TORH);
3341         adapter->stats.totl += er32(TOTL);
3342         adapter->stats.toth += er32(TOTH);
3343         adapter->stats.tpr += er32(TPR);
3344
3345         adapter->stats.ptc64 += er32(PTC64);
3346         adapter->stats.ptc127 += er32(PTC127);
3347         adapter->stats.ptc255 += er32(PTC255);
3348         adapter->stats.ptc511 += er32(PTC511);
3349         adapter->stats.ptc1023 += er32(PTC1023);
3350         adapter->stats.ptc1522 += er32(PTC1522);
3351
3352         adapter->stats.mptc += er32(MPTC);
3353         adapter->stats.bptc += er32(BPTC);
3354
3355         /* used for adaptive IFS */
3356
3357         hw->tx_packet_delta = er32(TPT);
3358         adapter->stats.tpt += hw->tx_packet_delta;
3359         hw->collision_delta = er32(COLC);
3360         adapter->stats.colc += hw->collision_delta;
3361
3362         if (hw->mac_type >= e1000_82543) {
3363                 adapter->stats.algnerrc += er32(ALGNERRC);
3364                 adapter->stats.rxerrc += er32(RXERRC);
3365                 adapter->stats.tncrs += er32(TNCRS);
3366                 adapter->stats.cexterr += er32(CEXTERR);
3367                 adapter->stats.tsctc += er32(TSCTC);
3368                 adapter->stats.tsctfc += er32(TSCTFC);
3369         }
3370
3371         /* Fill out the OS statistics structure */
3372         netdev->stats.multicast = adapter->stats.mprc;
3373         netdev->stats.collisions = adapter->stats.colc;
3374
3375         /* Rx Errors */
3376
3377         /* RLEC on some newer hardware can be incorrect so build
3378         * our own version based on RUC and ROC */
3379         netdev->stats.rx_errors = adapter->stats.rxerrc +
3380                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3381                 adapter->stats.ruc + adapter->stats.roc +
3382                 adapter->stats.cexterr;
3383         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3384         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3385         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3386         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3387         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3388
3389         /* Tx Errors */
3390         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3391         netdev->stats.tx_errors = adapter->stats.txerrc;
3392         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3393         netdev->stats.tx_window_errors = adapter->stats.latecol;
3394         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3395         if (hw->bad_tx_carr_stats_fd &&
3396             adapter->link_duplex == FULL_DUPLEX) {
3397                 netdev->stats.tx_carrier_errors = 0;
3398                 adapter->stats.tncrs = 0;
3399         }
3400
3401         /* Tx Dropped needs to be maintained elsewhere */
3402
3403         /* Phy Stats */
3404         if (hw->media_type == e1000_media_type_copper) {
3405                 if ((adapter->link_speed == SPEED_1000) &&
3406                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3407                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3408                         adapter->phy_stats.idle_errors += phy_tmp;
3409                 }
3410
3411                 if ((hw->mac_type <= e1000_82546) &&
3412                    (hw->phy_type == e1000_phy_m88) &&
3413                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3414                         adapter->phy_stats.receive_errors += phy_tmp;
3415         }
3416
3417         /* Management Stats */
3418         if (hw->has_smbus) {
3419                 adapter->stats.mgptc += er32(MGTPTC);
3420                 adapter->stats.mgprc += er32(MGTPRC);
3421                 adapter->stats.mgpdc += er32(MGTPDC);
3422         }
3423
3424         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3425 }
3426
3427 /**
3428  * e1000_intr - Interrupt Handler
3429  * @irq: interrupt number
3430  * @data: pointer to a network interface device structure
3431  **/
3432
3433 static irqreturn_t e1000_intr(int irq, void *data)
3434 {
3435         struct net_device *netdev = data;
3436         struct e1000_adapter *adapter = netdev_priv(netdev);
3437         struct e1000_hw *hw = &adapter->hw;
3438         u32 icr = er32(ICR);
3439
3440         if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3441                 return IRQ_NONE;  /* Not our interrupt */
3442
3443         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3444                 hw->get_link_status = 1;
3445                 /* guard against interrupt when we're going down */
3446                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3447                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3448         }
3449
3450         /* disable interrupts, without the synchronize_irq bit */
3451         ew32(IMC, ~0);
3452         E1000_WRITE_FLUSH();
3453
3454         if (likely(napi_schedule_prep(&adapter->napi))) {
3455                 adapter->total_tx_bytes = 0;
3456                 adapter->total_tx_packets = 0;
3457                 adapter->total_rx_bytes = 0;
3458                 adapter->total_rx_packets = 0;
3459                 __napi_schedule(&adapter->napi);
3460         } else {
3461                 /* this really should not happen! if it does it is basically a
3462                  * bug, but not a hard error, so enable ints and continue */
3463                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3464                         e1000_irq_enable(adapter);
3465         }
3466
3467         return IRQ_HANDLED;
3468 }
3469
3470 /**
3471  * e1000_clean - NAPI Rx polling callback
3472  * @adapter: board private structure
3473  **/
3474 static int e1000_clean(struct napi_struct *napi, int budget)
3475 {
3476         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3477         int tx_clean_complete = 0, work_done = 0;
3478
3479         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3480
3481         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3482
3483         if (!tx_clean_complete)
3484                 work_done = budget;
3485
3486         /* If budget not fully consumed, exit the polling mode */
3487         if (work_done < budget) {
3488                 if (likely(adapter->itr_setting & 3))
3489                         e1000_set_itr(adapter);
3490                 napi_complete(napi);
3491                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3492                         e1000_irq_enable(adapter);
3493         }
3494
3495         return work_done;
3496 }
3497
3498 /**
3499  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3500  * @adapter: board private structure
3501  **/
3502 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3503                                struct e1000_tx_ring *tx_ring)
3504 {
3505         struct e1000_hw *hw = &adapter->hw;
3506         struct net_device *netdev = adapter->netdev;
3507         struct e1000_tx_desc *tx_desc, *eop_desc;
3508         struct e1000_buffer *buffer_info;
3509         unsigned int i, eop;
3510         unsigned int count = 0;
3511         unsigned int total_tx_bytes=0, total_tx_packets=0;
3512
3513         i = tx_ring->next_to_clean;
3514         eop = tx_ring->buffer_info[i].next_to_watch;
3515         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3516
3517         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3518                (count < tx_ring->count)) {
3519                 bool cleaned = false;
3520                 rmb();  /* read buffer_info after eop_desc */
3521                 for ( ; !cleaned; count++) {
3522                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3523                         buffer_info = &tx_ring->buffer_info[i];
3524                         cleaned = (i == eop);
3525
3526                         if (cleaned) {
3527                                 struct sk_buff *skb = buffer_info->skb;
3528                                 unsigned int segs, bytecount;
3529                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3530                                 /* multiply data chunks by size of headers */
3531                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3532                                             skb->len;
3533                                 total_tx_packets += segs;
3534                                 total_tx_bytes += bytecount;
3535                         }
3536                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3537                         tx_desc->upper.data = 0;
3538
3539                         if (unlikely(++i == tx_ring->count)) i = 0;
3540                 }
3541
3542                 eop = tx_ring->buffer_info[i].next_to_watch;
3543                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3544         }
3545
3546         tx_ring->next_to_clean = i;
3547
3548 #define TX_WAKE_THRESHOLD 32
3549         if (unlikely(count && netif_carrier_ok(netdev) &&
3550                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3551                 /* Make sure that anybody stopping the queue after this
3552                  * sees the new next_to_clean.
3553                  */
3554                 smp_mb();
3555
3556                 if (netif_queue_stopped(netdev) &&
3557                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3558                         netif_wake_queue(netdev);
3559                         ++adapter->restart_queue;
3560                 }
3561         }
3562
3563         if (adapter->detect_tx_hung) {
3564                 /* Detect a transmit hang in hardware, this serializes the
3565                  * check with the clearing of time_stamp and movement of i */
3566                 adapter->detect_tx_hung = false;
3567                 if (tx_ring->buffer_info[eop].time_stamp &&
3568                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3569                                (adapter->tx_timeout_factor * HZ)) &&
3570                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3571
3572                         /* detected Tx unit hang */
3573                         e_err(drv, "Detected Tx Unit Hang\n"
3574                               "  Tx Queue             <%lu>\n"
3575                               "  TDH                  <%x>\n"
3576                               "  TDT                  <%x>\n"
3577                               "  next_to_use          <%x>\n"
3578                               "  next_to_clean        <%x>\n"
3579                               "buffer_info[next_to_clean]\n"
3580                               "  time_stamp           <%lx>\n"
3581                               "  next_to_watch        <%x>\n"
3582                               "  jiffies              <%lx>\n"
3583                               "  next_to_watch.status <%x>\n",
3584                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3585                                         sizeof(struct e1000_tx_ring)),
3586                                 readl(hw->hw_addr + tx_ring->tdh),
3587                                 readl(hw->hw_addr + tx_ring->tdt),
3588                                 tx_ring->next_to_use,
3589                                 tx_ring->next_to_clean,
3590                                 tx_ring->buffer_info[eop].time_stamp,
3591                                 eop,
3592                                 jiffies,
3593                                 eop_desc->upper.fields.status);
3594                         netif_stop_queue(netdev);
3595                 }
3596         }
3597         adapter->total_tx_bytes += total_tx_bytes;
3598         adapter->total_tx_packets += total_tx_packets;
3599         netdev->stats.tx_bytes += total_tx_bytes;
3600         netdev->stats.tx_packets += total_tx_packets;
3601         return count < tx_ring->count;
3602 }
3603
3604 /**
3605  * e1000_rx_checksum - Receive Checksum Offload for 82543
3606  * @adapter:     board private structure
3607  * @status_err:  receive descriptor status and error fields
3608  * @csum:        receive descriptor csum field
3609  * @sk_buff:     socket buffer with received data
3610  **/
3611
3612 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3613                               u32 csum, struct sk_buff *skb)
3614 {
3615         struct e1000_hw *hw = &adapter->hw;
3616         u16 status = (u16)status_err;
3617         u8 errors = (u8)(status_err >> 24);
3618
3619         skb_checksum_none_assert(skb);
3620
3621         /* 82543 or newer only */
3622         if (unlikely(hw->mac_type < e1000_82543)) return;
3623         /* Ignore Checksum bit is set */
3624         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3625         /* TCP/UDP checksum error bit is set */
3626         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3627                 /* let the stack verify checksum errors */
3628                 adapter->hw_csum_err++;
3629                 return;
3630         }
3631         /* TCP/UDP Checksum has not been calculated */
3632         if (!(status & E1000_RXD_STAT_TCPCS))
3633                 return;
3634
3635         /* It must be a TCP or UDP packet with a valid checksum */
3636         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3637                 /* TCP checksum is good */
3638                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3639         }
3640         adapter->hw_csum_good++;
3641 }
3642
3643 /**
3644  * e1000_consume_page - helper function
3645  **/
3646 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3647                                u16 length)
3648 {
3649         bi->page = NULL;
3650         skb->len += length;
3651         skb->data_len += length;
3652         skb->truesize += length;
3653 }
3654
3655 /**
3656  * e1000_receive_skb - helper function to handle rx indications
3657  * @adapter: board private structure
3658  * @status: descriptor status field as written by hardware
3659  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3660  * @skb: pointer to sk_buff to be indicated to stack
3661  */
3662 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3663                               __le16 vlan, struct sk_buff *skb)
3664 {
3665         skb->protocol = eth_type_trans(skb, adapter->netdev);
3666
3667         if ((unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))))
3668                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
3669                                  le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK,
3670                                  skb);
3671         else
3672                 napi_gro_receive(&adapter->napi, skb);
3673 }
3674
3675 /**
3676  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3677  * @adapter: board private structure
3678  * @rx_ring: ring to clean
3679  * @work_done: amount of napi work completed this call
3680  * @work_to_do: max amount of work allowed for this call to do
3681  *
3682  * the return value indicates whether actual cleaning was done, there
3683  * is no guarantee that everything was cleaned
3684  */
3685 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3686                                      struct e1000_rx_ring *rx_ring,
3687                                      int *work_done, int work_to_do)
3688 {
3689         struct e1000_hw *hw = &adapter->hw;
3690         struct net_device *netdev = adapter->netdev;
3691         struct pci_dev *pdev = adapter->pdev;
3692         struct e1000_rx_desc *rx_desc, *next_rxd;
3693         struct e1000_buffer *buffer_info, *next_buffer;
3694         unsigned long irq_flags;
3695         u32 length;
3696         unsigned int i;
3697         int cleaned_count = 0;
3698         bool cleaned = false;
3699         unsigned int total_rx_bytes=0, total_rx_packets=0;
3700
3701         i = rx_ring->next_to_clean;
3702         rx_desc = E1000_RX_DESC(*rx_ring, i);
3703         buffer_info = &rx_ring->buffer_info[i];
3704
3705         while (rx_desc->status & E1000_RXD_STAT_DD) {
3706                 struct sk_buff *skb;
3707                 u8 status;
3708
3709                 if (*work_done >= work_to_do)
3710                         break;
3711                 (*work_done)++;
3712                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3713
3714                 status = rx_desc->status;
3715                 skb = buffer_info->skb;
3716                 buffer_info->skb = NULL;
3717
3718                 if (++i == rx_ring->count) i = 0;
3719                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3720                 prefetch(next_rxd);
3721
3722                 next_buffer = &rx_ring->buffer_info[i];
3723
3724                 cleaned = true;
3725                 cleaned_count++;
3726                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3727                                buffer_info->length, DMA_FROM_DEVICE);
3728                 buffer_info->dma = 0;
3729
3730                 length = le16_to_cpu(rx_desc->length);
3731
3732                 /* errors is only valid for DD + EOP descriptors */
3733                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3734                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3735                         u8 last_byte = *(skb->data + length - 1);
3736                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3737                                        last_byte)) {
3738                                 spin_lock_irqsave(&adapter->stats_lock,
3739                                                   irq_flags);
3740                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3741                                                        length, skb->data);
3742                                 spin_unlock_irqrestore(&adapter->stats_lock,
3743                                                        irq_flags);
3744                                 length--;
3745                         } else {
3746                                 /* recycle both page and skb */
3747                                 buffer_info->skb = skb;
3748                                 /* an error means any chain goes out the window
3749                                  * too */
3750                                 if (rx_ring->rx_skb_top)
3751                                         dev_kfree_skb(rx_ring->rx_skb_top);
3752                                 rx_ring->rx_skb_top = NULL;
3753                                 goto next_desc;
3754                         }
3755                 }
3756
3757 #define rxtop rx_ring->rx_skb_top
3758                 if (!(status & E1000_RXD_STAT_EOP)) {
3759                         /* this descriptor is only the beginning (or middle) */
3760                         if (!rxtop) {
3761                                 /* this is the beginning of a chain */
3762                                 rxtop = skb;
3763                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3764                                                    0, length);
3765                         } else {
3766                                 /* this is the middle of a chain */
3767                                 skb_fill_page_desc(rxtop,
3768                                     skb_shinfo(rxtop)->nr_frags,
3769                                     buffer_info->page, 0, length);
3770                                 /* re-use the skb, only consumed the page */
3771                                 buffer_info->skb = skb;
3772                         }
3773                         e1000_consume_page(buffer_info, rxtop, length);
3774                         goto next_desc;
3775                 } else {
3776                         if (rxtop) {
3777                                 /* end of the chain */
3778                                 skb_fill_page_desc(rxtop,
3779                                     skb_shinfo(rxtop)->nr_frags,
3780                                     buffer_info->page, 0, length);
3781                                 /* re-use the current skb, we only consumed the
3782                                  * page */
3783                                 buffer_info->skb = skb;
3784                                 skb = rxtop;
3785                                 rxtop = NULL;
3786                                 e1000_consume_page(buffer_info, skb, length);
3787                         } else {
3788                                 /* no chain, got EOP, this buf is the packet
3789                                  * copybreak to save the put_page/alloc_page */
3790                                 if (length <= copybreak &&
3791                                     skb_tailroom(skb) >= length) {
3792                                         u8 *vaddr;
3793                                         vaddr = kmap_atomic(buffer_info->page,
3794                                                             KM_SKB_DATA_SOFTIRQ);
3795                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3796                                         kunmap_atomic(vaddr,
3797                                                       KM_SKB_DATA_SOFTIRQ);
3798                                         /* re-use the page, so don't erase
3799                                          * buffer_info->page */
3800                                         skb_put(skb, length);
3801                                 } else {
3802                                         skb_fill_page_desc(skb, 0,
3803                                                            buffer_info->page, 0,
3804                                                            length);
3805                                         e1000_consume_page(buffer_info, skb,
3806                                                            length);
3807                                 }
3808                         }
3809                 }
3810
3811                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3812                 e1000_rx_checksum(adapter,
3813                                   (u32)(status) |
3814                                   ((u32)(rx_desc->errors) << 24),
3815                                   le16_to_cpu(rx_desc->csum), skb);
3816
3817                 pskb_trim(skb, skb->len - 4);
3818
3819                 /* probably a little skewed due to removing CRC */
3820                 total_rx_bytes += skb->len;
3821                 total_rx_packets++;
3822
3823                 /* eth type trans needs skb->data to point to something */
3824                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3825                         e_err(drv, "pskb_may_pull failed.\n");
3826                         dev_kfree_skb(skb);
3827                         goto next_desc;
3828                 }
3829
3830                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3831
3832 next_desc:
3833                 rx_desc->status = 0;
3834
3835                 /* return some buffers to hardware, one at a time is too slow */
3836                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3837                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3838                         cleaned_count = 0;
3839                 }
3840
3841                 /* use prefetched values */
3842                 rx_desc = next_rxd;
3843                 buffer_info = next_buffer;
3844         }
3845         rx_ring->next_to_clean = i;
3846
3847         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3848         if (cleaned_count)
3849                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3850
3851         adapter->total_rx_packets += total_rx_packets;
3852         adapter->total_rx_bytes += total_rx_bytes;
3853         netdev->stats.rx_bytes += total_rx_bytes;
3854         netdev->stats.rx_packets += total_rx_packets;
3855         return cleaned;
3856 }
3857
3858 /*
3859  * this should improve performance for small packets with large amounts
3860  * of reassembly being done in the stack
3861  */
3862 static void e1000_check_copybreak(struct net_device *netdev,
3863                                  struct e1000_buffer *buffer_info,
3864                                  u32 length, struct sk_buff **skb)
3865 {
3866         struct sk_buff *new_skb;
3867
3868         if (length > copybreak)
3869                 return;
3870
3871         new_skb = netdev_alloc_skb_ip_align(netdev, length);
3872         if (!new_skb)
3873                 return;
3874
3875         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3876                                        (*skb)->data - NET_IP_ALIGN,
3877                                        length + NET_IP_ALIGN);
3878         /* save the skb in buffer_info as good */
3879         buffer_info->skb = *skb;
3880         *skb = new_skb;
3881 }
3882
3883 /**
3884  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3885  * @adapter: board private structure
3886  * @rx_ring: ring to clean
3887  * @work_done: amount of napi work completed this call
3888  * @work_to_do: max amount of work allowed for this call to do
3889  */
3890 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3891                                struct e1000_rx_ring *rx_ring,
3892                                int *work_done, int work_to_do)
3893 {
3894         struct e1000_hw *hw = &adapter->hw;
3895         struct net_device *netdev = adapter->netdev;
3896         struct pci_dev *pdev = adapter->pdev;
3897         struct e1000_rx_desc *rx_desc, *next_rxd;
3898         struct e1000_buffer *buffer_info, *next_buffer;
3899         unsigned long flags;
3900         u32 length;
3901         unsigned int i;
3902         int cleaned_count = 0;
3903         bool cleaned = false;
3904         unsigned int total_rx_bytes=0, total_rx_packets=0;
3905
3906         i = rx_ring->next_to_clean;
3907         rx_desc = E1000_RX_DESC(*rx_ring, i);
3908         buffer_info = &rx_ring->buffer_info[i];
3909
3910         while (rx_desc->status & E1000_RXD_STAT_DD) {
3911                 struct sk_buff *skb;
3912                 u8 status;
3913
3914                 if (*work_done >= work_to_do)
3915                         break;
3916                 (*work_done)++;
3917                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3918
3919                 status = rx_desc->status;
3920                 skb = buffer_info->skb;
3921                 buffer_info->skb = NULL;
3922
3923                 prefetch(skb->data - NET_IP_ALIGN);
3924
3925                 if (++i == rx_ring->count) i = 0;
3926                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3927                 prefetch(next_rxd);
3928
3929                 next_buffer = &rx_ring->buffer_info[i];
3930
3931                 cleaned = true;
3932                 cleaned_count++;
3933                 dma_unmap_single(&pdev->dev, buffer_info->dma,
3934                                  buffer_info->length, DMA_FROM_DEVICE);
3935                 buffer_info->dma = 0;
3936
3937                 length = le16_to_cpu(rx_desc->length);
3938                 /* !EOP means multiple descriptors were used to store a single
3939                  * packet, if thats the case we need to toss it.  In fact, we
3940                  * to toss every packet with the EOP bit clear and the next
3941                  * frame that _does_ have the EOP bit set, as it is by
3942                  * definition only a frame fragment
3943                  */
3944                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3945                         adapter->discarding = true;
3946
3947                 if (adapter->discarding) {
3948                         /* All receives must fit into a single buffer */
3949                         e_dbg("Receive packet consumed multiple buffers\n");
3950                         /* recycle */
3951                         buffer_info->skb = skb;
3952                         if (status & E1000_RXD_STAT_EOP)
3953                                 adapter->discarding = false;
3954                         goto next_desc;
3955                 }
3956
3957                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3958                         u8 last_byte = *(skb->data + length - 1);
3959                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3960                                        last_byte)) {
3961                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3962                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3963                                                        length, skb->data);
3964                                 spin_unlock_irqrestore(&adapter->stats_lock,
3965                                                        flags);
3966                                 length--;
3967                         } else {
3968                                 /* recycle */
3969                                 buffer_info->skb = skb;
3970                                 goto next_desc;
3971                         }
3972                 }
3973
3974                 /* adjust length to remove Ethernet CRC, this must be
3975                  * done after the TBI_ACCEPT workaround above */
3976                 length -= 4;
3977
3978                 /* probably a little skewed due to removing CRC */
3979                 total_rx_bytes += length;
3980                 total_rx_packets++;
3981
3982                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
3983
3984                 skb_put(skb, length);
3985
3986                 /* Receive Checksum Offload */
3987                 e1000_rx_checksum(adapter,
3988                                   (u32)(status) |
3989                                   ((u32)(rx_desc->errors) << 24),
3990                                   le16_to_cpu(rx_desc->csum), skb);
3991
3992                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3993
3994 next_desc:
3995                 rx_desc->status = 0;
3996
3997                 /* return some buffers to hardware, one at a time is too slow */
3998                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3999                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4000                         cleaned_count = 0;
4001                 }
4002
4003                 /* use prefetched values */
4004                 rx_desc = next_rxd;
4005                 buffer_info = next_buffer;
4006         }
4007         rx_ring->next_to_clean = i;
4008
4009         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4010         if (cleaned_count)
4011                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4012
4013         adapter->total_rx_packets += total_rx_packets;
4014         adapter->total_rx_bytes += total_rx_bytes;
4015         netdev->stats.rx_bytes += total_rx_bytes;
4016         netdev->stats.rx_packets += total_rx_packets;
4017         return cleaned;
4018 }
4019
4020 /**
4021  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4022  * @adapter: address of board private structure
4023  * @rx_ring: pointer to receive ring structure
4024  * @cleaned_count: number of buffers to allocate this pass
4025  **/
4026
4027 static void
4028 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4029                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4030 {
4031         struct net_device *netdev = adapter->netdev;
4032         struct pci_dev *pdev = adapter->pdev;
4033         struct e1000_rx_desc *rx_desc;
4034         struct e1000_buffer *buffer_info;
4035         struct sk_buff *skb;
4036         unsigned int i;
4037         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4038
4039         i = rx_ring->next_to_use;
4040         buffer_info = &rx_ring->buffer_info[i];
4041
4042         while (cleaned_count--) {
4043                 skb = buffer_info->skb;
4044                 if (skb) {
4045                         skb_trim(skb, 0);
4046                         goto check_page;
4047                 }
4048
4049                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4050                 if (unlikely(!skb)) {
4051                         /* Better luck next round */
4052                         adapter->alloc_rx_buff_failed++;
4053                         break;
4054                 }
4055
4056                 /* Fix for errata 23, can't cross 64kB boundary */
4057                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4058                         struct sk_buff *oldskb = skb;
4059                         e_err(rx_err, "skb align check failed: %u bytes at "
4060                               "%p\n", bufsz, skb->data);
4061                         /* Try again, without freeing the previous */
4062                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4063                         /* Failed allocation, critical failure */
4064                         if (!skb) {
4065                                 dev_kfree_skb(oldskb);
4066                                 adapter->alloc_rx_buff_failed++;
4067                                 break;
4068                         }
4069
4070                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4071                                 /* give up */
4072                                 dev_kfree_skb(skb);
4073                                 dev_kfree_skb(oldskb);
4074                                 break; /* while (cleaned_count--) */
4075                         }
4076
4077                         /* Use new allocation */
4078                         dev_kfree_skb(oldskb);
4079                 }
4080                 buffer_info->skb = skb;
4081                 buffer_info->length = adapter->rx_buffer_len;
4082 check_page:
4083                 /* allocate a new page if necessary */
4084                 if (!buffer_info->page) {
4085                         buffer_info->page = alloc_page(GFP_ATOMIC);
4086                         if (unlikely(!buffer_info->page)) {
4087                                 adapter->alloc_rx_buff_failed++;
4088                                 break;
4089                         }
4090                 }
4091
4092                 if (!buffer_info->dma) {
4093                         buffer_info->dma = dma_map_page(&pdev->dev,
4094                                                         buffer_info->page, 0,
4095                                                         buffer_info->length,
4096                                                         DMA_FROM_DEVICE);
4097                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4098                                 put_page(buffer_info->page);
4099                                 dev_kfree_skb(skb);
4100                                 buffer_info->page = NULL;
4101                                 buffer_info->skb = NULL;
4102                                 buffer_info->dma = 0;
4103                                 adapter->alloc_rx_buff_failed++;
4104                                 break; /* while !buffer_info->skb */
4105                         }
4106                 }
4107
4108                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4109                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4110
4111                 if (unlikely(++i == rx_ring->count))
4112                         i = 0;
4113                 buffer_info = &rx_ring->buffer_info[i];
4114         }
4115
4116         if (likely(rx_ring->next_to_use != i)) {
4117                 rx_ring->next_to_use = i;
4118                 if (unlikely(i-- == 0))
4119                         i = (rx_ring->count - 1);
4120
4121                 /* Force memory writes to complete before letting h/w
4122                  * know there are new descriptors to fetch.  (Only
4123                  * applicable for weak-ordered memory model archs,
4124                  * such as IA-64). */
4125                 wmb();
4126                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4127         }
4128 }
4129
4130 /**
4131  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4132  * @adapter: address of board private structure
4133  **/
4134
4135 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4136                                    struct e1000_rx_ring *rx_ring,
4137                                    int cleaned_count)
4138 {
4139         struct e1000_hw *hw = &adapter->hw;
4140         struct net_device *netdev = adapter->netdev;
4141         struct pci_dev *pdev = adapter->pdev;
4142         struct e1000_rx_desc *rx_desc;
4143         struct e1000_buffer *buffer_info;
4144         struct sk_buff *skb;
4145         unsigned int i;
4146         unsigned int bufsz = adapter->rx_buffer_len;
4147
4148         i = rx_ring->next_to_use;
4149         buffer_info = &rx_ring->buffer_info[i];
4150
4151         while (cleaned_count--) {
4152                 skb = buffer_info->skb;
4153                 if (skb) {
4154                         skb_trim(skb, 0);
4155                         goto map_skb;
4156                 }
4157
4158                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4159                 if (unlikely(!skb)) {
4160                         /* Better luck next round */
4161                         adapter->alloc_rx_buff_failed++;
4162                         break;
4163                 }
4164
4165                 /* Fix for errata 23, can't cross 64kB boundary */
4166                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4167                         struct sk_buff *oldskb = skb;
4168                         e_err(rx_err, "skb align check failed: %u bytes at "
4169                               "%p\n", bufsz, skb->data);
4170                         /* Try again, without freeing the previous */
4171                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4172                         /* Failed allocation, critical failure */
4173                         if (!skb) {
4174                                 dev_kfree_skb(oldskb);
4175                                 adapter->alloc_rx_buff_failed++;
4176                                 break;
4177                         }
4178
4179                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4180                                 /* give up */
4181                                 dev_kfree_skb(skb);
4182                                 dev_kfree_skb(oldskb);
4183                                 adapter->alloc_rx_buff_failed++;
4184                                 break; /* while !buffer_info->skb */
4185                         }
4186
4187                         /* Use new allocation */
4188                         dev_kfree_skb(oldskb);
4189                 }
4190                 buffer_info->skb = skb;
4191                 buffer_info->length = adapter->rx_buffer_len;
4192 map_skb:
4193                 buffer_info->dma = dma_map_single(&pdev->dev,
4194                                                   skb->data,
4195                                                   buffer_info->length,
4196                                                   DMA_FROM_DEVICE);
4197                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4198                         dev_kfree_skb(skb);
4199                         buffer_info->skb = NULL;
4200                         buffer_info->dma = 0;
4201                         adapter->alloc_rx_buff_failed++;
4202                         break; /* while !buffer_info->skb */
4203                 }
4204
4205                 /*
4206                  * XXX if it was allocated cleanly it will never map to a
4207                  * boundary crossing
4208                  */
4209
4210                 /* Fix for errata 23, can't cross 64kB boundary */
4211                 if (!e1000_check_64k_bound(adapter,
4212                                         (void *)(unsigned long)buffer_info->dma,
4213                                         adapter->rx_buffer_len)) {
4214                         e_err(rx_err, "dma align check failed: %u bytes at "
4215                               "%p\n", adapter->rx_buffer_len,
4216                               (void *)(unsigned long)buffer_info->dma);
4217                         dev_kfree_skb(skb);
4218                         buffer_info->skb = NULL;
4219
4220                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4221                                          adapter->rx_buffer_len,
4222                                          DMA_FROM_DEVICE);
4223                         buffer_info->dma = 0;
4224
4225                         adapter->alloc_rx_buff_failed++;
4226                         break; /* while !buffer_info->skb */
4227                 }
4228                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4229                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4230
4231                 if (unlikely(++i == rx_ring->count))
4232                         i = 0;
4233                 buffer_info = &rx_ring->buffer_info[i];
4234         }
4235
4236         if (likely(rx_ring->next_to_use != i)) {
4237                 rx_ring->next_to_use = i;
4238                 if (unlikely(i-- == 0))
4239                         i = (rx_ring->count - 1);
4240
4241                 /* Force memory writes to complete before letting h/w
4242                  * know there are new descriptors to fetch.  (Only
4243                  * applicable for weak-ordered memory model archs,
4244                  * such as IA-64). */
4245                 wmb();
4246                 writel(i, hw->hw_addr + rx_ring->rdt);
4247         }
4248 }
4249
4250 /**
4251  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4252  * @adapter:
4253  **/
4254
4255 static void e1000_smartspeed(struct e1000_adapter *adapter)
4256 {
4257         struct e1000_hw *hw = &adapter->hw;
4258         u16 phy_status;
4259         u16 phy_ctrl;
4260
4261         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4262            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4263                 return;
4264
4265         if (adapter->smartspeed == 0) {
4266                 /* If Master/Slave config fault is asserted twice,
4267                  * we assume back-to-back */
4268                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4269                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4270                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4271                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4272                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4273                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4274                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4275                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4276                                             phy_ctrl);
4277                         adapter->smartspeed++;
4278                         if (!e1000_phy_setup_autoneg(hw) &&
4279                            !e1000_read_phy_reg(hw, PHY_CTRL,
4280                                                &phy_ctrl)) {
4281                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4282                                              MII_CR_RESTART_AUTO_NEG);
4283                                 e1000_write_phy_reg(hw, PHY_CTRL,
4284                                                     phy_ctrl);
4285                         }
4286                 }
4287                 return;
4288         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4289                 /* If still no link, perhaps using 2/3 pair cable */
4290                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4291                 phy_ctrl |= CR_1000T_MS_ENABLE;
4292                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4293                 if (!e1000_phy_setup_autoneg(hw) &&
4294                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4295                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4296                                      MII_CR_RESTART_AUTO_NEG);
4297                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4298                 }
4299         }
4300         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4301         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4302                 adapter->smartspeed = 0;
4303 }
4304
4305 /**
4306  * e1000_ioctl -
4307  * @netdev:
4308  * @ifreq:
4309  * @cmd:
4310  **/
4311
4312 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4313 {
4314         switch (cmd) {
4315         case SIOCGMIIPHY:
4316         case SIOCGMIIREG:
4317         case SIOCSMIIREG:
4318                 return e1000_mii_ioctl(netdev, ifr, cmd);
4319         default:
4320                 return -EOPNOTSUPP;
4321         }
4322 }
4323
4324 /**
4325  * e1000_mii_ioctl -
4326  * @netdev:
4327  * @ifreq:
4328  * @cmd:
4329  **/
4330
4331 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4332                            int cmd)
4333 {
4334         struct e1000_adapter *adapter = netdev_priv(netdev);
4335         struct e1000_hw *hw = &adapter->hw;
4336         struct mii_ioctl_data *data = if_mii(ifr);
4337         int retval;
4338         u16 mii_reg;
4339         u16 spddplx;
4340         unsigned long flags;
4341
4342         if (hw->media_type != e1000_media_type_copper)
4343                 return -EOPNOTSUPP;
4344
4345         switch (cmd) {
4346         case SIOCGMIIPHY:
4347                 data->phy_id = hw->phy_addr;
4348                 break;
4349         case SIOCGMIIREG:
4350                 spin_lock_irqsave(&adapter->stats_lock, flags);
4351                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4352                                    &data->val_out)) {
4353                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4354                         return -EIO;
4355                 }
4356                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4357                 break;
4358         case SIOCSMIIREG:
4359                 if (data->reg_num & ~(0x1F))
4360                         return -EFAULT;
4361                 mii_reg = data->val_in;
4362                 spin_lock_irqsave(&adapter->stats_lock, flags);
4363                 if (e1000_write_phy_reg(hw, data->reg_num,
4364                                         mii_reg)) {
4365                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4366                         return -EIO;
4367                 }
4368                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4369                 if (hw->media_type == e1000_media_type_copper) {
4370                         switch (data->reg_num) {
4371                         case PHY_CTRL:
4372                                 if (mii_reg & MII_CR_POWER_DOWN)
4373                                         break;
4374                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4375                                         hw->autoneg = 1;
4376                                         hw->autoneg_advertised = 0x2F;
4377                                 } else {
4378                                         if (mii_reg & 0x40)
4379                                                 spddplx = SPEED_1000;
4380                                         else if (mii_reg & 0x2000)
4381                                                 spddplx = SPEED_100;
4382                                         else
4383                                                 spddplx = SPEED_10;
4384                                         spddplx += (mii_reg & 0x100)
4385                                                    ? DUPLEX_FULL :
4386                                                    DUPLEX_HALF;
4387                                         retval = e1000_set_spd_dplx(adapter,
4388                                                                     spddplx);
4389                                         if (retval)
4390                                                 return retval;
4391                                 }
4392                                 if (netif_running(adapter->netdev))
4393                                         e1000_reinit_locked(adapter);
4394                                 else
4395                                         e1000_reset(adapter);
4396                                 break;
4397                         case M88E1000_PHY_SPEC_CTRL:
4398                         case M88E1000_EXT_PHY_SPEC_CTRL:
4399                                 if (e1000_phy_reset(hw))
4400                                         return -EIO;
4401                                 break;
4402                         }
4403                 } else {
4404                         switch (data->reg_num) {
4405                         case PHY_CTRL:
4406                                 if (mii_reg & MII_CR_POWER_DOWN)
4407                                         break;
4408                                 if (netif_running(adapter->netdev))
4409                                         e1000_reinit_locked(adapter);
4410                                 else
4411                                         e1000_reset(adapter);
4412                                 break;
4413                         }
4414                 }
4415                 break;
4416         default:
4417                 return -EOPNOTSUPP;
4418         }
4419         return E1000_SUCCESS;
4420 }
4421
4422 void e1000_pci_set_mwi(struct e1000_hw *hw)
4423 {
4424         struct e1000_adapter *adapter = hw->back;
4425         int ret_val = pci_set_mwi(adapter->pdev);
4426
4427         if (ret_val)
4428                 e_err(probe, "Error in setting MWI\n");
4429 }
4430
4431 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4432 {
4433         struct e1000_adapter *adapter = hw->back;
4434
4435         pci_clear_mwi(adapter->pdev);
4436 }
4437
4438 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4439 {
4440         struct e1000_adapter *adapter = hw->back;
4441         return pcix_get_mmrbc(adapter->pdev);
4442 }
4443
4444 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4445 {
4446         struct e1000_adapter *adapter = hw->back;
4447         pcix_set_mmrbc(adapter->pdev, mmrbc);
4448 }
4449
4450 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4451 {
4452         outl(value, port);
4453 }
4454
4455 static void e1000_vlan_rx_register(struct net_device *netdev,
4456                                    struct vlan_group *grp)
4457 {
4458         struct e1000_adapter *adapter = netdev_priv(netdev);
4459         struct e1000_hw *hw = &adapter->hw;
4460         u32 ctrl, rctl;
4461
4462         if (!test_bit(__E1000_DOWN, &adapter->flags))
4463                 e1000_irq_disable(adapter);
4464         adapter->vlgrp = grp;
4465
4466         if (grp) {
4467                 /* enable VLAN tag insert/strip */
4468                 ctrl = er32(CTRL);
4469                 ctrl |= E1000_CTRL_VME;
4470                 ew32(CTRL, ctrl);
4471
4472                 /* enable VLAN receive filtering */
4473                 rctl = er32(RCTL);
4474                 rctl &= ~E1000_RCTL_CFIEN;
4475                 if (!(netdev->flags & IFF_PROMISC))
4476                         rctl |= E1000_RCTL_VFE;
4477                 ew32(RCTL, rctl);
4478                 e1000_update_mng_vlan(adapter);
4479         } else {
4480                 /* disable VLAN tag insert/strip */
4481                 ctrl = er32(CTRL);
4482                 ctrl &= ~E1000_CTRL_VME;
4483                 ew32(CTRL, ctrl);
4484
4485                 /* disable VLAN receive filtering */
4486                 rctl = er32(RCTL);
4487                 rctl &= ~E1000_RCTL_VFE;
4488                 ew32(RCTL, rctl);
4489
4490                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4491                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4492                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4493                 }
4494         }
4495
4496         if (!test_bit(__E1000_DOWN, &adapter->flags))
4497                 e1000_irq_enable(adapter);
4498 }
4499
4500 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4501 {
4502         struct e1000_adapter *adapter = netdev_priv(netdev);
4503         struct e1000_hw *hw = &adapter->hw;
4504         u32 vfta, index;
4505
4506         if ((hw->mng_cookie.status &
4507              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4508             (vid == adapter->mng_vlan_id))
4509                 return;
4510         /* add VID to filter table */
4511         index = (vid >> 5) & 0x7F;
4512         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4513         vfta |= (1 << (vid & 0x1F));
4514         e1000_write_vfta(hw, index, vfta);
4515 }
4516
4517 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4518 {
4519         struct e1000_adapter *adapter = netdev_priv(netdev);
4520         struct e1000_hw *hw = &adapter->hw;
4521         u32 vfta, index;
4522
4523         if (!test_bit(__E1000_DOWN, &adapter->flags))
4524                 e1000_irq_disable(adapter);
4525         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4526         if (!test_bit(__E1000_DOWN, &adapter->flags))
4527                 e1000_irq_enable(adapter);
4528
4529         /* remove VID from filter table */
4530         index = (vid >> 5) & 0x7F;
4531         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4532         vfta &= ~(1 << (vid & 0x1F));
4533         e1000_write_vfta(hw, index, vfta);
4534 }
4535
4536 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4537 {
4538         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4539
4540         if (adapter->vlgrp) {
4541                 u16 vid;
4542                 for (vid = 0; vid < VLAN_N_VID; vid++) {
4543                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4544                                 continue;
4545                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4546                 }
4547         }
4548 }
4549
4550 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4551 {
4552         struct e1000_hw *hw = &adapter->hw;
4553
4554         hw->autoneg = 0;
4555
4556         /* Fiber NICs only allow 1000 gbps Full duplex */
4557         if ((hw->media_type == e1000_media_type_fiber) &&
4558                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4559                 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4560                 return -EINVAL;
4561         }
4562
4563         switch (spddplx) {
4564         case SPEED_10 + DUPLEX_HALF:
4565                 hw->forced_speed_duplex = e1000_10_half;
4566                 break;
4567         case SPEED_10 + DUPLEX_FULL:
4568                 hw->forced_speed_duplex = e1000_10_full;
4569                 break;
4570         case SPEED_100 + DUPLEX_HALF:
4571                 hw->forced_speed_duplex = e1000_100_half;
4572                 break;
4573         case SPEED_100 + DUPLEX_FULL:
4574                 hw->forced_speed_duplex = e1000_100_full;
4575                 break;
4576         case SPEED_1000 + DUPLEX_FULL:
4577                 hw->autoneg = 1;
4578                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4579                 break;
4580         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4581         default:
4582                 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4583                 return -EINVAL;
4584         }
4585         return 0;
4586 }
4587
4588 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4589 {
4590         struct net_device *netdev = pci_get_drvdata(pdev);
4591         struct e1000_adapter *adapter = netdev_priv(netdev);
4592         struct e1000_hw *hw = &adapter->hw;
4593         u32 ctrl, ctrl_ext, rctl, status;
4594         u32 wufc = adapter->wol;
4595 #ifdef CONFIG_PM
4596         int retval = 0;
4597 #endif
4598
4599         netif_device_detach(netdev);
4600
4601         if (netif_running(netdev)) {
4602                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4603                 e1000_down(adapter);
4604         }
4605
4606 #ifdef CONFIG_PM
4607         retval = pci_save_state(pdev);
4608         if (retval)
4609                 return retval;
4610 #endif
4611
4612         status = er32(STATUS);
4613         if (status & E1000_STATUS_LU)
4614                 wufc &= ~E1000_WUFC_LNKC;
4615
4616         if (wufc) {
4617                 e1000_setup_rctl(adapter);
4618                 e1000_set_rx_mode(netdev);
4619
4620                 /* turn on all-multi mode if wake on multicast is enabled */
4621                 if (wufc & E1000_WUFC_MC) {
4622                         rctl = er32(RCTL);
4623                         rctl |= E1000_RCTL_MPE;
4624                         ew32(RCTL, rctl);
4625                 }
4626
4627                 if (hw->mac_type >= e1000_82540) {
4628                         ctrl = er32(CTRL);
4629                         /* advertise wake from D3Cold */
4630                         #define E1000_CTRL_ADVD3WUC 0x00100000
4631                         /* phy power management enable */
4632                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4633                         ctrl |= E1000_CTRL_ADVD3WUC |
4634                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4635                         ew32(CTRL, ctrl);
4636                 }
4637
4638                 if (hw->media_type == e1000_media_type_fiber ||
4639                     hw->media_type == e1000_media_type_internal_serdes) {
4640                         /* keep the laser running in D3 */
4641                         ctrl_ext = er32(CTRL_EXT);
4642                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4643                         ew32(CTRL_EXT, ctrl_ext);
4644                 }
4645
4646                 ew32(WUC, E1000_WUC_PME_EN);
4647                 ew32(WUFC, wufc);
4648         } else {
4649                 ew32(WUC, 0);
4650                 ew32(WUFC, 0);
4651         }
4652
4653         e1000_release_manageability(adapter);
4654
4655         *enable_wake = !!wufc;
4656
4657         /* make sure adapter isn't asleep if manageability is enabled */
4658         if (adapter->en_mng_pt)
4659                 *enable_wake = true;
4660
4661         if (netif_running(netdev))
4662                 e1000_free_irq(adapter);
4663
4664         pci_disable_device(pdev);
4665
4666         return 0;
4667 }
4668
4669 #ifdef CONFIG_PM
4670 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4671 {
4672         int retval;
4673         bool wake;
4674
4675         retval = __e1000_shutdown(pdev, &wake);
4676         if (retval)
4677                 return retval;
4678
4679         if (wake) {
4680                 pci_prepare_to_sleep(pdev);
4681         } else {
4682                 pci_wake_from_d3(pdev, false);
4683                 pci_set_power_state(pdev, PCI_D3hot);
4684         }
4685
4686         return 0;
4687 }
4688
4689 static int e1000_resume(struct pci_dev *pdev)
4690 {
4691         struct net_device *netdev = pci_get_drvdata(pdev);
4692         struct e1000_adapter *adapter = netdev_priv(netdev);
4693         struct e1000_hw *hw = &adapter->hw;
4694         u32 err;
4695
4696         pci_set_power_state(pdev, PCI_D0);
4697         pci_restore_state(pdev);
4698         pci_save_state(pdev);
4699
4700         if (adapter->need_ioport)
4701                 err = pci_enable_device(pdev);
4702         else
4703                 err = pci_enable_device_mem(pdev);
4704         if (err) {
4705                 pr_err("Cannot enable PCI device from suspend\n");
4706                 return err;
4707         }
4708         pci_set_master(pdev);
4709
4710         pci_enable_wake(pdev, PCI_D3hot, 0);
4711         pci_enable_wake(pdev, PCI_D3cold, 0);
4712
4713         if (netif_running(netdev)) {
4714                 err = e1000_request_irq(adapter);
4715                 if (err)
4716                         return err;
4717         }
4718
4719         e1000_power_up_phy(adapter);
4720         e1000_reset(adapter);
4721         ew32(WUS, ~0);
4722
4723         e1000_init_manageability(adapter);
4724
4725         if (netif_running(netdev))
4726                 e1000_up(adapter);
4727
4728         netif_device_attach(netdev);
4729
4730         return 0;
4731 }
4732 #endif
4733
4734 static void e1000_shutdown(struct pci_dev *pdev)
4735 {
4736         bool wake;
4737
4738         __e1000_shutdown(pdev, &wake);
4739
4740         if (system_state == SYSTEM_POWER_OFF) {
4741                 pci_wake_from_d3(pdev, wake);
4742                 pci_set_power_state(pdev, PCI_D3hot);
4743         }
4744 }
4745
4746 #ifdef CONFIG_NET_POLL_CONTROLLER
4747 /*
4748  * Polling 'interrupt' - used by things like netconsole to send skbs
4749  * without having to re-enable interrupts. It's not called while
4750  * the interrupt routine is executing.
4751  */
4752 static void e1000_netpoll(struct net_device *netdev)
4753 {
4754         struct e1000_adapter *adapter = netdev_priv(netdev);
4755
4756         disable_irq(adapter->pdev->irq);
4757         e1000_intr(adapter->pdev->irq, netdev);
4758         enable_irq(adapter->pdev->irq);
4759 }
4760 #endif
4761
4762 /**
4763  * e1000_io_error_detected - called when PCI error is detected
4764  * @pdev: Pointer to PCI device
4765  * @state: The current pci connection state
4766  *
4767  * This function is called after a PCI bus error affecting
4768  * this device has been detected.
4769  */
4770 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4771                                                 pci_channel_state_t state)
4772 {
4773         struct net_device *netdev = pci_get_drvdata(pdev);
4774         struct e1000_adapter *adapter = netdev_priv(netdev);
4775
4776         netif_device_detach(netdev);
4777
4778         if (state == pci_channel_io_perm_failure)
4779                 return PCI_ERS_RESULT_DISCONNECT;
4780
4781         if (netif_running(netdev))
4782                 e1000_down(adapter);
4783         pci_disable_device(pdev);
4784
4785         /* Request a slot slot reset. */
4786         return PCI_ERS_RESULT_NEED_RESET;
4787 }
4788
4789 /**
4790  * e1000_io_slot_reset - called after the pci bus has been reset.
4791  * @pdev: Pointer to PCI device
4792  *
4793  * Restart the card from scratch, as if from a cold-boot. Implementation
4794  * resembles the first-half of the e1000_resume routine.
4795  */
4796 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4797 {
4798         struct net_device *netdev = pci_get_drvdata(pdev);
4799         struct e1000_adapter *adapter = netdev_priv(netdev);
4800         struct e1000_hw *hw = &adapter->hw;
4801         int err;
4802
4803         if (adapter->need_ioport)
4804                 err = pci_enable_device(pdev);
4805         else
4806                 err = pci_enable_device_mem(pdev);
4807         if (err) {
4808                 pr_err("Cannot re-enable PCI device after reset.\n");
4809                 return PCI_ERS_RESULT_DISCONNECT;
4810         }
4811         pci_set_master(pdev);
4812
4813         pci_enable_wake(pdev, PCI_D3hot, 0);
4814         pci_enable_wake(pdev, PCI_D3cold, 0);
4815
4816         e1000_reset(adapter);
4817         ew32(WUS, ~0);
4818
4819         return PCI_ERS_RESULT_RECOVERED;
4820 }
4821
4822 /**
4823  * e1000_io_resume - called when traffic can start flowing again.
4824  * @pdev: Pointer to PCI device
4825  *
4826  * This callback is called when the error recovery driver tells us that
4827  * its OK to resume normal operation. Implementation resembles the
4828  * second-half of the e1000_resume routine.
4829  */
4830 static void e1000_io_resume(struct pci_dev *pdev)
4831 {
4832         struct net_device *netdev = pci_get_drvdata(pdev);
4833         struct e1000_adapter *adapter = netdev_priv(netdev);
4834
4835         e1000_init_manageability(adapter);
4836
4837         if (netif_running(netdev)) {
4838                 if (e1000_up(adapter)) {
4839                         pr_info("can't bring device back up after reset\n");
4840                         return;
4841                 }
4842         }
4843
4844         netif_device_attach(netdev);
4845 }
4846
4847 /* e1000_main.c */