e1000e: update comments listing supported parts for each MAC family
[firefly-linux-kernel-4.4.55.git] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  */
44
45 #include <linux/netdevice.h>
46 #include <linux/delay.h>
47 #include <linux/pci.h>
48
49 #include "e1000.h"
50
51 #define ID_LED_RESERVED_F746 0xF746
52 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
53                               (ID_LED_OFF1_ON2  <<  8) | \
54                               (ID_LED_DEF1_DEF2 <<  4) | \
55                               (ID_LED_DEF1_DEF2))
56
57 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
58
59 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
60
61 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
62 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
63 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
64 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
65                                       u16 words, u16 *data);
66 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
67 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
68 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
69 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
70 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
71 static s32 e1000_led_on_82574(struct e1000_hw *hw);
72
73 /**
74  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
75  *  @hw: pointer to the HW structure
76  *
77  *  This is a function pointer entry point called by the api module.
78  **/
79 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
80 {
81         struct e1000_phy_info *phy = &hw->phy;
82         s32 ret_val;
83
84         if (hw->phy.media_type != e1000_media_type_copper) {
85                 phy->type = e1000_phy_none;
86                 return 0;
87         }
88
89         phy->addr                        = 1;
90         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
91         phy->reset_delay_us              = 100;
92
93         switch (hw->mac.type) {
94         case e1000_82571:
95         case e1000_82572:
96                 phy->type                = e1000_phy_igp_2;
97                 break;
98         case e1000_82573:
99                 phy->type                = e1000_phy_m88;
100                 break;
101         case e1000_82574:
102                 phy->type                = e1000_phy_bm;
103                 break;
104         default:
105                 return -E1000_ERR_PHY;
106                 break;
107         }
108
109         /* This can only be done after all function pointers are setup. */
110         ret_val = e1000_get_phy_id_82571(hw);
111
112         /* Verify phy id */
113         switch (hw->mac.type) {
114         case e1000_82571:
115         case e1000_82572:
116                 if (phy->id != IGP01E1000_I_PHY_ID)
117                         return -E1000_ERR_PHY;
118                 break;
119         case e1000_82573:
120                 if (phy->id != M88E1111_I_PHY_ID)
121                         return -E1000_ERR_PHY;
122                 break;
123         case e1000_82574:
124                 if (phy->id != BME1000_E_PHY_ID_R2)
125                         return -E1000_ERR_PHY;
126                 break;
127         default:
128                 return -E1000_ERR_PHY;
129                 break;
130         }
131
132         return 0;
133 }
134
135 /**
136  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
137  *  @hw: pointer to the HW structure
138  *
139  *  This is a function pointer entry point called by the api module.
140  **/
141 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
142 {
143         struct e1000_nvm_info *nvm = &hw->nvm;
144         u32 eecd = er32(EECD);
145         u16 size;
146
147         nvm->opcode_bits = 8;
148         nvm->delay_usec = 1;
149         switch (nvm->override) {
150         case e1000_nvm_override_spi_large:
151                 nvm->page_size = 32;
152                 nvm->address_bits = 16;
153                 break;
154         case e1000_nvm_override_spi_small:
155                 nvm->page_size = 8;
156                 nvm->address_bits = 8;
157                 break;
158         default:
159                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
160                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
161                 break;
162         }
163
164         switch (hw->mac.type) {
165         case e1000_82573:
166         case e1000_82574:
167                 if (((eecd >> 15) & 0x3) == 0x3) {
168                         nvm->type = e1000_nvm_flash_hw;
169                         nvm->word_size = 2048;
170                         /*
171                          * Autonomous Flash update bit must be cleared due
172                          * to Flash update issue.
173                          */
174                         eecd &= ~E1000_EECD_AUPDEN;
175                         ew32(EECD, eecd);
176                         break;
177                 }
178                 /* Fall Through */
179         default:
180                 nvm->type = e1000_nvm_eeprom_spi;
181                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
182                                   E1000_EECD_SIZE_EX_SHIFT);
183                 /*
184                  * Added to a constant, "size" becomes the left-shift value
185                  * for setting word_size.
186                  */
187                 size += NVM_WORD_SIZE_BASE_SHIFT;
188
189                 /* EEPROM access above 16k is unsupported */
190                 if (size > 14)
191                         size = 14;
192                 nvm->word_size  = 1 << size;
193                 break;
194         }
195
196         return 0;
197 }
198
199 /**
200  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
201  *  @hw: pointer to the HW structure
202  *
203  *  This is a function pointer entry point called by the api module.
204  **/
205 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
206 {
207         struct e1000_hw *hw = &adapter->hw;
208         struct e1000_mac_info *mac = &hw->mac;
209         struct e1000_mac_operations *func = &mac->ops;
210
211         /* Set media type */
212         switch (adapter->pdev->device) {
213         case E1000_DEV_ID_82571EB_FIBER:
214         case E1000_DEV_ID_82572EI_FIBER:
215         case E1000_DEV_ID_82571EB_QUAD_FIBER:
216                 hw->phy.media_type = e1000_media_type_fiber;
217                 break;
218         case E1000_DEV_ID_82571EB_SERDES:
219         case E1000_DEV_ID_82572EI_SERDES:
220         case E1000_DEV_ID_82571EB_SERDES_DUAL:
221         case E1000_DEV_ID_82571EB_SERDES_QUAD:
222                 hw->phy.media_type = e1000_media_type_internal_serdes;
223                 break;
224         default:
225                 hw->phy.media_type = e1000_media_type_copper;
226                 break;
227         }
228
229         /* Set mta register count */
230         mac->mta_reg_count = 128;
231         /* Set rar entry count */
232         mac->rar_entry_count = E1000_RAR_ENTRIES;
233         /* Set if manageability features are enabled. */
234         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
235
236         /* check for link */
237         switch (hw->phy.media_type) {
238         case e1000_media_type_copper:
239                 func->setup_physical_interface = e1000_setup_copper_link_82571;
240                 func->check_for_link = e1000e_check_for_copper_link;
241                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
242                 break;
243         case e1000_media_type_fiber:
244                 func->setup_physical_interface =
245                         e1000_setup_fiber_serdes_link_82571;
246                 func->check_for_link = e1000e_check_for_fiber_link;
247                 func->get_link_up_info =
248                         e1000e_get_speed_and_duplex_fiber_serdes;
249                 break;
250         case e1000_media_type_internal_serdes:
251                 func->setup_physical_interface =
252                         e1000_setup_fiber_serdes_link_82571;
253                 func->check_for_link = e1000e_check_for_serdes_link;
254                 func->get_link_up_info =
255                         e1000e_get_speed_and_duplex_fiber_serdes;
256                 break;
257         default:
258                 return -E1000_ERR_CONFIG;
259                 break;
260         }
261
262         switch (hw->mac.type) {
263         case e1000_82574:
264                 func->check_mng_mode = e1000_check_mng_mode_82574;
265                 func->led_on = e1000_led_on_82574;
266                 break;
267         default:
268                 func->check_mng_mode = e1000e_check_mng_mode_generic;
269                 func->led_on = e1000e_led_on_generic;
270                 break;
271         }
272
273         return 0;
274 }
275
276 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
277 {
278         struct e1000_hw *hw = &adapter->hw;
279         static int global_quad_port_a; /* global port a indication */
280         struct pci_dev *pdev = adapter->pdev;
281         u16 eeprom_data = 0;
282         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
283         s32 rc;
284
285         rc = e1000_init_mac_params_82571(adapter);
286         if (rc)
287                 return rc;
288
289         rc = e1000_init_nvm_params_82571(hw);
290         if (rc)
291                 return rc;
292
293         rc = e1000_init_phy_params_82571(hw);
294         if (rc)
295                 return rc;
296
297         /* tag quad port adapters first, it's used below */
298         switch (pdev->device) {
299         case E1000_DEV_ID_82571EB_QUAD_COPPER:
300         case E1000_DEV_ID_82571EB_QUAD_FIBER:
301         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
302         case E1000_DEV_ID_82571PT_QUAD_COPPER:
303                 adapter->flags |= FLAG_IS_QUAD_PORT;
304                 /* mark the first port */
305                 if (global_quad_port_a == 0)
306                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
307                 /* Reset for multiple quad port adapters */
308                 global_quad_port_a++;
309                 if (global_quad_port_a == 4)
310                         global_quad_port_a = 0;
311                 break;
312         default:
313                 break;
314         }
315
316         switch (adapter->hw.mac.type) {
317         case e1000_82571:
318                 /* these dual ports don't have WoL on port B at all */
319                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
320                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
321                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
322                     (is_port_b))
323                         adapter->flags &= ~FLAG_HAS_WOL;
324                 /* quad ports only support WoL on port A */
325                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
326                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
327                         adapter->flags &= ~FLAG_HAS_WOL;
328                 /* Does not support WoL on any port */
329                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
330                         adapter->flags &= ~FLAG_HAS_WOL;
331                 break;
332
333         case e1000_82573:
334                 if (pdev->device == E1000_DEV_ID_82573L) {
335                         e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
336                                        &eeprom_data);
337                         if (eeprom_data & NVM_WORD1A_ASPM_MASK)
338                                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
339                 }
340                 break;
341         default:
342                 break;
343         }
344
345         return 0;
346 }
347
348 /**
349  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
350  *  @hw: pointer to the HW structure
351  *
352  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
353  *  revision in the hardware structure.
354  **/
355 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
356 {
357         struct e1000_phy_info *phy = &hw->phy;
358         s32 ret_val;
359         u16 phy_id = 0;
360
361         switch (hw->mac.type) {
362         case e1000_82571:
363         case e1000_82572:
364                 /*
365                  * The 82571 firmware may still be configuring the PHY.
366                  * In this case, we cannot access the PHY until the
367                  * configuration is done.  So we explicitly set the
368                  * PHY ID.
369                  */
370                 phy->id = IGP01E1000_I_PHY_ID;
371                 break;
372         case e1000_82573:
373                 return e1000e_get_phy_id(hw);
374                 break;
375         case e1000_82574:
376                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
377                 if (ret_val)
378                         return ret_val;
379
380                 phy->id = (u32)(phy_id << 16);
381                 udelay(20);
382                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
383                 if (ret_val)
384                         return ret_val;
385
386                 phy->id |= (u32)(phy_id);
387                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
388                 break;
389         default:
390                 return -E1000_ERR_PHY;
391                 break;
392         }
393
394         return 0;
395 }
396
397 /**
398  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
399  *  @hw: pointer to the HW structure
400  *
401  *  Acquire the HW semaphore to access the PHY or NVM
402  **/
403 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
404 {
405         u32 swsm;
406         s32 timeout = hw->nvm.word_size + 1;
407         s32 i = 0;
408
409         /* Get the FW semaphore. */
410         for (i = 0; i < timeout; i++) {
411                 swsm = er32(SWSM);
412                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
413
414                 /* Semaphore acquired if bit latched */
415                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
416                         break;
417
418                 udelay(50);
419         }
420
421         if (i == timeout) {
422                 /* Release semaphores */
423                 e1000e_put_hw_semaphore(hw);
424                 hw_dbg(hw, "Driver can't access the NVM\n");
425                 return -E1000_ERR_NVM;
426         }
427
428         return 0;
429 }
430
431 /**
432  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
433  *  @hw: pointer to the HW structure
434  *
435  *  Release hardware semaphore used to access the PHY or NVM
436  **/
437 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
438 {
439         u32 swsm;
440
441         swsm = er32(SWSM);
442
443         swsm &= ~E1000_SWSM_SWESMBI;
444
445         ew32(SWSM, swsm);
446 }
447
448 /**
449  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
450  *  @hw: pointer to the HW structure
451  *
452  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
453  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
454  *  for EEPROM access grant bit.  If the access grant bit is not set, release
455  *  hardware semaphore.
456  **/
457 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
458 {
459         s32 ret_val;
460
461         ret_val = e1000_get_hw_semaphore_82571(hw);
462         if (ret_val)
463                 return ret_val;
464
465         if (hw->mac.type != e1000_82573 && hw->mac.type != e1000_82574)
466                 ret_val = e1000e_acquire_nvm(hw);
467
468         if (ret_val)
469                 e1000_put_hw_semaphore_82571(hw);
470
471         return ret_val;
472 }
473
474 /**
475  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
476  *  @hw: pointer to the HW structure
477  *
478  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
479  **/
480 static void e1000_release_nvm_82571(struct e1000_hw *hw)
481 {
482         e1000e_release_nvm(hw);
483         e1000_put_hw_semaphore_82571(hw);
484 }
485
486 /**
487  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
488  *  @hw: pointer to the HW structure
489  *  @offset: offset within the EEPROM to be written to
490  *  @words: number of words to write
491  *  @data: 16 bit word(s) to be written to the EEPROM
492  *
493  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
494  *
495  *  If e1000e_update_nvm_checksum is not called after this function, the
496  *  EEPROM will most likely contain an invalid checksum.
497  **/
498 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
499                                  u16 *data)
500 {
501         s32 ret_val;
502
503         switch (hw->mac.type) {
504         case e1000_82573:
505         case e1000_82574:
506                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
507                 break;
508         case e1000_82571:
509         case e1000_82572:
510                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
511                 break;
512         default:
513                 ret_val = -E1000_ERR_NVM;
514                 break;
515         }
516
517         return ret_val;
518 }
519
520 /**
521  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
522  *  @hw: pointer to the HW structure
523  *
524  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
525  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
526  *  value to the EEPROM.
527  **/
528 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
529 {
530         u32 eecd;
531         s32 ret_val;
532         u16 i;
533
534         ret_val = e1000e_update_nvm_checksum_generic(hw);
535         if (ret_val)
536                 return ret_val;
537
538         /*
539          * If our nvm is an EEPROM, then we're done
540          * otherwise, commit the checksum to the flash NVM.
541          */
542         if (hw->nvm.type != e1000_nvm_flash_hw)
543                 return ret_val;
544
545         /* Check for pending operations. */
546         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
547                 msleep(1);
548                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
549                         break;
550         }
551
552         if (i == E1000_FLASH_UPDATES)
553                 return -E1000_ERR_NVM;
554
555         /* Reset the firmware if using STM opcode. */
556         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
557                 /*
558                  * The enabling of and the actual reset must be done
559                  * in two write cycles.
560                  */
561                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
562                 e1e_flush();
563                 ew32(HICR, E1000_HICR_FW_RESET);
564         }
565
566         /* Commit the write to flash */
567         eecd = er32(EECD) | E1000_EECD_FLUPD;
568         ew32(EECD, eecd);
569
570         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
571                 msleep(1);
572                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
573                         break;
574         }
575
576         if (i == E1000_FLASH_UPDATES)
577                 return -E1000_ERR_NVM;
578
579         return 0;
580 }
581
582 /**
583  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
584  *  @hw: pointer to the HW structure
585  *
586  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
587  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
588  **/
589 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
590 {
591         if (hw->nvm.type == e1000_nvm_flash_hw)
592                 e1000_fix_nvm_checksum_82571(hw);
593
594         return e1000e_validate_nvm_checksum_generic(hw);
595 }
596
597 /**
598  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
599  *  @hw: pointer to the HW structure
600  *  @offset: offset within the EEPROM to be written to
601  *  @words: number of words to write
602  *  @data: 16 bit word(s) to be written to the EEPROM
603  *
604  *  After checking for invalid values, poll the EEPROM to ensure the previous
605  *  command has completed before trying to write the next word.  After write
606  *  poll for completion.
607  *
608  *  If e1000e_update_nvm_checksum is not called after this function, the
609  *  EEPROM will most likely contain an invalid checksum.
610  **/
611 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
612                                       u16 words, u16 *data)
613 {
614         struct e1000_nvm_info *nvm = &hw->nvm;
615         u32 i;
616         u32 eewr = 0;
617         s32 ret_val = 0;
618
619         /*
620          * A check for invalid values:  offset too large, too many words,
621          * and not enough words.
622          */
623         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
624             (words == 0)) {
625                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
626                 return -E1000_ERR_NVM;
627         }
628
629         for (i = 0; i < words; i++) {
630                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
631                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
632                        E1000_NVM_RW_REG_START;
633
634                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
635                 if (ret_val)
636                         break;
637
638                 ew32(EEWR, eewr);
639
640                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
641                 if (ret_val)
642                         break;
643         }
644
645         return ret_val;
646 }
647
648 /**
649  *  e1000_get_cfg_done_82571 - Poll for configuration done
650  *  @hw: pointer to the HW structure
651  *
652  *  Reads the management control register for the config done bit to be set.
653  **/
654 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
655 {
656         s32 timeout = PHY_CFG_TIMEOUT;
657
658         while (timeout) {
659                 if (er32(EEMNGCTL) &
660                     E1000_NVM_CFG_DONE_PORT_0)
661                         break;
662                 msleep(1);
663                 timeout--;
664         }
665         if (!timeout) {
666                 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
667                 return -E1000_ERR_RESET;
668         }
669
670         return 0;
671 }
672
673 /**
674  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
675  *  @hw: pointer to the HW structure
676  *  @active: TRUE to enable LPLU, FALSE to disable
677  *
678  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
679  *  this function also disables smart speed and vice versa.  LPLU will not be
680  *  activated unless the device autonegotiation advertisement meets standards
681  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
682  *  pointer entry point only called by PHY setup routines.
683  **/
684 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
685 {
686         struct e1000_phy_info *phy = &hw->phy;
687         s32 ret_val;
688         u16 data;
689
690         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
691         if (ret_val)
692                 return ret_val;
693
694         if (active) {
695                 data |= IGP02E1000_PM_D0_LPLU;
696                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
697                 if (ret_val)
698                         return ret_val;
699
700                 /* When LPLU is enabled, we should disable SmartSpeed */
701                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
702                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
703                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
704                 if (ret_val)
705                         return ret_val;
706         } else {
707                 data &= ~IGP02E1000_PM_D0_LPLU;
708                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
709                 /*
710                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
711                  * during Dx states where the power conservation is most
712                  * important.  During driver activity we should enable
713                  * SmartSpeed, so performance is maintained.
714                  */
715                 if (phy->smart_speed == e1000_smart_speed_on) {
716                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
717                                            &data);
718                         if (ret_val)
719                                 return ret_val;
720
721                         data |= IGP01E1000_PSCFR_SMART_SPEED;
722                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
723                                            data);
724                         if (ret_val)
725                                 return ret_val;
726                 } else if (phy->smart_speed == e1000_smart_speed_off) {
727                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
728                                            &data);
729                         if (ret_val)
730                                 return ret_val;
731
732                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
733                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
734                                            data);
735                         if (ret_val)
736                                 return ret_val;
737                 }
738         }
739
740         return 0;
741 }
742
743 /**
744  *  e1000_reset_hw_82571 - Reset hardware
745  *  @hw: pointer to the HW structure
746  *
747  *  This resets the hardware into a known state.  This is a
748  *  function pointer entry point called by the api module.
749  **/
750 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
751 {
752         u32 ctrl;
753         u32 extcnf_ctrl;
754         u32 ctrl_ext;
755         u32 icr;
756         s32 ret_val;
757         u16 i = 0;
758
759         /*
760          * Prevent the PCI-E bus from sticking if there is no TLP connection
761          * on the last TLP read/write transaction when MAC is reset.
762          */
763         ret_val = e1000e_disable_pcie_master(hw);
764         if (ret_val)
765                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
766
767         hw_dbg(hw, "Masking off all interrupts\n");
768         ew32(IMC, 0xffffffff);
769
770         ew32(RCTL, 0);
771         ew32(TCTL, E1000_TCTL_PSP);
772         e1e_flush();
773
774         msleep(10);
775
776         /*
777          * Must acquire the MDIO ownership before MAC reset.
778          * Ownership defaults to firmware after a reset.
779          */
780         if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
781                 extcnf_ctrl = er32(EXTCNF_CTRL);
782                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
783
784                 do {
785                         ew32(EXTCNF_CTRL, extcnf_ctrl);
786                         extcnf_ctrl = er32(EXTCNF_CTRL);
787
788                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
789                                 break;
790
791                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
792
793                         msleep(2);
794                         i++;
795                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
796         }
797
798         ctrl = er32(CTRL);
799
800         hw_dbg(hw, "Issuing a global reset to MAC\n");
801         ew32(CTRL, ctrl | E1000_CTRL_RST);
802
803         if (hw->nvm.type == e1000_nvm_flash_hw) {
804                 udelay(10);
805                 ctrl_ext = er32(CTRL_EXT);
806                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
807                 ew32(CTRL_EXT, ctrl_ext);
808                 e1e_flush();
809         }
810
811         ret_val = e1000e_get_auto_rd_done(hw);
812         if (ret_val)
813                 /* We don't want to continue accessing MAC registers. */
814                 return ret_val;
815
816         /*
817          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
818          * Need to wait for Phy configuration completion before accessing
819          * NVM and Phy.
820          */
821         if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574)
822                 msleep(25);
823
824         /* Clear any pending interrupt events. */
825         ew32(IMC, 0xffffffff);
826         icr = er32(ICR);
827
828         if (hw->mac.type == e1000_82571 &&
829                 hw->dev_spec.e82571.alt_mac_addr_is_present)
830                         e1000e_set_laa_state_82571(hw, true);
831
832         return 0;
833 }
834
835 /**
836  *  e1000_init_hw_82571 - Initialize hardware
837  *  @hw: pointer to the HW structure
838  *
839  *  This inits the hardware readying it for operation.
840  **/
841 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
842 {
843         struct e1000_mac_info *mac = &hw->mac;
844         u32 reg_data;
845         s32 ret_val;
846         u16 i;
847         u16 rar_count = mac->rar_entry_count;
848
849         e1000_initialize_hw_bits_82571(hw);
850
851         /* Initialize identification LED */
852         ret_val = e1000e_id_led_init(hw);
853         if (ret_val) {
854                 hw_dbg(hw, "Error initializing identification LED\n");
855                 return ret_val;
856         }
857
858         /* Disabling VLAN filtering */
859         hw_dbg(hw, "Initializing the IEEE VLAN\n");
860         e1000e_clear_vfta(hw);
861
862         /* Setup the receive address. */
863         /*
864          * If, however, a locally administered address was assigned to the
865          * 82571, we must reserve a RAR for it to work around an issue where
866          * resetting one port will reload the MAC on the other port.
867          */
868         if (e1000e_get_laa_state_82571(hw))
869                 rar_count--;
870         e1000e_init_rx_addrs(hw, rar_count);
871
872         /* Zero out the Multicast HASH table */
873         hw_dbg(hw, "Zeroing the MTA\n");
874         for (i = 0; i < mac->mta_reg_count; i++)
875                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
876
877         /* Setup link and flow control */
878         ret_val = e1000_setup_link_82571(hw);
879
880         /* Set the transmit descriptor write-back policy */
881         reg_data = er32(TXDCTL(0));
882         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
883                    E1000_TXDCTL_FULL_TX_DESC_WB |
884                    E1000_TXDCTL_COUNT_DESC;
885         ew32(TXDCTL(0), reg_data);
886
887         /* ...for both queues. */
888         if (mac->type != e1000_82573 && mac->type != e1000_82574) {
889                 reg_data = er32(TXDCTL(1));
890                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
891                            E1000_TXDCTL_FULL_TX_DESC_WB |
892                            E1000_TXDCTL_COUNT_DESC;
893                 ew32(TXDCTL(1), reg_data);
894         } else {
895                 e1000e_enable_tx_pkt_filtering(hw);
896                 reg_data = er32(GCR);
897                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
898                 ew32(GCR, reg_data);
899         }
900
901         /*
902          * Clear all of the statistics registers (clear on read).  It is
903          * important that we do this after we have tried to establish link
904          * because the symbol error count will increment wildly if there
905          * is no link.
906          */
907         e1000_clear_hw_cntrs_82571(hw);
908
909         return ret_val;
910 }
911
912 /**
913  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
914  *  @hw: pointer to the HW structure
915  *
916  *  Initializes required hardware-dependent bits needed for normal operation.
917  **/
918 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
919 {
920         u32 reg;
921
922         /* Transmit Descriptor Control 0 */
923         reg = er32(TXDCTL(0));
924         reg |= (1 << 22);
925         ew32(TXDCTL(0), reg);
926
927         /* Transmit Descriptor Control 1 */
928         reg = er32(TXDCTL(1));
929         reg |= (1 << 22);
930         ew32(TXDCTL(1), reg);
931
932         /* Transmit Arbitration Control 0 */
933         reg = er32(TARC(0));
934         reg &= ~(0xF << 27); /* 30:27 */
935         switch (hw->mac.type) {
936         case e1000_82571:
937         case e1000_82572:
938                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
939                 break;
940         default:
941                 break;
942         }
943         ew32(TARC(0), reg);
944
945         /* Transmit Arbitration Control 1 */
946         reg = er32(TARC(1));
947         switch (hw->mac.type) {
948         case e1000_82571:
949         case e1000_82572:
950                 reg &= ~((1 << 29) | (1 << 30));
951                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
952                 if (er32(TCTL) & E1000_TCTL_MULR)
953                         reg &= ~(1 << 28);
954                 else
955                         reg |= (1 << 28);
956                 ew32(TARC(1), reg);
957                 break;
958         default:
959                 break;
960         }
961
962         /* Device Control */
963         if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
964                 reg = er32(CTRL);
965                 reg &= ~(1 << 29);
966                 ew32(CTRL, reg);
967         }
968
969         /* Extended Device Control */
970         if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
971                 reg = er32(CTRL_EXT);
972                 reg &= ~(1 << 23);
973                 reg |= (1 << 22);
974                 ew32(CTRL_EXT, reg);
975         }
976
977         if (hw->mac.type == e1000_82571) {
978                 reg = er32(PBA_ECC);
979                 reg |= E1000_PBA_ECC_CORR_EN;
980                 ew32(PBA_ECC, reg);
981         }
982
983         /* PCI-Ex Control Register */
984         if (hw->mac.type == e1000_82574) {
985                 reg = er32(GCR);
986                 reg |= (1 << 22);
987                 ew32(GCR, reg);
988         }
989
990         return;
991 }
992
993 /**
994  *  e1000e_clear_vfta - Clear VLAN filter table
995  *  @hw: pointer to the HW structure
996  *
997  *  Clears the register array which contains the VLAN filter table by
998  *  setting all the values to 0.
999  **/
1000 void e1000e_clear_vfta(struct e1000_hw *hw)
1001 {
1002         u32 offset;
1003         u32 vfta_value = 0;
1004         u32 vfta_offset = 0;
1005         u32 vfta_bit_in_reg = 0;
1006
1007         if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
1008                 if (hw->mng_cookie.vlan_id != 0) {
1009                         /*
1010                          * The VFTA is a 4096b bit-field, each identifying
1011                          * a single VLAN ID.  The following operations
1012                          * determine which 32b entry (i.e. offset) into the
1013                          * array we want to set the VLAN ID (i.e. bit) of
1014                          * the manageability unit.
1015                          */
1016                         vfta_offset = (hw->mng_cookie.vlan_id >>
1017                                        E1000_VFTA_ENTRY_SHIFT) &
1018                                       E1000_VFTA_ENTRY_MASK;
1019                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1020                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1021                 }
1022         }
1023         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1024                 /*
1025                  * If the offset we want to clear is the same offset of the
1026                  * manageability VLAN ID, then clear all bits except that of
1027                  * the manageability unit.
1028                  */
1029                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1030                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1031                 e1e_flush();
1032         }
1033 }
1034
1035 /**
1036  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1037  *  @hw: pointer to the HW structure
1038  *
1039  *  Reads the NVM Initialization Control Word 2 and returns true
1040  *  (>0) if any manageability is enabled, else false (0).
1041  **/
1042 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1043 {
1044         u16 data;
1045
1046         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1047         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1048 }
1049
1050 /**
1051  *  e1000_led_on_82574 - Turn LED on
1052  *  @hw: pointer to the HW structure
1053  *
1054  *  Turn LED on.
1055  **/
1056 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1057 {
1058         u32 ctrl;
1059         u32 i;
1060
1061         ctrl = hw->mac.ledctl_mode2;
1062         if (!(E1000_STATUS_LU & er32(STATUS))) {
1063                 /*
1064                  * If no link, then turn LED on by setting the invert bit
1065                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1066                  */
1067                 for (i = 0; i < 4; i++)
1068                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1069                             E1000_LEDCTL_MODE_LED_ON)
1070                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1071         }
1072         ew32(LEDCTL, ctrl);
1073
1074         return 0;
1075 }
1076
1077 /**
1078  *  e1000_update_mc_addr_list_82571 - Update Multicast addresses
1079  *  @hw: pointer to the HW structure
1080  *  @mc_addr_list: array of multicast addresses to program
1081  *  @mc_addr_count: number of multicast addresses to program
1082  *  @rar_used_count: the first RAR register free to program
1083  *  @rar_count: total number of supported Receive Address Registers
1084  *
1085  *  Updates the Receive Address Registers and Multicast Table Array.
1086  *  The caller must have a packed mc_addr_list of multicast addresses.
1087  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1088  *  unless there are workarounds that change this.
1089  **/
1090 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1091                                             u8 *mc_addr_list,
1092                                             u32 mc_addr_count,
1093                                             u32 rar_used_count,
1094                                             u32 rar_count)
1095 {
1096         if (e1000e_get_laa_state_82571(hw))
1097                 rar_count--;
1098
1099         e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1100                                            rar_used_count, rar_count);
1101 }
1102
1103 /**
1104  *  e1000_setup_link_82571 - Setup flow control and link settings
1105  *  @hw: pointer to the HW structure
1106  *
1107  *  Determines which flow control settings to use, then configures flow
1108  *  control.  Calls the appropriate media-specific link configuration
1109  *  function.  Assuming the adapter has a valid link partner, a valid link
1110  *  should be established.  Assumes the hardware has previously been reset
1111  *  and the transmitter and receiver are not enabled.
1112  **/
1113 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1114 {
1115         /*
1116          * 82573 does not have a word in the NVM to determine
1117          * the default flow control setting, so we explicitly
1118          * set it to full.
1119          */
1120         if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) &&
1121             hw->fc.type == e1000_fc_default)
1122                 hw->fc.type = e1000_fc_full;
1123
1124         return e1000e_setup_link(hw);
1125 }
1126
1127 /**
1128  *  e1000_setup_copper_link_82571 - Configure copper link settings
1129  *  @hw: pointer to the HW structure
1130  *
1131  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1132  *  for link, once link is established calls to configure collision distance
1133  *  and flow control are called.
1134  **/
1135 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1136 {
1137         u32 ctrl;
1138         u32 led_ctrl;
1139         s32 ret_val;
1140
1141         ctrl = er32(CTRL);
1142         ctrl |= E1000_CTRL_SLU;
1143         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1144         ew32(CTRL, ctrl);
1145
1146         switch (hw->phy.type) {
1147         case e1000_phy_m88:
1148         case e1000_phy_bm:
1149                 ret_val = e1000e_copper_link_setup_m88(hw);
1150                 break;
1151         case e1000_phy_igp_2:
1152                 ret_val = e1000e_copper_link_setup_igp(hw);
1153                 /* Setup activity LED */
1154                 led_ctrl = er32(LEDCTL);
1155                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1156                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1157                 ew32(LEDCTL, led_ctrl);
1158                 break;
1159         default:
1160                 return -E1000_ERR_PHY;
1161                 break;
1162         }
1163
1164         if (ret_val)
1165                 return ret_val;
1166
1167         ret_val = e1000e_setup_copper_link(hw);
1168
1169         return ret_val;
1170 }
1171
1172 /**
1173  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1174  *  @hw: pointer to the HW structure
1175  *
1176  *  Configures collision distance and flow control for fiber and serdes links.
1177  *  Upon successful setup, poll for link.
1178  **/
1179 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1180 {
1181         switch (hw->mac.type) {
1182         case e1000_82571:
1183         case e1000_82572:
1184                 /*
1185                  * If SerDes loopback mode is entered, there is no form
1186                  * of reset to take the adapter out of that mode.  So we
1187                  * have to explicitly take the adapter out of loopback
1188                  * mode.  This prevents drivers from twiddling their thumbs
1189                  * if another tool failed to take it out of loopback mode.
1190                  */
1191                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1192                 break;
1193         default:
1194                 break;
1195         }
1196
1197         return e1000e_setup_fiber_serdes_link(hw);
1198 }
1199
1200 /**
1201  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1202  *  @hw: pointer to the HW structure
1203  *  @data: pointer to the NVM (EEPROM)
1204  *
1205  *  Read the EEPROM for the current default LED configuration.  If the
1206  *  LED configuration is not valid, set to a valid LED configuration.
1207  **/
1208 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1209 {
1210         s32 ret_val;
1211
1212         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1213         if (ret_val) {
1214                 hw_dbg(hw, "NVM Read Error\n");
1215                 return ret_val;
1216         }
1217
1218         if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) &&
1219             *data == ID_LED_RESERVED_F746)
1220                 *data = ID_LED_DEFAULT_82573;
1221         else if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1222                 *data = ID_LED_DEFAULT;
1223
1224         return 0;
1225 }
1226
1227 /**
1228  *  e1000e_get_laa_state_82571 - Get locally administered address state
1229  *  @hw: pointer to the HW structure
1230  *
1231  *  Retrieve and return the current locally administered address state.
1232  **/
1233 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1234 {
1235         if (hw->mac.type != e1000_82571)
1236                 return 0;
1237
1238         return hw->dev_spec.e82571.laa_is_present;
1239 }
1240
1241 /**
1242  *  e1000e_set_laa_state_82571 - Set locally administered address state
1243  *  @hw: pointer to the HW structure
1244  *  @state: enable/disable locally administered address
1245  *
1246  *  Enable/Disable the current locally administers address state.
1247  **/
1248 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1249 {
1250         if (hw->mac.type != e1000_82571)
1251                 return;
1252
1253         hw->dev_spec.e82571.laa_is_present = state;
1254
1255         /* If workaround is activated... */
1256         if (state)
1257                 /*
1258                  * Hold a copy of the LAA in RAR[14] This is done so that
1259                  * between the time RAR[0] gets clobbered and the time it
1260                  * gets fixed, the actual LAA is in one of the RARs and no
1261                  * incoming packets directed to this port are dropped.
1262                  * Eventually the LAA will be in RAR[0] and RAR[14].
1263                  */
1264                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1265 }
1266
1267 /**
1268  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1269  *  @hw: pointer to the HW structure
1270  *
1271  *  Verifies that the EEPROM has completed the update.  After updating the
1272  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1273  *  the checksum fix is not implemented, we need to set the bit and update
1274  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1275  *  we need to return bad checksum.
1276  **/
1277 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1278 {
1279         struct e1000_nvm_info *nvm = &hw->nvm;
1280         s32 ret_val;
1281         u16 data;
1282
1283         if (nvm->type != e1000_nvm_flash_hw)
1284                 return 0;
1285
1286         /*
1287          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1288          * 10h-12h.  Checksum may need to be fixed.
1289          */
1290         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1291         if (ret_val)
1292                 return ret_val;
1293
1294         if (!(data & 0x10)) {
1295                 /*
1296                  * Read 0x23 and check bit 15.  This bit is a 1
1297                  * when the checksum has already been fixed.  If
1298                  * the checksum is still wrong and this bit is a
1299                  * 1, we need to return bad checksum.  Otherwise,
1300                  * we need to set this bit to a 1 and update the
1301                  * checksum.
1302                  */
1303                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1304                 if (ret_val)
1305                         return ret_val;
1306
1307                 if (!(data & 0x8000)) {
1308                         data |= 0x8000;
1309                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1310                         if (ret_val)
1311                                 return ret_val;
1312                         ret_val = e1000e_update_nvm_checksum(hw);
1313                 }
1314         }
1315
1316         return 0;
1317 }
1318
1319 /**
1320  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1321  *  @hw: pointer to the HW structure
1322  *
1323  *  Clears the hardware counters by reading the counter registers.
1324  **/
1325 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1326 {
1327         u32 temp;
1328
1329         e1000e_clear_hw_cntrs_base(hw);
1330
1331         temp = er32(PRC64);
1332         temp = er32(PRC127);
1333         temp = er32(PRC255);
1334         temp = er32(PRC511);
1335         temp = er32(PRC1023);
1336         temp = er32(PRC1522);
1337         temp = er32(PTC64);
1338         temp = er32(PTC127);
1339         temp = er32(PTC255);
1340         temp = er32(PTC511);
1341         temp = er32(PTC1023);
1342         temp = er32(PTC1522);
1343
1344         temp = er32(ALGNERRC);
1345         temp = er32(RXERRC);
1346         temp = er32(TNCRS);
1347         temp = er32(CEXTERR);
1348         temp = er32(TSCTC);
1349         temp = er32(TSCTFC);
1350
1351         temp = er32(MGTPRC);
1352         temp = er32(MGTPDC);
1353         temp = er32(MGTPTC);
1354
1355         temp = er32(IAC);
1356         temp = er32(ICRXOC);
1357
1358         temp = er32(ICRXPTC);
1359         temp = er32(ICRXATC);
1360         temp = er32(ICTXPTC);
1361         temp = er32(ICTXATC);
1362         temp = er32(ICTXQEC);
1363         temp = er32(ICTXQMTC);
1364         temp = er32(ICRXDMTC);
1365 }
1366
1367 static struct e1000_mac_operations e82571_mac_ops = {
1368         /* .check_mng_mode: mac type dependent */
1369         /* .check_for_link: media type dependent */
1370         .cleanup_led            = e1000e_cleanup_led_generic,
1371         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1372         .get_bus_info           = e1000e_get_bus_info_pcie,
1373         /* .get_link_up_info: media type dependent */
1374         /* .led_on: mac type dependent */
1375         .led_off                = e1000e_led_off_generic,
1376         .update_mc_addr_list    = e1000_update_mc_addr_list_82571,
1377         .reset_hw               = e1000_reset_hw_82571,
1378         .init_hw                = e1000_init_hw_82571,
1379         .setup_link             = e1000_setup_link_82571,
1380         /* .setup_physical_interface: media type dependent */
1381 };
1382
1383 static struct e1000_phy_operations e82_phy_ops_igp = {
1384         .acquire_phy            = e1000_get_hw_semaphore_82571,
1385         .check_reset_block      = e1000e_check_reset_block_generic,
1386         .commit_phy             = NULL,
1387         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1388         .get_cfg_done           = e1000_get_cfg_done_82571,
1389         .get_cable_length       = e1000e_get_cable_length_igp_2,
1390         .get_phy_info           = e1000e_get_phy_info_igp,
1391         .read_phy_reg           = e1000e_read_phy_reg_igp,
1392         .release_phy            = e1000_put_hw_semaphore_82571,
1393         .reset_phy              = e1000e_phy_hw_reset_generic,
1394         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1395         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1396         .write_phy_reg          = e1000e_write_phy_reg_igp,
1397 };
1398
1399 static struct e1000_phy_operations e82_phy_ops_m88 = {
1400         .acquire_phy            = e1000_get_hw_semaphore_82571,
1401         .check_reset_block      = e1000e_check_reset_block_generic,
1402         .commit_phy             = e1000e_phy_sw_reset,
1403         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1404         .get_cfg_done           = e1000e_get_cfg_done,
1405         .get_cable_length       = e1000e_get_cable_length_m88,
1406         .get_phy_info           = e1000e_get_phy_info_m88,
1407         .read_phy_reg           = e1000e_read_phy_reg_m88,
1408         .release_phy            = e1000_put_hw_semaphore_82571,
1409         .reset_phy              = e1000e_phy_hw_reset_generic,
1410         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1411         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1412         .write_phy_reg          = e1000e_write_phy_reg_m88,
1413 };
1414
1415 static struct e1000_phy_operations e82_phy_ops_bm = {
1416         .acquire_phy            = e1000_get_hw_semaphore_82571,
1417         .check_reset_block      = e1000e_check_reset_block_generic,
1418         .commit_phy             = e1000e_phy_sw_reset,
1419         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1420         .get_cfg_done           = e1000e_get_cfg_done,
1421         .get_cable_length       = e1000e_get_cable_length_m88,
1422         .get_phy_info           = e1000e_get_phy_info_m88,
1423         .read_phy_reg           = e1000e_read_phy_reg_bm2,
1424         .release_phy            = e1000_put_hw_semaphore_82571,
1425         .reset_phy              = e1000e_phy_hw_reset_generic,
1426         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1427         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1428         .write_phy_reg          = e1000e_write_phy_reg_bm2,
1429 };
1430
1431 static struct e1000_nvm_operations e82571_nvm_ops = {
1432         .acquire_nvm            = e1000_acquire_nvm_82571,
1433         .read_nvm               = e1000e_read_nvm_eerd,
1434         .release_nvm            = e1000_release_nvm_82571,
1435         .update_nvm             = e1000_update_nvm_checksum_82571,
1436         .valid_led_default      = e1000_valid_led_default_82571,
1437         .validate_nvm           = e1000_validate_nvm_checksum_82571,
1438         .write_nvm              = e1000_write_nvm_82571,
1439 };
1440
1441 struct e1000_info e1000_82571_info = {
1442         .mac                    = e1000_82571,
1443         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1444                                   | FLAG_HAS_JUMBO_FRAMES
1445                                   | FLAG_HAS_WOL
1446                                   | FLAG_APME_IN_CTRL3
1447                                   | FLAG_RX_CSUM_ENABLED
1448                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1449                                   | FLAG_HAS_SMART_POWER_DOWN
1450                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1451                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1452                                   | FLAG_APME_CHECK_PORT_B,
1453         .pba                    = 38,
1454         .get_variants           = e1000_get_variants_82571,
1455         .mac_ops                = &e82571_mac_ops,
1456         .phy_ops                = &e82_phy_ops_igp,
1457         .nvm_ops                = &e82571_nvm_ops,
1458 };
1459
1460 struct e1000_info e1000_82572_info = {
1461         .mac                    = e1000_82572,
1462         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1463                                   | FLAG_HAS_JUMBO_FRAMES
1464                                   | FLAG_HAS_WOL
1465                                   | FLAG_APME_IN_CTRL3
1466                                   | FLAG_RX_CSUM_ENABLED
1467                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1468                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1469         .pba                    = 38,
1470         .get_variants           = e1000_get_variants_82571,
1471         .mac_ops                = &e82571_mac_ops,
1472         .phy_ops                = &e82_phy_ops_igp,
1473         .nvm_ops                = &e82571_nvm_ops,
1474 };
1475
1476 struct e1000_info e1000_82573_info = {
1477         .mac                    = e1000_82573,
1478         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1479                                   | FLAG_HAS_JUMBO_FRAMES
1480                                   | FLAG_HAS_WOL
1481                                   | FLAG_APME_IN_CTRL3
1482                                   | FLAG_RX_CSUM_ENABLED
1483                                   | FLAG_HAS_SMART_POWER_DOWN
1484                                   | FLAG_HAS_AMT
1485                                   | FLAG_HAS_ERT
1486                                   | FLAG_HAS_SWSM_ON_LOAD,
1487         .pba                    = 20,
1488         .get_variants           = e1000_get_variants_82571,
1489         .mac_ops                = &e82571_mac_ops,
1490         .phy_ops                = &e82_phy_ops_m88,
1491         .nvm_ops                = &e82571_nvm_ops,
1492 };
1493
1494 struct e1000_info e1000_82574_info = {
1495         .mac                    = e1000_82574,
1496         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1497                                   | FLAG_HAS_MSIX
1498                                   | FLAG_HAS_JUMBO_FRAMES
1499                                   | FLAG_HAS_WOL
1500                                   | FLAG_APME_IN_CTRL3
1501                                   | FLAG_RX_CSUM_ENABLED
1502                                   | FLAG_HAS_SMART_POWER_DOWN
1503                                   | FLAG_HAS_AMT
1504                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1505         .pba                    = 20,
1506         .get_variants           = e1000_get_variants_82571,
1507         .mac_ops                = &e82571_mac_ops,
1508         .phy_ops                = &e82_phy_ops_bm,
1509         .nvm_ops                = &e82571_nvm_ops,
1510 };
1511