e1000e: 82577/82578 requires a different method to configure LPLU
[firefly-linux-kernel-4.4.55.git] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  */
56
57 #include <linux/netdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/delay.h>
60 #include <linux/pci.h>
61
62 #include "e1000.h"
63
64 #define ICH_FLASH_GFPREG                0x0000
65 #define ICH_FLASH_HSFSTS                0x0004
66 #define ICH_FLASH_HSFCTL                0x0006
67 #define ICH_FLASH_FADDR                 0x0008
68 #define ICH_FLASH_FDATA0                0x0010
69 #define ICH_FLASH_PR0                   0x0074
70
71 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
72 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
75 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
76
77 #define ICH_CYCLE_READ                  0
78 #define ICH_CYCLE_WRITE                 2
79 #define ICH_CYCLE_ERASE                 3
80
81 #define FLASH_GFPREG_BASE_MASK          0x1FFF
82 #define FLASH_SECTOR_ADDR_SHIFT         12
83
84 #define ICH_FLASH_SEG_SIZE_256          256
85 #define ICH_FLASH_SEG_SIZE_4K           4096
86 #define ICH_FLASH_SEG_SIZE_8K           8192
87 #define ICH_FLASH_SEG_SIZE_64K          65536
88
89
90 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
91
92 #define E1000_ICH_MNG_IAMT_MODE         0x2
93
94 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
95                                  (ID_LED_DEF1_OFF2 <<  8) | \
96                                  (ID_LED_DEF1_ON2  <<  4) | \
97                                  (ID_LED_DEF1_DEF2))
98
99 #define E1000_ICH_NVM_SIG_WORD          0x13
100 #define E1000_ICH_NVM_SIG_MASK          0xC000
101 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
102 #define E1000_ICH_NVM_SIG_VALUE         0x80
103
104 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
105
106 #define E1000_FEXTNVM_SW_CONFIG         1
107 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108
109 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
110
111 #define E1000_ICH_RAR_ENTRIES           7
112
113 #define PHY_PAGE_SHIFT 5
114 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115                            ((reg) & MAX_PHY_REG_ADDRESS))
116 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
117 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
118
119 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
120 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
122
123 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
124
125 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
126
127 /* OEM Bits Phy Register */
128 #define HV_OEM_BITS            PHY_REG(768, 25)
129 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
130 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
131
132 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
133 /* Offset 04h HSFSTS */
134 union ich8_hws_flash_status {
135         struct ich8_hsfsts {
136                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
137                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
138                 u16 dael       :1; /* bit 2 Direct Access error Log */
139                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
140                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
141                 u16 reserved1  :2; /* bit 13:6 Reserved */
142                 u16 reserved2  :6; /* bit 13:6 Reserved */
143                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
144                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
145         } hsf_status;
146         u16 regval;
147 };
148
149 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
150 /* Offset 06h FLCTL */
151 union ich8_hws_flash_ctrl {
152         struct ich8_hsflctl {
153                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
154                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
155                 u16 reserved   :5;   /* 7:3 Reserved  */
156                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
157                 u16 flockdn    :6;   /* 15:10 Reserved */
158         } hsf_ctrl;
159         u16 regval;
160 };
161
162 /* ICH Flash Region Access Permissions */
163 union ich8_hws_flash_regacc {
164         struct ich8_flracc {
165                 u32 grra      :8; /* 0:7 GbE region Read Access */
166                 u32 grwa      :8; /* 8:15 GbE region Write Access */
167                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
168                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
169         } hsf_flregacc;
170         u16 regval;
171 };
172
173 /* ICH Flash Protected Region */
174 union ich8_flash_protected_range {
175         struct ich8_pr {
176                 u32 base:13;     /* 0:12 Protected Range Base */
177                 u32 reserved1:2; /* 13:14 Reserved */
178                 u32 rpe:1;       /* 15 Read Protection Enable */
179                 u32 limit:13;    /* 16:28 Protected Range Limit */
180                 u32 reserved2:2; /* 29:30 Reserved */
181                 u32 wpe:1;       /* 31 Write Protection Enable */
182         } range;
183         u32 regval;
184 };
185
186 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
187 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
188 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
189 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
190 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
191 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
192                                                 u32 offset, u8 byte);
193 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
194                                          u8 *data);
195 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
196                                          u16 *data);
197 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
198                                          u8 size, u16 *data);
199 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
200 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
201 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
202 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
203 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
204 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
205 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
206 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
207 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
208 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
209 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
210 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
211
212 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
213 {
214         return readw(hw->flash_address + reg);
215 }
216
217 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
218 {
219         return readl(hw->flash_address + reg);
220 }
221
222 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
223 {
224         writew(val, hw->flash_address + reg);
225 }
226
227 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
228 {
229         writel(val, hw->flash_address + reg);
230 }
231
232 #define er16flash(reg)          __er16flash(hw, (reg))
233 #define er32flash(reg)          __er32flash(hw, (reg))
234 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
235 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
236
237 /**
238  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
239  *  @hw: pointer to the HW structure
240  *
241  *  Initialize family-specific PHY parameters and function pointers.
242  **/
243 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
244 {
245         struct e1000_phy_info *phy = &hw->phy;
246         s32 ret_val = 0;
247
248         phy->addr                     = 1;
249         phy->reset_delay_us           = 100;
250
251         phy->ops.check_polarity       = e1000_check_polarity_ife_ich8lan;
252         phy->ops.read_phy_reg         = e1000_read_phy_reg_hv;
253         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
254         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
255         phy->ops.write_phy_reg        = e1000_write_phy_reg_hv;
256         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
257
258         phy->id = e1000_phy_unknown;
259         e1000e_get_phy_id(hw);
260         phy->type = e1000e_get_phy_type_from_id(phy->id);
261
262         if (phy->type == e1000_phy_82577) {
263                 phy->ops.check_polarity = e1000_check_polarity_82577;
264                 phy->ops.force_speed_duplex =
265                         e1000_phy_force_speed_duplex_82577;
266                 phy->ops.get_cable_length   = e1000_get_cable_length_82577;
267                 phy->ops.get_phy_info = e1000_get_phy_info_82577;
268                 phy->ops.commit_phy = e1000e_phy_sw_reset;
269         }
270
271         return ret_val;
272 }
273
274 /**
275  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
276  *  @hw: pointer to the HW structure
277  *
278  *  Initialize family-specific PHY parameters and function pointers.
279  **/
280 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
281 {
282         struct e1000_phy_info *phy = &hw->phy;
283         s32 ret_val;
284         u16 i = 0;
285
286         phy->addr                       = 1;
287         phy->reset_delay_us             = 100;
288
289         /*
290          * We may need to do this twice - once for IGP and if that fails,
291          * we'll set BM func pointers and try again
292          */
293         ret_val = e1000e_determine_phy_address(hw);
294         if (ret_val) {
295                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
296                 hw->phy.ops.read_phy_reg  = e1000e_read_phy_reg_bm;
297                 ret_val = e1000e_determine_phy_address(hw);
298                 if (ret_val)
299                         return ret_val;
300         }
301
302         phy->id = 0;
303         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
304                (i++ < 100)) {
305                 msleep(1);
306                 ret_val = e1000e_get_phy_id(hw);
307                 if (ret_val)
308                         return ret_val;
309         }
310
311         /* Verify phy id */
312         switch (phy->id) {
313         case IGP03E1000_E_PHY_ID:
314                 phy->type = e1000_phy_igp_3;
315                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
316                 break;
317         case IFE_E_PHY_ID:
318         case IFE_PLUS_E_PHY_ID:
319         case IFE_C_E_PHY_ID:
320                 phy->type = e1000_phy_ife;
321                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
322                 break;
323         case BME1000_E_PHY_ID:
324                 phy->type = e1000_phy_bm;
325                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
326                 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
327                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
328                 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
329                 break;
330         default:
331                 return -E1000_ERR_PHY;
332                 break;
333         }
334
335         phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
336
337         return 0;
338 }
339
340 /**
341  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
342  *  @hw: pointer to the HW structure
343  *
344  *  Initialize family-specific NVM parameters and function
345  *  pointers.
346  **/
347 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
348 {
349         struct e1000_nvm_info *nvm = &hw->nvm;
350         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
351         u32 gfpreg, sector_base_addr, sector_end_addr;
352         u16 i;
353
354         /* Can't read flash registers if the register set isn't mapped. */
355         if (!hw->flash_address) {
356                 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
357                 return -E1000_ERR_CONFIG;
358         }
359
360         nvm->type = e1000_nvm_flash_sw;
361
362         gfpreg = er32flash(ICH_FLASH_GFPREG);
363
364         /*
365          * sector_X_addr is a "sector"-aligned address (4096 bytes)
366          * Add 1 to sector_end_addr since this sector is included in
367          * the overall size.
368          */
369         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
370         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
371
372         /* flash_base_addr is byte-aligned */
373         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
374
375         /*
376          * find total size of the NVM, then cut in half since the total
377          * size represents two separate NVM banks.
378          */
379         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
380                                 << FLASH_SECTOR_ADDR_SHIFT;
381         nvm->flash_bank_size /= 2;
382         /* Adjust to word count */
383         nvm->flash_bank_size /= sizeof(u16);
384
385         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
386
387         /* Clear shadow ram */
388         for (i = 0; i < nvm->word_size; i++) {
389                 dev_spec->shadow_ram[i].modified = 0;
390                 dev_spec->shadow_ram[i].value    = 0xFFFF;
391         }
392
393         return 0;
394 }
395
396 /**
397  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
398  *  @hw: pointer to the HW structure
399  *
400  *  Initialize family-specific MAC parameters and function
401  *  pointers.
402  **/
403 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
404 {
405         struct e1000_hw *hw = &adapter->hw;
406         struct e1000_mac_info *mac = &hw->mac;
407
408         /* Set media type function pointer */
409         hw->phy.media_type = e1000_media_type_copper;
410
411         /* Set mta register count */
412         mac->mta_reg_count = 32;
413         /* Set rar entry count */
414         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
415         if (mac->type == e1000_ich8lan)
416                 mac->rar_entry_count--;
417         /* Set if manageability features are enabled. */
418         mac->arc_subsystem_valid = 1;
419
420         /* LED operations */
421         switch (mac->type) {
422         case e1000_ich8lan:
423         case e1000_ich9lan:
424         case e1000_ich10lan:
425                 /* ID LED init */
426                 mac->ops.id_led_init = e1000e_id_led_init;
427                 /* setup LED */
428                 mac->ops.setup_led = e1000e_setup_led_generic;
429                 /* cleanup LED */
430                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
431                 /* turn on/off LED */
432                 mac->ops.led_on = e1000_led_on_ich8lan;
433                 mac->ops.led_off = e1000_led_off_ich8lan;
434                 break;
435         case e1000_pchlan:
436                 /* ID LED init */
437                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
438                 /* setup LED */
439                 mac->ops.setup_led = e1000_setup_led_pchlan;
440                 /* cleanup LED */
441                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
442                 /* turn on/off LED */
443                 mac->ops.led_on = e1000_led_on_pchlan;
444                 mac->ops.led_off = e1000_led_off_pchlan;
445                 break;
446         default:
447                 break;
448         }
449
450         /* Enable PCS Lock-loss workaround for ICH8 */
451         if (mac->type == e1000_ich8lan)
452                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
453
454         return 0;
455 }
456
457 /**
458  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
459  *  @hw: pointer to the HW structure
460  *
461  *  Checks to see of the link status of the hardware has changed.  If a
462  *  change in link status has been detected, then we read the PHY registers
463  *  to get the current speed/duplex if link exists.
464  **/
465 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
466 {
467         struct e1000_mac_info *mac = &hw->mac;
468         s32 ret_val;
469         bool link;
470
471         /*
472          * We only want to go out to the PHY registers to see if Auto-Neg
473          * has completed and/or if our link status has changed.  The
474          * get_link_status flag is set upon receiving a Link Status
475          * Change or Rx Sequence Error interrupt.
476          */
477         if (!mac->get_link_status) {
478                 ret_val = 0;
479                 goto out;
480         }
481
482         if (hw->mac.type == e1000_pchlan) {
483                 ret_val = e1000e_write_kmrn_reg(hw,
484                                                    E1000_KMRNCTRLSTA_K1_CONFIG,
485                                                    E1000_KMRNCTRLSTA_K1_ENABLE);
486                 if (ret_val)
487                         goto out;
488         }
489
490         /*
491          * First we want to see if the MII Status Register reports
492          * link.  If so, then we want to get the current speed/duplex
493          * of the PHY.
494          */
495         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
496         if (ret_val)
497                 goto out;
498
499         if (!link)
500                 goto out; /* No link detected */
501
502         mac->get_link_status = false;
503
504         if (hw->phy.type == e1000_phy_82578) {
505                 ret_val = e1000_link_stall_workaround_hv(hw);
506                 if (ret_val)
507                         goto out;
508         }
509
510         /*
511          * Check if there was DownShift, must be checked
512          * immediately after link-up
513          */
514         e1000e_check_downshift(hw);
515
516         /*
517          * If we are forcing speed/duplex, then we simply return since
518          * we have already determined whether we have link or not.
519          */
520         if (!mac->autoneg) {
521                 ret_val = -E1000_ERR_CONFIG;
522                 goto out;
523         }
524
525         /*
526          * Auto-Neg is enabled.  Auto Speed Detection takes care
527          * of MAC speed/duplex configuration.  So we only need to
528          * configure Collision Distance in the MAC.
529          */
530         e1000e_config_collision_dist(hw);
531
532         /*
533          * Configure Flow Control now that Auto-Neg has completed.
534          * First, we need to restore the desired flow control
535          * settings because we may have had to re-autoneg with a
536          * different link partner.
537          */
538         ret_val = e1000e_config_fc_after_link_up(hw);
539         if (ret_val)
540                 hw_dbg(hw, "Error configuring flow control\n");
541
542 out:
543         return ret_val;
544 }
545
546 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
547 {
548         struct e1000_hw *hw = &adapter->hw;
549         s32 rc;
550
551         rc = e1000_init_mac_params_ich8lan(adapter);
552         if (rc)
553                 return rc;
554
555         rc = e1000_init_nvm_params_ich8lan(hw);
556         if (rc)
557                 return rc;
558
559         if (hw->mac.type == e1000_pchlan)
560                 rc = e1000_init_phy_params_pchlan(hw);
561         else
562                 rc = e1000_init_phy_params_ich8lan(hw);
563         if (rc)
564                 return rc;
565
566         if (adapter->hw.phy.type == e1000_phy_ife) {
567                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
568                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
569         }
570
571         if ((adapter->hw.mac.type == e1000_ich8lan) &&
572             (adapter->hw.phy.type == e1000_phy_igp_3))
573                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
574
575         return 0;
576 }
577
578 static DEFINE_MUTEX(nvm_mutex);
579
580 /**
581  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
582  *  @hw: pointer to the HW structure
583  *
584  *  Acquires the software control flag for performing NVM and PHY
585  *  operations.  This is a function pointer entry point only called by
586  *  read/write routines for the PHY and NVM parts.
587  **/
588 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
589 {
590         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
591         s32 ret_val = 0;
592
593         might_sleep();
594
595         mutex_lock(&nvm_mutex);
596
597         while (timeout) {
598                 extcnf_ctrl = er32(EXTCNF_CTRL);
599                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
600                         break;
601
602                 mdelay(1);
603                 timeout--;
604         }
605
606         if (!timeout) {
607                 hw_dbg(hw, "SW/FW/HW has locked the resource for too long.\n");
608                 ret_val = -E1000_ERR_CONFIG;
609                 goto out;
610         }
611
612         timeout = SW_FLAG_TIMEOUT;
613
614         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
615         ew32(EXTCNF_CTRL, extcnf_ctrl);
616
617         while (timeout) {
618                 extcnf_ctrl = er32(EXTCNF_CTRL);
619                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
620                         break;
621
622                 mdelay(1);
623                 timeout--;
624         }
625
626         if (!timeout) {
627                 hw_dbg(hw, "Failed to acquire the semaphore.\n");
628                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
629                 ew32(EXTCNF_CTRL, extcnf_ctrl);
630                 ret_val = -E1000_ERR_CONFIG;
631                 goto out;
632         }
633
634 out:
635         if (ret_val)
636                 mutex_unlock(&nvm_mutex);
637
638         return ret_val;
639 }
640
641 /**
642  *  e1000_release_swflag_ich8lan - Release software control flag
643  *  @hw: pointer to the HW structure
644  *
645  *  Releases the software control flag for performing NVM and PHY operations.
646  *  This is a function pointer entry point only called by read/write
647  *  routines for the PHY and NVM parts.
648  **/
649 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
650 {
651         u32 extcnf_ctrl;
652
653         extcnf_ctrl = er32(EXTCNF_CTRL);
654         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
655         ew32(EXTCNF_CTRL, extcnf_ctrl);
656
657         mutex_unlock(&nvm_mutex);
658 }
659
660 /**
661  *  e1000_check_mng_mode_ich8lan - Checks management mode
662  *  @hw: pointer to the HW structure
663  *
664  *  This checks if the adapter has manageability enabled.
665  *  This is a function pointer entry point only called by read/write
666  *  routines for the PHY and NVM parts.
667  **/
668 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
669 {
670         u32 fwsm = er32(FWSM);
671
672         return (fwsm & E1000_FWSM_MODE_MASK) ==
673                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
674 }
675
676 /**
677  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
678  *  @hw: pointer to the HW structure
679  *
680  *  Checks if firmware is blocking the reset of the PHY.
681  *  This is a function pointer entry point only called by
682  *  reset routines.
683  **/
684 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
685 {
686         u32 fwsm;
687
688         fwsm = er32(FWSM);
689
690         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
691 }
692
693 /**
694  *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
695  *  @hw: pointer to the HW structure
696  *
697  *  Forces the speed and duplex settings of the PHY.
698  *  This is a function pointer entry point only called by
699  *  PHY setup routines.
700  **/
701 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
702 {
703         struct e1000_phy_info *phy = &hw->phy;
704         s32 ret_val;
705         u16 data;
706         bool link;
707
708         if (phy->type != e1000_phy_ife) {
709                 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
710                 return ret_val;
711         }
712
713         ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
714         if (ret_val)
715                 return ret_val;
716
717         e1000e_phy_force_speed_duplex_setup(hw, &data);
718
719         ret_val = e1e_wphy(hw, PHY_CONTROL, data);
720         if (ret_val)
721                 return ret_val;
722
723         /* Disable MDI-X support for 10/100 */
724         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
725         if (ret_val)
726                 return ret_val;
727
728         data &= ~IFE_PMC_AUTO_MDIX;
729         data &= ~IFE_PMC_FORCE_MDIX;
730
731         ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
732         if (ret_val)
733                 return ret_val;
734
735         hw_dbg(hw, "IFE PMC: %X\n", data);
736
737         udelay(1);
738
739         if (phy->autoneg_wait_to_complete) {
740                 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
741
742                 ret_val = e1000e_phy_has_link_generic(hw,
743                                                      PHY_FORCE_LIMIT,
744                                                      100000,
745                                                      &link);
746                 if (ret_val)
747                         return ret_val;
748
749                 if (!link)
750                         hw_dbg(hw, "Link taking longer than expected.\n");
751
752                 /* Try once more */
753                 ret_val = e1000e_phy_has_link_generic(hw,
754                                                      PHY_FORCE_LIMIT,
755                                                      100000,
756                                                      &link);
757                 if (ret_val)
758                         return ret_val;
759         }
760
761         return 0;
762 }
763
764 /**
765  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
766  *  done after every PHY reset.
767  **/
768 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
769 {
770         s32 ret_val = 0;
771
772         if (hw->mac.type != e1000_pchlan)
773                 return ret_val;
774
775         if (((hw->phy.type == e1000_phy_82577) &&
776              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
777             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
778                 /* Disable generation of early preamble */
779                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
780                 if (ret_val)
781                         return ret_val;
782
783                 /* Preamble tuning for SSC */
784                 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
785                 if (ret_val)
786                         return ret_val;
787         }
788
789         if (hw->phy.type == e1000_phy_82578) {
790                 /*
791                  * Return registers to default by doing a soft reset then
792                  * writing 0x3140 to the control register.
793                  */
794                 if (hw->phy.revision < 2) {
795                         e1000e_phy_sw_reset(hw);
796                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
797                 }
798         }
799
800         /* Select page 0 */
801         ret_val = hw->phy.ops.acquire_phy(hw);
802         if (ret_val)
803                 return ret_val;
804         hw->phy.addr = 1;
805         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
806         hw->phy.ops.release_phy(hw);
807
808         return ret_val;
809 }
810
811 /**
812  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
813  *  @hw: pointer to the HW structure
814  *
815  *  Check the appropriate indication the MAC has finished configuring the
816  *  PHY after a software reset.
817  **/
818 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
819 {
820         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
821
822         /* Wait for basic configuration completes before proceeding */
823         do {
824                 data = er32(STATUS);
825                 data &= E1000_STATUS_LAN_INIT_DONE;
826                 udelay(100);
827         } while ((!data) && --loop);
828
829         /*
830          * If basic configuration is incomplete before the above loop
831          * count reaches 0, loading the configuration from NVM will
832          * leave the PHY in a bad state possibly resulting in no link.
833          */
834         if (loop == 0)
835                 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
836
837         /* Clear the Init Done bit for the next init event */
838         data = er32(STATUS);
839         data &= ~E1000_STATUS_LAN_INIT_DONE;
840         ew32(STATUS, data);
841 }
842
843 /**
844  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
845  *  @hw: pointer to the HW structure
846  *
847  *  Resets the PHY
848  *  This is a function pointer entry point called by drivers
849  *  or other shared routines.
850  **/
851 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
852 {
853         struct e1000_phy_info *phy = &hw->phy;
854         u32 i;
855         u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
856         s32 ret_val;
857         u16 reg, word_addr, reg_data, reg_addr, phy_page = 0;
858
859         ret_val = e1000e_phy_hw_reset_generic(hw);
860         if (ret_val)
861                 return ret_val;
862
863         /* Allow time for h/w to get to a quiescent state after reset */
864         mdelay(10);
865
866         if (hw->mac.type == e1000_pchlan) {
867                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
868                 if (ret_val)
869                         return ret_val;
870         }
871
872         /* Dummy read to clear the phy wakeup bit after lcd reset */
873         if (hw->mac.type == e1000_pchlan)
874                 e1e_rphy(hw, BM_WUC, &reg);
875
876         /*
877          * Initialize the PHY from the NVM on ICH platforms.  This
878          * is needed due to an issue where the NVM configuration is
879          * not properly autoloaded after power transitions.
880          * Therefore, after each PHY reset, we will load the
881          * configuration data out of the NVM manually.
882          */
883         if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
884                 struct e1000_adapter *adapter = hw->adapter;
885
886                 /* Check if SW needs configure the PHY */
887                 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
888                     (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
889                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
890                 else
891                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
892
893                 data = er32(FEXTNVM);
894                 if (!(data & sw_cfg_mask))
895                         return 0;
896
897                 /* Wait for basic configuration completes before proceeding */
898                 e1000_lan_init_done_ich8lan(hw);
899
900                 /*
901                  * Make sure HW does not configure LCD from PHY
902                  * extended configuration before SW configuration
903                  */
904                 data = er32(EXTCNF_CTRL);
905                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
906                         return 0;
907
908                 cnf_size = er32(EXTCNF_SIZE);
909                 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
910                 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
911                 if (!cnf_size)
912                         return 0;
913
914                 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
915                 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
916
917                 /* Configure LCD from extended configuration region. */
918
919                 /* cnf_base_addr is in DWORD */
920                 word_addr = (u16)(cnf_base_addr << 1);
921
922                 for (i = 0; i < cnf_size; i++) {
923                         ret_val = e1000_read_nvm(hw,
924                                                 (word_addr + i * 2),
925                                                 1,
926                                                 &reg_data);
927                         if (ret_val)
928                                 return ret_val;
929
930                         ret_val = e1000_read_nvm(hw,
931                                                 (word_addr + i * 2 + 1),
932                                                 1,
933                                                 &reg_addr);
934                         if (ret_val)
935                                 return ret_val;
936
937                         /* Save off the PHY page for future writes. */
938                         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
939                                 phy_page = reg_data;
940                                 continue;
941                         }
942
943                         reg_addr |= phy_page;
944
945                         ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
946                         if (ret_val)
947                                 return ret_val;
948                 }
949         }
950
951         return 0;
952 }
953
954 /**
955  *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
956  *  @hw: pointer to the HW structure
957  *
958  *  Populates "phy" structure with various feature states.
959  *  This function is only called by other family-specific
960  *  routines.
961  **/
962 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
963 {
964         struct e1000_phy_info *phy = &hw->phy;
965         s32 ret_val;
966         u16 data;
967         bool link;
968
969         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
970         if (ret_val)
971                 return ret_val;
972
973         if (!link) {
974                 hw_dbg(hw, "Phy info is only valid if link is up\n");
975                 return -E1000_ERR_CONFIG;
976         }
977
978         ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
979         if (ret_val)
980                 return ret_val;
981         phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
982
983         if (phy->polarity_correction) {
984                 ret_val = phy->ops.check_polarity(hw);
985                 if (ret_val)
986                         return ret_val;
987         } else {
988                 /* Polarity is forced */
989                 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
990                                       ? e1000_rev_polarity_reversed
991                                       : e1000_rev_polarity_normal;
992         }
993
994         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
995         if (ret_val)
996                 return ret_val;
997
998         phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
999
1000         /* The following parameters are undefined for 10/100 operation. */
1001         phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1002         phy->local_rx = e1000_1000t_rx_status_undefined;
1003         phy->remote_rx = e1000_1000t_rx_status_undefined;
1004
1005         return 0;
1006 }
1007
1008 /**
1009  *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1010  *  @hw: pointer to the HW structure
1011  *
1012  *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
1013  *  This is a function pointer entry point called by drivers
1014  *  or other shared routines.
1015  **/
1016 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1017 {
1018         switch (hw->phy.type) {
1019         case e1000_phy_ife:
1020                 return e1000_get_phy_info_ife_ich8lan(hw);
1021                 break;
1022         case e1000_phy_igp_3:
1023         case e1000_phy_bm:
1024         case e1000_phy_82578:
1025         case e1000_phy_82577:
1026                 return e1000e_get_phy_info_igp(hw);
1027                 break;
1028         default:
1029                 break;
1030         }
1031
1032         return -E1000_ERR_PHY_TYPE;
1033 }
1034
1035 /**
1036  *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1037  *  @hw: pointer to the HW structure
1038  *
1039  *  Polarity is determined on the polarity reversal feature being enabled.
1040  *  This function is only called by other family-specific
1041  *  routines.
1042  **/
1043 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1044 {
1045         struct e1000_phy_info *phy = &hw->phy;
1046         s32 ret_val;
1047         u16 phy_data, offset, mask;
1048
1049         /*
1050          * Polarity is determined based on the reversal feature being enabled.
1051          */
1052         if (phy->polarity_correction) {
1053                 offset  = IFE_PHY_EXTENDED_STATUS_CONTROL;
1054                 mask    = IFE_PESC_POLARITY_REVERSED;
1055         } else {
1056                 offset  = IFE_PHY_SPECIAL_CONTROL;
1057                 mask    = IFE_PSC_FORCE_POLARITY;
1058         }
1059
1060         ret_val = e1e_rphy(hw, offset, &phy_data);
1061
1062         if (!ret_val)
1063                 phy->cable_polarity = (phy_data & mask)
1064                                       ? e1000_rev_polarity_reversed
1065                                       : e1000_rev_polarity_normal;
1066
1067         return ret_val;
1068 }
1069
1070 /**
1071  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1072  *  @hw: pointer to the HW structure
1073  *  @active: true to enable LPLU, false to disable
1074  *
1075  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1076  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1077  *  the phy speed. This function will manually set the LPLU bit and restart
1078  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1079  *  since it configures the same bit.
1080  **/
1081 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1082 {
1083         s32 ret_val = 0;
1084         u16 oem_reg;
1085
1086         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1087         if (ret_val)
1088                 goto out;
1089
1090         if (active)
1091                 oem_reg |= HV_OEM_BITS_LPLU;
1092         else
1093                 oem_reg &= ~HV_OEM_BITS_LPLU;
1094
1095         oem_reg |= HV_OEM_BITS_RESTART_AN;
1096         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1097
1098 out:
1099         return ret_val;
1100 }
1101
1102 /**
1103  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1104  *  @hw: pointer to the HW structure
1105  *  @active: TRUE to enable LPLU, FALSE to disable
1106  *
1107  *  Sets the LPLU D0 state according to the active flag.  When
1108  *  activating LPLU this function also disables smart speed
1109  *  and vice versa.  LPLU will not be activated unless the
1110  *  device autonegotiation advertisement meets standards of
1111  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1112  *  This is a function pointer entry point only called by
1113  *  PHY setup routines.
1114  **/
1115 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1116 {
1117         struct e1000_phy_info *phy = &hw->phy;
1118         u32 phy_ctrl;
1119         s32 ret_val = 0;
1120         u16 data;
1121
1122         if (phy->type == e1000_phy_ife)
1123                 return ret_val;
1124
1125         phy_ctrl = er32(PHY_CTRL);
1126
1127         if (active) {
1128                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1129                 ew32(PHY_CTRL, phy_ctrl);
1130
1131                 if (phy->type != e1000_phy_igp_3)
1132                         return 0;
1133
1134                 /*
1135                  * Call gig speed drop workaround on LPLU before accessing
1136                  * any PHY registers
1137                  */
1138                 if (hw->mac.type == e1000_ich8lan)
1139                         e1000e_gig_downshift_workaround_ich8lan(hw);
1140
1141                 /* When LPLU is enabled, we should disable SmartSpeed */
1142                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1143                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1144                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1145                 if (ret_val)
1146                         return ret_val;
1147         } else {
1148                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1149                 ew32(PHY_CTRL, phy_ctrl);
1150
1151                 if (phy->type != e1000_phy_igp_3)
1152                         return 0;
1153
1154                 /*
1155                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1156                  * during Dx states where the power conservation is most
1157                  * important.  During driver activity we should enable
1158                  * SmartSpeed, so performance is maintained.
1159                  */
1160                 if (phy->smart_speed == e1000_smart_speed_on) {
1161                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1162                                            &data);
1163                         if (ret_val)
1164                                 return ret_val;
1165
1166                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1167                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1168                                            data);
1169                         if (ret_val)
1170                                 return ret_val;
1171                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1172                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1173                                            &data);
1174                         if (ret_val)
1175                                 return ret_val;
1176
1177                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1178                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1179                                            data);
1180                         if (ret_val)
1181                                 return ret_val;
1182                 }
1183         }
1184
1185         return 0;
1186 }
1187
1188 /**
1189  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1190  *  @hw: pointer to the HW structure
1191  *  @active: TRUE to enable LPLU, FALSE to disable
1192  *
1193  *  Sets the LPLU D3 state according to the active flag.  When
1194  *  activating LPLU this function also disables smart speed
1195  *  and vice versa.  LPLU will not be activated unless the
1196  *  device autonegotiation advertisement meets standards of
1197  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1198  *  This is a function pointer entry point only called by
1199  *  PHY setup routines.
1200  **/
1201 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1202 {
1203         struct e1000_phy_info *phy = &hw->phy;
1204         u32 phy_ctrl;
1205         s32 ret_val;
1206         u16 data;
1207
1208         phy_ctrl = er32(PHY_CTRL);
1209
1210         if (!active) {
1211                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1212                 ew32(PHY_CTRL, phy_ctrl);
1213
1214                 if (phy->type != e1000_phy_igp_3)
1215                         return 0;
1216
1217                 /*
1218                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1219                  * during Dx states where the power conservation is most
1220                  * important.  During driver activity we should enable
1221                  * SmartSpeed, so performance is maintained.
1222                  */
1223                 if (phy->smart_speed == e1000_smart_speed_on) {
1224                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1225                                            &data);
1226                         if (ret_val)
1227                                 return ret_val;
1228
1229                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1230                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1231                                            data);
1232                         if (ret_val)
1233                                 return ret_val;
1234                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1235                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1236                                            &data);
1237                         if (ret_val)
1238                                 return ret_val;
1239
1240                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1241                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1242                                            data);
1243                         if (ret_val)
1244                                 return ret_val;
1245                 }
1246         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1247                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1248                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1249                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1250                 ew32(PHY_CTRL, phy_ctrl);
1251
1252                 if (phy->type != e1000_phy_igp_3)
1253                         return 0;
1254
1255                 /*
1256                  * Call gig speed drop workaround on LPLU before accessing
1257                  * any PHY registers
1258                  */
1259                 if (hw->mac.type == e1000_ich8lan)
1260                         e1000e_gig_downshift_workaround_ich8lan(hw);
1261
1262                 /* When LPLU is enabled, we should disable SmartSpeed */
1263                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1264                 if (ret_val)
1265                         return ret_val;
1266
1267                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1268                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1269         }
1270
1271         return 0;
1272 }
1273
1274 /**
1275  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1276  *  @hw: pointer to the HW structure
1277  *  @bank:  pointer to the variable that returns the active bank
1278  *
1279  *  Reads signature byte from the NVM using the flash access registers.
1280  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1281  **/
1282 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1283 {
1284         u32 eecd;
1285         struct e1000_nvm_info *nvm = &hw->nvm;
1286         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1287         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1288         u8 sig_byte = 0;
1289         s32 ret_val = 0;
1290
1291         switch (hw->mac.type) {
1292         case e1000_ich8lan:
1293         case e1000_ich9lan:
1294                 eecd = er32(EECD);
1295                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1296                     E1000_EECD_SEC1VAL_VALID_MASK) {
1297                         if (eecd & E1000_EECD_SEC1VAL)
1298                                 *bank = 1;
1299                         else
1300                                 *bank = 0;
1301
1302                         return 0;
1303                 }
1304                 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1305                        "reading flash signature\n");
1306                 /* fall-thru */
1307         default:
1308                 /* set bank to 0 in case flash read fails */
1309                 *bank = 0;
1310
1311                 /* Check bank 0 */
1312                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1313                                                         &sig_byte);
1314                 if (ret_val)
1315                         return ret_val;
1316                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1317                     E1000_ICH_NVM_SIG_VALUE) {
1318                         *bank = 0;
1319                         return 0;
1320                 }
1321
1322                 /* Check bank 1 */
1323                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1324                                                         bank1_offset,
1325                                                         &sig_byte);
1326                 if (ret_val)
1327                         return ret_val;
1328                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1329                     E1000_ICH_NVM_SIG_VALUE) {
1330                         *bank = 1;
1331                         return 0;
1332                 }
1333
1334                 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1335                 return -E1000_ERR_NVM;
1336         }
1337
1338         return 0;
1339 }
1340
1341 /**
1342  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
1343  *  @hw: pointer to the HW structure
1344  *  @offset: The offset (in bytes) of the word(s) to read.
1345  *  @words: Size of data to read in words
1346  *  @data: Pointer to the word(s) to read at offset.
1347  *
1348  *  Reads a word(s) from the NVM using the flash access registers.
1349  **/
1350 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1351                                   u16 *data)
1352 {
1353         struct e1000_nvm_info *nvm = &hw->nvm;
1354         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1355         u32 act_offset;
1356         s32 ret_val = 0;
1357         u32 bank = 0;
1358         u16 i, word;
1359
1360         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1361             (words == 0)) {
1362                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1363                 return -E1000_ERR_NVM;
1364         }
1365
1366         ret_val = e1000_acquire_swflag_ich8lan(hw);
1367         if (ret_val)
1368                 goto out;
1369
1370         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1371         if (ret_val) {
1372                 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
1373                 bank = 0;
1374         }
1375
1376         act_offset = (bank) ? nvm->flash_bank_size : 0;
1377         act_offset += offset;
1378
1379         ret_val = 0;
1380         for (i = 0; i < words; i++) {
1381                 if ((dev_spec->shadow_ram) &&
1382                     (dev_spec->shadow_ram[offset+i].modified)) {
1383                         data[i] = dev_spec->shadow_ram[offset+i].value;
1384                 } else {
1385                         ret_val = e1000_read_flash_word_ich8lan(hw,
1386                                                                 act_offset + i,
1387                                                                 &word);
1388                         if (ret_val)
1389                                 break;
1390                         data[i] = word;
1391                 }
1392         }
1393
1394         e1000_release_swflag_ich8lan(hw);
1395
1396 out:
1397         if (ret_val)
1398                 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1399
1400         return ret_val;
1401 }
1402
1403 /**
1404  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1405  *  @hw: pointer to the HW structure
1406  *
1407  *  This function does initial flash setup so that a new read/write/erase cycle
1408  *  can be started.
1409  **/
1410 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1411 {
1412         union ich8_hws_flash_status hsfsts;
1413         s32 ret_val = -E1000_ERR_NVM;
1414         s32 i = 0;
1415
1416         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1417
1418         /* Check if the flash descriptor is valid */
1419         if (hsfsts.hsf_status.fldesvalid == 0) {
1420                 hw_dbg(hw, "Flash descriptor invalid.  "
1421                          "SW Sequencing must be used.");
1422                 return -E1000_ERR_NVM;
1423         }
1424
1425         /* Clear FCERR and DAEL in hw status by writing 1 */
1426         hsfsts.hsf_status.flcerr = 1;
1427         hsfsts.hsf_status.dael = 1;
1428
1429         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1430
1431         /*
1432          * Either we should have a hardware SPI cycle in progress
1433          * bit to check against, in order to start a new cycle or
1434          * FDONE bit should be changed in the hardware so that it
1435          * is 1 after hardware reset, which can then be used as an
1436          * indication whether a cycle is in progress or has been
1437          * completed.
1438          */
1439
1440         if (hsfsts.hsf_status.flcinprog == 0) {
1441                 /*
1442                  * There is no cycle running at present,
1443                  * so we can start a cycle
1444                  * Begin by setting Flash Cycle Done.
1445                  */
1446                 hsfsts.hsf_status.flcdone = 1;
1447                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1448                 ret_val = 0;
1449         } else {
1450                 /*
1451                  * otherwise poll for sometime so the current
1452                  * cycle has a chance to end before giving up.
1453                  */
1454                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1455                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1456                         if (hsfsts.hsf_status.flcinprog == 0) {
1457                                 ret_val = 0;
1458                                 break;
1459                         }
1460                         udelay(1);
1461                 }
1462                 if (ret_val == 0) {
1463                         /*
1464                          * Successful in waiting for previous cycle to timeout,
1465                          * now set the Flash Cycle Done.
1466                          */
1467                         hsfsts.hsf_status.flcdone = 1;
1468                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1469                 } else {
1470                         hw_dbg(hw, "Flash controller busy, cannot get access");
1471                 }
1472         }
1473
1474         return ret_val;
1475 }
1476
1477 /**
1478  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1479  *  @hw: pointer to the HW structure
1480  *  @timeout: maximum time to wait for completion
1481  *
1482  *  This function starts a flash cycle and waits for its completion.
1483  **/
1484 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1485 {
1486         union ich8_hws_flash_ctrl hsflctl;
1487         union ich8_hws_flash_status hsfsts;
1488         s32 ret_val = -E1000_ERR_NVM;
1489         u32 i = 0;
1490
1491         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1492         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1493         hsflctl.hsf_ctrl.flcgo = 1;
1494         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1495
1496         /* wait till FDONE bit is set to 1 */
1497         do {
1498                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1499                 if (hsfsts.hsf_status.flcdone == 1)
1500                         break;
1501                 udelay(1);
1502         } while (i++ < timeout);
1503
1504         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1505                 return 0;
1506
1507         return ret_val;
1508 }
1509
1510 /**
1511  *  e1000_read_flash_word_ich8lan - Read word from flash
1512  *  @hw: pointer to the HW structure
1513  *  @offset: offset to data location
1514  *  @data: pointer to the location for storing the data
1515  *
1516  *  Reads the flash word at offset into data.  Offset is converted
1517  *  to bytes before read.
1518  **/
1519 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1520                                          u16 *data)
1521 {
1522         /* Must convert offset into bytes. */
1523         offset <<= 1;
1524
1525         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1526 }
1527
1528 /**
1529  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1530  *  @hw: pointer to the HW structure
1531  *  @offset: The offset of the byte to read.
1532  *  @data: Pointer to a byte to store the value read.
1533  *
1534  *  Reads a single byte from the NVM using the flash access registers.
1535  **/
1536 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1537                                          u8 *data)
1538 {
1539         s32 ret_val;
1540         u16 word = 0;
1541
1542         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1543         if (ret_val)
1544                 return ret_val;
1545
1546         *data = (u8)word;
1547
1548         return 0;
1549 }
1550
1551 /**
1552  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1553  *  @hw: pointer to the HW structure
1554  *  @offset: The offset (in bytes) of the byte or word to read.
1555  *  @size: Size of data to read, 1=byte 2=word
1556  *  @data: Pointer to the word to store the value read.
1557  *
1558  *  Reads a byte or word from the NVM using the flash access registers.
1559  **/
1560 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1561                                          u8 size, u16 *data)
1562 {
1563         union ich8_hws_flash_status hsfsts;
1564         union ich8_hws_flash_ctrl hsflctl;
1565         u32 flash_linear_addr;
1566         u32 flash_data = 0;
1567         s32 ret_val = -E1000_ERR_NVM;
1568         u8 count = 0;
1569
1570         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1571                 return -E1000_ERR_NVM;
1572
1573         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1574                             hw->nvm.flash_base_addr;
1575
1576         do {
1577                 udelay(1);
1578                 /* Steps */
1579                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1580                 if (ret_val != 0)
1581                         break;
1582
1583                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1584                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1585                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1586                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1587                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1588
1589                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1590
1591                 ret_val = e1000_flash_cycle_ich8lan(hw,
1592                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1593
1594                 /*
1595                  * Check if FCERR is set to 1, if set to 1, clear it
1596                  * and try the whole sequence a few more times, else
1597                  * read in (shift in) the Flash Data0, the order is
1598                  * least significant byte first msb to lsb
1599                  */
1600                 if (ret_val == 0) {
1601                         flash_data = er32flash(ICH_FLASH_FDATA0);
1602                         if (size == 1) {
1603                                 *data = (u8)(flash_data & 0x000000FF);
1604                         } else if (size == 2) {
1605                                 *data = (u16)(flash_data & 0x0000FFFF);
1606                         }
1607                         break;
1608                 } else {
1609                         /*
1610                          * If we've gotten here, then things are probably
1611                          * completely hosed, but if the error condition is
1612                          * detected, it won't hurt to give it another try...
1613                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1614                          */
1615                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1616                         if (hsfsts.hsf_status.flcerr == 1) {
1617                                 /* Repeat for some time before giving up. */
1618                                 continue;
1619                         } else if (hsfsts.hsf_status.flcdone == 0) {
1620                                 hw_dbg(hw, "Timeout error - flash cycle "
1621                                          "did not complete.");
1622                                 break;
1623                         }
1624                 }
1625         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1626
1627         return ret_val;
1628 }
1629
1630 /**
1631  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1632  *  @hw: pointer to the HW structure
1633  *  @offset: The offset (in bytes) of the word(s) to write.
1634  *  @words: Size of data to write in words
1635  *  @data: Pointer to the word(s) to write at offset.
1636  *
1637  *  Writes a byte or word to the NVM using the flash access registers.
1638  **/
1639 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1640                                    u16 *data)
1641 {
1642         struct e1000_nvm_info *nvm = &hw->nvm;
1643         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1644         u16 i;
1645
1646         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1647             (words == 0)) {
1648                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1649                 return -E1000_ERR_NVM;
1650         }
1651
1652         for (i = 0; i < words; i++) {
1653                 dev_spec->shadow_ram[offset+i].modified = 1;
1654                 dev_spec->shadow_ram[offset+i].value = data[i];
1655         }
1656
1657         return 0;
1658 }
1659
1660 /**
1661  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1662  *  @hw: pointer to the HW structure
1663  *
1664  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1665  *  which writes the checksum to the shadow ram.  The changes in the shadow
1666  *  ram are then committed to the EEPROM by processing each bank at a time
1667  *  checking for the modified bit and writing only the pending changes.
1668  *  After a successful commit, the shadow ram is cleared and is ready for
1669  *  future writes.
1670  **/
1671 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1672 {
1673         struct e1000_nvm_info *nvm = &hw->nvm;
1674         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1675         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1676         s32 ret_val;
1677         u16 data;
1678
1679         ret_val = e1000e_update_nvm_checksum_generic(hw);
1680         if (ret_val)
1681                 goto out;
1682
1683         if (nvm->type != e1000_nvm_flash_sw)
1684                 goto out;
1685
1686         ret_val = e1000_acquire_swflag_ich8lan(hw);
1687         if (ret_val)
1688                 goto out;
1689
1690         /*
1691          * We're writing to the opposite bank so if we're on bank 1,
1692          * write to bank 0 etc.  We also need to erase the segment that
1693          * is going to be written
1694          */
1695         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1696         if (ret_val) {
1697                 hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n");
1698                 bank = 0;
1699         }
1700
1701         if (bank == 0) {
1702                 new_bank_offset = nvm->flash_bank_size;
1703                 old_bank_offset = 0;
1704                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1705                 if (ret_val) {
1706                         e1000_release_swflag_ich8lan(hw);
1707                         goto out;
1708                 }
1709         } else {
1710                 old_bank_offset = nvm->flash_bank_size;
1711                 new_bank_offset = 0;
1712                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1713                 if (ret_val) {
1714                         e1000_release_swflag_ich8lan(hw);
1715                         goto out;
1716                 }
1717         }
1718
1719         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1720                 /*
1721                  * Determine whether to write the value stored
1722                  * in the other NVM bank or a modified value stored
1723                  * in the shadow RAM
1724                  */
1725                 if (dev_spec->shadow_ram[i].modified) {
1726                         data = dev_spec->shadow_ram[i].value;
1727                 } else {
1728                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
1729                                                                 old_bank_offset,
1730                                                                 &data);
1731                         if (ret_val)
1732                                 break;
1733                 }
1734
1735                 /*
1736                  * If the word is 0x13, then make sure the signature bits
1737                  * (15:14) are 11b until the commit has completed.
1738                  * This will allow us to write 10b which indicates the
1739                  * signature is valid.  We want to do this after the write
1740                  * has completed so that we don't mark the segment valid
1741                  * while the write is still in progress
1742                  */
1743                 if (i == E1000_ICH_NVM_SIG_WORD)
1744                         data |= E1000_ICH_NVM_SIG_MASK;
1745
1746                 /* Convert offset to bytes. */
1747                 act_offset = (i + new_bank_offset) << 1;
1748
1749                 udelay(100);
1750                 /* Write the bytes to the new bank. */
1751                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1752                                                                act_offset,
1753                                                                (u8)data);
1754                 if (ret_val)
1755                         break;
1756
1757                 udelay(100);
1758                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1759                                                           act_offset + 1,
1760                                                           (u8)(data >> 8));
1761                 if (ret_val)
1762                         break;
1763         }
1764
1765         /*
1766          * Don't bother writing the segment valid bits if sector
1767          * programming failed.
1768          */
1769         if (ret_val) {
1770                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1771                 hw_dbg(hw, "Flash commit failed.\n");
1772                 e1000_release_swflag_ich8lan(hw);
1773                 goto out;
1774         }
1775
1776         /*
1777          * Finally validate the new segment by setting bit 15:14
1778          * to 10b in word 0x13 , this can be done without an
1779          * erase as well since these bits are 11 to start with
1780          * and we need to change bit 14 to 0b
1781          */
1782         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1783         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1784         if (ret_val) {
1785                 e1000_release_swflag_ich8lan(hw);
1786                 goto out;
1787         }
1788         data &= 0xBFFF;
1789         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1790                                                        act_offset * 2 + 1,
1791                                                        (u8)(data >> 8));
1792         if (ret_val) {
1793                 e1000_release_swflag_ich8lan(hw);
1794                 goto out;
1795         }
1796
1797         /*
1798          * And invalidate the previously valid segment by setting
1799          * its signature word (0x13) high_byte to 0b. This can be
1800          * done without an erase because flash erase sets all bits
1801          * to 1's. We can write 1's to 0's without an erase
1802          */
1803         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1804         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1805         if (ret_val) {
1806                 e1000_release_swflag_ich8lan(hw);
1807                 goto out;
1808         }
1809
1810         /* Great!  Everything worked, we can now clear the cached entries. */
1811         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1812                 dev_spec->shadow_ram[i].modified = 0;
1813                 dev_spec->shadow_ram[i].value = 0xFFFF;
1814         }
1815
1816         e1000_release_swflag_ich8lan(hw);
1817
1818         /*
1819          * Reload the EEPROM, or else modifications will not appear
1820          * until after the next adapter reset.
1821          */
1822         e1000e_reload_nvm(hw);
1823         msleep(10);
1824
1825 out:
1826         if (ret_val)
1827                 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1828
1829         return ret_val;
1830 }
1831
1832 /**
1833  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1834  *  @hw: pointer to the HW structure
1835  *
1836  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1837  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
1838  *  calculated, in which case we need to calculate the checksum and set bit 6.
1839  **/
1840 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1841 {
1842         s32 ret_val;
1843         u16 data;
1844
1845         /*
1846          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
1847          * needs to be fixed.  This bit is an indication that the NVM
1848          * was prepared by OEM software and did not calculate the
1849          * checksum...a likely scenario.
1850          */
1851         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1852         if (ret_val)
1853                 return ret_val;
1854
1855         if ((data & 0x40) == 0) {
1856                 data |= 0x40;
1857                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1858                 if (ret_val)
1859                         return ret_val;
1860                 ret_val = e1000e_update_nvm_checksum(hw);
1861                 if (ret_val)
1862                         return ret_val;
1863         }
1864
1865         return e1000e_validate_nvm_checksum_generic(hw);
1866 }
1867
1868 /**
1869  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1870  *  @hw: pointer to the HW structure
1871  *
1872  *  To prevent malicious write/erase of the NVM, set it to be read-only
1873  *  so that the hardware ignores all write/erase cycles of the NVM via
1874  *  the flash control registers.  The shadow-ram copy of the NVM will
1875  *  still be updated, however any updates to this copy will not stick
1876  *  across driver reloads.
1877  **/
1878 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1879 {
1880         union ich8_flash_protected_range pr0;
1881         union ich8_hws_flash_status hsfsts;
1882         u32 gfpreg;
1883         s32 ret_val;
1884
1885         ret_val = e1000_acquire_swflag_ich8lan(hw);
1886         if (ret_val)
1887                 return;
1888
1889         gfpreg = er32flash(ICH_FLASH_GFPREG);
1890
1891         /* Write-protect GbE Sector of NVM */
1892         pr0.regval = er32flash(ICH_FLASH_PR0);
1893         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1894         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1895         pr0.range.wpe = true;
1896         ew32flash(ICH_FLASH_PR0, pr0.regval);
1897
1898         /*
1899          * Lock down a subset of GbE Flash Control Registers, e.g.
1900          * PR0 to prevent the write-protection from being lifted.
1901          * Once FLOCKDN is set, the registers protected by it cannot
1902          * be written until FLOCKDN is cleared by a hardware reset.
1903          */
1904         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1905         hsfsts.hsf_status.flockdn = true;
1906         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1907
1908         e1000_release_swflag_ich8lan(hw);
1909 }
1910
1911 /**
1912  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1913  *  @hw: pointer to the HW structure
1914  *  @offset: The offset (in bytes) of the byte/word to read.
1915  *  @size: Size of data to read, 1=byte 2=word
1916  *  @data: The byte(s) to write to the NVM.
1917  *
1918  *  Writes one/two bytes to the NVM using the flash access registers.
1919  **/
1920 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1921                                           u8 size, u16 data)
1922 {
1923         union ich8_hws_flash_status hsfsts;
1924         union ich8_hws_flash_ctrl hsflctl;
1925         u32 flash_linear_addr;
1926         u32 flash_data = 0;
1927         s32 ret_val;
1928         u8 count = 0;
1929
1930         if (size < 1 || size > 2 || data > size * 0xff ||
1931             offset > ICH_FLASH_LINEAR_ADDR_MASK)
1932                 return -E1000_ERR_NVM;
1933
1934         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1935                             hw->nvm.flash_base_addr;
1936
1937         do {
1938                 udelay(1);
1939                 /* Steps */
1940                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1941                 if (ret_val)
1942                         break;
1943
1944                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1945                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1946                 hsflctl.hsf_ctrl.fldbcount = size -1;
1947                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1948                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1949
1950                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1951
1952                 if (size == 1)
1953                         flash_data = (u32)data & 0x00FF;
1954                 else
1955                         flash_data = (u32)data;
1956
1957                 ew32flash(ICH_FLASH_FDATA0, flash_data);
1958
1959                 /*
1960                  * check if FCERR is set to 1 , if set to 1, clear it
1961                  * and try the whole sequence a few more times else done
1962                  */
1963                 ret_val = e1000_flash_cycle_ich8lan(hw,
1964                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1965                 if (!ret_val)
1966                         break;
1967
1968                 /*
1969                  * If we're here, then things are most likely
1970                  * completely hosed, but if the error condition
1971                  * is detected, it won't hurt to give it another
1972                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1973                  */
1974                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1975                 if (hsfsts.hsf_status.flcerr == 1)
1976                         /* Repeat for some time before giving up. */
1977                         continue;
1978                 if (hsfsts.hsf_status.flcdone == 0) {
1979                         hw_dbg(hw, "Timeout error - flash cycle "
1980                                  "did not complete.");
1981                         break;
1982                 }
1983         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1984
1985         return ret_val;
1986 }
1987
1988 /**
1989  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1990  *  @hw: pointer to the HW structure
1991  *  @offset: The index of the byte to read.
1992  *  @data: The byte to write to the NVM.
1993  *
1994  *  Writes a single byte to the NVM using the flash access registers.
1995  **/
1996 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1997                                           u8 data)
1998 {
1999         u16 word = (u16)data;
2000
2001         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2002 }
2003
2004 /**
2005  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2006  *  @hw: pointer to the HW structure
2007  *  @offset: The offset of the byte to write.
2008  *  @byte: The byte to write to the NVM.
2009  *
2010  *  Writes a single byte to the NVM using the flash access registers.
2011  *  Goes through a retry algorithm before giving up.
2012  **/
2013 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2014                                                 u32 offset, u8 byte)
2015 {
2016         s32 ret_val;
2017         u16 program_retries;
2018
2019         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2020         if (!ret_val)
2021                 return ret_val;
2022
2023         for (program_retries = 0; program_retries < 100; program_retries++) {
2024                 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
2025                 udelay(100);
2026                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2027                 if (!ret_val)
2028                         break;
2029         }
2030         if (program_retries == 100)
2031                 return -E1000_ERR_NVM;
2032
2033         return 0;
2034 }
2035
2036 /**
2037  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2038  *  @hw: pointer to the HW structure
2039  *  @bank: 0 for first bank, 1 for second bank, etc.
2040  *
2041  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2042  *  bank N is 4096 * N + flash_reg_addr.
2043  **/
2044 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2045 {
2046         struct e1000_nvm_info *nvm = &hw->nvm;
2047         union ich8_hws_flash_status hsfsts;
2048         union ich8_hws_flash_ctrl hsflctl;
2049         u32 flash_linear_addr;
2050         /* bank size is in 16bit words - adjust to bytes */
2051         u32 flash_bank_size = nvm->flash_bank_size * 2;
2052         s32 ret_val;
2053         s32 count = 0;
2054         s32 iteration;
2055         s32 sector_size;
2056         s32 j;
2057
2058         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2059
2060         /*
2061          * Determine HW Sector size: Read BERASE bits of hw flash status
2062          * register
2063          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2064          *     consecutive sectors.  The start index for the nth Hw sector
2065          *     can be calculated as = bank * 4096 + n * 256
2066          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2067          *     The start index for the nth Hw sector can be calculated
2068          *     as = bank * 4096
2069          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2070          *     (ich9 only, otherwise error condition)
2071          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2072          */
2073         switch (hsfsts.hsf_status.berasesz) {
2074         case 0:
2075                 /* Hw sector size 256 */
2076                 sector_size = ICH_FLASH_SEG_SIZE_256;
2077                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2078                 break;
2079         case 1:
2080                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2081                 iteration = 1;
2082                 break;
2083         case 2:
2084                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2085                 iteration = 1;
2086                 break;
2087         case 3:
2088                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2089                 iteration = 1;
2090                 break;
2091         default:
2092                 return -E1000_ERR_NVM;
2093         }
2094
2095         /* Start with the base address, then add the sector offset. */
2096         flash_linear_addr = hw->nvm.flash_base_addr;
2097         flash_linear_addr += (bank) ? flash_bank_size : 0;
2098
2099         for (j = 0; j < iteration ; j++) {
2100                 do {
2101                         /* Steps */
2102                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2103                         if (ret_val)
2104                                 return ret_val;
2105
2106                         /*
2107                          * Write a value 11 (block Erase) in Flash
2108                          * Cycle field in hw flash control
2109                          */
2110                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2111                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2112                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2113
2114                         /*
2115                          * Write the last 24 bits of an index within the
2116                          * block into Flash Linear address field in Flash
2117                          * Address.
2118                          */
2119                         flash_linear_addr += (j * sector_size);
2120                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2121
2122                         ret_val = e1000_flash_cycle_ich8lan(hw,
2123                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2124                         if (ret_val == 0)
2125                                 break;
2126
2127                         /*
2128                          * Check if FCERR is set to 1.  If 1,
2129                          * clear it and try the whole sequence
2130                          * a few more times else Done
2131                          */
2132                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2133                         if (hsfsts.hsf_status.flcerr == 1)
2134                                 /* repeat for some time before giving up */
2135                                 continue;
2136                         else if (hsfsts.hsf_status.flcdone == 0)
2137                                 return ret_val;
2138                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2139         }
2140
2141         return 0;
2142 }
2143
2144 /**
2145  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2146  *  @hw: pointer to the HW structure
2147  *  @data: Pointer to the LED settings
2148  *
2149  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2150  *  settings is all 0's or F's, set the LED default to a valid LED default
2151  *  setting.
2152  **/
2153 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2154 {
2155         s32 ret_val;
2156
2157         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2158         if (ret_val) {
2159                 hw_dbg(hw, "NVM Read Error\n");
2160                 return ret_val;
2161         }
2162
2163         if (*data == ID_LED_RESERVED_0000 ||
2164             *data == ID_LED_RESERVED_FFFF)
2165                 *data = ID_LED_DEFAULT_ICH8LAN;
2166
2167         return 0;
2168 }
2169
2170 /**
2171  *  e1000_id_led_init_pchlan - store LED configurations
2172  *  @hw: pointer to the HW structure
2173  *
2174  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2175  *  the PHY LED configuration register.
2176  *
2177  *  PCH also does not have an "always on" or "always off" mode which
2178  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2179  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2180  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2181  *  link based on logic in e1000_led_[on|off]_pchlan().
2182  **/
2183 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2184 {
2185         struct e1000_mac_info *mac = &hw->mac;
2186         s32 ret_val;
2187         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2188         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2189         u16 data, i, temp, shift;
2190
2191         /* Get default ID LED modes */
2192         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2193         if (ret_val)
2194                 goto out;
2195
2196         mac->ledctl_default = er32(LEDCTL);
2197         mac->ledctl_mode1 = mac->ledctl_default;
2198         mac->ledctl_mode2 = mac->ledctl_default;
2199
2200         for (i = 0; i < 4; i++) {
2201                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2202                 shift = (i * 5);
2203                 switch (temp) {
2204                 case ID_LED_ON1_DEF2:
2205                 case ID_LED_ON1_ON2:
2206                 case ID_LED_ON1_OFF2:
2207                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2208                         mac->ledctl_mode1 |= (ledctl_on << shift);
2209                         break;
2210                 case ID_LED_OFF1_DEF2:
2211                 case ID_LED_OFF1_ON2:
2212                 case ID_LED_OFF1_OFF2:
2213                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2214                         mac->ledctl_mode1 |= (ledctl_off << shift);
2215                         break;
2216                 default:
2217                         /* Do nothing */
2218                         break;
2219                 }
2220                 switch (temp) {
2221                 case ID_LED_DEF1_ON2:
2222                 case ID_LED_ON1_ON2:
2223                 case ID_LED_OFF1_ON2:
2224                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2225                         mac->ledctl_mode2 |= (ledctl_on << shift);
2226                         break;
2227                 case ID_LED_DEF1_OFF2:
2228                 case ID_LED_ON1_OFF2:
2229                 case ID_LED_OFF1_OFF2:
2230                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2231                         mac->ledctl_mode2 |= (ledctl_off << shift);
2232                         break;
2233                 default:
2234                         /* Do nothing */
2235                         break;
2236                 }
2237         }
2238
2239 out:
2240         return ret_val;
2241 }
2242
2243 /**
2244  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2245  *  @hw: pointer to the HW structure
2246  *
2247  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2248  *  register, so the the bus width is hard coded.
2249  **/
2250 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2251 {
2252         struct e1000_bus_info *bus = &hw->bus;
2253         s32 ret_val;
2254
2255         ret_val = e1000e_get_bus_info_pcie(hw);
2256
2257         /*
2258          * ICH devices are "PCI Express"-ish.  They have
2259          * a configuration space, but do not contain
2260          * PCI Express Capability registers, so bus width
2261          * must be hardcoded.
2262          */
2263         if (bus->width == e1000_bus_width_unknown)
2264                 bus->width = e1000_bus_width_pcie_x1;
2265
2266         return ret_val;
2267 }
2268
2269 /**
2270  *  e1000_reset_hw_ich8lan - Reset the hardware
2271  *  @hw: pointer to the HW structure
2272  *
2273  *  Does a full reset of the hardware which includes a reset of the PHY and
2274  *  MAC.
2275  **/
2276 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2277 {
2278         u16 reg;
2279         u32 ctrl, icr, kab;
2280         s32 ret_val;
2281
2282         /*
2283          * Prevent the PCI-E bus from sticking if there is no TLP connection
2284          * on the last TLP read/write transaction when MAC is reset.
2285          */
2286         ret_val = e1000e_disable_pcie_master(hw);
2287         if (ret_val) {
2288                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2289         }
2290
2291         hw_dbg(hw, "Masking off all interrupts\n");
2292         ew32(IMC, 0xffffffff);
2293
2294         /*
2295          * Disable the Transmit and Receive units.  Then delay to allow
2296          * any pending transactions to complete before we hit the MAC
2297          * with the global reset.
2298          */
2299         ew32(RCTL, 0);
2300         ew32(TCTL, E1000_TCTL_PSP);
2301         e1e_flush();
2302
2303         msleep(10);
2304
2305         /* Workaround for ICH8 bit corruption issue in FIFO memory */
2306         if (hw->mac.type == e1000_ich8lan) {
2307                 /* Set Tx and Rx buffer allocation to 8k apiece. */
2308                 ew32(PBA, E1000_PBA_8K);
2309                 /* Set Packet Buffer Size to 16k. */
2310                 ew32(PBS, E1000_PBS_16K);
2311         }
2312
2313         ctrl = er32(CTRL);
2314
2315         if (!e1000_check_reset_block(hw)) {
2316                 /* Clear PHY Reset Asserted bit */
2317                 if (hw->mac.type >= e1000_pchlan) {
2318                         u32 status = er32(STATUS);
2319                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2320                 }
2321
2322                 /*
2323                  * PHY HW reset requires MAC CORE reset at the same
2324                  * time to make sure the interface between MAC and the
2325                  * external PHY is reset.
2326                  */
2327                 ctrl |= E1000_CTRL_PHY_RST;
2328         }
2329         ret_val = e1000_acquire_swflag_ich8lan(hw);
2330         /* Whether or not the swflag was acquired, we need to reset the part */
2331         hw_dbg(hw, "Issuing a global reset to ich8lan\n");
2332         ew32(CTRL, (ctrl | E1000_CTRL_RST));
2333         msleep(20);
2334
2335         if (!ret_val)
2336                 e1000_release_swflag_ich8lan(hw);
2337
2338         if (ctrl & E1000_CTRL_PHY_RST)
2339                 ret_val = hw->phy.ops.get_cfg_done(hw);
2340
2341         if (hw->mac.type >= e1000_ich10lan) {
2342                 e1000_lan_init_done_ich8lan(hw);
2343         } else {
2344                 ret_val = e1000e_get_auto_rd_done(hw);
2345                 if (ret_val) {
2346                         /*
2347                          * When auto config read does not complete, do not
2348                          * return with an error. This can happen in situations
2349                          * where there is no eeprom and prevents getting link.
2350                          */
2351                         hw_dbg(hw, "Auto Read Done did not complete\n");
2352                 }
2353         }
2354         /* Dummy read to clear the phy wakeup bit after lcd reset */
2355         if (hw->mac.type == e1000_pchlan)
2356                 e1e_rphy(hw, BM_WUC, &reg);
2357
2358         /*
2359          * For PCH, this write will make sure that any noise
2360          * will be detected as a CRC error and be dropped rather than show up
2361          * as a bad packet to the DMA engine.
2362          */
2363         if (hw->mac.type == e1000_pchlan)
2364                 ew32(CRC_OFFSET, 0x65656565);
2365
2366         ew32(IMC, 0xffffffff);
2367         icr = er32(ICR);
2368
2369         kab = er32(KABGTXD);
2370         kab |= E1000_KABGTXD_BGSQLBIAS;
2371         ew32(KABGTXD, kab);
2372
2373         if (hw->mac.type == e1000_pchlan)
2374                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2375
2376         return ret_val;
2377 }
2378
2379 /**
2380  *  e1000_init_hw_ich8lan - Initialize the hardware
2381  *  @hw: pointer to the HW structure
2382  *
2383  *  Prepares the hardware for transmit and receive by doing the following:
2384  *   - initialize hardware bits
2385  *   - initialize LED identification
2386  *   - setup receive address registers
2387  *   - setup flow control
2388  *   - setup transmit descriptors
2389  *   - clear statistics
2390  **/
2391 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2392 {
2393         struct e1000_mac_info *mac = &hw->mac;
2394         u32 ctrl_ext, txdctl, snoop;
2395         s32 ret_val;
2396         u16 i;
2397
2398         e1000_initialize_hw_bits_ich8lan(hw);
2399
2400         /* Initialize identification LED */
2401         ret_val = mac->ops.id_led_init(hw);
2402         if (ret_val) {
2403                 hw_dbg(hw, "Error initializing identification LED\n");
2404                 return ret_val;
2405         }
2406
2407         /* Setup the receive address. */
2408         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2409
2410         /* Zero out the Multicast HASH table */
2411         hw_dbg(hw, "Zeroing the MTA\n");
2412         for (i = 0; i < mac->mta_reg_count; i++)
2413                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2414
2415         /*
2416          * The 82578 Rx buffer will stall if wakeup is enabled in host and
2417          * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
2418          * Reset the phy after disabling host wakeup to reset the Rx buffer.
2419          */
2420         if (hw->phy.type == e1000_phy_82578) {
2421                 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2422                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2423                 if (ret_val)
2424                         return ret_val;
2425         }
2426
2427         /* Setup link and flow control */
2428         ret_val = e1000_setup_link_ich8lan(hw);
2429
2430         /* Set the transmit descriptor write-back policy for both queues */
2431         txdctl = er32(TXDCTL(0));
2432         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2433                  E1000_TXDCTL_FULL_TX_DESC_WB;
2434         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2435                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2436         ew32(TXDCTL(0), txdctl);
2437         txdctl = er32(TXDCTL(1));
2438         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2439                  E1000_TXDCTL_FULL_TX_DESC_WB;
2440         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2441                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2442         ew32(TXDCTL(1), txdctl);
2443
2444         /*
2445          * ICH8 has opposite polarity of no_snoop bits.
2446          * By default, we should use snoop behavior.
2447          */
2448         if (mac->type == e1000_ich8lan)
2449                 snoop = PCIE_ICH8_SNOOP_ALL;
2450         else
2451                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2452         e1000e_set_pcie_no_snoop(hw, snoop);
2453
2454         ctrl_ext = er32(CTRL_EXT);
2455         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2456         ew32(CTRL_EXT, ctrl_ext);
2457
2458         /*
2459          * Clear all of the statistics registers (clear on read).  It is
2460          * important that we do this after we have tried to establish link
2461          * because the symbol error count will increment wildly if there
2462          * is no link.
2463          */
2464         e1000_clear_hw_cntrs_ich8lan(hw);
2465
2466         return 0;
2467 }
2468 /**
2469  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2470  *  @hw: pointer to the HW structure
2471  *
2472  *  Sets/Clears required hardware bits necessary for correctly setting up the
2473  *  hardware for transmit and receive.
2474  **/
2475 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2476 {
2477         u32 reg;
2478
2479         /* Extended Device Control */
2480         reg = er32(CTRL_EXT);
2481         reg |= (1 << 22);
2482         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2483         if (hw->mac.type >= e1000_pchlan)
2484                 reg |= E1000_CTRL_EXT_PHYPDEN;
2485         ew32(CTRL_EXT, reg);
2486
2487         /* Transmit Descriptor Control 0 */
2488         reg = er32(TXDCTL(0));
2489         reg |= (1 << 22);
2490         ew32(TXDCTL(0), reg);
2491
2492         /* Transmit Descriptor Control 1 */
2493         reg = er32(TXDCTL(1));
2494         reg |= (1 << 22);
2495         ew32(TXDCTL(1), reg);
2496
2497         /* Transmit Arbitration Control 0 */
2498         reg = er32(TARC(0));
2499         if (hw->mac.type == e1000_ich8lan)
2500                 reg |= (1 << 28) | (1 << 29);
2501         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2502         ew32(TARC(0), reg);
2503
2504         /* Transmit Arbitration Control 1 */
2505         reg = er32(TARC(1));
2506         if (er32(TCTL) & E1000_TCTL_MULR)
2507                 reg &= ~(1 << 28);
2508         else
2509                 reg |= (1 << 28);
2510         reg |= (1 << 24) | (1 << 26) | (1 << 30);
2511         ew32(TARC(1), reg);
2512
2513         /* Device Status */
2514         if (hw->mac.type == e1000_ich8lan) {
2515                 reg = er32(STATUS);
2516                 reg &= ~(1 << 31);
2517                 ew32(STATUS, reg);
2518         }
2519 }
2520
2521 /**
2522  *  e1000_setup_link_ich8lan - Setup flow control and link settings
2523  *  @hw: pointer to the HW structure
2524  *
2525  *  Determines which flow control settings to use, then configures flow
2526  *  control.  Calls the appropriate media-specific link configuration
2527  *  function.  Assuming the adapter has a valid link partner, a valid link
2528  *  should be established.  Assumes the hardware has previously been reset
2529  *  and the transmitter and receiver are not enabled.
2530  **/
2531 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2532 {
2533         s32 ret_val;
2534
2535         if (e1000_check_reset_block(hw))
2536                 return 0;
2537
2538         /*
2539          * ICH parts do not have a word in the NVM to determine
2540          * the default flow control setting, so we explicitly
2541          * set it to full.
2542          */
2543         if (hw->fc.requested_mode == e1000_fc_default) {
2544                 /* Workaround h/w hang when Tx flow control enabled */
2545                 if (hw->mac.type == e1000_pchlan)
2546                         hw->fc.requested_mode = e1000_fc_rx_pause;
2547                 else
2548                         hw->fc.requested_mode = e1000_fc_full;
2549         }
2550
2551         /*
2552          * Save off the requested flow control mode for use later.  Depending
2553          * on the link partner's capabilities, we may or may not use this mode.
2554          */
2555         hw->fc.current_mode = hw->fc.requested_mode;
2556
2557         hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2558                 hw->fc.current_mode);
2559
2560         /* Continue to configure the copper link. */
2561         ret_val = e1000_setup_copper_link_ich8lan(hw);
2562         if (ret_val)
2563                 return ret_val;
2564
2565         ew32(FCTTV, hw->fc.pause_time);
2566         if ((hw->phy.type == e1000_phy_82578) ||
2567             (hw->phy.type == e1000_phy_82577)) {
2568                 ret_val = hw->phy.ops.write_phy_reg(hw,
2569                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
2570                                              hw->fc.pause_time);
2571                 if (ret_val)
2572                         return ret_val;
2573         }
2574
2575         return e1000e_set_fc_watermarks(hw);
2576 }
2577
2578 /**
2579  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2580  *  @hw: pointer to the HW structure
2581  *
2582  *  Configures the kumeran interface to the PHY to wait the appropriate time
2583  *  when polling the PHY, then call the generic setup_copper_link to finish
2584  *  configuring the copper link.
2585  **/
2586 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2587 {
2588         u32 ctrl;
2589         s32 ret_val;
2590         u16 reg_data;
2591
2592         ctrl = er32(CTRL);
2593         ctrl |= E1000_CTRL_SLU;
2594         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2595         ew32(CTRL, ctrl);
2596
2597         /*
2598          * Set the mac to wait the maximum time between each iteration
2599          * and increase the max iterations when polling the phy;
2600          * this fixes erroneous timeouts at 10Mbps.
2601          */
2602         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2603         if (ret_val)
2604                 return ret_val;
2605         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2606         if (ret_val)
2607                 return ret_val;
2608         reg_data |= 0x3F;
2609         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2610         if (ret_val)
2611                 return ret_val;
2612
2613         switch (hw->phy.type) {
2614         case e1000_phy_igp_3:
2615                 ret_val = e1000e_copper_link_setup_igp(hw);
2616                 if (ret_val)
2617                         return ret_val;
2618                 break;
2619         case e1000_phy_bm:
2620         case e1000_phy_82578:
2621                 ret_val = e1000e_copper_link_setup_m88(hw);
2622                 if (ret_val)
2623                         return ret_val;
2624                 break;
2625         case e1000_phy_82577:
2626                 ret_val = e1000_copper_link_setup_82577(hw);
2627                 if (ret_val)
2628                         return ret_val;
2629                 break;
2630         case e1000_phy_ife:
2631                 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2632                                                &reg_data);
2633                 if (ret_val)
2634                         return ret_val;
2635
2636                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2637
2638                 switch (hw->phy.mdix) {
2639                 case 1:
2640                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2641                         break;
2642                 case 2:
2643                         reg_data |= IFE_PMC_FORCE_MDIX;
2644                         break;
2645                 case 0:
2646                 default:
2647                         reg_data |= IFE_PMC_AUTO_MDIX;
2648                         break;
2649                 }
2650                 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2651                                                 reg_data);
2652                 if (ret_val)
2653                         return ret_val;
2654                 break;
2655         default:
2656                 break;
2657         }
2658         return e1000e_setup_copper_link(hw);
2659 }
2660
2661 /**
2662  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2663  *  @hw: pointer to the HW structure
2664  *  @speed: pointer to store current link speed
2665  *  @duplex: pointer to store the current link duplex
2666  *
2667  *  Calls the generic get_speed_and_duplex to retrieve the current link
2668  *  information and then calls the Kumeran lock loss workaround for links at
2669  *  gigabit speeds.
2670  **/
2671 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2672                                           u16 *duplex)
2673 {
2674         s32 ret_val;
2675
2676         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2677         if (ret_val)
2678                 return ret_val;
2679
2680         if ((hw->mac.type == e1000_pchlan) && (*speed == SPEED_1000)) {
2681                 ret_val = e1000e_write_kmrn_reg(hw,
2682                                                   E1000_KMRNCTRLSTA_K1_CONFIG,
2683                                                   E1000_KMRNCTRLSTA_K1_DISABLE);
2684                 if (ret_val)
2685                         return ret_val;
2686         }
2687
2688         if ((hw->mac.type == e1000_ich8lan) &&
2689             (hw->phy.type == e1000_phy_igp_3) &&
2690             (*speed == SPEED_1000)) {
2691                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2692         }
2693
2694         return ret_val;
2695 }
2696
2697 /**
2698  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2699  *  @hw: pointer to the HW structure
2700  *
2701  *  Work-around for 82566 Kumeran PCS lock loss:
2702  *  On link status change (i.e. PCI reset, speed change) and link is up and
2703  *  speed is gigabit-
2704  *    0) if workaround is optionally disabled do nothing
2705  *    1) wait 1ms for Kumeran link to come up
2706  *    2) check Kumeran Diagnostic register PCS lock loss bit
2707  *    3) if not set the link is locked (all is good), otherwise...
2708  *    4) reset the PHY
2709  *    5) repeat up to 10 times
2710  *  Note: this is only called for IGP3 copper when speed is 1gb.
2711  **/
2712 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2713 {
2714         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2715         u32 phy_ctrl;
2716         s32 ret_val;
2717         u16 i, data;
2718         bool link;
2719
2720         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2721                 return 0;
2722
2723         /*
2724          * Make sure link is up before proceeding.  If not just return.
2725          * Attempting this while link is negotiating fouled up link
2726          * stability
2727          */
2728         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2729         if (!link)
2730                 return 0;
2731
2732         for (i = 0; i < 10; i++) {
2733                 /* read once to clear */
2734                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2735                 if (ret_val)
2736                         return ret_val;
2737                 /* and again to get new status */
2738                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2739                 if (ret_val)
2740                         return ret_val;
2741
2742                 /* check for PCS lock */
2743                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2744                         return 0;
2745
2746                 /* Issue PHY reset */
2747                 e1000_phy_hw_reset(hw);
2748                 mdelay(5);
2749         }
2750         /* Disable GigE link negotiation */
2751         phy_ctrl = er32(PHY_CTRL);
2752         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2753                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2754         ew32(PHY_CTRL, phy_ctrl);
2755
2756         /*
2757          * Call gig speed drop workaround on Gig disable before accessing
2758          * any PHY registers
2759          */
2760         e1000e_gig_downshift_workaround_ich8lan(hw);
2761
2762         /* unable to acquire PCS lock */
2763         return -E1000_ERR_PHY;
2764 }
2765
2766 /**
2767  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2768  *  @hw: pointer to the HW structure
2769  *  @state: boolean value used to set the current Kumeran workaround state
2770  *
2771  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
2772  *  /disabled - FALSE).
2773  **/
2774 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2775                                                  bool state)
2776 {
2777         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2778
2779         if (hw->mac.type != e1000_ich8lan) {
2780                 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2781                 return;
2782         }
2783
2784         dev_spec->kmrn_lock_loss_workaround_enabled = state;
2785 }
2786
2787 /**
2788  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2789  *  @hw: pointer to the HW structure
2790  *
2791  *  Workaround for 82566 power-down on D3 entry:
2792  *    1) disable gigabit link
2793  *    2) write VR power-down enable
2794  *    3) read it back
2795  *  Continue if successful, else issue LCD reset and repeat
2796  **/
2797 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2798 {
2799         u32 reg;
2800         u16 data;
2801         u8  retry = 0;
2802
2803         if (hw->phy.type != e1000_phy_igp_3)
2804                 return;
2805
2806         /* Try the workaround twice (if needed) */
2807         do {
2808                 /* Disable link */
2809                 reg = er32(PHY_CTRL);
2810                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2811                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2812                 ew32(PHY_CTRL, reg);
2813
2814                 /*
2815                  * Call gig speed drop workaround on Gig disable before
2816                  * accessing any PHY registers
2817                  */
2818                 if (hw->mac.type == e1000_ich8lan)
2819                         e1000e_gig_downshift_workaround_ich8lan(hw);
2820
2821                 /* Write VR power-down enable */
2822                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2823                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2824                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2825
2826                 /* Read it back and test */
2827                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2828                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2829                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2830                         break;
2831
2832                 /* Issue PHY reset and repeat at most one more time */
2833                 reg = er32(CTRL);
2834                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2835                 retry++;
2836         } while (retry);
2837 }
2838
2839 /**
2840  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2841  *  @hw: pointer to the HW structure
2842  *
2843  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2844  *  LPLU, Gig disable, MDIC PHY reset):
2845  *    1) Set Kumeran Near-end loopback
2846  *    2) Clear Kumeran Near-end loopback
2847  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
2848  **/
2849 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2850 {
2851         s32 ret_val;
2852         u16 reg_data;
2853
2854         if ((hw->mac.type != e1000_ich8lan) ||
2855             (hw->phy.type != e1000_phy_igp_3))
2856                 return;
2857
2858         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2859                                       &reg_data);
2860         if (ret_val)
2861                 return;
2862         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2863         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2864                                        reg_data);
2865         if (ret_val)
2866                 return;
2867         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2868         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2869                                        reg_data);
2870 }
2871
2872 /**
2873  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2874  *  @hw: pointer to the HW structure
2875  *
2876  *  During S0 to Sx transition, it is possible the link remains at gig
2877  *  instead of negotiating to a lower speed.  Before going to Sx, set
2878  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2879  *  to a lower speed.
2880  *
2881  *  Should only be called for applicable parts.
2882  **/
2883 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2884 {
2885         u32 phy_ctrl;
2886
2887         switch (hw->mac.type) {
2888         case e1000_ich9lan:
2889         case e1000_ich10lan:
2890         case e1000_pchlan:
2891                 phy_ctrl = er32(PHY_CTRL);
2892                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2893                             E1000_PHY_CTRL_GBE_DISABLE;
2894                 ew32(PHY_CTRL, phy_ctrl);
2895
2896                 if (hw->mac.type == e1000_pchlan)
2897                         e1000_phy_hw_reset_ich8lan(hw);
2898         default:
2899                 break;
2900         }
2901
2902         return;
2903 }
2904
2905 /**
2906  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
2907  *  @hw: pointer to the HW structure
2908  *
2909  *  Return the LED back to the default configuration.
2910  **/
2911 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2912 {
2913         if (hw->phy.type == e1000_phy_ife)
2914                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2915
2916         ew32(LEDCTL, hw->mac.ledctl_default);
2917         return 0;
2918 }
2919
2920 /**
2921  *  e1000_led_on_ich8lan - Turn LEDs on
2922  *  @hw: pointer to the HW structure
2923  *
2924  *  Turn on the LEDs.
2925  **/
2926 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2927 {
2928         if (hw->phy.type == e1000_phy_ife)
2929                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2930                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2931
2932         ew32(LEDCTL, hw->mac.ledctl_mode2);
2933         return 0;
2934 }
2935
2936 /**
2937  *  e1000_led_off_ich8lan - Turn LEDs off
2938  *  @hw: pointer to the HW structure
2939  *
2940  *  Turn off the LEDs.
2941  **/
2942 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2943 {
2944         if (hw->phy.type == e1000_phy_ife)
2945                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2946                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2947
2948         ew32(LEDCTL, hw->mac.ledctl_mode1);
2949         return 0;
2950 }
2951
2952 /**
2953  *  e1000_setup_led_pchlan - Configures SW controllable LED
2954  *  @hw: pointer to the HW structure
2955  *
2956  *  This prepares the SW controllable LED for use.
2957  **/
2958 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
2959 {
2960         return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2961                                         (u16)hw->mac.ledctl_mode1);
2962 }
2963
2964 /**
2965  *  e1000_cleanup_led_pchlan - Restore the default LED operation
2966  *  @hw: pointer to the HW structure
2967  *
2968  *  Return the LED back to the default configuration.
2969  **/
2970 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
2971 {
2972         return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2973                                         (u16)hw->mac.ledctl_default);
2974 }
2975
2976 /**
2977  *  e1000_led_on_pchlan - Turn LEDs on
2978  *  @hw: pointer to the HW structure
2979  *
2980  *  Turn on the LEDs.
2981  **/
2982 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
2983 {
2984         u16 data = (u16)hw->mac.ledctl_mode2;
2985         u32 i, led;
2986
2987         /*
2988          * If no link, then turn LED on by setting the invert bit
2989          * for each LED that's mode is "link_up" in ledctl_mode2.
2990          */
2991         if (!(er32(STATUS) & E1000_STATUS_LU)) {
2992                 for (i = 0; i < 3; i++) {
2993                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2994                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
2995                             E1000_LEDCTL_MODE_LINK_UP)
2996                                 continue;
2997                         if (led & E1000_PHY_LED0_IVRT)
2998                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2999                         else
3000                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3001                 }
3002         }
3003
3004         return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3005 }
3006
3007 /**
3008  *  e1000_led_off_pchlan - Turn LEDs off
3009  *  @hw: pointer to the HW structure
3010  *
3011  *  Turn off the LEDs.
3012  **/
3013 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3014 {
3015         u16 data = (u16)hw->mac.ledctl_mode1;
3016         u32 i, led;
3017
3018         /*
3019          * If no link, then turn LED off by clearing the invert bit
3020          * for each LED that's mode is "link_up" in ledctl_mode1.
3021          */
3022         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3023                 for (i = 0; i < 3; i++) {
3024                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3025                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3026                             E1000_LEDCTL_MODE_LINK_UP)
3027                                 continue;
3028                         if (led & E1000_PHY_LED0_IVRT)
3029                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3030                         else
3031                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3032                 }
3033         }
3034
3035         return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
3036 }
3037
3038 /**
3039  *  e1000_get_cfg_done_ich8lan - Read config done bit
3040  *  @hw: pointer to the HW structure
3041  *
3042  *  Read the management control register for the config done bit for
3043  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
3044  *  to read the config done bit, so an error is *ONLY* logged and returns
3045  *  0.  If we were to return with error, EEPROM-less silicon
3046  *  would not be able to be reset or change link.
3047  **/
3048 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3049 {
3050         u32 bank = 0;
3051
3052         if (hw->mac.type >= e1000_pchlan) {
3053                 u32 status = er32(STATUS);
3054
3055                 if (status & E1000_STATUS_PHYRA)
3056                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3057                 else
3058                         hw_dbg(hw,
3059                                "PHY Reset Asserted not set - needs delay\n");
3060         }
3061
3062         e1000e_get_cfg_done(hw);
3063
3064         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3065         if ((hw->mac.type != e1000_ich10lan) &&
3066             (hw->mac.type != e1000_pchlan)) {
3067                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3068                     (hw->phy.type == e1000_phy_igp_3)) {
3069                         e1000e_phy_init_script_igp3(hw);
3070                 }
3071         } else {
3072                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3073                         /* Maybe we should do a basic PHY config */
3074                         hw_dbg(hw, "EEPROM not present\n");
3075                         return -E1000_ERR_CONFIG;
3076                 }
3077         }
3078
3079         return 0;
3080 }
3081
3082 /**
3083  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3084  *  @hw: pointer to the HW structure
3085  *
3086  *  Clears hardware counters specific to the silicon family and calls
3087  *  clear_hw_cntrs_generic to clear all general purpose counters.
3088  **/
3089 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3090 {
3091         u32 temp;
3092         u16 phy_data;
3093
3094         e1000e_clear_hw_cntrs_base(hw);
3095
3096         temp = er32(ALGNERRC);
3097         temp = er32(RXERRC);
3098         temp = er32(TNCRS);
3099         temp = er32(CEXTERR);
3100         temp = er32(TSCTC);
3101         temp = er32(TSCTFC);
3102
3103         temp = er32(MGTPRC);
3104         temp = er32(MGTPDC);
3105         temp = er32(MGTPTC);
3106
3107         temp = er32(IAC);
3108         temp = er32(ICRXOC);
3109
3110         /* Clear PHY statistics registers */
3111         if ((hw->phy.type == e1000_phy_82578) ||
3112             (hw->phy.type == e1000_phy_82577)) {
3113                 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
3114                 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
3115                 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
3116                 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
3117                 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
3118                 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
3119                 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
3120                 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
3121                 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
3122                 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
3123                 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
3124                 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
3125                 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
3126                 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
3127         }
3128 }
3129
3130 static struct e1000_mac_operations ich8_mac_ops = {
3131         .id_led_init            = e1000e_id_led_init,
3132         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
3133         .check_for_link         = e1000_check_for_copper_link_ich8lan,
3134         /* cleanup_led dependent on mac type */
3135         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3136         .get_bus_info           = e1000_get_bus_info_ich8lan,
3137         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3138         /* led_on dependent on mac type */
3139         /* led_off dependent on mac type */
3140         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3141         .reset_hw               = e1000_reset_hw_ich8lan,
3142         .init_hw                = e1000_init_hw_ich8lan,
3143         .setup_link             = e1000_setup_link_ich8lan,
3144         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3145         /* id_led_init dependent on mac type */
3146 };
3147
3148 static struct e1000_phy_operations ich8_phy_ops = {
3149         .acquire_phy            = e1000_acquire_swflag_ich8lan,
3150         .check_reset_block      = e1000_check_reset_block_ich8lan,
3151         .commit_phy             = NULL,
3152         .force_speed_duplex     = e1000_phy_force_speed_duplex_ich8lan,
3153         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3154         .get_cable_length       = e1000e_get_cable_length_igp_2,
3155         .get_phy_info           = e1000_get_phy_info_ich8lan,
3156         .read_phy_reg           = e1000e_read_phy_reg_igp,
3157         .release_phy            = e1000_release_swflag_ich8lan,
3158         .reset_phy              = e1000_phy_hw_reset_ich8lan,
3159         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3160         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3161         .write_phy_reg          = e1000e_write_phy_reg_igp,
3162 };
3163
3164 static struct e1000_nvm_operations ich8_nvm_ops = {
3165         .acquire_nvm            = e1000_acquire_swflag_ich8lan,
3166         .read_nvm               = e1000_read_nvm_ich8lan,
3167         .release_nvm            = e1000_release_swflag_ich8lan,
3168         .update_nvm             = e1000_update_nvm_checksum_ich8lan,
3169         .valid_led_default      = e1000_valid_led_default_ich8lan,
3170         .validate_nvm           = e1000_validate_nvm_checksum_ich8lan,
3171         .write_nvm              = e1000_write_nvm_ich8lan,
3172 };
3173
3174 struct e1000_info e1000_ich8_info = {
3175         .mac                    = e1000_ich8lan,
3176         .flags                  = FLAG_HAS_WOL
3177                                   | FLAG_IS_ICH
3178                                   | FLAG_RX_CSUM_ENABLED
3179                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3180                                   | FLAG_HAS_AMT
3181                                   | FLAG_HAS_FLASH
3182                                   | FLAG_APME_IN_WUC,
3183         .pba                    = 8,
3184         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3185         .get_variants           = e1000_get_variants_ich8lan,
3186         .mac_ops                = &ich8_mac_ops,
3187         .phy_ops                = &ich8_phy_ops,
3188         .nvm_ops                = &ich8_nvm_ops,
3189 };
3190
3191 struct e1000_info e1000_ich9_info = {
3192         .mac                    = e1000_ich9lan,
3193         .flags                  = FLAG_HAS_JUMBO_FRAMES
3194                                   | FLAG_IS_ICH
3195                                   | FLAG_HAS_WOL
3196                                   | FLAG_RX_CSUM_ENABLED
3197                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3198                                   | FLAG_HAS_AMT
3199                                   | FLAG_HAS_ERT
3200                                   | FLAG_HAS_FLASH
3201                                   | FLAG_APME_IN_WUC,
3202         .pba                    = 10,
3203         .max_hw_frame_size      = DEFAULT_JUMBO,
3204         .get_variants           = e1000_get_variants_ich8lan,
3205         .mac_ops                = &ich8_mac_ops,
3206         .phy_ops                = &ich8_phy_ops,
3207         .nvm_ops                = &ich8_nvm_ops,
3208 };
3209
3210 struct e1000_info e1000_ich10_info = {
3211         .mac                    = e1000_ich10lan,
3212         .flags                  = FLAG_HAS_JUMBO_FRAMES
3213                                   | FLAG_IS_ICH
3214                                   | FLAG_HAS_WOL
3215                                   | FLAG_RX_CSUM_ENABLED
3216                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3217                                   | FLAG_HAS_AMT
3218                                   | FLAG_HAS_ERT
3219                                   | FLAG_HAS_FLASH
3220                                   | FLAG_APME_IN_WUC,
3221         .pba                    = 10,
3222         .max_hw_frame_size      = DEFAULT_JUMBO,
3223         .get_variants           = e1000_get_variants_ich8lan,
3224         .mac_ops                = &ich8_mac_ops,
3225         .phy_ops                = &ich8_phy_ops,
3226         .nvm_ops                = &ich8_nvm_ops,
3227 };
3228
3229 struct e1000_info e1000_pch_info = {
3230         .mac                    = e1000_pchlan,
3231         .flags                  = FLAG_IS_ICH
3232                                   | FLAG_HAS_WOL
3233                                   | FLAG_RX_CSUM_ENABLED
3234                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3235                                   | FLAG_HAS_AMT
3236                                   | FLAG_HAS_FLASH
3237                                   | FLAG_HAS_JUMBO_FRAMES
3238                                   | FLAG_APME_IN_WUC,
3239         .pba                    = 26,
3240         .max_hw_frame_size      = 4096,
3241         .get_variants           = e1000_get_variants_ich8lan,
3242         .mac_ops                = &ich8_mac_ops,
3243         .phy_ops                = &ich8_phy_ops,
3244         .nvm_ops                = &ich8_nvm_ops,
3245 };