3c59x: fix bad split of cpu_to_le32(pci_map_single())
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / 3com / 3c59x.c
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3         Written 1996-1999 by Donald Becker.
4
5         This software may be used and distributed according to the terms
6         of the GNU General Public License, incorporated herein by reference.
7
8         This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9         Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10         and the EtherLink XL 3c900 and 3c905 cards.
11
12         Problem reports and questions should be directed to
13         vortex@scyld.com
14
15         The author may be reached as becker@scyld.com, or C/O
16         Scyld Computing Corporation
17         410 Severn Ave., Suite 210
18         Annapolis MD 21403
19
20 */
21
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30
31
32 #define DRV_NAME        "3c59x"
33
34
35
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE    16
39 #define RX_RING_SIZE    32
40 #define PKT_BUF_SZ              1536                    /* Size of each temporary Rx buffer.*/
41
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>                    /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99
100 #define RUN_AT(x) (jiffies + (x))
101
102 #include <linux/delay.h>
103
104
105 static const char version[] =
106         DRV_NAME ": Donald Becker and others.\n";
107
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111
112
113 /* Operational parameter that usually are not changed. */
114
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126
127 #define PFX DRV_NAME ": "
128
129
130
131 /*
132                                 Theory of Operation
133
134 I. Board Compatibility
135
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144
145 II. Board-specific settings
146
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154
155 III. Driver operation
156
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193
194 IV. Notes
195
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211         PCI_USES_MASTER=4,
212 };
213
214 enum {  IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215         EEPROM_8BIT=0x10,       /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216         HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217         INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218         EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219         EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220
221 enum vortex_chips {
222         CH_3C590 = 0,
223         CH_3C592,
224         CH_3C597,
225         CH_3C595_1,
226         CH_3C595_2,
227
228         CH_3C595_3,
229         CH_3C900_1,
230         CH_3C900_2,
231         CH_3C900_3,
232         CH_3C900_4,
233
234         CH_3C900_5,
235         CH_3C900B_FL,
236         CH_3C905_1,
237         CH_3C905_2,
238         CH_3C905B_TX,
239         CH_3C905B_1,
240
241         CH_3C905B_2,
242         CH_3C905B_FX,
243         CH_3C905C,
244         CH_3C9202,
245         CH_3C980,
246         CH_3C9805,
247
248         CH_3CSOHO100_TX,
249         CH_3C555,
250         CH_3C556,
251         CH_3C556B,
252         CH_3C575,
253
254         CH_3C575_1,
255         CH_3CCFE575,
256         CH_3CCFE575CT,
257         CH_3CCFE656,
258         CH_3CCFEM656,
259
260         CH_3CCFEM656_1,
261         CH_3C450,
262         CH_3C920,
263         CH_3C982A,
264         CH_3C982B,
265
266         CH_905BT4,
267         CH_920B_EMB_WNM,
268 };
269
270
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276         const char *name;
277         int flags;
278         int drv_flags;
279         int io_size;
280 } vortex_info_tbl[] = {
281         {"3c590 Vortex 10Mbps",
282          PCI_USES_MASTER, IS_VORTEX, 32, },
283         {"3c592 EISA 10Mbps Demon/Vortex",                                      /* AKPM: from Don's 3c59x_cb.c 0.49H */
284          PCI_USES_MASTER, IS_VORTEX, 32, },
285         {"3c597 EISA Fast Demon/Vortex",                                        /* AKPM: from Don's 3c59x_cb.c 0.49H */
286          PCI_USES_MASTER, IS_VORTEX, 32, },
287         {"3c595 Vortex 100baseTx",
288          PCI_USES_MASTER, IS_VORTEX, 32, },
289         {"3c595 Vortex 100baseT4",
290          PCI_USES_MASTER, IS_VORTEX, 32, },
291
292         {"3c595 Vortex 100base-MII",
293          PCI_USES_MASTER, IS_VORTEX, 32, },
294         {"3c900 Boomerang 10baseT",
295          PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296         {"3c900 Boomerang 10Mbps Combo",
297          PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298         {"3c900 Cyclone 10Mbps TPO",                                            /* AKPM: from Don's 0.99M */
299          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300         {"3c900 Cyclone 10Mbps Combo",
301          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302
303         {"3c900 Cyclone 10Mbps TPC",                                            /* AKPM: from Don's 0.99M */
304          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305         {"3c900B-FL Cyclone 10base-FL",
306          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307         {"3c905 Boomerang 100baseTx",
308          PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309         {"3c905 Boomerang 100baseT4",
310          PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311         {"3C905B-TX Fast Etherlink XL PCI",
312          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313         {"3c905B Cyclone 100baseTx",
314          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315
316         {"3c905B Cyclone 10/100/BNC",
317          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318         {"3c905B-FX Cyclone 100baseFx",
319          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320         {"3c905C Tornado",
321         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322         {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323          PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324         {"3c980 Cyclone",
325          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326
327         {"3c980C Python-T",
328          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329         {"3cSOHO100-TX Hurricane",
330          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331         {"3c555 Laptop Hurricane",
332          PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333         {"3c556 Laptop Tornado",
334          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335                                                                         HAS_HWCKSM, 128, },
336         {"3c556B Laptop Hurricane",
337          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338                                         WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339
340         {"3c575 [Megahertz] 10/100 LAN  CardBus",
341         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342         {"3c575 Boomerang CardBus",
343          PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344         {"3CCFE575BT Cyclone CardBus",
345          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346                                                                         INVERT_LED_PWR|HAS_HWCKSM, 128, },
347         {"3CCFE575CT Tornado CardBus",
348          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349                                                                         MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350         {"3CCFE656 Cyclone CardBus",
351          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352                                                                         INVERT_LED_PWR|HAS_HWCKSM, 128, },
353
354         {"3CCFEM656B Cyclone+Winmodem CardBus",
355          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356                                                                         INVERT_LED_PWR|HAS_HWCKSM, 128, },
357         {"3CXFEM656C Tornado+Winmodem CardBus",                 /* From pcmcia-cs-3.1.5 */
358          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359                                                                         MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360         {"3c450 HomePNA Tornado",                                               /* AKPM: from Don's 0.99Q */
361          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362         {"3c920 Tornado",
363          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364         {"3c982 Hydra Dual Port A",
365          PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366
367         {"3c982 Hydra Dual Port B",
368          PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369         {"3c905B-T4",
370          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371         {"3c920B-EMB-WNM Tornado",
372          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373
374         {NULL,}, /* NULL terminated list. */
375 };
376
377
378 static const struct pci_device_id vortex_pci_tbl[] = {
379         { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380         { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381         { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382         { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383         { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384
385         { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386         { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387         { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388         { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389         { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390
391         { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392         { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393         { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394         { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395         { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396         { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397
398         { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399         { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400         { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401         { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402         { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403         { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404
405         { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406         { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407         { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408         { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409         { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410
411         { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412         { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413         { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414         { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415         { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416
417         { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418         { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419         { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420         { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421         { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422
423         { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424         { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425
426         {0,}                                            /* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429
430
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446
447 enum vortex_cmd {
448         TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449         RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450         UpStall = 6<<11, UpUnstall = (6<<11)+1,
451         DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452         RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453         FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454         SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455         SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456         StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457         StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461         RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462
463 /* Bits in the general status register. */
464 enum vortex_status {
465         IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466         TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467         IntReq = 0x0040, StatsFull = 0x0080,
468         DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469         DMAInProgress = 1<<11,                  /* DMA controller is still busy.*/
470         CmdInProgress = 1<<12,                  /* EL3_CMD is still busy.*/
471 };
472
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476         TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477         RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478         TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481         Wn0EepromCmd = 10,              /* Window 0: EEPROM command register. */
482         Wn0EepromData = 12,             /* Window 0: EEPROM results register. */
483         IntrStatus=0x0E,                /* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486         EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487         EEPROM_EWENB = 0x30,            /* Enable erasing/writing for 10 msec. */
488         EEPROM_EWDIS = 0x00,            /* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492         PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493         EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494         NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495         DriverTune=13, Checksum=15};
496
497 enum Window2 {                  /* Window 2. */
498         Wn2_ResetOptions=12,
499 };
500 enum Window3 {                  /* Window 3: MAC/config bits. */
501         Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506
507 #define BFINS(lhs, rhs, offset, bitcount)                                       \
508         (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |   \
509         (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510
511 #define RAM_SIZE(v)             BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)    BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)    BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)             BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)    BFEXT(v, 16, 2)
516 #define XCVR(v)                 BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)   BFEXT(v, 24, 1)
518
519 enum Window4 {          /* Window 4: Xcvr/media bits. */
520         Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523         Media_SQE = 0x0008,             /* Enable SQE error counting for AUI. */
524         Media_10TP = 0x00C0,    /* Enable link beat and jabber for 10baseT. */
525         Media_Lnk = 0x0080,             /* Enable just link beat for 100TX/100FX. */
526         Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {                                  /* Window 7: Bus Master control. */
529         Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530         Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534         PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535         TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG       0x80000000                      /* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE     0x00010000                      /* This packet has been downloaded */
543 struct boom_rx_desc {
544         __le32 next;                                    /* Last entry points to 0.   */
545         __le32 status;
546         __le32 addr;                                    /* Up to 63 addr/len pairs possible. */
547         __le32 length;                                  /* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551         RxDComplete=0x00008000, RxDError=0x4000,
552         /* See boomerang_rx() for actual error bits */
553         IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554         IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562
563 struct boom_tx_desc {
564         __le32 next;                                    /* Last entry points to 0.   */
565         __le32 status;                                  /* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567         struct {
568                 __le32 addr;
569                 __le32 length;
570         } frag[1+MAX_SKB_FRAGS];
571 #else
572                 __le32 addr;
573                 __le32 length;
574 #endif
575 };
576
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579         CRCDisable=0x2000, TxDComplete=0x8000,
580         AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581         TxIntrUploaded=0x80000000,              /* IRQ when in FIFO, but maybe not sent. */
582 };
583
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586
587 struct vortex_extra_stats {
588         unsigned long tx_deferred;
589         unsigned long tx_max_collisions;
590         unsigned long tx_multiple_collisions;
591         unsigned long tx_single_collisions;
592         unsigned long rx_bad_ssd;
593 };
594
595 struct vortex_private {
596         /* The Rx and Tx rings should be quad-word-aligned. */
597         struct boom_rx_desc* rx_ring;
598         struct boom_tx_desc* tx_ring;
599         dma_addr_t rx_ring_dma;
600         dma_addr_t tx_ring_dma;
601         /* The addresses of transmit- and receive-in-place skbuffs. */
602         struct sk_buff* rx_skbuff[RX_RING_SIZE];
603         struct sk_buff* tx_skbuff[TX_RING_SIZE];
604         unsigned int cur_rx, cur_tx;            /* The next free ring entry */
605         unsigned int dirty_rx, dirty_tx;        /* The ring entries to be free()ed. */
606         struct vortex_extra_stats xstats;       /* NIC-specific extra stats */
607         struct sk_buff *tx_skb;                         /* Packet being eaten by bus master ctrl.  */
608         dma_addr_t tx_skb_dma;                          /* Allocated DMA address for bus master ctrl DMA.   */
609
610         /* PCI configuration space information. */
611         struct device *gendev;
612         void __iomem *ioaddr;                   /* IO address space */
613         void __iomem *cb_fn_base;               /* CardBus function status addr space. */
614
615         /* Some values here only for performance evaluation and path-coverage */
616         int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617         int card_idx;
618
619         /* The remainder are related to chip state, mostly media selection. */
620         struct timer_list timer;                        /* Media selection timer. */
621         struct timer_list rx_oom_timer;         /* Rx skb allocation retry timer */
622         int options;                                            /* User-settable misc. driver options. */
623         unsigned int media_override:4,          /* Passed-in media type. */
624                 default_media:4,                                /* Read from the EEPROM/Wn3_Config. */
625                 full_duplex:1, autoselect:1,
626                 bus_master:1,                                   /* Vortex can only do a fragment bus-m. */
627                 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
628                 flow_ctrl:1,                                    /* Use 802.3x flow control (PAUSE only) */
629                 partner_flow_ctrl:1,                    /* Partner supports flow control */
630                 has_nway:1,
631                 enable_wol:1,                                   /* Wake-on-LAN is enabled */
632                 pm_state_valid:1,                               /* pci_dev->saved_config_space has sane contents */
633                 open:1,
634                 medialock:1,
635                 large_frames:1,                 /* accept large frames */
636                 handling_irq:1;                 /* private in_irq indicator */
637         /* {get|set}_wol operations are already serialized by rtnl.
638          * no additional locking is required for the enable_wol and acpi_set_WOL()
639          */
640         int drv_flags;
641         u16 status_enable;
642         u16 intr_enable;
643         u16 available_media;                            /* From Wn3_Options. */
644         u16 capabilities, info1, info2;         /* Various, from EEPROM. */
645         u16 advertising;                                        /* NWay media advertisement */
646         unsigned char phys[2];                          /* MII device addresses. */
647         u16 deferred;                                           /* Resend these interrupts when we
648                                                                                  * bale from the ISR */
649         u16 io_size;                                            /* Size of PCI region (for release_region) */
650
651         /* Serialises access to hardware other than MII and variables below.
652          * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
653         spinlock_t lock;
654
655         spinlock_t mii_lock;            /* Serialises access to MII */
656         struct mii_if_info mii;         /* MII lib hooks/info */
657         spinlock_t window_lock;         /* Serialises access to windowed regs */
658         int window;                     /* Register window */
659 };
660
661 static void window_set(struct vortex_private *vp, int window)
662 {
663         if (window != vp->window) {
664                 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
665                 vp->window = window;
666         }
667 }
668
669 #define DEFINE_WINDOW_IO(size)                                          \
670 static u ## size                                                        \
671 window_read ## size(struct vortex_private *vp, int window, int addr)    \
672 {                                                                       \
673         unsigned long flags;                                            \
674         u ## size ret;                                                  \
675         spin_lock_irqsave(&vp->window_lock, flags);                     \
676         window_set(vp, window);                                         \
677         ret = ioread ## size(vp->ioaddr + addr);                        \
678         spin_unlock_irqrestore(&vp->window_lock, flags);                \
679         return ret;                                                     \
680 }                                                                       \
681 static void                                                             \
682 window_write ## size(struct vortex_private *vp, u ## size value,        \
683                      int window, int addr)                              \
684 {                                                                       \
685         unsigned long flags;                                            \
686         spin_lock_irqsave(&vp->window_lock, flags);                     \
687         window_set(vp, window);                                         \
688         iowrite ## size(value, vp->ioaddr + addr);                      \
689         spin_unlock_irqrestore(&vp->window_lock, flags);                \
690 }
691 DEFINE_WINDOW_IO(8)
692 DEFINE_WINDOW_IO(16)
693 DEFINE_WINDOW_IO(32)
694
695 #ifdef CONFIG_PCI
696 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
697 #else
698 #define DEVICE_PCI(dev) NULL
699 #endif
700
701 #define VORTEX_PCI(vp)                                                  \
702         ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
703
704 #ifdef CONFIG_EISA
705 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
706 #else
707 #define DEVICE_EISA(dev) NULL
708 #endif
709
710 #define VORTEX_EISA(vp)                                                 \
711         ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
712
713 /* The action to take with a media selection timer tick.
714    Note that we deviate from the 3Com order by checking 10base2 before AUI.
715  */
716 enum xcvr_types {
717         XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
718         XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
719 };
720
721 static const struct media_table {
722         char *name;
723         unsigned int media_bits:16,             /* Bits to set in Wn4_Media register. */
724                 mask:8,                                         /* The transceiver-present bit in Wn3_Config.*/
725                 next:8;                                         /* The media type to try next. */
726         int wait;                                               /* Time before we check media status. */
727 } media_tbl[] = {
728   {     "10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
729   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
730   { "undefined", 0,                     0x80, XCVR_10baseT, 10000},
731   { "10base2",   0,                     0x10, XCVR_AUI,         (1*HZ)/10},
732   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
733   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,             (14*HZ)/10},
734   { "MII",               0,                     0x41, XCVR_10baseT, 3*HZ },
735   { "undefined", 0,                     0x01, XCVR_10baseT, 10000},
736   { "Autonegotiate", 0,         0x41, XCVR_10baseT, 3*HZ},
737   { "MII-External",      0,             0x41, XCVR_10baseT, 3*HZ },
738   { "Default",   0,                     0xFF, XCVR_10baseT, 10000},
739 };
740
741 static struct {
742         const char str[ETH_GSTRING_LEN];
743 } ethtool_stats_keys[] = {
744         { "tx_deferred" },
745         { "tx_max_collisions" },
746         { "tx_multiple_collisions" },
747         { "tx_single_collisions" },
748         { "rx_bad_ssd" },
749 };
750
751 /* number of ETHTOOL_GSTATS u64's */
752 #define VORTEX_NUM_STATS    5
753
754 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
755                                    int chip_idx, int card_idx);
756 static int vortex_up(struct net_device *dev);
757 static void vortex_down(struct net_device *dev, int final);
758 static int vortex_open(struct net_device *dev);
759 static void mdio_sync(struct vortex_private *vp, int bits);
760 static int mdio_read(struct net_device *dev, int phy_id, int location);
761 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
762 static void vortex_timer(unsigned long arg);
763 static void rx_oom_timer(unsigned long arg);
764 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
765                                      struct net_device *dev);
766 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
767                                         struct net_device *dev);
768 static int vortex_rx(struct net_device *dev);
769 static int boomerang_rx(struct net_device *dev);
770 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
771 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
772 static int vortex_close(struct net_device *dev);
773 static void dump_tx_ring(struct net_device *dev);
774 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
775 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
776 static void set_rx_mode(struct net_device *dev);
777 #ifdef CONFIG_PCI
778 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
779 #endif
780 static void vortex_tx_timeout(struct net_device *dev);
781 static void acpi_set_WOL(struct net_device *dev);
782 static const struct ethtool_ops vortex_ethtool_ops;
783 static void set_8021q_mode(struct net_device *dev, int enable);
784
785 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
786 /* Option count limit only -- unlimited interfaces are supported. */
787 #define MAX_UNITS 8
788 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
789 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794 static int global_options = -1;
795 static int global_full_duplex = -1;
796 static int global_enable_wol = -1;
797 static int global_use_mmio = -1;
798
799 /* Variables to work-around the Compaq PCI BIOS32 problem. */
800 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
801 static struct net_device *compaq_net_device;
802
803 static int vortex_cards_found;
804
805 module_param(debug, int, 0);
806 module_param(global_options, int, 0);
807 module_param_array(options, int, NULL, 0);
808 module_param(global_full_duplex, int, 0);
809 module_param_array(full_duplex, int, NULL, 0);
810 module_param_array(hw_checksums, int, NULL, 0);
811 module_param_array(flow_ctrl, int, NULL, 0);
812 module_param(global_enable_wol, int, 0);
813 module_param_array(enable_wol, int, NULL, 0);
814 module_param(rx_copybreak, int, 0);
815 module_param(max_interrupt_work, int, 0);
816 module_param(compaq_ioaddr, int, 0);
817 module_param(compaq_irq, int, 0);
818 module_param(compaq_device_id, int, 0);
819 module_param(watchdog, int, 0);
820 module_param(global_use_mmio, int, 0);
821 module_param_array(use_mmio, int, NULL, 0);
822 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
823 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
824 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
825 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
826 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
827 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
828 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
829 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
830 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
831 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
832 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
833 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
834 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
836 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
837 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
838 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
839
840 #ifdef CONFIG_NET_POLL_CONTROLLER
841 static void poll_vortex(struct net_device *dev)
842 {
843         struct vortex_private *vp = netdev_priv(dev);
844         unsigned long flags;
845         local_irq_save(flags);
846         (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
847         local_irq_restore(flags);
848 }
849 #endif
850
851 #ifdef CONFIG_PM
852
853 static int vortex_suspend(struct device *dev)
854 {
855         struct pci_dev *pdev = to_pci_dev(dev);
856         struct net_device *ndev = pci_get_drvdata(pdev);
857
858         if (!ndev || !netif_running(ndev))
859                 return 0;
860
861         netif_device_detach(ndev);
862         vortex_down(ndev, 1);
863
864         return 0;
865 }
866
867 static int vortex_resume(struct device *dev)
868 {
869         struct pci_dev *pdev = to_pci_dev(dev);
870         struct net_device *ndev = pci_get_drvdata(pdev);
871         int err;
872
873         if (!ndev || !netif_running(ndev))
874                 return 0;
875
876         err = vortex_up(ndev);
877         if (err)
878                 return err;
879
880         netif_device_attach(ndev);
881
882         return 0;
883 }
884
885 static const struct dev_pm_ops vortex_pm_ops = {
886         .suspend = vortex_suspend,
887         .resume = vortex_resume,
888         .freeze = vortex_suspend,
889         .thaw = vortex_resume,
890         .poweroff = vortex_suspend,
891         .restore = vortex_resume,
892 };
893
894 #define VORTEX_PM_OPS (&vortex_pm_ops)
895
896 #else /* !CONFIG_PM */
897
898 #define VORTEX_PM_OPS NULL
899
900 #endif /* !CONFIG_PM */
901
902 #ifdef CONFIG_EISA
903 static struct eisa_device_id vortex_eisa_ids[] = {
904         { "TCM5920", CH_3C592 },
905         { "TCM5970", CH_3C597 },
906         { "" }
907 };
908 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
909
910 static int __init vortex_eisa_probe(struct device *device)
911 {
912         void __iomem *ioaddr;
913         struct eisa_device *edev;
914
915         edev = to_eisa_device(device);
916
917         if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
918                 return -EBUSY;
919
920         ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
921
922         if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
923                                           edev->id.driver_data, vortex_cards_found)) {
924                 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
925                 return -ENODEV;
926         }
927
928         vortex_cards_found++;
929
930         return 0;
931 }
932
933 static int vortex_eisa_remove(struct device *device)
934 {
935         struct eisa_device *edev;
936         struct net_device *dev;
937         struct vortex_private *vp;
938         void __iomem *ioaddr;
939
940         edev = to_eisa_device(device);
941         dev = eisa_get_drvdata(edev);
942
943         if (!dev) {
944                 pr_err("vortex_eisa_remove called for Compaq device!\n");
945                 BUG();
946         }
947
948         vp = netdev_priv(dev);
949         ioaddr = vp->ioaddr;
950
951         unregister_netdev(dev);
952         iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
953         release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
954
955         free_netdev(dev);
956         return 0;
957 }
958
959 static struct eisa_driver vortex_eisa_driver = {
960         .id_table = vortex_eisa_ids,
961         .driver   = {
962                 .name    = "3c59x",
963                 .probe   = vortex_eisa_probe,
964                 .remove  = vortex_eisa_remove
965         }
966 };
967
968 #endif /* CONFIG_EISA */
969
970 /* returns count found (>= 0), or negative on error */
971 static int __init vortex_eisa_init(void)
972 {
973         int eisa_found = 0;
974         int orig_cards_found = vortex_cards_found;
975
976 #ifdef CONFIG_EISA
977         int err;
978
979         err = eisa_driver_register (&vortex_eisa_driver);
980         if (!err) {
981                 /*
982                  * Because of the way EISA bus is probed, we cannot assume
983                  * any device have been found when we exit from
984                  * eisa_driver_register (the bus root driver may not be
985                  * initialized yet). So we blindly assume something was
986                  * found, and let the sysfs magic happened...
987                  */
988                 eisa_found = 1;
989         }
990 #endif
991
992         /* Special code to work-around the Compaq PCI BIOS32 problem. */
993         if (compaq_ioaddr) {
994                 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
995                               compaq_irq, compaq_device_id, vortex_cards_found++);
996         }
997
998         return vortex_cards_found - orig_cards_found + eisa_found;
999 }
1000
1001 /* returns count (>= 0), or negative on error */
1002 static int vortex_init_one(struct pci_dev *pdev,
1003                            const struct pci_device_id *ent)
1004 {
1005         int rc, unit, pci_bar;
1006         struct vortex_chip_info *vci;
1007         void __iomem *ioaddr;
1008
1009         /* wake up and enable device */
1010         rc = pci_enable_device(pdev);
1011         if (rc < 0)
1012                 goto out;
1013
1014         rc = pci_request_regions(pdev, DRV_NAME);
1015         if (rc < 0)
1016                 goto out_disable;
1017
1018         unit = vortex_cards_found;
1019
1020         if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021                 /* Determine the default if the user didn't override us */
1022                 vci = &vortex_info_tbl[ent->driver_data];
1023                 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024         } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025                 pci_bar = use_mmio[unit] ? 1 : 0;
1026         else
1027                 pci_bar = global_use_mmio ? 1 : 0;
1028
1029         ioaddr = pci_iomap(pdev, pci_bar, 0);
1030         if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031                 ioaddr = pci_iomap(pdev, 0, 0);
1032         if (!ioaddr) {
1033                 rc = -ENOMEM;
1034                 goto out_release;
1035         }
1036
1037         rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038                            ent->driver_data, unit);
1039         if (rc < 0)
1040                 goto out_iounmap;
1041
1042         vortex_cards_found++;
1043         goto out;
1044
1045 out_iounmap:
1046         pci_iounmap(pdev, ioaddr);
1047 out_release:
1048         pci_release_regions(pdev);
1049 out_disable:
1050         pci_disable_device(pdev);
1051 out:
1052         return rc;
1053 }
1054
1055 static const struct net_device_ops boomrang_netdev_ops = {
1056         .ndo_open               = vortex_open,
1057         .ndo_stop               = vortex_close,
1058         .ndo_start_xmit         = boomerang_start_xmit,
1059         .ndo_tx_timeout         = vortex_tx_timeout,
1060         .ndo_get_stats          = vortex_get_stats,
1061 #ifdef CONFIG_PCI
1062         .ndo_do_ioctl           = vortex_ioctl,
1063 #endif
1064         .ndo_set_rx_mode        = set_rx_mode,
1065         .ndo_change_mtu         = eth_change_mtu,
1066         .ndo_set_mac_address    = eth_mac_addr,
1067         .ndo_validate_addr      = eth_validate_addr,
1068 #ifdef CONFIG_NET_POLL_CONTROLLER
1069         .ndo_poll_controller    = poll_vortex,
1070 #endif
1071 };
1072
1073 static const struct net_device_ops vortex_netdev_ops = {
1074         .ndo_open               = vortex_open,
1075         .ndo_stop               = vortex_close,
1076         .ndo_start_xmit         = vortex_start_xmit,
1077         .ndo_tx_timeout         = vortex_tx_timeout,
1078         .ndo_get_stats          = vortex_get_stats,
1079 #ifdef CONFIG_PCI
1080         .ndo_do_ioctl           = vortex_ioctl,
1081 #endif
1082         .ndo_set_rx_mode        = set_rx_mode,
1083         .ndo_change_mtu         = eth_change_mtu,
1084         .ndo_set_mac_address    = eth_mac_addr,
1085         .ndo_validate_addr      = eth_validate_addr,
1086 #ifdef CONFIG_NET_POLL_CONTROLLER
1087         .ndo_poll_controller    = poll_vortex,
1088 #endif
1089 };
1090
1091 /*
1092  * Start up the PCI/EISA device which is described by *gendev.
1093  * Return 0 on success.
1094  *
1095  * NOTE: pdev can be NULL, for the case of a Compaq device
1096  */
1097 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1098                          int chip_idx, int card_idx)
1099 {
1100         struct vortex_private *vp;
1101         int option;
1102         unsigned int eeprom[0x40], checksum = 0;                /* EEPROM contents */
1103         int i, step;
1104         struct net_device *dev;
1105         static int printed_version;
1106         int retval, print_info;
1107         struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1108         const char *print_name = "3c59x";
1109         struct pci_dev *pdev = NULL;
1110         struct eisa_device *edev = NULL;
1111
1112         if (!printed_version) {
1113                 pr_info("%s", version);
1114                 printed_version = 1;
1115         }
1116
1117         if (gendev) {
1118                 if ((pdev = DEVICE_PCI(gendev))) {
1119                         print_name = pci_name(pdev);
1120                 }
1121
1122                 if ((edev = DEVICE_EISA(gendev))) {
1123                         print_name = dev_name(&edev->dev);
1124                 }
1125         }
1126
1127         dev = alloc_etherdev(sizeof(*vp));
1128         retval = -ENOMEM;
1129         if (!dev)
1130                 goto out;
1131
1132         SET_NETDEV_DEV(dev, gendev);
1133         vp = netdev_priv(dev);
1134
1135         option = global_options;
1136
1137         /* The lower four bits are the media type. */
1138         if (dev->mem_start) {
1139                 /*
1140                  * The 'options' param is passed in as the third arg to the
1141                  * LILO 'ether=' argument for non-modular use
1142                  */
1143                 option = dev->mem_start;
1144         }
1145         else if (card_idx < MAX_UNITS) {
1146                 if (options[card_idx] >= 0)
1147                         option = options[card_idx];
1148         }
1149
1150         if (option > 0) {
1151                 if (option & 0x8000)
1152                         vortex_debug = 7;
1153                 if (option & 0x4000)
1154                         vortex_debug = 2;
1155                 if (option & 0x0400)
1156                         vp->enable_wol = 1;
1157         }
1158
1159         print_info = (vortex_debug > 1);
1160         if (print_info)
1161                 pr_info("See Documentation/networking/vortex.txt\n");
1162
1163         pr_info("%s: 3Com %s %s at %p.\n",
1164                print_name,
1165                pdev ? "PCI" : "EISA",
1166                vci->name,
1167                ioaddr);
1168
1169         dev->base_addr = (unsigned long)ioaddr;
1170         dev->irq = irq;
1171         dev->mtu = mtu;
1172         vp->ioaddr = ioaddr;
1173         vp->large_frames = mtu > 1500;
1174         vp->drv_flags = vci->drv_flags;
1175         vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1176         vp->io_size = vci->io_size;
1177         vp->card_idx = card_idx;
1178         vp->window = -1;
1179
1180         /* module list only for Compaq device */
1181         if (gendev == NULL) {
1182                 compaq_net_device = dev;
1183         }
1184
1185         /* PCI-only startup logic */
1186         if (pdev) {
1187                 /* enable bus-mastering if necessary */
1188                 if (vci->flags & PCI_USES_MASTER)
1189                         pci_set_master(pdev);
1190
1191                 if (vci->drv_flags & IS_VORTEX) {
1192                         u8 pci_latency;
1193                         u8 new_latency = 248;
1194
1195                         /* Check the PCI latency value.  On the 3c590 series the latency timer
1196                            must be set to the maximum value to avoid data corruption that occurs
1197                            when the timer expires during a transfer.  This bug exists the Vortex
1198                            chip only. */
1199                         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200                         if (pci_latency < new_latency) {
1201                                 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202                                         print_name, pci_latency, new_latency);
1203                                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204                         }
1205                 }
1206         }
1207
1208         spin_lock_init(&vp->lock);
1209         spin_lock_init(&vp->mii_lock);
1210         spin_lock_init(&vp->window_lock);
1211         vp->gendev = gendev;
1212         vp->mii.dev = dev;
1213         vp->mii.mdio_read = mdio_read;
1214         vp->mii.mdio_write = mdio_write;
1215         vp->mii.phy_id_mask = 0x1f;
1216         vp->mii.reg_num_mask = 0x1f;
1217
1218         /* Makes sure rings are at least 16 byte aligned. */
1219         vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220                                            + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221                                            &vp->rx_ring_dma);
1222         retval = -ENOMEM;
1223         if (!vp->rx_ring)
1224                 goto free_device;
1225
1226         vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227         vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228
1229         /* if we are a PCI driver, we store info in pdev->driver_data
1230          * instead of a module list */
1231         if (pdev)
1232                 pci_set_drvdata(pdev, dev);
1233         if (edev)
1234                 eisa_set_drvdata(edev, dev);
1235
1236         vp->media_override = 7;
1237         if (option >= 0) {
1238                 vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1239                 if (vp->media_override != 7)
1240                         vp->medialock = 1;
1241                 vp->full_duplex = (option & 0x200) ? 1 : 0;
1242                 vp->bus_master = (option & 16) ? 1 : 0;
1243         }
1244
1245         if (global_full_duplex > 0)
1246                 vp->full_duplex = 1;
1247         if (global_enable_wol > 0)
1248                 vp->enable_wol = 1;
1249
1250         if (card_idx < MAX_UNITS) {
1251                 if (full_duplex[card_idx] > 0)
1252                         vp->full_duplex = 1;
1253                 if (flow_ctrl[card_idx] > 0)
1254                         vp->flow_ctrl = 1;
1255                 if (enable_wol[card_idx] > 0)
1256                         vp->enable_wol = 1;
1257         }
1258
1259         vp->mii.force_media = vp->full_duplex;
1260         vp->options = option;
1261         /* Read the station address from the EEPROM. */
1262         {
1263                 int base;
1264
1265                 if (vci->drv_flags & EEPROM_8BIT)
1266                         base = 0x230;
1267                 else if (vci->drv_flags & EEPROM_OFFSET)
1268                         base = EEPROM_Read + 0x30;
1269                 else
1270                         base = EEPROM_Read;
1271
1272                 for (i = 0; i < 0x40; i++) {
1273                         int timer;
1274                         window_write16(vp, base + i, 0, Wn0EepromCmd);
1275                         /* Pause for at least 162 us. for the read to take place. */
1276                         for (timer = 10; timer >= 0; timer--) {
1277                                 udelay(162);
1278                                 if ((window_read16(vp, 0, Wn0EepromCmd) &
1279                                      0x8000) == 0)
1280                                         break;
1281                         }
1282                         eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283                 }
1284         }
1285         for (i = 0; i < 0x18; i++)
1286                 checksum ^= eeprom[i];
1287         checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288         if (checksum != 0x00) {         /* Grrr, needless incompatible change 3Com. */
1289                 while (i < 0x21)
1290                         checksum ^= eeprom[i++];
1291                 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292         }
1293         if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294                 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295         for (i = 0; i < 3; i++)
1296                 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297         if (print_info)
1298                 pr_cont(" %pM", dev->dev_addr);
1299         /* Unfortunately an all zero eeprom passes the checksum and this
1300            gets found in the wild in failure cases. Crypto is hard 8) */
1301         if (!is_valid_ether_addr(dev->dev_addr)) {
1302                 retval = -EINVAL;
1303                 pr_err("*** EEPROM MAC address is invalid.\n");
1304                 goto free_ring; /* With every pack */
1305         }
1306         for (i = 0; i < 6; i++)
1307                 window_write8(vp, dev->dev_addr[i], 2, i);
1308
1309         if (print_info)
1310                 pr_cont(", IRQ %d\n", dev->irq);
1311         /* Tell them about an invalid IRQ. */
1312         if (dev->irq <= 0 || dev->irq >= nr_irqs)
1313                 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1314                            dev->irq);
1315
1316         step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1317         if (print_info) {
1318                 pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1319                         eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1320                         step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1321         }
1322
1323
1324         if (pdev && vci->drv_flags & HAS_CB_FNS) {
1325                 unsigned short n;
1326
1327                 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1328                 if (!vp->cb_fn_base) {
1329                         retval = -ENOMEM;
1330                         goto free_ring;
1331                 }
1332
1333                 if (print_info) {
1334                         pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1335                                 print_name,
1336                                 (unsigned long long)pci_resource_start(pdev, 2),
1337                                 vp->cb_fn_base);
1338                 }
1339
1340                 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1341                 if (vp->drv_flags & INVERT_LED_PWR)
1342                         n |= 0x10;
1343                 if (vp->drv_flags & INVERT_MII_PWR)
1344                         n |= 0x4000;
1345                 window_write16(vp, n, 2, Wn2_ResetOptions);
1346                 if (vp->drv_flags & WNO_XCVR_PWR) {
1347                         window_write16(vp, 0x0800, 0, 0);
1348                 }
1349         }
1350
1351         /* Extract our information from the EEPROM data. */
1352         vp->info1 = eeprom[13];
1353         vp->info2 = eeprom[15];
1354         vp->capabilities = eeprom[16];
1355
1356         if (vp->info1 & 0x8000) {
1357                 vp->full_duplex = 1;
1358                 if (print_info)
1359                         pr_info("Full duplex capable\n");
1360         }
1361
1362         {
1363                 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1364                 unsigned int config;
1365                 vp->available_media = window_read16(vp, 3, Wn3_Options);
1366                 if ((vp->available_media & 0xff) == 0)          /* Broken 3c916 */
1367                         vp->available_media = 0x40;
1368                 config = window_read32(vp, 3, Wn3_Config);
1369                 if (print_info) {
1370                         pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1371                                 config, window_read16(vp, 3, Wn3_Options));
1372                         pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1373                                    8 << RAM_SIZE(config),
1374                                    RAM_WIDTH(config) ? "word" : "byte",
1375                                    ram_split[RAM_SPLIT(config)],
1376                                    AUTOSELECT(config) ? "autoselect/" : "",
1377                                    XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1378                                    media_tbl[XCVR(config)].name);
1379                 }
1380                 vp->default_media = XCVR(config);
1381                 if (vp->default_media == XCVR_NWAY)
1382                         vp->has_nway = 1;
1383                 vp->autoselect = AUTOSELECT(config);
1384         }
1385
1386         if (vp->media_override != 7) {
1387                 pr_info("%s:  Media override to transceiver type %d (%s).\n",
1388                                 print_name, vp->media_override,
1389                                 media_tbl[vp->media_override].name);
1390                 dev->if_port = vp->media_override;
1391         } else
1392                 dev->if_port = vp->default_media;
1393
1394         if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1395                 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1396                 int phy, phy_idx = 0;
1397                 mii_preamble_required++;
1398                 if (vp->drv_flags & EXTRA_PREAMBLE)
1399                         mii_preamble_required++;
1400                 mdio_sync(vp, 32);
1401                 mdio_read(dev, 24, MII_BMSR);
1402                 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1403                         int mii_status, phyx;
1404
1405                         /*
1406                          * For the 3c905CX we look at index 24 first, because it bogusly
1407                          * reports an external PHY at all indices
1408                          */
1409                         if (phy == 0)
1410                                 phyx = 24;
1411                         else if (phy <= 24)
1412                                 phyx = phy - 1;
1413                         else
1414                                 phyx = phy;
1415                         mii_status = mdio_read(dev, phyx, MII_BMSR);
1416                         if (mii_status  &&  mii_status != 0xffff) {
1417                                 vp->phys[phy_idx++] = phyx;
1418                                 if (print_info) {
1419                                         pr_info("  MII transceiver found at address %d, status %4x.\n",
1420                                                 phyx, mii_status);
1421                                 }
1422                                 if ((mii_status & 0x0040) == 0)
1423                                         mii_preamble_required++;
1424                         }
1425                 }
1426                 mii_preamble_required--;
1427                 if (phy_idx == 0) {
1428                         pr_warning("  ***WARNING*** No MII transceivers found!\n");
1429                         vp->phys[0] = 24;
1430                 } else {
1431                         vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1432                         if (vp->full_duplex) {
1433                                 /* Only advertise the FD media types. */
1434                                 vp->advertising &= ~0x02A0;
1435                                 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1436                         }
1437                 }
1438                 vp->mii.phy_id = vp->phys[0];
1439         }
1440
1441         if (vp->capabilities & CapBusMaster) {
1442                 vp->full_bus_master_tx = 1;
1443                 if (print_info) {
1444                         pr_info("  Enabling bus-master transmits and %s receives.\n",
1445                         (vp->info2 & 1) ? "early" : "whole-frame" );
1446                 }
1447                 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1448                 vp->bus_master = 0;             /* AKPM: vortex only */
1449         }
1450
1451         /* The 3c59x-specific entries in the device structure. */
1452         if (vp->full_bus_master_tx) {
1453                 dev->netdev_ops = &boomrang_netdev_ops;
1454                 /* Actually, it still should work with iommu. */
1455                 if (card_idx < MAX_UNITS &&
1456                     ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1457                                 hw_checksums[card_idx] == 1)) {
1458                         dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1459                 }
1460         } else
1461                 dev->netdev_ops =  &vortex_netdev_ops;
1462
1463         if (print_info) {
1464                 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1465                                 print_name,
1466                                 (dev->features & NETIF_F_SG) ? "en":"dis",
1467                                 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1468         }
1469
1470         dev->ethtool_ops = &vortex_ethtool_ops;
1471         dev->watchdog_timeo = (watchdog * HZ) / 1000;
1472
1473         if (pdev) {
1474                 vp->pm_state_valid = 1;
1475                 pci_save_state(pdev);
1476                 acpi_set_WOL(dev);
1477         }
1478         retval = register_netdev(dev);
1479         if (retval == 0)
1480                 return 0;
1481
1482 free_ring:
1483         pci_free_consistent(pdev,
1484                                                 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1485                                                         + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1486                                                 vp->rx_ring,
1487                                                 vp->rx_ring_dma);
1488 free_device:
1489         free_netdev(dev);
1490         pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1491 out:
1492         return retval;
1493 }
1494
1495 static void
1496 issue_and_wait(struct net_device *dev, int cmd)
1497 {
1498         struct vortex_private *vp = netdev_priv(dev);
1499         void __iomem *ioaddr = vp->ioaddr;
1500         int i;
1501
1502         iowrite16(cmd, ioaddr + EL3_CMD);
1503         for (i = 0; i < 2000; i++) {
1504                 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1505                         return;
1506         }
1507
1508         /* OK, that didn't work.  Do it the slow way.  One second */
1509         for (i = 0; i < 100000; i++) {
1510                 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1511                         if (vortex_debug > 1)
1512                                 pr_info("%s: command 0x%04x took %d usecs\n",
1513                                            dev->name, cmd, i * 10);
1514                         return;
1515                 }
1516                 udelay(10);
1517         }
1518         pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1519                            dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1520 }
1521
1522 static void
1523 vortex_set_duplex(struct net_device *dev)
1524 {
1525         struct vortex_private *vp = netdev_priv(dev);
1526
1527         pr_info("%s:  setting %s-duplex.\n",
1528                 dev->name, (vp->full_duplex) ? "full" : "half");
1529
1530         /* Set the full-duplex bit. */
1531         window_write16(vp,
1532                        ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1533                        (vp->large_frames ? 0x40 : 0) |
1534                        ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1535                         0x100 : 0),
1536                        3, Wn3_MAC_Ctrl);
1537 }
1538
1539 static void vortex_check_media(struct net_device *dev, unsigned int init)
1540 {
1541         struct vortex_private *vp = netdev_priv(dev);
1542         unsigned int ok_to_print = 0;
1543
1544         if (vortex_debug > 3)
1545                 ok_to_print = 1;
1546
1547         if (mii_check_media(&vp->mii, ok_to_print, init)) {
1548                 vp->full_duplex = vp->mii.full_duplex;
1549                 vortex_set_duplex(dev);
1550         } else if (init) {
1551                 vortex_set_duplex(dev);
1552         }
1553 }
1554
1555 static int
1556 vortex_up(struct net_device *dev)
1557 {
1558         struct vortex_private *vp = netdev_priv(dev);
1559         void __iomem *ioaddr = vp->ioaddr;
1560         unsigned int config;
1561         int i, mii_reg1, mii_reg5, err = 0;
1562
1563         if (VORTEX_PCI(vp)) {
1564                 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);    /* Go active */
1565                 if (vp->pm_state_valid)
1566                         pci_restore_state(VORTEX_PCI(vp));
1567                 err = pci_enable_device(VORTEX_PCI(vp));
1568                 if (err) {
1569                         pr_warning("%s: Could not enable device\n",
1570                                 dev->name);
1571                         goto err_out;
1572                 }
1573         }
1574
1575         /* Before initializing select the active media port. */
1576         config = window_read32(vp, 3, Wn3_Config);
1577
1578         if (vp->media_override != 7) {
1579                 pr_info("%s: Media override to transceiver %d (%s).\n",
1580                            dev->name, vp->media_override,
1581                            media_tbl[vp->media_override].name);
1582                 dev->if_port = vp->media_override;
1583         } else if (vp->autoselect) {
1584                 if (vp->has_nway) {
1585                         if (vortex_debug > 1)
1586                                 pr_info("%s: using NWAY device table, not %d\n",
1587                                                                 dev->name, dev->if_port);
1588                         dev->if_port = XCVR_NWAY;
1589                 } else {
1590                         /* Find first available media type, starting with 100baseTx. */
1591                         dev->if_port = XCVR_100baseTx;
1592                         while (! (vp->available_media & media_tbl[dev->if_port].mask))
1593                                 dev->if_port = media_tbl[dev->if_port].next;
1594                         if (vortex_debug > 1)
1595                                 pr_info("%s: first available media type: %s\n",
1596                                         dev->name, media_tbl[dev->if_port].name);
1597                 }
1598         } else {
1599                 dev->if_port = vp->default_media;
1600                 if (vortex_debug > 1)
1601                         pr_info("%s: using default media %s\n",
1602                                 dev->name, media_tbl[dev->if_port].name);
1603         }
1604
1605         init_timer(&vp->timer);
1606         vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1607         vp->timer.data = (unsigned long)dev;
1608         vp->timer.function = vortex_timer;              /* timer handler */
1609         add_timer(&vp->timer);
1610
1611         init_timer(&vp->rx_oom_timer);
1612         vp->rx_oom_timer.data = (unsigned long)dev;
1613         vp->rx_oom_timer.function = rx_oom_timer;
1614
1615         if (vortex_debug > 1)
1616                 pr_debug("%s: Initial media type %s.\n",
1617                            dev->name, media_tbl[dev->if_port].name);
1618
1619         vp->full_duplex = vp->mii.force_media;
1620         config = BFINS(config, dev->if_port, 20, 4);
1621         if (vortex_debug > 6)
1622                 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1623         window_write32(vp, config, 3, Wn3_Config);
1624
1625         if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1626                 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1627                 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1628                 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1629                 vp->mii.full_duplex = vp->full_duplex;
1630
1631                 vortex_check_media(dev, 1);
1632         }
1633         else
1634                 vortex_set_duplex(dev);
1635
1636         issue_and_wait(dev, TxReset);
1637         /*
1638          * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1639          */
1640         issue_and_wait(dev, RxReset|0x04);
1641
1642
1643         iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1644
1645         if (vortex_debug > 1) {
1646                 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1647                            dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1648         }
1649
1650         /* Set the station address and mask in window 2 each time opened. */
1651         for (i = 0; i < 6; i++)
1652                 window_write8(vp, dev->dev_addr[i], 2, i);
1653         for (; i < 12; i+=2)
1654                 window_write16(vp, 0, 2, i);
1655
1656         if (vp->cb_fn_base) {
1657                 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1658                 if (vp->drv_flags & INVERT_LED_PWR)
1659                         n |= 0x10;
1660                 if (vp->drv_flags & INVERT_MII_PWR)
1661                         n |= 0x4000;
1662                 window_write16(vp, n, 2, Wn2_ResetOptions);
1663         }
1664
1665         if (dev->if_port == XCVR_10base2)
1666                 /* Start the thinnet transceiver. We should really wait 50ms...*/
1667                 iowrite16(StartCoax, ioaddr + EL3_CMD);
1668         if (dev->if_port != XCVR_NWAY) {
1669                 window_write16(vp,
1670                                (window_read16(vp, 4, Wn4_Media) &
1671                                 ~(Media_10TP|Media_SQE)) |
1672                                media_tbl[dev->if_port].media_bits,
1673                                4, Wn4_Media);
1674         }
1675
1676         /* Switch to the stats window, and clear all stats by reading. */
1677         iowrite16(StatsDisable, ioaddr + EL3_CMD);
1678         for (i = 0; i < 10; i++)
1679                 window_read8(vp, 6, i);
1680         window_read16(vp, 6, 10);
1681         window_read16(vp, 6, 12);
1682         /* New: On the Vortex we must also clear the BadSSD counter. */
1683         window_read8(vp, 4, 12);
1684         /* ..and on the Boomerang we enable the extra statistics bits. */
1685         window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1686
1687         if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1688                 vp->cur_rx = vp->dirty_rx = 0;
1689                 /* Initialize the RxEarly register as recommended. */
1690                 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1691                 iowrite32(0x0020, ioaddr + PktStatus);
1692                 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1693         }
1694         if (vp->full_bus_master_tx) {           /* Boomerang bus master Tx. */
1695                 vp->cur_tx = vp->dirty_tx = 0;
1696                 if (vp->drv_flags & IS_BOOMERANG)
1697                         iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1698                 /* Clear the Rx, Tx rings. */
1699                 for (i = 0; i < RX_RING_SIZE; i++)      /* AKPM: this is done in vortex_open, too */
1700                         vp->rx_ring[i].status = 0;
1701                 for (i = 0; i < TX_RING_SIZE; i++)
1702                         vp->tx_skbuff[i] = NULL;
1703                 iowrite32(0, ioaddr + DownListPtr);
1704         }
1705         /* Set receiver mode: presumably accept b-case and phys addr only. */
1706         set_rx_mode(dev);
1707         /* enable 802.1q tagged frames */
1708         set_8021q_mode(dev, 1);
1709         iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1710
1711         iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1712         iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1713         /* Allow status bits to be seen. */
1714         vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1715                 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1716                 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1717                 (vp->bus_master ? DMADone : 0);
1718         vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1719                 (vp->full_bus_master_rx ? 0 : RxComplete) |
1720                 StatsFull | HostError | TxComplete | IntReq
1721                 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1722         iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1723         /* Ack all pending events, and set active indicator mask. */
1724         iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1725                  ioaddr + EL3_CMD);
1726         iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1727         if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
1728                 iowrite32(0x8000, vp->cb_fn_base + 4);
1729         netif_start_queue (dev);
1730 err_out:
1731         return err;
1732 }
1733
1734 static int
1735 vortex_open(struct net_device *dev)
1736 {
1737         struct vortex_private *vp = netdev_priv(dev);
1738         int i;
1739         int retval;
1740
1741         /* Use the now-standard shared IRQ implementation. */
1742         if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1743                                 boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1744                 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1745                 goto err;
1746         }
1747
1748         if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1749                 if (vortex_debug > 2)
1750                         pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1751                 for (i = 0; i < RX_RING_SIZE; i++) {
1752                         struct sk_buff *skb;
1753                         vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1754                         vp->rx_ring[i].status = 0;      /* Clear complete bit. */
1755                         vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1756
1757                         skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1758                                                  GFP_KERNEL);
1759                         vp->rx_skbuff[i] = skb;
1760                         if (skb == NULL)
1761                                 break;                  /* Bad news!  */
1762
1763                         skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1764                         vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1765                 }
1766                 if (i != RX_RING_SIZE) {
1767                         int j;
1768                         pr_emerg("%s: no memory for rx ring\n", dev->name);
1769                         for (j = 0; j < i; j++) {
1770                                 if (vp->rx_skbuff[j]) {
1771                                         dev_kfree_skb(vp->rx_skbuff[j]);
1772                                         vp->rx_skbuff[j] = NULL;
1773                                 }
1774                         }
1775                         retval = -ENOMEM;
1776                         goto err_free_irq;
1777                 }
1778                 /* Wrap the ring. */
1779                 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1780         }
1781
1782         retval = vortex_up(dev);
1783         if (!retval)
1784                 goto out;
1785
1786 err_free_irq:
1787         free_irq(dev->irq, dev);
1788 err:
1789         if (vortex_debug > 1)
1790                 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1791 out:
1792         return retval;
1793 }
1794
1795 static void
1796 vortex_timer(unsigned long data)
1797 {
1798         struct net_device *dev = (struct net_device *)data;
1799         struct vortex_private *vp = netdev_priv(dev);
1800         void __iomem *ioaddr = vp->ioaddr;
1801         int next_tick = 60*HZ;
1802         int ok = 0;
1803         int media_status;
1804
1805         if (vortex_debug > 2) {
1806                 pr_debug("%s: Media selection timer tick happened, %s.\n",
1807                            dev->name, media_tbl[dev->if_port].name);
1808                 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1809         }
1810
1811         media_status = window_read16(vp, 4, Wn4_Media);
1812         switch (dev->if_port) {
1813         case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1814                 if (media_status & Media_LnkBeat) {
1815                         netif_carrier_on(dev);
1816                         ok = 1;
1817                         if (vortex_debug > 1)
1818                                 pr_debug("%s: Media %s has link beat, %x.\n",
1819                                            dev->name, media_tbl[dev->if_port].name, media_status);
1820                 } else {
1821                         netif_carrier_off(dev);
1822                         if (vortex_debug > 1) {
1823                                 pr_debug("%s: Media %s has no link beat, %x.\n",
1824                                            dev->name, media_tbl[dev->if_port].name, media_status);
1825                         }
1826                 }
1827                 break;
1828         case XCVR_MII: case XCVR_NWAY:
1829                 {
1830                         ok = 1;
1831                         vortex_check_media(dev, 0);
1832                 }
1833                 break;
1834           default:                                      /* Other media types handled by Tx timeouts. */
1835                 if (vortex_debug > 1)
1836                   pr_debug("%s: Media %s has no indication, %x.\n",
1837                                  dev->name, media_tbl[dev->if_port].name, media_status);
1838                 ok = 1;
1839         }
1840
1841         if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1842                 next_tick = 5*HZ;
1843
1844         if (vp->medialock)
1845                 goto leave_media_alone;
1846
1847         if (!ok) {
1848                 unsigned int config;
1849
1850                 spin_lock_irq(&vp->lock);
1851
1852                 do {
1853                         dev->if_port = media_tbl[dev->if_port].next;
1854                 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1855                 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1856                   dev->if_port = vp->default_media;
1857                   if (vortex_debug > 1)
1858                         pr_debug("%s: Media selection failing, using default %s port.\n",
1859                                    dev->name, media_tbl[dev->if_port].name);
1860                 } else {
1861                         if (vortex_debug > 1)
1862                                 pr_debug("%s: Media selection failed, now trying %s port.\n",
1863                                            dev->name, media_tbl[dev->if_port].name);
1864                         next_tick = media_tbl[dev->if_port].wait;
1865                 }
1866                 window_write16(vp,
1867                                (media_status & ~(Media_10TP|Media_SQE)) |
1868                                media_tbl[dev->if_port].media_bits,
1869                                4, Wn4_Media);
1870
1871                 config = window_read32(vp, 3, Wn3_Config);
1872                 config = BFINS(config, dev->if_port, 20, 4);
1873                 window_write32(vp, config, 3, Wn3_Config);
1874
1875                 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1876                          ioaddr + EL3_CMD);
1877                 if (vortex_debug > 1)
1878                         pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1879                 /* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1880
1881                 spin_unlock_irq(&vp->lock);
1882         }
1883
1884 leave_media_alone:
1885         if (vortex_debug > 2)
1886           pr_debug("%s: Media selection timer finished, %s.\n",
1887                          dev->name, media_tbl[dev->if_port].name);
1888
1889         mod_timer(&vp->timer, RUN_AT(next_tick));
1890         if (vp->deferred)
1891                 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1892 }
1893
1894 static void vortex_tx_timeout(struct net_device *dev)
1895 {
1896         struct vortex_private *vp = netdev_priv(dev);
1897         void __iomem *ioaddr = vp->ioaddr;
1898
1899         pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1900                    dev->name, ioread8(ioaddr + TxStatus),
1901                    ioread16(ioaddr + EL3_STATUS));
1902         pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1903                         window_read16(vp, 4, Wn4_NetDiag),
1904                         window_read16(vp, 4, Wn4_Media),
1905                         ioread32(ioaddr + PktStatus),
1906                         window_read16(vp, 4, Wn4_FIFODiag));
1907         /* Slight code bloat to be user friendly. */
1908         if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1909                 pr_err("%s: Transmitter encountered 16 collisions --"
1910                            " network cable problem?\n", dev->name);
1911         if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1912                 pr_err("%s: Interrupt posted but not delivered --"
1913                            " IRQ blocked by another device?\n", dev->name);
1914                 /* Bad idea here.. but we might as well handle a few events. */
1915                 {
1916                         /*
1917                          * Block interrupts because vortex_interrupt does a bare spin_lock()
1918                          */
1919                         unsigned long flags;
1920                         local_irq_save(flags);
1921                         if (vp->full_bus_master_tx)
1922                                 boomerang_interrupt(dev->irq, dev);
1923                         else
1924                                 vortex_interrupt(dev->irq, dev);
1925                         local_irq_restore(flags);
1926                 }
1927         }
1928
1929         if (vortex_debug > 0)
1930                 dump_tx_ring(dev);
1931
1932         issue_and_wait(dev, TxReset);
1933
1934         dev->stats.tx_errors++;
1935         if (vp->full_bus_master_tx) {
1936                 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1937                 if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1938                         iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1939                                  ioaddr + DownListPtr);
1940                 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1941                         netif_wake_queue (dev);
1942                 if (vp->drv_flags & IS_BOOMERANG)
1943                         iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1944                 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1945         } else {
1946                 dev->stats.tx_dropped++;
1947                 netif_wake_queue(dev);
1948         }
1949
1950         /* Issue Tx Enable */
1951         iowrite16(TxEnable, ioaddr + EL3_CMD);
1952         dev->trans_start = jiffies; /* prevent tx timeout */
1953 }
1954
1955 /*
1956  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1957  * the cache impact.
1958  */
1959 static void
1960 vortex_error(struct net_device *dev, int status)
1961 {
1962         struct vortex_private *vp = netdev_priv(dev);
1963         void __iomem *ioaddr = vp->ioaddr;
1964         int do_tx_reset = 0, reset_mask = 0;
1965         unsigned char tx_status = 0;
1966
1967         if (vortex_debug > 2) {
1968                 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1969         }
1970
1971         if (status & TxComplete) {                      /* Really "TxError" for us. */
1972                 tx_status = ioread8(ioaddr + TxStatus);
1973                 /* Presumably a tx-timeout. We must merely re-enable. */
1974                 if (vortex_debug > 2 ||
1975                     (tx_status != 0x88 && vortex_debug > 0)) {
1976                         pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1977                                    dev->name, tx_status);
1978                         if (tx_status == 0x82) {
1979                                 pr_err("Probably a duplex mismatch.  See "
1980                                                 "Documentation/networking/vortex.txt\n");
1981                         }
1982                         dump_tx_ring(dev);
1983                 }
1984                 if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1985                 if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1986                 if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1987                 iowrite8(0, ioaddr + TxStatus);
1988                 if (tx_status & 0x30) {                 /* txJabber or txUnderrun */
1989                         do_tx_reset = 1;
1990                 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {      /* maxCollisions */
1991                         do_tx_reset = 1;
1992                         reset_mask = 0x0108;            /* Reset interface logic, but not download logic */
1993                 } else {                                /* Merely re-enable the transmitter. */
1994                         iowrite16(TxEnable, ioaddr + EL3_CMD);
1995                 }
1996         }
1997
1998         if (status & RxEarly)                           /* Rx early is unused. */
1999                 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2000
2001         if (status & StatsFull) {                       /* Empty statistics. */
2002                 static int DoneDidThat;
2003                 if (vortex_debug > 4)
2004                         pr_debug("%s: Updating stats.\n", dev->name);
2005                 update_stats(ioaddr, dev);
2006                 /* HACK: Disable statistics as an interrupt source. */
2007                 /* This occurs when we have the wrong media type! */
2008                 if (DoneDidThat == 0  &&
2009                         ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2010                         pr_warning("%s: Updating statistics failed, disabling "
2011                                    "stats as an interrupt source.\n", dev->name);
2012                         iowrite16(SetIntrEnb |
2013                                   (window_read16(vp, 5, 10) & ~StatsFull),
2014                                   ioaddr + EL3_CMD);
2015                         vp->intr_enable &= ~StatsFull;
2016                         DoneDidThat++;
2017                 }
2018         }
2019         if (status & IntReq) {          /* Restore all interrupt sources.  */
2020                 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2021                 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2022         }
2023         if (status & HostError) {
2024                 u16 fifo_diag;
2025                 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2026                 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2027                            dev->name, fifo_diag);
2028                 /* Adapter failure requires Tx/Rx reset and reinit. */
2029                 if (vp->full_bus_master_tx) {
2030                         int bus_status = ioread32(ioaddr + PktStatus);
2031                         /* 0x80000000 PCI master abort. */
2032                         /* 0x40000000 PCI target abort. */
2033                         if (vortex_debug)
2034                                 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2035
2036                         /* In this case, blow the card away */
2037                         /* Must not enter D3 or we can't legally issue the reset! */
2038                         vortex_down(dev, 0);
2039                         issue_and_wait(dev, TotalReset | 0xff);
2040                         vortex_up(dev);         /* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2041                 } else if (fifo_diag & 0x0400)
2042                         do_tx_reset = 1;
2043                 if (fifo_diag & 0x3000) {
2044                         /* Reset Rx fifo and upload logic */
2045                         issue_and_wait(dev, RxReset|0x07);
2046                         /* Set the Rx filter to the current state. */
2047                         set_rx_mode(dev);
2048                         /* enable 802.1q VLAN tagged frames */
2049                         set_8021q_mode(dev, 1);
2050                         iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2051                         iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2052                 }
2053         }
2054
2055         if (do_tx_reset) {
2056                 issue_and_wait(dev, TxReset|reset_mask);
2057                 iowrite16(TxEnable, ioaddr + EL3_CMD);
2058                 if (!vp->full_bus_master_tx)
2059                         netif_wake_queue(dev);
2060         }
2061 }
2062
2063 static netdev_tx_t
2064 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2065 {
2066         struct vortex_private *vp = netdev_priv(dev);
2067         void __iomem *ioaddr = vp->ioaddr;
2068
2069         /* Put out the doubleword header... */
2070         iowrite32(skb->len, ioaddr + TX_FIFO);
2071         if (vp->bus_master) {
2072                 /* Set the bus-master controller to transfer the packet. */
2073                 int len = (skb->len + 3) & ~3;
2074                 vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2075                                                 PCI_DMA_TODEVICE);
2076                 spin_lock_irq(&vp->window_lock);
2077                 window_set(vp, 7);
2078                 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2079                 iowrite16(len, ioaddr + Wn7_MasterLen);
2080                 spin_unlock_irq(&vp->window_lock);
2081                 vp->tx_skb = skb;
2082                 skb_tx_timestamp(skb);
2083                 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2084                 /* netif_wake_queue() will be called at the DMADone interrupt. */
2085         } else {
2086                 /* ... and the packet rounded to a doubleword. */
2087                 skb_tx_timestamp(skb);
2088                 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2089                 dev_consume_skb_any (skb);
2090                 if (ioread16(ioaddr + TxFree) > 1536) {
2091                         netif_start_queue (dev);        /* AKPM: redundant? */
2092                 } else {
2093                         /* Interrupt us when the FIFO has room for max-sized packet. */
2094                         netif_stop_queue(dev);
2095                         iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2096                 }
2097         }
2098
2099
2100         /* Clear the Tx status stack. */
2101         {
2102                 int tx_status;
2103                 int i = 32;
2104
2105                 while (--i > 0  &&      (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2106                         if (tx_status & 0x3C) {         /* A Tx-disabling error occurred.  */
2107                                 if (vortex_debug > 2)
2108                                   pr_debug("%s: Tx error, status %2.2x.\n",
2109                                                  dev->name, tx_status);
2110                                 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2111                                 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2112                                 if (tx_status & 0x30) {
2113                                         issue_and_wait(dev, TxReset);
2114                                 }
2115                                 iowrite16(TxEnable, ioaddr + EL3_CMD);
2116                         }
2117                         iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2118                 }
2119         }
2120         return NETDEV_TX_OK;
2121 }
2122
2123 static netdev_tx_t
2124 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2125 {
2126         struct vortex_private *vp = netdev_priv(dev);
2127         void __iomem *ioaddr = vp->ioaddr;
2128         /* Calculate the next Tx descriptor entry. */
2129         int entry = vp->cur_tx % TX_RING_SIZE;
2130         struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2131         unsigned long flags;
2132         dma_addr_t dma_addr;
2133
2134         if (vortex_debug > 6) {
2135                 pr_debug("boomerang_start_xmit()\n");
2136                 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2137                            dev->name, vp->cur_tx);
2138         }
2139
2140         /*
2141          * We can't allow a recursion from our interrupt handler back into the
2142          * tx routine, as they take the same spin lock, and that causes
2143          * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2144          * a bit
2145          */
2146         if (vp->handling_irq)
2147                 return NETDEV_TX_BUSY;
2148
2149         if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2150                 if (vortex_debug > 0)
2151                         pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2152                                    dev->name);
2153                 netif_stop_queue(dev);
2154                 return NETDEV_TX_BUSY;
2155         }
2156
2157         vp->tx_skbuff[entry] = skb;
2158
2159         vp->tx_ring[entry].next = 0;
2160 #if DO_ZEROCOPY
2161         if (skb->ip_summed != CHECKSUM_PARTIAL)
2162                         vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2163         else
2164                         vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2165
2166         if (!skb_shinfo(skb)->nr_frags) {
2167                 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2168                                           PCI_DMA_TODEVICE);
2169                 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2170                         goto out_dma_err;
2171
2172                 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2173                 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2174         } else {
2175                 int i;
2176
2177                 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2178                                           skb_headlen(skb), PCI_DMA_TODEVICE);
2179                 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2180                         goto out_dma_err;
2181
2182                 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2183                 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2184
2185                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2186                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2187
2188                         dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2189                                                     0,
2190                                                     frag->size,
2191                                                     DMA_TO_DEVICE);
2192                         if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2193                                 for(i = i-1; i >= 0; i--)
2194                                         dma_unmap_page(&VORTEX_PCI(vp)->dev,
2195                                                        le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2196                                                        le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2197                                                        DMA_TO_DEVICE);
2198
2199                                 pci_unmap_single(VORTEX_PCI(vp),
2200                                                  le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2201                                                  le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2202                                                  PCI_DMA_TODEVICE);
2203
2204                                 goto out_dma_err;
2205                         }
2206
2207                         vp->tx_ring[entry].frag[i+1].addr =
2208                                                 cpu_to_le32(dma_addr);
2209
2210                         if (i == skb_shinfo(skb)->nr_frags-1)
2211                                         vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2212                         else
2213                                         vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2214                 }
2215         }
2216 #else
2217         dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2218         if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2219                 goto out_dma_err;
2220         vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2221         vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2222         vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2223 #endif
2224
2225         spin_lock_irqsave(&vp->lock, flags);
2226         /* Wait for the stall to complete. */
2227         issue_and_wait(dev, DownStall);
2228         prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2229         if (ioread32(ioaddr + DownListPtr) == 0) {
2230                 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2231                 vp->queued_packet++;
2232         }
2233
2234         vp->cur_tx++;
2235         if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2236                 netif_stop_queue (dev);
2237         } else {                                        /* Clear previous interrupt enable. */
2238 #if defined(tx_interrupt_mitigation)
2239                 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2240                  * were selected, this would corrupt DN_COMPLETE. No?
2241                  */
2242                 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2243 #endif
2244         }
2245         skb_tx_timestamp(skb);
2246         iowrite16(DownUnstall, ioaddr + EL3_CMD);
2247         spin_unlock_irqrestore(&vp->lock, flags);
2248 out:
2249         return NETDEV_TX_OK;
2250 out_dma_err:
2251         dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2252         goto out;
2253 }
2254
2255 /* The interrupt handler does all of the Rx thread work and cleans up
2256    after the Tx thread. */
2257
2258 /*
2259  * This is the ISR for the vortex series chips.
2260  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2261  */
2262
2263 static irqreturn_t
2264 vortex_interrupt(int irq, void *dev_id)
2265 {
2266         struct net_device *dev = dev_id;
2267         struct vortex_private *vp = netdev_priv(dev);
2268         void __iomem *ioaddr;
2269         int status;
2270         int work_done = max_interrupt_work;
2271         int handled = 0;
2272
2273         ioaddr = vp->ioaddr;
2274         spin_lock(&vp->lock);
2275
2276         status = ioread16(ioaddr + EL3_STATUS);
2277
2278         if (vortex_debug > 6)
2279                 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2280
2281         if ((status & IntLatch) == 0)
2282                 goto handler_exit;              /* No interrupt: shared IRQs cause this */
2283         handled = 1;
2284
2285         if (status & IntReq) {
2286                 status |= vp->deferred;
2287                 vp->deferred = 0;
2288         }
2289
2290         if (status == 0xffff)           /* h/w no longer present (hotplug)? */
2291                 goto handler_exit;
2292
2293         if (vortex_debug > 4)
2294                 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2295                            dev->name, status, ioread8(ioaddr + Timer));
2296
2297         spin_lock(&vp->window_lock);
2298         window_set(vp, 7);
2299
2300         do {
2301                 if (vortex_debug > 5)
2302                                 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2303                                            dev->name, status);
2304                 if (status & RxComplete)
2305                         vortex_rx(dev);
2306
2307                 if (status & TxAvailable) {
2308                         if (vortex_debug > 5)
2309                                 pr_debug("      TX room bit was handled.\n");
2310                         /* There's room in the FIFO for a full-sized packet. */
2311                         iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2312                         netif_wake_queue (dev);
2313                 }
2314
2315                 if (status & DMADone) {
2316                         if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2317                                 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2318                                 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2319                                 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2320                                 if (ioread16(ioaddr + TxFree) > 1536) {
2321                                         /*
2322                                          * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2323                                          * insufficient FIFO room, the TxAvailable test will succeed and call
2324                                          * netif_wake_queue()
2325                                          */
2326                                         netif_wake_queue(dev);
2327                                 } else { /* Interrupt when FIFO has room for max-sized packet. */
2328                                         iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2329                                         netif_stop_queue(dev);
2330                                 }
2331                         }
2332                 }
2333                 /* Check for all uncommon interrupts at once. */
2334                 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2335                         if (status == 0xffff)
2336                                 break;
2337                         if (status & RxEarly)
2338                                 vortex_rx(dev);
2339                         spin_unlock(&vp->window_lock);
2340                         vortex_error(dev, status);
2341                         spin_lock(&vp->window_lock);
2342                         window_set(vp, 7);
2343                 }
2344
2345                 if (--work_done < 0) {
2346                         pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2347                                 dev->name, status);
2348                         /* Disable all pending interrupts. */
2349                         do {
2350                                 vp->deferred |= status;
2351                                 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2352                                          ioaddr + EL3_CMD);
2353                                 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2354                         } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2355                         /* The timer will reenable interrupts. */
2356                         mod_timer(&vp->timer, jiffies + 1*HZ);
2357                         break;
2358                 }
2359                 /* Acknowledge the IRQ. */
2360                 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2361         } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2362
2363         spin_unlock(&vp->window_lock);
2364
2365         if (vortex_debug > 4)
2366                 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2367                            dev->name, status);
2368 handler_exit:
2369         spin_unlock(&vp->lock);
2370         return IRQ_RETVAL(handled);
2371 }
2372
2373 /*
2374  * This is the ISR for the boomerang series chips.
2375  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2376  */
2377
2378 static irqreturn_t
2379 boomerang_interrupt(int irq, void *dev_id)
2380 {
2381         struct net_device *dev = dev_id;
2382         struct vortex_private *vp = netdev_priv(dev);
2383         void __iomem *ioaddr;
2384         int status;
2385         int work_done = max_interrupt_work;
2386
2387         ioaddr = vp->ioaddr;
2388
2389
2390         /*
2391          * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2392          * and boomerang_start_xmit
2393          */
2394         spin_lock(&vp->lock);
2395         vp->handling_irq = 1;
2396
2397         status = ioread16(ioaddr + EL3_STATUS);
2398
2399         if (vortex_debug > 6)
2400                 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2401
2402         if ((status & IntLatch) == 0)
2403                 goto handler_exit;              /* No interrupt: shared IRQs can cause this */
2404
2405         if (status == 0xffff) {         /* h/w no longer present (hotplug)? */
2406                 if (vortex_debug > 1)
2407                         pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2408                 goto handler_exit;
2409         }
2410
2411         if (status & IntReq) {
2412                 status |= vp->deferred;
2413                 vp->deferred = 0;
2414         }
2415
2416         if (vortex_debug > 4)
2417                 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2418                            dev->name, status, ioread8(ioaddr + Timer));
2419         do {
2420                 if (vortex_debug > 5)
2421                                 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2422                                            dev->name, status);
2423                 if (status & UpComplete) {
2424                         iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2425                         if (vortex_debug > 5)
2426                                 pr_debug("boomerang_interrupt->boomerang_rx\n");
2427                         boomerang_rx(dev);
2428                 }
2429
2430                 if (status & DownComplete) {
2431                         unsigned int dirty_tx = vp->dirty_tx;
2432
2433                         iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2434                         while (vp->cur_tx - dirty_tx > 0) {
2435                                 int entry = dirty_tx % TX_RING_SIZE;
2436 #if 1   /* AKPM: the latter is faster, but cyclone-only */
2437                                 if (ioread32(ioaddr + DownListPtr) ==
2438                                         vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2439                                         break;                  /* It still hasn't been processed. */
2440 #else
2441                                 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2442                                         break;                  /* It still hasn't been processed. */
2443 #endif
2444
2445                                 if (vp->tx_skbuff[entry]) {
2446                                         struct sk_buff *skb = vp->tx_skbuff[entry];
2447 #if DO_ZEROCOPY
2448                                         int i;
2449                                         for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2450                                                         pci_unmap_single(VORTEX_PCI(vp),
2451                                                                                          le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2452                                                                                          le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2453                                                                                          PCI_DMA_TODEVICE);
2454 #else
2455                                         pci_unmap_single(VORTEX_PCI(vp),
2456                                                 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2457 #endif
2458                                         dev_kfree_skb_irq(skb);
2459                                         vp->tx_skbuff[entry] = NULL;
2460                                 } else {
2461                                         pr_debug("boomerang_interrupt: no skb!\n");
2462                                 }
2463                                 /* dev->stats.tx_packets++;  Counted below. */
2464                                 dirty_tx++;
2465                         }
2466                         vp->dirty_tx = dirty_tx;
2467                         if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2468                                 if (vortex_debug > 6)
2469                                         pr_debug("boomerang_interrupt: wake queue\n");
2470                                 netif_wake_queue (dev);
2471                         }
2472                 }
2473
2474                 /* Check for all uncommon interrupts at once. */
2475                 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2476                         vortex_error(dev, status);
2477
2478                 if (--work_done < 0) {
2479                         pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2480                                 dev->name, status);
2481                         /* Disable all pending interrupts. */
2482                         do {
2483                                 vp->deferred |= status;
2484                                 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2485                                          ioaddr + EL3_CMD);
2486                                 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2487                         } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2488                         /* The timer will reenable interrupts. */
2489                         mod_timer(&vp->timer, jiffies + 1*HZ);
2490                         break;
2491                 }
2492                 /* Acknowledge the IRQ. */
2493                 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2494                 if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
2495                         iowrite32(0x8000, vp->cb_fn_base + 4);
2496
2497         } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2498
2499         if (vortex_debug > 4)
2500                 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2501                            dev->name, status);
2502 handler_exit:
2503         vp->handling_irq = 0;
2504         spin_unlock(&vp->lock);
2505         return IRQ_HANDLED;
2506 }
2507
2508 static int vortex_rx(struct net_device *dev)
2509 {
2510         struct vortex_private *vp = netdev_priv(dev);
2511         void __iomem *ioaddr = vp->ioaddr;
2512         int i;
2513         short rx_status;
2514
2515         if (vortex_debug > 5)
2516                 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2517                            ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2518         while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2519                 if (rx_status & 0x4000) { /* Error, update stats. */
2520                         unsigned char rx_error = ioread8(ioaddr + RxErrors);
2521                         if (vortex_debug > 2)
2522                                 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2523                         dev->stats.rx_errors++;
2524                         if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2525                         if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2526                         if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2527                         if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2528                         if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2529                 } else {
2530                         /* The packet length: up to 4.5K!. */
2531                         int pkt_len = rx_status & 0x1fff;
2532                         struct sk_buff *skb;
2533
2534                         skb = netdev_alloc_skb(dev, pkt_len + 5);
2535                         if (vortex_debug > 4)
2536                                 pr_debug("Receiving packet size %d status %4.4x.\n",
2537                                            pkt_len, rx_status);
2538                         if (skb != NULL) {
2539                                 skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2540                                 /* 'skb_put()' points to the start of sk_buff data area. */
2541                                 if (vp->bus_master &&
2542                                         ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2543                                         dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2544                                                                            pkt_len, PCI_DMA_FROMDEVICE);
2545                                         iowrite32(dma, ioaddr + Wn7_MasterAddr);
2546                                         iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2547                                         iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2548                                         while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2549                                                 ;
2550                                         pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2551                                 } else {
2552                                         ioread32_rep(ioaddr + RX_FIFO,
2553                                                      skb_put(skb, pkt_len),
2554                                                      (pkt_len + 3) >> 2);
2555                                 }
2556                                 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2557                                 skb->protocol = eth_type_trans(skb, dev);
2558                                 netif_rx(skb);
2559                                 dev->stats.rx_packets++;
2560                                 /* Wait a limited time to go to next packet. */
2561                                 for (i = 200; i >= 0; i--)
2562                                         if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2563                                                 break;
2564                                 continue;
2565                         } else if (vortex_debug > 0)
2566                                 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2567                                         dev->name, pkt_len);
2568                         dev->stats.rx_dropped++;
2569                 }
2570                 issue_and_wait(dev, RxDiscard);
2571         }
2572
2573         return 0;
2574 }
2575
2576 static int
2577 boomerang_rx(struct net_device *dev)
2578 {
2579         struct vortex_private *vp = netdev_priv(dev);
2580         int entry = vp->cur_rx % RX_RING_SIZE;
2581         void __iomem *ioaddr = vp->ioaddr;
2582         int rx_status;
2583         int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2584
2585         if (vortex_debug > 5)
2586                 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2587
2588         while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2589                 if (--rx_work_limit < 0)
2590                         break;
2591                 if (rx_status & RxDError) { /* Error, update stats. */
2592                         unsigned char rx_error = rx_status >> 16;
2593                         if (vortex_debug > 2)
2594                                 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2595                         dev->stats.rx_errors++;
2596                         if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2597                         if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2598                         if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2599                         if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2600                         if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2601                 } else {
2602                         /* The packet length: up to 4.5K!. */
2603                         int pkt_len = rx_status & 0x1fff;
2604                         struct sk_buff *skb;
2605                         dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2606
2607                         if (vortex_debug > 4)
2608                                 pr_debug("Receiving packet size %d status %4.4x.\n",
2609                                            pkt_len, rx_status);
2610
2611                         /* Check if the packet is long enough to just accept without
2612                            copying to a properly sized skbuff. */
2613                         if (pkt_len < rx_copybreak &&
2614                             (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2615                                 skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2616                                 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2617                                 /* 'skb_put()' points to the start of sk_buff data area. */
2618                                 memcpy(skb_put(skb, pkt_len),
2619                                            vp->rx_skbuff[entry]->data,
2620                                            pkt_len);
2621                                 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2622                                 vp->rx_copy++;
2623                         } else {
2624                                 /* Pass up the skbuff already on the Rx ring. */
2625                                 skb = vp->rx_skbuff[entry];
2626                                 vp->rx_skbuff[entry] = NULL;
2627                                 skb_put(skb, pkt_len);
2628                                 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2629                                 vp->rx_nocopy++;
2630                         }
2631                         skb->protocol = eth_type_trans(skb, dev);
2632                         {                                       /* Use hardware checksum info. */
2633                                 int csum_bits = rx_status & 0xee000000;
2634                                 if (csum_bits &&
2635                                         (csum_bits == (IPChksumValid | TCPChksumValid) ||
2636                                          csum_bits == (IPChksumValid | UDPChksumValid))) {
2637                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2638                                         vp->rx_csumhits++;
2639                                 }
2640                         }
2641                         netif_rx(skb);
2642                         dev->stats.rx_packets++;
2643                 }
2644                 entry = (++vp->cur_rx) % RX_RING_SIZE;
2645         }
2646         /* Refill the Rx ring buffers. */
2647         for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2648                 struct sk_buff *skb;
2649                 entry = vp->dirty_rx % RX_RING_SIZE;
2650                 if (vp->rx_skbuff[entry] == NULL) {
2651                         skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2652                         if (skb == NULL) {
2653                                 static unsigned long last_jif;
2654                                 if (time_after(jiffies, last_jif + 10 * HZ)) {
2655                                         pr_warning("%s: memory shortage\n", dev->name);
2656                                         last_jif = jiffies;
2657                                 }
2658                                 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2659                                         mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2660                                 break;                  /* Bad news!  */
2661                         }
2662
2663                         vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2664                         vp->rx_skbuff[entry] = skb;
2665                 }
2666                 vp->rx_ring[entry].status = 0;  /* Clear complete bit. */
2667                 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2668         }
2669         return 0;
2670 }
2671
2672 /*
2673  * If we've hit a total OOM refilling the Rx ring we poll once a second
2674  * for some memory.  Otherwise there is no way to restart the rx process.
2675  */
2676 static void
2677 rx_oom_timer(unsigned long arg)
2678 {
2679         struct net_device *dev = (struct net_device *)arg;
2680         struct vortex_private *vp = netdev_priv(dev);
2681
2682         spin_lock_irq(&vp->lock);
2683         if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)        /* This test is redundant, but makes me feel good */
2684                 boomerang_rx(dev);
2685         if (vortex_debug > 1) {
2686                 pr_debug("%s: rx_oom_timer %s\n", dev->name,
2687                         ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2688         }
2689         spin_unlock_irq(&vp->lock);
2690 }
2691
2692 static void
2693 vortex_down(struct net_device *dev, int final_down)
2694 {
2695         struct vortex_private *vp = netdev_priv(dev);
2696         void __iomem *ioaddr = vp->ioaddr;
2697
2698         netif_stop_queue (dev);
2699
2700         del_timer_sync(&vp->rx_oom_timer);
2701         del_timer_sync(&vp->timer);
2702
2703         /* Turn off statistics ASAP.  We update dev->stats below. */
2704         iowrite16(StatsDisable, ioaddr + EL3_CMD);
2705
2706         /* Disable the receiver and transmitter. */
2707         iowrite16(RxDisable, ioaddr + EL3_CMD);
2708         iowrite16(TxDisable, ioaddr + EL3_CMD);
2709
2710         /* Disable receiving 802.1q tagged frames */
2711         set_8021q_mode(dev, 0);
2712
2713         if (dev->if_port == XCVR_10base2)
2714                 /* Turn off thinnet power.  Green! */
2715                 iowrite16(StopCoax, ioaddr + EL3_CMD);
2716
2717         iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2718
2719         update_stats(ioaddr, dev);
2720         if (vp->full_bus_master_rx)
2721                 iowrite32(0, ioaddr + UpListPtr);
2722         if (vp->full_bus_master_tx)
2723                 iowrite32(0, ioaddr + DownListPtr);
2724
2725         if (final_down && VORTEX_PCI(vp)) {
2726                 vp->pm_state_valid = 1;
2727                 pci_save_state(VORTEX_PCI(vp));
2728                 acpi_set_WOL(dev);
2729         }
2730 }
2731
2732 static int
2733 vortex_close(struct net_device *dev)
2734 {
2735         struct vortex_private *vp = netdev_priv(dev);
2736         void __iomem *ioaddr = vp->ioaddr;
2737         int i;
2738
2739         if (netif_device_present(dev))
2740                 vortex_down(dev, 1);
2741
2742         if (vortex_debug > 1) {
2743                 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2744                            dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2745                 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2746                            " tx_queued %d Rx pre-checksummed %d.\n",
2747                            dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2748         }
2749
2750 #if DO_ZEROCOPY
2751         if (vp->rx_csumhits &&
2752             (vp->drv_flags & HAS_HWCKSM) == 0 &&
2753             (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2754                 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2755         }
2756 #endif
2757
2758         free_irq(dev->irq, dev);
2759
2760         if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2761                 for (i = 0; i < RX_RING_SIZE; i++)
2762                         if (vp->rx_skbuff[i]) {
2763                                 pci_unmap_single(       VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2764                                                                         PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2765                                 dev_kfree_skb(vp->rx_skbuff[i]);
2766                                 vp->rx_skbuff[i] = NULL;
2767                         }
2768         }
2769         if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2770                 for (i = 0; i < TX_RING_SIZE; i++) {
2771                         if (vp->tx_skbuff[i]) {
2772                                 struct sk_buff *skb = vp->tx_skbuff[i];
2773 #if DO_ZEROCOPY
2774                                 int k;
2775
2776                                 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2777                                                 pci_unmap_single(VORTEX_PCI(vp),
2778                                                                                  le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2779                                                                                  le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2780                                                                                  PCI_DMA_TODEVICE);
2781 #else
2782                                 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2783 #endif
2784                                 dev_kfree_skb(skb);
2785                                 vp->tx_skbuff[i] = NULL;
2786                         }
2787                 }
2788         }
2789
2790         return 0;
2791 }
2792
2793 static void
2794 dump_tx_ring(struct net_device *dev)
2795 {
2796         if (vortex_debug > 0) {
2797         struct vortex_private *vp = netdev_priv(dev);
2798                 void __iomem *ioaddr = vp->ioaddr;
2799
2800                 if (vp->full_bus_master_tx) {
2801                         int i;
2802                         int stalled = ioread32(ioaddr + PktStatus) & 0x04;      /* Possible racy. But it's only debug stuff */
2803
2804                         pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2805                                         vp->full_bus_master_tx,
2806                                         vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2807                                         vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2808                         pr_err("  Transmit list %8.8x vs. %p.\n",
2809                                    ioread32(ioaddr + DownListPtr),
2810                                    &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2811                         issue_and_wait(dev, DownStall);
2812                         for (i = 0; i < TX_RING_SIZE; i++) {
2813                                 unsigned int length;
2814
2815 #if DO_ZEROCOPY
2816                                 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2817 #else
2818                                 length = le32_to_cpu(vp->tx_ring[i].length);
2819 #endif
2820                                 pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2821                                            i, &vp->tx_ring[i], length,
2822                                            le32_to_cpu(vp->tx_ring[i].status));
2823                         }
2824                         if (!stalled)
2825                                 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2826                 }
2827         }
2828 }
2829
2830 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2831 {
2832         struct vortex_private *vp = netdev_priv(dev);
2833         void __iomem *ioaddr = vp->ioaddr;
2834         unsigned long flags;
2835
2836         if (netif_device_present(dev)) {        /* AKPM: Used to be netif_running */
2837                 spin_lock_irqsave (&vp->lock, flags);
2838                 update_stats(ioaddr, dev);
2839                 spin_unlock_irqrestore (&vp->lock, flags);
2840         }
2841         return &dev->stats;
2842 }
2843
2844 /*  Update statistics.
2845         Unlike with the EL3 we need not worry about interrupts changing
2846         the window setting from underneath us, but we must still guard
2847         against a race condition with a StatsUpdate interrupt updating the
2848         table.  This is done by checking that the ASM (!) code generated uses
2849         atomic updates with '+='.
2850         */
2851 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2852 {
2853         struct vortex_private *vp = netdev_priv(dev);
2854
2855         /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2856         /* Switch to the stats window, and read everything. */
2857         dev->stats.tx_carrier_errors            += window_read8(vp, 6, 0);
2858         dev->stats.tx_heartbeat_errors          += window_read8(vp, 6, 1);
2859         dev->stats.tx_window_errors             += window_read8(vp, 6, 4);
2860         dev->stats.rx_fifo_errors               += window_read8(vp, 6, 5);
2861         dev->stats.tx_packets                   += window_read8(vp, 6, 6);
2862         dev->stats.tx_packets                   += (window_read8(vp, 6, 9) &
2863                                                     0x30) << 4;
2864         /* Rx packets   */                      window_read8(vp, 6, 7);   /* Must read to clear */
2865         /* Don't bother with register 9, an extension of registers 6&7.
2866            If we do use the 6&7 values the atomic update assumption above
2867            is invalid. */
2868         dev->stats.rx_bytes                     += window_read16(vp, 6, 10);
2869         dev->stats.tx_bytes                     += window_read16(vp, 6, 12);
2870         /* Extra stats for get_ethtool_stats() */
2871         vp->xstats.tx_multiple_collisions       += window_read8(vp, 6, 2);
2872         vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2873         vp->xstats.tx_deferred                  += window_read8(vp, 6, 8);
2874         vp->xstats.rx_bad_ssd                   += window_read8(vp, 4, 12);
2875
2876         dev->stats.collisions = vp->xstats.tx_multiple_collisions
2877                 + vp->xstats.tx_single_collisions
2878                 + vp->xstats.tx_max_collisions;
2879
2880         {
2881                 u8 up = window_read8(vp, 4, 13);
2882                 dev->stats.rx_bytes += (up & 0x0f) << 16;
2883                 dev->stats.tx_bytes += (up & 0xf0) << 12;
2884         }
2885 }
2886
2887 static int vortex_nway_reset(struct net_device *dev)
2888 {
2889         struct vortex_private *vp = netdev_priv(dev);
2890
2891         return mii_nway_restart(&vp->mii);
2892 }
2893
2894 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2895 {
2896         struct vortex_private *vp = netdev_priv(dev);
2897
2898         return mii_ethtool_gset(&vp->mii, cmd);
2899 }
2900
2901 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2902 {
2903         struct vortex_private *vp = netdev_priv(dev);
2904
2905         return mii_ethtool_sset(&vp->mii, cmd);
2906 }
2907
2908 static u32 vortex_get_msglevel(struct net_device *dev)
2909 {
2910         return vortex_debug;
2911 }
2912
2913 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2914 {
2915         vortex_debug = dbg;
2916 }
2917
2918 static int vortex_get_sset_count(struct net_device *dev, int sset)
2919 {
2920         switch (sset) {
2921         case ETH_SS_STATS:
2922                 return VORTEX_NUM_STATS;
2923         default:
2924                 return -EOPNOTSUPP;
2925         }
2926 }
2927
2928 static void vortex_get_ethtool_stats(struct net_device *dev,
2929         struct ethtool_stats *stats, u64 *data)
2930 {
2931         struct vortex_private *vp = netdev_priv(dev);
2932         void __iomem *ioaddr = vp->ioaddr;
2933         unsigned long flags;
2934
2935         spin_lock_irqsave(&vp->lock, flags);
2936         update_stats(ioaddr, dev);
2937         spin_unlock_irqrestore(&vp->lock, flags);
2938
2939         data[0] = vp->xstats.tx_deferred;
2940         data[1] = vp->xstats.tx_max_collisions;
2941         data[2] = vp->xstats.tx_multiple_collisions;
2942         data[3] = vp->xstats.tx_single_collisions;
2943         data[4] = vp->xstats.rx_bad_ssd;
2944 }
2945
2946
2947 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2948 {
2949         switch (stringset) {
2950         case ETH_SS_STATS:
2951                 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2952                 break;
2953         default:
2954                 WARN_ON(1);
2955                 break;
2956         }
2957 }
2958
2959 static void vortex_get_drvinfo(struct net_device *dev,
2960                                         struct ethtool_drvinfo *info)
2961 {
2962         struct vortex_private *vp = netdev_priv(dev);
2963
2964         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2965         if (VORTEX_PCI(vp)) {
2966                 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2967                         sizeof(info->bus_info));
2968         } else {
2969                 if (VORTEX_EISA(vp))
2970                         strlcpy(info->bus_info, dev_name(vp->gendev),
2971                                 sizeof(info->bus_info));
2972                 else
2973                         snprintf(info->bus_info, sizeof(info->bus_info),
2974                                 "EISA 0x%lx %d", dev->base_addr, dev->irq);
2975         }
2976 }
2977
2978 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2979 {
2980         struct vortex_private *vp = netdev_priv(dev);
2981
2982         if (!VORTEX_PCI(vp))
2983                 return;
2984
2985         wol->supported = WAKE_MAGIC;
2986
2987         wol->wolopts = 0;
2988         if (vp->enable_wol)
2989                 wol->wolopts |= WAKE_MAGIC;
2990 }
2991
2992 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2993 {
2994         struct vortex_private *vp = netdev_priv(dev);
2995
2996         if (!VORTEX_PCI(vp))
2997                 return -EOPNOTSUPP;
2998
2999         if (wol->wolopts & ~WAKE_MAGIC)
3000                 return -EINVAL;
3001
3002         if (wol->wolopts & WAKE_MAGIC)
3003                 vp->enable_wol = 1;
3004         else
3005                 vp->enable_wol = 0;
3006         acpi_set_WOL(dev);
3007
3008         return 0;
3009 }
3010
3011 static const struct ethtool_ops vortex_ethtool_ops = {
3012         .get_drvinfo            = vortex_get_drvinfo,
3013         .get_strings            = vortex_get_strings,
3014         .get_msglevel           = vortex_get_msglevel,
3015         .set_msglevel           = vortex_set_msglevel,
3016         .get_ethtool_stats      = vortex_get_ethtool_stats,
3017         .get_sset_count         = vortex_get_sset_count,
3018         .get_settings           = vortex_get_settings,
3019         .set_settings           = vortex_set_settings,
3020         .get_link               = ethtool_op_get_link,
3021         .nway_reset             = vortex_nway_reset,
3022         .get_wol                = vortex_get_wol,
3023         .set_wol                = vortex_set_wol,
3024         .get_ts_info            = ethtool_op_get_ts_info,
3025 };
3026
3027 #ifdef CONFIG_PCI
3028 /*
3029  *      Must power the device up to do MDIO operations
3030  */
3031 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3032 {
3033         int err;
3034         struct vortex_private *vp = netdev_priv(dev);
3035         pci_power_t state = 0;
3036
3037         if(VORTEX_PCI(vp))
3038                 state = VORTEX_PCI(vp)->current_state;
3039
3040         /* The kernel core really should have pci_get_power_state() */
3041
3042         if(state != 0)
3043                 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3044         err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3045         if(state != 0)
3046                 pci_set_power_state(VORTEX_PCI(vp), state);
3047
3048         return err;
3049 }
3050 #endif
3051
3052
3053 /* Pre-Cyclone chips have no documented multicast filter, so the only
3054    multicast setting is to receive all multicast frames.  At least
3055    the chip has a very clean way to set the mode, unlike many others. */
3056 static void set_rx_mode(struct net_device *dev)
3057 {
3058         struct vortex_private *vp = netdev_priv(dev);
3059         void __iomem *ioaddr = vp->ioaddr;
3060         int new_mode;
3061
3062         if (dev->flags & IFF_PROMISC) {
3063                 if (vortex_debug > 3)
3064                         pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3065                 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3066         } else  if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3067                 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3068         } else
3069                 new_mode = SetRxFilter | RxStation | RxBroadcast;
3070
3071         iowrite16(new_mode, ioaddr + EL3_CMD);
3072 }
3073
3074 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3075 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3076    Note that this must be done after each RxReset due to some backwards
3077    compatibility logic in the Cyclone and Tornado ASICs */
3078
3079 /* The Ethernet Type used for 802.1q tagged frames */
3080 #define VLAN_ETHER_TYPE 0x8100
3081
3082 static void set_8021q_mode(struct net_device *dev, int enable)
3083 {
3084         struct vortex_private *vp = netdev_priv(dev);
3085         int mac_ctrl;
3086
3087         if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3088                 /* cyclone and tornado chipsets can recognize 802.1q
3089                  * tagged frames and treat them correctly */
3090
3091                 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3092                 if (enable)
3093                         max_pkt_size += 4;      /* 802.1Q VLAN tag */
3094
3095                 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3096
3097                 /* set VlanEtherType to let the hardware checksumming
3098                    treat tagged frames correctly */
3099                 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3100         } else {
3101                 /* on older cards we have to enable large frames */
3102
3103                 vp->large_frames = dev->mtu > 1500 || enable;
3104
3105                 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3106                 if (vp->large_frames)
3107                         mac_ctrl |= 0x40;
3108                 else
3109                         mac_ctrl &= ~0x40;
3110                 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3111         }
3112 }
3113 #else
3114
3115 static void set_8021q_mode(struct net_device *dev, int enable)
3116 {
3117 }
3118
3119
3120 #endif
3121
3122 /* MII transceiver control section.
3123    Read and write the MII registers using software-generated serial
3124    MDIO protocol.  See the MII specifications or DP83840A data sheet
3125    for details. */
3126
3127 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3128    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3129    "overclocking" issues. */
3130 static void mdio_delay(struct vortex_private *vp)
3131 {
3132         window_read32(vp, 4, Wn4_PhysicalMgmt);
3133 }
3134
3135 #define MDIO_SHIFT_CLK  0x01
3136 #define MDIO_DIR_WRITE  0x04
3137 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3138 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3139 #define MDIO_DATA_READ  0x02
3140 #define MDIO_ENB_IN             0x00
3141
3142 /* Generate the preamble required for initial synchronization and
3143    a few older transceivers. */
3144 static void mdio_sync(struct vortex_private *vp, int bits)
3145 {
3146         /* Establish sync by sending at least 32 logic ones. */
3147         while (-- bits >= 0) {
3148                 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3149                 mdio_delay(vp);
3150                 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3151                                4, Wn4_PhysicalMgmt);
3152                 mdio_delay(vp);
3153         }
3154 }
3155
3156 static int mdio_read(struct net_device *dev, int phy_id, int location)
3157 {
3158         int i;
3159         struct vortex_private *vp = netdev_priv(dev);
3160         int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3161         unsigned int retval = 0;
3162
3163         spin_lock_bh(&vp->mii_lock);
3164
3165         if (mii_preamble_required)
3166                 mdio_sync(vp, 32);
3167
3168         /* Shift the read command bits out. */
3169         for (i = 14; i >= 0; i--) {
3170                 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3171                 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3172                 mdio_delay(vp);
3173                 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3174                                4, Wn4_PhysicalMgmt);
3175                 mdio_delay(vp);
3176         }
3177         /* Read the two transition, 16 data, and wire-idle bits. */
3178         for (i = 19; i > 0; i--) {
3179                 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3180                 mdio_delay(vp);
3181                 retval = (retval << 1) |
3182                         ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3183                           MDIO_DATA_READ) ? 1 : 0);
3184                 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3185                                4, Wn4_PhysicalMgmt);
3186                 mdio_delay(vp);
3187         }
3188
3189         spin_unlock_bh(&vp->mii_lock);
3190
3191         return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3192 }
3193
3194 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3195 {
3196         struct vortex_private *vp = netdev_priv(dev);
3197         int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3198         int i;
3199
3200         spin_lock_bh(&vp->mii_lock);
3201
3202         if (mii_preamble_required)
3203                 mdio_sync(vp, 32);
3204
3205         /* Shift the command bits out. */
3206         for (i = 31; i >= 0; i--) {
3207                 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3208                 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3209                 mdio_delay(vp);
3210                 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3211                                4, Wn4_PhysicalMgmt);
3212                 mdio_delay(vp);
3213         }
3214         /* Leave the interface idle. */
3215         for (i = 1; i >= 0; i--) {
3216                 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3217                 mdio_delay(vp);
3218                 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3219                                4, Wn4_PhysicalMgmt);
3220                 mdio_delay(vp);
3221         }
3222
3223         spin_unlock_bh(&vp->mii_lock);
3224 }
3225
3226 /* ACPI: Advanced Configuration and Power Interface. */
3227 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3228 static void acpi_set_WOL(struct net_device *dev)
3229 {
3230         struct vortex_private *vp = netdev_priv(dev);
3231         void __iomem *ioaddr = vp->ioaddr;
3232
3233         device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3234
3235         if (vp->enable_wol) {
3236                 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3237                 window_write16(vp, 2, 7, 0x0c);
3238                 /* The RxFilter must accept the WOL frames. */
3239                 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3240                 iowrite16(RxEnable, ioaddr + EL3_CMD);
3241
3242                 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3243                         pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3244
3245                         vp->enable_wol = 0;
3246                         return;
3247                 }
3248
3249                 if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3250                         return;
3251
3252                 /* Change the power state to D3; RxEnable doesn't take effect. */
3253                 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3254         }
3255 }
3256
3257
3258 static void vortex_remove_one(struct pci_dev *pdev)
3259 {
3260         struct net_device *dev = pci_get_drvdata(pdev);
3261         struct vortex_private *vp;
3262
3263         if (!dev) {
3264                 pr_err("vortex_remove_one called for Compaq device!\n");
3265                 BUG();
3266         }
3267
3268         vp = netdev_priv(dev);
3269
3270         if (vp->cb_fn_base)
3271                 pci_iounmap(pdev, vp->cb_fn_base);
3272
3273         unregister_netdev(dev);
3274
3275         pci_set_power_state(pdev, PCI_D0);      /* Go active */
3276         if (vp->pm_state_valid)
3277                 pci_restore_state(pdev);
3278         pci_disable_device(pdev);
3279
3280         /* Should really use issue_and_wait() here */
3281         iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3282              vp->ioaddr + EL3_CMD);
3283
3284         pci_iounmap(pdev, vp->ioaddr);
3285
3286         pci_free_consistent(pdev,
3287                                                 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3288                                                         + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3289                                                 vp->rx_ring,
3290                                                 vp->rx_ring_dma);
3291
3292         pci_release_regions(pdev);
3293
3294         free_netdev(dev);
3295 }
3296
3297
3298 static struct pci_driver vortex_driver = {
3299         .name           = "3c59x",
3300         .probe          = vortex_init_one,
3301         .remove         = vortex_remove_one,
3302         .id_table       = vortex_pci_tbl,
3303         .driver.pm      = VORTEX_PM_OPS,
3304 };
3305
3306
3307 static int vortex_have_pci;
3308 static int vortex_have_eisa;
3309
3310
3311 static int __init vortex_init(void)
3312 {
3313         int pci_rc, eisa_rc;
3314
3315         pci_rc = pci_register_driver(&vortex_driver);
3316         eisa_rc = vortex_eisa_init();
3317
3318         if (pci_rc == 0)
3319                 vortex_have_pci = 1;
3320         if (eisa_rc > 0)
3321                 vortex_have_eisa = 1;
3322
3323         return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3324 }
3325
3326
3327 static void __exit vortex_eisa_cleanup(void)
3328 {
3329         void __iomem *ioaddr;
3330
3331 #ifdef CONFIG_EISA
3332         /* Take care of the EISA devices */
3333         eisa_driver_unregister(&vortex_eisa_driver);
3334 #endif
3335
3336         if (compaq_net_device) {
3337                 ioaddr = ioport_map(compaq_net_device->base_addr,
3338                                     VORTEX_TOTAL_SIZE);
3339
3340                 unregister_netdev(compaq_net_device);
3341                 iowrite16(TotalReset, ioaddr + EL3_CMD);
3342                 release_region(compaq_net_device->base_addr,
3343                                VORTEX_TOTAL_SIZE);
3344
3345                 free_netdev(compaq_net_device);
3346         }
3347 }
3348
3349
3350 static void __exit vortex_cleanup(void)
3351 {
3352         if (vortex_have_pci)
3353                 pci_unregister_driver(&vortex_driver);
3354         if (vortex_have_eisa)
3355                 vortex_eisa_cleanup();
3356 }
3357
3358
3359 module_init(vortex_init);
3360 module_exit(vortex_cleanup);