f403c6be51deafd25e334b0dd28ddb4d624edb8f
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_vfpf.h"
63 #include "bnx2x_dcb.h"
64 #include "bnx2x_sp.h"
65
66 #include <linux/firmware.h>
67 #include "bnx2x_fw_file_hdr.h"
68 /* FW files */
69 #define FW_FILE_VERSION                                 \
70         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
71         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
73         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
74 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77
78 /* Time in jiffies before concluding the transmitter is hung */
79 #define TX_TIMEOUT              (5*HZ)
80
81 static char version[] =
82         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
83         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
84
85 MODULE_AUTHOR("Eliezer Tamir");
86 MODULE_DESCRIPTION("Broadcom NetXtreme II "
87                    "BCM57710/57711/57711E/"
88                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
89                    "57840/57840_MF Driver");
90 MODULE_LICENSE("GPL");
91 MODULE_VERSION(DRV_MODULE_VERSION);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
94 MODULE_FIRMWARE(FW_FILE_NAME_E2);
95
96 int num_queues;
97 module_param(num_queues, int, 0);
98 MODULE_PARM_DESC(num_queues,
99                  " Set number of queues (default is as a number of CPUs)");
100
101 static int disable_tpa;
102 module_param(disable_tpa, int, 0);
103 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
104
105 int int_mode;
106 module_param(int_mode, int, 0);
107 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
108                                 "(1 INT#x; 2 MSI)");
109
110 static int dropless_fc;
111 module_param(dropless_fc, int, 0);
112 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
113
114 static int mrrs = -1;
115 module_param(mrrs, int, 0);
116 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
117
118 static int debug;
119 module_param(debug, int, 0);
120 MODULE_PARM_DESC(debug, " Default debug msglevel");
121
122 struct workqueue_struct *bnx2x_wq;
123
124 struct bnx2x_mac_vals {
125         u32 xmac_addr;
126         u32 xmac_val;
127         u32 emac_addr;
128         u32 emac_val;
129         u32 umac_addr;
130         u32 umac_val;
131         u32 bmac_addr;
132         u32 bmac_val[2];
133 };
134
135 enum bnx2x_board_type {
136         BCM57710 = 0,
137         BCM57711,
138         BCM57711E,
139         BCM57712,
140         BCM57712_MF,
141         BCM57712_VF,
142         BCM57800,
143         BCM57800_MF,
144         BCM57800_VF,
145         BCM57810,
146         BCM57810_MF,
147         BCM57810_VF,
148         BCM57840_4_10,
149         BCM57840_2_20,
150         BCM57840_MF,
151         BCM57840_VF,
152         BCM57811,
153         BCM57811_MF,
154         BCM57840_O,
155         BCM57840_MFO,
156         BCM57811_VF
157 };
158
159 /* indexed by board_type, above */
160 static struct {
161         char *name;
162 } board_info[] = {
163         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
164         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
165         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
166         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
167         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
168         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
169         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
170         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
171         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
172         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
173         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
174         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
175         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
176         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
177         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
178         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
179         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
180         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
181         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
182         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
183         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
184 };
185
186 #ifndef PCI_DEVICE_ID_NX2_57710
187 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57711
190 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57711E
193 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57712
196 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57712_MF
199 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57712_VF
202 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57800
205 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57800_MF
208 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57800_VF
211 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57810
214 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57810_MF
217 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57840_O
220 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810_VF
223 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
226 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
229 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
232 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_MF
235 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_VF
238 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57811
241 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57811_MF
244 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57811_VF
247 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
248 #endif
249
250 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
251         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
252         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
272         { 0 }
273 };
274
275 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
276
277 /* Global resources for unloading a previously loaded device */
278 #define BNX2X_PREV_WAIT_NEEDED 1
279 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
280 static LIST_HEAD(bnx2x_prev_list);
281 /****************************************************************************
282 * General service functions
283 ****************************************************************************/
284
285 static void __storm_memset_dma_mapping(struct bnx2x *bp,
286                                        u32 addr, dma_addr_t mapping)
287 {
288         REG_WR(bp,  addr, U64_LO(mapping));
289         REG_WR(bp,  addr + 4, U64_HI(mapping));
290 }
291
292 static void storm_memset_spq_addr(struct bnx2x *bp,
293                                   dma_addr_t mapping, u16 abs_fid)
294 {
295         u32 addr = XSEM_REG_FAST_MEMORY +
296                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
297
298         __storm_memset_dma_mapping(bp, addr, mapping);
299 }
300
301 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
302                                   u16 pf_id)
303 {
304         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
305                 pf_id);
306         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
307                 pf_id);
308         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
309                 pf_id);
310         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
311                 pf_id);
312 }
313
314 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
315                                  u8 enable)
316 {
317         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
318                 enable);
319         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
320                 enable);
321         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
322                 enable);
323         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
324                 enable);
325 }
326
327 static void storm_memset_eq_data(struct bnx2x *bp,
328                                  struct event_ring_data *eq_data,
329                                 u16 pfid)
330 {
331         size_t size = sizeof(struct event_ring_data);
332
333         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
334
335         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
336 }
337
338 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
339                                  u16 pfid)
340 {
341         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
342         REG_WR16(bp, addr, eq_prod);
343 }
344
345 /* used only at init
346  * locking is done by mcp
347  */
348 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
349 {
350         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
351         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
352         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
353                                PCICFG_VENDOR_ID_OFFSET);
354 }
355
356 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
357 {
358         u32 val;
359
360         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
361         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
362         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
363                                PCICFG_VENDOR_ID_OFFSET);
364
365         return val;
366 }
367
368 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
369 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
370 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
371 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
372 #define DMAE_DP_DST_NONE        "dst_addr [none]"
373
374 static void bnx2x_dp_dmae(struct bnx2x *bp,
375                           struct dmae_command *dmae, int msglvl)
376 {
377         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
378         int i;
379
380         switch (dmae->opcode & DMAE_COMMAND_DST) {
381         case DMAE_CMD_DST_PCI:
382                 if (src_type == DMAE_CMD_SRC_PCI)
383                         DP(msglvl, "DMAE: opcode 0x%08x\n"
384                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
385                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
386                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
387                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
388                            dmae->comp_addr_hi, dmae->comp_addr_lo,
389                            dmae->comp_val);
390                 else
391                         DP(msglvl, "DMAE: opcode 0x%08x\n"
392                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
393                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
394                            dmae->opcode, dmae->src_addr_lo >> 2,
395                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396                            dmae->comp_addr_hi, dmae->comp_addr_lo,
397                            dmae->comp_val);
398                 break;
399         case DMAE_CMD_DST_GRC:
400                 if (src_type == DMAE_CMD_SRC_PCI)
401                         DP(msglvl, "DMAE: opcode 0x%08x\n"
402                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
403                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
404                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405                            dmae->len, dmae->dst_addr_lo >> 2,
406                            dmae->comp_addr_hi, dmae->comp_addr_lo,
407                            dmae->comp_val);
408                 else
409                         DP(msglvl, "DMAE: opcode 0x%08x\n"
410                            "src [%08x], len [%d*4], dst [%08x]\n"
411                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
412                            dmae->opcode, dmae->src_addr_lo >> 2,
413                            dmae->len, dmae->dst_addr_lo >> 2,
414                            dmae->comp_addr_hi, dmae->comp_addr_lo,
415                            dmae->comp_val);
416                 break;
417         default:
418                 if (src_type == DMAE_CMD_SRC_PCI)
419                         DP(msglvl, "DMAE: opcode 0x%08x\n"
420                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
421                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
422                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
424                            dmae->comp_val);
425                 else
426                         DP(msglvl, "DMAE: opcode 0x%08x\n"
427                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
428                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
429                            dmae->opcode, dmae->src_addr_lo >> 2,
430                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
431                            dmae->comp_val);
432                 break;
433         }
434
435         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
436                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
437                    i, *(((u32 *)dmae) + i));
438 }
439
440 /* copy command into DMAE command memory and set DMAE command go */
441 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
442 {
443         u32 cmd_offset;
444         int i;
445
446         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
447         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
448                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
449         }
450         REG_WR(bp, dmae_reg_go_c[idx], 1);
451 }
452
453 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
454 {
455         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
456                            DMAE_CMD_C_ENABLE);
457 }
458
459 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
460 {
461         return opcode & ~DMAE_CMD_SRC_RESET;
462 }
463
464 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
465                              bool with_comp, u8 comp_type)
466 {
467         u32 opcode = 0;
468
469         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
470                    (dst_type << DMAE_COMMAND_DST_SHIFT));
471
472         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
473
474         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
475         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
476                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
477         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
478
479 #ifdef __BIG_ENDIAN
480         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
481 #else
482         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
483 #endif
484         if (with_comp)
485                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
486         return opcode;
487 }
488
489 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
490                                       struct dmae_command *dmae,
491                                       u8 src_type, u8 dst_type)
492 {
493         memset(dmae, 0, sizeof(struct dmae_command));
494
495         /* set the opcode */
496         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
497                                          true, DMAE_COMP_PCI);
498
499         /* fill in the completion parameters */
500         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
501         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
502         dmae->comp_val = DMAE_COMP_VAL;
503 }
504
505 /* issue a dmae command over the init-channel and wait for completion */
506 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae)
507 {
508         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
509         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
510         int rc = 0;
511
512         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
513
514         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
515          * as long as this code is called both from syscall context and
516          * from ndo_set_rx_mode() flow that may be called from BH.
517          */
518         spin_lock_bh(&bp->dmae_lock);
519
520         /* reset completion */
521         *wb_comp = 0;
522
523         /* post the command on the channel used for initializations */
524         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
525
526         /* wait for completion */
527         udelay(5);
528         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
529
530                 if (!cnt ||
531                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
532                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
533                         BNX2X_ERR("DMAE timeout!\n");
534                         rc = DMAE_TIMEOUT;
535                         goto unlock;
536                 }
537                 cnt--;
538                 udelay(50);
539         }
540         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
541                 BNX2X_ERR("DMAE PCI error!\n");
542                 rc = DMAE_PCI_ERROR;
543         }
544
545 unlock:
546         spin_unlock_bh(&bp->dmae_lock);
547         return rc;
548 }
549
550 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
551                       u32 len32)
552 {
553         int rc;
554         struct dmae_command dmae;
555
556         if (!bp->dmae_ready) {
557                 u32 *data = bnx2x_sp(bp, wb_data[0]);
558
559                 if (CHIP_IS_E1(bp))
560                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
561                 else
562                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
563                 return;
564         }
565
566         /* set opcode and fixed command fields */
567         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
568
569         /* fill in addresses and len */
570         dmae.src_addr_lo = U64_LO(dma_addr);
571         dmae.src_addr_hi = U64_HI(dma_addr);
572         dmae.dst_addr_lo = dst_addr >> 2;
573         dmae.dst_addr_hi = 0;
574         dmae.len = len32;
575
576         /* issue the command and wait for completion */
577         rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
578         if (rc) {
579                 BNX2X_ERR("DMAE returned failure %d\n", rc);
580                 bnx2x_panic();
581         }
582 }
583
584 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
585 {
586         int rc;
587         struct dmae_command dmae;
588
589         if (!bp->dmae_ready) {
590                 u32 *data = bnx2x_sp(bp, wb_data[0]);
591                 int i;
592
593                 if (CHIP_IS_E1(bp))
594                         for (i = 0; i < len32; i++)
595                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
596                 else
597                         for (i = 0; i < len32; i++)
598                                 data[i] = REG_RD(bp, src_addr + i*4);
599
600                 return;
601         }
602
603         /* set opcode and fixed command fields */
604         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
605
606         /* fill in addresses and len */
607         dmae.src_addr_lo = src_addr >> 2;
608         dmae.src_addr_hi = 0;
609         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
610         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
611         dmae.len = len32;
612
613         /* issue the command and wait for completion */
614         rc = bnx2x_issue_dmae_with_comp(bp, &dmae);
615         if (rc) {
616                 BNX2X_ERR("DMAE returned failure %d\n", rc);
617                 bnx2x_panic();
618         }
619 }
620
621 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
622                                       u32 addr, u32 len)
623 {
624         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
625         int offset = 0;
626
627         while (len > dmae_wr_max) {
628                 bnx2x_write_dmae(bp, phys_addr + offset,
629                                  addr + offset, dmae_wr_max);
630                 offset += dmae_wr_max * 4;
631                 len -= dmae_wr_max;
632         }
633
634         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
635 }
636
637 static int bnx2x_mc_assert(struct bnx2x *bp)
638 {
639         char last_idx;
640         int i, rc = 0;
641         u32 row0, row1, row2, row3;
642
643         /* XSTORM */
644         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
645                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
646         if (last_idx)
647                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
648
649         /* print the asserts */
650         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
651
652                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
653                               XSTORM_ASSERT_LIST_OFFSET(i));
654                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
655                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
656                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
657                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
658                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
659                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
660
661                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
662                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
663                                   i, row3, row2, row1, row0);
664                         rc++;
665                 } else {
666                         break;
667                 }
668         }
669
670         /* TSTORM */
671         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
672                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
673         if (last_idx)
674                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
675
676         /* print the asserts */
677         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
678
679                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
680                               TSTORM_ASSERT_LIST_OFFSET(i));
681                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
682                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
683                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
684                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
685                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
686                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
687
688                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
689                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
690                                   i, row3, row2, row1, row0);
691                         rc++;
692                 } else {
693                         break;
694                 }
695         }
696
697         /* CSTORM */
698         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
699                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
700         if (last_idx)
701                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
702
703         /* print the asserts */
704         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
705
706                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
707                               CSTORM_ASSERT_LIST_OFFSET(i));
708                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
709                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
710                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
711                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
712                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
713                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
714
715                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
716                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
717                                   i, row3, row2, row1, row0);
718                         rc++;
719                 } else {
720                         break;
721                 }
722         }
723
724         /* USTORM */
725         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
726                            USTORM_ASSERT_LIST_INDEX_OFFSET);
727         if (last_idx)
728                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
729
730         /* print the asserts */
731         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
732
733                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
734                               USTORM_ASSERT_LIST_OFFSET(i));
735                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
736                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
737                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
738                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
739                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
740                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
741
742                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
743                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
744                                   i, row3, row2, row1, row0);
745                         rc++;
746                 } else {
747                         break;
748                 }
749         }
750
751         return rc;
752 }
753
754 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
755 {
756         u32 addr, val;
757         u32 mark, offset;
758         __be32 data[9];
759         int word;
760         u32 trace_shmem_base;
761         if (BP_NOMCP(bp)) {
762                 BNX2X_ERR("NO MCP - can not dump\n");
763                 return;
764         }
765         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
766                 (bp->common.bc_ver & 0xff0000) >> 16,
767                 (bp->common.bc_ver & 0xff00) >> 8,
768                 (bp->common.bc_ver & 0xff));
769
770         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
771         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
772                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
773
774         if (BP_PATH(bp) == 0)
775                 trace_shmem_base = bp->common.shmem_base;
776         else
777                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
778         addr = trace_shmem_base - 0x800;
779
780         /* validate TRCB signature */
781         mark = REG_RD(bp, addr);
782         if (mark != MFW_TRACE_SIGNATURE) {
783                 BNX2X_ERR("Trace buffer signature is missing.");
784                 return ;
785         }
786
787         /* read cyclic buffer pointer */
788         addr += 4;
789         mark = REG_RD(bp, addr);
790         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
791                         + ((mark + 0x3) & ~0x3) - 0x08000000;
792         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
793
794         printk("%s", lvl);
795
796         /* dump buffer after the mark */
797         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
798                 for (word = 0; word < 8; word++)
799                         data[word] = htonl(REG_RD(bp, offset + 4*word));
800                 data[8] = 0x0;
801                 pr_cont("%s", (char *)data);
802         }
803
804         /* dump buffer before the mark */
805         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
806                 for (word = 0; word < 8; word++)
807                         data[word] = htonl(REG_RD(bp, offset + 4*word));
808                 data[8] = 0x0;
809                 pr_cont("%s", (char *)data);
810         }
811         printk("%s" "end of fw dump\n", lvl);
812 }
813
814 static void bnx2x_fw_dump(struct bnx2x *bp)
815 {
816         bnx2x_fw_dump_lvl(bp, KERN_ERR);
817 }
818
819 static void bnx2x_hc_int_disable(struct bnx2x *bp)
820 {
821         int port = BP_PORT(bp);
822         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
823         u32 val = REG_RD(bp, addr);
824
825         /* in E1 we must use only PCI configuration space to disable
826          * MSI/MSIX capability
827          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
828          */
829         if (CHIP_IS_E1(bp)) {
830                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
831                  * Use mask register to prevent from HC sending interrupts
832                  * after we exit the function
833                  */
834                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
835
836                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
837                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
838                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
839         } else
840                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
841                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
842                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
843                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
844
845         DP(NETIF_MSG_IFDOWN,
846            "write %x to HC %d (addr 0x%x)\n",
847            val, port, addr);
848
849         /* flush all outstanding writes */
850         mmiowb();
851
852         REG_WR(bp, addr, val);
853         if (REG_RD(bp, addr) != val)
854                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
855 }
856
857 static void bnx2x_igu_int_disable(struct bnx2x *bp)
858 {
859         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
860
861         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
862                  IGU_PF_CONF_INT_LINE_EN |
863                  IGU_PF_CONF_ATTN_BIT_EN);
864
865         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
866
867         /* flush all outstanding writes */
868         mmiowb();
869
870         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
871         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
872                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
873 }
874
875 static void bnx2x_int_disable(struct bnx2x *bp)
876 {
877         if (bp->common.int_block == INT_BLOCK_HC)
878                 bnx2x_hc_int_disable(bp);
879         else
880                 bnx2x_igu_int_disable(bp);
881 }
882
883 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
884 {
885         int i;
886         u16 j;
887         struct hc_sp_status_block_data sp_sb_data;
888         int func = BP_FUNC(bp);
889 #ifdef BNX2X_STOP_ON_ERROR
890         u16 start = 0, end = 0;
891         u8 cos;
892 #endif
893         if (disable_int)
894                 bnx2x_int_disable(bp);
895
896         bp->stats_state = STATS_STATE_DISABLED;
897         bp->eth_stats.unrecoverable_error++;
898         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
899
900         BNX2X_ERR("begin crash dump -----------------\n");
901
902         /* Indices */
903         /* Common */
904         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
905                   bp->def_idx, bp->def_att_idx, bp->attn_state,
906                   bp->spq_prod_idx, bp->stats_counter);
907         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
908                   bp->def_status_blk->atten_status_block.attn_bits,
909                   bp->def_status_blk->atten_status_block.attn_bits_ack,
910                   bp->def_status_blk->atten_status_block.status_block_id,
911                   bp->def_status_blk->atten_status_block.attn_bits_index);
912         BNX2X_ERR("     def (");
913         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
914                 pr_cont("0x%x%s",
915                         bp->def_status_blk->sp_sb.index_values[i],
916                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
917
918         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
919                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
920                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
921                         i*sizeof(u32));
922
923         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
924                sp_sb_data.igu_sb_id,
925                sp_sb_data.igu_seg_id,
926                sp_sb_data.p_func.pf_id,
927                sp_sb_data.p_func.vnic_id,
928                sp_sb_data.p_func.vf_id,
929                sp_sb_data.p_func.vf_valid,
930                sp_sb_data.state);
931
932         for_each_eth_queue(bp, i) {
933                 struct bnx2x_fastpath *fp = &bp->fp[i];
934                 int loop;
935                 struct hc_status_block_data_e2 sb_data_e2;
936                 struct hc_status_block_data_e1x sb_data_e1x;
937                 struct hc_status_block_sm  *hc_sm_p =
938                         CHIP_IS_E1x(bp) ?
939                         sb_data_e1x.common.state_machine :
940                         sb_data_e2.common.state_machine;
941                 struct hc_index_data *hc_index_p =
942                         CHIP_IS_E1x(bp) ?
943                         sb_data_e1x.index_data :
944                         sb_data_e2.index_data;
945                 u8 data_size, cos;
946                 u32 *sb_data_p;
947                 struct bnx2x_fp_txdata txdata;
948
949                 /* Rx */
950                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
951                           i, fp->rx_bd_prod, fp->rx_bd_cons,
952                           fp->rx_comp_prod,
953                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
954                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
955                           fp->rx_sge_prod, fp->last_max_sge,
956                           le16_to_cpu(fp->fp_hc_idx));
957
958                 /* Tx */
959                 for_each_cos_in_tx_queue(fp, cos)
960                 {
961                         txdata = *fp->txdata_ptr[cos];
962                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
963                                   i, txdata.tx_pkt_prod,
964                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
965                                   txdata.tx_bd_cons,
966                                   le16_to_cpu(*txdata.tx_cons_sb));
967                 }
968
969                 loop = CHIP_IS_E1x(bp) ?
970                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
971
972                 /* host sb data */
973
974                 if (IS_FCOE_FP(fp))
975                         continue;
976
977                 BNX2X_ERR("     run indexes (");
978                 for (j = 0; j < HC_SB_MAX_SM; j++)
979                         pr_cont("0x%x%s",
980                                fp->sb_running_index[j],
981                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
982
983                 BNX2X_ERR("     indexes (");
984                 for (j = 0; j < loop; j++)
985                         pr_cont("0x%x%s",
986                                fp->sb_index_values[j],
987                                (j == loop - 1) ? ")" : " ");
988                 /* fw sb data */
989                 data_size = CHIP_IS_E1x(bp) ?
990                         sizeof(struct hc_status_block_data_e1x) :
991                         sizeof(struct hc_status_block_data_e2);
992                 data_size /= sizeof(u32);
993                 sb_data_p = CHIP_IS_E1x(bp) ?
994                         (u32 *)&sb_data_e1x :
995                         (u32 *)&sb_data_e2;
996                 /* copy sb data in here */
997                 for (j = 0; j < data_size; j++)
998                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
999                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1000                                 j * sizeof(u32));
1001
1002                 if (!CHIP_IS_E1x(bp)) {
1003                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1004                                 sb_data_e2.common.p_func.pf_id,
1005                                 sb_data_e2.common.p_func.vf_id,
1006                                 sb_data_e2.common.p_func.vf_valid,
1007                                 sb_data_e2.common.p_func.vnic_id,
1008                                 sb_data_e2.common.same_igu_sb_1b,
1009                                 sb_data_e2.common.state);
1010                 } else {
1011                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1012                                 sb_data_e1x.common.p_func.pf_id,
1013                                 sb_data_e1x.common.p_func.vf_id,
1014                                 sb_data_e1x.common.p_func.vf_valid,
1015                                 sb_data_e1x.common.p_func.vnic_id,
1016                                 sb_data_e1x.common.same_igu_sb_1b,
1017                                 sb_data_e1x.common.state);
1018                 }
1019
1020                 /* SB_SMs data */
1021                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1022                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1023                                 j, hc_sm_p[j].__flags,
1024                                 hc_sm_p[j].igu_sb_id,
1025                                 hc_sm_p[j].igu_seg_id,
1026                                 hc_sm_p[j].time_to_expire,
1027                                 hc_sm_p[j].timer_value);
1028                 }
1029
1030                 /* Indices data */
1031                 for (j = 0; j < loop; j++) {
1032                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1033                                hc_index_p[j].flags,
1034                                hc_index_p[j].timeout);
1035                 }
1036         }
1037
1038 #ifdef BNX2X_STOP_ON_ERROR
1039
1040         /* event queue */
1041         BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1042         for (i = 0; i < NUM_EQ_DESC; i++) {
1043                 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1044
1045                 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1046                           i, bp->eq_ring[i].message.opcode,
1047                           bp->eq_ring[i].message.error);
1048                 BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]);
1049         }
1050
1051         /* Rings */
1052         /* Rx */
1053         for_each_valid_rx_queue(bp, i) {
1054                 struct bnx2x_fastpath *fp = &bp->fp[i];
1055
1056                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1057                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1058                 for (j = start; j != end; j = RX_BD(j + 1)) {
1059                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1060                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1061
1062                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1063                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1064                 }
1065
1066                 start = RX_SGE(fp->rx_sge_prod);
1067                 end = RX_SGE(fp->last_max_sge);
1068                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1069                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1070                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1071
1072                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1073                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1074                 }
1075
1076                 start = RCQ_BD(fp->rx_comp_cons - 10);
1077                 end = RCQ_BD(fp->rx_comp_cons + 503);
1078                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1079                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1080
1081                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1082                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1083                 }
1084         }
1085
1086         /* Tx */
1087         for_each_valid_tx_queue(bp, i) {
1088                 struct bnx2x_fastpath *fp = &bp->fp[i];
1089                 for_each_cos_in_tx_queue(fp, cos) {
1090                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1091
1092                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1093                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1094                         for (j = start; j != end; j = TX_BD(j + 1)) {
1095                                 struct sw_tx_bd *sw_bd =
1096                                         &txdata->tx_buf_ring[j];
1097
1098                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1099                                           i, cos, j, sw_bd->skb,
1100                                           sw_bd->first_bd);
1101                         }
1102
1103                         start = TX_BD(txdata->tx_bd_cons - 10);
1104                         end = TX_BD(txdata->tx_bd_cons + 254);
1105                         for (j = start; j != end; j = TX_BD(j + 1)) {
1106                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1107
1108                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1109                                           i, cos, j, tx_bd[0], tx_bd[1],
1110                                           tx_bd[2], tx_bd[3]);
1111                         }
1112                 }
1113         }
1114 #endif
1115         bnx2x_fw_dump(bp);
1116         bnx2x_mc_assert(bp);
1117         BNX2X_ERR("end crash dump -----------------\n");
1118 }
1119
1120 /*
1121  * FLR Support for E2
1122  *
1123  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1124  * initialization.
1125  */
1126 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1127 #define FLR_WAIT_INTERVAL       50      /* usec */
1128 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1129
1130 struct pbf_pN_buf_regs {
1131         int pN;
1132         u32 init_crd;
1133         u32 crd;
1134         u32 crd_freed;
1135 };
1136
1137 struct pbf_pN_cmd_regs {
1138         int pN;
1139         u32 lines_occup;
1140         u32 lines_freed;
1141 };
1142
1143 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1144                                      struct pbf_pN_buf_regs *regs,
1145                                      u32 poll_count)
1146 {
1147         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1148         u32 cur_cnt = poll_count;
1149
1150         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1151         crd = crd_start = REG_RD(bp, regs->crd);
1152         init_crd = REG_RD(bp, regs->init_crd);
1153
1154         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1155         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1156         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1157
1158         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1159                (init_crd - crd_start))) {
1160                 if (cur_cnt--) {
1161                         udelay(FLR_WAIT_INTERVAL);
1162                         crd = REG_RD(bp, regs->crd);
1163                         crd_freed = REG_RD(bp, regs->crd_freed);
1164                 } else {
1165                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1166                            regs->pN);
1167                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1168                            regs->pN, crd);
1169                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1170                            regs->pN, crd_freed);
1171                         break;
1172                 }
1173         }
1174         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1175            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1176 }
1177
1178 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1179                                      struct pbf_pN_cmd_regs *regs,
1180                                      u32 poll_count)
1181 {
1182         u32 occup, to_free, freed, freed_start;
1183         u32 cur_cnt = poll_count;
1184
1185         occup = to_free = REG_RD(bp, regs->lines_occup);
1186         freed = freed_start = REG_RD(bp, regs->lines_freed);
1187
1188         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1189         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1190
1191         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1192                 if (cur_cnt--) {
1193                         udelay(FLR_WAIT_INTERVAL);
1194                         occup = REG_RD(bp, regs->lines_occup);
1195                         freed = REG_RD(bp, regs->lines_freed);
1196                 } else {
1197                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1198                            regs->pN);
1199                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1200                            regs->pN, occup);
1201                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1202                            regs->pN, freed);
1203                         break;
1204                 }
1205         }
1206         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1207            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1208 }
1209
1210 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1211                                     u32 expected, u32 poll_count)
1212 {
1213         u32 cur_cnt = poll_count;
1214         u32 val;
1215
1216         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1217                 udelay(FLR_WAIT_INTERVAL);
1218
1219         return val;
1220 }
1221
1222 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1223                                     char *msg, u32 poll_cnt)
1224 {
1225         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1226         if (val != 0) {
1227                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1228                 return 1;
1229         }
1230         return 0;
1231 }
1232
1233 /* Common routines with VF FLR cleanup */
1234 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1235 {
1236         /* adjust polling timeout */
1237         if (CHIP_REV_IS_EMUL(bp))
1238                 return FLR_POLL_CNT * 2000;
1239
1240         if (CHIP_REV_IS_FPGA(bp))
1241                 return FLR_POLL_CNT * 120;
1242
1243         return FLR_POLL_CNT;
1244 }
1245
1246 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1247 {
1248         struct pbf_pN_cmd_regs cmd_regs[] = {
1249                 {0, (CHIP_IS_E3B0(bp)) ?
1250                         PBF_REG_TQ_OCCUPANCY_Q0 :
1251                         PBF_REG_P0_TQ_OCCUPANCY,
1252                     (CHIP_IS_E3B0(bp)) ?
1253                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1254                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1255                 {1, (CHIP_IS_E3B0(bp)) ?
1256                         PBF_REG_TQ_OCCUPANCY_Q1 :
1257                         PBF_REG_P1_TQ_OCCUPANCY,
1258                     (CHIP_IS_E3B0(bp)) ?
1259                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1260                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1261                 {4, (CHIP_IS_E3B0(bp)) ?
1262                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1263                         PBF_REG_P4_TQ_OCCUPANCY,
1264                     (CHIP_IS_E3B0(bp)) ?
1265                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1266                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1267         };
1268
1269         struct pbf_pN_buf_regs buf_regs[] = {
1270                 {0, (CHIP_IS_E3B0(bp)) ?
1271                         PBF_REG_INIT_CRD_Q0 :
1272                         PBF_REG_P0_INIT_CRD ,
1273                     (CHIP_IS_E3B0(bp)) ?
1274                         PBF_REG_CREDIT_Q0 :
1275                         PBF_REG_P0_CREDIT,
1276                     (CHIP_IS_E3B0(bp)) ?
1277                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1278                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1279                 {1, (CHIP_IS_E3B0(bp)) ?
1280                         PBF_REG_INIT_CRD_Q1 :
1281                         PBF_REG_P1_INIT_CRD,
1282                     (CHIP_IS_E3B0(bp)) ?
1283                         PBF_REG_CREDIT_Q1 :
1284                         PBF_REG_P1_CREDIT,
1285                     (CHIP_IS_E3B0(bp)) ?
1286                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1287                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1288                 {4, (CHIP_IS_E3B0(bp)) ?
1289                         PBF_REG_INIT_CRD_LB_Q :
1290                         PBF_REG_P4_INIT_CRD,
1291                     (CHIP_IS_E3B0(bp)) ?
1292                         PBF_REG_CREDIT_LB_Q :
1293                         PBF_REG_P4_CREDIT,
1294                     (CHIP_IS_E3B0(bp)) ?
1295                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1296                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1297         };
1298
1299         int i;
1300
1301         /* Verify the command queues are flushed P0, P1, P4 */
1302         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1303                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1304
1305         /* Verify the transmission buffers are flushed P0, P1, P4 */
1306         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1307                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1308 }
1309
1310 #define OP_GEN_PARAM(param) \
1311         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1312
1313 #define OP_GEN_TYPE(type) \
1314         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1315
1316 #define OP_GEN_AGG_VECT(index) \
1317         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1318
1319 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1320 {
1321         u32 op_gen_command = 0;
1322         u32 comp_addr = BAR_CSTRORM_INTMEM +
1323                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1324         int ret = 0;
1325
1326         if (REG_RD(bp, comp_addr)) {
1327                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1328                 return 1;
1329         }
1330
1331         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1332         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1333         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1334         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1335
1336         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1337         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1338
1339         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1340                 BNX2X_ERR("FW final cleanup did not succeed\n");
1341                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1342                    (REG_RD(bp, comp_addr)));
1343                 bnx2x_panic();
1344                 return 1;
1345         }
1346         /* Zero completion for next FLR */
1347         REG_WR(bp, comp_addr, 0);
1348
1349         return ret;
1350 }
1351
1352 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1353 {
1354         u16 status;
1355
1356         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1357         return status & PCI_EXP_DEVSTA_TRPND;
1358 }
1359
1360 /* PF FLR specific routines
1361 */
1362 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1363 {
1364         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1365         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1366                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1367                         "CFC PF usage counter timed out",
1368                         poll_cnt))
1369                 return 1;
1370
1371         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1372         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1373                         DORQ_REG_PF_USAGE_CNT,
1374                         "DQ PF usage counter timed out",
1375                         poll_cnt))
1376                 return 1;
1377
1378         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1379         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1380                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1381                         "QM PF usage counter timed out",
1382                         poll_cnt))
1383                 return 1;
1384
1385         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1386         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1387                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1388                         "Timers VNIC usage counter timed out",
1389                         poll_cnt))
1390                 return 1;
1391         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1392                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1393                         "Timers NUM_SCANS usage counter timed out",
1394                         poll_cnt))
1395                 return 1;
1396
1397         /* Wait DMAE PF usage counter to zero */
1398         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1399                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1400                         "DMAE command register timed out",
1401                         poll_cnt))
1402                 return 1;
1403
1404         return 0;
1405 }
1406
1407 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1408 {
1409         u32 val;
1410
1411         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1412         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1413
1414         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1415         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1416
1417         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1418         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1419
1420         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1421         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1422
1423         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1424         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1425
1426         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1427         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1428
1429         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1430         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1431
1432         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1433         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1434            val);
1435 }
1436
1437 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1438 {
1439         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1440
1441         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1442
1443         /* Re-enable PF target read access */
1444         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1445
1446         /* Poll HW usage counters */
1447         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1448         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1449                 return -EBUSY;
1450
1451         /* Zero the igu 'trailing edge' and 'leading edge' */
1452
1453         /* Send the FW cleanup command */
1454         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1455                 return -EBUSY;
1456
1457         /* ATC cleanup */
1458
1459         /* Verify TX hw is flushed */
1460         bnx2x_tx_hw_flushed(bp, poll_cnt);
1461
1462         /* Wait 100ms (not adjusted according to platform) */
1463         msleep(100);
1464
1465         /* Verify no pending pci transactions */
1466         if (bnx2x_is_pcie_pending(bp->pdev))
1467                 BNX2X_ERR("PCIE Transactions still pending\n");
1468
1469         /* Debug */
1470         bnx2x_hw_enable_status(bp);
1471
1472         /*
1473          * Master enable - Due to WB DMAE writes performed before this
1474          * register is re-initialized as part of the regular function init
1475          */
1476         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1477
1478         return 0;
1479 }
1480
1481 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1482 {
1483         int port = BP_PORT(bp);
1484         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1485         u32 val = REG_RD(bp, addr);
1486         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1487         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1488         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1489
1490         if (msix) {
1491                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1492                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1493                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1494                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1495                 if (single_msix)
1496                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1497         } else if (msi) {
1498                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1499                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1500                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1501                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1502         } else {
1503                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1504                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1505                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1506                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1507
1508                 if (!CHIP_IS_E1(bp)) {
1509                         DP(NETIF_MSG_IFUP,
1510                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1511
1512                         REG_WR(bp, addr, val);
1513
1514                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1515                 }
1516         }
1517
1518         if (CHIP_IS_E1(bp))
1519                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1520
1521         DP(NETIF_MSG_IFUP,
1522            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1523            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1524
1525         REG_WR(bp, addr, val);
1526         /*
1527          * Ensure that HC_CONFIG is written before leading/trailing edge config
1528          */
1529         mmiowb();
1530         barrier();
1531
1532         if (!CHIP_IS_E1(bp)) {
1533                 /* init leading/trailing edge */
1534                 if (IS_MF(bp)) {
1535                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1536                         if (bp->port.pmf)
1537                                 /* enable nig and gpio3 attention */
1538                                 val |= 0x1100;
1539                 } else
1540                         val = 0xffff;
1541
1542                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1543                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1544         }
1545
1546         /* Make sure that interrupts are indeed enabled from here on */
1547         mmiowb();
1548 }
1549
1550 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1551 {
1552         u32 val;
1553         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556
1557         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1558
1559         if (msix) {
1560                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1561                          IGU_PF_CONF_SINGLE_ISR_EN);
1562                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1563                         IGU_PF_CONF_ATTN_BIT_EN);
1564
1565                 if (single_msix)
1566                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1567         } else if (msi) {
1568                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1569                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1570                         IGU_PF_CONF_ATTN_BIT_EN |
1571                         IGU_PF_CONF_SINGLE_ISR_EN);
1572         } else {
1573                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1574                 val |= (IGU_PF_CONF_INT_LINE_EN |
1575                         IGU_PF_CONF_ATTN_BIT_EN |
1576                         IGU_PF_CONF_SINGLE_ISR_EN);
1577         }
1578
1579         /* Clean previous status - need to configure igu prior to ack*/
1580         if ((!msix) || single_msix) {
1581                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1582                 bnx2x_ack_int(bp);
1583         }
1584
1585         val |= IGU_PF_CONF_FUNC_EN;
1586
1587         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1588            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589
1590         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1591
1592         if (val & IGU_PF_CONF_INT_LINE_EN)
1593                 pci_intx(bp->pdev, true);
1594
1595         barrier();
1596
1597         /* init leading/trailing edge */
1598         if (IS_MF(bp)) {
1599                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1600                 if (bp->port.pmf)
1601                         /* enable nig and gpio3 attention */
1602                         val |= 0x1100;
1603         } else
1604                 val = 0xffff;
1605
1606         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1607         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1608
1609         /* Make sure that interrupts are indeed enabled from here on */
1610         mmiowb();
1611 }
1612
1613 void bnx2x_int_enable(struct bnx2x *bp)
1614 {
1615         if (bp->common.int_block == INT_BLOCK_HC)
1616                 bnx2x_hc_int_enable(bp);
1617         else
1618                 bnx2x_igu_int_enable(bp);
1619 }
1620
1621 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1622 {
1623         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1624         int i, offset;
1625
1626         if (disable_hw)
1627                 /* prevent the HW from sending interrupts */
1628                 bnx2x_int_disable(bp);
1629
1630         /* make sure all ISRs are done */
1631         if (msix) {
1632                 synchronize_irq(bp->msix_table[0].vector);
1633                 offset = 1;
1634                 if (CNIC_SUPPORT(bp))
1635                         offset++;
1636                 for_each_eth_queue(bp, i)
1637                         synchronize_irq(bp->msix_table[offset++].vector);
1638         } else
1639                 synchronize_irq(bp->pdev->irq);
1640
1641         /* make sure sp_task is not running */
1642         cancel_delayed_work(&bp->sp_task);
1643         cancel_delayed_work(&bp->period_task);
1644         flush_workqueue(bnx2x_wq);
1645 }
1646
1647 /* fast path */
1648
1649 /*
1650  * General service functions
1651  */
1652
1653 /* Return true if succeeded to acquire the lock */
1654 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1655 {
1656         u32 lock_status;
1657         u32 resource_bit = (1 << resource);
1658         int func = BP_FUNC(bp);
1659         u32 hw_lock_control_reg;
1660
1661         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1662            "Trying to take a lock on resource %d\n", resource);
1663
1664         /* Validating that the resource is within range */
1665         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1666                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1667                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1668                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1669                 return false;
1670         }
1671
1672         if (func <= 5)
1673                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1674         else
1675                 hw_lock_control_reg =
1676                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1677
1678         /* Try to acquire the lock */
1679         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1680         lock_status = REG_RD(bp, hw_lock_control_reg);
1681         if (lock_status & resource_bit)
1682                 return true;
1683
1684         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1685            "Failed to get a lock on resource %d\n", resource);
1686         return false;
1687 }
1688
1689 /**
1690  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1691  *
1692  * @bp: driver handle
1693  *
1694  * Returns the recovery leader resource id according to the engine this function
1695  * belongs to. Currently only only 2 engines is supported.
1696  */
1697 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1698 {
1699         if (BP_PATH(bp))
1700                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1701         else
1702                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1703 }
1704
1705 /**
1706  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1707  *
1708  * @bp: driver handle
1709  *
1710  * Tries to acquire a leader lock for current engine.
1711  */
1712 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1713 {
1714         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1715 }
1716
1717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1718
1719 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1720 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1721 {
1722         /* Set the interrupt occurred bit for the sp-task to recognize it
1723          * must ack the interrupt and transition according to the IGU
1724          * state machine.
1725          */
1726         atomic_set(&bp->interrupt_occurred, 1);
1727
1728         /* The sp_task must execute only after this bit
1729          * is set, otherwise we will get out of sync and miss all
1730          * further interrupts. Hence, the barrier.
1731          */
1732         smp_wmb();
1733
1734         /* schedule sp_task to workqueue */
1735         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1736 }
1737
1738 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1739 {
1740         struct bnx2x *bp = fp->bp;
1741         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1742         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1743         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1744         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1745
1746         DP(BNX2X_MSG_SP,
1747            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1748            fp->index, cid, command, bp->state,
1749            rr_cqe->ramrod_cqe.ramrod_type);
1750
1751         /* If cid is within VF range, replace the slowpath object with the
1752          * one corresponding to this VF
1753          */
1754         if (cid >= BNX2X_FIRST_VF_CID  &&
1755             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1756                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1757
1758         switch (command) {
1759         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1760                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1761                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1762                 break;
1763
1764         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1765                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1766                 drv_cmd = BNX2X_Q_CMD_SETUP;
1767                 break;
1768
1769         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1770                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1771                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1772                 break;
1773
1774         case (RAMROD_CMD_ID_ETH_HALT):
1775                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1776                 drv_cmd = BNX2X_Q_CMD_HALT;
1777                 break;
1778
1779         case (RAMROD_CMD_ID_ETH_TERMINATE):
1780                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1781                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1782                 break;
1783
1784         case (RAMROD_CMD_ID_ETH_EMPTY):
1785                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1786                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1787                 break;
1788
1789         default:
1790                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1791                           command, fp->index);
1792                 return;
1793         }
1794
1795         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1796             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1797                 /* q_obj->complete_cmd() failure means that this was
1798                  * an unexpected completion.
1799                  *
1800                  * In this case we don't want to increase the bp->spq_left
1801                  * because apparently we haven't sent this command the first
1802                  * place.
1803                  */
1804 #ifdef BNX2X_STOP_ON_ERROR
1805                 bnx2x_panic();
1806 #else
1807                 return;
1808 #endif
1809         /* SRIOV: reschedule any 'in_progress' operations */
1810         bnx2x_iov_sp_event(bp, cid, true);
1811
1812         smp_mb__before_atomic_inc();
1813         atomic_inc(&bp->cq_spq_left);
1814         /* push the change in bp->spq_left and towards the memory */
1815         smp_mb__after_atomic_inc();
1816
1817         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1818
1819         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1820             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1821                 /* if Q update ramrod is completed for last Q in AFEX vif set
1822                  * flow, then ACK MCP at the end
1823                  *
1824                  * mark pending ACK to MCP bit.
1825                  * prevent case that both bits are cleared.
1826                  * At the end of load/unload driver checks that
1827                  * sp_state is cleared, and this order prevents
1828                  * races
1829                  */
1830                 smp_mb__before_clear_bit();
1831                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1832                 wmb();
1833                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1834                 smp_mb__after_clear_bit();
1835
1836                 /* schedule the sp task as mcp ack is required */
1837                 bnx2x_schedule_sp_task(bp);
1838         }
1839
1840         return;
1841 }
1842
1843 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1844 {
1845         struct bnx2x *bp = netdev_priv(dev_instance);
1846         u16 status = bnx2x_ack_int(bp);
1847         u16 mask;
1848         int i;
1849         u8 cos;
1850
1851         /* Return here if interrupt is shared and it's not for us */
1852         if (unlikely(status == 0)) {
1853                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1854                 return IRQ_NONE;
1855         }
1856         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1857
1858 #ifdef BNX2X_STOP_ON_ERROR
1859         if (unlikely(bp->panic))
1860                 return IRQ_HANDLED;
1861 #endif
1862
1863         for_each_eth_queue(bp, i) {
1864                 struct bnx2x_fastpath *fp = &bp->fp[i];
1865
1866                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1867                 if (status & mask) {
1868                         /* Handle Rx or Tx according to SB id */
1869                         for_each_cos_in_tx_queue(fp, cos)
1870                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1871                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1872                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1873                         status &= ~mask;
1874                 }
1875         }
1876
1877         if (CNIC_SUPPORT(bp)) {
1878                 mask = 0x2;
1879                 if (status & (mask | 0x1)) {
1880                         struct cnic_ops *c_ops = NULL;
1881
1882                         rcu_read_lock();
1883                         c_ops = rcu_dereference(bp->cnic_ops);
1884                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1885                                       CNIC_DRV_STATE_HANDLES_IRQ))
1886                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1887                         rcu_read_unlock();
1888
1889                         status &= ~mask;
1890                 }
1891         }
1892
1893         if (unlikely(status & 0x1)) {
1894
1895                 /* schedule sp task to perform default status block work, ack
1896                  * attentions and enable interrupts.
1897                  */
1898                 bnx2x_schedule_sp_task(bp);
1899
1900                 status &= ~0x1;
1901                 if (!status)
1902                         return IRQ_HANDLED;
1903         }
1904
1905         if (unlikely(status))
1906                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1907                    status);
1908
1909         return IRQ_HANDLED;
1910 }
1911
1912 /* Link */
1913
1914 /*
1915  * General service functions
1916  */
1917
1918 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1919 {
1920         u32 lock_status;
1921         u32 resource_bit = (1 << resource);
1922         int func = BP_FUNC(bp);
1923         u32 hw_lock_control_reg;
1924         int cnt;
1925
1926         /* Validating that the resource is within range */
1927         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1928                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1929                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1930                 return -EINVAL;
1931         }
1932
1933         if (func <= 5) {
1934                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1935         } else {
1936                 hw_lock_control_reg =
1937                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1938         }
1939
1940         /* Validating that the resource is not already taken */
1941         lock_status = REG_RD(bp, hw_lock_control_reg);
1942         if (lock_status & resource_bit) {
1943                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1944                    lock_status, resource_bit);
1945                 return -EEXIST;
1946         }
1947
1948         /* Try for 5 second every 5ms */
1949         for (cnt = 0; cnt < 1000; cnt++) {
1950                 /* Try to acquire the lock */
1951                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1952                 lock_status = REG_RD(bp, hw_lock_control_reg);
1953                 if (lock_status & resource_bit)
1954                         return 0;
1955
1956                 usleep_range(5000, 10000);
1957         }
1958         BNX2X_ERR("Timeout\n");
1959         return -EAGAIN;
1960 }
1961
1962 int bnx2x_release_leader_lock(struct bnx2x *bp)
1963 {
1964         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1965 }
1966
1967 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969         u32 lock_status;
1970         u32 resource_bit = (1 << resource);
1971         int func = BP_FUNC(bp);
1972         u32 hw_lock_control_reg;
1973
1974         /* Validating that the resource is within range */
1975         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1976                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1977                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1978                 return -EINVAL;
1979         }
1980
1981         if (func <= 5) {
1982                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1983         } else {
1984                 hw_lock_control_reg =
1985                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1986         }
1987
1988         /* Validating that the resource is currently taken */
1989         lock_status = REG_RD(bp, hw_lock_control_reg);
1990         if (!(lock_status & resource_bit)) {
1991                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
1992                           lock_status, resource_bit);
1993                 return -EFAULT;
1994         }
1995
1996         REG_WR(bp, hw_lock_control_reg, resource_bit);
1997         return 0;
1998 }
1999
2000 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2001 {
2002         /* The GPIO should be swapped if swap register is set and active */
2003         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2004                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2005         int gpio_shift = gpio_num +
2006                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2007         u32 gpio_mask = (1 << gpio_shift);
2008         u32 gpio_reg;
2009         int value;
2010
2011         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2012                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2013                 return -EINVAL;
2014         }
2015
2016         /* read GPIO value */
2017         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2018
2019         /* get the requested pin value */
2020         if ((gpio_reg & gpio_mask) == gpio_mask)
2021                 value = 1;
2022         else
2023                 value = 0;
2024
2025         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2026
2027         return value;
2028 }
2029
2030 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2031 {
2032         /* The GPIO should be swapped if swap register is set and active */
2033         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2034                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2035         int gpio_shift = gpio_num +
2036                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2037         u32 gpio_mask = (1 << gpio_shift);
2038         u32 gpio_reg;
2039
2040         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2041                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2042                 return -EINVAL;
2043         }
2044
2045         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2046         /* read GPIO and mask except the float bits */
2047         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2048
2049         switch (mode) {
2050         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2051                 DP(NETIF_MSG_LINK,
2052                    "Set GPIO %d (shift %d) -> output low\n",
2053                    gpio_num, gpio_shift);
2054                 /* clear FLOAT and set CLR */
2055                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2056                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2057                 break;
2058
2059         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2060                 DP(NETIF_MSG_LINK,
2061                    "Set GPIO %d (shift %d) -> output high\n",
2062                    gpio_num, gpio_shift);
2063                 /* clear FLOAT and set SET */
2064                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2065                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2066                 break;
2067
2068         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2069                 DP(NETIF_MSG_LINK,
2070                    "Set GPIO %d (shift %d) -> input\n",
2071                    gpio_num, gpio_shift);
2072                 /* set FLOAT */
2073                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2074                 break;
2075
2076         default:
2077                 break;
2078         }
2079
2080         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2081         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2082
2083         return 0;
2084 }
2085
2086 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2087 {
2088         u32 gpio_reg = 0;
2089         int rc = 0;
2090
2091         /* Any port swapping should be handled by caller. */
2092
2093         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2094         /* read GPIO and mask except the float bits */
2095         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2097         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2098         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2099
2100         switch (mode) {
2101         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2102                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2103                 /* set CLR */
2104                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2105                 break;
2106
2107         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2108                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2109                 /* set SET */
2110                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2111                 break;
2112
2113         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2114                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2115                 /* set FLOAT */
2116                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2117                 break;
2118
2119         default:
2120                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2121                 rc = -EINVAL;
2122                 break;
2123         }
2124
2125         if (rc == 0)
2126                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2127
2128         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2129
2130         return rc;
2131 }
2132
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2134 {
2135         /* The GPIO should be swapped if swap register is set and active */
2136         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2137                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2138         int gpio_shift = gpio_num +
2139                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2140         u32 gpio_mask = (1 << gpio_shift);
2141         u32 gpio_reg;
2142
2143         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2144                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2145                 return -EINVAL;
2146         }
2147
2148         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2149         /* read GPIO int */
2150         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2151
2152         switch (mode) {
2153         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2154                 DP(NETIF_MSG_LINK,
2155                    "Clear GPIO INT %d (shift %d) -> output low\n",
2156                    gpio_num, gpio_shift);
2157                 /* clear SET and set CLR */
2158                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2159                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2160                 break;
2161
2162         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2163                 DP(NETIF_MSG_LINK,
2164                    "Set GPIO INT %d (shift %d) -> output high\n",
2165                    gpio_num, gpio_shift);
2166                 /* clear CLR and set SET */
2167                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2168                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2169                 break;
2170
2171         default:
2172                 break;
2173         }
2174
2175         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2176         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2177
2178         return 0;
2179 }
2180
2181 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2182 {
2183         u32 spio_reg;
2184
2185         /* Only 2 SPIOs are configurable */
2186         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2187                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2188                 return -EINVAL;
2189         }
2190
2191         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2192         /* read SPIO and mask except the float bits */
2193         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2194
2195         switch (mode) {
2196         case MISC_SPIO_OUTPUT_LOW:
2197                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2198                 /* clear FLOAT and set CLR */
2199                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2200                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2201                 break;
2202
2203         case MISC_SPIO_OUTPUT_HIGH:
2204                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2205                 /* clear FLOAT and set SET */
2206                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2207                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2208                 break;
2209
2210         case MISC_SPIO_INPUT_HI_Z:
2211                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2212                 /* set FLOAT */
2213                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2214                 break;
2215
2216         default:
2217                 break;
2218         }
2219
2220         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2221         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2222
2223         return 0;
2224 }
2225
2226 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2227 {
2228         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2229         switch (bp->link_vars.ieee_fc &
2230                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2231         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2232                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2233                                                    ADVERTISED_Pause);
2234                 break;
2235
2236         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2237                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2238                                                   ADVERTISED_Pause);
2239                 break;
2240
2241         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2242                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2243                 break;
2244
2245         default:
2246                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2247                                                    ADVERTISED_Pause);
2248                 break;
2249         }
2250 }
2251
2252 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2253 {
2254         /* Initialize link parameters structure variables
2255          * It is recommended to turn off RX FC for jumbo frames
2256          *  for better performance
2257          */
2258         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2259                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2260         else
2261                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2262 }
2263
2264 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2265 {
2266         u32 pause_enabled = 0;
2267
2268         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2269                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2270                         pause_enabled = 1;
2271
2272                 REG_WR(bp, BAR_USTRORM_INTMEM +
2273                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2274                        pause_enabled);
2275         }
2276
2277         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2278            pause_enabled ? "enabled" : "disabled");
2279 }
2280
2281 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2282 {
2283         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2284         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2285
2286         if (!BP_NOMCP(bp)) {
2287                 bnx2x_set_requested_fc(bp);
2288                 bnx2x_acquire_phy_lock(bp);
2289
2290                 if (load_mode == LOAD_DIAG) {
2291                         struct link_params *lp = &bp->link_params;
2292                         lp->loopback_mode = LOOPBACK_XGXS;
2293                         /* do PHY loopback at 10G speed, if possible */
2294                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2295                                 if (lp->speed_cap_mask[cfx_idx] &
2296                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2297                                         lp->req_line_speed[cfx_idx] =
2298                                         SPEED_10000;
2299                                 else
2300                                         lp->req_line_speed[cfx_idx] =
2301                                         SPEED_1000;
2302                         }
2303                 }
2304
2305                 if (load_mode == LOAD_LOOPBACK_EXT) {
2306                         struct link_params *lp = &bp->link_params;
2307                         lp->loopback_mode = LOOPBACK_EXT;
2308                 }
2309
2310                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2311
2312                 bnx2x_release_phy_lock(bp);
2313
2314                 bnx2x_init_dropless_fc(bp);
2315
2316                 bnx2x_calc_fc_adv(bp);
2317
2318                 if (bp->link_vars.link_up) {
2319                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2320                         bnx2x_link_report(bp);
2321                 }
2322                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2323                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2324                 return rc;
2325         }
2326         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2327         return -EINVAL;
2328 }
2329
2330 void bnx2x_link_set(struct bnx2x *bp)
2331 {
2332         if (!BP_NOMCP(bp)) {
2333                 bnx2x_acquire_phy_lock(bp);
2334                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2335                 bnx2x_release_phy_lock(bp);
2336
2337                 bnx2x_init_dropless_fc(bp);
2338
2339                 bnx2x_calc_fc_adv(bp);
2340         } else
2341                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2342 }
2343
2344 static void bnx2x__link_reset(struct bnx2x *bp)
2345 {
2346         if (!BP_NOMCP(bp)) {
2347                 bnx2x_acquire_phy_lock(bp);
2348                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2349                 bnx2x_release_phy_lock(bp);
2350         } else
2351                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2352 }
2353
2354 void bnx2x_force_link_reset(struct bnx2x *bp)
2355 {
2356         bnx2x_acquire_phy_lock(bp);
2357         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2358         bnx2x_release_phy_lock(bp);
2359 }
2360
2361 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2362 {
2363         u8 rc = 0;
2364
2365         if (!BP_NOMCP(bp)) {
2366                 bnx2x_acquire_phy_lock(bp);
2367                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2368                                      is_serdes);
2369                 bnx2x_release_phy_lock(bp);
2370         } else
2371                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2372
2373         return rc;
2374 }
2375
2376 /* Calculates the sum of vn_min_rates.
2377    It's needed for further normalizing of the min_rates.
2378    Returns:
2379      sum of vn_min_rates.
2380        or
2381      0 - if all the min_rates are 0.
2382      In the later case fairness algorithm should be deactivated.
2383      If not all min_rates are zero then those that are zeroes will be set to 1.
2384  */
2385 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2386                                       struct cmng_init_input *input)
2387 {
2388         int all_zero = 1;
2389         int vn;
2390
2391         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2392                 u32 vn_cfg = bp->mf_config[vn];
2393                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2394                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2395
2396                 /* Skip hidden vns */
2397                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2398                         vn_min_rate = 0;
2399                 /* If min rate is zero - set it to 1 */
2400                 else if (!vn_min_rate)
2401                         vn_min_rate = DEF_MIN_RATE;
2402                 else
2403                         all_zero = 0;
2404
2405                 input->vnic_min_rate[vn] = vn_min_rate;
2406         }
2407
2408         /* if ETS or all min rates are zeros - disable fairness */
2409         if (BNX2X_IS_ETS_ENABLED(bp)) {
2410                 input->flags.cmng_enables &=
2411                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2412                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2413         } else if (all_zero) {
2414                 input->flags.cmng_enables &=
2415                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2416                 DP(NETIF_MSG_IFUP,
2417                    "All MIN values are zeroes fairness will be disabled\n");
2418         } else
2419                 input->flags.cmng_enables |=
2420                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2421 }
2422
2423 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2424                                     struct cmng_init_input *input)
2425 {
2426         u16 vn_max_rate;
2427         u32 vn_cfg = bp->mf_config[vn];
2428
2429         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2430                 vn_max_rate = 0;
2431         else {
2432                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2433
2434                 if (IS_MF_SI(bp)) {
2435                         /* maxCfg in percents of linkspeed */
2436                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2437                 } else /* SD modes */
2438                         /* maxCfg is absolute in 100Mb units */
2439                         vn_max_rate = maxCfg * 100;
2440         }
2441
2442         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2443
2444         input->vnic_max_rate[vn] = vn_max_rate;
2445 }
2446
2447 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2448 {
2449         if (CHIP_REV_IS_SLOW(bp))
2450                 return CMNG_FNS_NONE;
2451         if (IS_MF(bp))
2452                 return CMNG_FNS_MINMAX;
2453
2454         return CMNG_FNS_NONE;
2455 }
2456
2457 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2458 {
2459         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2460
2461         if (BP_NOMCP(bp))
2462                 return; /* what should be the default value in this case */
2463
2464         /* For 2 port configuration the absolute function number formula
2465          * is:
2466          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2467          *
2468          *      and there are 4 functions per port
2469          *
2470          * For 4 port configuration it is
2471          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2472          *
2473          *      and there are 2 functions per port
2474          */
2475         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2476                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2477
2478                 if (func >= E1H_FUNC_MAX)
2479                         break;
2480
2481                 bp->mf_config[vn] =
2482                         MF_CFG_RD(bp, func_mf_config[func].config);
2483         }
2484         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2485                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2486                 bp->flags |= MF_FUNC_DIS;
2487         } else {
2488                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2489                 bp->flags &= ~MF_FUNC_DIS;
2490         }
2491 }
2492
2493 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2494 {
2495         struct cmng_init_input input;
2496         memset(&input, 0, sizeof(struct cmng_init_input));
2497
2498         input.port_rate = bp->link_vars.line_speed;
2499
2500         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2501                 int vn;
2502
2503                 /* read mf conf from shmem */
2504                 if (read_cfg)
2505                         bnx2x_read_mf_cfg(bp);
2506
2507                 /* vn_weight_sum and enable fairness if not 0 */
2508                 bnx2x_calc_vn_min(bp, &input);
2509
2510                 /* calculate and set min-max rate for each vn */
2511                 if (bp->port.pmf)
2512                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2513                                 bnx2x_calc_vn_max(bp, vn, &input);
2514
2515                 /* always enable rate shaping and fairness */
2516                 input.flags.cmng_enables |=
2517                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2518
2519                 bnx2x_init_cmng(&input, &bp->cmng);
2520                 return;
2521         }
2522
2523         /* rate shaping and fairness are disabled */
2524         DP(NETIF_MSG_IFUP,
2525            "rate shaping and fairness are disabled\n");
2526 }
2527
2528 static void storm_memset_cmng(struct bnx2x *bp,
2529                               struct cmng_init *cmng,
2530                               u8 port)
2531 {
2532         int vn;
2533         size_t size = sizeof(struct cmng_struct_per_port);
2534
2535         u32 addr = BAR_XSTRORM_INTMEM +
2536                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2537
2538         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2539
2540         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2541                 int func = func_by_vn(bp, vn);
2542
2543                 addr = BAR_XSTRORM_INTMEM +
2544                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2545                 size = sizeof(struct rate_shaping_vars_per_vn);
2546                 __storm_memset_struct(bp, addr, size,
2547                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2548
2549                 addr = BAR_XSTRORM_INTMEM +
2550                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2551                 size = sizeof(struct fairness_vars_per_vn);
2552                 __storm_memset_struct(bp, addr, size,
2553                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2554         }
2555 }
2556
2557 /* init cmng mode in HW according to local configuration */
2558 void bnx2x_set_local_cmng(struct bnx2x *bp)
2559 {
2560         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2561
2562         if (cmng_fns != CMNG_FNS_NONE) {
2563                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2564                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2565         } else {
2566                 /* rate shaping and fairness are disabled */
2567                 DP(NETIF_MSG_IFUP,
2568                    "single function mode without fairness\n");
2569         }
2570 }
2571
2572 /* This function is called upon link interrupt */
2573 static void bnx2x_link_attn(struct bnx2x *bp)
2574 {
2575         /* Make sure that we are synced with the current statistics */
2576         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2577
2578         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2579
2580         bnx2x_init_dropless_fc(bp);
2581
2582         if (bp->link_vars.link_up) {
2583
2584                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2585                         struct host_port_stats *pstats;
2586
2587                         pstats = bnx2x_sp(bp, port_stats);
2588                         /* reset old mac stats */
2589                         memset(&(pstats->mac_stx[0]), 0,
2590                                sizeof(struct mac_stx));
2591                 }
2592                 if (bp->state == BNX2X_STATE_OPEN)
2593                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2594         }
2595
2596         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2597                 bnx2x_set_local_cmng(bp);
2598
2599         __bnx2x_link_report(bp);
2600
2601         if (IS_MF(bp))
2602                 bnx2x_link_sync_notify(bp);
2603 }
2604
2605 void bnx2x__link_status_update(struct bnx2x *bp)
2606 {
2607         if (bp->state != BNX2X_STATE_OPEN)
2608                 return;
2609
2610         /* read updated dcb configuration */
2611         if (IS_PF(bp)) {
2612                 bnx2x_dcbx_pmf_update(bp);
2613                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2614                 if (bp->link_vars.link_up)
2615                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2616                 else
2617                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2618                         /* indicate link status */
2619                 bnx2x_link_report(bp);
2620
2621         } else { /* VF */
2622                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2623                                           SUPPORTED_10baseT_Full |
2624                                           SUPPORTED_100baseT_Half |
2625                                           SUPPORTED_100baseT_Full |
2626                                           SUPPORTED_1000baseT_Full |
2627                                           SUPPORTED_2500baseX_Full |
2628                                           SUPPORTED_10000baseT_Full |
2629                                           SUPPORTED_TP |
2630                                           SUPPORTED_FIBRE |
2631                                           SUPPORTED_Autoneg |
2632                                           SUPPORTED_Pause |
2633                                           SUPPORTED_Asym_Pause);
2634                 bp->port.advertising[0] = bp->port.supported[0];
2635
2636                 bp->link_params.bp = bp;
2637                 bp->link_params.port = BP_PORT(bp);
2638                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2639                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2640                 bp->link_params.req_line_speed[0] = SPEED_10000;
2641                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2642                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2643                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2644                 bp->link_vars.line_speed = SPEED_10000;
2645                 bp->link_vars.link_status =
2646                         (LINK_STATUS_LINK_UP |
2647                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2648                 bp->link_vars.link_up = 1;
2649                 bp->link_vars.duplex = DUPLEX_FULL;
2650                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2651                 __bnx2x_link_report(bp);
2652                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2653         }
2654 }
2655
2656 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2657                                   u16 vlan_val, u8 allowed_prio)
2658 {
2659         struct bnx2x_func_state_params func_params = {NULL};
2660         struct bnx2x_func_afex_update_params *f_update_params =
2661                 &func_params.params.afex_update;
2662
2663         func_params.f_obj = &bp->func_obj;
2664         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2665
2666         /* no need to wait for RAMROD completion, so don't
2667          * set RAMROD_COMP_WAIT flag
2668          */
2669
2670         f_update_params->vif_id = vifid;
2671         f_update_params->afex_default_vlan = vlan_val;
2672         f_update_params->allowed_priorities = allowed_prio;
2673
2674         /* if ramrod can not be sent, response to MCP immediately */
2675         if (bnx2x_func_state_change(bp, &func_params) < 0)
2676                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2677
2678         return 0;
2679 }
2680
2681 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2682                                           u16 vif_index, u8 func_bit_map)
2683 {
2684         struct bnx2x_func_state_params func_params = {NULL};
2685         struct bnx2x_func_afex_viflists_params *update_params =
2686                 &func_params.params.afex_viflists;
2687         int rc;
2688         u32 drv_msg_code;
2689
2690         /* validate only LIST_SET and LIST_GET are received from switch */
2691         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2692                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2693                           cmd_type);
2694
2695         func_params.f_obj = &bp->func_obj;
2696         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2697
2698         /* set parameters according to cmd_type */
2699         update_params->afex_vif_list_command = cmd_type;
2700         update_params->vif_list_index = vif_index;
2701         update_params->func_bit_map =
2702                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2703         update_params->func_to_clear = 0;
2704         drv_msg_code =
2705                 (cmd_type == VIF_LIST_RULE_GET) ?
2706                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2707                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2708
2709         /* if ramrod can not be sent, respond to MCP immediately for
2710          * SET and GET requests (other are not triggered from MCP)
2711          */
2712         rc = bnx2x_func_state_change(bp, &func_params);
2713         if (rc < 0)
2714                 bnx2x_fw_command(bp, drv_msg_code, 0);
2715
2716         return 0;
2717 }
2718
2719 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2720 {
2721         struct afex_stats afex_stats;
2722         u32 func = BP_ABS_FUNC(bp);
2723         u32 mf_config;
2724         u16 vlan_val;
2725         u32 vlan_prio;
2726         u16 vif_id;
2727         u8 allowed_prio;
2728         u8 vlan_mode;
2729         u32 addr_to_write, vifid, addrs, stats_type, i;
2730
2731         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2732                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2733                 DP(BNX2X_MSG_MCP,
2734                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2735                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2736         }
2737
2738         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2739                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2740                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2741                 DP(BNX2X_MSG_MCP,
2742                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2743                    vifid, addrs);
2744                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2745                                                addrs);
2746         }
2747
2748         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2749                 addr_to_write = SHMEM2_RD(bp,
2750                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2751                 stats_type = SHMEM2_RD(bp,
2752                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2753
2754                 DP(BNX2X_MSG_MCP,
2755                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2756                    addr_to_write);
2757
2758                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2759
2760                 /* write response to scratchpad, for MCP */
2761                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2762                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2763                                *(((u32 *)(&afex_stats))+i));
2764
2765                 /* send ack message to MCP */
2766                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2767         }
2768
2769         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2770                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2771                 bp->mf_config[BP_VN(bp)] = mf_config;
2772                 DP(BNX2X_MSG_MCP,
2773                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2774                    mf_config);
2775
2776                 /* if VIF_SET is "enabled" */
2777                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2778                         /* set rate limit directly to internal RAM */
2779                         struct cmng_init_input cmng_input;
2780                         struct rate_shaping_vars_per_vn m_rs_vn;
2781                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2782                         u32 addr = BAR_XSTRORM_INTMEM +
2783                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2784
2785                         bp->mf_config[BP_VN(bp)] = mf_config;
2786
2787                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2788                         m_rs_vn.vn_counter.rate =
2789                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2790                         m_rs_vn.vn_counter.quota =
2791                                 (m_rs_vn.vn_counter.rate *
2792                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2793
2794                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2795
2796                         /* read relevant values from mf_cfg struct in shmem */
2797                         vif_id =
2798                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2799                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2800                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2801                         vlan_val =
2802                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2803                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2804                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2805                         vlan_prio = (mf_config &
2806                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2807                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2808                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2809                         vlan_mode =
2810                                 (MF_CFG_RD(bp,
2811                                            func_mf_config[func].afex_config) &
2812                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2813                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2814                         allowed_prio =
2815                                 (MF_CFG_RD(bp,
2816                                            func_mf_config[func].afex_config) &
2817                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2818                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2819
2820                         /* send ramrod to FW, return in case of failure */
2821                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2822                                                    allowed_prio))
2823                                 return;
2824
2825                         bp->afex_def_vlan_tag = vlan_val;
2826                         bp->afex_vlan_mode = vlan_mode;
2827                 } else {
2828                         /* notify link down because BP->flags is disabled */
2829                         bnx2x_link_report(bp);
2830
2831                         /* send INVALID VIF ramrod to FW */
2832                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2833
2834                         /* Reset the default afex VLAN */
2835                         bp->afex_def_vlan_tag = -1;
2836                 }
2837         }
2838 }
2839
2840 static void bnx2x_pmf_update(struct bnx2x *bp)
2841 {
2842         int port = BP_PORT(bp);
2843         u32 val;
2844
2845         bp->port.pmf = 1;
2846         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2847
2848         /*
2849          * We need the mb() to ensure the ordering between the writing to
2850          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2851          */
2852         smp_mb();
2853
2854         /* queue a periodic task */
2855         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2856
2857         bnx2x_dcbx_pmf_update(bp);
2858
2859         /* enable nig attention */
2860         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2861         if (bp->common.int_block == INT_BLOCK_HC) {
2862                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2863                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2864         } else if (!CHIP_IS_E1x(bp)) {
2865                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2866                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2867         }
2868
2869         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2870 }
2871
2872 /* end of Link */
2873
2874 /* slow path */
2875
2876 /*
2877  * General service functions
2878  */
2879
2880 /* send the MCP a request, block until there is a reply */
2881 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2882 {
2883         int mb_idx = BP_FW_MB_IDX(bp);
2884         u32 seq;
2885         u32 rc = 0;
2886         u32 cnt = 1;
2887         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2888
2889         mutex_lock(&bp->fw_mb_mutex);
2890         seq = ++bp->fw_seq;
2891         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2892         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2893
2894         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2895                         (command | seq), param);
2896
2897         do {
2898                 /* let the FW do it's magic ... */
2899                 msleep(delay);
2900
2901                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2902
2903                 /* Give the FW up to 5 second (500*10ms) */
2904         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2905
2906         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2907            cnt*delay, rc, seq);
2908
2909         /* is this a reply to our command? */
2910         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2911                 rc &= FW_MSG_CODE_MASK;
2912         else {
2913                 /* FW BUG! */
2914                 BNX2X_ERR("FW failed to respond!\n");
2915                 bnx2x_fw_dump(bp);
2916                 rc = 0;
2917         }
2918         mutex_unlock(&bp->fw_mb_mutex);
2919
2920         return rc;
2921 }
2922
2923 static void storm_memset_func_cfg(struct bnx2x *bp,
2924                                  struct tstorm_eth_function_common_config *tcfg,
2925                                  u16 abs_fid)
2926 {
2927         size_t size = sizeof(struct tstorm_eth_function_common_config);
2928
2929         u32 addr = BAR_TSTRORM_INTMEM +
2930                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2931
2932         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2933 }
2934
2935 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2936 {
2937         if (CHIP_IS_E1x(bp)) {
2938                 struct tstorm_eth_function_common_config tcfg = {0};
2939
2940                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2941         }
2942
2943         /* Enable the function in the FW */
2944         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2945         storm_memset_func_en(bp, p->func_id, 1);
2946
2947         /* spq */
2948         if (p->func_flgs & FUNC_FLG_SPQ) {
2949                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2950                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2951                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2952         }
2953 }
2954
2955 /**
2956  * bnx2x_get_common_flags - Return common flags
2957  *
2958  * @bp          device handle
2959  * @fp          queue handle
2960  * @zero_stats  TRUE if statistics zeroing is needed
2961  *
2962  * Return the flags that are common for the Tx-only and not normal connections.
2963  */
2964 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2965                                             struct bnx2x_fastpath *fp,
2966                                             bool zero_stats)
2967 {
2968         unsigned long flags = 0;
2969
2970         /* PF driver will always initialize the Queue to an ACTIVE state */
2971         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2972
2973         /* tx only connections collect statistics (on the same index as the
2974          * parent connection). The statistics are zeroed when the parent
2975          * connection is initialized.
2976          */
2977
2978         __set_bit(BNX2X_Q_FLG_STATS, &flags);
2979         if (zero_stats)
2980                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2981
2982         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
2983         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
2984
2985 #ifdef BNX2X_STOP_ON_ERROR
2986         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
2987 #endif
2988
2989         return flags;
2990 }
2991
2992 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2993                                        struct bnx2x_fastpath *fp,
2994                                        bool leading)
2995 {
2996         unsigned long flags = 0;
2997
2998         /* calculate other queue flags */
2999         if (IS_MF_SD(bp))
3000                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3001
3002         if (IS_FCOE_FP(fp)) {
3003                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3004                 /* For FCoE - force usage of default priority (for afex) */
3005                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3006         }
3007
3008         if (!fp->disable_tpa) {
3009                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3010                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3011                 if (fp->mode == TPA_MODE_GRO)
3012                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3013         }
3014
3015         if (leading) {
3016                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3017                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3018         }
3019
3020         /* Always set HW VLAN stripping */
3021         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3022
3023         /* configure silent vlan removal */
3024         if (IS_MF_AFEX(bp))
3025                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3026
3027         return flags | bnx2x_get_common_flags(bp, fp, true);
3028 }
3029
3030 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3031         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3032         u8 cos)
3033 {
3034         gen_init->stat_id = bnx2x_stats_id(fp);
3035         gen_init->spcl_id = fp->cl_id;
3036
3037         /* Always use mini-jumbo MTU for FCoE L2 ring */
3038         if (IS_FCOE_FP(fp))
3039                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3040         else
3041                 gen_init->mtu = bp->dev->mtu;
3042
3043         gen_init->cos = cos;
3044 }
3045
3046 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3047         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3048         struct bnx2x_rxq_setup_params *rxq_init)
3049 {
3050         u8 max_sge = 0;
3051         u16 sge_sz = 0;
3052         u16 tpa_agg_size = 0;
3053
3054         if (!fp->disable_tpa) {
3055                 pause->sge_th_lo = SGE_TH_LO(bp);
3056                 pause->sge_th_hi = SGE_TH_HI(bp);
3057
3058                 /* validate SGE ring has enough to cross high threshold */
3059                 WARN_ON(bp->dropless_fc &&
3060                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3061                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3062
3063                 tpa_agg_size = TPA_AGG_SIZE;
3064                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3065                         SGE_PAGE_SHIFT;
3066                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3067                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3068                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3069         }
3070
3071         /* pause - not for e1 */
3072         if (!CHIP_IS_E1(bp)) {
3073                 pause->bd_th_lo = BD_TH_LO(bp);
3074                 pause->bd_th_hi = BD_TH_HI(bp);
3075
3076                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3077                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3078                 /*
3079                  * validate that rings have enough entries to cross
3080                  * high thresholds
3081                  */
3082                 WARN_ON(bp->dropless_fc &&
3083                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3084                                 bp->rx_ring_size);
3085                 WARN_ON(bp->dropless_fc &&
3086                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3087                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3088
3089                 pause->pri_map = 1;
3090         }
3091
3092         /* rxq setup */
3093         rxq_init->dscr_map = fp->rx_desc_mapping;
3094         rxq_init->sge_map = fp->rx_sge_mapping;
3095         rxq_init->rcq_map = fp->rx_comp_mapping;
3096         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3097
3098         /* This should be a maximum number of data bytes that may be
3099          * placed on the BD (not including paddings).
3100          */
3101         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3102                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3103
3104         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3105         rxq_init->tpa_agg_sz = tpa_agg_size;
3106         rxq_init->sge_buf_sz = sge_sz;
3107         rxq_init->max_sges_pkt = max_sge;
3108         rxq_init->rss_engine_id = BP_FUNC(bp);
3109         rxq_init->mcast_engine_id = BP_FUNC(bp);
3110
3111         /* Maximum number or simultaneous TPA aggregation for this Queue.
3112          *
3113          * For PF Clients it should be the maximum available number.
3114          * VF driver(s) may want to define it to a smaller value.
3115          */
3116         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3117
3118         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3119         rxq_init->fw_sb_id = fp->fw_sb_id;
3120
3121         if (IS_FCOE_FP(fp))
3122                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3123         else
3124                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3125         /* configure silent vlan removal
3126          * if multi function mode is afex, then mask default vlan
3127          */
3128         if (IS_MF_AFEX(bp)) {
3129                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3130                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3131         }
3132 }
3133
3134 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3135         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3136         u8 cos)
3137 {
3138         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3139         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3140         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3141         txq_init->fw_sb_id = fp->fw_sb_id;
3142
3143         /*
3144          * set the tss leading client id for TX classification ==
3145          * leading RSS client id
3146          */
3147         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3148
3149         if (IS_FCOE_FP(fp)) {
3150                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3151                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3152         }
3153 }
3154
3155 static void bnx2x_pf_init(struct bnx2x *bp)
3156 {
3157         struct bnx2x_func_init_params func_init = {0};
3158         struct event_ring_data eq_data = { {0} };
3159         u16 flags;
3160
3161         if (!CHIP_IS_E1x(bp)) {
3162                 /* reset IGU PF statistics: MSIX + ATTN */
3163                 /* PF */
3164                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3165                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3166                            (CHIP_MODE_IS_4_PORT(bp) ?
3167                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3168                 /* ATTN */
3169                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3170                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3171                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3172                            (CHIP_MODE_IS_4_PORT(bp) ?
3173                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3174         }
3175
3176         /* function setup flags */
3177         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3178
3179         /* This flag is relevant for E1x only.
3180          * E2 doesn't have a TPA configuration in a function level.
3181          */
3182         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3183
3184         func_init.func_flgs = flags;
3185         func_init.pf_id = BP_FUNC(bp);
3186         func_init.func_id = BP_FUNC(bp);
3187         func_init.spq_map = bp->spq_mapping;
3188         func_init.spq_prod = bp->spq_prod_idx;
3189
3190         bnx2x_func_init(bp, &func_init);
3191
3192         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3193
3194         /*
3195          * Congestion management values depend on the link rate
3196          * There is no active link so initial link rate is set to 10 Gbps.
3197          * When the link comes up The congestion management values are
3198          * re-calculated according to the actual link rate.
3199          */
3200         bp->link_vars.line_speed = SPEED_10000;
3201         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3202
3203         /* Only the PMF sets the HW */
3204         if (bp->port.pmf)
3205                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3206
3207         /* init Event Queue - PCI bus guarantees correct endianity*/
3208         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3209         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3210         eq_data.producer = bp->eq_prod;
3211         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3212         eq_data.sb_id = DEF_SB_ID;
3213         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3214 }
3215
3216 static void bnx2x_e1h_disable(struct bnx2x *bp)
3217 {
3218         int port = BP_PORT(bp);
3219
3220         bnx2x_tx_disable(bp);
3221
3222         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3223 }
3224
3225 static void bnx2x_e1h_enable(struct bnx2x *bp)
3226 {
3227         int port = BP_PORT(bp);
3228
3229         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3230
3231         /* Tx queue should be only re-enabled */
3232         netif_tx_wake_all_queues(bp->dev);
3233
3234         /*
3235          * Should not call netif_carrier_on since it will be called if the link
3236          * is up when checking for link state
3237          */
3238 }
3239
3240 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3241
3242 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3243 {
3244         struct eth_stats_info *ether_stat =
3245                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3246         struct bnx2x_vlan_mac_obj *mac_obj =
3247                 &bp->sp_objs->mac_obj;
3248         int i;
3249
3250         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3251                 ETH_STAT_INFO_VERSION_LEN);
3252
3253         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3254          * mac_local field in ether_stat struct. The base address is offset by 2
3255          * bytes to account for the field being 8 bytes but a mac address is
3256          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3257          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3258          * allocated by the ether_stat struct, so the macs will land in their
3259          * proper positions.
3260          */
3261         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3262                 memset(ether_stat->mac_local + i, 0,
3263                        sizeof(ether_stat->mac_local[0]));
3264         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3265                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3266                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3267                                 ETH_ALEN);
3268         ether_stat->mtu_size = bp->dev->mtu;
3269         if (bp->dev->features & NETIF_F_RXCSUM)
3270                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3271         if (bp->dev->features & NETIF_F_TSO)
3272                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3273         ether_stat->feature_flags |= bp->common.boot_mode;
3274
3275         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3276
3277         ether_stat->txq_size = bp->tx_ring_size;
3278         ether_stat->rxq_size = bp->rx_ring_size;
3279 }
3280
3281 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3282 {
3283         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3284         struct fcoe_stats_info *fcoe_stat =
3285                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3286
3287         if (!CNIC_LOADED(bp))
3288                 return;
3289
3290         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3291
3292         fcoe_stat->qos_priority =
3293                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3294
3295         /* insert FCoE stats from ramrod response */
3296         if (!NO_FCOE(bp)) {
3297                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3298                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3299                         tstorm_queue_statistics;
3300
3301                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3302                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3303                         xstorm_queue_statistics;
3304
3305                 struct fcoe_statistics_params *fw_fcoe_stat =
3306                         &bp->fw_stats_data->fcoe;
3307
3308                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3309                           fcoe_stat->rx_bytes_lo,
3310                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3311
3312                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3313                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3314                           fcoe_stat->rx_bytes_lo,
3315                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3316
3317                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3318                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3319                           fcoe_stat->rx_bytes_lo,
3320                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3321
3322                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3323                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3324                           fcoe_stat->rx_bytes_lo,
3325                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3326
3327                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3328                           fcoe_stat->rx_frames_lo,
3329                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3330
3331                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3332                           fcoe_stat->rx_frames_lo,
3333                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3334
3335                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3336                           fcoe_stat->rx_frames_lo,
3337                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3338
3339                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3340                           fcoe_stat->rx_frames_lo,
3341                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3342
3343                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3344                           fcoe_stat->tx_bytes_lo,
3345                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3346
3347                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3348                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3349                           fcoe_stat->tx_bytes_lo,
3350                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3351
3352                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3353                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3354                           fcoe_stat->tx_bytes_lo,
3355                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3356
3357                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3358                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3359                           fcoe_stat->tx_bytes_lo,
3360                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3361
3362                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3363                           fcoe_stat->tx_frames_lo,
3364                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3365
3366                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3367                           fcoe_stat->tx_frames_lo,
3368                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3369
3370                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3371                           fcoe_stat->tx_frames_lo,
3372                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3373
3374                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3375                           fcoe_stat->tx_frames_lo,
3376                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3377         }
3378
3379         /* ask L5 driver to add data to the struct */
3380         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3381 }
3382
3383 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3384 {
3385         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3386         struct iscsi_stats_info *iscsi_stat =
3387                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3388
3389         if (!CNIC_LOADED(bp))
3390                 return;
3391
3392         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3393                ETH_ALEN);
3394
3395         iscsi_stat->qos_priority =
3396                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3397
3398         /* ask L5 driver to add data to the struct */
3399         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3400 }
3401
3402 /* called due to MCP event (on pmf):
3403  *      reread new bandwidth configuration
3404  *      configure FW
3405  *      notify others function about the change
3406  */
3407 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3408 {
3409         if (bp->link_vars.link_up) {
3410                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3411                 bnx2x_link_sync_notify(bp);
3412         }
3413         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3414 }
3415
3416 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3417 {
3418         bnx2x_config_mf_bw(bp);
3419         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3420 }
3421
3422 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3423 {
3424         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3425         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3426 }
3427
3428 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3429 {
3430         enum drv_info_opcode op_code;
3431         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3432
3433         /* if drv_info version supported by MFW doesn't match - send NACK */
3434         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3435                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3436                 return;
3437         }
3438
3439         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3440                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3441
3442         memset(&bp->slowpath->drv_info_to_mcp, 0,
3443                sizeof(union drv_info_to_mcp));
3444
3445         switch (op_code) {
3446         case ETH_STATS_OPCODE:
3447                 bnx2x_drv_info_ether_stat(bp);
3448                 break;
3449         case FCOE_STATS_OPCODE:
3450                 bnx2x_drv_info_fcoe_stat(bp);
3451                 break;
3452         case ISCSI_STATS_OPCODE:
3453                 bnx2x_drv_info_iscsi_stat(bp);
3454                 break;
3455         default:
3456                 /* if op code isn't supported - send NACK */
3457                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3458                 return;
3459         }
3460
3461         /* if we got drv_info attn from MFW then these fields are defined in
3462          * shmem2 for sure
3463          */
3464         SHMEM2_WR(bp, drv_info_host_addr_lo,
3465                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3466         SHMEM2_WR(bp, drv_info_host_addr_hi,
3467                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3468
3469         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3470 }
3471
3472 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3473 {
3474         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3475
3476         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3477
3478                 /*
3479                  * This is the only place besides the function initialization
3480                  * where the bp->flags can change so it is done without any
3481                  * locks
3482                  */
3483                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3484                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3485                         bp->flags |= MF_FUNC_DIS;
3486
3487                         bnx2x_e1h_disable(bp);
3488                 } else {
3489                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3490                         bp->flags &= ~MF_FUNC_DIS;
3491
3492                         bnx2x_e1h_enable(bp);
3493                 }
3494                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3495         }
3496         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3497                 bnx2x_config_mf_bw(bp);
3498                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3499         }
3500
3501         /* Report results to MCP */
3502         if (dcc_event)
3503                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3504         else
3505                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3506 }
3507
3508 /* must be called under the spq lock */
3509 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3510 {
3511         struct eth_spe *next_spe = bp->spq_prod_bd;
3512
3513         if (bp->spq_prod_bd == bp->spq_last_bd) {
3514                 bp->spq_prod_bd = bp->spq;
3515                 bp->spq_prod_idx = 0;
3516                 DP(BNX2X_MSG_SP, "end of spq\n");
3517         } else {
3518                 bp->spq_prod_bd++;
3519                 bp->spq_prod_idx++;
3520         }
3521         return next_spe;
3522 }
3523
3524 /* must be called under the spq lock */
3525 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3526 {
3527         int func = BP_FUNC(bp);
3528
3529         /*
3530          * Make sure that BD data is updated before writing the producer:
3531          * BD data is written to the memory, the producer is read from the
3532          * memory, thus we need a full memory barrier to ensure the ordering.
3533          */
3534         mb();
3535
3536         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3537                  bp->spq_prod_idx);
3538         mmiowb();
3539 }
3540
3541 /**
3542  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3543  *
3544  * @cmd:        command to check
3545  * @cmd_type:   command type
3546  */
3547 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3548 {
3549         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3550             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3551             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3552             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3553             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3554             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3555             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3556                 return true;
3557         else
3558                 return false;
3559 }
3560
3561 /**
3562  * bnx2x_sp_post - place a single command on an SP ring
3563  *
3564  * @bp:         driver handle
3565  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3566  * @cid:        SW CID the command is related to
3567  * @data_hi:    command private data address (high 32 bits)
3568  * @data_lo:    command private data address (low 32 bits)
3569  * @cmd_type:   command type (e.g. NONE, ETH)
3570  *
3571  * SP data is handled as if it's always an address pair, thus data fields are
3572  * not swapped to little endian in upper functions. Instead this function swaps
3573  * data as if it's two u32 fields.
3574  */
3575 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3576                   u32 data_hi, u32 data_lo, int cmd_type)
3577 {
3578         struct eth_spe *spe;
3579         u16 type;
3580         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3581
3582 #ifdef BNX2X_STOP_ON_ERROR
3583         if (unlikely(bp->panic)) {
3584                 BNX2X_ERR("Can't post SP when there is panic\n");
3585                 return -EIO;
3586         }
3587 #endif
3588
3589         spin_lock_bh(&bp->spq_lock);
3590
3591         if (common) {
3592                 if (!atomic_read(&bp->eq_spq_left)) {
3593                         BNX2X_ERR("BUG! EQ ring full!\n");
3594                         spin_unlock_bh(&bp->spq_lock);
3595                         bnx2x_panic();
3596                         return -EBUSY;
3597                 }
3598         } else if (!atomic_read(&bp->cq_spq_left)) {
3599                         BNX2X_ERR("BUG! SPQ ring full!\n");
3600                         spin_unlock_bh(&bp->spq_lock);
3601                         bnx2x_panic();
3602                         return -EBUSY;
3603         }
3604
3605         spe = bnx2x_sp_get_next(bp);
3606
3607         /* CID needs port number to be encoded int it */
3608         spe->hdr.conn_and_cmd_data =
3609                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3610                                     HW_CID(bp, cid));
3611
3612         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3613
3614         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3615                  SPE_HDR_FUNCTION_ID);
3616
3617         spe->hdr.type = cpu_to_le16(type);
3618
3619         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3620         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3621
3622         /*
3623          * It's ok if the actual decrement is issued towards the memory
3624          * somewhere between the spin_lock and spin_unlock. Thus no
3625          * more explicit memory barrier is needed.
3626          */
3627         if (common)
3628                 atomic_dec(&bp->eq_spq_left);
3629         else
3630                 atomic_dec(&bp->cq_spq_left);
3631
3632         DP(BNX2X_MSG_SP,
3633            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3634            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3635            (u32)(U64_LO(bp->spq_mapping) +
3636            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3637            HW_CID(bp, cid), data_hi, data_lo, type,
3638            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3639
3640         bnx2x_sp_prod_update(bp);
3641         spin_unlock_bh(&bp->spq_lock);
3642         return 0;
3643 }
3644
3645 /* acquire split MCP access lock register */
3646 static int bnx2x_acquire_alr(struct bnx2x *bp)
3647 {
3648         u32 j, val;
3649         int rc = 0;
3650
3651         might_sleep();
3652         for (j = 0; j < 1000; j++) {
3653                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3654                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3655                 if (val & MCPR_ACCESS_LOCK_LOCK)
3656                         break;
3657
3658                 usleep_range(5000, 10000);
3659         }
3660         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3661                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3662                 rc = -EBUSY;
3663         }
3664
3665         return rc;
3666 }
3667
3668 /* release split MCP access lock register */
3669 static void bnx2x_release_alr(struct bnx2x *bp)
3670 {
3671         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3672 }
3673
3674 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3675 #define BNX2X_DEF_SB_IDX        0x0002
3676
3677 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3678 {
3679         struct host_sp_status_block *def_sb = bp->def_status_blk;
3680         u16 rc = 0;
3681
3682         barrier(); /* status block is written to by the chip */
3683         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3684                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3685                 rc |= BNX2X_DEF_SB_ATT_IDX;
3686         }
3687
3688         if (bp->def_idx != def_sb->sp_sb.running_index) {
3689                 bp->def_idx = def_sb->sp_sb.running_index;
3690                 rc |= BNX2X_DEF_SB_IDX;
3691         }
3692
3693         /* Do not reorder: indices reading should complete before handling */
3694         barrier();
3695         return rc;
3696 }
3697
3698 /*
3699  * slow path service functions
3700  */
3701
3702 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3703 {
3704         int port = BP_PORT(bp);
3705         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3706                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3707         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3708                                        NIG_REG_MASK_INTERRUPT_PORT0;
3709         u32 aeu_mask;
3710         u32 nig_mask = 0;
3711         u32 reg_addr;
3712
3713         if (bp->attn_state & asserted)
3714                 BNX2X_ERR("IGU ERROR\n");
3715
3716         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3717         aeu_mask = REG_RD(bp, aeu_addr);
3718
3719         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3720            aeu_mask, asserted);
3721         aeu_mask &= ~(asserted & 0x3ff);
3722         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3723
3724         REG_WR(bp, aeu_addr, aeu_mask);
3725         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3726
3727         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3728         bp->attn_state |= asserted;
3729         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3730
3731         if (asserted & ATTN_HARD_WIRED_MASK) {
3732                 if (asserted & ATTN_NIG_FOR_FUNC) {
3733
3734                         bnx2x_acquire_phy_lock(bp);
3735
3736                         /* save nig interrupt mask */
3737                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3738
3739                         /* If nig_mask is not set, no need to call the update
3740                          * function.
3741                          */
3742                         if (nig_mask) {
3743                                 REG_WR(bp, nig_int_mask_addr, 0);
3744
3745                                 bnx2x_link_attn(bp);
3746                         }
3747
3748                         /* handle unicore attn? */
3749                 }
3750                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3751                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3752
3753                 if (asserted & GPIO_2_FUNC)
3754                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3755
3756                 if (asserted & GPIO_3_FUNC)
3757                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3758
3759                 if (asserted & GPIO_4_FUNC)
3760                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3761
3762                 if (port == 0) {
3763                         if (asserted & ATTN_GENERAL_ATTN_1) {
3764                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3765                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3766                         }
3767                         if (asserted & ATTN_GENERAL_ATTN_2) {
3768                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3769                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3770                         }
3771                         if (asserted & ATTN_GENERAL_ATTN_3) {
3772                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3773                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3774                         }
3775                 } else {
3776                         if (asserted & ATTN_GENERAL_ATTN_4) {
3777                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3778                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3779                         }
3780                         if (asserted & ATTN_GENERAL_ATTN_5) {
3781                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3782                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3783                         }
3784                         if (asserted & ATTN_GENERAL_ATTN_6) {
3785                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3786                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3787                         }
3788                 }
3789
3790         } /* if hardwired */
3791
3792         if (bp->common.int_block == INT_BLOCK_HC)
3793                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3794                             COMMAND_REG_ATTN_BITS_SET);
3795         else
3796                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3797
3798         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3799            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3800         REG_WR(bp, reg_addr, asserted);
3801
3802         /* now set back the mask */
3803         if (asserted & ATTN_NIG_FOR_FUNC) {
3804                 /* Verify that IGU ack through BAR was written before restoring
3805                  * NIG mask. This loop should exit after 2-3 iterations max.
3806                  */
3807                 if (bp->common.int_block != INT_BLOCK_HC) {
3808                         u32 cnt = 0, igu_acked;
3809                         do {
3810                                 igu_acked = REG_RD(bp,
3811                                                    IGU_REG_ATTENTION_ACK_BITS);
3812                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3813                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3814                         if (!igu_acked)
3815                                 DP(NETIF_MSG_HW,
3816                                    "Failed to verify IGU ack on time\n");
3817                         barrier();
3818                 }
3819                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3820                 bnx2x_release_phy_lock(bp);
3821         }
3822 }
3823
3824 static void bnx2x_fan_failure(struct bnx2x *bp)
3825 {
3826         int port = BP_PORT(bp);
3827         u32 ext_phy_config;
3828         /* mark the failure */
3829         ext_phy_config =
3830                 SHMEM_RD(bp,
3831                          dev_info.port_hw_config[port].external_phy_config);
3832
3833         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3834         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3835         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3836                  ext_phy_config);
3837
3838         /* log the failure */
3839         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3840                             "Please contact OEM Support for assistance\n");
3841
3842         /* Schedule device reset (unload)
3843          * This is due to some boards consuming sufficient power when driver is
3844          * up to overheat if fan fails.
3845          */
3846         smp_mb__before_clear_bit();
3847         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3848         smp_mb__after_clear_bit();
3849         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3850 }
3851
3852 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3853 {
3854         int port = BP_PORT(bp);
3855         int reg_offset;
3856         u32 val;
3857
3858         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3859                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3860
3861         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3862
3863                 val = REG_RD(bp, reg_offset);
3864                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3865                 REG_WR(bp, reg_offset, val);
3866
3867                 BNX2X_ERR("SPIO5 hw attention\n");
3868
3869                 /* Fan failure attention */
3870                 bnx2x_hw_reset_phy(&bp->link_params);
3871                 bnx2x_fan_failure(bp);
3872         }
3873
3874         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3875                 bnx2x_acquire_phy_lock(bp);
3876                 bnx2x_handle_module_detect_int(&bp->link_params);
3877                 bnx2x_release_phy_lock(bp);
3878         }
3879
3880         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3881
3882                 val = REG_RD(bp, reg_offset);
3883                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3884                 REG_WR(bp, reg_offset, val);
3885
3886                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3887                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3888                 bnx2x_panic();
3889         }
3890 }
3891
3892 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3893 {
3894         u32 val;
3895
3896         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3897
3898                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3899                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3900                 /* DORQ discard attention */
3901                 if (val & 0x2)
3902                         BNX2X_ERR("FATAL error from DORQ\n");
3903         }
3904
3905         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3906
3907                 int port = BP_PORT(bp);
3908                 int reg_offset;
3909
3910                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3911                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3912
3913                 val = REG_RD(bp, reg_offset);
3914                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3915                 REG_WR(bp, reg_offset, val);
3916
3917                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3918                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3919                 bnx2x_panic();
3920         }
3921 }
3922
3923 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3924 {
3925         u32 val;
3926
3927         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3928
3929                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3930                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3931                 /* CFC error attention */
3932                 if (val & 0x2)
3933                         BNX2X_ERR("FATAL error from CFC\n");
3934         }
3935
3936         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3937                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3938                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3939                 /* RQ_USDMDP_FIFO_OVERFLOW */
3940                 if (val & 0x18000)
3941                         BNX2X_ERR("FATAL error from PXP\n");
3942
3943                 if (!CHIP_IS_E1x(bp)) {
3944                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3945                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3946                 }
3947         }
3948
3949         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3950
3951                 int port = BP_PORT(bp);
3952                 int reg_offset;
3953
3954                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3955                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3956
3957                 val = REG_RD(bp, reg_offset);
3958                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3959                 REG_WR(bp, reg_offset, val);
3960
3961                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3962                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3963                 bnx2x_panic();
3964         }
3965 }
3966
3967 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3968 {
3969         u32 val;
3970
3971         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3972
3973                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3974                         int func = BP_FUNC(bp);
3975
3976                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3977                         bnx2x_read_mf_cfg(bp);
3978                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3979                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3980                         val = SHMEM_RD(bp,
3981                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3982                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3983                                 bnx2x_dcc_event(bp,
3984                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3985
3986                         if (val & DRV_STATUS_SET_MF_BW)
3987                                 bnx2x_set_mf_bw(bp);
3988
3989                         if (val & DRV_STATUS_DRV_INFO_REQ)
3990                                 bnx2x_handle_drv_info_req(bp);
3991
3992                         if (val & DRV_STATUS_VF_DISABLED)
3993                                 bnx2x_vf_handle_flr_event(bp);
3994
3995                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3996                                 bnx2x_pmf_update(bp);
3997
3998                         if (bp->port.pmf &&
3999                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4000                                 bp->dcbx_enabled > 0)
4001                                 /* start dcbx state machine */
4002                                 bnx2x_dcbx_set_params(bp,
4003                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4004                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4005                                 bnx2x_handle_afex_cmd(bp,
4006                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4007                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4008                                 bnx2x_handle_eee_event(bp);
4009                         if (bp->link_vars.periodic_flags &
4010                             PERIODIC_FLAGS_LINK_EVENT) {
4011                                 /*  sync with link */
4012                                 bnx2x_acquire_phy_lock(bp);
4013                                 bp->link_vars.periodic_flags &=
4014                                         ~PERIODIC_FLAGS_LINK_EVENT;
4015                                 bnx2x_release_phy_lock(bp);
4016                                 if (IS_MF(bp))
4017                                         bnx2x_link_sync_notify(bp);
4018                                 bnx2x_link_report(bp);
4019                         }
4020                         /* Always call it here: bnx2x_link_report() will
4021                          * prevent the link indication duplication.
4022                          */
4023                         bnx2x__link_status_update(bp);
4024                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4025
4026                         BNX2X_ERR("MC assert!\n");
4027                         bnx2x_mc_assert(bp);
4028                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4029                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4030                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4031                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4032                         bnx2x_panic();
4033
4034                 } else if (attn & BNX2X_MCP_ASSERT) {
4035
4036                         BNX2X_ERR("MCP assert!\n");
4037                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4038                         bnx2x_fw_dump(bp);
4039
4040                 } else
4041                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4042         }
4043
4044         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4045                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4046                 if (attn & BNX2X_GRC_TIMEOUT) {
4047                         val = CHIP_IS_E1(bp) ? 0 :
4048                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4049                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4050                 }
4051                 if (attn & BNX2X_GRC_RSV) {
4052                         val = CHIP_IS_E1(bp) ? 0 :
4053                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4054                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4055                 }
4056                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4057         }
4058 }
4059
4060 /*
4061  * Bits map:
4062  * 0-7   - Engine0 load counter.
4063  * 8-15  - Engine1 load counter.
4064  * 16    - Engine0 RESET_IN_PROGRESS bit.
4065  * 17    - Engine1 RESET_IN_PROGRESS bit.
4066  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4067  *         on the engine
4068  * 19    - Engine1 ONE_IS_LOADED.
4069  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4070  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4071  *         just the one belonging to its engine).
4072  *
4073  */
4074 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4075
4076 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4077 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4078 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4079 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4080 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4081 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4082 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4083
4084 /*
4085  * Set the GLOBAL_RESET bit.
4086  *
4087  * Should be run under rtnl lock
4088  */
4089 void bnx2x_set_reset_global(struct bnx2x *bp)
4090 {
4091         u32 val;
4092         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4093         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4094         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4095         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4096 }
4097
4098 /*
4099  * Clear the GLOBAL_RESET bit.
4100  *
4101  * Should be run under rtnl lock
4102  */
4103 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4104 {
4105         u32 val;
4106         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4107         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4108         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4109         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4110 }
4111
4112 /*
4113  * Checks the GLOBAL_RESET bit.
4114  *
4115  * should be run under rtnl lock
4116  */
4117 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4118 {
4119         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4120
4121         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4122         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4123 }
4124
4125 /*
4126  * Clear RESET_IN_PROGRESS bit for the current engine.
4127  *
4128  * Should be run under rtnl lock
4129  */
4130 static void bnx2x_set_reset_done(struct bnx2x *bp)
4131 {
4132         u32 val;
4133         u32 bit = BP_PATH(bp) ?
4134                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4135         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4136         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4137
4138         /* Clear the bit */
4139         val &= ~bit;
4140         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4141
4142         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4143 }
4144
4145 /*
4146  * Set RESET_IN_PROGRESS for the current engine.
4147  *
4148  * should be run under rtnl lock
4149  */
4150 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4151 {
4152         u32 val;
4153         u32 bit = BP_PATH(bp) ?
4154                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4155         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4156         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4157
4158         /* Set the bit */
4159         val |= bit;
4160         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4161         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4162 }
4163
4164 /*
4165  * Checks the RESET_IN_PROGRESS bit for the given engine.
4166  * should be run under rtnl lock
4167  */
4168 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4169 {
4170         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4171         u32 bit = engine ?
4172                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4173
4174         /* return false if bit is set */
4175         return (val & bit) ? false : true;
4176 }
4177
4178 /*
4179  * set pf load for the current pf.
4180  *
4181  * should be run under rtnl lock
4182  */
4183 void bnx2x_set_pf_load(struct bnx2x *bp)
4184 {
4185         u32 val1, val;
4186         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4187                              BNX2X_PATH0_LOAD_CNT_MASK;
4188         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4189                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4190
4191         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4192         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4193
4194         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4195
4196         /* get the current counter value */
4197         val1 = (val & mask) >> shift;
4198
4199         /* set bit of that PF */
4200         val1 |= (1 << bp->pf_num);
4201
4202         /* clear the old value */
4203         val &= ~mask;
4204
4205         /* set the new one */
4206         val |= ((val1 << shift) & mask);
4207
4208         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4209         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4210 }
4211
4212 /**
4213  * bnx2x_clear_pf_load - clear pf load mark
4214  *
4215  * @bp:         driver handle
4216  *
4217  * Should be run under rtnl lock.
4218  * Decrements the load counter for the current engine. Returns
4219  * whether other functions are still loaded
4220  */
4221 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4222 {
4223         u32 val1, val;
4224         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4225                              BNX2X_PATH0_LOAD_CNT_MASK;
4226         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4227                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4228
4229         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4230         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4231         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4232
4233         /* get the current counter value */
4234         val1 = (val & mask) >> shift;
4235
4236         /* clear bit of that PF */
4237         val1 &= ~(1 << bp->pf_num);
4238
4239         /* clear the old value */
4240         val &= ~mask;
4241
4242         /* set the new one */
4243         val |= ((val1 << shift) & mask);
4244
4245         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4246         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4247         return val1 != 0;
4248 }
4249
4250 /*
4251  * Read the load status for the current engine.
4252  *
4253  * should be run under rtnl lock
4254  */
4255 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4256 {
4257         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4258                              BNX2X_PATH0_LOAD_CNT_MASK);
4259         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4260                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4261         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4262
4263         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4264
4265         val = (val & mask) >> shift;
4266
4267         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4268            engine, val);
4269
4270         return val != 0;
4271 }
4272
4273 static void _print_parity(struct bnx2x *bp, u32 reg)
4274 {
4275         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4276 }
4277
4278 static void _print_next_block(int idx, const char *blk)
4279 {
4280         pr_cont("%s%s", idx ? ", " : "", blk);
4281 }
4282
4283 static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4284                                             int par_num, bool print)
4285 {
4286         int i = 0;
4287         u32 cur_bit = 0;
4288         for (i = 0; sig; i++) {
4289                 cur_bit = ((u32)0x1 << i);
4290                 if (sig & cur_bit) {
4291                         switch (cur_bit) {
4292                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4293                                 if (print) {
4294                                         _print_next_block(par_num++, "BRB");
4295                                         _print_parity(bp,
4296                                                       BRB1_REG_BRB1_PRTY_STS);
4297                                 }
4298                                 break;
4299                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4300                                 if (print) {
4301                                         _print_next_block(par_num++, "PARSER");
4302                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4303                                 }
4304                                 break;
4305                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4306                                 if (print) {
4307                                         _print_next_block(par_num++, "TSDM");
4308                                         _print_parity(bp,
4309                                                       TSDM_REG_TSDM_PRTY_STS);
4310                                 }
4311                                 break;
4312                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4313                                 if (print) {
4314                                         _print_next_block(par_num++,
4315                                                           "SEARCHER");
4316                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4317                                 }
4318                                 break;
4319                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4320                                 if (print) {
4321                                         _print_next_block(par_num++, "TCM");
4322                                         _print_parity(bp,
4323                                                       TCM_REG_TCM_PRTY_STS);
4324                                 }
4325                                 break;
4326                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4327                                 if (print) {
4328                                         _print_next_block(par_num++, "TSEMI");
4329                                         _print_parity(bp,
4330                                                       TSEM_REG_TSEM_PRTY_STS_0);
4331                                         _print_parity(bp,
4332                                                       TSEM_REG_TSEM_PRTY_STS_1);
4333                                 }
4334                                 break;
4335                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4336                                 if (print) {
4337                                         _print_next_block(par_num++, "XPB");
4338                                         _print_parity(bp, GRCBASE_XPB +
4339                                                           PB_REG_PB_PRTY_STS);
4340                                 }
4341                                 break;
4342                         }
4343
4344                         /* Clear the bit */
4345                         sig &= ~cur_bit;
4346                 }
4347         }
4348
4349         return par_num;
4350 }
4351
4352 static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4353                                             int par_num, bool *global,
4354                                             bool print)
4355 {
4356         int i = 0;
4357         u32 cur_bit = 0;
4358         for (i = 0; sig; i++) {
4359                 cur_bit = ((u32)0x1 << i);
4360                 if (sig & cur_bit) {
4361                         switch (cur_bit) {
4362                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4363                                 if (print) {
4364                                         _print_next_block(par_num++, "PBF");
4365                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4366                                 }
4367                                 break;
4368                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4369                                 if (print) {
4370                                         _print_next_block(par_num++, "QM");
4371                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4372                                 }
4373                                 break;
4374                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4375                                 if (print) {
4376                                         _print_next_block(par_num++, "TM");
4377                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4378                                 }
4379                                 break;
4380                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4381                                 if (print) {
4382                                         _print_next_block(par_num++, "XSDM");
4383                                         _print_parity(bp,
4384                                                       XSDM_REG_XSDM_PRTY_STS);
4385                                 }
4386                                 break;
4387                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4388                                 if (print) {
4389                                         _print_next_block(par_num++, "XCM");
4390                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4391                                 }
4392                                 break;
4393                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4394                                 if (print) {
4395                                         _print_next_block(par_num++, "XSEMI");
4396                                         _print_parity(bp,
4397                                                       XSEM_REG_XSEM_PRTY_STS_0);
4398                                         _print_parity(bp,
4399                                                       XSEM_REG_XSEM_PRTY_STS_1);
4400                                 }
4401                                 break;
4402                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4403                                 if (print) {
4404                                         _print_next_block(par_num++,
4405                                                           "DOORBELLQ");
4406                                         _print_parity(bp,
4407                                                       DORQ_REG_DORQ_PRTY_STS);
4408                                 }
4409                                 break;
4410                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4411                                 if (print) {
4412                                         _print_next_block(par_num++, "NIG");
4413                                         if (CHIP_IS_E1x(bp)) {
4414                                                 _print_parity(bp,
4415                                                         NIG_REG_NIG_PRTY_STS);
4416                                         } else {
4417                                                 _print_parity(bp,
4418                                                         NIG_REG_NIG_PRTY_STS_0);
4419                                                 _print_parity(bp,
4420                                                         NIG_REG_NIG_PRTY_STS_1);
4421                                         }
4422                                 }
4423                                 break;
4424                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4425                                 if (print)
4426                                         _print_next_block(par_num++,
4427                                                           "VAUX PCI CORE");
4428                                 *global = true;
4429                                 break;
4430                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4431                                 if (print) {
4432                                         _print_next_block(par_num++, "DEBUG");
4433                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4434                                 }
4435                                 break;
4436                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4437                                 if (print) {
4438                                         _print_next_block(par_num++, "USDM");
4439                                         _print_parity(bp,
4440                                                       USDM_REG_USDM_PRTY_STS);
4441                                 }
4442                                 break;
4443                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4444                                 if (print) {
4445                                         _print_next_block(par_num++, "UCM");
4446                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4447                                 }
4448                                 break;
4449                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4450                                 if (print) {
4451                                         _print_next_block(par_num++, "USEMI");
4452                                         _print_parity(bp,
4453                                                       USEM_REG_USEM_PRTY_STS_0);
4454                                         _print_parity(bp,
4455                                                       USEM_REG_USEM_PRTY_STS_1);
4456                                 }
4457                                 break;
4458                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4459                                 if (print) {
4460                                         _print_next_block(par_num++, "UPB");
4461                                         _print_parity(bp, GRCBASE_UPB +
4462                                                           PB_REG_PB_PRTY_STS);
4463                                 }
4464                                 break;
4465                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4466                                 if (print) {
4467                                         _print_next_block(par_num++, "CSDM");
4468                                         _print_parity(bp,
4469                                                       CSDM_REG_CSDM_PRTY_STS);
4470                                 }
4471                                 break;
4472                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4473                                 if (print) {
4474                                         _print_next_block(par_num++, "CCM");
4475                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4476                                 }
4477                                 break;
4478                         }
4479
4480                         /* Clear the bit */
4481                         sig &= ~cur_bit;
4482                 }
4483         }
4484
4485         return par_num;
4486 }
4487
4488 static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4489                                             int par_num, bool print)
4490 {
4491         int i = 0;
4492         u32 cur_bit = 0;
4493         for (i = 0; sig; i++) {
4494                 cur_bit = ((u32)0x1 << i);
4495                 if (sig & cur_bit) {
4496                         switch (cur_bit) {
4497                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4498                                 if (print) {
4499                                         _print_next_block(par_num++, "CSEMI");
4500                                         _print_parity(bp,
4501                                                       CSEM_REG_CSEM_PRTY_STS_0);
4502                                         _print_parity(bp,
4503                                                       CSEM_REG_CSEM_PRTY_STS_1);
4504                                 }
4505                                 break;
4506                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4507                                 if (print) {
4508                                         _print_next_block(par_num++, "PXP");
4509                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4510                                         _print_parity(bp,
4511                                                       PXP2_REG_PXP2_PRTY_STS_0);
4512                                         _print_parity(bp,
4513                                                       PXP2_REG_PXP2_PRTY_STS_1);
4514                                 }
4515                                 break;
4516                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4517                                 if (print)
4518                                         _print_next_block(par_num++,
4519                                         "PXPPCICLOCKCLIENT");
4520                                 break;
4521                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4522                                 if (print) {
4523                                         _print_next_block(par_num++, "CFC");
4524                                         _print_parity(bp,
4525                                                       CFC_REG_CFC_PRTY_STS);
4526                                 }
4527                                 break;
4528                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4529                                 if (print) {
4530                                         _print_next_block(par_num++, "CDU");
4531                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4532                                 }
4533                                 break;
4534                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4535                                 if (print) {
4536                                         _print_next_block(par_num++, "DMAE");
4537                                         _print_parity(bp,
4538                                                       DMAE_REG_DMAE_PRTY_STS);
4539                                 }
4540                                 break;
4541                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4542                                 if (print) {
4543                                         _print_next_block(par_num++, "IGU");
4544                                         if (CHIP_IS_E1x(bp))
4545                                                 _print_parity(bp,
4546                                                         HC_REG_HC_PRTY_STS);
4547                                         else
4548                                                 _print_parity(bp,
4549                                                         IGU_REG_IGU_PRTY_STS);
4550                                 }
4551                                 break;
4552                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4553                                 if (print) {
4554                                         _print_next_block(par_num++, "MISC");
4555                                         _print_parity(bp,
4556                                                       MISC_REG_MISC_PRTY_STS);
4557                                 }
4558                                 break;
4559                         }
4560
4561                         /* Clear the bit */
4562                         sig &= ~cur_bit;
4563                 }
4564         }
4565
4566         return par_num;
4567 }
4568
4569 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4570                                            bool *global, bool print)
4571 {
4572         int i = 0;
4573         u32 cur_bit = 0;
4574         for (i = 0; sig; i++) {
4575                 cur_bit = ((u32)0x1 << i);
4576                 if (sig & cur_bit) {
4577                         switch (cur_bit) {
4578                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4579                                 if (print)
4580                                         _print_next_block(par_num++, "MCP ROM");
4581                                 *global = true;
4582                                 break;
4583                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4584                                 if (print)
4585                                         _print_next_block(par_num++,
4586                                                           "MCP UMP RX");
4587                                 *global = true;
4588                                 break;
4589                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4590                                 if (print)
4591                                         _print_next_block(par_num++,
4592                                                           "MCP UMP TX");
4593                                 *global = true;
4594                                 break;
4595                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4596                                 if (print)
4597                                         _print_next_block(par_num++,
4598                                                           "MCP SCPAD");
4599                                 *global = true;
4600                                 break;
4601                         }
4602
4603                         /* Clear the bit */
4604                         sig &= ~cur_bit;
4605                 }
4606         }
4607
4608         return par_num;
4609 }
4610
4611 static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4612                                             int par_num, bool print)
4613 {
4614         int i = 0;
4615         u32 cur_bit = 0;
4616         for (i = 0; sig; i++) {
4617                 cur_bit = ((u32)0x1 << i);
4618                 if (sig & cur_bit) {
4619                         switch (cur_bit) {
4620                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4621                                 if (print) {
4622                                         _print_next_block(par_num++, "PGLUE_B");
4623                                         _print_parity(bp,
4624                                                 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4625                                 }
4626                                 break;
4627                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4628                                 if (print) {
4629                                         _print_next_block(par_num++, "ATC");
4630                                         _print_parity(bp,
4631                                                       ATC_REG_ATC_PRTY_STS);
4632                                 }
4633                                 break;
4634                         }
4635
4636                         /* Clear the bit */
4637                         sig &= ~cur_bit;
4638                 }
4639         }
4640
4641         return par_num;
4642 }
4643
4644 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4645                               u32 *sig)
4646 {
4647         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4648             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4649             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4650             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4651             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4652                 int par_num = 0;
4653                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4654                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4655                           sig[0] & HW_PRTY_ASSERT_SET_0,
4656                           sig[1] & HW_PRTY_ASSERT_SET_1,
4657                           sig[2] & HW_PRTY_ASSERT_SET_2,
4658                           sig[3] & HW_PRTY_ASSERT_SET_3,
4659                           sig[4] & HW_PRTY_ASSERT_SET_4);
4660                 if (print)
4661                         netdev_err(bp->dev,
4662                                    "Parity errors detected in blocks: ");
4663                 par_num = bnx2x_check_blocks_with_parity0(bp,
4664                         sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4665                 par_num = bnx2x_check_blocks_with_parity1(bp,
4666                         sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4667                 par_num = bnx2x_check_blocks_with_parity2(bp,
4668                         sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4669                 par_num = bnx2x_check_blocks_with_parity3(
4670                         sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4671                 par_num = bnx2x_check_blocks_with_parity4(bp,
4672                         sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4673
4674                 if (print)
4675                         pr_cont("\n");
4676
4677                 return true;
4678         } else
4679                 return false;
4680 }
4681
4682 /**
4683  * bnx2x_chk_parity_attn - checks for parity attentions.
4684  *
4685  * @bp:         driver handle
4686  * @global:     true if there was a global attention
4687  * @print:      show parity attention in syslog
4688  */
4689 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4690 {
4691         struct attn_route attn = { {0} };
4692         int port = BP_PORT(bp);
4693
4694         attn.sig[0] = REG_RD(bp,
4695                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4696                              port*4);
4697         attn.sig[1] = REG_RD(bp,
4698                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4699                              port*4);
4700         attn.sig[2] = REG_RD(bp,
4701                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4702                              port*4);
4703         attn.sig[3] = REG_RD(bp,
4704                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4705                              port*4);
4706
4707         if (!CHIP_IS_E1x(bp))
4708                 attn.sig[4] = REG_RD(bp,
4709                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4710                                      port*4);
4711
4712         return bnx2x_parity_attn(bp, global, print, attn.sig);
4713 }
4714
4715 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4716 {
4717         u32 val;
4718         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4719
4720                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4721                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4722                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4723                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4724                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4725                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4726                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4727                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4728                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4729                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4730                 if (val &
4731                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4732                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4733                 if (val &
4734                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4735                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4736                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4737                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4738                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4739                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4740                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4741                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4742         }
4743         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4744                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4745                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4746                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4747                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4748                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4749                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4750                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4751                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4752                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4753                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4754                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4755                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4756                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4757                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4758         }
4759
4760         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4761                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4762                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4763                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4764                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4765         }
4766 }
4767
4768 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4769 {
4770         struct attn_route attn, *group_mask;
4771         int port = BP_PORT(bp);
4772         int index;
4773         u32 reg_addr;
4774         u32 val;
4775         u32 aeu_mask;
4776         bool global = false;
4777
4778         /* need to take HW lock because MCP or other port might also
4779            try to handle this event */
4780         bnx2x_acquire_alr(bp);
4781
4782         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4783 #ifndef BNX2X_STOP_ON_ERROR
4784                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4785                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4786                 /* Disable HW interrupts */
4787                 bnx2x_int_disable(bp);
4788                 /* In case of parity errors don't handle attentions so that
4789                  * other function would "see" parity errors.
4790                  */
4791 #else
4792                 bnx2x_panic();
4793 #endif
4794                 bnx2x_release_alr(bp);
4795                 return;
4796         }
4797
4798         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4799         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4800         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4801         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4802         if (!CHIP_IS_E1x(bp))
4803                 attn.sig[4] =
4804                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4805         else
4806                 attn.sig[4] = 0;
4807
4808         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4809            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4810
4811         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4812                 if (deasserted & (1 << index)) {
4813                         group_mask = &bp->attn_group[index];
4814
4815                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4816                            index,
4817                            group_mask->sig[0], group_mask->sig[1],
4818                            group_mask->sig[2], group_mask->sig[3],
4819                            group_mask->sig[4]);
4820
4821                         bnx2x_attn_int_deasserted4(bp,
4822                                         attn.sig[4] & group_mask->sig[4]);
4823                         bnx2x_attn_int_deasserted3(bp,
4824                                         attn.sig[3] & group_mask->sig[3]);
4825                         bnx2x_attn_int_deasserted1(bp,
4826                                         attn.sig[1] & group_mask->sig[1]);
4827                         bnx2x_attn_int_deasserted2(bp,
4828                                         attn.sig[2] & group_mask->sig[2]);
4829                         bnx2x_attn_int_deasserted0(bp,
4830                                         attn.sig[0] & group_mask->sig[0]);
4831                 }
4832         }
4833
4834         bnx2x_release_alr(bp);
4835
4836         if (bp->common.int_block == INT_BLOCK_HC)
4837                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4838                             COMMAND_REG_ATTN_BITS_CLR);
4839         else
4840                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4841
4842         val = ~deasserted;
4843         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4844            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4845         REG_WR(bp, reg_addr, val);
4846
4847         if (~bp->attn_state & deasserted)
4848                 BNX2X_ERR("IGU ERROR\n");
4849
4850         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4851                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4852
4853         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4854         aeu_mask = REG_RD(bp, reg_addr);
4855
4856         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4857            aeu_mask, deasserted);
4858         aeu_mask |= (deasserted & 0x3ff);
4859         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4860
4861         REG_WR(bp, reg_addr, aeu_mask);
4862         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4863
4864         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4865         bp->attn_state &= ~deasserted;
4866         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4867 }
4868
4869 static void bnx2x_attn_int(struct bnx2x *bp)
4870 {
4871         /* read local copy of bits */
4872         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4873                                                                 attn_bits);
4874         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4875                                                                 attn_bits_ack);
4876         u32 attn_state = bp->attn_state;
4877
4878         /* look for changed bits */
4879         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4880         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4881
4882         DP(NETIF_MSG_HW,
4883            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4884            attn_bits, attn_ack, asserted, deasserted);
4885
4886         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4887                 BNX2X_ERR("BAD attention state\n");
4888
4889         /* handle bits that were raised */
4890         if (asserted)
4891                 bnx2x_attn_int_asserted(bp, asserted);
4892
4893         if (deasserted)
4894                 bnx2x_attn_int_deasserted(bp, deasserted);
4895 }
4896
4897 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4898                       u16 index, u8 op, u8 update)
4899 {
4900         u32 igu_addr = bp->igu_base_addr;
4901         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4902         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4903                              igu_addr);
4904 }
4905
4906 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4907 {
4908         /* No memory barriers */
4909         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4910         mmiowb(); /* keep prod updates ordered */
4911 }
4912
4913 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4914                                       union event_ring_elem *elem)
4915 {
4916         u8 err = elem->message.error;
4917
4918         if (!bp->cnic_eth_dev.starting_cid  ||
4919             (cid < bp->cnic_eth_dev.starting_cid &&
4920             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4921                 return 1;
4922
4923         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4924
4925         if (unlikely(err)) {
4926
4927                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4928                           cid);
4929                 bnx2x_panic_dump(bp, false);
4930         }
4931         bnx2x_cnic_cfc_comp(bp, cid, err);
4932         return 0;
4933 }
4934
4935 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4936 {
4937         struct bnx2x_mcast_ramrod_params rparam;
4938         int rc;
4939
4940         memset(&rparam, 0, sizeof(rparam));
4941
4942         rparam.mcast_obj = &bp->mcast_obj;
4943
4944         netif_addr_lock_bh(bp->dev);
4945
4946         /* Clear pending state for the last command */
4947         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4948
4949         /* If there are pending mcast commands - send them */
4950         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4951                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4952                 if (rc < 0)
4953                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4954                                   rc);
4955         }
4956
4957         netif_addr_unlock_bh(bp->dev);
4958 }
4959
4960 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4961                                             union event_ring_elem *elem)
4962 {
4963         unsigned long ramrod_flags = 0;
4964         int rc = 0;
4965         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4966         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4967
4968         /* Always push next commands out, don't wait here */
4969         __set_bit(RAMROD_CONT, &ramrod_flags);
4970
4971         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
4972                             >> BNX2X_SWCID_SHIFT) {
4973         case BNX2X_FILTER_MAC_PENDING:
4974                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4975                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4976                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4977                 else
4978                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4979
4980                 break;
4981         case BNX2X_FILTER_MCAST_PENDING:
4982                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4983                 /* This is only relevant for 57710 where multicast MACs are
4984                  * configured as unicast MACs using the same ramrod.
4985                  */
4986                 bnx2x_handle_mcast_eqe(bp);
4987                 return;
4988         default:
4989                 BNX2X_ERR("Unsupported classification command: %d\n",
4990                           elem->message.data.eth_event.echo);
4991                 return;
4992         }
4993
4994         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4995
4996         if (rc < 0)
4997                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4998         else if (rc > 0)
4999                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5000 }
5001
5002 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5003
5004 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5005 {
5006         netif_addr_lock_bh(bp->dev);
5007
5008         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5009
5010         /* Send rx_mode command again if was requested */
5011         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5012                 bnx2x_set_storm_rx_mode(bp);
5013         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5014                                     &bp->sp_state))
5015                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5016         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5017                                     &bp->sp_state))
5018                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5019
5020         netif_addr_unlock_bh(bp->dev);
5021 }
5022
5023 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5024                                               union event_ring_elem *elem)
5025 {
5026         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5027                 DP(BNX2X_MSG_SP,
5028                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5029                    elem->message.data.vif_list_event.func_bit_map);
5030                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5031                         elem->message.data.vif_list_event.func_bit_map);
5032         } else if (elem->message.data.vif_list_event.echo ==
5033                    VIF_LIST_RULE_SET) {
5034                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5035                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5036         }
5037 }
5038
5039 /* called with rtnl_lock */
5040 static void bnx2x_after_function_update(struct bnx2x *bp)
5041 {
5042         int q, rc;
5043         struct bnx2x_fastpath *fp;
5044         struct bnx2x_queue_state_params queue_params = {NULL};
5045         struct bnx2x_queue_update_params *q_update_params =
5046                 &queue_params.params.update;
5047
5048         /* Send Q update command with afex vlan removal values for all Qs */
5049         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5050
5051         /* set silent vlan removal values according to vlan mode */
5052         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5053                   &q_update_params->update_flags);
5054         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5055                   &q_update_params->update_flags);
5056         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5057
5058         /* in access mode mark mask and value are 0 to strip all vlans */
5059         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5060                 q_update_params->silent_removal_value = 0;
5061                 q_update_params->silent_removal_mask = 0;
5062         } else {
5063                 q_update_params->silent_removal_value =
5064                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5065                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5066         }
5067
5068         for_each_eth_queue(bp, q) {
5069                 /* Set the appropriate Queue object */
5070                 fp = &bp->fp[q];
5071                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5072
5073                 /* send the ramrod */
5074                 rc = bnx2x_queue_state_change(bp, &queue_params);
5075                 if (rc < 0)
5076                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5077                                   q);
5078         }
5079
5080         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5081                 fp = &bp->fp[FCOE_IDX(bp)];
5082                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5083
5084                 /* clear pending completion bit */
5085                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5086
5087                 /* mark latest Q bit */
5088                 smp_mb__before_clear_bit();
5089                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5090                 smp_mb__after_clear_bit();
5091
5092                 /* send Q update ramrod for FCoE Q */
5093                 rc = bnx2x_queue_state_change(bp, &queue_params);
5094                 if (rc < 0)
5095                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5096                                   q);
5097         } else {
5098                 /* If no FCoE ring - ACK MCP now */
5099                 bnx2x_link_report(bp);
5100                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5101         }
5102 }
5103
5104 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5105         struct bnx2x *bp, u32 cid)
5106 {
5107         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5108
5109         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5110                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5111         else
5112                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5113 }
5114
5115 static void bnx2x_eq_int(struct bnx2x *bp)
5116 {
5117         u16 hw_cons, sw_cons, sw_prod;
5118         union event_ring_elem *elem;
5119         u8 echo;
5120         u32 cid;
5121         u8 opcode;
5122         int rc, spqe_cnt = 0;
5123         struct bnx2x_queue_sp_obj *q_obj;
5124         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5125         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5126
5127         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5128
5129         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5130          * when we get the next-page we need to adjust so the loop
5131          * condition below will be met. The next element is the size of a
5132          * regular element and hence incrementing by 1
5133          */
5134         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5135                 hw_cons++;
5136
5137         /* This function may never run in parallel with itself for a
5138          * specific bp, thus there is no need in "paired" read memory
5139          * barrier here.
5140          */
5141         sw_cons = bp->eq_cons;
5142         sw_prod = bp->eq_prod;
5143
5144         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5145                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5146
5147         for (; sw_cons != hw_cons;
5148               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5149
5150                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5151
5152                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5153                 if (!rc) {
5154                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5155                            rc);
5156                         goto next_spqe;
5157                 }
5158
5159                 /* elem CID originates from FW; actually LE */
5160                 cid = SW_CID((__force __le32)
5161                              elem->message.data.cfc_del_event.cid);
5162                 opcode = elem->message.opcode;
5163
5164                 /* handle eq element */
5165                 switch (opcode) {
5166                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5167                         DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n");
5168                         bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event);
5169                         continue;
5170
5171                 case EVENT_RING_OPCODE_STAT_QUERY:
5172                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
5173                            "got statistics comp event %d\n",
5174                            bp->stats_comp++);
5175                         /* nothing to do with stats comp */
5176                         goto next_spqe;
5177
5178                 case EVENT_RING_OPCODE_CFC_DEL:
5179                         /* handle according to cid range */
5180                         /*
5181                          * we may want to verify here that the bp state is
5182                          * HALTING
5183                          */
5184                         DP(BNX2X_MSG_SP,
5185                            "got delete ramrod for MULTI[%d]\n", cid);
5186
5187                         if (CNIC_LOADED(bp) &&
5188                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5189                                 goto next_spqe;
5190
5191                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5192
5193                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5194                                 break;
5195
5196                         goto next_spqe;
5197
5198                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5199                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5200                         if (f_obj->complete_cmd(bp, f_obj,
5201                                                 BNX2X_F_CMD_TX_STOP))
5202                                 break;
5203                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5204                         goto next_spqe;
5205
5206                 case EVENT_RING_OPCODE_START_TRAFFIC:
5207                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5208                         if (f_obj->complete_cmd(bp, f_obj,
5209                                                 BNX2X_F_CMD_TX_START))
5210                                 break;
5211                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5212                         goto next_spqe;
5213
5214                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5215                         echo = elem->message.data.function_update_event.echo;
5216                         if (echo == SWITCH_UPDATE) {
5217                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5218                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5219                                 if (f_obj->complete_cmd(
5220                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5221                                         break;
5222
5223                         } else {
5224                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5225                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5226                                 f_obj->complete_cmd(bp, f_obj,
5227                                                     BNX2X_F_CMD_AFEX_UPDATE);
5228
5229                                 /* We will perform the Queues update from
5230                                  * sp_rtnl task as all Queue SP operations
5231                                  * should run under rtnl_lock.
5232                                  */
5233                                 smp_mb__before_clear_bit();
5234                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
5235                                         &bp->sp_rtnl_state);
5236                                 smp_mb__after_clear_bit();
5237
5238                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5239                         }
5240
5241                         goto next_spqe;
5242
5243                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5244                         f_obj->complete_cmd(bp, f_obj,
5245                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5246                         bnx2x_after_afex_vif_lists(bp, elem);
5247                         goto next_spqe;
5248                 case EVENT_RING_OPCODE_FUNCTION_START:
5249                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5250                            "got FUNC_START ramrod\n");
5251                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5252                                 break;
5253
5254                         goto next_spqe;
5255
5256                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5257                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5258                            "got FUNC_STOP ramrod\n");
5259                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5260                                 break;
5261
5262                         goto next_spqe;
5263                 }
5264
5265                 switch (opcode | bp->state) {
5266                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5267                       BNX2X_STATE_OPEN):
5268                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5269                       BNX2X_STATE_OPENING_WAIT4_PORT):
5270                         cid = elem->message.data.eth_event.echo &
5271                                 BNX2X_SWCID_MASK;
5272                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5273                            cid);
5274                         rss_raw->clear_pending(rss_raw);
5275                         break;
5276
5277                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5278                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5279                 case (EVENT_RING_OPCODE_SET_MAC |
5280                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5281                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5282                       BNX2X_STATE_OPEN):
5283                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5284                       BNX2X_STATE_DIAG):
5285                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5286                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5287                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5288                         bnx2x_handle_classification_eqe(bp, elem);
5289                         break;
5290
5291                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5292                       BNX2X_STATE_OPEN):
5293                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5294                       BNX2X_STATE_DIAG):
5295                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5296                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5297                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5298                         bnx2x_handle_mcast_eqe(bp);
5299                         break;
5300
5301                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5302                       BNX2X_STATE_OPEN):
5303                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5304                       BNX2X_STATE_DIAG):
5305                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5306                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5307                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5308                         bnx2x_handle_rx_mode_eqe(bp);
5309                         break;
5310                 default:
5311                         /* unknown event log error and continue */
5312                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5313                                   elem->message.opcode, bp->state);
5314                 }
5315 next_spqe:
5316                 spqe_cnt++;
5317         } /* for */
5318
5319         smp_mb__before_atomic_inc();
5320         atomic_add(spqe_cnt, &bp->eq_spq_left);
5321
5322         bp->eq_cons = sw_cons;
5323         bp->eq_prod = sw_prod;
5324         /* Make sure that above mem writes were issued towards the memory */
5325         smp_wmb();
5326
5327         /* update producer */
5328         bnx2x_update_eq_prod(bp, bp->eq_prod);
5329 }
5330
5331 static void bnx2x_sp_task(struct work_struct *work)
5332 {
5333         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5334
5335         DP(BNX2X_MSG_SP, "sp task invoked\n");
5336
5337         /* make sure the atomic interrupt_occurred has been written */
5338         smp_rmb();
5339         if (atomic_read(&bp->interrupt_occurred)) {
5340
5341                 /* what work needs to be performed? */
5342                 u16 status = bnx2x_update_dsb_idx(bp);
5343
5344                 DP(BNX2X_MSG_SP, "status %x\n", status);
5345                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5346                 atomic_set(&bp->interrupt_occurred, 0);
5347
5348                 /* HW attentions */
5349                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5350                         bnx2x_attn_int(bp);
5351                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5352                 }
5353
5354                 /* SP events: STAT_QUERY and others */
5355                 if (status & BNX2X_DEF_SB_IDX) {
5356                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5357
5358                 if (FCOE_INIT(bp) &&
5359                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5360                                 /* Prevent local bottom-halves from running as
5361                                  * we are going to change the local NAPI list.
5362                                  */
5363                                 local_bh_disable();
5364                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5365                                 local_bh_enable();
5366                         }
5367
5368                         /* Handle EQ completions */
5369                         bnx2x_eq_int(bp);
5370                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5371                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5372
5373                         status &= ~BNX2X_DEF_SB_IDX;
5374                 }
5375
5376                 /* if status is non zero then perhaps something went wrong */
5377                 if (unlikely(status))
5378                         DP(BNX2X_MSG_SP,
5379                            "got an unknown interrupt! (status 0x%x)\n", status);
5380
5381                 /* ack status block only if something was actually handled */
5382                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5383                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5384         }
5385
5386         /* must be called after the EQ processing (since eq leads to sriov
5387          * ramrod completion flows).
5388          * This flow may have been scheduled by the arrival of a ramrod
5389          * completion, or by the sriov code rescheduling itself.
5390          */
5391         bnx2x_iov_sp_task(bp);
5392
5393         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5394         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5395                                &bp->sp_state)) {
5396                 bnx2x_link_report(bp);
5397                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5398         }
5399 }
5400
5401 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5402 {
5403         struct net_device *dev = dev_instance;
5404         struct bnx2x *bp = netdev_priv(dev);
5405
5406         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5407                      IGU_INT_DISABLE, 0);
5408
5409 #ifdef BNX2X_STOP_ON_ERROR
5410         if (unlikely(bp->panic))
5411                 return IRQ_HANDLED;
5412 #endif
5413
5414         if (CNIC_LOADED(bp)) {
5415                 struct cnic_ops *c_ops;
5416
5417                 rcu_read_lock();
5418                 c_ops = rcu_dereference(bp->cnic_ops);
5419                 if (c_ops)
5420                         c_ops->cnic_handler(bp->cnic_data, NULL);
5421                 rcu_read_unlock();
5422         }
5423
5424         /* schedule sp task to perform default status block work, ack
5425          * attentions and enable interrupts.
5426          */
5427         bnx2x_schedule_sp_task(bp);
5428
5429         return IRQ_HANDLED;
5430 }
5431
5432 /* end of slow path */
5433
5434 void bnx2x_drv_pulse(struct bnx2x *bp)
5435 {
5436         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5437                  bp->fw_drv_pulse_wr_seq);
5438 }
5439
5440 static void bnx2x_timer(unsigned long data)
5441 {
5442         struct bnx2x *bp = (struct bnx2x *) data;
5443
5444         if (!netif_running(bp->dev))
5445                 return;
5446
5447         if (IS_PF(bp) &&
5448             !BP_NOMCP(bp)) {
5449                 int mb_idx = BP_FW_MB_IDX(bp);
5450                 u16 drv_pulse;
5451                 u16 mcp_pulse;
5452
5453                 ++bp->fw_drv_pulse_wr_seq;
5454                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5455                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5456                 bnx2x_drv_pulse(bp);
5457
5458                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5459                              MCP_PULSE_SEQ_MASK);
5460                 /* The delta between driver pulse and mcp response
5461                  * should not get too big. If the MFW is more than 5 pulses
5462                  * behind, we should worry about it enough to generate an error
5463                  * log.
5464                  */
5465                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5466                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5467                                   drv_pulse, mcp_pulse);
5468         }
5469
5470         if (bp->state == BNX2X_STATE_OPEN)
5471                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5472
5473         /* sample pf vf bulletin board for new posts from pf */
5474         if (IS_VF(bp))
5475                 bnx2x_timer_sriov(bp);
5476
5477         mod_timer(&bp->timer, jiffies + bp->current_interval);
5478 }
5479
5480 /* end of Statistics */
5481
5482 /* nic init */
5483
5484 /*
5485  * nic init service functions
5486  */
5487
5488 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5489 {
5490         u32 i;
5491         if (!(len%4) && !(addr%4))
5492                 for (i = 0; i < len; i += 4)
5493                         REG_WR(bp, addr + i, fill);
5494         else
5495                 for (i = 0; i < len; i++)
5496                         REG_WR8(bp, addr + i, fill);
5497 }
5498
5499 /* helper: writes FP SP data to FW - data_size in dwords */
5500 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5501                                 int fw_sb_id,
5502                                 u32 *sb_data_p,
5503                                 u32 data_size)
5504 {
5505         int index;
5506         for (index = 0; index < data_size; index++)
5507                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5508                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5509                         sizeof(u32)*index,
5510                         *(sb_data_p + index));
5511 }
5512
5513 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5514 {
5515         u32 *sb_data_p;
5516         u32 data_size = 0;
5517         struct hc_status_block_data_e2 sb_data_e2;
5518         struct hc_status_block_data_e1x sb_data_e1x;
5519
5520         /* disable the function first */
5521         if (!CHIP_IS_E1x(bp)) {
5522                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5523                 sb_data_e2.common.state = SB_DISABLED;
5524                 sb_data_e2.common.p_func.vf_valid = false;
5525                 sb_data_p = (u32 *)&sb_data_e2;
5526                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5527         } else {
5528                 memset(&sb_data_e1x, 0,
5529                        sizeof(struct hc_status_block_data_e1x));
5530                 sb_data_e1x.common.state = SB_DISABLED;
5531                 sb_data_e1x.common.p_func.vf_valid = false;
5532                 sb_data_p = (u32 *)&sb_data_e1x;
5533                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5534         }
5535         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5536
5537         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5538                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5539                         CSTORM_STATUS_BLOCK_SIZE);
5540         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5541                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5542                         CSTORM_SYNC_BLOCK_SIZE);
5543 }
5544
5545 /* helper:  writes SP SB data to FW */
5546 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5547                 struct hc_sp_status_block_data *sp_sb_data)
5548 {
5549         int func = BP_FUNC(bp);
5550         int i;
5551         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5552                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5553                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5554                         i*sizeof(u32),
5555                         *((u32 *)sp_sb_data + i));
5556 }
5557
5558 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5559 {
5560         int func = BP_FUNC(bp);
5561         struct hc_sp_status_block_data sp_sb_data;
5562         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5563
5564         sp_sb_data.state = SB_DISABLED;
5565         sp_sb_data.p_func.vf_valid = false;
5566
5567         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5568
5569         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5570                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5571                         CSTORM_SP_STATUS_BLOCK_SIZE);
5572         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5573                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5574                         CSTORM_SP_SYNC_BLOCK_SIZE);
5575 }
5576
5577 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5578                                            int igu_sb_id, int igu_seg_id)
5579 {
5580         hc_sm->igu_sb_id = igu_sb_id;
5581         hc_sm->igu_seg_id = igu_seg_id;
5582         hc_sm->timer_value = 0xFF;
5583         hc_sm->time_to_expire = 0xFFFFFFFF;
5584 }
5585
5586 /* allocates state machine ids. */
5587 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5588 {
5589         /* zero out state machine indices */
5590         /* rx indices */
5591         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5592
5593         /* tx indices */
5594         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5595         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5596         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5597         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5598
5599         /* map indices */
5600         /* rx indices */
5601         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5602                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5603
5604         /* tx indices */
5605         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5606                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5607         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5608                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5609         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5610                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5611         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5612                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5613 }
5614
5615 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5616                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5617 {
5618         int igu_seg_id;
5619
5620         struct hc_status_block_data_e2 sb_data_e2;
5621         struct hc_status_block_data_e1x sb_data_e1x;
5622         struct hc_status_block_sm  *hc_sm_p;
5623         int data_size;
5624         u32 *sb_data_p;
5625
5626         if (CHIP_INT_MODE_IS_BC(bp))
5627                 igu_seg_id = HC_SEG_ACCESS_NORM;
5628         else
5629                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5630
5631         bnx2x_zero_fp_sb(bp, fw_sb_id);
5632
5633         if (!CHIP_IS_E1x(bp)) {
5634                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5635                 sb_data_e2.common.state = SB_ENABLED;
5636                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5637                 sb_data_e2.common.p_func.vf_id = vfid;
5638                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5639                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5640                 sb_data_e2.common.same_igu_sb_1b = true;
5641                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5642                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5643                 hc_sm_p = sb_data_e2.common.state_machine;
5644                 sb_data_p = (u32 *)&sb_data_e2;
5645                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5646                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5647         } else {
5648                 memset(&sb_data_e1x, 0,
5649                        sizeof(struct hc_status_block_data_e1x));
5650                 sb_data_e1x.common.state = SB_ENABLED;
5651                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5652                 sb_data_e1x.common.p_func.vf_id = 0xff;
5653                 sb_data_e1x.common.p_func.vf_valid = false;
5654                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5655                 sb_data_e1x.common.same_igu_sb_1b = true;
5656                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5657                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5658                 hc_sm_p = sb_data_e1x.common.state_machine;
5659                 sb_data_p = (u32 *)&sb_data_e1x;
5660                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5661                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5662         }
5663
5664         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5665                                        igu_sb_id, igu_seg_id);
5666         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5667                                        igu_sb_id, igu_seg_id);
5668
5669         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5670
5671         /* write indices to HW - PCI guarantees endianity of regpairs */
5672         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5673 }
5674
5675 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5676                                      u16 tx_usec, u16 rx_usec)
5677 {
5678         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5679                                     false, rx_usec);
5680         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5681                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5682                                        tx_usec);
5683         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5684                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5685                                        tx_usec);
5686         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5687                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5688                                        tx_usec);
5689 }
5690
5691 static void bnx2x_init_def_sb(struct bnx2x *bp)
5692 {
5693         struct host_sp_status_block *def_sb = bp->def_status_blk;
5694         dma_addr_t mapping = bp->def_status_blk_mapping;
5695         int igu_sp_sb_index;
5696         int igu_seg_id;
5697         int port = BP_PORT(bp);
5698         int func = BP_FUNC(bp);
5699         int reg_offset, reg_offset_en5;
5700         u64 section;
5701         int index;
5702         struct hc_sp_status_block_data sp_sb_data;
5703         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5704
5705         if (CHIP_INT_MODE_IS_BC(bp)) {
5706                 igu_sp_sb_index = DEF_SB_IGU_ID;
5707                 igu_seg_id = HC_SEG_ACCESS_DEF;
5708         } else {
5709                 igu_sp_sb_index = bp->igu_dsb_id;
5710                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5711         }
5712
5713         /* ATTN */
5714         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5715                                             atten_status_block);
5716         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5717
5718         bp->attn_state = 0;
5719
5720         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5721                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5722         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5723                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5724         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5725                 int sindex;
5726                 /* take care of sig[0]..sig[4] */
5727                 for (sindex = 0; sindex < 4; sindex++)
5728                         bp->attn_group[index].sig[sindex] =
5729                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5730
5731                 if (!CHIP_IS_E1x(bp))
5732                         /*
5733                          * enable5 is separate from the rest of the registers,
5734                          * and therefore the address skip is 4
5735                          * and not 16 between the different groups
5736                          */
5737                         bp->attn_group[index].sig[4] = REG_RD(bp,
5738                                         reg_offset_en5 + 0x4*index);
5739                 else
5740                         bp->attn_group[index].sig[4] = 0;
5741         }
5742
5743         if (bp->common.int_block == INT_BLOCK_HC) {
5744                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5745                                      HC_REG_ATTN_MSG0_ADDR_L);
5746
5747                 REG_WR(bp, reg_offset, U64_LO(section));
5748                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5749         } else if (!CHIP_IS_E1x(bp)) {
5750                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5751                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5752         }
5753
5754         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5755                                             sp_sb);
5756
5757         bnx2x_zero_sp_sb(bp);
5758
5759         /* PCI guarantees endianity of regpairs */
5760         sp_sb_data.state                = SB_ENABLED;
5761         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5762         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5763         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5764         sp_sb_data.igu_seg_id           = igu_seg_id;
5765         sp_sb_data.p_func.pf_id         = func;
5766         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5767         sp_sb_data.p_func.vf_id         = 0xff;
5768
5769         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5770
5771         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5772 }
5773
5774 void bnx2x_update_coalesce(struct bnx2x *bp)
5775 {
5776         int i;
5777
5778         for_each_eth_queue(bp, i)
5779                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5780                                          bp->tx_ticks, bp->rx_ticks);
5781 }
5782
5783 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5784 {
5785         spin_lock_init(&bp->spq_lock);
5786         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5787
5788         bp->spq_prod_idx = 0;
5789         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5790         bp->spq_prod_bd = bp->spq;
5791         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5792 }
5793
5794 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5795 {
5796         int i;
5797         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5798                 union event_ring_elem *elem =
5799                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5800
5801                 elem->next_page.addr.hi =
5802                         cpu_to_le32(U64_HI(bp->eq_mapping +
5803                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5804                 elem->next_page.addr.lo =
5805                         cpu_to_le32(U64_LO(bp->eq_mapping +
5806                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5807         }
5808         bp->eq_cons = 0;
5809         bp->eq_prod = NUM_EQ_DESC;
5810         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5811         /* we want a warning message before it gets wrought... */
5812         atomic_set(&bp->eq_spq_left,
5813                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5814 }
5815
5816 /* called with netif_addr_lock_bh() */
5817 int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5818                         unsigned long rx_mode_flags,
5819                         unsigned long rx_accept_flags,
5820                         unsigned long tx_accept_flags,
5821                         unsigned long ramrod_flags)
5822 {
5823         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5824         int rc;
5825
5826         memset(&ramrod_param, 0, sizeof(ramrod_param));
5827
5828         /* Prepare ramrod parameters */
5829         ramrod_param.cid = 0;
5830         ramrod_param.cl_id = cl_id;
5831         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5832         ramrod_param.func_id = BP_FUNC(bp);
5833
5834         ramrod_param.pstate = &bp->sp_state;
5835         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5836
5837         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5838         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5839
5840         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5841
5842         ramrod_param.ramrod_flags = ramrod_flags;
5843         ramrod_param.rx_mode_flags = rx_mode_flags;
5844
5845         ramrod_param.rx_accept_flags = rx_accept_flags;
5846         ramrod_param.tx_accept_flags = tx_accept_flags;
5847
5848         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5849         if (rc < 0) {
5850                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5851                 return rc;
5852         }
5853
5854         return 0;
5855 }
5856
5857 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
5858                                    unsigned long *rx_accept_flags,
5859                                    unsigned long *tx_accept_flags)
5860 {
5861         /* Clear the flags first */
5862         *rx_accept_flags = 0;
5863         *tx_accept_flags = 0;
5864
5865         switch (rx_mode) {
5866         case BNX2X_RX_MODE_NONE:
5867                 /*
5868                  * 'drop all' supersedes any accept flags that may have been
5869                  * passed to the function.
5870                  */
5871                 break;
5872         case BNX2X_RX_MODE_NORMAL:
5873                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5874                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
5875                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5876
5877                 /* internal switching mode */
5878                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5879                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
5880                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5881
5882                 break;
5883         case BNX2X_RX_MODE_ALLMULTI:
5884                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5885                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5886                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5887
5888                 /* internal switching mode */
5889                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5890                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5891                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5892
5893                 break;
5894         case BNX2X_RX_MODE_PROMISC:
5895                 /* According to definition of SI mode, iface in promisc mode
5896                  * should receive matched and unmatched (in resolution of port)
5897                  * unicast packets.
5898                  */
5899                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
5900                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
5901                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
5902                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
5903
5904                 /* internal switching mode */
5905                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
5906                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
5907
5908                 if (IS_MF_SI(bp))
5909                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
5910                 else
5911                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
5912
5913                 break;
5914         default:
5915                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
5916                 return -EINVAL;
5917         }
5918
5919         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
5920         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5921                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
5922                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
5923         }
5924
5925         return 0;
5926 }
5927
5928 /* called with netif_addr_lock_bh() */
5929 int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5930 {
5931         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5932         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5933         int rc;
5934
5935         if (!NO_FCOE(bp))
5936                 /* Configure rx_mode of FCoE Queue */
5937                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5938
5939         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
5940                                      &tx_accept_flags);
5941         if (rc)
5942                 return rc;
5943
5944         __set_bit(RAMROD_RX, &ramrod_flags);
5945         __set_bit(RAMROD_TX, &ramrod_flags);
5946
5947         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
5948                                    rx_accept_flags, tx_accept_flags,
5949                                    ramrod_flags);
5950 }
5951
5952 static void bnx2x_init_internal_common(struct bnx2x *bp)
5953 {
5954         int i;
5955
5956         if (IS_MF_SI(bp))
5957                 /*
5958                  * In switch independent mode, the TSTORM needs to accept
5959                  * packets that failed classification, since approximate match
5960                  * mac addresses aren't written to NIG LLH
5961                  */
5962                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5963                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5964         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5965                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5966                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5967
5968         /* Zero this manually as its initialization is
5969            currently missing in the initTool */
5970         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5971                 REG_WR(bp, BAR_USTRORM_INTMEM +
5972                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
5973         if (!CHIP_IS_E1x(bp)) {
5974                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5975                         CHIP_INT_MODE_IS_BC(bp) ?
5976                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5977         }
5978 }
5979
5980 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5981 {
5982         switch (load_code) {
5983         case FW_MSG_CODE_DRV_LOAD_COMMON:
5984         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5985                 bnx2x_init_internal_common(bp);
5986                 /* no break */
5987
5988         case FW_MSG_CODE_DRV_LOAD_PORT:
5989                 /* nothing to do */
5990                 /* no break */
5991
5992         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5993                 /* internal memory per function is
5994                    initialized inside bnx2x_pf_init */
5995                 break;
5996
5997         default:
5998                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5999                 break;
6000         }
6001 }
6002
6003 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6004 {
6005         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6006 }
6007
6008 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6009 {
6010         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6011 }
6012
6013 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6014 {
6015         if (CHIP_IS_E1x(fp->bp))
6016                 return BP_L_ID(fp->bp) + fp->index;
6017         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6018                 return bnx2x_fp_igu_sb_id(fp);
6019 }
6020
6021 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6022 {
6023         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6024         u8 cos;
6025         unsigned long q_type = 0;
6026         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6027         fp->rx_queue = fp_idx;
6028         fp->cid = fp_idx;
6029         fp->cl_id = bnx2x_fp_cl_id(fp);
6030         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6031         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6032         /* qZone id equals to FW (per path) client id */
6033         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6034
6035         /* init shortcut */
6036         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6037
6038         /* Setup SB indices */
6039         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6040
6041         /* Configure Queue State object */
6042         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6043         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6044
6045         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6046
6047         /* init tx data */
6048         for_each_cos_in_tx_queue(fp, cos) {
6049                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6050                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6051                                   FP_COS_TO_TXQ(fp, cos, bp),
6052                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6053                 cids[cos] = fp->txdata_ptr[cos]->cid;
6054         }
6055
6056         /* nothing more for vf to do here */
6057         if (IS_VF(bp))
6058                 return;
6059
6060         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6061                       fp->fw_sb_id, fp->igu_sb_id);
6062         bnx2x_update_fpsb_idx(fp);
6063         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6064                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6065                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6066
6067         /**
6068          * Configure classification DBs: Always enable Tx switching
6069          */
6070         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6071
6072         DP(NETIF_MSG_IFUP,
6073            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6074            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6075            fp->igu_sb_id);
6076 }
6077
6078 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6079 {
6080         int i;
6081
6082         for (i = 1; i <= NUM_TX_RINGS; i++) {
6083                 struct eth_tx_next_bd *tx_next_bd =
6084                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6085
6086                 tx_next_bd->addr_hi =
6087                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6088                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6089                 tx_next_bd->addr_lo =
6090                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6091                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6092         }
6093
6094         *txdata->tx_cons_sb = cpu_to_le16(0);
6095
6096         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6097         txdata->tx_db.data.zero_fill1 = 0;
6098         txdata->tx_db.data.prod = 0;
6099
6100         txdata->tx_pkt_prod = 0;
6101         txdata->tx_pkt_cons = 0;
6102         txdata->tx_bd_prod = 0;
6103         txdata->tx_bd_cons = 0;
6104         txdata->tx_pkt = 0;
6105 }
6106
6107 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6108 {
6109         int i;
6110
6111         for_each_tx_queue_cnic(bp, i)
6112                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6113 }
6114
6115 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6116 {
6117         int i;
6118         u8 cos;
6119
6120         for_each_eth_queue(bp, i)
6121                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6122                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6123 }
6124
6125 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6126 {
6127         if (!NO_FCOE(bp))
6128                 bnx2x_init_fcoe_fp(bp);
6129
6130         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6131                       BNX2X_VF_ID_INVALID, false,
6132                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6133
6134         /* ensure status block indices were read */
6135         rmb();
6136         bnx2x_init_rx_rings_cnic(bp);
6137         bnx2x_init_tx_rings_cnic(bp);
6138
6139         /* flush all */
6140         mb();
6141         mmiowb();
6142 }
6143
6144 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6145 {
6146         int i;
6147
6148         /* Setup NIC internals and enable interrupts */
6149         for_each_eth_queue(bp, i)
6150                 bnx2x_init_eth_fp(bp, i);
6151
6152         /* ensure status block indices were read */
6153         rmb();
6154         bnx2x_init_rx_rings(bp);
6155         bnx2x_init_tx_rings(bp);
6156
6157         if (IS_PF(bp)) {
6158                 /* Initialize MOD_ABS interrupts */
6159                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6160                                        bp->common.shmem_base,
6161                                        bp->common.shmem2_base, BP_PORT(bp));
6162
6163                 /* initialize the default status block and sp ring */
6164                 bnx2x_init_def_sb(bp);
6165                 bnx2x_update_dsb_idx(bp);
6166                 bnx2x_init_sp_ring(bp);
6167         } else {
6168                 bnx2x_memset_stats(bp);
6169         }
6170 }
6171
6172 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6173 {
6174         bnx2x_init_eq_ring(bp);
6175         bnx2x_init_internal(bp, load_code);
6176         bnx2x_pf_init(bp);
6177         bnx2x_stats_init(bp);
6178
6179         /* flush all before enabling interrupts */
6180         mb();
6181         mmiowb();
6182
6183         bnx2x_int_enable(bp);
6184
6185         /* Check for SPIO5 */
6186         bnx2x_attn_int_deasserted0(bp,
6187                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6188                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6189 }
6190
6191 /* gzip service functions */
6192 static int bnx2x_gunzip_init(struct bnx2x *bp)
6193 {
6194         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6195                                             &bp->gunzip_mapping, GFP_KERNEL);
6196         if (bp->gunzip_buf  == NULL)
6197                 goto gunzip_nomem1;
6198
6199         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6200         if (bp->strm  == NULL)
6201                 goto gunzip_nomem2;
6202
6203         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6204         if (bp->strm->workspace == NULL)
6205                 goto gunzip_nomem3;
6206
6207         return 0;
6208
6209 gunzip_nomem3:
6210         kfree(bp->strm);
6211         bp->strm = NULL;
6212
6213 gunzip_nomem2:
6214         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6215                           bp->gunzip_mapping);
6216         bp->gunzip_buf = NULL;
6217
6218 gunzip_nomem1:
6219         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6220         return -ENOMEM;
6221 }
6222
6223 static void bnx2x_gunzip_end(struct bnx2x *bp)
6224 {
6225         if (bp->strm) {
6226                 vfree(bp->strm->workspace);
6227                 kfree(bp->strm);
6228                 bp->strm = NULL;
6229         }
6230
6231         if (bp->gunzip_buf) {
6232                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6233                                   bp->gunzip_mapping);
6234                 bp->gunzip_buf = NULL;
6235         }
6236 }
6237
6238 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6239 {
6240         int n, rc;
6241
6242         /* check gzip header */
6243         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6244                 BNX2X_ERR("Bad gzip header\n");
6245                 return -EINVAL;
6246         }
6247
6248         n = 10;
6249
6250 #define FNAME                           0x8
6251
6252         if (zbuf[3] & FNAME)
6253                 while ((zbuf[n++] != 0) && (n < len));
6254
6255         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6256         bp->strm->avail_in = len - n;
6257         bp->strm->next_out = bp->gunzip_buf;
6258         bp->strm->avail_out = FW_BUF_SIZE;
6259
6260         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6261         if (rc != Z_OK)
6262                 return rc;
6263
6264         rc = zlib_inflate(bp->strm, Z_FINISH);
6265         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6266                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6267                            bp->strm->msg);
6268
6269         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6270         if (bp->gunzip_outlen & 0x3)
6271                 netdev_err(bp->dev,
6272                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6273                                 bp->gunzip_outlen);
6274         bp->gunzip_outlen >>= 2;
6275
6276         zlib_inflateEnd(bp->strm);
6277
6278         if (rc == Z_STREAM_END)
6279                 return 0;
6280
6281         return rc;
6282 }
6283
6284 /* nic load/unload */
6285
6286 /*
6287  * General service functions
6288  */
6289
6290 /* send a NIG loopback debug packet */
6291 static void bnx2x_lb_pckt(struct bnx2x *bp)
6292 {
6293         u32 wb_write[3];
6294
6295         /* Ethernet source and destination addresses */
6296         wb_write[0] = 0x55555555;
6297         wb_write[1] = 0x55555555;
6298         wb_write[2] = 0x20;             /* SOP */
6299         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6300
6301         /* NON-IP protocol */
6302         wb_write[0] = 0x09000000;
6303         wb_write[1] = 0x55555555;
6304         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6305         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6306 }
6307
6308 /* some of the internal memories
6309  * are not directly readable from the driver
6310  * to test them we send debug packets
6311  */
6312 static int bnx2x_int_mem_test(struct bnx2x *bp)
6313 {
6314         int factor;
6315         int count, i;
6316         u32 val = 0;
6317
6318         if (CHIP_REV_IS_FPGA(bp))
6319                 factor = 120;
6320         else if (CHIP_REV_IS_EMUL(bp))
6321                 factor = 200;
6322         else
6323                 factor = 1;
6324
6325         /* Disable inputs of parser neighbor blocks */
6326         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6327         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6328         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6329         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6330
6331         /*  Write 0 to parser credits for CFC search request */
6332         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6333
6334         /* send Ethernet packet */
6335         bnx2x_lb_pckt(bp);
6336
6337         /* TODO do i reset NIG statistic? */
6338         /* Wait until NIG register shows 1 packet of size 0x10 */
6339         count = 1000 * factor;
6340         while (count) {
6341
6342                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6343                 val = *bnx2x_sp(bp, wb_data[0]);
6344                 if (val == 0x10)
6345                         break;
6346
6347                 usleep_range(10000, 20000);
6348                 count--;
6349         }
6350         if (val != 0x10) {
6351                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6352                 return -1;
6353         }
6354
6355         /* Wait until PRS register shows 1 packet */
6356         count = 1000 * factor;
6357         while (count) {
6358                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6359                 if (val == 1)
6360                         break;
6361
6362                 usleep_range(10000, 20000);
6363                 count--;
6364         }
6365         if (val != 0x1) {
6366                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6367                 return -2;
6368         }
6369
6370         /* Reset and init BRB, PRS */
6371         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6372         msleep(50);
6373         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6374         msleep(50);
6375         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6376         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6377
6378         DP(NETIF_MSG_HW, "part2\n");
6379
6380         /* Disable inputs of parser neighbor blocks */
6381         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6382         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6383         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6384         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6385
6386         /* Write 0 to parser credits for CFC search request */
6387         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6388
6389         /* send 10 Ethernet packets */
6390         for (i = 0; i < 10; i++)
6391                 bnx2x_lb_pckt(bp);
6392
6393         /* Wait until NIG register shows 10 + 1
6394            packets of size 11*0x10 = 0xb0 */
6395         count = 1000 * factor;
6396         while (count) {
6397
6398                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6399                 val = *bnx2x_sp(bp, wb_data[0]);
6400                 if (val == 0xb0)
6401                         break;
6402
6403                 usleep_range(10000, 20000);
6404                 count--;
6405         }
6406         if (val != 0xb0) {
6407                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6408                 return -3;
6409         }
6410
6411         /* Wait until PRS register shows 2 packets */
6412         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6413         if (val != 2)
6414                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6415
6416         /* Write 1 to parser credits for CFC search request */
6417         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6418
6419         /* Wait until PRS register shows 3 packets */
6420         msleep(10 * factor);
6421         /* Wait until NIG register shows 1 packet of size 0x10 */
6422         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6423         if (val != 3)
6424                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6425
6426         /* clear NIG EOP FIFO */
6427         for (i = 0; i < 11; i++)
6428                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6429         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6430         if (val != 1) {
6431                 BNX2X_ERR("clear of NIG failed\n");
6432                 return -4;
6433         }
6434
6435         /* Reset and init BRB, PRS, NIG */
6436         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6437         msleep(50);
6438         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6439         msleep(50);
6440         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6441         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6442         if (!CNIC_SUPPORT(bp))
6443                 /* set NIC mode */
6444                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6445
6446         /* Enable inputs of parser neighbor blocks */
6447         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6448         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6449         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6450         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6451
6452         DP(NETIF_MSG_HW, "done\n");
6453
6454         return 0; /* OK */
6455 }
6456
6457 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6458 {
6459         u32 val;
6460
6461         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6462         if (!CHIP_IS_E1x(bp))
6463                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6464         else
6465                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6466         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6467         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6468         /*
6469          * mask read length error interrupts in brb for parser
6470          * (parsing unit and 'checksum and crc' unit)
6471          * these errors are legal (PU reads fixed length and CAC can cause
6472          * read length error on truncated packets)
6473          */
6474         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6475         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6476         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6477         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6478         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6479         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6480 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6481 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6482         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6483         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6484         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6485 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6486 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6487         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6488         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6489         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6490         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6491 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6492 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6493
6494         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6495                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6496                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6497         if (!CHIP_IS_E1x(bp))
6498                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6499                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6500         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6501
6502         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6503         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6504         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6505 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6506
6507         if (!CHIP_IS_E1x(bp))
6508                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6509                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6510
6511         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6512         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6513 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6514         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6515 }
6516
6517 static void bnx2x_reset_common(struct bnx2x *bp)
6518 {
6519         u32 val = 0x1400;
6520
6521         /* reset_common */
6522         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6523                0xd3ffff7f);
6524
6525         if (CHIP_IS_E3(bp)) {
6526                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6527                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6528         }
6529
6530         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6531 }
6532
6533 static void bnx2x_setup_dmae(struct bnx2x *bp)
6534 {
6535         bp->dmae_ready = 0;
6536         spin_lock_init(&bp->dmae_lock);
6537 }
6538
6539 static void bnx2x_init_pxp(struct bnx2x *bp)
6540 {
6541         u16 devctl;
6542         int r_order, w_order;
6543
6544         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6545         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6546         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6547         if (bp->mrrs == -1)
6548                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6549         else {
6550                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6551                 r_order = bp->mrrs;
6552         }
6553
6554         bnx2x_init_pxp_arb(bp, r_order, w_order);
6555 }
6556
6557 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6558 {
6559         int is_required;
6560         u32 val;
6561         int port;
6562
6563         if (BP_NOMCP(bp))
6564                 return;
6565
6566         is_required = 0;
6567         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6568               SHARED_HW_CFG_FAN_FAILURE_MASK;
6569
6570         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6571                 is_required = 1;
6572
6573         /*
6574          * The fan failure mechanism is usually related to the PHY type since
6575          * the power consumption of the board is affected by the PHY. Currently,
6576          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6577          */
6578         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6579                 for (port = PORT_0; port < PORT_MAX; port++) {
6580                         is_required |=
6581                                 bnx2x_fan_failure_det_req(
6582                                         bp,
6583                                         bp->common.shmem_base,
6584                                         bp->common.shmem2_base,
6585                                         port);
6586                 }
6587
6588         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6589
6590         if (is_required == 0)
6591                 return;
6592
6593         /* Fan failure is indicated by SPIO 5 */
6594         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6595
6596         /* set to active low mode */
6597         val = REG_RD(bp, MISC_REG_SPIO_INT);
6598         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6599         REG_WR(bp, MISC_REG_SPIO_INT, val);
6600
6601         /* enable interrupt to signal the IGU */
6602         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6603         val |= MISC_SPIO_SPIO5;
6604         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6605 }
6606
6607 void bnx2x_pf_disable(struct bnx2x *bp)
6608 {
6609         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6610         val &= ~IGU_PF_CONF_FUNC_EN;
6611
6612         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6613         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6614         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6615 }
6616
6617 static void bnx2x__common_init_phy(struct bnx2x *bp)
6618 {
6619         u32 shmem_base[2], shmem2_base[2];
6620         /* Avoid common init in case MFW supports LFA */
6621         if (SHMEM2_RD(bp, size) >
6622             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6623                 return;
6624         shmem_base[0] =  bp->common.shmem_base;
6625         shmem2_base[0] = bp->common.shmem2_base;
6626         if (!CHIP_IS_E1x(bp)) {
6627                 shmem_base[1] =
6628                         SHMEM2_RD(bp, other_shmem_base_addr);
6629                 shmem2_base[1] =
6630                         SHMEM2_RD(bp, other_shmem2_base_addr);
6631         }
6632         bnx2x_acquire_phy_lock(bp);
6633         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6634                               bp->common.chip_id);
6635         bnx2x_release_phy_lock(bp);
6636 }
6637
6638 /**
6639  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6640  *
6641  * @bp:         driver handle
6642  */
6643 static int bnx2x_init_hw_common(struct bnx2x *bp)
6644 {
6645         u32 val;
6646
6647         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6648
6649         /*
6650          * take the RESET lock to protect undi_unload flow from accessing
6651          * registers while we're resetting the chip
6652          */
6653         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6654
6655         bnx2x_reset_common(bp);
6656         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6657
6658         val = 0xfffc;
6659         if (CHIP_IS_E3(bp)) {
6660                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6661                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6662         }
6663         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6664
6665         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6666
6667         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6668
6669         if (!CHIP_IS_E1x(bp)) {
6670                 u8 abs_func_id;
6671
6672                 /**
6673                  * 4-port mode or 2-port mode we need to turn of master-enable
6674                  * for everyone, after that, turn it back on for self.
6675                  * so, we disregard multi-function or not, and always disable
6676                  * for all functions on the given path, this means 0,2,4,6 for
6677                  * path 0 and 1,3,5,7 for path 1
6678                  */
6679                 for (abs_func_id = BP_PATH(bp);
6680                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6681                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6682                                 REG_WR(bp,
6683                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6684                                     1);
6685                                 continue;
6686                         }
6687
6688                         bnx2x_pretend_func(bp, abs_func_id);
6689                         /* clear pf enable */
6690                         bnx2x_pf_disable(bp);
6691                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6692                 }
6693         }
6694
6695         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6696         if (CHIP_IS_E1(bp)) {
6697                 /* enable HW interrupt from PXP on USDM overflow
6698                    bit 16 on INT_MASK_0 */
6699                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6700         }
6701
6702         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6703         bnx2x_init_pxp(bp);
6704
6705 #ifdef __BIG_ENDIAN
6706         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6707         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6708         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6709         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6710         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6711         /* make sure this value is 0 */
6712         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6713
6714 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6715         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6716         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6717         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6718         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6719 #endif
6720
6721         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6722
6723         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6724                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6725
6726         /* let the HW do it's magic ... */
6727         msleep(100);
6728         /* finish PXP init */
6729         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6730         if (val != 1) {
6731                 BNX2X_ERR("PXP2 CFG failed\n");
6732                 return -EBUSY;
6733         }
6734         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6735         if (val != 1) {
6736                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6737                 return -EBUSY;
6738         }
6739
6740         /* Timers bug workaround E2 only. We need to set the entire ILT to
6741          * have entries with value "0" and valid bit on.
6742          * This needs to be done by the first PF that is loaded in a path
6743          * (i.e. common phase)
6744          */
6745         if (!CHIP_IS_E1x(bp)) {
6746 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6747  * (i.e. vnic3) to start even if it is marked as "scan-off".
6748  * This occurs when a different function (func2,3) is being marked
6749  * as "scan-off". Real-life scenario for example: if a driver is being
6750  * load-unloaded while func6,7 are down. This will cause the timer to access
6751  * the ilt, translate to a logical address and send a request to read/write.
6752  * Since the ilt for the function that is down is not valid, this will cause
6753  * a translation error which is unrecoverable.
6754  * The Workaround is intended to make sure that when this happens nothing fatal
6755  * will occur. The workaround:
6756  *      1.  First PF driver which loads on a path will:
6757  *              a.  After taking the chip out of reset, by using pretend,
6758  *                  it will write "0" to the following registers of
6759  *                  the other vnics.
6760  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6761  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6762  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6763  *                  And for itself it will write '1' to
6764  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6765  *                  dmae-operations (writing to pram for example.)
6766  *                  note: can be done for only function 6,7 but cleaner this
6767  *                        way.
6768  *              b.  Write zero+valid to the entire ILT.
6769  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6770  *                  VNIC3 (of that port). The range allocated will be the
6771  *                  entire ILT. This is needed to prevent  ILT range error.
6772  *      2.  Any PF driver load flow:
6773  *              a.  ILT update with the physical addresses of the allocated
6774  *                  logical pages.
6775  *              b.  Wait 20msec. - note that this timeout is needed to make
6776  *                  sure there are no requests in one of the PXP internal
6777  *                  queues with "old" ILT addresses.
6778  *              c.  PF enable in the PGLC.
6779  *              d.  Clear the was_error of the PF in the PGLC. (could have
6780  *                  occurred while driver was down)
6781  *              e.  PF enable in the CFC (WEAK + STRONG)
6782  *              f.  Timers scan enable
6783  *      3.  PF driver unload flow:
6784  *              a.  Clear the Timers scan_en.
6785  *              b.  Polling for scan_on=0 for that PF.
6786  *              c.  Clear the PF enable bit in the PXP.
6787  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6788  *              e.  Write zero+valid to all ILT entries (The valid bit must
6789  *                  stay set)
6790  *              f.  If this is VNIC 3 of a port then also init
6791  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6792  *                  to the last entry in the ILT.
6793  *
6794  *      Notes:
6795  *      Currently the PF error in the PGLC is non recoverable.
6796  *      In the future the there will be a recovery routine for this error.
6797  *      Currently attention is masked.
6798  *      Having an MCP lock on the load/unload process does not guarantee that
6799  *      there is no Timer disable during Func6/7 enable. This is because the
6800  *      Timers scan is currently being cleared by the MCP on FLR.
6801  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6802  *      there is error before clearing it. But the flow above is simpler and
6803  *      more general.
6804  *      All ILT entries are written by zero+valid and not just PF6/7
6805  *      ILT entries since in the future the ILT entries allocation for
6806  *      PF-s might be dynamic.
6807  */
6808                 struct ilt_client_info ilt_cli;
6809                 struct bnx2x_ilt ilt;
6810                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6811                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6812
6813                 /* initialize dummy TM client */
6814                 ilt_cli.start = 0;
6815                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6816                 ilt_cli.client_num = ILT_CLIENT_TM;
6817
6818                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6819                  * Step 2: set the timers first/last ilt entry to point
6820                  * to the entire range to prevent ILT range error for 3rd/4th
6821                  * vnic (this code assumes existence of the vnic)
6822                  *
6823                  * both steps performed by call to bnx2x_ilt_client_init_op()
6824                  * with dummy TM client
6825                  *
6826                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6827                  * and his brother are split registers
6828                  */
6829                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6830                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6831                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6832
6833                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6834                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6835                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6836         }
6837
6838         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6839         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6840
6841         if (!CHIP_IS_E1x(bp)) {
6842                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6843                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6844                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6845
6846                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6847
6848                 /* let the HW do it's magic ... */
6849                 do {
6850                         msleep(200);
6851                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6852                 } while (factor-- && (val != 1));
6853
6854                 if (val != 1) {
6855                         BNX2X_ERR("ATC_INIT failed\n");
6856                         return -EBUSY;
6857                 }
6858         }
6859
6860         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6861
6862         bnx2x_iov_init_dmae(bp);
6863
6864         /* clean the DMAE memory */
6865         bp->dmae_ready = 1;
6866         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6867
6868         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6869
6870         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6871
6872         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6873
6874         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6875
6876         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6877         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6878         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6879         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6880
6881         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6882
6883         /* QM queues pointers table */
6884         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6885
6886         /* soft reset pulse */
6887         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6888         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6889
6890         if (CNIC_SUPPORT(bp))
6891                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6892
6893         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6894
6895         if (!CHIP_REV_IS_SLOW(bp))
6896                 /* enable hw interrupt from doorbell Q */
6897                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6898
6899         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6900
6901         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6902         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6903
6904         if (!CHIP_IS_E1(bp))
6905                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6906
6907         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6908                 if (IS_MF_AFEX(bp)) {
6909                         /* configure that VNTag and VLAN headers must be
6910                          * received in afex mode
6911                          */
6912                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6913                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6914                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6915                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6916                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6917                 } else {
6918                         /* Bit-map indicating which L2 hdrs may appear
6919                          * after the basic Ethernet header
6920                          */
6921                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6922                                bp->path_has_ovlan ? 7 : 6);
6923                 }
6924         }
6925
6926         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6927         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6928         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6929         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6930
6931         if (!CHIP_IS_E1x(bp)) {
6932                 /* reset VFC memories */
6933                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6934                            VFC_MEMORIES_RST_REG_CAM_RST |
6935                            VFC_MEMORIES_RST_REG_RAM_RST);
6936                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6937                            VFC_MEMORIES_RST_REG_CAM_RST |
6938                            VFC_MEMORIES_RST_REG_RAM_RST);
6939
6940                 msleep(20);
6941         }
6942
6943         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6944         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6945         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6946         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6947
6948         /* sync semi rtc */
6949         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6950                0x80000000);
6951         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6952                0x80000000);
6953
6954         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6955         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6956         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6957
6958         if (!CHIP_IS_E1x(bp)) {
6959                 if (IS_MF_AFEX(bp)) {
6960                         /* configure that VNTag and VLAN headers must be
6961                          * sent in afex mode
6962                          */
6963                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6964                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6965                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6966                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6967                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6968                 } else {
6969                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6970                                bp->path_has_ovlan ? 7 : 6);
6971                 }
6972         }
6973
6974         REG_WR(bp, SRC_REG_SOFT_RST, 1);
6975
6976         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6977
6978         if (CNIC_SUPPORT(bp)) {
6979                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6980                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6981                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6982                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6983                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6984                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6985                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6986                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6987                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6988                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6989         }
6990         REG_WR(bp, SRC_REG_SOFT_RST, 0);
6991
6992         if (sizeof(union cdu_context) != 1024)
6993                 /* we currently assume that a context is 1024 bytes */
6994                 dev_alert(&bp->pdev->dev,
6995                           "please adjust the size of cdu_context(%ld)\n",
6996                           (long)sizeof(union cdu_context));
6997
6998         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6999         val = (4 << 24) + (0 << 12) + 1024;
7000         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7001
7002         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7003         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7004         /* enable context validation interrupt from CFC */
7005         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7006
7007         /* set the thresholds to prevent CFC/CDU race */
7008         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7009
7010         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7011
7012         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7013                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7014
7015         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7016         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7017
7018         /* Reset PCIE errors for debug */
7019         REG_WR(bp, 0x2814, 0xffffffff);
7020         REG_WR(bp, 0x3820, 0xffffffff);
7021
7022         if (!CHIP_IS_E1x(bp)) {
7023                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7024                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7025                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7026                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7027                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7028                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7029                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7030                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7031                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7032                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7033                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7034         }
7035
7036         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7037         if (!CHIP_IS_E1(bp)) {
7038                 /* in E3 this done in per-port section */
7039                 if (!CHIP_IS_E3(bp))
7040                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7041         }
7042         if (CHIP_IS_E1H(bp))
7043                 /* not applicable for E2 (and above ...) */
7044                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7045
7046         if (CHIP_REV_IS_SLOW(bp))
7047                 msleep(200);
7048
7049         /* finish CFC init */
7050         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7051         if (val != 1) {
7052                 BNX2X_ERR("CFC LL_INIT failed\n");
7053                 return -EBUSY;
7054         }
7055         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7056         if (val != 1) {
7057                 BNX2X_ERR("CFC AC_INIT failed\n");
7058                 return -EBUSY;
7059         }
7060         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7061         if (val != 1) {
7062                 BNX2X_ERR("CFC CAM_INIT failed\n");
7063                 return -EBUSY;
7064         }
7065         REG_WR(bp, CFC_REG_DEBUG0, 0);
7066
7067         if (CHIP_IS_E1(bp)) {
7068                 /* read NIG statistic
7069                    to see if this is our first up since powerup */
7070                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7071                 val = *bnx2x_sp(bp, wb_data[0]);
7072
7073                 /* do internal memory self test */
7074                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7075                         BNX2X_ERR("internal mem self test failed\n");
7076                         return -EBUSY;
7077                 }
7078         }
7079
7080         bnx2x_setup_fan_failure_detection(bp);
7081
7082         /* clear PXP2 attentions */
7083         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7084
7085         bnx2x_enable_blocks_attention(bp);
7086         bnx2x_enable_blocks_parity(bp);
7087
7088         if (!BP_NOMCP(bp)) {
7089                 if (CHIP_IS_E1x(bp))
7090                         bnx2x__common_init_phy(bp);
7091         } else
7092                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7093
7094         return 0;
7095 }
7096
7097 /**
7098  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7099  *
7100  * @bp:         driver handle
7101  */
7102 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7103 {
7104         int rc = bnx2x_init_hw_common(bp);
7105
7106         if (rc)
7107                 return rc;
7108
7109         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7110         if (!BP_NOMCP(bp))
7111                 bnx2x__common_init_phy(bp);
7112
7113         return 0;
7114 }
7115
7116 static int bnx2x_init_hw_port(struct bnx2x *bp)
7117 {
7118         int port = BP_PORT(bp);
7119         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7120         u32 low, high;
7121         u32 val;
7122
7123         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7124
7125         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7126
7127         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7128         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7129         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7130
7131         /* Timers bug workaround: disables the pf_master bit in pglue at
7132          * common phase, we need to enable it here before any dmae access are
7133          * attempted. Therefore we manually added the enable-master to the
7134          * port phase (it also happens in the function phase)
7135          */
7136         if (!CHIP_IS_E1x(bp))
7137                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7138
7139         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7140         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7141         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7142         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7143
7144         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7145         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7146         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7147         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7148
7149         /* QM cid (connection) count */
7150         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7151
7152         if (CNIC_SUPPORT(bp)) {
7153                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7154                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7155                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7156         }
7157
7158         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7159
7160         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7161
7162         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7163
7164                 if (IS_MF(bp))
7165                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7166                 else if (bp->dev->mtu > 4096) {
7167                         if (bp->flags & ONE_PORT_FLAG)
7168                                 low = 160;
7169                         else {
7170                                 val = bp->dev->mtu;
7171                                 /* (24*1024 + val*4)/256 */
7172                                 low = 96 + (val/64) +
7173                                                 ((val % 64) ? 1 : 0);
7174                         }
7175                 } else
7176                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7177                 high = low + 56;        /* 14*1024/256 */
7178                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7179                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7180         }
7181
7182         if (CHIP_MODE_IS_4_PORT(bp))
7183                 REG_WR(bp, (BP_PORT(bp) ?
7184                             BRB1_REG_MAC_GUARANTIED_1 :
7185                             BRB1_REG_MAC_GUARANTIED_0), 40);
7186
7187         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7188         if (CHIP_IS_E3B0(bp)) {
7189                 if (IS_MF_AFEX(bp)) {
7190                         /* configure headers for AFEX mode */
7191                         REG_WR(bp, BP_PORT(bp) ?
7192                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7193                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7194                         REG_WR(bp, BP_PORT(bp) ?
7195                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7196                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7197                         REG_WR(bp, BP_PORT(bp) ?
7198                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7199                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7200                 } else {
7201                         /* Ovlan exists only if we are in multi-function +
7202                          * switch-dependent mode, in switch-independent there
7203                          * is no ovlan headers
7204                          */
7205                         REG_WR(bp, BP_PORT(bp) ?
7206                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7207                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7208                                (bp->path_has_ovlan ? 7 : 6));
7209                 }
7210         }
7211
7212         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7213         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7214         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7215         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7216
7217         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7218         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7219         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7220         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7221
7222         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7223         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7224
7225         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7226
7227         if (CHIP_IS_E1x(bp)) {
7228                 /* configure PBF to work without PAUSE mtu 9000 */
7229                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7230
7231                 /* update threshold */
7232                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7233                 /* update init credit */
7234                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7235
7236                 /* probe changes */
7237                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7238                 udelay(50);
7239                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7240         }
7241
7242         if (CNIC_SUPPORT(bp))
7243                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7244
7245         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7246         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7247
7248         if (CHIP_IS_E1(bp)) {
7249                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7250                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7251         }
7252         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7253
7254         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7255
7256         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7257         /* init aeu_mask_attn_func_0/1:
7258          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7259          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7260          *             bits 4-7 are used for "per vn group attention" */
7261         val = IS_MF(bp) ? 0xF7 : 0x7;
7262         /* Enable DCBX attention for all but E1 */
7263         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7264         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7265
7266         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7267
7268         if (!CHIP_IS_E1x(bp)) {
7269                 /* Bit-map indicating which L2 hdrs may appear after the
7270                  * basic Ethernet header
7271                  */
7272                 if (IS_MF_AFEX(bp))
7273                         REG_WR(bp, BP_PORT(bp) ?
7274                                NIG_REG_P1_HDRS_AFTER_BASIC :
7275                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7276                 else
7277                         REG_WR(bp, BP_PORT(bp) ?
7278                                NIG_REG_P1_HDRS_AFTER_BASIC :
7279                                NIG_REG_P0_HDRS_AFTER_BASIC,
7280                                IS_MF_SD(bp) ? 7 : 6);
7281
7282                 if (CHIP_IS_E3(bp))
7283                         REG_WR(bp, BP_PORT(bp) ?
7284                                    NIG_REG_LLH1_MF_MODE :
7285                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7286         }
7287         if (!CHIP_IS_E3(bp))
7288                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7289
7290         if (!CHIP_IS_E1(bp)) {
7291                 /* 0x2 disable mf_ov, 0x1 enable */
7292                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7293                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7294
7295                 if (!CHIP_IS_E1x(bp)) {
7296                         val = 0;
7297                         switch (bp->mf_mode) {
7298                         case MULTI_FUNCTION_SD:
7299                                 val = 1;
7300                                 break;
7301                         case MULTI_FUNCTION_SI:
7302                         case MULTI_FUNCTION_AFEX:
7303                                 val = 2;
7304                                 break;
7305                         }
7306
7307                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7308                                                   NIG_REG_LLH0_CLS_TYPE), val);
7309                 }
7310                 {
7311                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7312                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7313                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7314                 }
7315         }
7316
7317         /* If SPIO5 is set to generate interrupts, enable it for this port */
7318         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7319         if (val & MISC_SPIO_SPIO5) {
7320                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7321                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7322                 val = REG_RD(bp, reg_addr);
7323                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7324                 REG_WR(bp, reg_addr, val);
7325         }
7326
7327         return 0;
7328 }
7329
7330 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7331 {
7332         int reg;
7333         u32 wb_write[2];
7334
7335         if (CHIP_IS_E1(bp))
7336                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7337         else
7338                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7339
7340         wb_write[0] = ONCHIP_ADDR1(addr);
7341         wb_write[1] = ONCHIP_ADDR2(addr);
7342         REG_WR_DMAE(bp, reg, wb_write, 2);
7343 }
7344
7345 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7346 {
7347         u32 data, ctl, cnt = 100;
7348         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7349         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7350         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7351         u32 sb_bit =  1 << (idu_sb_id%32);
7352         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7353         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7354
7355         /* Not supported in BC mode */
7356         if (CHIP_INT_MODE_IS_BC(bp))
7357                 return;
7358
7359         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7360                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7361                 IGU_REGULAR_CLEANUP_SET                         |
7362                 IGU_REGULAR_BCLEANUP;
7363
7364         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7365               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7366               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7367
7368         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7369                          data, igu_addr_data);
7370         REG_WR(bp, igu_addr_data, data);
7371         mmiowb();
7372         barrier();
7373         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7374                           ctl, igu_addr_ctl);
7375         REG_WR(bp, igu_addr_ctl, ctl);
7376         mmiowb();
7377         barrier();
7378
7379         /* wait for clean up to finish */
7380         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7381                 msleep(20);
7382
7383         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7384                 DP(NETIF_MSG_HW,
7385                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7386                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7387         }
7388 }
7389
7390 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7391 {
7392         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7393 }
7394
7395 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7396 {
7397         u32 i, base = FUNC_ILT_BASE(func);
7398         for (i = base; i < base + ILT_PER_FUNC; i++)
7399                 bnx2x_ilt_wr(bp, i, 0);
7400 }
7401
7402 static void bnx2x_init_searcher(struct bnx2x *bp)
7403 {
7404         int port = BP_PORT(bp);
7405         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7406         /* T1 hash bits value determines the T1 number of entries */
7407         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7408 }
7409
7410 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7411 {
7412         int rc;
7413         struct bnx2x_func_state_params func_params = {NULL};
7414         struct bnx2x_func_switch_update_params *switch_update_params =
7415                 &func_params.params.switch_update;
7416
7417         /* Prepare parameters for function state transitions */
7418         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7419         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7420
7421         func_params.f_obj = &bp->func_obj;
7422         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7423
7424         /* Function parameters */
7425         switch_update_params->suspend = suspend;
7426
7427         rc = bnx2x_func_state_change(bp, &func_params);
7428
7429         return rc;
7430 }
7431
7432 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7433 {
7434         int rc, i, port = BP_PORT(bp);
7435         int vlan_en = 0, mac_en[NUM_MACS];
7436
7437         /* Close input from network */
7438         if (bp->mf_mode == SINGLE_FUNCTION) {
7439                 bnx2x_set_rx_filter(&bp->link_params, 0);
7440         } else {
7441                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7442                                    NIG_REG_LLH0_FUNC_EN);
7443                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7444                           NIG_REG_LLH0_FUNC_EN, 0);
7445                 for (i = 0; i < NUM_MACS; i++) {
7446                         mac_en[i] = REG_RD(bp, port ?
7447                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7448                                               4 * i) :
7449                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7450                                               4 * i));
7451                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7452                                               4 * i) :
7453                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7454                 }
7455         }
7456
7457         /* Close BMC to host */
7458         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7459                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7460
7461         /* Suspend Tx switching to the PF. Completion of this ramrod
7462          * further guarantees that all the packets of that PF / child
7463          * VFs in BRB were processed by the Parser, so it is safe to
7464          * change the NIC_MODE register.
7465          */
7466         rc = bnx2x_func_switch_update(bp, 1);
7467         if (rc) {
7468                 BNX2X_ERR("Can't suspend tx-switching!\n");
7469                 return rc;
7470         }
7471
7472         /* Change NIC_MODE register */
7473         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7474
7475         /* Open input from network */
7476         if (bp->mf_mode == SINGLE_FUNCTION) {
7477                 bnx2x_set_rx_filter(&bp->link_params, 1);
7478         } else {
7479                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7480                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7481                 for (i = 0; i < NUM_MACS; i++) {
7482                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7483                                               4 * i) :
7484                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7485                                   mac_en[i]);
7486                 }
7487         }
7488
7489         /* Enable BMC to host */
7490         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7491                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7492
7493         /* Resume Tx switching to the PF */
7494         rc = bnx2x_func_switch_update(bp, 0);
7495         if (rc) {
7496                 BNX2X_ERR("Can't resume tx-switching!\n");
7497                 return rc;
7498         }
7499
7500         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7501         return 0;
7502 }
7503
7504 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7505 {
7506         int rc;
7507
7508         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7509
7510         if (CONFIGURE_NIC_MODE(bp)) {
7511                 /* Configure searcher as part of function hw init */
7512                 bnx2x_init_searcher(bp);
7513
7514                 /* Reset NIC mode */
7515                 rc = bnx2x_reset_nic_mode(bp);
7516                 if (rc)
7517                         BNX2X_ERR("Can't change NIC mode!\n");
7518                 return rc;
7519         }
7520
7521         return 0;
7522 }
7523
7524 static int bnx2x_init_hw_func(struct bnx2x *bp)
7525 {
7526         int port = BP_PORT(bp);
7527         int func = BP_FUNC(bp);
7528         int init_phase = PHASE_PF0 + func;
7529         struct bnx2x_ilt *ilt = BP_ILT(bp);
7530         u16 cdu_ilt_start;
7531         u32 addr, val;
7532         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7533         int i, main_mem_width, rc;
7534
7535         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7536
7537         /* FLR cleanup - hmmm */
7538         if (!CHIP_IS_E1x(bp)) {
7539                 rc = bnx2x_pf_flr_clnup(bp);
7540                 if (rc) {
7541                         bnx2x_fw_dump(bp);
7542                         return rc;
7543                 }
7544         }
7545
7546         /* set MSI reconfigure capability */
7547         if (bp->common.int_block == INT_BLOCK_HC) {
7548                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7549                 val = REG_RD(bp, addr);
7550                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7551                 REG_WR(bp, addr, val);
7552         }
7553
7554         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7555         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7556
7557         ilt = BP_ILT(bp);
7558         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7559
7560         if (IS_SRIOV(bp))
7561                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7562         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7563
7564         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7565          * those of the VFs, so start line should be reset
7566          */
7567         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7568         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7569                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7570                 ilt->lines[cdu_ilt_start + i].page_mapping =
7571                         bp->context[i].cxt_mapping;
7572                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7573         }
7574
7575         bnx2x_ilt_init_op(bp, INITOP_SET);
7576
7577         if (!CONFIGURE_NIC_MODE(bp)) {
7578                 bnx2x_init_searcher(bp);
7579                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7580                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7581         } else {
7582                 /* Set NIC mode */
7583                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7584                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7585         }
7586
7587         if (!CHIP_IS_E1x(bp)) {
7588                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7589
7590                 /* Turn on a single ISR mode in IGU if driver is going to use
7591                  * INT#x or MSI
7592                  */
7593                 if (!(bp->flags & USING_MSIX_FLAG))
7594                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7595                 /*
7596                  * Timers workaround bug: function init part.
7597                  * Need to wait 20msec after initializing ILT,
7598                  * needed to make sure there are no requests in
7599                  * one of the PXP internal queues with "old" ILT addresses
7600                  */
7601                 msleep(20);
7602                 /*
7603                  * Master enable - Due to WB DMAE writes performed before this
7604                  * register is re-initialized as part of the regular function
7605                  * init
7606                  */
7607                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7608                 /* Enable the function in IGU */
7609                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7610         }
7611
7612         bp->dmae_ready = 1;
7613
7614         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7615
7616         if (!CHIP_IS_E1x(bp))
7617                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7618
7619         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7620         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7621         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7622         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7623         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7624         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7625         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7626         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7627         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7628         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7629         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7630         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7631         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7632
7633         if (!CHIP_IS_E1x(bp))
7634                 REG_WR(bp, QM_REG_PF_EN, 1);
7635
7636         if (!CHIP_IS_E1x(bp)) {
7637                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7638                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7639                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7640                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7641         }
7642         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7643
7644         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7645         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7646         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7647
7648         bnx2x_iov_init_dq(bp);
7649
7650         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7651         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7652         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7653         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7654         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7655         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7656         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7657         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7658         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7659         if (!CHIP_IS_E1x(bp))
7660                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7661
7662         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7663
7664         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7665
7666         if (!CHIP_IS_E1x(bp))
7667                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7668
7669         if (IS_MF(bp)) {
7670                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7671                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7672         }
7673
7674         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7675
7676         /* HC init per function */
7677         if (bp->common.int_block == INT_BLOCK_HC) {
7678                 if (CHIP_IS_E1H(bp)) {
7679                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7680
7681                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7682                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7683                 }
7684                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7685
7686         } else {
7687                 int num_segs, sb_idx, prod_offset;
7688
7689                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7690
7691                 if (!CHIP_IS_E1x(bp)) {
7692                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7693                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7694                 }
7695
7696                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7697
7698                 if (!CHIP_IS_E1x(bp)) {
7699                         int dsb_idx = 0;
7700                         /**
7701                          * Producer memory:
7702                          * E2 mode: address 0-135 match to the mapping memory;
7703                          * 136 - PF0 default prod; 137 - PF1 default prod;
7704                          * 138 - PF2 default prod; 139 - PF3 default prod;
7705                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7706                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7707                          * 144-147 reserved.
7708                          *
7709                          * E1.5 mode - In backward compatible mode;
7710                          * for non default SB; each even line in the memory
7711                          * holds the U producer and each odd line hold
7712                          * the C producer. The first 128 producers are for
7713                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7714                          * producers are for the DSB for each PF.
7715                          * Each PF has five segments: (the order inside each
7716                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7717                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7718                          * 144-147 attn prods;
7719                          */
7720                         /* non-default-status-blocks */
7721                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7722                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7723                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7724                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7725                                         num_segs;
7726
7727                                 for (i = 0; i < num_segs; i++) {
7728                                         addr = IGU_REG_PROD_CONS_MEMORY +
7729                                                         (prod_offset + i) * 4;
7730                                         REG_WR(bp, addr, 0);
7731                                 }
7732                                 /* send consumer update with value 0 */
7733                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7734                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7735                                 bnx2x_igu_clear_sb(bp,
7736                                                    bp->igu_base_sb + sb_idx);
7737                         }
7738
7739                         /* default-status-blocks */
7740                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7741                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7742
7743                         if (CHIP_MODE_IS_4_PORT(bp))
7744                                 dsb_idx = BP_FUNC(bp);
7745                         else
7746                                 dsb_idx = BP_VN(bp);
7747
7748                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7749                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7750                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7751
7752                         /*
7753                          * igu prods come in chunks of E1HVN_MAX (4) -
7754                          * does not matters what is the current chip mode
7755                          */
7756                         for (i = 0; i < (num_segs * E1HVN_MAX);
7757                              i += E1HVN_MAX) {
7758                                 addr = IGU_REG_PROD_CONS_MEMORY +
7759                                                         (prod_offset + i)*4;
7760                                 REG_WR(bp, addr, 0);
7761                         }
7762                         /* send consumer update with 0 */
7763                         if (CHIP_INT_MODE_IS_BC(bp)) {
7764                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7765                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7766                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7767                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7768                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7769                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7770                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7771                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7772                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7773                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7774                         } else {
7775                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7776                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7777                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7778                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7779                         }
7780                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7781
7782                         /* !!! These should become driver const once
7783                            rf-tool supports split-68 const */
7784                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7785                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7786                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7787                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7788                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7789                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7790                 }
7791         }
7792
7793         /* Reset PCIE errors for debug */
7794         REG_WR(bp, 0x2114, 0xffffffff);
7795         REG_WR(bp, 0x2120, 0xffffffff);
7796
7797         if (CHIP_IS_E1x(bp)) {
7798                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7799                 main_mem_base = HC_REG_MAIN_MEMORY +
7800                                 BP_PORT(bp) * (main_mem_size * 4);
7801                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7802                 main_mem_width = 8;
7803
7804                 val = REG_RD(bp, main_mem_prty_clr);
7805                 if (val)
7806                         DP(NETIF_MSG_HW,
7807                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7808                            val);
7809
7810                 /* Clear "false" parity errors in MSI-X table */
7811                 for (i = main_mem_base;
7812                      i < main_mem_base + main_mem_size * 4;
7813                      i += main_mem_width) {
7814                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7815                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7816                                          i, main_mem_width / 4);
7817                 }
7818                 /* Clear HC parity attention */
7819                 REG_RD(bp, main_mem_prty_clr);
7820         }
7821
7822 #ifdef BNX2X_STOP_ON_ERROR
7823         /* Enable STORMs SP logging */
7824         REG_WR8(bp, BAR_USTRORM_INTMEM +
7825                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7826         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7827                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7828         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7829                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7830         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7831                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7832 #endif
7833
7834         bnx2x_phy_probe(&bp->link_params);
7835
7836         return 0;
7837 }
7838
7839 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7840 {
7841         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7842
7843         if (!CHIP_IS_E1x(bp))
7844                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7845                                sizeof(struct host_hc_status_block_e2));
7846         else
7847                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7848                                sizeof(struct host_hc_status_block_e1x));
7849
7850         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7851 }
7852
7853 void bnx2x_free_mem(struct bnx2x *bp)
7854 {
7855         int i;
7856
7857         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7858                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7859
7860         if (IS_VF(bp))
7861                 return;
7862
7863         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7864                        sizeof(struct host_sp_status_block));
7865
7866         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7867                        sizeof(struct bnx2x_slowpath));
7868
7869         for (i = 0; i < L2_ILT_LINES(bp); i++)
7870                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7871                                bp->context[i].size);
7872         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7873
7874         BNX2X_FREE(bp->ilt->lines);
7875
7876         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7877
7878         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7879                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7880
7881         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7882
7883         bnx2x_iov_free_mem(bp);
7884 }
7885
7886 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7887 {
7888         if (!CHIP_IS_E1x(bp))
7889                 /* size = the status block + ramrod buffers */
7890                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7891                                 sizeof(struct host_hc_status_block_e2));
7892         else
7893                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7894                                 &bp->cnic_sb_mapping,
7895                                 sizeof(struct
7896                                        host_hc_status_block_e1x));
7897
7898         if (CONFIGURE_NIC_MODE(bp) && !bp->t2)
7899                 /* allocate searcher T2 table, as it wasn't allocated before */
7900                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7901
7902         /* write address to which L5 should insert its values */
7903         bp->cnic_eth_dev.addr_drv_info_to_mcp =
7904                 &bp->slowpath->drv_info_to_mcp;
7905
7906         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7907                 goto alloc_mem_err;
7908
7909         return 0;
7910
7911 alloc_mem_err:
7912         bnx2x_free_mem_cnic(bp);
7913         BNX2X_ERR("Can't allocate memory\n");
7914         return -ENOMEM;
7915 }
7916
7917 int bnx2x_alloc_mem(struct bnx2x *bp)
7918 {
7919         int i, allocated, context_size;
7920
7921         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2)
7922                 /* allocate searcher T2 table */
7923                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7924
7925         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7926                         sizeof(struct host_sp_status_block));
7927
7928         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7929                         sizeof(struct bnx2x_slowpath));
7930
7931         /* Allocate memory for CDU context:
7932          * This memory is allocated separately and not in the generic ILT
7933          * functions because CDU differs in few aspects:
7934          * 1. There are multiple entities allocating memory for context -
7935          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7936          * its own ILT lines.
7937          * 2. Since CDU page-size is not a single 4KB page (which is the case
7938          * for the other ILT clients), to be efficient we want to support
7939          * allocation of sub-page-size in the last entry.
7940          * 3. Context pointers are used by the driver to pass to FW / update
7941          * the context (for the other ILT clients the pointers are used just to
7942          * free the memory during unload).
7943          */
7944         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7945
7946         for (i = 0, allocated = 0; allocated < context_size; i++) {
7947                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7948                                           (context_size - allocated));
7949                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7950                                 &bp->context[i].cxt_mapping,
7951                                 bp->context[i].size);
7952                 allocated += bp->context[i].size;
7953         }
7954         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7955
7956         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7957                 goto alloc_mem_err;
7958
7959         if (bnx2x_iov_alloc_mem(bp))
7960                 goto alloc_mem_err;
7961
7962         /* Slow path ring */
7963         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7964
7965         /* EQ */
7966         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7967                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
7968
7969         return 0;
7970
7971 alloc_mem_err:
7972         bnx2x_free_mem(bp);
7973         BNX2X_ERR("Can't allocate memory\n");
7974         return -ENOMEM;
7975 }
7976
7977 /*
7978  * Init service functions
7979  */
7980
7981 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7982                       struct bnx2x_vlan_mac_obj *obj, bool set,
7983                       int mac_type, unsigned long *ramrod_flags)
7984 {
7985         int rc;
7986         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7987
7988         memset(&ramrod_param, 0, sizeof(ramrod_param));
7989
7990         /* Fill general parameters */
7991         ramrod_param.vlan_mac_obj = obj;
7992         ramrod_param.ramrod_flags = *ramrod_flags;
7993
7994         /* Fill a user request section if needed */
7995         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7996                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7997
7998                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7999
8000                 /* Set the command: ADD or DEL */
8001                 if (set)
8002                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8003                 else
8004                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8005         }
8006
8007         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8008
8009         if (rc == -EEXIST) {
8010                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8011                 /* do not treat adding same MAC as error */
8012                 rc = 0;
8013         } else if (rc < 0)
8014                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8015
8016         return rc;
8017 }
8018
8019 int bnx2x_del_all_macs(struct bnx2x *bp,
8020                        struct bnx2x_vlan_mac_obj *mac_obj,
8021                        int mac_type, bool wait_for_comp)
8022 {
8023         int rc;
8024         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8025
8026         /* Wait for completion of requested */
8027         if (wait_for_comp)
8028                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8029
8030         /* Set the mac type of addresses we want to clear */
8031         __set_bit(mac_type, &vlan_mac_flags);
8032
8033         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8034         if (rc < 0)
8035                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8036
8037         return rc;
8038 }
8039
8040 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8041 {
8042         if (is_zero_ether_addr(bp->dev->dev_addr) &&
8043             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8044                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8045                    "Ignoring Zero MAC for STORAGE SD mode\n");
8046                 return 0;
8047         }
8048
8049         if (IS_PF(bp)) {
8050                 unsigned long ramrod_flags = 0;
8051
8052                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8053                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8054                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8055                                          &bp->sp_objs->mac_obj, set,
8056                                          BNX2X_ETH_MAC, &ramrod_flags);
8057         } else { /* vf */
8058                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8059                                              bp->fp->index, true);
8060         }
8061 }
8062
8063 int bnx2x_setup_leading(struct bnx2x *bp)
8064 {
8065         if (IS_PF(bp))
8066                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8067         else /* VF */
8068                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8069 }
8070
8071 /**
8072  * bnx2x_set_int_mode - configure interrupt mode
8073  *
8074  * @bp:         driver handle
8075  *
8076  * In case of MSI-X it will also try to enable MSI-X.
8077  */
8078 int bnx2x_set_int_mode(struct bnx2x *bp)
8079 {
8080         int rc = 0;
8081
8082         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8083                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8084                 return -EINVAL;
8085         }
8086
8087         switch (int_mode) {
8088         case BNX2X_INT_MODE_MSIX:
8089                 /* attempt to enable msix */
8090                 rc = bnx2x_enable_msix(bp);
8091
8092                 /* msix attained */
8093                 if (!rc)
8094                         return 0;
8095
8096                 /* vfs use only msix */
8097                 if (rc && IS_VF(bp))
8098                         return rc;
8099
8100                 /* failed to enable multiple MSI-X */
8101                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8102                                bp->num_queues,
8103                                1 + bp->num_cnic_queues);
8104
8105                 /* falling through... */
8106         case BNX2X_INT_MODE_MSI:
8107                 bnx2x_enable_msi(bp);
8108
8109                 /* falling through... */
8110         case BNX2X_INT_MODE_INTX:
8111                 bp->num_ethernet_queues = 1;
8112                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8113                 BNX2X_DEV_INFO("set number of queues to 1\n");
8114                 break;
8115         default:
8116                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8117                 return -EINVAL;
8118         }
8119         return 0;
8120 }
8121
8122 /* must be called prior to any HW initializations */
8123 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8124 {
8125         if (IS_SRIOV(bp))
8126                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8127         return L2_ILT_LINES(bp);
8128 }
8129
8130 void bnx2x_ilt_set_info(struct bnx2x *bp)
8131 {
8132         struct ilt_client_info *ilt_client;
8133         struct bnx2x_ilt *ilt = BP_ILT(bp);
8134         u16 line = 0;
8135
8136         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8137         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8138
8139         /* CDU */
8140         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8141         ilt_client->client_num = ILT_CLIENT_CDU;
8142         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8143         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8144         ilt_client->start = line;
8145         line += bnx2x_cid_ilt_lines(bp);
8146
8147         if (CNIC_SUPPORT(bp))
8148                 line += CNIC_ILT_LINES;
8149         ilt_client->end = line - 1;
8150
8151         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8152            ilt_client->start,
8153            ilt_client->end,
8154            ilt_client->page_size,
8155            ilt_client->flags,
8156            ilog2(ilt_client->page_size >> 12));
8157
8158         /* QM */
8159         if (QM_INIT(bp->qm_cid_count)) {
8160                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8161                 ilt_client->client_num = ILT_CLIENT_QM;
8162                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8163                 ilt_client->flags = 0;
8164                 ilt_client->start = line;
8165
8166                 /* 4 bytes for each cid */
8167                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8168                                                          QM_ILT_PAGE_SZ);
8169
8170                 ilt_client->end = line - 1;
8171
8172                 DP(NETIF_MSG_IFUP,
8173                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8174                    ilt_client->start,
8175                    ilt_client->end,
8176                    ilt_client->page_size,
8177                    ilt_client->flags,
8178                    ilog2(ilt_client->page_size >> 12));
8179         }
8180
8181         if (CNIC_SUPPORT(bp)) {
8182                 /* SRC */
8183                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8184                 ilt_client->client_num = ILT_CLIENT_SRC;
8185                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8186                 ilt_client->flags = 0;
8187                 ilt_client->start = line;
8188                 line += SRC_ILT_LINES;
8189                 ilt_client->end = line - 1;
8190
8191                 DP(NETIF_MSG_IFUP,
8192                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8193                    ilt_client->start,
8194                    ilt_client->end,
8195                    ilt_client->page_size,
8196                    ilt_client->flags,
8197                    ilog2(ilt_client->page_size >> 12));
8198
8199                 /* TM */
8200                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8201                 ilt_client->client_num = ILT_CLIENT_TM;
8202                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8203                 ilt_client->flags = 0;
8204                 ilt_client->start = line;
8205                 line += TM_ILT_LINES;
8206                 ilt_client->end = line - 1;
8207
8208                 DP(NETIF_MSG_IFUP,
8209                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8210                    ilt_client->start,
8211                    ilt_client->end,
8212                    ilt_client->page_size,
8213                    ilt_client->flags,
8214                    ilog2(ilt_client->page_size >> 12));
8215         }
8216
8217         BUG_ON(line > ILT_MAX_LINES);
8218 }
8219
8220 /**
8221  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8222  *
8223  * @bp:                 driver handle
8224  * @fp:                 pointer to fastpath
8225  * @init_params:        pointer to parameters structure
8226  *
8227  * parameters configured:
8228  *      - HC configuration
8229  *      - Queue's CDU context
8230  */
8231 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8232         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8233 {
8234         u8 cos;
8235         int cxt_index, cxt_offset;
8236
8237         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8238         if (!IS_FCOE_FP(fp)) {
8239                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8240                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8241
8242                 /* If HC is supported, enable host coalescing in the transition
8243                  * to INIT state.
8244                  */
8245                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8246                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8247
8248                 /* HC rate */
8249                 init_params->rx.hc_rate = bp->rx_ticks ?
8250                         (1000000 / bp->rx_ticks) : 0;
8251                 init_params->tx.hc_rate = bp->tx_ticks ?
8252                         (1000000 / bp->tx_ticks) : 0;
8253
8254                 /* FW SB ID */
8255                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8256                         fp->fw_sb_id;
8257
8258                 /*
8259                  * CQ index among the SB indices: FCoE clients uses the default
8260                  * SB, therefore it's different.
8261                  */
8262                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8263                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8264         }
8265
8266         /* set maximum number of COSs supported by this queue */
8267         init_params->max_cos = fp->max_cos;
8268
8269         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8270             fp->index, init_params->max_cos);
8271
8272         /* set the context pointers queue object */
8273         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8274                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8275                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8276                                 ILT_PAGE_CIDS);
8277                 init_params->cxts[cos] =
8278                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8279         }
8280 }
8281
8282 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8283                         struct bnx2x_queue_state_params *q_params,
8284                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8285                         int tx_index, bool leading)
8286 {
8287         memset(tx_only_params, 0, sizeof(*tx_only_params));
8288
8289         /* Set the command */
8290         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8291
8292         /* Set tx-only QUEUE flags: don't zero statistics */
8293         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8294
8295         /* choose the index of the cid to send the slow path on */
8296         tx_only_params->cid_index = tx_index;
8297
8298         /* Set general TX_ONLY_SETUP parameters */
8299         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8300
8301         /* Set Tx TX_ONLY_SETUP parameters */
8302         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8303
8304         DP(NETIF_MSG_IFUP,
8305            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8306            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8307            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8308            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8309
8310         /* send the ramrod */
8311         return bnx2x_queue_state_change(bp, q_params);
8312 }
8313
8314 /**
8315  * bnx2x_setup_queue - setup queue
8316  *
8317  * @bp:         driver handle
8318  * @fp:         pointer to fastpath
8319  * @leading:    is leading
8320  *
8321  * This function performs 2 steps in a Queue state machine
8322  *      actually: 1) RESET->INIT 2) INIT->SETUP
8323  */
8324
8325 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8326                        bool leading)
8327 {
8328         struct bnx2x_queue_state_params q_params = {NULL};
8329         struct bnx2x_queue_setup_params *setup_params =
8330                                                 &q_params.params.setup;
8331         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8332                                                 &q_params.params.tx_only;
8333         int rc;
8334         u8 tx_index;
8335
8336         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8337
8338         /* reset IGU state skip FCoE L2 queue */
8339         if (!IS_FCOE_FP(fp))
8340                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8341                              IGU_INT_ENABLE, 0);
8342
8343         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8344         /* We want to wait for completion in this context */
8345         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8346
8347         /* Prepare the INIT parameters */
8348         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8349
8350         /* Set the command */
8351         q_params.cmd = BNX2X_Q_CMD_INIT;
8352
8353         /* Change the state to INIT */
8354         rc = bnx2x_queue_state_change(bp, &q_params);
8355         if (rc) {
8356                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8357                 return rc;
8358         }
8359
8360         DP(NETIF_MSG_IFUP, "init complete\n");
8361
8362         /* Now move the Queue to the SETUP state... */
8363         memset(setup_params, 0, sizeof(*setup_params));
8364
8365         /* Set QUEUE flags */
8366         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8367
8368         /* Set general SETUP parameters */
8369         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8370                                 FIRST_TX_COS_INDEX);
8371
8372         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8373                             &setup_params->rxq_params);
8374
8375         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8376                            FIRST_TX_COS_INDEX);
8377
8378         /* Set the command */
8379         q_params.cmd = BNX2X_Q_CMD_SETUP;
8380
8381         if (IS_FCOE_FP(fp))
8382                 bp->fcoe_init = true;
8383
8384         /* Change the state to SETUP */
8385         rc = bnx2x_queue_state_change(bp, &q_params);
8386         if (rc) {
8387                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8388                 return rc;
8389         }
8390
8391         /* loop through the relevant tx-only indices */
8392         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8393               tx_index < fp->max_cos;
8394               tx_index++) {
8395
8396                 /* prepare and send tx-only ramrod*/
8397                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8398                                           tx_only_params, tx_index, leading);
8399                 if (rc) {
8400                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8401                                   fp->index, tx_index);
8402                         return rc;
8403                 }
8404         }
8405
8406         return rc;
8407 }
8408
8409 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8410 {
8411         struct bnx2x_fastpath *fp = &bp->fp[index];
8412         struct bnx2x_fp_txdata *txdata;
8413         struct bnx2x_queue_state_params q_params = {NULL};
8414         int rc, tx_index;
8415
8416         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8417
8418         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8419         /* We want to wait for completion in this context */
8420         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8421
8422         /* close tx-only connections */
8423         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8424              tx_index < fp->max_cos;
8425              tx_index++){
8426
8427                 /* ascertain this is a normal queue*/
8428                 txdata = fp->txdata_ptr[tx_index];
8429
8430                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8431                                                         txdata->txq_index);
8432
8433                 /* send halt terminate on tx-only connection */
8434                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8435                 memset(&q_params.params.terminate, 0,
8436                        sizeof(q_params.params.terminate));
8437                 q_params.params.terminate.cid_index = tx_index;
8438
8439                 rc = bnx2x_queue_state_change(bp, &q_params);
8440                 if (rc)
8441                         return rc;
8442
8443                 /* send halt terminate on tx-only connection */
8444                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8445                 memset(&q_params.params.cfc_del, 0,
8446                        sizeof(q_params.params.cfc_del));
8447                 q_params.params.cfc_del.cid_index = tx_index;
8448                 rc = bnx2x_queue_state_change(bp, &q_params);
8449                 if (rc)
8450                         return rc;
8451         }
8452         /* Stop the primary connection: */
8453         /* ...halt the connection */
8454         q_params.cmd = BNX2X_Q_CMD_HALT;
8455         rc = bnx2x_queue_state_change(bp, &q_params);
8456         if (rc)
8457                 return rc;
8458
8459         /* ...terminate the connection */
8460         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8461         memset(&q_params.params.terminate, 0,
8462                sizeof(q_params.params.terminate));
8463         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8464         rc = bnx2x_queue_state_change(bp, &q_params);
8465         if (rc)
8466                 return rc;
8467         /* ...delete cfc entry */
8468         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8469         memset(&q_params.params.cfc_del, 0,
8470                sizeof(q_params.params.cfc_del));
8471         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8472         return bnx2x_queue_state_change(bp, &q_params);
8473 }
8474
8475 static void bnx2x_reset_func(struct bnx2x *bp)
8476 {
8477         int port = BP_PORT(bp);
8478         int func = BP_FUNC(bp);
8479         int i;
8480
8481         /* Disable the function in the FW */
8482         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8483         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8484         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8485         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8486
8487         /* FP SBs */
8488         for_each_eth_queue(bp, i) {
8489                 struct bnx2x_fastpath *fp = &bp->fp[i];
8490                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8491                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8492                            SB_DISABLED);
8493         }
8494
8495         if (CNIC_LOADED(bp))
8496                 /* CNIC SB */
8497                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8498                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8499                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8500
8501         /* SP SB */
8502         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8503                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8504                 SB_DISABLED);
8505
8506         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8507                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8508                        0);
8509
8510         /* Configure IGU */
8511         if (bp->common.int_block == INT_BLOCK_HC) {
8512                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8513                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8514         } else {
8515                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8516                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8517         }
8518
8519         if (CNIC_LOADED(bp)) {
8520                 /* Disable Timer scan */
8521                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8522                 /*
8523                  * Wait for at least 10ms and up to 2 second for the timers
8524                  * scan to complete
8525                  */
8526                 for (i = 0; i < 200; i++) {
8527                         usleep_range(10000, 20000);
8528                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8529                                 break;
8530                 }
8531         }
8532         /* Clear ILT */
8533         bnx2x_clear_func_ilt(bp, func);
8534
8535         /* Timers workaround bug for E2: if this is vnic-3,
8536          * we need to set the entire ilt range for this timers.
8537          */
8538         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8539                 struct ilt_client_info ilt_cli;
8540                 /* use dummy TM client */
8541                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8542                 ilt_cli.start = 0;
8543                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8544                 ilt_cli.client_num = ILT_CLIENT_TM;
8545
8546                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8547         }
8548
8549         /* this assumes that reset_port() called before reset_func()*/
8550         if (!CHIP_IS_E1x(bp))
8551                 bnx2x_pf_disable(bp);
8552
8553         bp->dmae_ready = 0;
8554 }
8555
8556 static void bnx2x_reset_port(struct bnx2x *bp)
8557 {
8558         int port = BP_PORT(bp);
8559         u32 val;
8560
8561         /* Reset physical Link */
8562         bnx2x__link_reset(bp);
8563
8564         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8565
8566         /* Do not rcv packets to BRB */
8567         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8568         /* Do not direct rcv packets that are not for MCP to the BRB */
8569         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8570                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8571
8572         /* Configure AEU */
8573         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8574
8575         msleep(100);
8576         /* Check for BRB port occupancy */
8577         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8578         if (val)
8579                 DP(NETIF_MSG_IFDOWN,
8580                    "BRB1 is not empty  %d blocks are occupied\n", val);
8581
8582         /* TODO: Close Doorbell port? */
8583 }
8584
8585 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8586 {
8587         struct bnx2x_func_state_params func_params = {NULL};
8588
8589         /* Prepare parameters for function state transitions */
8590         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8591
8592         func_params.f_obj = &bp->func_obj;
8593         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8594
8595         func_params.params.hw_init.load_phase = load_code;
8596
8597         return bnx2x_func_state_change(bp, &func_params);
8598 }
8599
8600 static int bnx2x_func_stop(struct bnx2x *bp)
8601 {
8602         struct bnx2x_func_state_params func_params = {NULL};
8603         int rc;
8604
8605         /* Prepare parameters for function state transitions */
8606         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8607         func_params.f_obj = &bp->func_obj;
8608         func_params.cmd = BNX2X_F_CMD_STOP;
8609
8610         /*
8611          * Try to stop the function the 'good way'. If fails (in case
8612          * of a parity error during bnx2x_chip_cleanup()) and we are
8613          * not in a debug mode, perform a state transaction in order to
8614          * enable further HW_RESET transaction.
8615          */
8616         rc = bnx2x_func_state_change(bp, &func_params);
8617         if (rc) {
8618 #ifdef BNX2X_STOP_ON_ERROR
8619                 return rc;
8620 #else
8621                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8622                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8623                 return bnx2x_func_state_change(bp, &func_params);
8624 #endif
8625         }
8626
8627         return 0;
8628 }
8629
8630 /**
8631  * bnx2x_send_unload_req - request unload mode from the MCP.
8632  *
8633  * @bp:                 driver handle
8634  * @unload_mode:        requested function's unload mode
8635  *
8636  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8637  */
8638 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8639 {
8640         u32 reset_code = 0;
8641         int port = BP_PORT(bp);
8642
8643         /* Select the UNLOAD request mode */
8644         if (unload_mode == UNLOAD_NORMAL)
8645                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8646
8647         else if (bp->flags & NO_WOL_FLAG)
8648                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8649
8650         else if (bp->wol) {
8651                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8652                 u8 *mac_addr = bp->dev->dev_addr;
8653                 struct pci_dev *pdev = bp->pdev;
8654                 u32 val;
8655                 u16 pmc;
8656
8657                 /* The mac address is written to entries 1-4 to
8658                  * preserve entry 0 which is used by the PMF
8659                  */
8660                 u8 entry = (BP_VN(bp) + 1)*8;
8661
8662                 val = (mac_addr[0] << 8) | mac_addr[1];
8663                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8664
8665                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8666                       (mac_addr[4] << 8) | mac_addr[5];
8667                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8668
8669                 /* Enable the PME and clear the status */
8670                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8671                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8672                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8673
8674                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8675
8676         } else
8677                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8678
8679         /* Send the request to the MCP */
8680         if (!BP_NOMCP(bp))
8681                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8682         else {
8683                 int path = BP_PATH(bp);
8684
8685                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8686                    path, load_count[path][0], load_count[path][1],
8687                    load_count[path][2]);
8688                 load_count[path][0]--;
8689                 load_count[path][1 + port]--;
8690                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8691                    path, load_count[path][0], load_count[path][1],
8692                    load_count[path][2]);
8693                 if (load_count[path][0] == 0)
8694                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8695                 else if (load_count[path][1 + port] == 0)
8696                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8697                 else
8698                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8699         }
8700
8701         return reset_code;
8702 }
8703
8704 /**
8705  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8706  *
8707  * @bp:         driver handle
8708  * @keep_link:          true iff link should be kept up
8709  */
8710 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8711 {
8712         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8713
8714         /* Report UNLOAD_DONE to MCP */
8715         if (!BP_NOMCP(bp))
8716                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8717 }
8718
8719 static int bnx2x_func_wait_started(struct bnx2x *bp)
8720 {
8721         int tout = 50;
8722         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8723
8724         if (!bp->port.pmf)
8725                 return 0;
8726
8727         /*
8728          * (assumption: No Attention from MCP at this stage)
8729          * PMF probably in the middle of TX disable/enable transaction
8730          * 1. Sync IRS for default SB
8731          * 2. Sync SP queue - this guarantees us that attention handling started
8732          * 3. Wait, that TX disable/enable transaction completes
8733          *
8734          * 1+2 guarantee that if DCBx attention was scheduled it already changed
8735          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8736          * received completion for the transaction the state is TX_STOPPED.
8737          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8738          * transaction.
8739          */
8740
8741         /* make sure default SB ISR is done */
8742         if (msix)
8743                 synchronize_irq(bp->msix_table[0].vector);
8744         else
8745                 synchronize_irq(bp->pdev->irq);
8746
8747         flush_workqueue(bnx2x_wq);
8748
8749         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8750                                 BNX2X_F_STATE_STARTED && tout--)
8751                 msleep(20);
8752
8753         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8754                                                 BNX2X_F_STATE_STARTED) {
8755 #ifdef BNX2X_STOP_ON_ERROR
8756                 BNX2X_ERR("Wrong function state\n");
8757                 return -EBUSY;
8758 #else
8759                 /*
8760                  * Failed to complete the transaction in a "good way"
8761                  * Force both transactions with CLR bit
8762                  */
8763                 struct bnx2x_func_state_params func_params = {NULL};
8764
8765                 DP(NETIF_MSG_IFDOWN,
8766                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8767
8768                 func_params.f_obj = &bp->func_obj;
8769                 __set_bit(RAMROD_DRV_CLR_ONLY,
8770                                         &func_params.ramrod_flags);
8771
8772                 /* STARTED-->TX_ST0PPED */
8773                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8774                 bnx2x_func_state_change(bp, &func_params);
8775
8776                 /* TX_ST0PPED-->STARTED */
8777                 func_params.cmd = BNX2X_F_CMD_TX_START;
8778                 return bnx2x_func_state_change(bp, &func_params);
8779 #endif
8780         }
8781
8782         return 0;
8783 }
8784
8785 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8786 {
8787         int port = BP_PORT(bp);
8788         int i, rc = 0;
8789         u8 cos;
8790         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8791         u32 reset_code;
8792
8793         /* Wait until tx fastpath tasks complete */
8794         for_each_tx_queue(bp, i) {
8795                 struct bnx2x_fastpath *fp = &bp->fp[i];
8796
8797                 for_each_cos_in_tx_queue(fp, cos)
8798                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8799 #ifdef BNX2X_STOP_ON_ERROR
8800                 if (rc)
8801                         return;
8802 #endif
8803         }
8804
8805         /* Give HW time to discard old tx messages */
8806         usleep_range(1000, 2000);
8807
8808         /* Clean all ETH MACs */
8809         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8810                                 false);
8811         if (rc < 0)
8812                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8813
8814         /* Clean up UC list  */
8815         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8816                                 true);
8817         if (rc < 0)
8818                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8819                           rc);
8820
8821         /* Disable LLH */
8822         if (!CHIP_IS_E1(bp))
8823                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8824
8825         /* Set "drop all" (stop Rx).
8826          * We need to take a netif_addr_lock() here in order to prevent
8827          * a race between the completion code and this code.
8828          */
8829         netif_addr_lock_bh(bp->dev);
8830         /* Schedule the rx_mode command */
8831         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8832                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8833         else
8834                 bnx2x_set_storm_rx_mode(bp);
8835
8836         /* Cleanup multicast configuration */
8837         rparam.mcast_obj = &bp->mcast_obj;
8838         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8839         if (rc < 0)
8840                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8841
8842         netif_addr_unlock_bh(bp->dev);
8843
8844         bnx2x_iov_chip_cleanup(bp);
8845
8846         /*
8847          * Send the UNLOAD_REQUEST to the MCP. This will return if
8848          * this function should perform FUNC, PORT or COMMON HW
8849          * reset.
8850          */
8851         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8852
8853         /*
8854          * (assumption: No Attention from MCP at this stage)
8855          * PMF probably in the middle of TX disable/enable transaction
8856          */
8857         rc = bnx2x_func_wait_started(bp);
8858         if (rc) {
8859                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8860 #ifdef BNX2X_STOP_ON_ERROR
8861                 return;
8862 #endif
8863         }
8864
8865         /* Close multi and leading connections
8866          * Completions for ramrods are collected in a synchronous way
8867          */
8868         for_each_eth_queue(bp, i)
8869                 if (bnx2x_stop_queue(bp, i))
8870 #ifdef BNX2X_STOP_ON_ERROR
8871                         return;
8872 #else
8873                         goto unload_error;
8874 #endif
8875
8876         if (CNIC_LOADED(bp)) {
8877                 for_each_cnic_queue(bp, i)
8878                         if (bnx2x_stop_queue(bp, i))
8879 #ifdef BNX2X_STOP_ON_ERROR
8880                                 return;
8881 #else
8882                                 goto unload_error;
8883 #endif
8884         }
8885
8886         /* If SP settings didn't get completed so far - something
8887          * very wrong has happen.
8888          */
8889         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8890                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8891
8892 #ifndef BNX2X_STOP_ON_ERROR
8893 unload_error:
8894 #endif
8895         rc = bnx2x_func_stop(bp);
8896         if (rc) {
8897                 BNX2X_ERR("Function stop failed!\n");
8898 #ifdef BNX2X_STOP_ON_ERROR
8899                 return;
8900 #endif
8901         }
8902
8903         /* Disable HW interrupts, NAPI */
8904         bnx2x_netif_stop(bp, 1);
8905         /* Delete all NAPI objects */
8906         bnx2x_del_all_napi(bp);
8907         if (CNIC_LOADED(bp))
8908                 bnx2x_del_all_napi_cnic(bp);
8909
8910         /* Release IRQs */
8911         bnx2x_free_irq(bp);
8912
8913         /* Reset the chip */
8914         rc = bnx2x_reset_hw(bp, reset_code);
8915         if (rc)
8916                 BNX2X_ERR("HW_RESET failed\n");
8917
8918         /* Report UNLOAD_DONE to MCP */
8919         bnx2x_send_unload_done(bp, keep_link);
8920 }
8921
8922 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8923 {
8924         u32 val;
8925
8926         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8927
8928         if (CHIP_IS_E1(bp)) {
8929                 int port = BP_PORT(bp);
8930                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8931                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
8932
8933                 val = REG_RD(bp, addr);
8934                 val &= ~(0x300);
8935                 REG_WR(bp, addr, val);
8936         } else {
8937                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8938                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8939                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8940                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8941         }
8942 }
8943
8944 /* Close gates #2, #3 and #4: */
8945 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8946 {
8947         u32 val;
8948
8949         /* Gates #2 and #4a are closed/opened for "not E1" only */
8950         if (!CHIP_IS_E1(bp)) {
8951                 /* #4 */
8952                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8953                 /* #2 */
8954                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8955         }
8956
8957         /* #3 */
8958         if (CHIP_IS_E1x(bp)) {
8959                 /* Prevent interrupts from HC on both ports */
8960                 val = REG_RD(bp, HC_REG_CONFIG_1);
8961                 REG_WR(bp, HC_REG_CONFIG_1,
8962                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8963                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8964
8965                 val = REG_RD(bp, HC_REG_CONFIG_0);
8966                 REG_WR(bp, HC_REG_CONFIG_0,
8967                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8968                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8969         } else {
8970                 /* Prevent incoming interrupts in IGU */
8971                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8972
8973                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8974                        (!close) ?
8975                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8976                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8977         }
8978
8979         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8980                 close ? "closing" : "opening");
8981         mmiowb();
8982 }
8983
8984 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8985
8986 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8987 {
8988         /* Do some magic... */
8989         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8990         *magic_val = val & SHARED_MF_CLP_MAGIC;
8991         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8992 }
8993
8994 /**
8995  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8996  *
8997  * @bp:         driver handle
8998  * @magic_val:  old value of the `magic' bit.
8999  */
9000 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9001 {
9002         /* Restore the `magic' bit value... */
9003         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9004         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9005                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9006 }
9007
9008 /**
9009  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9010  *
9011  * @bp:         driver handle
9012  * @magic_val:  old value of 'magic' bit.
9013  *
9014  * Takes care of CLP configurations.
9015  */
9016 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9017 {
9018         u32 shmem;
9019         u32 validity_offset;
9020
9021         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9022
9023         /* Set `magic' bit in order to save MF config */
9024         if (!CHIP_IS_E1(bp))
9025                 bnx2x_clp_reset_prep(bp, magic_val);
9026
9027         /* Get shmem offset */
9028         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9029         validity_offset =
9030                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9031
9032         /* Clear validity map flags */
9033         if (shmem > 0)
9034                 REG_WR(bp, shmem + validity_offset, 0);
9035 }
9036
9037 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9038 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9039
9040 /**
9041  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9042  *
9043  * @bp: driver handle
9044  */
9045 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9046 {
9047         /* special handling for emulation and FPGA,
9048            wait 10 times longer */
9049         if (CHIP_REV_IS_SLOW(bp))
9050                 msleep(MCP_ONE_TIMEOUT*10);
9051         else
9052                 msleep(MCP_ONE_TIMEOUT);
9053 }
9054
9055 /*
9056  * initializes bp->common.shmem_base and waits for validity signature to appear
9057  */
9058 static int bnx2x_init_shmem(struct bnx2x *bp)
9059 {
9060         int cnt = 0;
9061         u32 val = 0;
9062
9063         do {
9064                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9065                 if (bp->common.shmem_base) {
9066                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9067                         if (val & SHR_MEM_VALIDITY_MB)
9068                                 return 0;
9069                 }
9070
9071                 bnx2x_mcp_wait_one(bp);
9072
9073         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9074
9075         BNX2X_ERR("BAD MCP validity signature\n");
9076
9077         return -ENODEV;
9078 }
9079
9080 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9081 {
9082         int rc = bnx2x_init_shmem(bp);
9083
9084         /* Restore the `magic' bit value */
9085         if (!CHIP_IS_E1(bp))
9086                 bnx2x_clp_reset_done(bp, magic_val);
9087
9088         return rc;
9089 }
9090
9091 static void bnx2x_pxp_prep(struct bnx2x *bp)
9092 {
9093         if (!CHIP_IS_E1(bp)) {
9094                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9095                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9096                 mmiowb();
9097         }
9098 }
9099
9100 /*
9101  * Reset the whole chip except for:
9102  *      - PCIE core
9103  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9104  *              one reset bit)
9105  *      - IGU
9106  *      - MISC (including AEU)
9107  *      - GRC
9108  *      - RBCN, RBCP
9109  */
9110 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9111 {
9112         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9113         u32 global_bits2, stay_reset2;
9114
9115         /*
9116          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9117          * (per chip) blocks.
9118          */
9119         global_bits2 =
9120                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9121                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9122
9123         /* Don't reset the following blocks.
9124          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9125          *            reset, as in 4 port device they might still be owned
9126          *            by the MCP (there is only one leader per path).
9127          */
9128         not_reset_mask1 =
9129                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9130                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9131                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9132
9133         not_reset_mask2 =
9134                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9135                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9136                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9137                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9138                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9139                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9140                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9141                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9142                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9143                 MISC_REGISTERS_RESET_REG_2_PGLC |
9144                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9145                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9146                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9147                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9148                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9149                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9150
9151         /*
9152          * Keep the following blocks in reset:
9153          *  - all xxMACs are handled by the bnx2x_link code.
9154          */
9155         stay_reset2 =
9156                 MISC_REGISTERS_RESET_REG_2_XMAC |
9157                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9158
9159         /* Full reset masks according to the chip */
9160         reset_mask1 = 0xffffffff;
9161
9162         if (CHIP_IS_E1(bp))
9163                 reset_mask2 = 0xffff;
9164         else if (CHIP_IS_E1H(bp))
9165                 reset_mask2 = 0x1ffff;
9166         else if (CHIP_IS_E2(bp))
9167                 reset_mask2 = 0xfffff;
9168         else /* CHIP_IS_E3 */
9169                 reset_mask2 = 0x3ffffff;
9170
9171         /* Don't reset global blocks unless we need to */
9172         if (!global)
9173                 reset_mask2 &= ~global_bits2;
9174
9175         /*
9176          * In case of attention in the QM, we need to reset PXP
9177          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9178          * because otherwise QM reset would release 'close the gates' shortly
9179          * before resetting the PXP, then the PSWRQ would send a write
9180          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9181          * read the payload data from PSWWR, but PSWWR would not
9182          * respond. The write queue in PGLUE would stuck, dmae commands
9183          * would not return. Therefore it's important to reset the second
9184          * reset register (containing the
9185          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9186          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9187          * bit).
9188          */
9189         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9190                reset_mask2 & (~not_reset_mask2));
9191
9192         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9193                reset_mask1 & (~not_reset_mask1));
9194
9195         barrier();
9196         mmiowb();
9197
9198         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9199                reset_mask2 & (~stay_reset2));
9200
9201         barrier();
9202         mmiowb();
9203
9204         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9205         mmiowb();
9206 }
9207
9208 /**
9209  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9210  * It should get cleared in no more than 1s.
9211  *
9212  * @bp: driver handle
9213  *
9214  * It should get cleared in no more than 1s. Returns 0 if
9215  * pending writes bit gets cleared.
9216  */
9217 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9218 {
9219         u32 cnt = 1000;
9220         u32 pend_bits = 0;
9221
9222         do {
9223                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9224
9225                 if (pend_bits == 0)
9226                         break;
9227
9228                 usleep_range(1000, 2000);
9229         } while (cnt-- > 0);
9230
9231         if (cnt <= 0) {
9232                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9233                           pend_bits);
9234                 return -EBUSY;
9235         }
9236
9237         return 0;
9238 }
9239
9240 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9241 {
9242         int cnt = 1000;
9243         u32 val = 0;
9244         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9245         u32 tags_63_32 = 0;
9246
9247         /* Empty the Tetris buffer, wait for 1s */
9248         do {
9249                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9250                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9251                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9252                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9253                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9254                 if (CHIP_IS_E3(bp))
9255                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9256
9257                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9258                     ((port_is_idle_0 & 0x1) == 0x1) &&
9259                     ((port_is_idle_1 & 0x1) == 0x1) &&
9260                     (pgl_exp_rom2 == 0xffffffff) &&
9261                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9262                         break;
9263                 usleep_range(1000, 2000);
9264         } while (cnt-- > 0);
9265
9266         if (cnt <= 0) {
9267                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9268                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9269                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9270                           pgl_exp_rom2);
9271                 return -EAGAIN;
9272         }
9273
9274         barrier();
9275
9276         /* Close gates #2, #3 and #4 */
9277         bnx2x_set_234_gates(bp, true);
9278
9279         /* Poll for IGU VQs for 57712 and newer chips */
9280         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9281                 return -EAGAIN;
9282
9283         /* TBD: Indicate that "process kill" is in progress to MCP */
9284
9285         /* Clear "unprepared" bit */
9286         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9287         barrier();
9288
9289         /* Make sure all is written to the chip before the reset */
9290         mmiowb();
9291
9292         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9293          * PSWHST, GRC and PSWRD Tetris buffer.
9294          */
9295         usleep_range(1000, 2000);
9296
9297         /* Prepare to chip reset: */
9298         /* MCP */
9299         if (global)
9300                 bnx2x_reset_mcp_prep(bp, &val);
9301
9302         /* PXP */
9303         bnx2x_pxp_prep(bp);
9304         barrier();
9305
9306         /* reset the chip */
9307         bnx2x_process_kill_chip_reset(bp, global);
9308         barrier();
9309
9310         /* Recover after reset: */
9311         /* MCP */
9312         if (global && bnx2x_reset_mcp_comp(bp, val))
9313                 return -EAGAIN;
9314
9315         /* TBD: Add resetting the NO_MCP mode DB here */
9316
9317         /* Open the gates #2, #3 and #4 */
9318         bnx2x_set_234_gates(bp, false);
9319
9320         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9321          * reset state, re-enable attentions. */
9322
9323         return 0;
9324 }
9325
9326 static int bnx2x_leader_reset(struct bnx2x *bp)
9327 {
9328         int rc = 0;
9329         bool global = bnx2x_reset_is_global(bp);
9330         u32 load_code;
9331
9332         /* if not going to reset MCP - load "fake" driver to reset HW while
9333          * driver is owner of the HW
9334          */
9335         if (!global && !BP_NOMCP(bp)) {
9336                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9337                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9338                 if (!load_code) {
9339                         BNX2X_ERR("MCP response failure, aborting\n");
9340                         rc = -EAGAIN;
9341                         goto exit_leader_reset;
9342                 }
9343                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9344                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9345                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9346                         rc = -EAGAIN;
9347                         goto exit_leader_reset2;
9348                 }
9349                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9350                 if (!load_code) {
9351                         BNX2X_ERR("MCP response failure, aborting\n");
9352                         rc = -EAGAIN;
9353                         goto exit_leader_reset2;
9354                 }
9355         }
9356
9357         /* Try to recover after the failure */
9358         if (bnx2x_process_kill(bp, global)) {
9359                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9360                           BP_PATH(bp));
9361                 rc = -EAGAIN;
9362                 goto exit_leader_reset2;
9363         }
9364
9365         /*
9366          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9367          * state.
9368          */
9369         bnx2x_set_reset_done(bp);
9370         if (global)
9371                 bnx2x_clear_reset_global(bp);
9372
9373 exit_leader_reset2:
9374         /* unload "fake driver" if it was loaded */
9375         if (!global && !BP_NOMCP(bp)) {
9376                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9377                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9378         }
9379 exit_leader_reset:
9380         bp->is_leader = 0;
9381         bnx2x_release_leader_lock(bp);
9382         smp_mb();
9383         return rc;
9384 }
9385
9386 static void bnx2x_recovery_failed(struct bnx2x *bp)
9387 {
9388         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9389
9390         /* Disconnect this device */
9391         netif_device_detach(bp->dev);
9392
9393         /*
9394          * Block ifup for all function on this engine until "process kill"
9395          * or power cycle.
9396          */
9397         bnx2x_set_reset_in_progress(bp);
9398
9399         /* Shut down the power */
9400         bnx2x_set_power_state(bp, PCI_D3hot);
9401
9402         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9403
9404         smp_mb();
9405 }
9406
9407 /*
9408  * Assumption: runs under rtnl lock. This together with the fact
9409  * that it's called only from bnx2x_sp_rtnl() ensure that it
9410  * will never be called when netif_running(bp->dev) is false.
9411  */
9412 static void bnx2x_parity_recover(struct bnx2x *bp)
9413 {
9414         bool global = false;
9415         u32 error_recovered, error_unrecovered;
9416         bool is_parity;
9417
9418         DP(NETIF_MSG_HW, "Handling parity\n");
9419         while (1) {
9420                 switch (bp->recovery_state) {
9421                 case BNX2X_RECOVERY_INIT:
9422                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9423                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9424                         WARN_ON(!is_parity);
9425
9426                         /* Try to get a LEADER_LOCK HW lock */
9427                         if (bnx2x_trylock_leader_lock(bp)) {
9428                                 bnx2x_set_reset_in_progress(bp);
9429                                 /*
9430                                  * Check if there is a global attention and if
9431                                  * there was a global attention, set the global
9432                                  * reset bit.
9433                                  */
9434
9435                                 if (global)
9436                                         bnx2x_set_reset_global(bp);
9437
9438                                 bp->is_leader = 1;
9439                         }
9440
9441                         /* Stop the driver */
9442                         /* If interface has been removed - break */
9443                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9444                                 return;
9445
9446                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9447
9448                         /* Ensure "is_leader", MCP command sequence and
9449                          * "recovery_state" update values are seen on other
9450                          * CPUs.
9451                          */
9452                         smp_mb();
9453                         break;
9454
9455                 case BNX2X_RECOVERY_WAIT:
9456                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9457                         if (bp->is_leader) {
9458                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9459                                 bool other_load_status =
9460                                         bnx2x_get_load_status(bp, other_engine);
9461                                 bool load_status =
9462                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9463                                 global = bnx2x_reset_is_global(bp);
9464
9465                                 /*
9466                                  * In case of a parity in a global block, let
9467                                  * the first leader that performs a
9468                                  * leader_reset() reset the global blocks in
9469                                  * order to clear global attentions. Otherwise
9470                                  * the gates will remain closed for that
9471                                  * engine.
9472                                  */
9473                                 if (load_status ||
9474                                     (global && other_load_status)) {
9475                                         /* Wait until all other functions get
9476                                          * down.
9477                                          */
9478                                         schedule_delayed_work(&bp->sp_rtnl_task,
9479                                                                 HZ/10);
9480                                         return;
9481                                 } else {
9482                                         /* If all other functions got down -
9483                                          * try to bring the chip back to
9484                                          * normal. In any case it's an exit
9485                                          * point for a leader.
9486                                          */
9487                                         if (bnx2x_leader_reset(bp)) {
9488                                                 bnx2x_recovery_failed(bp);
9489                                                 return;
9490                                         }
9491
9492                                         /* If we are here, means that the
9493                                          * leader has succeeded and doesn't
9494                                          * want to be a leader any more. Try
9495                                          * to continue as a none-leader.
9496                                          */
9497                                         break;
9498                                 }
9499                         } else { /* non-leader */
9500                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9501                                         /* Try to get a LEADER_LOCK HW lock as
9502                                          * long as a former leader may have
9503                                          * been unloaded by the user or
9504                                          * released a leadership by another
9505                                          * reason.
9506                                          */
9507                                         if (bnx2x_trylock_leader_lock(bp)) {
9508                                                 /* I'm a leader now! Restart a
9509                                                  * switch case.
9510                                                  */
9511                                                 bp->is_leader = 1;
9512                                                 break;
9513                                         }
9514
9515                                         schedule_delayed_work(&bp->sp_rtnl_task,
9516                                                                 HZ/10);
9517                                         return;
9518
9519                                 } else {
9520                                         /*
9521                                          * If there was a global attention, wait
9522                                          * for it to be cleared.
9523                                          */
9524                                         if (bnx2x_reset_is_global(bp)) {
9525                                                 schedule_delayed_work(
9526                                                         &bp->sp_rtnl_task,
9527                                                         HZ/10);
9528                                                 return;
9529                                         }
9530
9531                                         error_recovered =
9532                                           bp->eth_stats.recoverable_error;
9533                                         error_unrecovered =
9534                                           bp->eth_stats.unrecoverable_error;
9535                                         bp->recovery_state =
9536                                                 BNX2X_RECOVERY_NIC_LOADING;
9537                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9538                                                 error_unrecovered++;
9539                                                 netdev_err(bp->dev,
9540                                                            "Recovery failed. Power cycle needed\n");
9541                                                 /* Disconnect this device */
9542                                                 netif_device_detach(bp->dev);
9543                                                 /* Shut down the power */
9544                                                 bnx2x_set_power_state(
9545                                                         bp, PCI_D3hot);
9546                                                 smp_mb();
9547                                         } else {
9548                                                 bp->recovery_state =
9549                                                         BNX2X_RECOVERY_DONE;
9550                                                 error_recovered++;
9551                                                 smp_mb();
9552                                         }
9553                                         bp->eth_stats.recoverable_error =
9554                                                 error_recovered;
9555                                         bp->eth_stats.unrecoverable_error =
9556                                                 error_unrecovered;
9557
9558                                         return;
9559                                 }
9560                         }
9561                 default:
9562                         return;
9563                 }
9564         }
9565 }
9566
9567 static int bnx2x_close(struct net_device *dev);
9568
9569 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9570  * scheduled on a general queue in order to prevent a dead lock.
9571  */
9572 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9573 {
9574         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9575
9576         rtnl_lock();
9577
9578         if (!netif_running(bp->dev)) {
9579                 rtnl_unlock();
9580                 return;
9581         }
9582
9583         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9584 #ifdef BNX2X_STOP_ON_ERROR
9585                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9586                           "you will need to reboot when done\n");
9587                 goto sp_rtnl_not_reset;
9588 #endif
9589                 /*
9590                  * Clear all pending SP commands as we are going to reset the
9591                  * function anyway.
9592                  */
9593                 bp->sp_rtnl_state = 0;
9594                 smp_mb();
9595
9596                 bnx2x_parity_recover(bp);
9597
9598                 rtnl_unlock();
9599                 return;
9600         }
9601
9602         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9603 #ifdef BNX2X_STOP_ON_ERROR
9604                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9605                           "you will need to reboot when done\n");
9606                 goto sp_rtnl_not_reset;
9607 #endif
9608
9609                 /*
9610                  * Clear all pending SP commands as we are going to reset the
9611                  * function anyway.
9612                  */
9613                 bp->sp_rtnl_state = 0;
9614                 smp_mb();
9615
9616                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9617                 bnx2x_nic_load(bp, LOAD_NORMAL);
9618
9619                 rtnl_unlock();
9620                 return;
9621         }
9622 #ifdef BNX2X_STOP_ON_ERROR
9623 sp_rtnl_not_reset:
9624 #endif
9625         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9626                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9627         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9628                 bnx2x_after_function_update(bp);
9629         /*
9630          * in case of fan failure we need to reset id if the "stop on error"
9631          * debug flag is set, since we trying to prevent permanent overheating
9632          * damage
9633          */
9634         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9635                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9636                 netif_device_detach(bp->dev);
9637                 bnx2x_close(bp->dev);
9638                 rtnl_unlock();
9639                 return;
9640         }
9641
9642         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9643                 DP(BNX2X_MSG_SP,
9644                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9645                 bnx2x_vfpf_set_mcast(bp->dev);
9646         }
9647         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9648                                &bp->sp_rtnl_state)){
9649                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9650                         bnx2x_tx_disable(bp);
9651                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9652                 }
9653         }
9654
9655         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9656                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9657                 bnx2x_set_rx_mode_inner(bp);
9658         }
9659
9660         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9661                                &bp->sp_rtnl_state))
9662                 bnx2x_pf_set_vfs_vlan(bp);
9663
9664         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state))
9665                 bnx2x_dcbx_stop_hw_tx(bp);
9666
9667         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state))
9668                 bnx2x_dcbx_resume_hw_tx(bp);
9669
9670         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9671          * can be called from other contexts as well)
9672          */
9673         rtnl_unlock();
9674
9675         /* enable SR-IOV if applicable */
9676         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9677                                                &bp->sp_rtnl_state)) {
9678                 bnx2x_disable_sriov(bp);
9679                 bnx2x_enable_sriov(bp);
9680         }
9681 }
9682
9683 static void bnx2x_period_task(struct work_struct *work)
9684 {
9685         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9686
9687         if (!netif_running(bp->dev))
9688                 goto period_task_exit;
9689
9690         if (CHIP_REV_IS_SLOW(bp)) {
9691                 BNX2X_ERR("period task called on emulation, ignoring\n");
9692                 goto period_task_exit;
9693         }
9694
9695         bnx2x_acquire_phy_lock(bp);
9696         /*
9697          * The barrier is needed to ensure the ordering between the writing to
9698          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9699          * the reading here.
9700          */
9701         smp_mb();
9702         if (bp->port.pmf) {
9703                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9704
9705                 /* Re-queue task in 1 sec */
9706                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9707         }
9708
9709         bnx2x_release_phy_lock(bp);
9710 period_task_exit:
9711         return;
9712 }
9713
9714 /*
9715  * Init service functions
9716  */
9717
9718 u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9719 {
9720         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9721         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9722         return base + (BP_ABS_FUNC(bp)) * stride;
9723 }
9724
9725 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9726                                         struct bnx2x_mac_vals *vals)
9727 {
9728         u32 val, base_addr, offset, mask, reset_reg;
9729         bool mac_stopped = false;
9730         u8 port = BP_PORT(bp);
9731
9732         /* reset addresses as they also mark which values were changed */
9733         vals->bmac_addr = 0;
9734         vals->umac_addr = 0;
9735         vals->xmac_addr = 0;
9736         vals->emac_addr = 0;
9737
9738         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9739
9740         if (!CHIP_IS_E3(bp)) {
9741                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9742                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9743                 if ((mask & reset_reg) && val) {
9744                         u32 wb_data[2];
9745                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9746                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9747                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9748                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9749                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9750
9751                         /*
9752                          * use rd/wr since we cannot use dmae. This is safe
9753                          * since MCP won't access the bus due to the request
9754                          * to unload, and no function on the path can be
9755                          * loaded at this time.
9756                          */
9757                         wb_data[0] = REG_RD(bp, base_addr + offset);
9758                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9759                         vals->bmac_addr = base_addr + offset;
9760                         vals->bmac_val[0] = wb_data[0];
9761                         vals->bmac_val[1] = wb_data[1];
9762                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9763                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
9764                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
9765                 }
9766                 BNX2X_DEV_INFO("Disable emac Rx\n");
9767                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
9768                 vals->emac_val = REG_RD(bp, vals->emac_addr);
9769                 REG_WR(bp, vals->emac_addr, 0);
9770                 mac_stopped = true;
9771         } else {
9772                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9773                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9774                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9775                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9776                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9777                                val & ~(1 << 1));
9778                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9779                                val | (1 << 1));
9780                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9781                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
9782                         REG_WR(bp, vals->xmac_addr, 0);
9783                         mac_stopped = true;
9784                 }
9785                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9786                 if (mask & reset_reg) {
9787                         BNX2X_DEV_INFO("Disable umac Rx\n");
9788                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9789                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9790                         vals->umac_val = REG_RD(bp, vals->umac_addr);
9791                         REG_WR(bp, vals->umac_addr, 0);
9792                         mac_stopped = true;
9793                 }
9794         }
9795
9796         if (mac_stopped)
9797                 msleep(20);
9798 }
9799
9800 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9801 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9802 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9803 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9804
9805 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9806 {
9807         u16 rcq, bd;
9808         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9809
9810         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9811         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9812
9813         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9814         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9815
9816         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9817                        port, bd, rcq);
9818 }
9819
9820 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9821 {
9822         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9823                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9824         if (!rc) {
9825                 BNX2X_ERR("MCP response failure, aborting\n");
9826                 return -EBUSY;
9827         }
9828
9829         return 0;
9830 }
9831
9832 static struct bnx2x_prev_path_list *
9833                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
9834 {
9835         struct bnx2x_prev_path_list *tmp_list;
9836
9837         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9838                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9839                     bp->pdev->bus->number == tmp_list->bus &&
9840                     BP_PATH(bp) == tmp_list->path)
9841                         return tmp_list;
9842
9843         return NULL;
9844 }
9845
9846 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
9847 {
9848         struct bnx2x_prev_path_list *tmp_list;
9849         int rc;
9850
9851         rc = down_interruptible(&bnx2x_prev_sem);
9852         if (rc) {
9853                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9854                 return rc;
9855         }
9856
9857         tmp_list = bnx2x_prev_path_get_entry(bp);
9858         if (tmp_list) {
9859                 tmp_list->aer = 1;
9860                 rc = 0;
9861         } else {
9862                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
9863                           BP_PATH(bp));
9864         }
9865
9866         up(&bnx2x_prev_sem);
9867
9868         return rc;
9869 }
9870
9871 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9872 {
9873         struct bnx2x_prev_path_list *tmp_list;
9874         int rc = false;
9875
9876         if (down_trylock(&bnx2x_prev_sem))
9877                 return false;
9878
9879         tmp_list = bnx2x_prev_path_get_entry(bp);
9880         if (tmp_list) {
9881                 if (tmp_list->aer) {
9882                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
9883                            BP_PATH(bp));
9884                 } else {
9885                         rc = true;
9886                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9887                                        BP_PATH(bp));
9888                 }
9889         }
9890
9891         up(&bnx2x_prev_sem);
9892
9893         return rc;
9894 }
9895
9896 bool bnx2x_port_after_undi(struct bnx2x *bp)
9897 {
9898         struct bnx2x_prev_path_list *entry;
9899         bool val;
9900
9901         down(&bnx2x_prev_sem);
9902
9903         entry = bnx2x_prev_path_get_entry(bp);
9904         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
9905
9906         up(&bnx2x_prev_sem);
9907
9908         return val;
9909 }
9910
9911 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9912 {
9913         struct bnx2x_prev_path_list *tmp_list;
9914         int rc;
9915
9916         rc = down_interruptible(&bnx2x_prev_sem);
9917         if (rc) {
9918                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9919                 return rc;
9920         }
9921
9922         /* Check whether the entry for this path already exists */
9923         tmp_list = bnx2x_prev_path_get_entry(bp);
9924         if (tmp_list) {
9925                 if (!tmp_list->aer) {
9926                         BNX2X_ERR("Re-Marking the path.\n");
9927                 } else {
9928                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
9929                            BP_PATH(bp));
9930                         tmp_list->aer = 0;
9931                 }
9932                 up(&bnx2x_prev_sem);
9933                 return 0;
9934         }
9935         up(&bnx2x_prev_sem);
9936
9937         /* Create an entry for this path and add it */
9938         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9939         if (!tmp_list) {
9940                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9941                 return -ENOMEM;
9942         }
9943
9944         tmp_list->bus = bp->pdev->bus->number;
9945         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9946         tmp_list->path = BP_PATH(bp);
9947         tmp_list->aer = 0;
9948         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9949
9950         rc = down_interruptible(&bnx2x_prev_sem);
9951         if (rc) {
9952                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9953                 kfree(tmp_list);
9954         } else {
9955                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
9956                    BP_PATH(bp));
9957                 list_add(&tmp_list->list, &bnx2x_prev_list);
9958                 up(&bnx2x_prev_sem);
9959         }
9960
9961         return rc;
9962 }
9963
9964 static int bnx2x_do_flr(struct bnx2x *bp)
9965 {
9966         struct pci_dev *dev = bp->pdev;
9967
9968         if (CHIP_IS_E1x(bp)) {
9969                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9970                 return -EINVAL;
9971         }
9972
9973         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9974         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9975                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9976                           bp->common.bc_ver);
9977                 return -EINVAL;
9978         }
9979
9980         if (!pci_wait_for_pending_transaction(dev))
9981                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
9982
9983         BNX2X_DEV_INFO("Initiating FLR\n");
9984         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9985
9986         return 0;
9987 }
9988
9989 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9990 {
9991         int rc;
9992
9993         BNX2X_DEV_INFO("Uncommon unload Flow\n");
9994
9995         /* Test if previous unload process was already finished for this path */
9996         if (bnx2x_prev_is_path_marked(bp))
9997                 return bnx2x_prev_mcp_done(bp);
9998
9999         BNX2X_DEV_INFO("Path is unmarked\n");
10000
10001         /* If function has FLR capabilities, and existing FW version matches
10002          * the one required, then FLR will be sufficient to clean any residue
10003          * left by previous driver
10004          */
10005         rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
10006
10007         if (!rc) {
10008                 /* fw version is good */
10009                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10010                 rc = bnx2x_do_flr(bp);
10011         }
10012
10013         if (!rc) {
10014                 /* FLR was performed */
10015                 BNX2X_DEV_INFO("FLR successful\n");
10016                 return 0;
10017         }
10018
10019         BNX2X_DEV_INFO("Could not FLR\n");
10020
10021         /* Close the MCP request, return failure*/
10022         rc = bnx2x_prev_mcp_done(bp);
10023         if (!rc)
10024                 rc = BNX2X_PREV_WAIT_NEEDED;
10025
10026         return rc;
10027 }
10028
10029 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10030 {
10031         u32 reset_reg, tmp_reg = 0, rc;
10032         bool prev_undi = false;
10033         struct bnx2x_mac_vals mac_vals;
10034
10035         /* It is possible a previous function received 'common' answer,
10036          * but hasn't loaded yet, therefore creating a scenario of
10037          * multiple functions receiving 'common' on the same path.
10038          */
10039         BNX2X_DEV_INFO("Common unload Flow\n");
10040
10041         memset(&mac_vals, 0, sizeof(mac_vals));
10042
10043         if (bnx2x_prev_is_path_marked(bp))
10044                 return bnx2x_prev_mcp_done(bp);
10045
10046         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10047
10048         /* Reset should be performed after BRB is emptied */
10049         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10050                 u32 timer_count = 1000;
10051
10052                 /* Close the MAC Rx to prevent BRB from filling up */
10053                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10054
10055                 /* close LLH filters towards the BRB */
10056                 bnx2x_set_rx_filter(&bp->link_params, 0);
10057
10058                 /* Check if the UNDI driver was previously loaded
10059                  * UNDI driver initializes CID offset for normal bell to 0x7
10060                  */
10061                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10062                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10063                         if (tmp_reg == 0x7) {
10064                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10065                                 prev_undi = true;
10066                                 /* clear the UNDI indication */
10067                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10068                                 /* clear possible idle check errors */
10069                                 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10070                         }
10071                 }
10072                 if (!CHIP_IS_E1x(bp))
10073                         /* block FW from writing to host */
10074                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10075
10076                 /* wait until BRB is empty */
10077                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10078                 while (timer_count) {
10079                         u32 prev_brb = tmp_reg;
10080
10081                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10082                         if (!tmp_reg)
10083                                 break;
10084
10085                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10086
10087                         /* reset timer as long as BRB actually gets emptied */
10088                         if (prev_brb > tmp_reg)
10089                                 timer_count = 1000;
10090                         else
10091                                 timer_count--;
10092
10093                         /* If UNDI resides in memory, manually increment it */
10094                         if (prev_undi)
10095                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10096
10097                         udelay(10);
10098                 }
10099
10100                 if (!timer_count)
10101                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10102         }
10103
10104         /* No packets are in the pipeline, path is ready for reset */
10105         bnx2x_reset_common(bp);
10106
10107         if (mac_vals.xmac_addr)
10108                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10109         if (mac_vals.umac_addr)
10110                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10111         if (mac_vals.emac_addr)
10112                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10113         if (mac_vals.bmac_addr) {
10114                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10115                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10116         }
10117
10118         rc = bnx2x_prev_mark_path(bp, prev_undi);
10119         if (rc) {
10120                 bnx2x_prev_mcp_done(bp);
10121                 return rc;
10122         }
10123
10124         return bnx2x_prev_mcp_done(bp);
10125 }
10126
10127 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10128  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10129  * the addresses of the transaction, resulting in was-error bit set in the pci
10130  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10131  * to clear the interrupt which detected this from the pglueb and the was done
10132  * bit
10133  */
10134 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10135 {
10136         if (!CHIP_IS_E1x(bp)) {
10137                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10138                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10139                         DP(BNX2X_MSG_SP,
10140                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10141                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10142                                1 << BP_FUNC(bp));
10143                 }
10144         }
10145 }
10146
10147 static int bnx2x_prev_unload(struct bnx2x *bp)
10148 {
10149         int time_counter = 10;
10150         u32 rc, fw, hw_lock_reg, hw_lock_val;
10151         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10152
10153         /* clear hw from errors which may have resulted from an interrupted
10154          * dmae transaction.
10155          */
10156         bnx2x_prev_interrupted_dmae(bp);
10157
10158         /* Release previously held locks */
10159         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10160                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10161                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10162
10163         hw_lock_val = REG_RD(bp, hw_lock_reg);
10164         if (hw_lock_val) {
10165                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10166                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10167                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10168                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10169                 }
10170
10171                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10172                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10173         } else
10174                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10175
10176         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10177                 BNX2X_DEV_INFO("Release previously held alr\n");
10178                 bnx2x_release_alr(bp);
10179         }
10180
10181         do {
10182                 int aer = 0;
10183                 /* Lock MCP using an unload request */
10184                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10185                 if (!fw) {
10186                         BNX2X_ERR("MCP response failure, aborting\n");
10187                         rc = -EBUSY;
10188                         break;
10189                 }
10190
10191                 rc = down_interruptible(&bnx2x_prev_sem);
10192                 if (rc) {
10193                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10194                                   rc);
10195                 } else {
10196                         /* If Path is marked by EEH, ignore unload status */
10197                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10198                                  bnx2x_prev_path_get_entry(bp)->aer);
10199                         up(&bnx2x_prev_sem);
10200                 }
10201
10202                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10203                         rc = bnx2x_prev_unload_common(bp);
10204                         break;
10205                 }
10206
10207                 /* non-common reply from MCP might require looping */
10208                 rc = bnx2x_prev_unload_uncommon(bp);
10209                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10210                         break;
10211
10212                 msleep(20);
10213         } while (--time_counter);
10214
10215         if (!time_counter || rc) {
10216                 BNX2X_ERR("Failed unloading previous driver, aborting\n");
10217                 rc = -EBUSY;
10218         }
10219
10220         /* Mark function if its port was used to boot from SAN */
10221         if (bnx2x_port_after_undi(bp))
10222                 bp->link_params.feature_config_flags |=
10223                         FEATURE_CONFIG_BOOT_FROM_SAN;
10224
10225         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10226
10227         return rc;
10228 }
10229
10230 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10231 {
10232         u32 val, val2, val3, val4, id, boot_mode;
10233         u16 pmc;
10234
10235         /* Get the chip revision id and number. */
10236         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10237         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10238         id = ((val & 0xffff) << 16);
10239         val = REG_RD(bp, MISC_REG_CHIP_REV);
10240         id |= ((val & 0xf) << 12);
10241
10242         /* Metal is read from PCI regs, but we can't access >=0x400 from
10243          * the configuration space (so we need to reg_rd)
10244          */
10245         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10246         id |= (((val >> 24) & 0xf) << 4);
10247         val = REG_RD(bp, MISC_REG_BOND_ID);
10248         id |= (val & 0xf);
10249         bp->common.chip_id = id;
10250
10251         /* force 57811 according to MISC register */
10252         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10253                 if (CHIP_IS_57810(bp))
10254                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10255                                 (bp->common.chip_id & 0x0000FFFF);
10256                 else if (CHIP_IS_57810_MF(bp))
10257                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10258                                 (bp->common.chip_id & 0x0000FFFF);
10259                 bp->common.chip_id |= 0x1;
10260         }
10261
10262         /* Set doorbell size */
10263         bp->db_size = (1 << BNX2X_DB_SHIFT);
10264
10265         if (!CHIP_IS_E1x(bp)) {
10266                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10267                 if ((val & 1) == 0)
10268                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10269                 else
10270                         val = (val >> 1) & 1;
10271                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10272                                                        "2_PORT_MODE");
10273                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10274                                                  CHIP_2_PORT_MODE;
10275
10276                 if (CHIP_MODE_IS_4_PORT(bp))
10277                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10278                 else
10279                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10280         } else {
10281                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10282                 bp->pfid = bp->pf_num;                  /* 0..7 */
10283         }
10284
10285         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10286
10287         bp->link_params.chip_id = bp->common.chip_id;
10288         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10289
10290         val = (REG_RD(bp, 0x2874) & 0x55);
10291         if ((bp->common.chip_id & 0x1) ||
10292             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10293                 bp->flags |= ONE_PORT_FLAG;
10294                 BNX2X_DEV_INFO("single port device\n");
10295         }
10296
10297         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10298         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10299                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10300         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10301                        bp->common.flash_size, bp->common.flash_size);
10302
10303         bnx2x_init_shmem(bp);
10304
10305         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10306                                         MISC_REG_GENERIC_CR_1 :
10307                                         MISC_REG_GENERIC_CR_0));
10308
10309         bp->link_params.shmem_base = bp->common.shmem_base;
10310         bp->link_params.shmem2_base = bp->common.shmem2_base;
10311         if (SHMEM2_RD(bp, size) >
10312             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10313                 bp->link_params.lfa_base =
10314                 REG_RD(bp, bp->common.shmem2_base +
10315                        (u32)offsetof(struct shmem2_region,
10316                                      lfa_host_addr[BP_PORT(bp)]));
10317         else
10318                 bp->link_params.lfa_base = 0;
10319         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10320                        bp->common.shmem_base, bp->common.shmem2_base);
10321
10322         if (!bp->common.shmem_base) {
10323                 BNX2X_DEV_INFO("MCP not active\n");
10324                 bp->flags |= NO_MCP_FLAG;
10325                 return;
10326         }
10327
10328         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10329         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10330
10331         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10332                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10333                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10334
10335         bp->link_params.feature_config_flags = 0;
10336         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10337         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10338                 bp->link_params.feature_config_flags |=
10339                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10340         else
10341                 bp->link_params.feature_config_flags &=
10342                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10343
10344         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10345         bp->common.bc_ver = val;
10346         BNX2X_DEV_INFO("bc_ver %X\n", val);
10347         if (val < BNX2X_BC_VER) {
10348                 /* for now only warn
10349                  * later we might need to enforce this */
10350                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10351                           BNX2X_BC_VER, val);
10352         }
10353         bp->link_params.feature_config_flags |=
10354                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10355                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10356
10357         bp->link_params.feature_config_flags |=
10358                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10359                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10360         bp->link_params.feature_config_flags |=
10361                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10362                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10363         bp->link_params.feature_config_flags |=
10364                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10365                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10366
10367         bp->link_params.feature_config_flags |=
10368                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10369                 FEATURE_CONFIG_MT_SUPPORT : 0;
10370
10371         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10372                         BC_SUPPORTS_PFC_STATS : 0;
10373
10374         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10375                         BC_SUPPORTS_FCOE_FEATURES : 0;
10376
10377         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10378                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10379
10380         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10381                         BC_SUPPORTS_RMMOD_CMD : 0;
10382
10383         boot_mode = SHMEM_RD(bp,
10384                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10385                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10386         switch (boot_mode) {
10387         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10388                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10389                 break;
10390         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10391                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10392                 break;
10393         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10394                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10395                 break;
10396         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10397                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10398                 break;
10399         }
10400
10401         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10402         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10403
10404         BNX2X_DEV_INFO("%sWoL capable\n",
10405                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10406
10407         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10408         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10409         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10410         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10411
10412         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10413                  val, val2, val3, val4);
10414 }
10415
10416 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10417 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10418
10419 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10420 {
10421         int pfid = BP_FUNC(bp);
10422         int igu_sb_id;
10423         u32 val;
10424         u8 fid, igu_sb_cnt = 0;
10425
10426         bp->igu_base_sb = 0xff;
10427         if (CHIP_INT_MODE_IS_BC(bp)) {
10428                 int vn = BP_VN(bp);
10429                 igu_sb_cnt = bp->igu_sb_cnt;
10430                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10431                         FP_SB_MAX_E1x;
10432
10433                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10434                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10435
10436                 return 0;
10437         }
10438
10439         /* IGU in normal mode - read CAM */
10440         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10441              igu_sb_id++) {
10442                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10443                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10444                         continue;
10445                 fid = IGU_FID(val);
10446                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10447                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10448                                 continue;
10449                         if (IGU_VEC(val) == 0)
10450                                 /* default status block */
10451                                 bp->igu_dsb_id = igu_sb_id;
10452                         else {
10453                                 if (bp->igu_base_sb == 0xff)
10454                                         bp->igu_base_sb = igu_sb_id;
10455                                 igu_sb_cnt++;
10456                         }
10457                 }
10458         }
10459
10460 #ifdef CONFIG_PCI_MSI
10461         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10462          * optional that number of CAM entries will not be equal to the value
10463          * advertised in PCI.
10464          * Driver should use the minimal value of both as the actual status
10465          * block count
10466          */
10467         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10468 #endif
10469
10470         if (igu_sb_cnt == 0) {
10471                 BNX2X_ERR("CAM configuration error\n");
10472                 return -EINVAL;
10473         }
10474
10475         return 0;
10476 }
10477
10478 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10479 {
10480         int cfg_size = 0, idx, port = BP_PORT(bp);
10481
10482         /* Aggregation of supported attributes of all external phys */
10483         bp->port.supported[0] = 0;
10484         bp->port.supported[1] = 0;
10485         switch (bp->link_params.num_phys) {
10486         case 1:
10487                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10488                 cfg_size = 1;
10489                 break;
10490         case 2:
10491                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10492                 cfg_size = 1;
10493                 break;
10494         case 3:
10495                 if (bp->link_params.multi_phy_config &
10496                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10497                         bp->port.supported[1] =
10498                                 bp->link_params.phy[EXT_PHY1].supported;
10499                         bp->port.supported[0] =
10500                                 bp->link_params.phy[EXT_PHY2].supported;
10501                 } else {
10502                         bp->port.supported[0] =
10503                                 bp->link_params.phy[EXT_PHY1].supported;
10504                         bp->port.supported[1] =
10505                                 bp->link_params.phy[EXT_PHY2].supported;
10506                 }
10507                 cfg_size = 2;
10508                 break;
10509         }
10510
10511         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10512                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10513                            SHMEM_RD(bp,
10514                            dev_info.port_hw_config[port].external_phy_config),
10515                            SHMEM_RD(bp,
10516                            dev_info.port_hw_config[port].external_phy_config2));
10517                         return;
10518         }
10519
10520         if (CHIP_IS_E3(bp))
10521                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10522         else {
10523                 switch (switch_cfg) {
10524                 case SWITCH_CFG_1G:
10525                         bp->port.phy_addr = REG_RD(
10526                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10527                         break;
10528                 case SWITCH_CFG_10G:
10529                         bp->port.phy_addr = REG_RD(
10530                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10531                         break;
10532                 default:
10533                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10534                                   bp->port.link_config[0]);
10535                         return;
10536                 }
10537         }
10538         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10539         /* mask what we support according to speed_cap_mask per configuration */
10540         for (idx = 0; idx < cfg_size; idx++) {
10541                 if (!(bp->link_params.speed_cap_mask[idx] &
10542                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10543                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10544
10545                 if (!(bp->link_params.speed_cap_mask[idx] &
10546                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10547                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10548
10549                 if (!(bp->link_params.speed_cap_mask[idx] &
10550                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10551                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10552
10553                 if (!(bp->link_params.speed_cap_mask[idx] &
10554                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10555                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10556
10557                 if (!(bp->link_params.speed_cap_mask[idx] &
10558                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10559                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10560                                                      SUPPORTED_1000baseT_Full);
10561
10562                 if (!(bp->link_params.speed_cap_mask[idx] &
10563                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10564                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10565
10566                 if (!(bp->link_params.speed_cap_mask[idx] &
10567                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10568                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10569
10570                 if (!(bp->link_params.speed_cap_mask[idx] &
10571                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10572                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10573         }
10574
10575         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10576                        bp->port.supported[1]);
10577 }
10578
10579 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10580 {
10581         u32 link_config, idx, cfg_size = 0;
10582         bp->port.advertising[0] = 0;
10583         bp->port.advertising[1] = 0;
10584         switch (bp->link_params.num_phys) {
10585         case 1:
10586         case 2:
10587                 cfg_size = 1;
10588                 break;
10589         case 3:
10590                 cfg_size = 2;
10591                 break;
10592         }
10593         for (idx = 0; idx < cfg_size; idx++) {
10594                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10595                 link_config = bp->port.link_config[idx];
10596                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10597                 case PORT_FEATURE_LINK_SPEED_AUTO:
10598                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10599                                 bp->link_params.req_line_speed[idx] =
10600                                         SPEED_AUTO_NEG;
10601                                 bp->port.advertising[idx] |=
10602                                         bp->port.supported[idx];
10603                                 if (bp->link_params.phy[EXT_PHY1].type ==
10604                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10605                                         bp->port.advertising[idx] |=
10606                                         (SUPPORTED_100baseT_Half |
10607                                          SUPPORTED_100baseT_Full);
10608                         } else {
10609                                 /* force 10G, no AN */
10610                                 bp->link_params.req_line_speed[idx] =
10611                                         SPEED_10000;
10612                                 bp->port.advertising[idx] |=
10613                                         (ADVERTISED_10000baseT_Full |
10614                                          ADVERTISED_FIBRE);
10615                                 continue;
10616                         }
10617                         break;
10618
10619                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10620                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10621                                 bp->link_params.req_line_speed[idx] =
10622                                         SPEED_10;
10623                                 bp->port.advertising[idx] |=
10624                                         (ADVERTISED_10baseT_Full |
10625                                          ADVERTISED_TP);
10626                         } else {
10627                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10628                                             link_config,
10629                                     bp->link_params.speed_cap_mask[idx]);
10630                                 return;
10631                         }
10632                         break;
10633
10634                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10635                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10636                                 bp->link_params.req_line_speed[idx] =
10637                                         SPEED_10;
10638                                 bp->link_params.req_duplex[idx] =
10639                                         DUPLEX_HALF;
10640                                 bp->port.advertising[idx] |=
10641                                         (ADVERTISED_10baseT_Half |
10642                                          ADVERTISED_TP);
10643                         } else {
10644                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10645                                             link_config,
10646                                           bp->link_params.speed_cap_mask[idx]);
10647                                 return;
10648                         }
10649                         break;
10650
10651                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10652                         if (bp->port.supported[idx] &
10653                             SUPPORTED_100baseT_Full) {
10654                                 bp->link_params.req_line_speed[idx] =
10655                                         SPEED_100;
10656                                 bp->port.advertising[idx] |=
10657                                         (ADVERTISED_100baseT_Full |
10658                                          ADVERTISED_TP);
10659                         } else {
10660                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10661                                             link_config,
10662                                           bp->link_params.speed_cap_mask[idx]);
10663                                 return;
10664                         }
10665                         break;
10666
10667                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10668                         if (bp->port.supported[idx] &
10669                             SUPPORTED_100baseT_Half) {
10670                                 bp->link_params.req_line_speed[idx] =
10671                                                                 SPEED_100;
10672                                 bp->link_params.req_duplex[idx] =
10673                                                                 DUPLEX_HALF;
10674                                 bp->port.advertising[idx] |=
10675                                         (ADVERTISED_100baseT_Half |
10676                                          ADVERTISED_TP);
10677                         } else {
10678                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10679                                     link_config,
10680                                     bp->link_params.speed_cap_mask[idx]);
10681                                 return;
10682                         }
10683                         break;
10684
10685                 case PORT_FEATURE_LINK_SPEED_1G:
10686                         if (bp->port.supported[idx] &
10687                             SUPPORTED_1000baseT_Full) {
10688                                 bp->link_params.req_line_speed[idx] =
10689                                         SPEED_1000;
10690                                 bp->port.advertising[idx] |=
10691                                         (ADVERTISED_1000baseT_Full |
10692                                          ADVERTISED_TP);
10693                         } else {
10694                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10695                                     link_config,
10696                                     bp->link_params.speed_cap_mask[idx]);
10697                                 return;
10698                         }
10699                         break;
10700
10701                 case PORT_FEATURE_LINK_SPEED_2_5G:
10702                         if (bp->port.supported[idx] &
10703                             SUPPORTED_2500baseX_Full) {
10704                                 bp->link_params.req_line_speed[idx] =
10705                                         SPEED_2500;
10706                                 bp->port.advertising[idx] |=
10707                                         (ADVERTISED_2500baseX_Full |
10708                                                 ADVERTISED_TP);
10709                         } else {
10710                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10711                                     link_config,
10712                                     bp->link_params.speed_cap_mask[idx]);
10713                                 return;
10714                         }
10715                         break;
10716
10717                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10718                         if (bp->port.supported[idx] &
10719                             SUPPORTED_10000baseT_Full) {
10720                                 bp->link_params.req_line_speed[idx] =
10721                                         SPEED_10000;
10722                                 bp->port.advertising[idx] |=
10723                                         (ADVERTISED_10000baseT_Full |
10724                                                 ADVERTISED_FIBRE);
10725                         } else {
10726                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10727                                     link_config,
10728                                     bp->link_params.speed_cap_mask[idx]);
10729                                 return;
10730                         }
10731                         break;
10732                 case PORT_FEATURE_LINK_SPEED_20G:
10733                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10734
10735                         break;
10736                 default:
10737                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10738                                   link_config);
10739                                 bp->link_params.req_line_speed[idx] =
10740                                                         SPEED_AUTO_NEG;
10741                                 bp->port.advertising[idx] =
10742                                                 bp->port.supported[idx];
10743                         break;
10744                 }
10745
10746                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10747                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10748                 if (bp->link_params.req_flow_ctrl[idx] ==
10749                     BNX2X_FLOW_CTRL_AUTO) {
10750                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10751                                 bp->link_params.req_flow_ctrl[idx] =
10752                                                         BNX2X_FLOW_CTRL_NONE;
10753                         else
10754                                 bnx2x_set_requested_fc(bp);
10755                 }
10756
10757                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10758                                bp->link_params.req_line_speed[idx],
10759                                bp->link_params.req_duplex[idx],
10760                                bp->link_params.req_flow_ctrl[idx],
10761                                bp->port.advertising[idx]);
10762         }
10763 }
10764
10765 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10766 {
10767         __be16 mac_hi_be = cpu_to_be16(mac_hi);
10768         __be32 mac_lo_be = cpu_to_be32(mac_lo);
10769         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
10770         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
10771 }
10772
10773 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10774 {
10775         int port = BP_PORT(bp);
10776         u32 config;
10777         u32 ext_phy_type, ext_phy_config, eee_mode;
10778
10779         bp->link_params.bp = bp;
10780         bp->link_params.port = port;
10781
10782         bp->link_params.lane_config =
10783                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10784
10785         bp->link_params.speed_cap_mask[0] =
10786                 SHMEM_RD(bp,
10787                          dev_info.port_hw_config[port].speed_capability_mask) &
10788                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10789         bp->link_params.speed_cap_mask[1] =
10790                 SHMEM_RD(bp,
10791                          dev_info.port_hw_config[port].speed_capability_mask2) &
10792                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
10793         bp->port.link_config[0] =
10794                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10795
10796         bp->port.link_config[1] =
10797                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10798
10799         bp->link_params.multi_phy_config =
10800                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10801         /* If the device is capable of WoL, set the default state according
10802          * to the HW
10803          */
10804         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10805         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10806                    (config & PORT_FEATURE_WOL_ENABLED));
10807
10808         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10809             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
10810                 bp->flags |= NO_ISCSI_FLAG;
10811         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
10812             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
10813                 bp->flags |= NO_FCOE_FLAG;
10814
10815         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10816                        bp->link_params.lane_config,
10817                        bp->link_params.speed_cap_mask[0],
10818                        bp->port.link_config[0]);
10819
10820         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10821                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10822         bnx2x_phy_probe(&bp->link_params);
10823         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10824
10825         bnx2x_link_settings_requested(bp);
10826
10827         /*
10828          * If connected directly, work with the internal PHY, otherwise, work
10829          * with the external PHY
10830          */
10831         ext_phy_config =
10832                 SHMEM_RD(bp,
10833                          dev_info.port_hw_config[port].external_phy_config);
10834         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10835         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10836                 bp->mdio.prtad = bp->port.phy_addr;
10837
10838         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10839                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10840                 bp->mdio.prtad =
10841                         XGXS_EXT_PHY_ADDR(ext_phy_config);
10842
10843         /* Configure link feature according to nvram value */
10844         eee_mode = (((SHMEM_RD(bp, dev_info.
10845                       port_feature_config[port].eee_power_mode)) &
10846                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10847                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10848         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10849                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10850                                            EEE_MODE_ENABLE_LPI |
10851                                            EEE_MODE_OUTPUT_TIME;
10852         } else {
10853                 bp->link_params.eee_mode = 0;
10854         }
10855 }
10856
10857 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10858 {
10859         u32 no_flags = NO_ISCSI_FLAG;
10860         int port = BP_PORT(bp);
10861         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10862                                 drv_lic_key[port].max_iscsi_conn);
10863
10864         if (!CNIC_SUPPORT(bp)) {
10865                 bp->flags |= no_flags;
10866                 return;
10867         }
10868
10869         /* Get the number of maximum allowed iSCSI connections */
10870         bp->cnic_eth_dev.max_iscsi_conn =
10871                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10872                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10873
10874         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10875                        bp->cnic_eth_dev.max_iscsi_conn);
10876
10877         /*
10878          * If maximum allowed number of connections is zero -
10879          * disable the feature.
10880          */
10881         if (!bp->cnic_eth_dev.max_iscsi_conn)
10882                 bp->flags |= no_flags;
10883 }
10884
10885 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10886 {
10887         /* Port info */
10888         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10889                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10890         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10891                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10892
10893         /* Node info */
10894         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10895                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10896         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10897                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10898 }
10899
10900 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
10901 {
10902         u8 count = 0;
10903
10904         if (IS_MF(bp)) {
10905                 u8 fid;
10906
10907                 /* iterate over absolute function ids for this path: */
10908                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
10909                         if (IS_MF_SD(bp)) {
10910                                 u32 cfg = MF_CFG_RD(bp,
10911                                                     func_mf_config[fid].config);
10912
10913                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
10914                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
10915                                             FUNC_MF_CFG_PROTOCOL_FCOE))
10916                                         count++;
10917                         } else {
10918                                 u32 cfg = MF_CFG_RD(bp,
10919                                                     func_ext_config[fid].
10920                                                                       func_cfg);
10921
10922                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
10923                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
10924                                         count++;
10925                         }
10926                 }
10927         } else { /* SF */
10928                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
10929
10930                 for (port = 0; port < port_cnt; port++) {
10931                         u32 lic = SHMEM_RD(bp,
10932                                            drv_lic_key[port].max_fcoe_conn) ^
10933                                   FW_ENCODE_32BIT_PATTERN;
10934                         if (lic)
10935                                 count++;
10936                 }
10937         }
10938
10939         return count;
10940 }
10941
10942 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10943 {
10944         int port = BP_PORT(bp);
10945         int func = BP_ABS_FUNC(bp);
10946         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10947                                 drv_lic_key[port].max_fcoe_conn);
10948         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
10949
10950         if (!CNIC_SUPPORT(bp)) {
10951                 bp->flags |= NO_FCOE_FLAG;
10952                 return;
10953         }
10954
10955         /* Get the number of maximum allowed FCoE connections */
10956         bp->cnic_eth_dev.max_fcoe_conn =
10957                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10958                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10959
10960         /* Calculate the number of maximum allowed FCoE tasks */
10961         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
10962
10963         /* check if FCoE resources must be shared between different functions */
10964         if (num_fcoe_func)
10965                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
10966
10967         /* Read the WWN: */
10968         if (!IS_MF(bp)) {
10969                 /* Port info */
10970                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10971                         SHMEM_RD(bp,
10972                                  dev_info.port_hw_config[port].
10973                                  fcoe_wwn_port_name_upper);
10974                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10975                         SHMEM_RD(bp,
10976                                  dev_info.port_hw_config[port].
10977                                  fcoe_wwn_port_name_lower);
10978
10979                 /* Node info */
10980                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10981                         SHMEM_RD(bp,
10982                                  dev_info.port_hw_config[port].
10983                                  fcoe_wwn_node_name_upper);
10984                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10985                         SHMEM_RD(bp,
10986                                  dev_info.port_hw_config[port].
10987                                  fcoe_wwn_node_name_lower);
10988         } else if (!IS_MF_SD(bp)) {
10989                 /*
10990                  * Read the WWN info only if the FCoE feature is enabled for
10991                  * this function.
10992                  */
10993                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10994                         bnx2x_get_ext_wwn_info(bp, func);
10995
10996         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10997                 bnx2x_get_ext_wwn_info(bp, func);
10998         }
10999
11000         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11001
11002         /*
11003          * If maximum allowed number of connections is zero -
11004          * disable the feature.
11005          */
11006         if (!bp->cnic_eth_dev.max_fcoe_conn)
11007                 bp->flags |= NO_FCOE_FLAG;
11008 }
11009
11010 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11011 {
11012         /*
11013          * iSCSI may be dynamically disabled but reading
11014          * info here we will decrease memory usage by driver
11015          * if the feature is disabled for good
11016          */
11017         bnx2x_get_iscsi_info(bp);
11018         bnx2x_get_fcoe_info(bp);
11019 }
11020
11021 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11022 {
11023         u32 val, val2;
11024         int func = BP_ABS_FUNC(bp);
11025         int port = BP_PORT(bp);
11026         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11027         u8 *fip_mac = bp->fip_mac;
11028
11029         if (IS_MF(bp)) {
11030                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11031                  * FCoE MAC then the appropriate feature should be disabled.
11032                  * In non SD mode features configuration comes from struct
11033                  * func_ext_config.
11034                  */
11035                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11036                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11037                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11038                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11039                                                  iscsi_mac_addr_upper);
11040                                 val = MF_CFG_RD(bp, func_ext_config[func].
11041                                                 iscsi_mac_addr_lower);
11042                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11043                                 BNX2X_DEV_INFO
11044                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11045                         } else {
11046                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11047                         }
11048
11049                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11050                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11051                                                  fcoe_mac_addr_upper);
11052                                 val = MF_CFG_RD(bp, func_ext_config[func].
11053                                                 fcoe_mac_addr_lower);
11054                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11055                                 BNX2X_DEV_INFO
11056                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11057                         } else {
11058                                 bp->flags |= NO_FCOE_FLAG;
11059                         }
11060
11061                         bp->mf_ext_config = cfg;
11062
11063                 } else { /* SD MODE */
11064                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11065                                 /* use primary mac as iscsi mac */
11066                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11067
11068                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11069                                 BNX2X_DEV_INFO
11070                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11071                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11072                                 /* use primary mac as fip mac */
11073                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11074                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11075                                 BNX2X_DEV_INFO
11076                                         ("Read FIP MAC: %pM\n", fip_mac);
11077                         }
11078                 }
11079
11080                 /* If this is a storage-only interface, use SAN mac as
11081                  * primary MAC. Notice that for SD this is already the case,
11082                  * as the SAN mac was copied from the primary MAC.
11083                  */
11084                 if (IS_MF_FCOE_AFEX(bp))
11085                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11086         } else {
11087                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11088                                 iscsi_mac_upper);
11089                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11090                                iscsi_mac_lower);
11091                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11092
11093                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11094                                 fcoe_fip_mac_upper);
11095                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11096                                fcoe_fip_mac_lower);
11097                 bnx2x_set_mac_buf(fip_mac, val, val2);
11098         }
11099
11100         /* Disable iSCSI OOO if MAC configuration is invalid. */
11101         if (!is_valid_ether_addr(iscsi_mac)) {
11102                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11103                 memset(iscsi_mac, 0, ETH_ALEN);
11104         }
11105
11106         /* Disable FCoE if MAC configuration is invalid. */
11107         if (!is_valid_ether_addr(fip_mac)) {
11108                 bp->flags |= NO_FCOE_FLAG;
11109                 memset(bp->fip_mac, 0, ETH_ALEN);
11110         }
11111 }
11112
11113 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11114 {
11115         u32 val, val2;
11116         int func = BP_ABS_FUNC(bp);
11117         int port = BP_PORT(bp);
11118
11119         /* Zero primary MAC configuration */
11120         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11121
11122         if (BP_NOMCP(bp)) {
11123                 BNX2X_ERROR("warning: random MAC workaround active\n");
11124                 eth_hw_addr_random(bp->dev);
11125         } else if (IS_MF(bp)) {
11126                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11127                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11128                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11129                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11130                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11131
11132                 if (CNIC_SUPPORT(bp))
11133                         bnx2x_get_cnic_mac_hwinfo(bp);
11134         } else {
11135                 /* in SF read MACs from port configuration */
11136                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11137                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11138                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11139
11140                 if (CNIC_SUPPORT(bp))
11141                         bnx2x_get_cnic_mac_hwinfo(bp);
11142         }
11143
11144         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11145
11146         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11147                 dev_err(&bp->pdev->dev,
11148                         "bad Ethernet MAC address configuration: %pM\n"
11149                         "change it manually before bringing up the appropriate network interface\n",
11150                         bp->dev->dev_addr);
11151 }
11152
11153 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11154 {
11155         int tmp;
11156         u32 cfg;
11157
11158         if (IS_VF(bp))
11159                 return 0;
11160
11161         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11162                 /* Take function: tmp = func */
11163                 tmp = BP_ABS_FUNC(bp);
11164                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11165                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11166         } else {
11167                 /* Take port: tmp = port */
11168                 tmp = BP_PORT(bp);
11169                 cfg = SHMEM_RD(bp,
11170                                dev_info.port_hw_config[tmp].generic_features);
11171                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11172         }
11173         return cfg;
11174 }
11175
11176 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11177 {
11178         int /*abs*/func = BP_ABS_FUNC(bp);
11179         int vn;
11180         u32 val = 0;
11181         int rc = 0;
11182
11183         bnx2x_get_common_hwinfo(bp);
11184
11185         /*
11186          * initialize IGU parameters
11187          */
11188         if (CHIP_IS_E1x(bp)) {
11189                 bp->common.int_block = INT_BLOCK_HC;
11190
11191                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11192                 bp->igu_base_sb = 0;
11193         } else {
11194                 bp->common.int_block = INT_BLOCK_IGU;
11195
11196                 /* do not allow device reset during IGU info processing */
11197                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11198
11199                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11200
11201                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11202                         int tout = 5000;
11203
11204                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11205
11206                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11207                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11208                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11209
11210                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11211                                 tout--;
11212                                 usleep_range(1000, 2000);
11213                         }
11214
11215                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11216                                 dev_err(&bp->pdev->dev,
11217                                         "FORCING Normal Mode failed!!!\n");
11218                                 bnx2x_release_hw_lock(bp,
11219                                                       HW_LOCK_RESOURCE_RESET);
11220                                 return -EPERM;
11221                         }
11222                 }
11223
11224                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11225                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11226                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11227                 } else
11228                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11229
11230                 rc = bnx2x_get_igu_cam_info(bp);
11231                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11232                 if (rc)
11233                         return rc;
11234         }
11235
11236         /*
11237          * set base FW non-default (fast path) status block id, this value is
11238          * used to initialize the fw_sb_id saved on the fp/queue structure to
11239          * determine the id used by the FW.
11240          */
11241         if (CHIP_IS_E1x(bp))
11242                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11243         else /*
11244               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11245               * the same queue are indicated on the same IGU SB). So we prefer
11246               * FW and IGU SBs to be the same value.
11247               */
11248                 bp->base_fw_ndsb = bp->igu_base_sb;
11249
11250         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11251                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11252                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11253
11254         /*
11255          * Initialize MF configuration
11256          */
11257
11258         bp->mf_ov = 0;
11259         bp->mf_mode = 0;
11260         vn = BP_VN(bp);
11261
11262         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11263                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11264                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11265                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11266
11267                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11268                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11269                 else
11270                         bp->common.mf_cfg_base = bp->common.shmem_base +
11271                                 offsetof(struct shmem_region, func_mb) +
11272                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11273                 /*
11274                  * get mf configuration:
11275                  * 1. Existence of MF configuration
11276                  * 2. MAC address must be legal (check only upper bytes)
11277                  *    for  Switch-Independent mode;
11278                  *    OVLAN must be legal for Switch-Dependent mode
11279                  * 3. SF_MODE configures specific MF mode
11280                  */
11281                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11282                         /* get mf configuration */
11283                         val = SHMEM_RD(bp,
11284                                        dev_info.shared_feature_config.config);
11285                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11286
11287                         switch (val) {
11288                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11289                                 val = MF_CFG_RD(bp, func_mf_config[func].
11290                                                 mac_upper);
11291                                 /* check for legal mac (upper bytes)*/
11292                                 if (val != 0xffff) {
11293                                         bp->mf_mode = MULTI_FUNCTION_SI;
11294                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11295                                                    func_mf_config[func].config);
11296                                 } else
11297                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11298                                 break;
11299                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11300                                 if ((!CHIP_IS_E1x(bp)) &&
11301                                     (MF_CFG_RD(bp, func_mf_config[func].
11302                                                mac_upper) != 0xffff) &&
11303                                     (SHMEM2_HAS(bp,
11304                                                 afex_driver_support))) {
11305                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11306                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11307                                                 func_mf_config[func].config);
11308                                 } else {
11309                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11310                                 }
11311                                 break;
11312                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11313                                 /* get OV configuration */
11314                                 val = MF_CFG_RD(bp,
11315                                         func_mf_config[FUNC_0].e1hov_tag);
11316                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11317
11318                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11319                                         bp->mf_mode = MULTI_FUNCTION_SD;
11320                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11321                                                 func_mf_config[func].config);
11322                                 } else
11323                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11324                                 break;
11325                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11326                                 bp->mf_config[vn] = 0;
11327                                 break;
11328                         default:
11329                                 /* Unknown configuration: reset mf_config */
11330                                 bp->mf_config[vn] = 0;
11331                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11332                         }
11333                 }
11334
11335                 BNX2X_DEV_INFO("%s function mode\n",
11336                                IS_MF(bp) ? "multi" : "single");
11337
11338                 switch (bp->mf_mode) {
11339                 case MULTI_FUNCTION_SD:
11340                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11341                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11342                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11343                                 bp->mf_ov = val;
11344                                 bp->path_has_ovlan = true;
11345
11346                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11347                                                func, bp->mf_ov, bp->mf_ov);
11348                         } else {
11349                                 dev_err(&bp->pdev->dev,
11350                                         "No valid MF OV for func %d, aborting\n",
11351                                         func);
11352                                 return -EPERM;
11353                         }
11354                         break;
11355                 case MULTI_FUNCTION_AFEX:
11356                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11357                         break;
11358                 case MULTI_FUNCTION_SI:
11359                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11360                                        func);
11361                         break;
11362                 default:
11363                         if (vn) {
11364                                 dev_err(&bp->pdev->dev,
11365                                         "VN %d is in a single function mode, aborting\n",
11366                                         vn);
11367                                 return -EPERM;
11368                         }
11369                         break;
11370                 }
11371
11372                 /* check if other port on the path needs ovlan:
11373                  * Since MF configuration is shared between ports
11374                  * Possible mixed modes are only
11375                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11376                  */
11377                 if (CHIP_MODE_IS_4_PORT(bp) &&
11378                     !bp->path_has_ovlan &&
11379                     !IS_MF(bp) &&
11380                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11381                         u8 other_port = !BP_PORT(bp);
11382                         u8 other_func = BP_PATH(bp) + 2*other_port;
11383                         val = MF_CFG_RD(bp,
11384                                         func_mf_config[other_func].e1hov_tag);
11385                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11386                                 bp->path_has_ovlan = true;
11387                 }
11388         }
11389
11390         /* adjust igu_sb_cnt to MF for E1x */
11391         if (CHIP_IS_E1x(bp) && IS_MF(bp))
11392                 bp->igu_sb_cnt /= E1HVN_MAX;
11393
11394         /* port info */
11395         bnx2x_get_port_hwinfo(bp);
11396
11397         /* Get MAC addresses */
11398         bnx2x_get_mac_hwinfo(bp);
11399
11400         bnx2x_get_cnic_info(bp);
11401
11402         return rc;
11403 }
11404
11405 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11406 {
11407         int cnt, i, block_end, rodi;
11408         char vpd_start[BNX2X_VPD_LEN+1];
11409         char str_id_reg[VENDOR_ID_LEN+1];
11410         char str_id_cap[VENDOR_ID_LEN+1];
11411         char *vpd_data;
11412         char *vpd_extended_data = NULL;
11413         u8 len;
11414
11415         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11416         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11417
11418         if (cnt < BNX2X_VPD_LEN)
11419                 goto out_not_found;
11420
11421         /* VPD RO tag should be first tag after identifier string, hence
11422          * we should be able to find it in first BNX2X_VPD_LEN chars
11423          */
11424         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11425                              PCI_VPD_LRDT_RO_DATA);
11426         if (i < 0)
11427                 goto out_not_found;
11428
11429         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11430                     pci_vpd_lrdt_size(&vpd_start[i]);
11431
11432         i += PCI_VPD_LRDT_TAG_SIZE;
11433
11434         if (block_end > BNX2X_VPD_LEN) {
11435                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11436                 if (vpd_extended_data  == NULL)
11437                         goto out_not_found;
11438
11439                 /* read rest of vpd image into vpd_extended_data */
11440                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11441                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11442                                    block_end - BNX2X_VPD_LEN,
11443                                    vpd_extended_data + BNX2X_VPD_LEN);
11444                 if (cnt < (block_end - BNX2X_VPD_LEN))
11445                         goto out_not_found;
11446                 vpd_data = vpd_extended_data;
11447         } else
11448                 vpd_data = vpd_start;
11449
11450         /* now vpd_data holds full vpd content in both cases */
11451
11452         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11453                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11454         if (rodi < 0)
11455                 goto out_not_found;
11456
11457         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11458
11459         if (len != VENDOR_ID_LEN)
11460                 goto out_not_found;
11461
11462         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11463
11464         /* vendor specific info */
11465         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11466         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11467         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11468             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11469
11470                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11471                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11472                 if (rodi >= 0) {
11473                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11474
11475                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11476
11477                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11478                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11479                                 bp->fw_ver[len] = ' ';
11480                         }
11481                 }
11482                 kfree(vpd_extended_data);
11483                 return;
11484         }
11485 out_not_found:
11486         kfree(vpd_extended_data);
11487         return;
11488 }
11489
11490 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11491 {
11492         u32 flags = 0;
11493
11494         if (CHIP_REV_IS_FPGA(bp))
11495                 SET_FLAGS(flags, MODE_FPGA);
11496         else if (CHIP_REV_IS_EMUL(bp))
11497                 SET_FLAGS(flags, MODE_EMUL);
11498         else
11499                 SET_FLAGS(flags, MODE_ASIC);
11500
11501         if (CHIP_MODE_IS_4_PORT(bp))
11502                 SET_FLAGS(flags, MODE_PORT4);
11503         else
11504                 SET_FLAGS(flags, MODE_PORT2);
11505
11506         if (CHIP_IS_E2(bp))
11507                 SET_FLAGS(flags, MODE_E2);
11508         else if (CHIP_IS_E3(bp)) {
11509                 SET_FLAGS(flags, MODE_E3);
11510                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11511                         SET_FLAGS(flags, MODE_E3_A0);
11512                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11513                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11514         }
11515
11516         if (IS_MF(bp)) {
11517                 SET_FLAGS(flags, MODE_MF);
11518                 switch (bp->mf_mode) {
11519                 case MULTI_FUNCTION_SD:
11520                         SET_FLAGS(flags, MODE_MF_SD);
11521                         break;
11522                 case MULTI_FUNCTION_SI:
11523                         SET_FLAGS(flags, MODE_MF_SI);
11524                         break;
11525                 case MULTI_FUNCTION_AFEX:
11526                         SET_FLAGS(flags, MODE_MF_AFEX);
11527                         break;
11528                 }
11529         } else
11530                 SET_FLAGS(flags, MODE_SF);
11531
11532 #if defined(__LITTLE_ENDIAN)
11533         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11534 #else /*(__BIG_ENDIAN)*/
11535         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11536 #endif
11537         INIT_MODE_FLAGS(bp) = flags;
11538 }
11539
11540 static int bnx2x_init_bp(struct bnx2x *bp)
11541 {
11542         int func;
11543         int rc;
11544
11545         mutex_init(&bp->port.phy_mutex);
11546         mutex_init(&bp->fw_mb_mutex);
11547         spin_lock_init(&bp->stats_lock);
11548         sema_init(&bp->stats_sema, 1);
11549
11550         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11551         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11552         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11553         if (IS_PF(bp)) {
11554                 rc = bnx2x_get_hwinfo(bp);
11555                 if (rc)
11556                         return rc;
11557         } else {
11558                 eth_zero_addr(bp->dev->dev_addr);
11559         }
11560
11561         bnx2x_set_modes_bitmap(bp);
11562
11563         rc = bnx2x_alloc_mem_bp(bp);
11564         if (rc)
11565                 return rc;
11566
11567         bnx2x_read_fwinfo(bp);
11568
11569         func = BP_FUNC(bp);
11570
11571         /* need to reset chip if undi was active */
11572         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11573                 /* init fw_seq */
11574                 bp->fw_seq =
11575                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11576                                                         DRV_MSG_SEQ_NUMBER_MASK;
11577                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11578
11579                 bnx2x_prev_unload(bp);
11580         }
11581
11582         if (CHIP_REV_IS_FPGA(bp))
11583                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11584
11585         if (BP_NOMCP(bp) && (func == 0))
11586                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11587
11588         bp->disable_tpa = disable_tpa;
11589         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11590
11591         /* Set TPA flags */
11592         if (bp->disable_tpa) {
11593                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11594                 bp->dev->features &= ~NETIF_F_LRO;
11595         } else {
11596                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11597                 bp->dev->features |= NETIF_F_LRO;
11598         }
11599
11600         if (CHIP_IS_E1(bp))
11601                 bp->dropless_fc = 0;
11602         else
11603                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11604
11605         bp->mrrs = mrrs;
11606
11607         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11608         if (IS_VF(bp))
11609                 bp->rx_ring_size = MAX_RX_AVAIL;
11610
11611         /* make sure that the numbers are in the right granularity */
11612         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11613         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11614
11615         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11616
11617         init_timer(&bp->timer);
11618         bp->timer.expires = jiffies + bp->current_interval;
11619         bp->timer.data = (unsigned long) bp;
11620         bp->timer.function = bnx2x_timer;
11621
11622         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11623             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11624             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11625             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11626                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11627                 bnx2x_dcbx_init_params(bp);
11628         } else {
11629                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11630         }
11631
11632         if (CHIP_IS_E1x(bp))
11633                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11634         else
11635                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11636
11637         /* multiple tx priority */
11638         if (IS_VF(bp))
11639                 bp->max_cos = 1;
11640         else if (CHIP_IS_E1x(bp))
11641                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11642         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11643                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11644         else if (CHIP_IS_E3B0(bp))
11645                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11646         else
11647                 BNX2X_ERR("unknown chip %x revision %x\n",
11648                           CHIP_NUM(bp), CHIP_REV(bp));
11649         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11650
11651         /* We need at least one default status block for slow-path events,
11652          * second status block for the L2 queue, and a third status block for
11653          * CNIC if supported.
11654          */
11655         if (IS_VF(bp))
11656                 bp->min_msix_vec_cnt = 1;
11657         else if (CNIC_SUPPORT(bp))
11658                 bp->min_msix_vec_cnt = 3;
11659         else /* PF w/o cnic */
11660                 bp->min_msix_vec_cnt = 2;
11661         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11662
11663         bp->dump_preset_idx = 1;
11664
11665         return rc;
11666 }
11667
11668 /****************************************************************************
11669 * General service functions
11670 ****************************************************************************/
11671
11672 /*
11673  * net_device service functions
11674  */
11675
11676 /* called with rtnl_lock */
11677 static int bnx2x_open(struct net_device *dev)
11678 {
11679         struct bnx2x *bp = netdev_priv(dev);
11680         bool global = false;
11681         int other_engine = BP_PATH(bp) ? 0 : 1;
11682         bool other_load_status, load_status;
11683         int rc;
11684
11685         bp->stats_init = true;
11686
11687         netif_carrier_off(dev);
11688
11689         bnx2x_set_power_state(bp, PCI_D0);
11690
11691         /* If parity had happen during the unload, then attentions
11692          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11693          * want the first function loaded on the current engine to
11694          * complete the recovery.
11695          * Parity recovery is only relevant for PF driver.
11696          */
11697         if (IS_PF(bp)) {
11698                 other_load_status = bnx2x_get_load_status(bp, other_engine);
11699                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11700                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11701                     bnx2x_chk_parity_attn(bp, &global, true)) {
11702                         do {
11703                                 /* If there are attentions and they are in a
11704                                  * global blocks, set the GLOBAL_RESET bit
11705                                  * regardless whether it will be this function
11706                                  * that will complete the recovery or not.
11707                                  */
11708                                 if (global)
11709                                         bnx2x_set_reset_global(bp);
11710
11711                                 /* Only the first function on the current
11712                                  * engine should try to recover in open. In case
11713                                  * of attentions in global blocks only the first
11714                                  * in the chip should try to recover.
11715                                  */
11716                                 if ((!load_status &&
11717                                      (!global || !other_load_status)) &&
11718                                       bnx2x_trylock_leader_lock(bp) &&
11719                                       !bnx2x_leader_reset(bp)) {
11720                                         netdev_info(bp->dev,
11721                                                     "Recovered in open\n");
11722                                         break;
11723                                 }
11724
11725                                 /* recovery has failed... */
11726                                 bnx2x_set_power_state(bp, PCI_D3hot);
11727                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
11728
11729                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11730                                           "If you still see this message after a few retries then power cycle is required.\n");
11731
11732                                 return -EAGAIN;
11733                         } while (0);
11734                 }
11735         }
11736
11737         bp->recovery_state = BNX2X_RECOVERY_DONE;
11738         rc = bnx2x_nic_load(bp, LOAD_OPEN);
11739         if (rc)
11740                 return rc;
11741         return bnx2x_open_epilog(bp);
11742 }
11743
11744 /* called with rtnl_lock */
11745 static int bnx2x_close(struct net_device *dev)
11746 {
11747         struct bnx2x *bp = netdev_priv(dev);
11748
11749         /* Unload the driver, release IRQs */
11750         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11751
11752         return 0;
11753 }
11754
11755 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11756                                       struct bnx2x_mcast_ramrod_params *p)
11757 {
11758         int mc_count = netdev_mc_count(bp->dev);
11759         struct bnx2x_mcast_list_elem *mc_mac =
11760                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11761         struct netdev_hw_addr *ha;
11762
11763         if (!mc_mac)
11764                 return -ENOMEM;
11765
11766         INIT_LIST_HEAD(&p->mcast_list);
11767
11768         netdev_for_each_mc_addr(ha, bp->dev) {
11769                 mc_mac->mac = bnx2x_mc_addr(ha);
11770                 list_add_tail(&mc_mac->link, &p->mcast_list);
11771                 mc_mac++;
11772         }
11773
11774         p->mcast_list_len = mc_count;
11775
11776         return 0;
11777 }
11778
11779 static void bnx2x_free_mcast_macs_list(
11780         struct bnx2x_mcast_ramrod_params *p)
11781 {
11782         struct bnx2x_mcast_list_elem *mc_mac =
11783                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11784                                  link);
11785
11786         WARN_ON(!mc_mac);
11787         kfree(mc_mac);
11788 }
11789
11790 /**
11791  * bnx2x_set_uc_list - configure a new unicast MACs list.
11792  *
11793  * @bp: driver handle
11794  *
11795  * We will use zero (0) as a MAC type for these MACs.
11796  */
11797 static int bnx2x_set_uc_list(struct bnx2x *bp)
11798 {
11799         int rc;
11800         struct net_device *dev = bp->dev;
11801         struct netdev_hw_addr *ha;
11802         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11803         unsigned long ramrod_flags = 0;
11804
11805         /* First schedule a cleanup up of old configuration */
11806         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11807         if (rc < 0) {
11808                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11809                 return rc;
11810         }
11811
11812         netdev_for_each_uc_addr(ha, dev) {
11813                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11814                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
11815                 if (rc == -EEXIST) {
11816                         DP(BNX2X_MSG_SP,
11817                            "Failed to schedule ADD operations: %d\n", rc);
11818                         /* do not treat adding same MAC as error */
11819                         rc = 0;
11820
11821                 } else if (rc < 0) {
11822
11823                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11824                                   rc);
11825                         return rc;
11826                 }
11827         }
11828
11829         /* Execute the pending commands */
11830         __set_bit(RAMROD_CONT, &ramrod_flags);
11831         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11832                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
11833 }
11834
11835 static int bnx2x_set_mc_list(struct bnx2x *bp)
11836 {
11837         struct net_device *dev = bp->dev;
11838         struct bnx2x_mcast_ramrod_params rparam = {NULL};
11839         int rc = 0;
11840
11841         rparam.mcast_obj = &bp->mcast_obj;
11842
11843         /* first, clear all configured multicast MACs */
11844         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11845         if (rc < 0) {
11846                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11847                 return rc;
11848         }
11849
11850         /* then, configure a new MACs list */
11851         if (netdev_mc_count(dev)) {
11852                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11853                 if (rc) {
11854                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11855                                   rc);
11856                         return rc;
11857                 }
11858
11859                 /* Now add the new MACs */
11860                 rc = bnx2x_config_mcast(bp, &rparam,
11861                                         BNX2X_MCAST_CMD_ADD);
11862                 if (rc < 0)
11863                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11864                                   rc);
11865
11866                 bnx2x_free_mcast_macs_list(&rparam);
11867         }
11868
11869         return rc;
11870 }
11871
11872 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11873 void bnx2x_set_rx_mode(struct net_device *dev)
11874 {
11875         struct bnx2x *bp = netdev_priv(dev);
11876
11877         if (bp->state != BNX2X_STATE_OPEN) {
11878                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11879                 return;
11880         } else {
11881                 /* Schedule an SP task to handle rest of change */
11882                 DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n");
11883                 smp_mb__before_clear_bit();
11884                 set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state);
11885                 smp_mb__after_clear_bit();
11886                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
11887         }
11888 }
11889
11890 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
11891 {
11892         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11893
11894         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11895
11896         netif_addr_lock_bh(bp->dev);
11897
11898         if (bp->dev->flags & IFF_PROMISC) {
11899                 rx_mode = BNX2X_RX_MODE_PROMISC;
11900         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
11901                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
11902                     CHIP_IS_E1(bp))) {
11903                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11904         } else {
11905                 if (IS_PF(bp)) {
11906                         /* some multicasts */
11907                         if (bnx2x_set_mc_list(bp) < 0)
11908                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11909
11910                         /* release bh lock, as bnx2x_set_uc_list might sleep */
11911                         netif_addr_unlock_bh(bp->dev);
11912                         if (bnx2x_set_uc_list(bp) < 0)
11913                                 rx_mode = BNX2X_RX_MODE_PROMISC;
11914                         netif_addr_lock_bh(bp->dev);
11915                 } else {
11916                         /* configuring mcast to a vf involves sleeping (when we
11917                          * wait for the pf's response).
11918                          */
11919                         smp_mb__before_clear_bit();
11920                         set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
11921                                 &bp->sp_rtnl_state);
11922                         smp_mb__after_clear_bit();
11923                         schedule_delayed_work(&bp->sp_rtnl_task, 0);
11924                 }
11925         }
11926
11927         bp->rx_mode = rx_mode;
11928         /* handle ISCSI SD mode */
11929         if (IS_MF_ISCSI_SD(bp))
11930                 bp->rx_mode = BNX2X_RX_MODE_NONE;
11931
11932         /* Schedule the rx_mode command */
11933         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11934                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11935                 netif_addr_unlock_bh(bp->dev);
11936                 return;
11937         }
11938
11939         if (IS_PF(bp)) {
11940                 bnx2x_set_storm_rx_mode(bp);
11941                 netif_addr_unlock_bh(bp->dev);
11942         } else {
11943                 /* VF will need to request the PF to make this change, and so
11944                  * the VF needs to release the bottom-half lock prior to the
11945                  * request (as it will likely require sleep on the VF side)
11946                  */
11947                 netif_addr_unlock_bh(bp->dev);
11948                 bnx2x_vfpf_storm_rx_mode(bp);
11949         }
11950 }
11951
11952 /* called with rtnl_lock */
11953 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11954                            int devad, u16 addr)
11955 {
11956         struct bnx2x *bp = netdev_priv(netdev);
11957         u16 value;
11958         int rc;
11959
11960         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11961            prtad, devad, addr);
11962
11963         /* The HW expects different devad if CL22 is used */
11964         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11965
11966         bnx2x_acquire_phy_lock(bp);
11967         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11968         bnx2x_release_phy_lock(bp);
11969         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11970
11971         if (!rc)
11972                 rc = value;
11973         return rc;
11974 }
11975
11976 /* called with rtnl_lock */
11977 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11978                             u16 addr, u16 value)
11979 {
11980         struct bnx2x *bp = netdev_priv(netdev);
11981         int rc;
11982
11983         DP(NETIF_MSG_LINK,
11984            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11985            prtad, devad, addr, value);
11986
11987         /* The HW expects different devad if CL22 is used */
11988         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11989
11990         bnx2x_acquire_phy_lock(bp);
11991         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11992         bnx2x_release_phy_lock(bp);
11993         return rc;
11994 }
11995
11996 /* called with rtnl_lock */
11997 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11998 {
11999         struct bnx2x *bp = netdev_priv(dev);
12000         struct mii_ioctl_data *mdio = if_mii(ifr);
12001
12002         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12003            mdio->phy_id, mdio->reg_num, mdio->val_in);
12004
12005         if (!netif_running(dev))
12006                 return -EAGAIN;
12007
12008         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12009 }
12010
12011 #ifdef CONFIG_NET_POLL_CONTROLLER
12012 static void poll_bnx2x(struct net_device *dev)
12013 {
12014         struct bnx2x *bp = netdev_priv(dev);
12015         int i;
12016
12017         for_each_eth_queue(bp, i) {
12018                 struct bnx2x_fastpath *fp = &bp->fp[i];
12019                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12020         }
12021 }
12022 #endif
12023
12024 static int bnx2x_validate_addr(struct net_device *dev)
12025 {
12026         struct bnx2x *bp = netdev_priv(dev);
12027
12028         /* query the bulletin board for mac address configured by the PF */
12029         if (IS_VF(bp))
12030                 bnx2x_sample_bulletin(bp);
12031
12032         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12033                 BNX2X_ERR("Non-valid Ethernet address\n");
12034                 return -EADDRNOTAVAIL;
12035         }
12036         return 0;
12037 }
12038
12039 static const struct net_device_ops bnx2x_netdev_ops = {
12040         .ndo_open               = bnx2x_open,
12041         .ndo_stop               = bnx2x_close,
12042         .ndo_start_xmit         = bnx2x_start_xmit,
12043         .ndo_select_queue       = bnx2x_select_queue,
12044         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12045         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12046         .ndo_validate_addr      = bnx2x_validate_addr,
12047         .ndo_do_ioctl           = bnx2x_ioctl,
12048         .ndo_change_mtu         = bnx2x_change_mtu,
12049         .ndo_fix_features       = bnx2x_fix_features,
12050         .ndo_set_features       = bnx2x_set_features,
12051         .ndo_tx_timeout         = bnx2x_tx_timeout,
12052 #ifdef CONFIG_NET_POLL_CONTROLLER
12053         .ndo_poll_controller    = poll_bnx2x,
12054 #endif
12055         .ndo_setup_tc           = bnx2x_setup_tc,
12056 #ifdef CONFIG_BNX2X_SRIOV
12057         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12058         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12059         .ndo_get_vf_config      = bnx2x_get_vf_config,
12060 #endif
12061 #ifdef NETDEV_FCOE_WWNN
12062         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12063 #endif
12064
12065 #ifdef CONFIG_NET_RX_BUSY_POLL
12066         .ndo_busy_poll          = bnx2x_low_latency_recv,
12067 #endif
12068 };
12069
12070 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12071 {
12072         struct device *dev = &bp->pdev->dev;
12073
12074         if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
12075                 bp->flags |= USING_DAC_FLAG;
12076                 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
12077                         dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
12078                         return -EIO;
12079                 }
12080         } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
12081                 dev_err(dev, "System does not support DMA, aborting\n");
12082                 return -EIO;
12083         }
12084
12085         return 0;
12086 }
12087
12088 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12089                           struct net_device *dev, unsigned long board_type)
12090 {
12091         int rc;
12092         u32 pci_cfg_dword;
12093         bool chip_is_e1x = (board_type == BCM57710 ||
12094                             board_type == BCM57711 ||
12095                             board_type == BCM57711E);
12096
12097         SET_NETDEV_DEV(dev, &pdev->dev);
12098
12099         bp->dev = dev;
12100         bp->pdev = pdev;
12101
12102         rc = pci_enable_device(pdev);
12103         if (rc) {
12104                 dev_err(&bp->pdev->dev,
12105                         "Cannot enable PCI device, aborting\n");
12106                 goto err_out;
12107         }
12108
12109         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12110                 dev_err(&bp->pdev->dev,
12111                         "Cannot find PCI device base address, aborting\n");
12112                 rc = -ENODEV;
12113                 goto err_out_disable;
12114         }
12115
12116         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12117                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12118                 rc = -ENODEV;
12119                 goto err_out_disable;
12120         }
12121
12122         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12123         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12124             PCICFG_REVESION_ID_ERROR_VAL) {
12125                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12126                 rc = -ENODEV;
12127                 goto err_out_disable;
12128         }
12129
12130         if (atomic_read(&pdev->enable_cnt) == 1) {
12131                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12132                 if (rc) {
12133                         dev_err(&bp->pdev->dev,
12134                                 "Cannot obtain PCI resources, aborting\n");
12135                         goto err_out_disable;
12136                 }
12137
12138                 pci_set_master(pdev);
12139                 pci_save_state(pdev);
12140         }
12141
12142         if (IS_PF(bp)) {
12143                 if (!pdev->pm_cap) {
12144                         dev_err(&bp->pdev->dev,
12145                                 "Cannot find power management capability, aborting\n");
12146                         rc = -EIO;
12147                         goto err_out_release;
12148                 }
12149         }
12150
12151         if (!pci_is_pcie(pdev)) {
12152                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12153                 rc = -EIO;
12154                 goto err_out_release;
12155         }
12156
12157         rc = bnx2x_set_coherency_mask(bp);
12158         if (rc)
12159                 goto err_out_release;
12160
12161         dev->mem_start = pci_resource_start(pdev, 0);
12162         dev->base_addr = dev->mem_start;
12163         dev->mem_end = pci_resource_end(pdev, 0);
12164
12165         dev->irq = pdev->irq;
12166
12167         bp->regview = pci_ioremap_bar(pdev, 0);
12168         if (!bp->regview) {
12169                 dev_err(&bp->pdev->dev,
12170                         "Cannot map register space, aborting\n");
12171                 rc = -ENOMEM;
12172                 goto err_out_release;
12173         }
12174
12175         /* In E1/E1H use pci device function given by kernel.
12176          * In E2/E3 read physical function from ME register since these chips
12177          * support Physical Device Assignment where kernel BDF maybe arbitrary
12178          * (depending on hypervisor).
12179          */
12180         if (chip_is_e1x) {
12181                 bp->pf_num = PCI_FUNC(pdev->devfn);
12182         } else {
12183                 /* chip is E2/3*/
12184                 pci_read_config_dword(bp->pdev,
12185                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12186                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12187                                   ME_REG_ABS_PF_NUM_SHIFT);
12188         }
12189         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12190
12191         /* clean indirect addresses */
12192         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12193                                PCICFG_VENDOR_ID_OFFSET);
12194         /*
12195          * Clean the following indirect addresses for all functions since it
12196          * is not used by the driver.
12197          */
12198         if (IS_PF(bp)) {
12199                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12200                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12201                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12202                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12203
12204                 if (chip_is_e1x) {
12205                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12206                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12207                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12208                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12209                 }
12210
12211                 /* Enable internal target-read (in case we are probed after PF
12212                  * FLR). Must be done prior to any BAR read access. Only for
12213                  * 57712 and up
12214                  */
12215                 if (!chip_is_e1x)
12216                         REG_WR(bp,
12217                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12218         }
12219
12220         dev->watchdog_timeo = TX_TIMEOUT;
12221
12222         dev->netdev_ops = &bnx2x_netdev_ops;
12223         bnx2x_set_ethtool_ops(bp, dev);
12224
12225         dev->priv_flags |= IFF_UNICAST_FLT;
12226
12227         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12228                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12229                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12230                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12231         if (!CHIP_IS_E1x(bp)) {
12232                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12233                 dev->hw_enc_features =
12234                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12235                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12236                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12237         }
12238
12239         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12240                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12241
12242         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12243         if (bp->flags & USING_DAC_FLAG)
12244                 dev->features |= NETIF_F_HIGHDMA;
12245
12246         /* Add Loopback capability to the device */
12247         dev->hw_features |= NETIF_F_LOOPBACK;
12248
12249 #ifdef BCM_DCBNL
12250         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12251 #endif
12252
12253         /* get_port_hwinfo() will set prtad and mmds properly */
12254         bp->mdio.prtad = MDIO_PRTAD_NONE;
12255         bp->mdio.mmds = 0;
12256         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12257         bp->mdio.dev = dev;
12258         bp->mdio.mdio_read = bnx2x_mdio_read;
12259         bp->mdio.mdio_write = bnx2x_mdio_write;
12260
12261         return 0;
12262
12263 err_out_release:
12264         if (atomic_read(&pdev->enable_cnt) == 1)
12265                 pci_release_regions(pdev);
12266
12267 err_out_disable:
12268         pci_disable_device(pdev);
12269         pci_set_drvdata(pdev, NULL);
12270
12271 err_out:
12272         return rc;
12273 }
12274
12275 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width,
12276                                        enum bnx2x_pci_bus_speed *speed)
12277 {
12278         u32 link_speed, val = 0;
12279
12280         pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
12281         *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
12282
12283         link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
12284
12285         switch (link_speed) {
12286         case 3:
12287                 *speed = BNX2X_PCI_LINK_SPEED_8000;
12288                 break;
12289         case 2:
12290                 *speed = BNX2X_PCI_LINK_SPEED_5000;
12291                 break;
12292         default:
12293                 *speed = BNX2X_PCI_LINK_SPEED_2500;
12294         }
12295 }
12296
12297 static int bnx2x_check_firmware(struct bnx2x *bp)
12298 {
12299         const struct firmware *firmware = bp->firmware;
12300         struct bnx2x_fw_file_hdr *fw_hdr;
12301         struct bnx2x_fw_file_section *sections;
12302         u32 offset, len, num_ops;
12303         __be16 *ops_offsets;
12304         int i;
12305         const u8 *fw_ver;
12306
12307         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12308                 BNX2X_ERR("Wrong FW size\n");
12309                 return -EINVAL;
12310         }
12311
12312         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12313         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12314
12315         /* Make sure none of the offsets and sizes make us read beyond
12316          * the end of the firmware data */
12317         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12318                 offset = be32_to_cpu(sections[i].offset);
12319                 len = be32_to_cpu(sections[i].len);
12320                 if (offset + len > firmware->size) {
12321                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12322                         return -EINVAL;
12323                 }
12324         }
12325
12326         /* Likewise for the init_ops offsets */
12327         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12328         ops_offsets = (__force __be16 *)(firmware->data + offset);
12329         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12330
12331         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12332                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12333                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12334                         return -EINVAL;
12335                 }
12336         }
12337
12338         /* Check FW version */
12339         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12340         fw_ver = firmware->data + offset;
12341         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12342             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12343             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12344             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12345                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12346                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12347                        BCM_5710_FW_MAJOR_VERSION,
12348                        BCM_5710_FW_MINOR_VERSION,
12349                        BCM_5710_FW_REVISION_VERSION,
12350                        BCM_5710_FW_ENGINEERING_VERSION);
12351                 return -EINVAL;
12352         }
12353
12354         return 0;
12355 }
12356
12357 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12358 {
12359         const __be32 *source = (const __be32 *)_source;
12360         u32 *target = (u32 *)_target;
12361         u32 i;
12362
12363         for (i = 0; i < n/4; i++)
12364                 target[i] = be32_to_cpu(source[i]);
12365 }
12366
12367 /*
12368    Ops array is stored in the following format:
12369    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12370  */
12371 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12372 {
12373         const __be32 *source = (const __be32 *)_source;
12374         struct raw_op *target = (struct raw_op *)_target;
12375         u32 i, j, tmp;
12376
12377         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12378                 tmp = be32_to_cpu(source[j]);
12379                 target[i].op = (tmp >> 24) & 0xff;
12380                 target[i].offset = tmp & 0xffffff;
12381                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12382         }
12383 }
12384
12385 /* IRO array is stored in the following format:
12386  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12387  */
12388 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12389 {
12390         const __be32 *source = (const __be32 *)_source;
12391         struct iro *target = (struct iro *)_target;
12392         u32 i, j, tmp;
12393
12394         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12395                 target[i].base = be32_to_cpu(source[j]);
12396                 j++;
12397                 tmp = be32_to_cpu(source[j]);
12398                 target[i].m1 = (tmp >> 16) & 0xffff;
12399                 target[i].m2 = tmp & 0xffff;
12400                 j++;
12401                 tmp = be32_to_cpu(source[j]);
12402                 target[i].m3 = (tmp >> 16) & 0xffff;
12403                 target[i].size = tmp & 0xffff;
12404                 j++;
12405         }
12406 }
12407
12408 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12409 {
12410         const __be16 *source = (const __be16 *)_source;
12411         u16 *target = (u16 *)_target;
12412         u32 i;
12413
12414         for (i = 0; i < n/2; i++)
12415                 target[i] = be16_to_cpu(source[i]);
12416 }
12417
12418 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12419 do {                                                                    \
12420         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12421         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12422         if (!bp->arr)                                                   \
12423                 goto lbl;                                               \
12424         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12425              (u8 *)bp->arr, len);                                       \
12426 } while (0)
12427
12428 static int bnx2x_init_firmware(struct bnx2x *bp)
12429 {
12430         const char *fw_file_name;
12431         struct bnx2x_fw_file_hdr *fw_hdr;
12432         int rc;
12433
12434         if (bp->firmware)
12435                 return 0;
12436
12437         if (CHIP_IS_E1(bp))
12438                 fw_file_name = FW_FILE_NAME_E1;
12439         else if (CHIP_IS_E1H(bp))
12440                 fw_file_name = FW_FILE_NAME_E1H;
12441         else if (!CHIP_IS_E1x(bp))
12442                 fw_file_name = FW_FILE_NAME_E2;
12443         else {
12444                 BNX2X_ERR("Unsupported chip revision\n");
12445                 return -EINVAL;
12446         }
12447         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12448
12449         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12450         if (rc) {
12451                 BNX2X_ERR("Can't load firmware file %s\n",
12452                           fw_file_name);
12453                 goto request_firmware_exit;
12454         }
12455
12456         rc = bnx2x_check_firmware(bp);
12457         if (rc) {
12458                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12459                 goto request_firmware_exit;
12460         }
12461
12462         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12463
12464         /* Initialize the pointers to the init arrays */
12465         /* Blob */
12466         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12467
12468         /* Opcodes */
12469         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12470
12471         /* Offsets */
12472         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12473                             be16_to_cpu_n);
12474
12475         /* STORMs firmware */
12476         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12477                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12478         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12479                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12480         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12481                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12482         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12483                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12484         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12485                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12486         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12487                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12488         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12489                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12490         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12491                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12492         /* IRO */
12493         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12494
12495         return 0;
12496
12497 iro_alloc_err:
12498         kfree(bp->init_ops_offsets);
12499 init_offsets_alloc_err:
12500         kfree(bp->init_ops);
12501 init_ops_alloc_err:
12502         kfree(bp->init_data);
12503 request_firmware_exit:
12504         release_firmware(bp->firmware);
12505         bp->firmware = NULL;
12506
12507         return rc;
12508 }
12509
12510 static void bnx2x_release_firmware(struct bnx2x *bp)
12511 {
12512         kfree(bp->init_ops_offsets);
12513         kfree(bp->init_ops);
12514         kfree(bp->init_data);
12515         release_firmware(bp->firmware);
12516         bp->firmware = NULL;
12517 }
12518
12519 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12520         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12521         .init_hw_cmn      = bnx2x_init_hw_common,
12522         .init_hw_port     = bnx2x_init_hw_port,
12523         .init_hw_func     = bnx2x_init_hw_func,
12524
12525         .reset_hw_cmn     = bnx2x_reset_common,
12526         .reset_hw_port    = bnx2x_reset_port,
12527         .reset_hw_func    = bnx2x_reset_func,
12528
12529         .gunzip_init      = bnx2x_gunzip_init,
12530         .gunzip_end       = bnx2x_gunzip_end,
12531
12532         .init_fw          = bnx2x_init_firmware,
12533         .release_fw       = bnx2x_release_firmware,
12534 };
12535
12536 void bnx2x__init_func_obj(struct bnx2x *bp)
12537 {
12538         /* Prepare DMAE related driver resources */
12539         bnx2x_setup_dmae(bp);
12540
12541         bnx2x_init_func_obj(bp, &bp->func_obj,
12542                             bnx2x_sp(bp, func_rdata),
12543                             bnx2x_sp_mapping(bp, func_rdata),
12544                             bnx2x_sp(bp, func_afex_rdata),
12545                             bnx2x_sp_mapping(bp, func_afex_rdata),
12546                             &bnx2x_func_sp_drv);
12547 }
12548
12549 /* must be called after sriov-enable */
12550 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12551 {
12552         int cid_count = BNX2X_L2_MAX_CID(bp);
12553
12554         if (IS_SRIOV(bp))
12555                 cid_count += BNX2X_VF_CIDS;
12556
12557         if (CNIC_SUPPORT(bp))
12558                 cid_count += CNIC_CID_MAX;
12559
12560         return roundup(cid_count, QM_CID_ROUND);
12561 }
12562
12563 /**
12564  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12565  *
12566  * @dev:        pci device
12567  *
12568  */
12569 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12570 {
12571         int index;
12572         u16 control = 0;
12573
12574         /*
12575          * If MSI-X is not supported - return number of SBs needed to support
12576          * one fast path queue: one FP queue + SB for CNIC
12577          */
12578         if (!pdev->msix_cap) {
12579                 dev_info(&pdev->dev, "no msix capability found\n");
12580                 return 1 + cnic_cnt;
12581         }
12582         dev_info(&pdev->dev, "msix capability found\n");
12583
12584         /*
12585          * The value in the PCI configuration space is the index of the last
12586          * entry, namely one less than the actual size of the table, which is
12587          * exactly what we want to return from this function: number of all SBs
12588          * without the default SB.
12589          * For VFs there is no default SB, then we return (index+1).
12590          */
12591         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12592
12593         index = control & PCI_MSIX_FLAGS_QSIZE;
12594
12595         return index;
12596 }
12597
12598 static int set_max_cos_est(int chip_id)
12599 {
12600         switch (chip_id) {
12601         case BCM57710:
12602         case BCM57711:
12603         case BCM57711E:
12604                 return BNX2X_MULTI_TX_COS_E1X;
12605         case BCM57712:
12606         case BCM57712_MF:
12607         case BCM57712_VF:
12608                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12609         case BCM57800:
12610         case BCM57800_MF:
12611         case BCM57800_VF:
12612         case BCM57810:
12613         case BCM57810_MF:
12614         case BCM57840_4_10:
12615         case BCM57840_2_20:
12616         case BCM57840_O:
12617         case BCM57840_MFO:
12618         case BCM57810_VF:
12619         case BCM57840_MF:
12620         case BCM57840_VF:
12621         case BCM57811:
12622         case BCM57811_MF:
12623         case BCM57811_VF:
12624                 return BNX2X_MULTI_TX_COS_E3B0;
12625                 return 1;
12626         default:
12627                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12628                 return -ENODEV;
12629         }
12630 }
12631
12632 static int set_is_vf(int chip_id)
12633 {
12634         switch (chip_id) {
12635         case BCM57712_VF:
12636         case BCM57800_VF:
12637         case BCM57810_VF:
12638         case BCM57840_VF:
12639         case BCM57811_VF:
12640                 return true;
12641         default:
12642                 return false;
12643         }
12644 }
12645
12646 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
12647
12648 static int bnx2x_init_one(struct pci_dev *pdev,
12649                                     const struct pci_device_id *ent)
12650 {
12651         struct net_device *dev = NULL;
12652         struct bnx2x *bp;
12653         int pcie_width;
12654         enum bnx2x_pci_bus_speed pcie_speed;
12655         int rc, max_non_def_sbs;
12656         int rx_count, tx_count, rss_count, doorbell_size;
12657         int max_cos_est;
12658         bool is_vf;
12659         int cnic_cnt;
12660
12661         /* An estimated maximum supported CoS number according to the chip
12662          * version.
12663          * We will try to roughly estimate the maximum number of CoSes this chip
12664          * may support in order to minimize the memory allocated for Tx
12665          * netdev_queue's. This number will be accurately calculated during the
12666          * initialization of bp->max_cos based on the chip versions AND chip
12667          * revision in the bnx2x_init_bp().
12668          */
12669         max_cos_est = set_max_cos_est(ent->driver_data);
12670         if (max_cos_est < 0)
12671                 return max_cos_est;
12672         is_vf = set_is_vf(ent->driver_data);
12673         cnic_cnt = is_vf ? 0 : 1;
12674
12675         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12676
12677         /* add another SB for VF as it has no default SB */
12678         max_non_def_sbs += is_vf ? 1 : 0;
12679
12680         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12681         rss_count = max_non_def_sbs - cnic_cnt;
12682
12683         if (rss_count < 1)
12684                 return -EINVAL;
12685
12686         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12687         rx_count = rss_count + cnic_cnt;
12688
12689         /* Maximum number of netdev Tx queues:
12690          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12691          */
12692         tx_count = rss_count * max_cos_est + cnic_cnt;
12693
12694         /* dev zeroed in init_etherdev */
12695         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12696         if (!dev)
12697                 return -ENOMEM;
12698
12699         bp = netdev_priv(dev);
12700
12701         bp->flags = 0;
12702         if (is_vf)
12703                 bp->flags |= IS_VF_FLAG;
12704
12705         bp->igu_sb_cnt = max_non_def_sbs;
12706         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
12707         bp->msg_enable = debug;
12708         bp->cnic_support = cnic_cnt;
12709         bp->cnic_probe = bnx2x_cnic_probe;
12710
12711         pci_set_drvdata(pdev, dev);
12712
12713         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
12714         if (rc < 0) {
12715                 free_netdev(dev);
12716                 return rc;
12717         }
12718
12719         BNX2X_DEV_INFO("This is a %s function\n",
12720                        IS_PF(bp) ? "physical" : "virtual");
12721         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12722         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
12723         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12724                        tx_count, rx_count);
12725
12726         rc = bnx2x_init_bp(bp);
12727         if (rc)
12728                 goto init_one_exit;
12729
12730         /* Map doorbells here as we need the real value of bp->max_cos which
12731          * is initialized in bnx2x_init_bp() to determine the number of
12732          * l2 connections.
12733          */
12734         if (IS_VF(bp)) {
12735                 bp->doorbells = bnx2x_vf_doorbells(bp);
12736                 rc = bnx2x_vf_pci_alloc(bp);
12737                 if (rc)
12738                         goto init_one_exit;
12739         } else {
12740                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12741                 if (doorbell_size > pci_resource_len(pdev, 2)) {
12742                         dev_err(&bp->pdev->dev,
12743                                 "Cannot map doorbells, bar size too small, aborting\n");
12744                         rc = -ENOMEM;
12745                         goto init_one_exit;
12746                 }
12747                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12748                                                 doorbell_size);
12749         }
12750         if (!bp->doorbells) {
12751                 dev_err(&bp->pdev->dev,
12752                         "Cannot map doorbell space, aborting\n");
12753                 rc = -ENOMEM;
12754                 goto init_one_exit;
12755         }
12756
12757         if (IS_VF(bp)) {
12758                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
12759                 if (rc)
12760                         goto init_one_exit;
12761         }
12762
12763         /* Enable SRIOV if capability found in configuration space */
12764         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
12765         if (rc)
12766                 goto init_one_exit;
12767
12768         /* calc qm_cid_count */
12769         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12770         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
12771
12772         /* disable FCOE L2 queue for E1x*/
12773         if (CHIP_IS_E1x(bp))
12774                 bp->flags |= NO_FCOE_FLAG;
12775
12776         /* Set bp->num_queues for MSI-X mode*/
12777         bnx2x_set_num_queues(bp);
12778
12779         /* Configure interrupt mode: try to enable MSI-X/MSI if
12780          * needed.
12781          */
12782         rc = bnx2x_set_int_mode(bp);
12783         if (rc) {
12784                 dev_err(&pdev->dev, "Cannot set interrupts\n");
12785                 goto init_one_exit;
12786         }
12787         BNX2X_DEV_INFO("set interrupts successfully\n");
12788
12789         /* register the net device */
12790         rc = register_netdev(dev);
12791         if (rc) {
12792                 dev_err(&pdev->dev, "Cannot register net device\n");
12793                 goto init_one_exit;
12794         }
12795         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
12796
12797         if (!NO_FCOE(bp)) {
12798                 /* Add storage MAC address */
12799                 rtnl_lock();
12800                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12801                 rtnl_unlock();
12802         }
12803
12804         bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12805         BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
12806                        pcie_width, pcie_speed);
12807
12808         BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12809                        board_info[ent->driver_data].name,
12810                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12811                        pcie_width,
12812                        pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" :
12813                        pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" :
12814                        pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" :
12815                        "Unknown",
12816                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
12817
12818         return 0;
12819
12820 init_one_exit:
12821         if (bp->regview)
12822                 iounmap(bp->regview);
12823
12824         if (IS_PF(bp) && bp->doorbells)
12825                 iounmap(bp->doorbells);
12826
12827         free_netdev(dev);
12828
12829         if (atomic_read(&pdev->enable_cnt) == 1)
12830                 pci_release_regions(pdev);
12831
12832         pci_disable_device(pdev);
12833         pci_set_drvdata(pdev, NULL);
12834
12835         return rc;
12836 }
12837
12838 static void __bnx2x_remove(struct pci_dev *pdev,
12839                            struct net_device *dev,
12840                            struct bnx2x *bp,
12841                            bool remove_netdev)
12842 {
12843         /* Delete storage MAC address */
12844         if (!NO_FCOE(bp)) {
12845                 rtnl_lock();
12846                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12847                 rtnl_unlock();
12848         }
12849
12850 #ifdef BCM_DCBNL
12851         /* Delete app tlvs from dcbnl */
12852         bnx2x_dcbnl_update_applist(bp, true);
12853 #endif
12854
12855         if (IS_PF(bp) &&
12856             !BP_NOMCP(bp) &&
12857             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
12858                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
12859
12860         /* Close the interface - either directly or implicitly */
12861         if (remove_netdev) {
12862                 unregister_netdev(dev);
12863         } else {
12864                 rtnl_lock();
12865                 dev_close(dev);
12866                 rtnl_unlock();
12867         }
12868
12869         bnx2x_iov_remove_one(bp);
12870
12871         /* Power on: we can't let PCI layer write to us while we are in D3 */
12872         if (IS_PF(bp))
12873                 bnx2x_set_power_state(bp, PCI_D0);
12874
12875         /* Disable MSI/MSI-X */
12876         bnx2x_disable_msi(bp);
12877
12878         /* Power off */
12879         if (IS_PF(bp))
12880                 bnx2x_set_power_state(bp, PCI_D3hot);
12881
12882         /* Make sure RESET task is not scheduled before continuing */
12883         cancel_delayed_work_sync(&bp->sp_rtnl_task);
12884
12885         /* send message via vfpf channel to release the resources of this vf */
12886         if (IS_VF(bp))
12887                 bnx2x_vfpf_release(bp);
12888
12889         /* Assumes no further PCIe PM changes will occur */
12890         if (system_state == SYSTEM_POWER_OFF) {
12891                 pci_wake_from_d3(pdev, bp->wol);
12892                 pci_set_power_state(pdev, PCI_D3hot);
12893         }
12894
12895         if (bp->regview)
12896                 iounmap(bp->regview);
12897
12898         /* for vf doorbells are part of the regview and were unmapped along with
12899          * it. FW is only loaded by PF.
12900          */
12901         if (IS_PF(bp)) {
12902                 if (bp->doorbells)
12903                         iounmap(bp->doorbells);
12904
12905                 bnx2x_release_firmware(bp);
12906         }
12907         bnx2x_free_mem_bp(bp);
12908
12909         if (remove_netdev)
12910                 free_netdev(dev);
12911
12912         if (atomic_read(&pdev->enable_cnt) == 1)
12913                 pci_release_regions(pdev);
12914
12915         pci_disable_device(pdev);
12916         pci_set_drvdata(pdev, NULL);
12917 }
12918
12919 static void bnx2x_remove_one(struct pci_dev *pdev)
12920 {
12921         struct net_device *dev = pci_get_drvdata(pdev);
12922         struct bnx2x *bp;
12923
12924         if (!dev) {
12925                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12926                 return;
12927         }
12928         bp = netdev_priv(dev);
12929
12930         __bnx2x_remove(pdev, dev, bp, true);
12931 }
12932
12933 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12934 {
12935         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
12936
12937         bp->rx_mode = BNX2X_RX_MODE_NONE;
12938
12939         if (CNIC_LOADED(bp))
12940                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12941
12942         /* Stop Tx */
12943         bnx2x_tx_disable(bp);
12944         /* Delete all NAPI objects */
12945         bnx2x_del_all_napi(bp);
12946         if (CNIC_LOADED(bp))
12947                 bnx2x_del_all_napi_cnic(bp);
12948         netdev_reset_tc(bp->dev);
12949
12950         del_timer_sync(&bp->timer);
12951         cancel_delayed_work(&bp->sp_task);
12952         cancel_delayed_work(&bp->period_task);
12953
12954         spin_lock_bh(&bp->stats_lock);
12955         bp->stats_state = STATS_STATE_DISABLED;
12956         spin_unlock_bh(&bp->stats_lock);
12957
12958         bnx2x_save_statistics(bp);
12959
12960         netif_carrier_off(bp->dev);
12961
12962         return 0;
12963 }
12964
12965 /**
12966  * bnx2x_io_error_detected - called when PCI error is detected
12967  * @pdev: Pointer to PCI device
12968  * @state: The current pci connection state
12969  *
12970  * This function is called after a PCI bus error affecting
12971  * this device has been detected.
12972  */
12973 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12974                                                 pci_channel_state_t state)
12975 {
12976         struct net_device *dev = pci_get_drvdata(pdev);
12977         struct bnx2x *bp = netdev_priv(dev);
12978
12979         rtnl_lock();
12980
12981         BNX2X_ERR("IO error detected\n");
12982
12983         netif_device_detach(dev);
12984
12985         if (state == pci_channel_io_perm_failure) {
12986                 rtnl_unlock();
12987                 return PCI_ERS_RESULT_DISCONNECT;
12988         }
12989
12990         if (netif_running(dev))
12991                 bnx2x_eeh_nic_unload(bp);
12992
12993         bnx2x_prev_path_mark_eeh(bp);
12994
12995         pci_disable_device(pdev);
12996
12997         rtnl_unlock();
12998
12999         /* Request a slot reset */
13000         return PCI_ERS_RESULT_NEED_RESET;
13001 }
13002
13003 /**
13004  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13005  * @pdev: Pointer to PCI device
13006  *
13007  * Restart the card from scratch, as if from a cold-boot.
13008  */
13009 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13010 {
13011         struct net_device *dev = pci_get_drvdata(pdev);
13012         struct bnx2x *bp = netdev_priv(dev);
13013         int i;
13014
13015         rtnl_lock();
13016         BNX2X_ERR("IO slot reset initializing...\n");
13017         if (pci_enable_device(pdev)) {
13018                 dev_err(&pdev->dev,
13019                         "Cannot re-enable PCI device after reset\n");
13020                 rtnl_unlock();
13021                 return PCI_ERS_RESULT_DISCONNECT;
13022         }
13023
13024         pci_set_master(pdev);
13025         pci_restore_state(pdev);
13026         pci_save_state(pdev);
13027
13028         if (netif_running(dev))
13029                 bnx2x_set_power_state(bp, PCI_D0);
13030
13031         if (netif_running(dev)) {
13032                 BNX2X_ERR("IO slot reset --> driver unload\n");
13033
13034                 /* MCP should have been reset; Need to wait for validity */
13035                 bnx2x_init_shmem(bp);
13036
13037                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13038                         u32 v;
13039
13040                         v = SHMEM2_RD(bp,
13041                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13042                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13043                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13044                 }
13045                 bnx2x_drain_tx_queues(bp);
13046                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13047                 bnx2x_netif_stop(bp, 1);
13048                 bnx2x_free_irq(bp);
13049
13050                 /* Report UNLOAD_DONE to MCP */
13051                 bnx2x_send_unload_done(bp, true);
13052
13053                 bp->sp_state = 0;
13054                 bp->port.pmf = 0;
13055
13056                 bnx2x_prev_unload(bp);
13057
13058                 /* We should have reseted the engine, so It's fair to
13059                  * assume the FW will no longer write to the bnx2x driver.
13060                  */
13061                 bnx2x_squeeze_objects(bp);
13062                 bnx2x_free_skbs(bp);
13063                 for_each_rx_queue(bp, i)
13064                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13065                 bnx2x_free_fp_mem(bp);
13066                 bnx2x_free_mem(bp);
13067
13068                 bp->state = BNX2X_STATE_CLOSED;
13069         }
13070
13071         rtnl_unlock();
13072
13073         return PCI_ERS_RESULT_RECOVERED;
13074 }
13075
13076 /**
13077  * bnx2x_io_resume - called when traffic can start flowing again
13078  * @pdev: Pointer to PCI device
13079  *
13080  * This callback is called when the error recovery driver tells us that
13081  * its OK to resume normal operation.
13082  */
13083 static void bnx2x_io_resume(struct pci_dev *pdev)
13084 {
13085         struct net_device *dev = pci_get_drvdata(pdev);
13086         struct bnx2x *bp = netdev_priv(dev);
13087
13088         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13089                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13090                 return;
13091         }
13092
13093         rtnl_lock();
13094
13095         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13096                                                         DRV_MSG_SEQ_NUMBER_MASK;
13097
13098         if (netif_running(dev))
13099                 bnx2x_nic_load(bp, LOAD_NORMAL);
13100
13101         netif_device_attach(dev);
13102
13103         rtnl_unlock();
13104 }
13105
13106 static const struct pci_error_handlers bnx2x_err_handler = {
13107         .error_detected = bnx2x_io_error_detected,
13108         .slot_reset     = bnx2x_io_slot_reset,
13109         .resume         = bnx2x_io_resume,
13110 };
13111
13112 static void bnx2x_shutdown(struct pci_dev *pdev)
13113 {
13114         struct net_device *dev = pci_get_drvdata(pdev);
13115         struct bnx2x *bp;
13116
13117         if (!dev)
13118                 return;
13119
13120         bp = netdev_priv(dev);
13121         if (!bp)
13122                 return;
13123
13124         rtnl_lock();
13125         netif_device_detach(dev);
13126         rtnl_unlock();
13127
13128         /* Don't remove the netdevice, as there are scenarios which will cause
13129          * the kernel to hang, e.g., when trying to remove bnx2i while the
13130          * rootfs is mounted from SAN.
13131          */
13132         __bnx2x_remove(pdev, dev, bp, false);
13133 }
13134
13135 static struct pci_driver bnx2x_pci_driver = {
13136         .name        = DRV_MODULE_NAME,
13137         .id_table    = bnx2x_pci_tbl,
13138         .probe       = bnx2x_init_one,
13139         .remove      = bnx2x_remove_one,
13140         .suspend     = bnx2x_suspend,
13141         .resume      = bnx2x_resume,
13142         .err_handler = &bnx2x_err_handler,
13143 #ifdef CONFIG_BNX2X_SRIOV
13144         .sriov_configure = bnx2x_sriov_configure,
13145 #endif
13146         .shutdown    = bnx2x_shutdown,
13147 };
13148
13149 static int __init bnx2x_init(void)
13150 {
13151         int ret;
13152
13153         pr_info("%s", version);
13154
13155         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13156         if (bnx2x_wq == NULL) {
13157                 pr_err("Cannot create workqueue\n");
13158                 return -ENOMEM;
13159         }
13160
13161         ret = pci_register_driver(&bnx2x_pci_driver);
13162         if (ret) {
13163                 pr_err("Cannot register driver\n");
13164                 destroy_workqueue(bnx2x_wq);
13165         }
13166         return ret;
13167 }
13168
13169 static void __exit bnx2x_cleanup(void)
13170 {
13171         struct list_head *pos, *q;
13172
13173         pci_unregister_driver(&bnx2x_pci_driver);
13174
13175         destroy_workqueue(bnx2x_wq);
13176
13177         /* Free globally allocated resources */
13178         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13179                 struct bnx2x_prev_path_list *tmp =
13180                         list_entry(pos, struct bnx2x_prev_path_list, list);
13181                 list_del(pos);
13182                 kfree(tmp);
13183         }
13184 }
13185
13186 void bnx2x_notify_link_changed(struct bnx2x *bp)
13187 {
13188         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13189 }
13190
13191 module_init(bnx2x_init);
13192 module_exit(bnx2x_cleanup);
13193
13194 /**
13195  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13196  *
13197  * @bp:         driver handle
13198  * @set:        set or clear the CAM entry
13199  *
13200  * This function will wait until the ramrod completion returns.
13201  * Return 0 if success, -ENODEV if ramrod doesn't return.
13202  */
13203 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13204 {
13205         unsigned long ramrod_flags = 0;
13206
13207         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13208         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13209                                  &bp->iscsi_l2_mac_obj, true,
13210                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13211 }
13212
13213 /* count denotes the number of new completions we have seen */
13214 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13215 {
13216         struct eth_spe *spe;
13217         int cxt_index, cxt_offset;
13218
13219 #ifdef BNX2X_STOP_ON_ERROR
13220         if (unlikely(bp->panic))
13221                 return;
13222 #endif
13223
13224         spin_lock_bh(&bp->spq_lock);
13225         BUG_ON(bp->cnic_spq_pending < count);
13226         bp->cnic_spq_pending -= count;
13227
13228         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13229                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13230                                 & SPE_HDR_CONN_TYPE) >>
13231                                 SPE_HDR_CONN_TYPE_SHIFT;
13232                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13233                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13234
13235                 /* Set validation for iSCSI L2 client before sending SETUP
13236                  *  ramrod
13237                  */
13238                 if (type == ETH_CONNECTION_TYPE) {
13239                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13240                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13241                                         ILT_PAGE_CIDS;
13242                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13243                                         (cxt_index * ILT_PAGE_CIDS);
13244                                 bnx2x_set_ctx_validation(bp,
13245                                         &bp->context[cxt_index].
13246                                                          vcxt[cxt_offset].eth,
13247                                         BNX2X_ISCSI_ETH_CID(bp));
13248                         }
13249                 }
13250
13251                 /*
13252                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13253                  * and in the air. We also check that number of outstanding
13254                  * COMMON ramrods is not more than the EQ and SPQ can
13255                  * accommodate.
13256                  */
13257                 if (type == ETH_CONNECTION_TYPE) {
13258                         if (!atomic_read(&bp->cq_spq_left))
13259                                 break;
13260                         else
13261                                 atomic_dec(&bp->cq_spq_left);
13262                 } else if (type == NONE_CONNECTION_TYPE) {
13263                         if (!atomic_read(&bp->eq_spq_left))
13264                                 break;
13265                         else
13266                                 atomic_dec(&bp->eq_spq_left);
13267                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13268                            (type == FCOE_CONNECTION_TYPE)) {
13269                         if (bp->cnic_spq_pending >=
13270                             bp->cnic_eth_dev.max_kwqe_pending)
13271                                 break;
13272                         else
13273                                 bp->cnic_spq_pending++;
13274                 } else {
13275                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13276                         bnx2x_panic();
13277                         break;
13278                 }
13279
13280                 spe = bnx2x_sp_get_next(bp);
13281                 *spe = *bp->cnic_kwq_cons;
13282
13283                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13284                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13285
13286                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13287                         bp->cnic_kwq_cons = bp->cnic_kwq;
13288                 else
13289                         bp->cnic_kwq_cons++;
13290         }
13291         bnx2x_sp_prod_update(bp);
13292         spin_unlock_bh(&bp->spq_lock);
13293 }
13294
13295 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13296                                struct kwqe_16 *kwqes[], u32 count)
13297 {
13298         struct bnx2x *bp = netdev_priv(dev);
13299         int i;
13300
13301 #ifdef BNX2X_STOP_ON_ERROR
13302         if (unlikely(bp->panic)) {
13303                 BNX2X_ERR("Can't post to SP queue while panic\n");
13304                 return -EIO;
13305         }
13306 #endif
13307
13308         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13309             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13310                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13311                 return -EAGAIN;
13312         }
13313
13314         spin_lock_bh(&bp->spq_lock);
13315
13316         for (i = 0; i < count; i++) {
13317                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13318
13319                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13320                         break;
13321
13322                 *bp->cnic_kwq_prod = *spe;
13323
13324                 bp->cnic_kwq_pending++;
13325
13326                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13327                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13328                    spe->data.update_data_addr.hi,
13329                    spe->data.update_data_addr.lo,
13330                    bp->cnic_kwq_pending);
13331
13332                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13333                         bp->cnic_kwq_prod = bp->cnic_kwq;
13334                 else
13335                         bp->cnic_kwq_prod++;
13336         }
13337
13338         spin_unlock_bh(&bp->spq_lock);
13339
13340         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13341                 bnx2x_cnic_sp_post(bp, 0);
13342
13343         return i;
13344 }
13345
13346 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13347 {
13348         struct cnic_ops *c_ops;
13349         int rc = 0;
13350
13351         mutex_lock(&bp->cnic_mutex);
13352         c_ops = rcu_dereference_protected(bp->cnic_ops,
13353                                           lockdep_is_held(&bp->cnic_mutex));
13354         if (c_ops)
13355                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13356         mutex_unlock(&bp->cnic_mutex);
13357
13358         return rc;
13359 }
13360
13361 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13362 {
13363         struct cnic_ops *c_ops;
13364         int rc = 0;
13365
13366         rcu_read_lock();
13367         c_ops = rcu_dereference(bp->cnic_ops);
13368         if (c_ops)
13369                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13370         rcu_read_unlock();
13371
13372         return rc;
13373 }
13374
13375 /*
13376  * for commands that have no data
13377  */
13378 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13379 {
13380         struct cnic_ctl_info ctl = {0};
13381
13382         ctl.cmd = cmd;
13383
13384         return bnx2x_cnic_ctl_send(bp, &ctl);
13385 }
13386
13387 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13388 {
13389         struct cnic_ctl_info ctl = {0};
13390
13391         /* first we tell CNIC and only then we count this as a completion */
13392         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13393         ctl.data.comp.cid = cid;
13394         ctl.data.comp.error = err;
13395
13396         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13397         bnx2x_cnic_sp_post(bp, 0);
13398 }
13399
13400 /* Called with netif_addr_lock_bh() taken.
13401  * Sets an rx_mode config for an iSCSI ETH client.
13402  * Doesn't block.
13403  * Completion should be checked outside.
13404  */
13405 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13406 {
13407         unsigned long accept_flags = 0, ramrod_flags = 0;
13408         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13409         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13410
13411         if (start) {
13412                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13413                  * because it's the only way for UIO Queue to accept
13414                  * multicasts (in non-promiscuous mode only one Queue per
13415                  * function will receive multicast packets (leading in our
13416                  * case).
13417                  */
13418                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13419                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13420                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13421                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13422
13423                 /* Clear STOP_PENDING bit if START is requested */
13424                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13425
13426                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13427         } else
13428                 /* Clear START_PENDING bit if STOP is requested */
13429                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13430
13431         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13432                 set_bit(sched_state, &bp->sp_state);
13433         else {
13434                 __set_bit(RAMROD_RX, &ramrod_flags);
13435                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13436                                     ramrod_flags);
13437         }
13438 }
13439
13440 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13441 {
13442         struct bnx2x *bp = netdev_priv(dev);
13443         int rc = 0;
13444
13445         switch (ctl->cmd) {
13446         case DRV_CTL_CTXTBL_WR_CMD: {
13447                 u32 index = ctl->data.io.offset;
13448                 dma_addr_t addr = ctl->data.io.dma_addr;
13449
13450                 bnx2x_ilt_wr(bp, index, addr);
13451                 break;
13452         }
13453
13454         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13455                 int count = ctl->data.credit.credit_count;
13456
13457                 bnx2x_cnic_sp_post(bp, count);
13458                 break;
13459         }
13460
13461         /* rtnl_lock is held.  */
13462         case DRV_CTL_START_L2_CMD: {
13463                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13464                 unsigned long sp_bits = 0;
13465
13466                 /* Configure the iSCSI classification object */
13467                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13468                                    cp->iscsi_l2_client_id,
13469                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13470                                    bnx2x_sp(bp, mac_rdata),
13471                                    bnx2x_sp_mapping(bp, mac_rdata),
13472                                    BNX2X_FILTER_MAC_PENDING,
13473                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13474                                    &bp->macs_pool);
13475
13476                 /* Set iSCSI MAC address */
13477                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13478                 if (rc)
13479                         break;
13480
13481                 mmiowb();
13482                 barrier();
13483
13484                 /* Start accepting on iSCSI L2 ring */
13485
13486                 netif_addr_lock_bh(dev);
13487                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13488                 netif_addr_unlock_bh(dev);
13489
13490                 /* bits to wait on */
13491                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13492                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13493
13494                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13495                         BNX2X_ERR("rx_mode completion timed out!\n");
13496
13497                 break;
13498         }
13499
13500         /* rtnl_lock is held.  */
13501         case DRV_CTL_STOP_L2_CMD: {
13502                 unsigned long sp_bits = 0;
13503
13504                 /* Stop accepting on iSCSI L2 ring */
13505                 netif_addr_lock_bh(dev);
13506                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13507                 netif_addr_unlock_bh(dev);
13508
13509                 /* bits to wait on */
13510                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13511                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13512
13513                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13514                         BNX2X_ERR("rx_mode completion timed out!\n");
13515
13516                 mmiowb();
13517                 barrier();
13518
13519                 /* Unset iSCSI L2 MAC */
13520                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13521                                         BNX2X_ISCSI_ETH_MAC, true);
13522                 break;
13523         }
13524         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13525                 int count = ctl->data.credit.credit_count;
13526
13527                 smp_mb__before_atomic_inc();
13528                 atomic_add(count, &bp->cq_spq_left);
13529                 smp_mb__after_atomic_inc();
13530                 break;
13531         }
13532         case DRV_CTL_ULP_REGISTER_CMD: {
13533                 int ulp_type = ctl->data.register_data.ulp_type;
13534
13535                 if (CHIP_IS_E3(bp)) {
13536                         int idx = BP_FW_MB_IDX(bp);
13537                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13538                         int path = BP_PATH(bp);
13539                         int port = BP_PORT(bp);
13540                         int i;
13541                         u32 scratch_offset;
13542                         u32 *host_addr;
13543
13544                         /* first write capability to shmem2 */
13545                         if (ulp_type == CNIC_ULP_ISCSI)
13546                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13547                         else if (ulp_type == CNIC_ULP_FCOE)
13548                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13549                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13550
13551                         if ((ulp_type != CNIC_ULP_FCOE) ||
13552                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13553                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13554                                 break;
13555
13556                         /* if reached here - should write fcoe capabilities */
13557                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13558                         if (!scratch_offset)
13559                                 break;
13560                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13561                                                    fcoe_features[path][port]);
13562                         host_addr = (u32 *) &(ctl->data.register_data.
13563                                               fcoe_features);
13564                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13565                              i += 4)
13566                                 REG_WR(bp, scratch_offset + i,
13567                                        *(host_addr + i/4));
13568                 }
13569                 break;
13570         }
13571
13572         case DRV_CTL_ULP_UNREGISTER_CMD: {
13573                 int ulp_type = ctl->data.ulp_type;
13574
13575                 if (CHIP_IS_E3(bp)) {
13576                         int idx = BP_FW_MB_IDX(bp);
13577                         u32 cap;
13578
13579                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13580                         if (ulp_type == CNIC_ULP_ISCSI)
13581                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13582                         else if (ulp_type == CNIC_ULP_FCOE)
13583                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13584                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13585                 }
13586                 break;
13587         }
13588
13589         default:
13590                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13591                 rc = -EINVAL;
13592         }
13593
13594         return rc;
13595 }
13596
13597 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13598 {
13599         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13600
13601         if (bp->flags & USING_MSIX_FLAG) {
13602                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13603                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13604                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13605         } else {
13606                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13607                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13608         }
13609         if (!CHIP_IS_E1x(bp))
13610                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13611         else
13612                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13613
13614         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13615         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13616         cp->irq_arr[1].status_blk = bp->def_status_blk;
13617         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13618         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13619
13620         cp->num_irq = 2;
13621 }
13622
13623 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13624 {
13625         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13626
13627         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13628                              bnx2x_cid_ilt_lines(bp);
13629         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13630         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13631         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13632
13633         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13634            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13635            cp->iscsi_l2_cid);
13636
13637         if (NO_ISCSI_OOO(bp))
13638                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13639 }
13640
13641 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13642                                void *data)
13643 {
13644         struct bnx2x *bp = netdev_priv(dev);
13645         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13646         int rc;
13647
13648         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
13649
13650         if (ops == NULL) {
13651                 BNX2X_ERR("NULL ops received\n");
13652                 return -EINVAL;
13653         }
13654
13655         if (!CNIC_SUPPORT(bp)) {
13656                 BNX2X_ERR("Can't register CNIC when not supported\n");
13657                 return -EOPNOTSUPP;
13658         }
13659
13660         if (!CNIC_LOADED(bp)) {
13661                 rc = bnx2x_load_cnic(bp);
13662                 if (rc) {
13663                         BNX2X_ERR("CNIC-related load failed\n");
13664                         return rc;
13665                 }
13666         }
13667
13668         bp->cnic_enabled = true;
13669
13670         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
13671         if (!bp->cnic_kwq)
13672                 return -ENOMEM;
13673
13674         bp->cnic_kwq_cons = bp->cnic_kwq;
13675         bp->cnic_kwq_prod = bp->cnic_kwq;
13676         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
13677
13678         bp->cnic_spq_pending = 0;
13679         bp->cnic_kwq_pending = 0;
13680
13681         bp->cnic_data = data;
13682
13683         cp->num_irq = 0;
13684         cp->drv_state |= CNIC_DRV_STATE_REGD;
13685         cp->iro_arr = bp->iro_arr;
13686
13687         bnx2x_setup_cnic_irq_info(bp);
13688
13689         rcu_assign_pointer(bp->cnic_ops, ops);
13690
13691         return 0;
13692 }
13693
13694 static int bnx2x_unregister_cnic(struct net_device *dev)
13695 {
13696         struct bnx2x *bp = netdev_priv(dev);
13697         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13698
13699         mutex_lock(&bp->cnic_mutex);
13700         cp->drv_state = 0;
13701         RCU_INIT_POINTER(bp->cnic_ops, NULL);
13702         mutex_unlock(&bp->cnic_mutex);
13703         synchronize_rcu();
13704         bp->cnic_enabled = false;
13705         kfree(bp->cnic_kwq);
13706         bp->cnic_kwq = NULL;
13707
13708         return 0;
13709 }
13710
13711 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13712 {
13713         struct bnx2x *bp = netdev_priv(dev);
13714         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13715
13716         /* If both iSCSI and FCoE are disabled - return NULL in
13717          * order to indicate CNIC that it should not try to work
13718          * with this device.
13719          */
13720         if (NO_ISCSI(bp) && NO_FCOE(bp))
13721                 return NULL;
13722
13723         cp->drv_owner = THIS_MODULE;
13724         cp->chip_id = CHIP_ID(bp);
13725         cp->pdev = bp->pdev;
13726         cp->io_base = bp->regview;
13727         cp->io_base2 = bp->doorbells;
13728         cp->max_kwqe_pending = 8;
13729         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13730         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13731                              bnx2x_cid_ilt_lines(bp);
13732         cp->ctx_tbl_len = CNIC_ILT_LINES;
13733         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13734         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13735         cp->drv_ctl = bnx2x_drv_ctl;
13736         cp->drv_register_cnic = bnx2x_register_cnic;
13737         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13738         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13739         cp->iscsi_l2_client_id =
13740                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13741         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13742
13743         if (NO_ISCSI_OOO(bp))
13744                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13745
13746         if (NO_ISCSI(bp))
13747                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13748
13749         if (NO_FCOE(bp))
13750                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13751
13752         BNX2X_DEV_INFO(
13753                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13754            cp->ctx_blk_size,
13755            cp->ctx_tbl_offset,
13756            cp->ctx_tbl_len,
13757            cp->starting_cid);
13758         return cp;
13759 }
13760
13761 u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
13762 {
13763         struct bnx2x *bp = fp->bp;
13764         u32 offset = BAR_USTRORM_INTMEM;
13765
13766         if (IS_VF(bp))
13767                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
13768         else if (!CHIP_IS_E1x(bp))
13769                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
13770         else
13771                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
13772
13773         return offset;
13774 }
13775
13776 /* called only on E1H or E2.
13777  * When pretending to be PF, the pretend value is the function number 0...7
13778  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
13779  * combination
13780  */
13781 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
13782 {
13783         u32 pretend_reg;
13784
13785         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
13786                 return -1;
13787
13788         /* get my own pretend register */
13789         pretend_reg = bnx2x_get_pretend_reg(bp);
13790         REG_WR(bp, pretend_reg, pretend_func_val);
13791         REG_RD(bp, pretend_reg);
13792         return 0;
13793 }