2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
51 #define SGE_RX_SM_BUF_SIZE 1536
53 #define SGE_RX_COPY_THRES 256
54 #define SGE_RX_PULL_LEN 128
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
62 #define FL0_PG_CHUNK_SIZE 2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
73 * Max number of Rx buffers we replenish at a time.
75 #define MAX_RX_REFILL 16U
77 * Period of the Tx buffer reclaim timer. This timer does not need to run
78 * frequently as Tx buffers are usually reclaimed by new Tx packets.
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
88 * Types of Tx queues in each queue set. Order here matters, do not change.
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
92 /* Values for sge_txq.flags */
94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
99 __be64 flit[TX_DESC_FLITS];
109 struct tx_sw_desc { /* SW state per Tx descriptor */
111 u8 eop; /* set if last descriptor for packet */
112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
113 u8 fragidx; /* first page fragment associated with descriptor */
114 s8 sflit; /* start flit of first SGL entry in descriptor */
117 struct rx_sw_desc { /* SW state per Rx descriptor */
120 struct fl_pg_chunk pg_chunk;
122 DEFINE_DMA_UNMAP_ADDR(dma_addr);
125 struct rsp_desc { /* response queue descriptor */
126 struct rss_header rss_hdr;
134 * Holds unmapping information for Tx packets that need deferred unmapping.
135 * This structure lives at skb->head and must be allocated by callers.
137 struct deferred_unmap_info {
138 struct pci_dev *pdev;
139 dma_addr_t addr[MAX_SKB_FRAGS + 1];
143 * Maps a number of flits to the number of Tx descriptors that can hold them.
146 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
148 * HW allows up to 4 descriptors to be combined into a WR.
150 static u8 flit_desc_map[] = {
152 #if SGE_NUM_GENBITS == 1
153 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
154 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
155 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
156 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
157 #elif SGE_NUM_GENBITS == 2
158 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
159 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
161 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
163 # error "SGE_NUM_GENBITS must be 1 or 2"
167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
169 return container_of(q, struct sge_qset, fl[qidx]);
172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
174 return container_of(q, struct sge_qset, rspq);
177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
179 return container_of(q, struct sge_qset, txq[qidx]);
183 * refill_rspq - replenish an SGE response queue
184 * @adapter: the adapter
185 * @q: the response queue to replenish
186 * @credits: how many new responses to make available
188 * Replenishes a response queue by making the supplied number of responses
191 static inline void refill_rspq(struct adapter *adapter,
192 const struct sge_rspq *q, unsigned int credits)
195 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
196 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
200 * need_skb_unmap - does the platform need unmapping of sk_buffs?
202 * Returns true if the platform needs sk_buff unmapping. The compiler
203 * optimizes away unnecessary code if this returns true.
205 static inline int need_skb_unmap(void)
207 #ifdef CONFIG_NEED_DMA_MAP_STATE
215 * unmap_skb - unmap a packet main body and its page fragments
217 * @q: the Tx queue containing Tx descriptors for the packet
218 * @cidx: index of Tx descriptor
219 * @pdev: the PCI device
221 * Unmap the main body of an sk_buff and its page fragments, if any.
222 * Because of the fairly complicated structure of our SGLs and the desire
223 * to conserve space for metadata, the information necessary to unmap an
224 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
225 * descriptors (the physical addresses of the various data buffers), and
226 * the SW descriptor state (assorted indices). The send functions
227 * initialize the indices for the first packet descriptor so we can unmap
228 * the buffers held in the first Tx descriptor here, and we have enough
229 * information at this point to set the state for the next Tx descriptor.
231 * Note that it is possible to clean up the first descriptor of a packet
232 * before the send routines have written the next descriptors, but this
233 * race does not cause any problem. We just end up writing the unmapping
234 * info for the descriptor first.
236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
237 unsigned int cidx, struct pci_dev *pdev)
239 const struct sg_ent *sgp;
240 struct tx_sw_desc *d = &q->sdesc[cidx];
241 int nfrags, frag_idx, curflit, j = d->addr_idx;
243 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
244 frag_idx = d->fragidx;
246 if (frag_idx == 0 && skb_headlen(skb)) {
247 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
248 skb_headlen(skb), PCI_DMA_TODEVICE);
252 curflit = d->sflit + 1 + j;
253 nfrags = skb_shinfo(skb)->nr_frags;
255 while (frag_idx < nfrags && curflit < WR_FLITS) {
256 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
257 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
268 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
269 d = cidx + 1 == q->size ? q->sdesc : d + 1;
270 d->fragidx = frag_idx;
272 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
277 * free_tx_desc - reclaims Tx descriptors and their buffers
278 * @adapter: the adapter
279 * @q: the Tx queue to reclaim descriptors from
280 * @n: the number of descriptors to reclaim
282 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
283 * Tx buffers. Called with the Tx queue lock held.
285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
288 struct tx_sw_desc *d;
289 struct pci_dev *pdev = adapter->pdev;
290 unsigned int cidx = q->cidx;
292 const int need_unmap = need_skb_unmap() &&
293 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
297 if (d->skb) { /* an SGL is present */
299 unmap_skb(d->skb, q, cidx, pdev);
306 if (++cidx == q->size) {
315 * reclaim_completed_tx - reclaims completed Tx descriptors
316 * @adapter: the adapter
317 * @q: the Tx queue to reclaim completed descriptors from
318 * @chunk: maximum number of descriptors to reclaim
320 * Reclaims Tx descriptors that the SGE has indicated it has processed,
321 * and frees the associated buffers if possible. Called with the Tx
324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
328 unsigned int reclaim = q->processed - q->cleaned;
330 reclaim = min(chunk, reclaim);
332 free_tx_desc(adapter, q, reclaim);
333 q->cleaned += reclaim;
334 q->in_use -= reclaim;
336 return q->processed - q->cleaned;
340 * should_restart_tx - are there enough resources to restart a Tx queue?
343 * Checks if there are enough descriptors to restart a suspended Tx queue.
345 static inline int should_restart_tx(const struct sge_txq *q)
347 unsigned int r = q->processed - q->cleaned;
349 return q->in_use - r < (q->size >> 1);
352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353 struct rx_sw_desc *d)
355 if (q->use_pages && d->pg_chunk.page) {
356 (*d->pg_chunk.p_cnt)--;
357 if (!*d->pg_chunk.p_cnt)
360 q->alloc_size, PCI_DMA_FROMDEVICE);
362 put_page(d->pg_chunk.page);
363 d->pg_chunk.page = NULL;
365 pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
366 q->buf_size, PCI_DMA_FROMDEVICE);
373 * free_rx_bufs - free the Rx buffers on an SGE free list
374 * @pdev: the PCI device associated with the adapter
375 * @rxq: the SGE free list to clean up
377 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
378 * this queue should be stopped before calling this function.
380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
382 unsigned int cidx = q->cidx;
384 while (q->credits--) {
385 struct rx_sw_desc *d = &q->sdesc[cidx];
388 clear_rx_desc(pdev, q, d);
389 if (++cidx == q->size)
393 if (q->pg_chunk.page) {
394 __free_pages(q->pg_chunk.page, q->order);
395 q->pg_chunk.page = NULL;
400 * add_one_rx_buf - add a packet buffer to a free-buffer list
401 * @va: buffer start VA
402 * @len: the buffer length
403 * @d: the HW Rx descriptor to write
404 * @sd: the SW Rx descriptor to write
405 * @gen: the generation bit value
406 * @pdev: the PCI device associated with the adapter
408 * Add a buffer of the given length to the supplied HW and SW Rx
411 static inline int add_one_rx_buf(void *va, unsigned int len,
412 struct rx_desc *d, struct rx_sw_desc *sd,
413 unsigned int gen, struct pci_dev *pdev)
417 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
418 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
421 dma_unmap_addr_set(sd, dma_addr, mapping);
423 d->addr_lo = cpu_to_be32(mapping);
424 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
426 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
434 d->addr_lo = cpu_to_be32(mapping);
435 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
437 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443 struct rx_sw_desc *sd, gfp_t gfp,
446 if (!q->pg_chunk.page) {
449 q->pg_chunk.page = alloc_pages(gfp, order);
450 if (unlikely(!q->pg_chunk.page))
452 q->pg_chunk.va = page_address(q->pg_chunk.page);
453 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
455 q->pg_chunk.offset = 0;
456 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457 0, q->alloc_size, PCI_DMA_FROMDEVICE);
458 if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) {
459 __free_pages(q->pg_chunk.page, order);
460 q->pg_chunk.page = NULL;
463 q->pg_chunk.mapping = mapping;
465 sd->pg_chunk = q->pg_chunk;
467 prefetch(sd->pg_chunk.p_cnt);
469 q->pg_chunk.offset += q->buf_size;
470 if (q->pg_chunk.offset == (PAGE_SIZE << order))
471 q->pg_chunk.page = NULL;
473 q->pg_chunk.va += q->buf_size;
474 get_page(q->pg_chunk.page);
477 if (sd->pg_chunk.offset == 0)
478 *sd->pg_chunk.p_cnt = 1;
480 *sd->pg_chunk.p_cnt += 1;
485 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
487 if (q->pend_cred >= q->credits / 4) {
490 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
495 * refill_fl - refill an SGE free-buffer list
496 * @adapter: the adapter
497 * @q: the free-list to refill
498 * @n: the number of new buffers to allocate
499 * @gfp: the gfp flags for allocating new buffers
501 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
502 * allocated with the supplied gfp flags. The caller must assure that
503 * @n does not exceed the queue's capacity.
505 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
507 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
508 struct rx_desc *d = &q->desc[q->pidx];
509 unsigned int count = 0;
516 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
518 nomem: q->alloc_failed++;
521 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
522 dma_unmap_addr_set(sd, dma_addr, mapping);
524 add_one_rx_chunk(mapping, d, q->gen);
525 pci_dma_sync_single_for_device(adap->pdev, mapping,
526 q->buf_size - SGE_PG_RSVD,
531 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
536 buf_start = skb->data;
537 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
540 clear_rx_desc(adap->pdev, q, sd);
547 if (++q->pidx == q->size) {
557 q->pend_cred += count;
563 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
565 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
566 GFP_ATOMIC | __GFP_COMP);
570 * recycle_rx_buf - recycle a receive buffer
571 * @adapter: the adapter
572 * @q: the SGE free list
573 * @idx: index of buffer to recycle
575 * Recycles the specified buffer on the given free list by adding it at
576 * the next available slot on the list.
578 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
581 struct rx_desc *from = &q->desc[idx];
582 struct rx_desc *to = &q->desc[q->pidx];
584 q->sdesc[q->pidx] = q->sdesc[idx];
585 to->addr_lo = from->addr_lo; /* already big endian */
586 to->addr_hi = from->addr_hi; /* likewise */
588 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
589 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
591 if (++q->pidx == q->size) {
602 * alloc_ring - allocate resources for an SGE descriptor ring
603 * @pdev: the PCI device
604 * @nelem: the number of descriptors
605 * @elem_size: the size of each descriptor
606 * @sw_size: the size of the SW state associated with each ring element
607 * @phys: the physical address of the allocated ring
608 * @metadata: address of the array holding the SW state for the ring
610 * Allocates resources for an SGE descriptor ring, such as Tx queues,
611 * free buffer lists, or response queues. Each SGE ring requires
612 * space for its HW descriptors plus, optionally, space for the SW state
613 * associated with each HW entry (the metadata). The function returns
614 * three values: the virtual address for the HW ring (the return value
615 * of the function), the physical address of the HW ring, and the address
618 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
619 size_t sw_size, dma_addr_t * phys, void *metadata)
621 size_t len = nelem * elem_size;
623 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
627 if (sw_size && metadata) {
628 s = kcalloc(nelem, sw_size, GFP_KERNEL);
631 dma_free_coherent(&pdev->dev, len, p, *phys);
634 *(void **)metadata = s;
641 * t3_reset_qset - reset a sge qset
644 * Reset the qset structure.
645 * the NAPI structure is preserved in the event of
646 * the qset's reincarnation, for example during EEH recovery.
648 static void t3_reset_qset(struct sge_qset *q)
651 !(q->adap->flags & NAPI_INIT)) {
652 memset(q, 0, sizeof(*q));
657 memset(&q->rspq, 0, sizeof(q->rspq));
658 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
659 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
661 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
662 q->rx_reclaim_timer.function = NULL;
664 napi_free_frags(&q->napi);
669 * free_qset - free the resources of an SGE queue set
670 * @adapter: the adapter owning the queue set
673 * Release the HW and SW resources associated with an SGE queue set, such
674 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
675 * queue set must be quiesced prior to calling this.
677 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
680 struct pci_dev *pdev = adapter->pdev;
682 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
684 spin_lock_irq(&adapter->sge.reg_lock);
685 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
686 spin_unlock_irq(&adapter->sge.reg_lock);
687 free_rx_bufs(pdev, &q->fl[i]);
688 kfree(q->fl[i].sdesc);
689 dma_free_coherent(&pdev->dev,
691 sizeof(struct rx_desc), q->fl[i].desc,
695 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
696 if (q->txq[i].desc) {
697 spin_lock_irq(&adapter->sge.reg_lock);
698 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
699 spin_unlock_irq(&adapter->sge.reg_lock);
700 if (q->txq[i].sdesc) {
701 free_tx_desc(adapter, &q->txq[i],
703 kfree(q->txq[i].sdesc);
705 dma_free_coherent(&pdev->dev,
707 sizeof(struct tx_desc),
708 q->txq[i].desc, q->txq[i].phys_addr);
709 __skb_queue_purge(&q->txq[i].sendq);
713 spin_lock_irq(&adapter->sge.reg_lock);
714 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
715 spin_unlock_irq(&adapter->sge.reg_lock);
716 dma_free_coherent(&pdev->dev,
717 q->rspq.size * sizeof(struct rsp_desc),
718 q->rspq.desc, q->rspq.phys_addr);
725 * init_qset_cntxt - initialize an SGE queue set context info
727 * @id: the queue set id
729 * Initializes the TIDs and context ids for the queues of a queue set.
731 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
733 qs->rspq.cntxt_id = id;
734 qs->fl[0].cntxt_id = 2 * id;
735 qs->fl[1].cntxt_id = 2 * id + 1;
736 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
737 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
738 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
739 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
740 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
744 * sgl_len - calculates the size of an SGL of the given capacity
745 * @n: the number of SGL entries
747 * Calculates the number of flits needed for a scatter/gather list that
748 * can hold the given number of entries.
750 static inline unsigned int sgl_len(unsigned int n)
752 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
753 return (3 * n) / 2 + (n & 1);
757 * flits_to_desc - returns the num of Tx descriptors for the given flits
758 * @n: the number of flits
760 * Calculates the number of Tx descriptors needed for the supplied number
763 static inline unsigned int flits_to_desc(unsigned int n)
765 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
766 return flit_desc_map[n];
770 * get_packet - return the next ingress packet buffer from a free list
771 * @adap: the adapter that received the packet
772 * @fl: the SGE free list holding the packet
773 * @len: the packet length including any SGE padding
774 * @drop_thres: # of remaining buffers before we start dropping packets
776 * Get the next packet from a free list and complete setup of the
777 * sk_buff. If the packet is small we make a copy and recycle the
778 * original buffer, otherwise we use the original buffer itself. If a
779 * positive drop threshold is supplied packets are dropped and their
780 * buffers recycled if (a) the number of remaining buffers is under the
781 * threshold and the packet is too big to copy, or (b) the packet should
782 * be copied but there is no memory for the copy.
784 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
785 unsigned int len, unsigned int drop_thres)
787 struct sk_buff *skb = NULL;
788 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
790 prefetch(sd->skb->data);
793 if (len <= SGE_RX_COPY_THRES) {
794 skb = alloc_skb(len, GFP_ATOMIC);
795 if (likely(skb != NULL)) {
797 pci_dma_sync_single_for_cpu(adap->pdev,
798 dma_unmap_addr(sd, dma_addr), len,
800 memcpy(skb->data, sd->skb->data, len);
801 pci_dma_sync_single_for_device(adap->pdev,
802 dma_unmap_addr(sd, dma_addr), len,
804 } else if (!drop_thres)
807 recycle_rx_buf(adap, fl, fl->cidx);
811 if (unlikely(fl->credits < drop_thres) &&
812 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
813 GFP_ATOMIC | __GFP_COMP) == 0)
817 pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
818 fl->buf_size, PCI_DMA_FROMDEVICE);
821 __refill_fl(adap, fl);
826 * get_packet_pg - return the next ingress packet buffer from a free list
827 * @adap: the adapter that received the packet
828 * @fl: the SGE free list holding the packet
829 * @len: the packet length including any SGE padding
830 * @drop_thres: # of remaining buffers before we start dropping packets
832 * Get the next packet from a free list populated with page chunks.
833 * If the packet is small we make a copy and recycle the original buffer,
834 * otherwise we attach the original buffer as a page fragment to a fresh
835 * sk_buff. If a positive drop threshold is supplied packets are dropped
836 * and their buffers recycled if (a) the number of remaining buffers is
837 * under the threshold and the packet is too big to copy, or (b) there's
840 * Note: this function is similar to @get_packet but deals with Rx buffers
841 * that are page chunks rather than sk_buffs.
843 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
844 struct sge_rspq *q, unsigned int len,
845 unsigned int drop_thres)
847 struct sk_buff *newskb, *skb;
848 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
850 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
852 newskb = skb = q->pg_skb;
853 if (!skb && (len <= SGE_RX_COPY_THRES)) {
854 newskb = alloc_skb(len, GFP_ATOMIC);
855 if (likely(newskb != NULL)) {
856 __skb_put(newskb, len);
857 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
859 memcpy(newskb->data, sd->pg_chunk.va, len);
860 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
863 } else if (!drop_thres)
867 recycle_rx_buf(adap, fl, fl->cidx);
872 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
875 prefetch(sd->pg_chunk.p_cnt);
878 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
880 if (unlikely(!newskb)) {
886 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
888 (*sd->pg_chunk.p_cnt)--;
889 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
890 pci_unmap_page(adap->pdev,
891 sd->pg_chunk.mapping,
895 __skb_put(newskb, SGE_RX_PULL_LEN);
896 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
897 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
898 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
899 len - SGE_RX_PULL_LEN);
901 newskb->data_len = len - SGE_RX_PULL_LEN;
902 newskb->truesize += newskb->data_len;
904 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
906 sd->pg_chunk.offset, len);
908 newskb->data_len += len;
909 newskb->truesize += len;
914 * We do not refill FLs here, we let the caller do it to overlap a
921 * get_imm_packet - return the next ingress packet buffer from a response
922 * @resp: the response descriptor containing the packet data
924 * Return a packet containing the immediate data of the given response.
926 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
928 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
931 __skb_put(skb, IMMED_PKT_SIZE);
932 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
938 * calc_tx_descs - calculate the number of Tx descriptors for a packet
941 * Returns the number of Tx descriptors needed for the given Ethernet
942 * packet. Ethernet packets require addition of WR and CPL headers.
944 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
948 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
951 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
952 if (skb_shinfo(skb)->gso_size)
954 return flits_to_desc(flits);
958 /* map_skb - map a packet main body and its page fragments
959 * @pdev: the PCI device
961 * @addr: placeholder to save the mapped addresses
963 * map the main body of an sk_buff and its page fragments, if any.
965 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
968 const skb_frag_t *fp, *end;
969 const struct skb_shared_info *si;
971 *addr = pci_map_single(pdev, skb->data, skb_headlen(skb),
973 if (pci_dma_mapping_error(pdev, *addr))
976 si = skb_shinfo(skb);
977 end = &si->frags[si->nr_frags];
979 for (fp = si->frags; fp < end; fp++) {
980 *++addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
982 if (pci_dma_mapping_error(pdev, *addr))
988 while (fp-- > si->frags)
989 dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
992 pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE);
998 * write_sgl - populate a scatter/gather list for a packet
1000 * @sgp: the SGL to populate
1001 * @start: start address of skb main body data to include in the SGL
1002 * @len: length of skb main body data to include in the SGL
1003 * @addr: the list of the mapped addresses
1005 * Copies the scatter/gather list for the buffers that make up a packet
1006 * and returns the SGL size in 8-byte words. The caller must size the SGL
1009 static inline unsigned int write_sgl(const struct sk_buff *skb,
1010 struct sg_ent *sgp, unsigned char *start,
1011 unsigned int len, const dma_addr_t *addr)
1013 unsigned int i, j = 0, k = 0, nfrags;
1016 sgp->len[0] = cpu_to_be32(len);
1017 sgp->addr[j++] = cpu_to_be64(addr[k++]);
1020 nfrags = skb_shinfo(skb)->nr_frags;
1021 for (i = 0; i < nfrags; i++) {
1022 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1024 sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1025 sgp->addr[j] = cpu_to_be64(addr[k++]);
1032 return ((nfrags + (len != 0)) * 3) / 2 + j;
1036 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1037 * @adap: the adapter
1040 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1041 * where the HW is going to sleep just after we checked, however,
1042 * then the interrupt handler will detect the outstanding TX packet
1043 * and ring the doorbell for us.
1045 * When GTS is disabled we unconditionally ring the doorbell.
1047 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1050 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1051 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1052 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1053 t3_write_reg(adap, A_SG_KDOORBELL,
1054 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1057 wmb(); /* write descriptors before telling HW */
1058 t3_write_reg(adap, A_SG_KDOORBELL,
1059 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1063 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1065 #if SGE_NUM_GENBITS == 2
1066 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1071 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1072 * @ndesc: number of Tx descriptors spanned by the SGL
1073 * @skb: the packet corresponding to the WR
1074 * @d: first Tx descriptor to be written
1075 * @pidx: index of above descriptors
1076 * @q: the SGE Tx queue
1078 * @flits: number of flits to the start of the SGL in the first descriptor
1079 * @sgl_flits: the SGL size in flits
1080 * @gen: the Tx descriptor generation
1081 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1082 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1084 * Write a work request header and an associated SGL. If the SGL is
1085 * small enough to fit into one Tx descriptor it has already been written
1086 * and we just need to write the WR header. Otherwise we distribute the
1087 * SGL across the number of descriptors it spans.
1089 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1090 struct tx_desc *d, unsigned int pidx,
1091 const struct sge_txq *q,
1092 const struct sg_ent *sgl,
1093 unsigned int flits, unsigned int sgl_flits,
1094 unsigned int gen, __be32 wr_hi,
1097 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1098 struct tx_sw_desc *sd = &q->sdesc[pidx];
1101 if (need_skb_unmap()) {
1107 if (likely(ndesc == 1)) {
1109 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1110 V_WR_SGLSFLT(flits)) | wr_hi;
1112 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1113 V_WR_GEN(gen)) | wr_lo;
1116 unsigned int ogen = gen;
1117 const u64 *fp = (const u64 *)sgl;
1118 struct work_request_hdr *wp = wrp;
1120 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1121 V_WR_SGLSFLT(flits)) | wr_hi;
1124 unsigned int avail = WR_FLITS - flits;
1126 if (avail > sgl_flits)
1128 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1138 if (++pidx == q->size) {
1146 wrp = (struct work_request_hdr *)d;
1147 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1148 V_WR_SGLSFLT(1)) | wr_hi;
1149 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1151 V_WR_GEN(gen)) | wr_lo;
1156 wrp->wr_hi |= htonl(F_WR_EOP);
1158 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1159 wr_gen2((struct tx_desc *)wp, ogen);
1160 WARN_ON(ndesc != 0);
1165 * write_tx_pkt_wr - write a TX_PKT work request
1166 * @adap: the adapter
1167 * @skb: the packet to send
1168 * @pi: the egress interface
1169 * @pidx: index of the first Tx descriptor to write
1170 * @gen: the generation value to use
1172 * @ndesc: number of descriptors the packet will occupy
1173 * @compl: the value of the COMPL bit to use
1175 * Generate a TX_PKT work request to send the supplied packet.
1177 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1178 const struct port_info *pi,
1179 unsigned int pidx, unsigned int gen,
1180 struct sge_txq *q, unsigned int ndesc,
1181 unsigned int compl, const dma_addr_t *addr)
1183 unsigned int flits, sgl_flits, cntrl, tso_info;
1184 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1185 struct tx_desc *d = &q->desc[pidx];
1186 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1188 cpl->len = htonl(skb->len);
1189 cntrl = V_TXPKT_INTF(pi->port_id);
1191 if (vlan_tx_tag_present(skb))
1192 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1194 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1197 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1200 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1201 hdr->cntrl = htonl(cntrl);
1202 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1203 CPL_ETH_II : CPL_ETH_II_VLAN;
1204 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1205 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1206 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1207 hdr->lso_info = htonl(tso_info);
1210 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1211 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1212 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1213 cpl->cntrl = htonl(cntrl);
1215 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1216 q->sdesc[pidx].skb = NULL;
1218 skb_copy_from_linear_data(skb, &d->flit[2],
1221 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1223 flits = (skb->len + 7) / 8 + 2;
1224 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1225 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1226 | F_WR_SOP | F_WR_EOP | compl);
1228 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1229 V_WR_TID(q->token));
1238 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1239 sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1241 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1242 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1243 htonl(V_WR_TID(q->token)));
1246 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1247 struct sge_qset *qs, struct sge_txq *q)
1249 netif_tx_stop_queue(txq);
1250 set_bit(TXQ_ETH, &qs->txq_stopped);
1255 * eth_xmit - add a packet to the Ethernet Tx queue
1257 * @dev: the egress net device
1259 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1261 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1264 unsigned int ndesc, pidx, credits, gen, compl;
1265 const struct port_info *pi = netdev_priv(dev);
1266 struct adapter *adap = pi->adapter;
1267 struct netdev_queue *txq;
1268 struct sge_qset *qs;
1270 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1273 * The chip min packet length is 9 octets but play safe and reject
1274 * anything shorter than an Ethernet header.
1276 if (unlikely(skb->len < ETH_HLEN)) {
1278 return NETDEV_TX_OK;
1281 qidx = skb_get_queue_mapping(skb);
1283 q = &qs->txq[TXQ_ETH];
1284 txq = netdev_get_tx_queue(dev, qidx);
1286 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1288 credits = q->size - q->in_use;
1289 ndesc = calc_tx_descs(skb);
1291 if (unlikely(credits < ndesc)) {
1292 t3_stop_tx_queue(txq, qs, q);
1293 dev_err(&adap->pdev->dev,
1294 "%s: Tx ring %u full while queue awake!\n",
1295 dev->name, q->cntxt_id & 7);
1296 return NETDEV_TX_BUSY;
1299 if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1301 return NETDEV_TX_OK;
1305 if (unlikely(credits - ndesc < q->stop_thres)) {
1306 t3_stop_tx_queue(txq, qs, q);
1308 if (should_restart_tx(q) &&
1309 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1311 netif_tx_start_queue(txq);
1316 q->unacked += ndesc;
1317 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1321 if (q->pidx >= q->size) {
1326 /* update port statistics */
1327 if (skb->ip_summed == CHECKSUM_PARTIAL)
1328 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1329 if (skb_shinfo(skb)->gso_size)
1330 qs->port_stats[SGE_PSTAT_TSO]++;
1331 if (vlan_tx_tag_present(skb))
1332 qs->port_stats[SGE_PSTAT_VLANINS]++;
1335 * We do not use Tx completion interrupts to free DMAd Tx packets.
1336 * This is good for performance but means that we rely on new Tx
1337 * packets arriving to run the destructors of completed packets,
1338 * which open up space in their sockets' send queues. Sometimes
1339 * we do not get such new packets causing Tx to stall. A single
1340 * UDP transmitter is a good example of this situation. We have
1341 * a clean up timer that periodically reclaims completed packets
1342 * but it doesn't run often enough (nor do we want it to) to prevent
1343 * lengthy stalls. A solution to this problem is to run the
1344 * destructor early, after the packet is queued but before it's DMAd.
1345 * A cons is that we lie to socket memory accounting, but the amount
1346 * of extra memory is reasonable (limited by the number of Tx
1347 * descriptors), the packets do actually get freed quickly by new
1348 * packets almost always, and for protocols like TCP that wait for
1349 * acks to really free up the data the extra memory is even less.
1350 * On the positive side we run the destructors on the sending CPU
1351 * rather than on a potentially different completing CPU, usually a
1352 * good thing. We also run them without holding our Tx queue lock,
1353 * unlike what reclaim_completed_tx() would otherwise do.
1355 * Run the destructor before telling the DMA engine about the packet
1356 * to make sure it doesn't complete and get freed prematurely.
1358 if (likely(!skb_shared(skb)))
1361 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1362 check_ring_tx_db(adap, q);
1363 return NETDEV_TX_OK;
1367 * write_imm - write a packet into a Tx descriptor as immediate data
1368 * @d: the Tx descriptor to write
1370 * @len: the length of packet data to write as immediate data
1371 * @gen: the generation bit value to write
1373 * Writes a packet as immediate data into a Tx descriptor. The packet
1374 * contains a work request at its beginning. We must write the packet
1375 * carefully so the SGE doesn't read it accidentally before it's written
1378 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1379 unsigned int len, unsigned int gen)
1381 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1382 struct work_request_hdr *to = (struct work_request_hdr *)d;
1384 if (likely(!skb->data_len))
1385 memcpy(&to[1], &from[1], len - sizeof(*from));
1387 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1389 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1390 V_WR_BCNTLFLT(len & 7));
1392 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1393 V_WR_LEN((len + 7) / 8));
1399 * check_desc_avail - check descriptor availability on a send queue
1400 * @adap: the adapter
1401 * @q: the send queue
1402 * @skb: the packet needing the descriptors
1403 * @ndesc: the number of Tx descriptors needed
1404 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1406 * Checks if the requested number of Tx descriptors is available on an
1407 * SGE send queue. If the queue is already suspended or not enough
1408 * descriptors are available the packet is queued for later transmission.
1409 * Must be called with the Tx queue locked.
1411 * Returns 0 if enough descriptors are available, 1 if there aren't
1412 * enough descriptors and the packet has been queued, and 2 if the caller
1413 * needs to retry because there weren't enough descriptors at the
1414 * beginning of the call but some freed up in the mean time.
1416 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1417 struct sk_buff *skb, unsigned int ndesc,
1420 if (unlikely(!skb_queue_empty(&q->sendq))) {
1421 addq_exit:__skb_queue_tail(&q->sendq, skb);
1424 if (unlikely(q->size - q->in_use < ndesc)) {
1425 struct sge_qset *qs = txq_to_qset(q, qid);
1427 set_bit(qid, &qs->txq_stopped);
1428 smp_mb__after_clear_bit();
1430 if (should_restart_tx(q) &&
1431 test_and_clear_bit(qid, &qs->txq_stopped))
1441 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1442 * @q: the SGE control Tx queue
1444 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1445 * that send only immediate data (presently just the control queues) and
1446 * thus do not have any sk_buffs to release.
1448 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1450 unsigned int reclaim = q->processed - q->cleaned;
1452 q->in_use -= reclaim;
1453 q->cleaned += reclaim;
1456 static inline int immediate(const struct sk_buff *skb)
1458 return skb->len <= WR_LEN;
1462 * ctrl_xmit - send a packet through an SGE control Tx queue
1463 * @adap: the adapter
1464 * @q: the control queue
1467 * Send a packet through an SGE control Tx queue. Packets sent through
1468 * a control queue must fit entirely as immediate data in a single Tx
1469 * descriptor and have no page fragments.
1471 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1472 struct sk_buff *skb)
1475 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1477 if (unlikely(!immediate(skb))) {
1480 return NET_XMIT_SUCCESS;
1483 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1484 wrp->wr_lo = htonl(V_WR_TID(q->token));
1486 spin_lock(&q->lock);
1487 again:reclaim_completed_tx_imm(q);
1489 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1490 if (unlikely(ret)) {
1492 spin_unlock(&q->lock);
1498 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1501 if (++q->pidx >= q->size) {
1505 spin_unlock(&q->lock);
1507 t3_write_reg(adap, A_SG_KDOORBELL,
1508 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1509 return NET_XMIT_SUCCESS;
1513 * restart_ctrlq - restart a suspended control queue
1514 * @qs: the queue set cotaining the control queue
1516 * Resumes transmission on a suspended Tx control queue.
1518 static void restart_ctrlq(unsigned long data)
1520 struct sk_buff *skb;
1521 struct sge_qset *qs = (struct sge_qset *)data;
1522 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1524 spin_lock(&q->lock);
1525 again:reclaim_completed_tx_imm(q);
1527 while (q->in_use < q->size &&
1528 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1530 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1532 if (++q->pidx >= q->size) {
1539 if (!skb_queue_empty(&q->sendq)) {
1540 set_bit(TXQ_CTRL, &qs->txq_stopped);
1541 smp_mb__after_clear_bit();
1543 if (should_restart_tx(q) &&
1544 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1549 spin_unlock(&q->lock);
1551 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1552 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1556 * Send a management message through control queue 0
1558 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1562 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1569 * deferred_unmap_destructor - unmap a packet when it is freed
1572 * This is the packet destructor used for Tx packets that need to remain
1573 * mapped until they are freed rather than until their Tx descriptors are
1576 static void deferred_unmap_destructor(struct sk_buff *skb)
1579 const dma_addr_t *p;
1580 const struct skb_shared_info *si;
1581 const struct deferred_unmap_info *dui;
1583 dui = (struct deferred_unmap_info *)skb->head;
1586 if (skb_tail_pointer(skb) - skb_transport_header(skb))
1587 pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1588 skb_transport_header(skb), PCI_DMA_TODEVICE);
1590 si = skb_shinfo(skb);
1591 for (i = 0; i < si->nr_frags; i++)
1592 pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1596 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1597 const struct sg_ent *sgl, int sgl_flits)
1600 struct deferred_unmap_info *dui;
1602 dui = (struct deferred_unmap_info *)skb->head;
1604 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1605 *p++ = be64_to_cpu(sgl->addr[0]);
1606 *p++ = be64_to_cpu(sgl->addr[1]);
1609 *p = be64_to_cpu(sgl->addr[0]);
1613 * write_ofld_wr - write an offload work request
1614 * @adap: the adapter
1615 * @skb: the packet to send
1617 * @pidx: index of the first Tx descriptor to write
1618 * @gen: the generation value to use
1619 * @ndesc: number of descriptors the packet will occupy
1621 * Write an offload work request to send the supplied packet. The packet
1622 * data already carry the work request with most fields populated.
1624 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1625 struct sge_txq *q, unsigned int pidx,
1626 unsigned int gen, unsigned int ndesc,
1627 const dma_addr_t *addr)
1629 unsigned int sgl_flits, flits;
1630 struct work_request_hdr *from;
1631 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1632 struct tx_desc *d = &q->desc[pidx];
1634 if (immediate(skb)) {
1635 q->sdesc[pidx].skb = NULL;
1636 write_imm(d, skb, skb->len, gen);
1640 /* Only TX_DATA builds SGLs */
1642 from = (struct work_request_hdr *)skb->data;
1643 memcpy(&d->flit[1], &from[1],
1644 skb_transport_offset(skb) - sizeof(*from));
1646 flits = skb_transport_offset(skb) / 8;
1647 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1648 sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1649 skb_tail_pointer(skb) -
1650 skb_transport_header(skb), addr);
1651 if (need_skb_unmap()) {
1652 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1653 skb->destructor = deferred_unmap_destructor;
1656 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1657 gen, from->wr_hi, from->wr_lo);
1661 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1664 * Returns the number of Tx descriptors needed for the given offload
1665 * packet. These packets are already fully constructed.
1667 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1669 unsigned int flits, cnt;
1671 if (skb->len <= WR_LEN)
1672 return 1; /* packet fits as immediate data */
1674 flits = skb_transport_offset(skb) / 8; /* headers */
1675 cnt = skb_shinfo(skb)->nr_frags;
1676 if (skb_tail_pointer(skb) != skb_transport_header(skb))
1678 return flits_to_desc(flits + sgl_len(cnt));
1682 * ofld_xmit - send a packet through an offload queue
1683 * @adap: the adapter
1684 * @q: the Tx offload queue
1687 * Send an offload packet through an SGE offload queue.
1689 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1690 struct sk_buff *skb)
1693 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1695 spin_lock(&q->lock);
1696 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1698 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1699 if (unlikely(ret)) {
1701 skb->priority = ndesc; /* save for restart */
1702 spin_unlock(&q->lock);
1708 if (map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1709 spin_unlock(&q->lock);
1710 return NET_XMIT_SUCCESS;
1717 if (q->pidx >= q->size) {
1721 spin_unlock(&q->lock);
1723 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1724 check_ring_tx_db(adap, q);
1725 return NET_XMIT_SUCCESS;
1729 * restart_offloadq - restart a suspended offload queue
1730 * @qs: the queue set cotaining the offload queue
1732 * Resumes transmission on a suspended Tx offload queue.
1734 static void restart_offloadq(unsigned long data)
1736 struct sk_buff *skb;
1737 struct sge_qset *qs = (struct sge_qset *)data;
1738 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1739 const struct port_info *pi = netdev_priv(qs->netdev);
1740 struct adapter *adap = pi->adapter;
1741 unsigned int written = 0;
1743 spin_lock(&q->lock);
1744 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1746 while ((skb = skb_peek(&q->sendq)) != NULL) {
1747 unsigned int gen, pidx;
1748 unsigned int ndesc = skb->priority;
1750 if (unlikely(q->size - q->in_use < ndesc)) {
1751 set_bit(TXQ_OFLD, &qs->txq_stopped);
1752 smp_mb__after_clear_bit();
1754 if (should_restart_tx(q) &&
1755 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1761 if (map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1769 if (q->pidx >= q->size) {
1773 __skb_unlink(skb, &q->sendq);
1774 spin_unlock(&q->lock);
1776 write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1777 (dma_addr_t *)skb->head);
1778 spin_lock(&q->lock);
1780 spin_unlock(&q->lock);
1783 set_bit(TXQ_RUNNING, &q->flags);
1784 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1787 if (likely(written))
1788 t3_write_reg(adap, A_SG_KDOORBELL,
1789 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1793 * queue_set - return the queue set a packet should use
1796 * Maps a packet to the SGE queue set it should use. The desired queue
1797 * set is carried in bits 1-3 in the packet's priority.
1799 static inline int queue_set(const struct sk_buff *skb)
1801 return skb->priority >> 1;
1805 * is_ctrl_pkt - return whether an offload packet is a control packet
1808 * Determines whether an offload packet should use an OFLD or a CTRL
1809 * Tx queue. This is indicated by bit 0 in the packet's priority.
1811 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1813 return skb->priority & 1;
1817 * t3_offload_tx - send an offload packet
1818 * @tdev: the offload device to send to
1821 * Sends an offload packet. We use the packet priority to select the
1822 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1823 * should be sent as regular or control, bits 1-3 select the queue set.
1825 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1827 struct adapter *adap = tdev2adap(tdev);
1828 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1830 if (unlikely(is_ctrl_pkt(skb)))
1831 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1833 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1837 * offload_enqueue - add an offload packet to an SGE offload receive queue
1838 * @q: the SGE response queue
1841 * Add a new offload packet to an SGE response queue's offload packet
1842 * queue. If the packet is the first on the queue it schedules the RX
1843 * softirq to process the queue.
1845 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1847 int was_empty = skb_queue_empty(&q->rx_queue);
1849 __skb_queue_tail(&q->rx_queue, skb);
1852 struct sge_qset *qs = rspq_to_qset(q);
1854 napi_schedule(&qs->napi);
1859 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1860 * @tdev: the offload device that will be receiving the packets
1861 * @q: the SGE response queue that assembled the bundle
1862 * @skbs: the partial bundle
1863 * @n: the number of packets in the bundle
1865 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1867 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1869 struct sk_buff *skbs[], int n)
1872 q->offload_bundles++;
1873 tdev->recv(tdev, skbs, n);
1878 * ofld_poll - NAPI handler for offload packets in interrupt mode
1879 * @dev: the network device doing the polling
1880 * @budget: polling budget
1882 * The NAPI handler for offload packets when a response queue is serviced
1883 * by the hard interrupt handler, i.e., when it's operating in non-polling
1884 * mode. Creates small packet batches and sends them through the offload
1885 * receive handler. Batches need to be of modest size as we do prefetches
1886 * on the packets in each.
1888 static int ofld_poll(struct napi_struct *napi, int budget)
1890 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1891 struct sge_rspq *q = &qs->rspq;
1892 struct adapter *adapter = qs->adap;
1895 while (work_done < budget) {
1896 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1897 struct sk_buff_head queue;
1900 spin_lock_irq(&q->lock);
1901 __skb_queue_head_init(&queue);
1902 skb_queue_splice_init(&q->rx_queue, &queue);
1903 if (skb_queue_empty(&queue)) {
1904 napi_complete(napi);
1905 spin_unlock_irq(&q->lock);
1908 spin_unlock_irq(&q->lock);
1911 skb_queue_walk_safe(&queue, skb, tmp) {
1912 if (work_done >= budget)
1916 __skb_unlink(skb, &queue);
1917 prefetch(skb->data);
1918 skbs[ngathered] = skb;
1919 if (++ngathered == RX_BUNDLE_SIZE) {
1920 q->offload_bundles++;
1921 adapter->tdev.recv(&adapter->tdev, skbs,
1926 if (!skb_queue_empty(&queue)) {
1927 /* splice remaining packets back onto Rx queue */
1928 spin_lock_irq(&q->lock);
1929 skb_queue_splice(&queue, &q->rx_queue);
1930 spin_unlock_irq(&q->lock);
1932 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1939 * rx_offload - process a received offload packet
1940 * @tdev: the offload device receiving the packet
1941 * @rq: the response queue that received the packet
1943 * @rx_gather: a gather list of packets if we are building a bundle
1944 * @gather_idx: index of the next available slot in the bundle
1946 * Process an ingress offload pakcet and add it to the offload ingress
1947 * queue. Returns the index of the next available slot in the bundle.
1949 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1950 struct sk_buff *skb, struct sk_buff *rx_gather[],
1951 unsigned int gather_idx)
1953 skb_reset_mac_header(skb);
1954 skb_reset_network_header(skb);
1955 skb_reset_transport_header(skb);
1958 rx_gather[gather_idx++] = skb;
1959 if (gather_idx == RX_BUNDLE_SIZE) {
1960 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1962 rq->offload_bundles++;
1965 offload_enqueue(rq, skb);
1971 * restart_tx - check whether to restart suspended Tx queues
1972 * @qs: the queue set to resume
1974 * Restarts suspended Tx queues of an SGE queue set if they have enough
1975 * free resources to resume operation.
1977 static void restart_tx(struct sge_qset *qs)
1979 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1980 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1981 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1982 qs->txq[TXQ_ETH].restarts++;
1983 if (netif_running(qs->netdev))
1984 netif_tx_wake_queue(qs->tx_q);
1987 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1988 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1989 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1990 qs->txq[TXQ_OFLD].restarts++;
1991 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1993 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1994 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1995 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1996 qs->txq[TXQ_CTRL].restarts++;
1997 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
2002 * cxgb3_arp_process - process an ARP request probing a private IP address
2003 * @adapter: the adapter
2004 * @skb: the skbuff containing the ARP request
2006 * Check if the ARP request is probing the private IP address
2007 * dedicated to iSCSI, generate an ARP reply if so.
2009 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2011 struct net_device *dev = skb->dev;
2013 unsigned char *arp_ptr;
2020 skb_reset_network_header(skb);
2023 if (arp->ar_op != htons(ARPOP_REQUEST))
2026 arp_ptr = (unsigned char *)(arp + 1);
2028 arp_ptr += dev->addr_len;
2029 memcpy(&sip, arp_ptr, sizeof(sip));
2030 arp_ptr += sizeof(sip);
2031 arp_ptr += dev->addr_len;
2032 memcpy(&tip, arp_ptr, sizeof(tip));
2034 if (tip != pi->iscsi_ipv4addr)
2037 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2038 pi->iscsic.mac_addr, sha);
2042 static inline int is_arp(struct sk_buff *skb)
2044 return skb->protocol == htons(ETH_P_ARP);
2047 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2048 struct sk_buff *skb)
2051 cxgb3_arp_process(pi, skb);
2055 if (pi->iscsic.recv)
2056 pi->iscsic.recv(pi, skb);
2061 * rx_eth - process an ingress ethernet packet
2062 * @adap: the adapter
2063 * @rq: the response queue that received the packet
2065 * @pad: amount of padding at the start of the buffer
2067 * Process an ingress ethernet pakcet and deliver it to the stack.
2068 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2069 * if it was immediate data in a response.
2071 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2072 struct sk_buff *skb, int pad, int lro)
2074 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2075 struct sge_qset *qs = rspq_to_qset(rq);
2076 struct port_info *pi;
2078 skb_pull(skb, sizeof(*p) + pad);
2079 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2080 pi = netdev_priv(skb->dev);
2081 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2082 p->csum == htons(0xffff) && !p->fragment) {
2083 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2084 skb->ip_summed = CHECKSUM_UNNECESSARY;
2086 skb_checksum_none_assert(skb);
2087 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2089 if (p->vlan_valid) {
2090 qs->port_stats[SGE_PSTAT_VLANEX]++;
2091 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2095 napi_gro_receive(&qs->napi, skb);
2097 if (unlikely(pi->iscsic.flags))
2098 cxgb3_process_iscsi_prov_pack(pi, skb);
2099 netif_receive_skb(skb);
2105 static inline int is_eth_tcp(u32 rss)
2107 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2111 * lro_add_page - add a page chunk to an LRO session
2112 * @adap: the adapter
2113 * @qs: the associated queue set
2114 * @fl: the free list containing the page chunk to add
2115 * @len: packet length
2116 * @complete: Indicates the last fragment of a frame
2118 * Add a received packet contained in a page chunk to an existing LRO
2121 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2122 struct sge_fl *fl, int len, int complete)
2124 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2125 struct port_info *pi = netdev_priv(qs->netdev);
2126 struct sk_buff *skb = NULL;
2127 struct cpl_rx_pkt *cpl;
2128 struct skb_frag_struct *rx_frag;
2133 skb = napi_get_frags(&qs->napi);
2139 pci_dma_sync_single_for_cpu(adap->pdev,
2140 dma_unmap_addr(sd, dma_addr),
2141 fl->buf_size - SGE_PG_RSVD,
2142 PCI_DMA_FROMDEVICE);
2144 (*sd->pg_chunk.p_cnt)--;
2145 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2146 pci_unmap_page(adap->pdev,
2147 sd->pg_chunk.mapping,
2149 PCI_DMA_FROMDEVICE);
2152 put_page(sd->pg_chunk.page);
2158 rx_frag = skb_shinfo(skb)->frags;
2159 nr_frags = skb_shinfo(skb)->nr_frags;
2162 offset = 2 + sizeof(struct cpl_rx_pkt);
2163 cpl = qs->lro_va = sd->pg_chunk.va + 2;
2165 if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2166 cpl->csum_valid && cpl->csum == htons(0xffff)) {
2167 skb->ip_summed = CHECKSUM_UNNECESSARY;
2168 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2170 skb->ip_summed = CHECKSUM_NONE;
2176 rx_frag += nr_frags;
2177 __skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2178 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2179 skb_frag_size_set(rx_frag, len);
2182 skb->data_len += len;
2183 skb->truesize += len;
2184 skb_shinfo(skb)->nr_frags++;
2189 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2191 if (cpl->vlan_valid) {
2192 qs->port_stats[SGE_PSTAT_VLANEX]++;
2193 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2195 napi_gro_frags(&qs->napi);
2199 * handle_rsp_cntrl_info - handles control information in a response
2200 * @qs: the queue set corresponding to the response
2201 * @flags: the response control flags
2203 * Handles the control information of an SGE response, such as GTS
2204 * indications and completion credits for the queue set's Tx queues.
2205 * HW coalesces credits, we don't do any extra SW coalescing.
2207 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2209 unsigned int credits;
2212 if (flags & F_RSPD_TXQ0_GTS)
2213 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2216 credits = G_RSPD_TXQ0_CR(flags);
2218 qs->txq[TXQ_ETH].processed += credits;
2220 credits = G_RSPD_TXQ2_CR(flags);
2222 qs->txq[TXQ_CTRL].processed += credits;
2225 if (flags & F_RSPD_TXQ1_GTS)
2226 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2228 credits = G_RSPD_TXQ1_CR(flags);
2230 qs->txq[TXQ_OFLD].processed += credits;
2234 * check_ring_db - check if we need to ring any doorbells
2235 * @adapter: the adapter
2236 * @qs: the queue set whose Tx queues are to be examined
2237 * @sleeping: indicates which Tx queue sent GTS
2239 * Checks if some of a queue set's Tx queues need to ring their doorbells
2240 * to resume transmission after idling while they still have unprocessed
2243 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2244 unsigned int sleeping)
2246 if (sleeping & F_RSPD_TXQ0_GTS) {
2247 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2249 if (txq->cleaned + txq->in_use != txq->processed &&
2250 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2251 set_bit(TXQ_RUNNING, &txq->flags);
2252 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2253 V_EGRCNTX(txq->cntxt_id));
2257 if (sleeping & F_RSPD_TXQ1_GTS) {
2258 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2260 if (txq->cleaned + txq->in_use != txq->processed &&
2261 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2262 set_bit(TXQ_RUNNING, &txq->flags);
2263 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2264 V_EGRCNTX(txq->cntxt_id));
2270 * is_new_response - check if a response is newly written
2271 * @r: the response descriptor
2272 * @q: the response queue
2274 * Returns true if a response descriptor contains a yet unprocessed
2277 static inline int is_new_response(const struct rsp_desc *r,
2278 const struct sge_rspq *q)
2280 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2283 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2286 q->rx_recycle_buf = 0;
2289 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2290 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2291 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2292 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2293 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2295 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2296 #define NOMEM_INTR_DELAY 2500
2299 * process_responses - process responses from an SGE response queue
2300 * @adap: the adapter
2301 * @qs: the queue set to which the response queue belongs
2302 * @budget: how many responses can be processed in this round
2304 * Process responses from an SGE response queue up to the supplied budget.
2305 * Responses include received packets as well as credits and other events
2306 * for the queues that belong to the response queue's queue set.
2307 * A negative budget is effectively unlimited.
2309 * Additionally choose the interrupt holdoff time for the next interrupt
2310 * on this queue. If the system is under memory shortage use a fairly
2311 * long delay to help recovery.
2313 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2316 struct sge_rspq *q = &qs->rspq;
2317 struct rsp_desc *r = &q->desc[q->cidx];
2318 int budget_left = budget;
2319 unsigned int sleeping = 0;
2320 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2323 q->next_holdoff = q->holdoff_tmr;
2325 while (likely(budget_left && is_new_response(r, q))) {
2326 int packet_complete, eth, ethpad = 2;
2327 int lro = !!(qs->netdev->features & NETIF_F_GRO);
2328 struct sk_buff *skb = NULL;
2330 __be32 rss_hi, rss_lo;
2333 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2334 rss_hi = *(const __be32 *)r;
2335 rss_lo = r->rss_hdr.rss_hash_val;
2336 flags = ntohl(r->flags);
2338 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2339 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2343 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2344 skb->data[0] = CPL_ASYNC_NOTIF;
2345 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2347 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2348 skb = get_imm_packet(r);
2349 if (unlikely(!skb)) {
2351 q->next_holdoff = NOMEM_INTR_DELAY;
2353 /* consume one credit since we tried */
2359 } else if ((len = ntohl(r->len_cq)) != 0) {
2362 lro &= eth && is_eth_tcp(rss_hi);
2364 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2365 if (fl->use_pages) {
2366 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2369 #if L1_CACHE_BYTES < 128
2370 prefetch(addr + L1_CACHE_BYTES);
2372 __refill_fl(adap, fl);
2374 lro_add_page(adap, qs, fl,
2376 flags & F_RSPD_EOP);
2380 skb = get_packet_pg(adap, fl, q,
2383 SGE_RX_DROP_THRES : 0);
2386 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2387 eth ? SGE_RX_DROP_THRES : 0);
2388 if (unlikely(!skb)) {
2392 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2395 if (++fl->cidx == fl->size)
2400 if (flags & RSPD_CTRL_MASK) {
2401 sleeping |= flags & RSPD_GTS_MASK;
2402 handle_rsp_cntrl_info(qs, flags);
2406 if (unlikely(++q->cidx == q->size)) {
2413 if (++q->credits >= (q->size / 4)) {
2414 refill_rspq(adap, q, q->credits);
2418 packet_complete = flags &
2419 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2420 F_RSPD_ASYNC_NOTIF);
2422 if (skb != NULL && packet_complete) {
2424 rx_eth(adap, q, skb, ethpad, lro);
2427 /* Preserve the RSS info in csum & priority */
2429 skb->priority = rss_lo;
2430 ngathered = rx_offload(&adap->tdev, q, skb,
2435 if (flags & F_RSPD_EOP)
2436 clear_rspq_bufstate(q);
2441 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2444 check_ring_db(adap, qs, sleeping);
2446 smp_mb(); /* commit Tx queue .processed updates */
2447 if (unlikely(qs->txq_stopped != 0))
2450 budget -= budget_left;
2454 static inline int is_pure_response(const struct rsp_desc *r)
2456 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2458 return (n | r->len_cq) == 0;
2462 * napi_rx_handler - the NAPI handler for Rx processing
2463 * @napi: the napi instance
2464 * @budget: how many packets we can process in this round
2466 * Handler for new data events when using NAPI.
2468 static int napi_rx_handler(struct napi_struct *napi, int budget)
2470 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2471 struct adapter *adap = qs->adap;
2472 int work_done = process_responses(adap, qs, budget);
2474 if (likely(work_done < budget)) {
2475 napi_complete(napi);
2478 * Because we don't atomically flush the following
2479 * write it is possible that in very rare cases it can
2480 * reach the device in a way that races with a new
2481 * response being written plus an error interrupt
2482 * causing the NAPI interrupt handler below to return
2483 * unhandled status to the OS. To protect against
2484 * this would require flushing the write and doing
2485 * both the write and the flush with interrupts off.
2486 * Way too expensive and unjustifiable given the
2487 * rarity of the race.
2489 * The race cannot happen at all with MSI-X.
2491 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2492 V_NEWTIMER(qs->rspq.next_holdoff) |
2493 V_NEWINDEX(qs->rspq.cidx));
2499 * Returns true if the device is already scheduled for polling.
2501 static inline int napi_is_scheduled(struct napi_struct *napi)
2503 return test_bit(NAPI_STATE_SCHED, &napi->state);
2507 * process_pure_responses - process pure responses from a response queue
2508 * @adap: the adapter
2509 * @qs: the queue set owning the response queue
2510 * @r: the first pure response to process
2512 * A simpler version of process_responses() that handles only pure (i.e.,
2513 * non data-carrying) responses. Such respones are too light-weight to
2514 * justify calling a softirq under NAPI, so we handle them specially in
2515 * the interrupt handler. The function is called with a pointer to a
2516 * response, which the caller must ensure is a valid pure response.
2518 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2520 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2523 struct sge_rspq *q = &qs->rspq;
2524 unsigned int sleeping = 0;
2527 u32 flags = ntohl(r->flags);
2530 if (unlikely(++q->cidx == q->size)) {
2537 if (flags & RSPD_CTRL_MASK) {
2538 sleeping |= flags & RSPD_GTS_MASK;
2539 handle_rsp_cntrl_info(qs, flags);
2543 if (++q->credits >= (q->size / 4)) {
2544 refill_rspq(adap, q, q->credits);
2547 if (!is_new_response(r, q))
2550 } while (is_pure_response(r));
2553 check_ring_db(adap, qs, sleeping);
2555 smp_mb(); /* commit Tx queue .processed updates */
2556 if (unlikely(qs->txq_stopped != 0))
2559 return is_new_response(r, q);
2563 * handle_responses - decide what to do with new responses in NAPI mode
2564 * @adap: the adapter
2565 * @q: the response queue
2567 * This is used by the NAPI interrupt handlers to decide what to do with
2568 * new SGE responses. If there are no new responses it returns -1. If
2569 * there are new responses and they are pure (i.e., non-data carrying)
2570 * it handles them straight in hard interrupt context as they are very
2571 * cheap and don't deliver any packets. Finally, if there are any data
2572 * signaling responses it schedules the NAPI handler. Returns 1 if it
2573 * schedules NAPI, 0 if all new responses were pure.
2575 * The caller must ascertain NAPI is not already running.
2577 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2579 struct sge_qset *qs = rspq_to_qset(q);
2580 struct rsp_desc *r = &q->desc[q->cidx];
2582 if (!is_new_response(r, q))
2585 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2586 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2587 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2590 napi_schedule(&qs->napi);
2595 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2596 * (i.e., response queue serviced in hard interrupt).
2598 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2600 struct sge_qset *qs = cookie;
2601 struct adapter *adap = qs->adap;
2602 struct sge_rspq *q = &qs->rspq;
2604 spin_lock(&q->lock);
2605 if (process_responses(adap, qs, -1) == 0)
2606 q->unhandled_irqs++;
2607 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2608 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2609 spin_unlock(&q->lock);
2614 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2615 * (i.e., response queue serviced by NAPI polling).
2617 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2619 struct sge_qset *qs = cookie;
2620 struct sge_rspq *q = &qs->rspq;
2622 spin_lock(&q->lock);
2624 if (handle_responses(qs->adap, q) < 0)
2625 q->unhandled_irqs++;
2626 spin_unlock(&q->lock);
2631 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2632 * SGE response queues as well as error and other async events as they all use
2633 * the same MSI vector. We use one SGE response queue per port in this mode
2634 * and protect all response queues with queue 0's lock.
2636 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2638 int new_packets = 0;
2639 struct adapter *adap = cookie;
2640 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2642 spin_lock(&q->lock);
2644 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2645 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2646 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2650 if (adap->params.nports == 2 &&
2651 process_responses(adap, &adap->sge.qs[1], -1)) {
2652 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2654 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2655 V_NEWTIMER(q1->next_holdoff) |
2656 V_NEWINDEX(q1->cidx));
2660 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2661 q->unhandled_irqs++;
2663 spin_unlock(&q->lock);
2667 static int rspq_check_napi(struct sge_qset *qs)
2669 struct sge_rspq *q = &qs->rspq;
2671 if (!napi_is_scheduled(&qs->napi) &&
2672 is_new_response(&q->desc[q->cidx], q)) {
2673 napi_schedule(&qs->napi);
2680 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2681 * by NAPI polling). Handles data events from SGE response queues as well as
2682 * error and other async events as they all use the same MSI vector. We use
2683 * one SGE response queue per port in this mode and protect all response
2684 * queues with queue 0's lock.
2686 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2689 struct adapter *adap = cookie;
2690 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2692 spin_lock(&q->lock);
2694 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2695 if (adap->params.nports == 2)
2696 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2697 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2698 q->unhandled_irqs++;
2700 spin_unlock(&q->lock);
2705 * A helper function that processes responses and issues GTS.
2707 static inline int process_responses_gts(struct adapter *adap,
2708 struct sge_rspq *rq)
2712 work = process_responses(adap, rspq_to_qset(rq), -1);
2713 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2714 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2719 * The legacy INTx interrupt handler. This needs to handle data events from
2720 * SGE response queues as well as error and other async events as they all use
2721 * the same interrupt pin. We use one SGE response queue per port in this mode
2722 * and protect all response queues with queue 0's lock.
2724 static irqreturn_t t3_intr(int irq, void *cookie)
2726 int work_done, w0, w1;
2727 struct adapter *adap = cookie;
2728 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2729 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2731 spin_lock(&q0->lock);
2733 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2734 w1 = adap->params.nports == 2 &&
2735 is_new_response(&q1->desc[q1->cidx], q1);
2737 if (likely(w0 | w1)) {
2738 t3_write_reg(adap, A_PL_CLI, 0);
2739 t3_read_reg(adap, A_PL_CLI); /* flush */
2742 process_responses_gts(adap, q0);
2745 process_responses_gts(adap, q1);
2747 work_done = w0 | w1;
2749 work_done = t3_slow_intr_handler(adap);
2751 spin_unlock(&q0->lock);
2752 return IRQ_RETVAL(work_done != 0);
2756 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2757 * Handles data events from SGE response queues as well as error and other
2758 * async events as they all use the same interrupt pin. We use one SGE
2759 * response queue per port in this mode and protect all response queues with
2762 static irqreturn_t t3b_intr(int irq, void *cookie)
2765 struct adapter *adap = cookie;
2766 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2768 t3_write_reg(adap, A_PL_CLI, 0);
2769 map = t3_read_reg(adap, A_SG_DATA_INTR);
2771 if (unlikely(!map)) /* shared interrupt, most likely */
2774 spin_lock(&q0->lock);
2776 if (unlikely(map & F_ERRINTR))
2777 t3_slow_intr_handler(adap);
2779 if (likely(map & 1))
2780 process_responses_gts(adap, q0);
2783 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2785 spin_unlock(&q0->lock);
2790 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2791 * Handles data events from SGE response queues as well as error and other
2792 * async events as they all use the same interrupt pin. We use one SGE
2793 * response queue per port in this mode and protect all response queues with
2796 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2799 struct adapter *adap = cookie;
2800 struct sge_qset *qs0 = &adap->sge.qs[0];
2801 struct sge_rspq *q0 = &qs0->rspq;
2803 t3_write_reg(adap, A_PL_CLI, 0);
2804 map = t3_read_reg(adap, A_SG_DATA_INTR);
2806 if (unlikely(!map)) /* shared interrupt, most likely */
2809 spin_lock(&q0->lock);
2811 if (unlikely(map & F_ERRINTR))
2812 t3_slow_intr_handler(adap);
2814 if (likely(map & 1))
2815 napi_schedule(&qs0->napi);
2818 napi_schedule(&adap->sge.qs[1].napi);
2820 spin_unlock(&q0->lock);
2825 * t3_intr_handler - select the top-level interrupt handler
2826 * @adap: the adapter
2827 * @polling: whether using NAPI to service response queues
2829 * Selects the top-level interrupt handler based on the type of interrupts
2830 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2833 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2835 if (adap->flags & USING_MSIX)
2836 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2837 if (adap->flags & USING_MSI)
2838 return polling ? t3_intr_msi_napi : t3_intr_msi;
2839 if (adap->params.rev > 0)
2840 return polling ? t3b_intr_napi : t3b_intr;
2844 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2845 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2846 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2847 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2849 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2850 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2854 * t3_sge_err_intr_handler - SGE async event interrupt handler
2855 * @adapter: the adapter
2857 * Interrupt handler for SGE asynchronous (non-data) events.
2859 void t3_sge_err_intr_handler(struct adapter *adapter)
2861 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2864 if (status & SGE_PARERR)
2865 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2866 status & SGE_PARERR);
2867 if (status & SGE_FRAMINGERR)
2868 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2869 status & SGE_FRAMINGERR);
2871 if (status & F_RSPQCREDITOVERFOW)
2872 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2874 if (status & F_RSPQDISABLED) {
2875 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2878 "packet delivered to disabled response queue "
2879 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2882 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2883 queue_work(cxgb3_wq, &adapter->db_drop_task);
2885 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2886 queue_work(cxgb3_wq, &adapter->db_full_task);
2888 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2889 queue_work(cxgb3_wq, &adapter->db_empty_task);
2891 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2892 if (status & SGE_FATALERR)
2893 t3_fatal_err(adapter);
2897 * sge_timer_tx - perform periodic maintenance of an SGE qset
2898 * @data: the SGE queue set to maintain
2900 * Runs periodically from a timer to perform maintenance of an SGE queue
2901 * set. It performs two tasks:
2903 * Cleans up any completed Tx descriptors that may still be pending.
2904 * Normal descriptor cleanup happens when new packets are added to a Tx
2905 * queue so this timer is relatively infrequent and does any cleanup only
2906 * if the Tx queue has not seen any new packets in a while. We make a
2907 * best effort attempt to reclaim descriptors, in that we don't wait
2908 * around if we cannot get a queue's lock (which most likely is because
2909 * someone else is queueing new packets and so will also handle the clean
2910 * up). Since control queues use immediate data exclusively we don't
2911 * bother cleaning them up here.
2914 static void sge_timer_tx(unsigned long data)
2916 struct sge_qset *qs = (struct sge_qset *)data;
2917 struct port_info *pi = netdev_priv(qs->netdev);
2918 struct adapter *adap = pi->adapter;
2919 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2920 unsigned long next_period;
2922 if (__netif_tx_trylock(qs->tx_q)) {
2923 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2924 TX_RECLAIM_TIMER_CHUNK);
2925 __netif_tx_unlock(qs->tx_q);
2928 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2929 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2930 TX_RECLAIM_TIMER_CHUNK);
2931 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2934 next_period = TX_RECLAIM_PERIOD >>
2935 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2936 TX_RECLAIM_TIMER_CHUNK);
2937 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2941 * sge_timer_rx - perform periodic maintenance of an SGE qset
2942 * @data: the SGE queue set to maintain
2944 * a) Replenishes Rx queues that have run out due to memory shortage.
2945 * Normally new Rx buffers are added when existing ones are consumed but
2946 * when out of memory a queue can become empty. We try to add only a few
2947 * buffers here, the queue will be replenished fully as these new buffers
2948 * are used up if memory shortage has subsided.
2950 * b) Return coalesced response queue credits in case a response queue is
2954 static void sge_timer_rx(unsigned long data)
2957 struct sge_qset *qs = (struct sge_qset *)data;
2958 struct port_info *pi = netdev_priv(qs->netdev);
2959 struct adapter *adap = pi->adapter;
2962 lock = adap->params.rev > 0 ?
2963 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2965 if (!spin_trylock_irq(lock))
2968 if (napi_is_scheduled(&qs->napi))
2971 if (adap->params.rev < 4) {
2972 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2974 if (status & (1 << qs->rspq.cntxt_id)) {
2976 if (qs->rspq.credits) {
2978 refill_rspq(adap, &qs->rspq, 1);
2979 qs->rspq.restarted++;
2980 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2981 1 << qs->rspq.cntxt_id);
2986 if (qs->fl[0].credits < qs->fl[0].size)
2987 __refill_fl(adap, &qs->fl[0]);
2988 if (qs->fl[1].credits < qs->fl[1].size)
2989 __refill_fl(adap, &qs->fl[1]);
2992 spin_unlock_irq(lock);
2994 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2998 * t3_update_qset_coalesce - update coalescing settings for a queue set
2999 * @qs: the SGE queue set
3000 * @p: new queue set parameters
3002 * Update the coalescing settings for an SGE queue set. Nothing is done
3003 * if the queue set is not initialized yet.
3005 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3007 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3008 qs->rspq.polling = p->polling;
3009 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3013 * t3_sge_alloc_qset - initialize an SGE queue set
3014 * @adapter: the adapter
3015 * @id: the queue set id
3016 * @nports: how many Ethernet ports will be using this queue set
3017 * @irq_vec_idx: the IRQ vector index for response queue interrupts
3018 * @p: configuration parameters for this queue set
3019 * @ntxq: number of Tx queues for the queue set
3020 * @netdev: net device associated with this queue set
3021 * @netdevq: net device TX queue associated with this queue set
3023 * Allocate resources and initialize an SGE queue set. A queue set
3024 * comprises a response queue, two Rx free-buffer queues, and up to 3
3025 * Tx queues. The Tx queues are assigned roles in the order Ethernet
3026 * queue, offload queue, and control queue.
3028 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3029 int irq_vec_idx, const struct qset_params *p,
3030 int ntxq, struct net_device *dev,
3031 struct netdev_queue *netdevq)
3033 int i, avail, ret = -ENOMEM;
3034 struct sge_qset *q = &adapter->sge.qs[id];
3036 init_qset_cntxt(q, id);
3037 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
3038 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
3040 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3041 sizeof(struct rx_desc),
3042 sizeof(struct rx_sw_desc),
3043 &q->fl[0].phys_addr, &q->fl[0].sdesc);
3047 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3048 sizeof(struct rx_desc),
3049 sizeof(struct rx_sw_desc),
3050 &q->fl[1].phys_addr, &q->fl[1].sdesc);
3054 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3055 sizeof(struct rsp_desc), 0,
3056 &q->rspq.phys_addr, NULL);
3060 for (i = 0; i < ntxq; ++i) {
3062 * The control queue always uses immediate data so does not
3063 * need to keep track of any sk_buffs.
3065 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3067 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3068 sizeof(struct tx_desc), sz,
3069 &q->txq[i].phys_addr,
3071 if (!q->txq[i].desc)
3075 q->txq[i].size = p->txq_size[i];
3076 spin_lock_init(&q->txq[i].lock);
3077 skb_queue_head_init(&q->txq[i].sendq);
3080 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3082 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3085 q->fl[0].gen = q->fl[1].gen = 1;
3086 q->fl[0].size = p->fl_size;
3087 q->fl[1].size = p->jumbo_size;
3090 q->rspq.size = p->rspq_size;
3091 spin_lock_init(&q->rspq.lock);
3092 skb_queue_head_init(&q->rspq.rx_queue);
3094 q->txq[TXQ_ETH].stop_thres = nports *
3095 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3097 #if FL0_PG_CHUNK_SIZE > 0
3098 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3100 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3102 #if FL1_PG_CHUNK_SIZE > 0
3103 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3105 q->fl[1].buf_size = is_offload(adapter) ?
3106 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3107 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3110 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3111 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3112 q->fl[0].order = FL0_PG_ORDER;
3113 q->fl[1].order = FL1_PG_ORDER;
3114 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3115 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3117 spin_lock_irq(&adapter->sge.reg_lock);
3119 /* FL threshold comparison uses < */
3120 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3121 q->rspq.phys_addr, q->rspq.size,
3122 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3126 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3127 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3128 q->fl[i].phys_addr, q->fl[i].size,
3129 q->fl[i].buf_size - SGE_PG_RSVD,
3130 p->cong_thres, 1, 0);
3135 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3136 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3137 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3143 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3144 USE_GTS, SGE_CNTXT_OFLD, id,
3145 q->txq[TXQ_OFLD].phys_addr,
3146 q->txq[TXQ_OFLD].size, 0, 1, 0);
3152 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3154 q->txq[TXQ_CTRL].phys_addr,
3155 q->txq[TXQ_CTRL].size,
3156 q->txq[TXQ_CTRL].token, 1, 0);
3161 spin_unlock_irq(&adapter->sge.reg_lock);
3166 t3_update_qset_coalesce(q, p);
3168 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3169 GFP_KERNEL | __GFP_COMP);
3171 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3174 if (avail < q->fl[0].size)
3175 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3178 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3179 GFP_KERNEL | __GFP_COMP);
3180 if (avail < q->fl[1].size)
3181 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3183 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3185 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3186 V_NEWTIMER(q->rspq.holdoff_tmr));
3191 spin_unlock_irq(&adapter->sge.reg_lock);
3193 t3_free_qset(adapter, q);
3198 * t3_start_sge_timers - start SGE timer call backs
3199 * @adap: the adapter
3201 * Starts each SGE queue set's timer call back
3203 void t3_start_sge_timers(struct adapter *adap)
3207 for (i = 0; i < SGE_QSETS; ++i) {
3208 struct sge_qset *q = &adap->sge.qs[i];
3210 if (q->tx_reclaim_timer.function)
3211 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3213 if (q->rx_reclaim_timer.function)
3214 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3219 * t3_stop_sge_timers - stop SGE timer call backs
3220 * @adap: the adapter
3222 * Stops each SGE queue set's timer call back
3224 void t3_stop_sge_timers(struct adapter *adap)
3228 for (i = 0; i < SGE_QSETS; ++i) {
3229 struct sge_qset *q = &adap->sge.qs[i];
3231 if (q->tx_reclaim_timer.function)
3232 del_timer_sync(&q->tx_reclaim_timer);
3233 if (q->rx_reclaim_timer.function)
3234 del_timer_sync(&q->rx_reclaim_timer);
3239 * t3_free_sge_resources - free SGE resources
3240 * @adap: the adapter
3242 * Frees resources used by the SGE queue sets.
3244 void t3_free_sge_resources(struct adapter *adap)
3248 for (i = 0; i < SGE_QSETS; ++i)
3249 t3_free_qset(adap, &adap->sge.qs[i]);
3253 * t3_sge_start - enable SGE
3254 * @adap: the adapter
3256 * Enables the SGE for DMAs. This is the last step in starting packet
3259 void t3_sge_start(struct adapter *adap)
3261 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3265 * t3_sge_stop - disable SGE operation
3266 * @adap: the adapter
3268 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3269 * from error interrupts) or from normal process context. In the latter
3270 * case it also disables any pending queue restart tasklets. Note that
3271 * if it is called in interrupt context it cannot disable the restart
3272 * tasklets as it cannot wait, however the tasklets will have no effect
3273 * since the doorbells are disabled and the driver will call this again
3274 * later from process context, at which time the tasklets will be stopped
3275 * if they are still running.
3277 void t3_sge_stop(struct adapter *adap)
3279 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3280 if (!in_interrupt()) {
3283 for (i = 0; i < SGE_QSETS; ++i) {
3284 struct sge_qset *qs = &adap->sge.qs[i];
3286 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3287 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3293 * t3_sge_init - initialize SGE
3294 * @adap: the adapter
3295 * @p: the SGE parameters
3297 * Performs SGE initialization needed every time after a chip reset.
3298 * We do not initialize any of the queue sets here, instead the driver
3299 * top-level must request those individually. We also do not enable DMA
3300 * here, that should be done after the queues have been set up.
3302 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3304 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3306 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3307 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3308 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3309 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3310 #if SGE_NUM_GENBITS == 1
3311 ctrl |= F_EGRGENCTRL;
3313 if (adap->params.rev > 0) {
3314 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3315 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3317 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3318 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3319 V_LORCQDRBTHRSH(512));
3320 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3321 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3322 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3323 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3324 adap->params.rev < T3_REV_C ? 1000 : 500);
3325 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3326 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3327 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3328 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3329 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3333 * t3_sge_prep - one-time SGE initialization
3334 * @adap: the associated adapter
3335 * @p: SGE parameters
3337 * Performs one-time initialization of SGE SW state. Includes determining
3338 * defaults for the assorted SGE parameters, which admins can change until
3339 * they are used to initialize the SGE.
3341 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3345 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3348 for (i = 0; i < SGE_QSETS; ++i) {
3349 struct qset_params *q = p->qset + i;
3351 q->polling = adap->params.rev > 0;
3352 q->coalesce_usecs = 5;
3353 q->rspq_size = 1024;
3355 q->jumbo_size = 512;
3356 q->txq_size[TXQ_ETH] = 1024;
3357 q->txq_size[TXQ_OFLD] = 1024;
3358 q->txq_size[TXQ_CTRL] = 256;
3362 spin_lock_init(&adap->sge.reg_lock);