cxgb4: Add T5 debugfs support
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <asm/uaccess.h>
64
65 #include "cxgb4.h"
66 #include "t4_regs.h"
67 #include "t4_msg.h"
68 #include "t4fw_api.h"
69 #include "l2t.h"
70
71 #define DRV_VERSION "1.3.0-ko"
72 #define DRV_DESC "Chelsio T4 Network Driver"
73
74 /*
75  * Max interrupt hold-off timer value in us.  Queues fall back to this value
76  * under extreme memory pressure so it's largish to give the system time to
77  * recover.
78  */
79 #define MAX_SGE_TIMERVAL 200U
80
81 enum {
82         /*
83          * Physical Function provisioning constants.
84          */
85         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
86         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
87         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
88                                          */
89         PFRES_NEQ = 256,                /* # of egress queues */
90         PFRES_NIQ = 0,                  /* # of ingress queues */
91         PFRES_TC = 0,                   /* PCI-E traffic class */
92         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
93
94         PFRES_R_CAPS = FW_CMD_CAP_PF,
95         PFRES_WX_CAPS = FW_CMD_CAP_PF,
96
97 #ifdef CONFIG_PCI_IOV
98         /*
99          * Virtual Function provisioning constants.  We need two extra Ingress
100          * Queues with Interrupt capability to serve as the VF's Firmware
101          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
102          * neither will have Free Lists associated with them).  For each
103          * Ethernet/Control Egress Queue and for each Free List, we need an
104          * Egress Context.
105          */
106         VFRES_NPORTS = 1,               /* # of "ports" per VF */
107         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
108
109         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
110         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
111         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
112         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
113         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
114         VFRES_TC = 0,                   /* PCI-E traffic class */
115         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
116
117         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
118         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
119 #endif
120 };
121
122 /*
123  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
124  * static and likely not to be useful in the long run.  We really need to
125  * implement some form of persistent configuration which the firmware
126  * controls.
127  */
128 static unsigned int pfvfres_pmask(struct adapter *adapter,
129                                   unsigned int pf, unsigned int vf)
130 {
131         unsigned int portn, portvec;
132
133         /*
134          * Give PF's access to all of the ports.
135          */
136         if (vf == 0)
137                 return FW_PFVF_CMD_PMASK_MASK;
138
139         /*
140          * For VFs, we'll assign them access to the ports based purely on the
141          * PF.  We assign active ports in order, wrapping around if there are
142          * fewer active ports than PFs: e.g. active port[pf % nports].
143          * Unfortunately the adapter's port_info structs haven't been
144          * initialized yet so we have to compute this.
145          */
146         if (adapter->params.nports == 0)
147                 return 0;
148
149         portn = pf % adapter->params.nports;
150         portvec = adapter->params.portvec;
151         for (;;) {
152                 /*
153                  * Isolate the lowest set bit in the port vector.  If we're at
154                  * the port number that we want, return that as the pmask.
155                  * otherwise mask that bit out of the port vector and
156                  * decrement our port number ...
157                  */
158                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
159                 if (portn == 0)
160                         return pmask;
161                 portn--;
162                 portvec &= ~pmask;
163         }
164         /*NOTREACHED*/
165 }
166
167 enum {
168         MAX_TXQ_ENTRIES      = 16384,
169         MAX_CTRL_TXQ_ENTRIES = 1024,
170         MAX_RSPQ_ENTRIES     = 16384,
171         MAX_RX_BUFFERS       = 16384,
172         MIN_TXQ_ENTRIES      = 32,
173         MIN_CTRL_TXQ_ENTRIES = 32,
174         MIN_RSPQ_ENTRIES     = 128,
175         MIN_FL_ENTRIES       = 16
176 };
177
178 /* Host shadow copy of ingress filter entry.  This is in host native format
179  * and doesn't match the ordering or bit order, etc. of the hardware of the
180  * firmware command.  The use of bit-field structure elements is purely to
181  * remind ourselves of the field size limitations and save memory in the case
182  * where the filter table is large.
183  */
184 struct filter_entry {
185         /* Administrative fields for filter.
186          */
187         u32 valid:1;            /* filter allocated and valid */
188         u32 locked:1;           /* filter is administratively locked */
189
190         u32 pending:1;          /* filter action is pending firmware reply */
191         u32 smtidx:8;           /* Source MAC Table index for smac */
192         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
193
194         /* The filter itself.  Most of this is a straight copy of information
195          * provided by the extended ioctl().  Some fields are translated to
196          * internal forms -- for instance the Ingress Queue ID passed in from
197          * the ioctl() is translated into the Absolute Ingress Queue ID.
198          */
199         struct ch_filter_specification fs;
200 };
201
202 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
203                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
204                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
205
206 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
207
208 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
209         CH_DEVICE(0xa000, 0),  /* PE10K */
210         CH_DEVICE(0x4001, -1),
211         CH_DEVICE(0x4002, -1),
212         CH_DEVICE(0x4003, -1),
213         CH_DEVICE(0x4004, -1),
214         CH_DEVICE(0x4005, -1),
215         CH_DEVICE(0x4006, -1),
216         CH_DEVICE(0x4007, -1),
217         CH_DEVICE(0x4008, -1),
218         CH_DEVICE(0x4009, -1),
219         CH_DEVICE(0x400a, -1),
220         CH_DEVICE(0x4401, 4),
221         CH_DEVICE(0x4402, 4),
222         CH_DEVICE(0x4403, 4),
223         CH_DEVICE(0x4404, 4),
224         CH_DEVICE(0x4405, 4),
225         CH_DEVICE(0x4406, 4),
226         CH_DEVICE(0x4407, 4),
227         CH_DEVICE(0x4408, 4),
228         CH_DEVICE(0x4409, 4),
229         CH_DEVICE(0x440a, 4),
230         CH_DEVICE(0x440d, 4),
231         CH_DEVICE(0x440e, 4),
232         { 0, }
233 };
234
235 #define FW_FNAME "cxgb4/t4fw.bin"
236 #define FW5_FNAME "cxgb4/t5fw.bin"
237 #define FW_CFNAME "cxgb4/t4-config.txt"
238 #define FW5_CFNAME "cxgb4/t5-config.txt"
239
240 MODULE_DESCRIPTION(DRV_DESC);
241 MODULE_AUTHOR("Chelsio Communications");
242 MODULE_LICENSE("Dual BSD/GPL");
243 MODULE_VERSION(DRV_VERSION);
244 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
245 MODULE_FIRMWARE(FW_FNAME);
246 MODULE_FIRMWARE(FW5_FNAME);
247
248 /*
249  * Normally we're willing to become the firmware's Master PF but will be happy
250  * if another PF has already become the Master and initialized the adapter.
251  * Setting "force_init" will cause this driver to forcibly establish itself as
252  * the Master PF and initialize the adapter.
253  */
254 static uint force_init;
255
256 module_param(force_init, uint, 0644);
257 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
258
259 /*
260  * Normally if the firmware we connect to has Configuration File support, we
261  * use that and only fall back to the old Driver-based initialization if the
262  * Configuration File fails for some reason.  If force_old_init is set, then
263  * we'll always use the old Driver-based initialization sequence.
264  */
265 static uint force_old_init;
266
267 module_param(force_old_init, uint, 0644);
268 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
269
270 static int dflt_msg_enable = DFLT_MSG_ENABLE;
271
272 module_param(dflt_msg_enable, int, 0644);
273 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
274
275 /*
276  * The driver uses the best interrupt scheme available on a platform in the
277  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
278  * of these schemes the driver may consider as follows:
279  *
280  * msi = 2: choose from among all three options
281  * msi = 1: only consider MSI and INTx interrupts
282  * msi = 0: force INTx interrupts
283  */
284 static int msi = 2;
285
286 module_param(msi, int, 0644);
287 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
288
289 /*
290  * Queue interrupt hold-off timer values.  Queues default to the first of these
291  * upon creation.
292  */
293 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
294
295 module_param_array(intr_holdoff, uint, NULL, 0644);
296 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
297                  "0..4 in microseconds");
298
299 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
300
301 module_param_array(intr_cnt, uint, NULL, 0644);
302 MODULE_PARM_DESC(intr_cnt,
303                  "thresholds 1..3 for queue interrupt packet counters");
304
305 /*
306  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
307  * offset by 2 bytes in order to have the IP headers line up on 4-byte
308  * boundaries.  This is a requirement for many architectures which will throw
309  * a machine check fault if an attempt is made to access one of the 4-byte IP
310  * header fields on a non-4-byte boundary.  And it's a major performance issue
311  * even on some architectures which allow it like some implementations of the
312  * x86 ISA.  However, some architectures don't mind this and for some very
313  * edge-case performance sensitive applications (like forwarding large volumes
314  * of small packets), setting this DMA offset to 0 will decrease the number of
315  * PCI-E Bus transfers enough to measurably affect performance.
316  */
317 static int rx_dma_offset = 2;
318
319 static bool vf_acls;
320
321 #ifdef CONFIG_PCI_IOV
322 module_param(vf_acls, bool, 0644);
323 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
324
325 /* Since T5 has more num of PFs, using NUM_OF_PF_WITH_SRIOV_T5
326  * macro as num_vf array size
327  */
328 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV_T5];
329
330 module_param_array(num_vf, uint, NULL, 0644);
331 MODULE_PARM_DESC(num_vf,
332                  "number of VFs for each of PFs 0-3 for T4 and PFs 0-7 for T5");
333 #endif
334
335 /*
336  * The filter TCAM has a fixed portion and a variable portion.  The fixed
337  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
338  * ports.  The variable portion is 36 bits which can include things like Exact
339  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
340  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
341  * far exceed the 36-bit budget for this "compressed" header portion of the
342  * filter.  Thus, we have a scarce resource which must be carefully managed.
343  *
344  * By default we set this up to mostly match the set of filter matching
345  * capabilities of T3 but with accommodations for some of T4's more
346  * interesting features:
347  *
348  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
349  *     [Inner] VLAN (17), Port (3), FCoE (1) }
350  */
351 enum {
352         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
353         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
354         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
355 };
356
357 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
358
359 module_param(tp_vlan_pri_map, uint, 0644);
360 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
361
362 static struct dentry *cxgb4_debugfs_root;
363
364 static LIST_HEAD(adapter_list);
365 static DEFINE_MUTEX(uld_mutex);
366 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
367 static const char *uld_str[] = { "RDMA", "iSCSI" };
368
369 static void link_report(struct net_device *dev)
370 {
371         if (!netif_carrier_ok(dev))
372                 netdev_info(dev, "link down\n");
373         else {
374                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
375
376                 const char *s = "10Mbps";
377                 const struct port_info *p = netdev_priv(dev);
378
379                 switch (p->link_cfg.speed) {
380                 case SPEED_10000:
381                         s = "10Gbps";
382                         break;
383                 case SPEED_1000:
384                         s = "1000Mbps";
385                         break;
386                 case SPEED_100:
387                         s = "100Mbps";
388                         break;
389                 }
390
391                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
392                             fc[p->link_cfg.fc]);
393         }
394 }
395
396 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
397 {
398         struct net_device *dev = adapter->port[port_id];
399
400         /* Skip changes from disabled ports. */
401         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
402                 if (link_stat)
403                         netif_carrier_on(dev);
404                 else
405                         netif_carrier_off(dev);
406
407                 link_report(dev);
408         }
409 }
410
411 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
412 {
413         static const char *mod_str[] = {
414                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
415         };
416
417         const struct net_device *dev = adap->port[port_id];
418         const struct port_info *pi = netdev_priv(dev);
419
420         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
421                 netdev_info(dev, "port module unplugged\n");
422         else if (pi->mod_type < ARRAY_SIZE(mod_str))
423                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
424 }
425
426 /*
427  * Configure the exact and hash address filters to handle a port's multicast
428  * and secondary unicast MAC addresses.
429  */
430 static int set_addr_filters(const struct net_device *dev, bool sleep)
431 {
432         u64 mhash = 0;
433         u64 uhash = 0;
434         bool free = true;
435         u16 filt_idx[7];
436         const u8 *addr[7];
437         int ret, naddr = 0;
438         const struct netdev_hw_addr *ha;
439         int uc_cnt = netdev_uc_count(dev);
440         int mc_cnt = netdev_mc_count(dev);
441         const struct port_info *pi = netdev_priv(dev);
442         unsigned int mb = pi->adapter->fn;
443
444         /* first do the secondary unicast addresses */
445         netdev_for_each_uc_addr(ha, dev) {
446                 addr[naddr++] = ha->addr;
447                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
448                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
449                                         naddr, addr, filt_idx, &uhash, sleep);
450                         if (ret < 0)
451                                 return ret;
452
453                         free = false;
454                         naddr = 0;
455                 }
456         }
457
458         /* next set up the multicast addresses */
459         netdev_for_each_mc_addr(ha, dev) {
460                 addr[naddr++] = ha->addr;
461                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
462                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
463                                         naddr, addr, filt_idx, &mhash, sleep);
464                         if (ret < 0)
465                                 return ret;
466
467                         free = false;
468                         naddr = 0;
469                 }
470         }
471
472         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
473                                 uhash | mhash, sleep);
474 }
475
476 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
477 module_param(dbfifo_int_thresh, int, 0644);
478 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
479
480 /*
481  * usecs to sleep while draining the dbfifo
482  */
483 static int dbfifo_drain_delay = 1000;
484 module_param(dbfifo_drain_delay, int, 0644);
485 MODULE_PARM_DESC(dbfifo_drain_delay,
486                  "usecs to sleep while draining the dbfifo");
487
488 /*
489  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
490  * If @mtu is -1 it is left unchanged.
491  */
492 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
493 {
494         int ret;
495         struct port_info *pi = netdev_priv(dev);
496
497         ret = set_addr_filters(dev, sleep_ok);
498         if (ret == 0)
499                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
500                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
501                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
502                                     sleep_ok);
503         return ret;
504 }
505
506 static struct workqueue_struct *workq;
507
508 /**
509  *      link_start - enable a port
510  *      @dev: the port to enable
511  *
512  *      Performs the MAC and PHY actions needed to enable a port.
513  */
514 static int link_start(struct net_device *dev)
515 {
516         int ret;
517         struct port_info *pi = netdev_priv(dev);
518         unsigned int mb = pi->adapter->fn;
519
520         /*
521          * We do not set address filters and promiscuity here, the stack does
522          * that step explicitly.
523          */
524         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
525                             !!(dev->features & NETIF_F_HW_VLAN_RX), true);
526         if (ret == 0) {
527                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
528                                     pi->xact_addr_filt, dev->dev_addr, true,
529                                     true);
530                 if (ret >= 0) {
531                         pi->xact_addr_filt = ret;
532                         ret = 0;
533                 }
534         }
535         if (ret == 0)
536                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
537                                     &pi->link_cfg);
538         if (ret == 0)
539                 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
540         return ret;
541 }
542
543 /* Clear a filter and release any of its resources that we own.  This also
544  * clears the filter's "pending" status.
545  */
546 static void clear_filter(struct adapter *adap, struct filter_entry *f)
547 {
548         /* If the new or old filter have loopback rewriteing rules then we'll
549          * need to free any existing Layer Two Table (L2T) entries of the old
550          * filter rule.  The firmware will handle freeing up any Source MAC
551          * Table (SMT) entries used for rewriting Source MAC Addresses in
552          * loopback rules.
553          */
554         if (f->l2t)
555                 cxgb4_l2t_release(f->l2t);
556
557         /* The zeroing of the filter rule below clears the filter valid,
558          * pending, locked flags, l2t pointer, etc. so it's all we need for
559          * this operation.
560          */
561         memset(f, 0, sizeof(*f));
562 }
563
564 /* Handle a filter write/deletion reply.
565  */
566 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
567 {
568         unsigned int idx = GET_TID(rpl);
569         unsigned int nidx = idx - adap->tids.ftid_base;
570         unsigned int ret;
571         struct filter_entry *f;
572
573         if (idx >= adap->tids.ftid_base && nidx <
574            (adap->tids.nftids + adap->tids.nsftids)) {
575                 idx = nidx;
576                 ret = GET_TCB_COOKIE(rpl->cookie);
577                 f = &adap->tids.ftid_tab[idx];
578
579                 if (ret == FW_FILTER_WR_FLT_DELETED) {
580                         /* Clear the filter when we get confirmation from the
581                          * hardware that the filter has been deleted.
582                          */
583                         clear_filter(adap, f);
584                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
585                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
586                                 idx);
587                         clear_filter(adap, f);
588                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
589                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
590                         f->pending = 0;  /* asynchronous setup completed */
591                         f->valid = 1;
592                 } else {
593                         /* Something went wrong.  Issue a warning about the
594                          * problem and clear everything out.
595                          */
596                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
597                                 idx, ret);
598                         clear_filter(adap, f);
599                 }
600         }
601 }
602
603 /* Response queue handler for the FW event queue.
604  */
605 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
606                           const struct pkt_gl *gl)
607 {
608         u8 opcode = ((const struct rss_header *)rsp)->opcode;
609
610         rsp++;                                          /* skip RSS header */
611         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
612                 const struct cpl_sge_egr_update *p = (void *)rsp;
613                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
614                 struct sge_txq *txq;
615
616                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
617                 txq->restarts++;
618                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
619                         struct sge_eth_txq *eq;
620
621                         eq = container_of(txq, struct sge_eth_txq, q);
622                         netif_tx_wake_queue(eq->txq);
623                 } else {
624                         struct sge_ofld_txq *oq;
625
626                         oq = container_of(txq, struct sge_ofld_txq, q);
627                         tasklet_schedule(&oq->qresume_tsk);
628                 }
629         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
630                 const struct cpl_fw6_msg *p = (void *)rsp;
631
632                 if (p->type == 0)
633                         t4_handle_fw_rpl(q->adap, p->data);
634         } else if (opcode == CPL_L2T_WRITE_RPL) {
635                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
636
637                 do_l2t_write_rpl(q->adap, p);
638         } else if (opcode == CPL_SET_TCB_RPL) {
639                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
640
641                 filter_rpl(q->adap, p);
642         } else
643                 dev_err(q->adap->pdev_dev,
644                         "unexpected CPL %#x on FW event queue\n", opcode);
645         return 0;
646 }
647
648 /**
649  *      uldrx_handler - response queue handler for ULD queues
650  *      @q: the response queue that received the packet
651  *      @rsp: the response queue descriptor holding the offload message
652  *      @gl: the gather list of packet fragments
653  *
654  *      Deliver an ingress offload packet to a ULD.  All processing is done by
655  *      the ULD, we just maintain statistics.
656  */
657 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
658                          const struct pkt_gl *gl)
659 {
660         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
661
662         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
663                 rxq->stats.nomem++;
664                 return -1;
665         }
666         if (gl == NULL)
667                 rxq->stats.imm++;
668         else if (gl == CXGB4_MSG_AN)
669                 rxq->stats.an++;
670         else
671                 rxq->stats.pkts++;
672         return 0;
673 }
674
675 static void disable_msi(struct adapter *adapter)
676 {
677         if (adapter->flags & USING_MSIX) {
678                 pci_disable_msix(adapter->pdev);
679                 adapter->flags &= ~USING_MSIX;
680         } else if (adapter->flags & USING_MSI) {
681                 pci_disable_msi(adapter->pdev);
682                 adapter->flags &= ~USING_MSI;
683         }
684 }
685
686 /*
687  * Interrupt handler for non-data events used with MSI-X.
688  */
689 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
690 {
691         struct adapter *adap = cookie;
692
693         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
694         if (v & PFSW) {
695                 adap->swintr = 1;
696                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
697         }
698         t4_slow_intr_handler(adap);
699         return IRQ_HANDLED;
700 }
701
702 /*
703  * Name the MSI-X interrupts.
704  */
705 static void name_msix_vecs(struct adapter *adap)
706 {
707         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
708
709         /* non-data interrupts */
710         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
711
712         /* FW events */
713         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
714                  adap->port[0]->name);
715
716         /* Ethernet queues */
717         for_each_port(adap, j) {
718                 struct net_device *d = adap->port[j];
719                 const struct port_info *pi = netdev_priv(d);
720
721                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
722                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
723                                  d->name, i);
724         }
725
726         /* offload queues */
727         for_each_ofldrxq(&adap->sge, i)
728                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
729                          adap->port[0]->name, i);
730
731         for_each_rdmarxq(&adap->sge, i)
732                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
733                          adap->port[0]->name, i);
734 }
735
736 static int request_msix_queue_irqs(struct adapter *adap)
737 {
738         struct sge *s = &adap->sge;
739         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2;
740
741         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
742                           adap->msix_info[1].desc, &s->fw_evtq);
743         if (err)
744                 return err;
745
746         for_each_ethrxq(s, ethqidx) {
747                 err = request_irq(adap->msix_info[msi_index].vec,
748                                   t4_sge_intr_msix, 0,
749                                   adap->msix_info[msi_index].desc,
750                                   &s->ethrxq[ethqidx].rspq);
751                 if (err)
752                         goto unwind;
753                 msi_index++;
754         }
755         for_each_ofldrxq(s, ofldqidx) {
756                 err = request_irq(adap->msix_info[msi_index].vec,
757                                   t4_sge_intr_msix, 0,
758                                   adap->msix_info[msi_index].desc,
759                                   &s->ofldrxq[ofldqidx].rspq);
760                 if (err)
761                         goto unwind;
762                 msi_index++;
763         }
764         for_each_rdmarxq(s, rdmaqidx) {
765                 err = request_irq(adap->msix_info[msi_index].vec,
766                                   t4_sge_intr_msix, 0,
767                                   adap->msix_info[msi_index].desc,
768                                   &s->rdmarxq[rdmaqidx].rspq);
769                 if (err)
770                         goto unwind;
771                 msi_index++;
772         }
773         return 0;
774
775 unwind:
776         while (--rdmaqidx >= 0)
777                 free_irq(adap->msix_info[--msi_index].vec,
778                          &s->rdmarxq[rdmaqidx].rspq);
779         while (--ofldqidx >= 0)
780                 free_irq(adap->msix_info[--msi_index].vec,
781                          &s->ofldrxq[ofldqidx].rspq);
782         while (--ethqidx >= 0)
783                 free_irq(adap->msix_info[--msi_index].vec,
784                          &s->ethrxq[ethqidx].rspq);
785         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
786         return err;
787 }
788
789 static void free_msix_queue_irqs(struct adapter *adap)
790 {
791         int i, msi_index = 2;
792         struct sge *s = &adap->sge;
793
794         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
795         for_each_ethrxq(s, i)
796                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
797         for_each_ofldrxq(s, i)
798                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
799         for_each_rdmarxq(s, i)
800                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
801 }
802
803 /**
804  *      write_rss - write the RSS table for a given port
805  *      @pi: the port
806  *      @queues: array of queue indices for RSS
807  *
808  *      Sets up the portion of the HW RSS table for the port's VI to distribute
809  *      packets to the Rx queues in @queues.
810  */
811 static int write_rss(const struct port_info *pi, const u16 *queues)
812 {
813         u16 *rss;
814         int i, err;
815         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
816
817         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
818         if (!rss)
819                 return -ENOMEM;
820
821         /* map the queue indices to queue ids */
822         for (i = 0; i < pi->rss_size; i++, queues++)
823                 rss[i] = q[*queues].rspq.abs_id;
824
825         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
826                                   pi->rss_size, rss, pi->rss_size);
827         kfree(rss);
828         return err;
829 }
830
831 /**
832  *      setup_rss - configure RSS
833  *      @adap: the adapter
834  *
835  *      Sets up RSS for each port.
836  */
837 static int setup_rss(struct adapter *adap)
838 {
839         int i, err;
840
841         for_each_port(adap, i) {
842                 const struct port_info *pi = adap2pinfo(adap, i);
843
844                 err = write_rss(pi, pi->rss);
845                 if (err)
846                         return err;
847         }
848         return 0;
849 }
850
851 /*
852  * Return the channel of the ingress queue with the given qid.
853  */
854 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
855 {
856         qid -= p->ingr_start;
857         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
858 }
859
860 /*
861  * Wait until all NAPI handlers are descheduled.
862  */
863 static void quiesce_rx(struct adapter *adap)
864 {
865         int i;
866
867         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
868                 struct sge_rspq *q = adap->sge.ingr_map[i];
869
870                 if (q && q->handler)
871                         napi_disable(&q->napi);
872         }
873 }
874
875 /*
876  * Enable NAPI scheduling and interrupt generation for all Rx queues.
877  */
878 static void enable_rx(struct adapter *adap)
879 {
880         int i;
881
882         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
883                 struct sge_rspq *q = adap->sge.ingr_map[i];
884
885                 if (!q)
886                         continue;
887                 if (q->handler)
888                         napi_enable(&q->napi);
889                 /* 0-increment GTS to start the timer and enable interrupts */
890                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
891                              SEINTARM(q->intr_params) |
892                              INGRESSQID(q->cntxt_id));
893         }
894 }
895
896 /**
897  *      setup_sge_queues - configure SGE Tx/Rx/response queues
898  *      @adap: the adapter
899  *
900  *      Determines how many sets of SGE queues to use and initializes them.
901  *      We support multiple queue sets per port if we have MSI-X, otherwise
902  *      just one queue set per port.
903  */
904 static int setup_sge_queues(struct adapter *adap)
905 {
906         int err, msi_idx, i, j;
907         struct sge *s = &adap->sge;
908
909         bitmap_zero(s->starving_fl, MAX_EGRQ);
910         bitmap_zero(s->txq_maperr, MAX_EGRQ);
911
912         if (adap->flags & USING_MSIX)
913                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
914         else {
915                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
916                                        NULL, NULL);
917                 if (err)
918                         return err;
919                 msi_idx = -((int)s->intrq.abs_id + 1);
920         }
921
922         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
923                                msi_idx, NULL, fwevtq_handler);
924         if (err) {
925 freeout:        t4_free_sge_resources(adap);
926                 return err;
927         }
928
929         for_each_port(adap, i) {
930                 struct net_device *dev = adap->port[i];
931                 struct port_info *pi = netdev_priv(dev);
932                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
933                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
934
935                 for (j = 0; j < pi->nqsets; j++, q++) {
936                         if (msi_idx > 0)
937                                 msi_idx++;
938                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
939                                                msi_idx, &q->fl,
940                                                t4_ethrx_handler);
941                         if (err)
942                                 goto freeout;
943                         q->rspq.idx = j;
944                         memset(&q->stats, 0, sizeof(q->stats));
945                 }
946                 for (j = 0; j < pi->nqsets; j++, t++) {
947                         err = t4_sge_alloc_eth_txq(adap, t, dev,
948                                         netdev_get_tx_queue(dev, j),
949                                         s->fw_evtq.cntxt_id);
950                         if (err)
951                                 goto freeout;
952                 }
953         }
954
955         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
956         for_each_ofldrxq(s, i) {
957                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
958                 struct net_device *dev = adap->port[i / j];
959
960                 if (msi_idx > 0)
961                         msi_idx++;
962                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
963                                        &q->fl, uldrx_handler);
964                 if (err)
965                         goto freeout;
966                 memset(&q->stats, 0, sizeof(q->stats));
967                 s->ofld_rxq[i] = q->rspq.abs_id;
968                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
969                                             s->fw_evtq.cntxt_id);
970                 if (err)
971                         goto freeout;
972         }
973
974         for_each_rdmarxq(s, i) {
975                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
976
977                 if (msi_idx > 0)
978                         msi_idx++;
979                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
980                                        msi_idx, &q->fl, uldrx_handler);
981                 if (err)
982                         goto freeout;
983                 memset(&q->stats, 0, sizeof(q->stats));
984                 s->rdma_rxq[i] = q->rspq.abs_id;
985         }
986
987         for_each_port(adap, i) {
988                 /*
989                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
990                  * have RDMA queues, and that's the right value.
991                  */
992                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
993                                             s->fw_evtq.cntxt_id,
994                                             s->rdmarxq[i].rspq.cntxt_id);
995                 if (err)
996                         goto freeout;
997         }
998
999         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1000                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1001                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1002         return 0;
1003 }
1004
1005 /*
1006  * Returns 0 if new FW was successfully loaded, a positive errno if a load was
1007  * started but failed, and a negative errno if flash load couldn't start.
1008  */
1009 static int upgrade_fw(struct adapter *adap)
1010 {
1011         int ret;
1012         u32 vers, exp_major;
1013         const struct fw_hdr *hdr;
1014         const struct firmware *fw;
1015         struct device *dev = adap->pdev_dev;
1016         char *fw_file_name;
1017
1018         switch (CHELSIO_CHIP_VERSION(adap->chip)) {
1019         case CHELSIO_T4:
1020                 fw_file_name = FW_FNAME;
1021                 exp_major = FW_VERSION_MAJOR;
1022                 break;
1023         case CHELSIO_T5:
1024                 fw_file_name = FW5_FNAME;
1025                 exp_major = FW_VERSION_MAJOR_T5;
1026                 break;
1027         default:
1028                 dev_err(dev, "Unsupported chip type, %x\n", adap->chip);
1029                 return -EINVAL;
1030         }
1031
1032         ret = request_firmware(&fw, fw_file_name, dev);
1033         if (ret < 0) {
1034                 dev_err(dev, "unable to load firmware image %s, error %d\n",
1035                         fw_file_name, ret);
1036                 return ret;
1037         }
1038
1039         hdr = (const struct fw_hdr *)fw->data;
1040         vers = ntohl(hdr->fw_ver);
1041         if (FW_HDR_FW_VER_MAJOR_GET(vers) != exp_major) {
1042                 ret = -EINVAL;              /* wrong major version, won't do */
1043                 goto out;
1044         }
1045
1046         /*
1047          * If the flash FW is unusable or we found something newer, load it.
1048          */
1049         if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != exp_major ||
1050             vers > adap->params.fw_vers) {
1051                 dev_info(dev, "upgrading firmware ...\n");
1052                 ret = t4_fw_upgrade(adap, adap->mbox, fw->data, fw->size,
1053                                     /*force=*/false);
1054                 if (!ret)
1055                         dev_info(dev,
1056                                  "firmware upgraded to version %pI4 from %s\n",
1057                                  &hdr->fw_ver, fw_file_name);
1058                 else
1059                         dev_err(dev, "firmware upgrade failed! err=%d\n", -ret);
1060         } else {
1061                 /*
1062                  * Tell our caller that we didn't upgrade the firmware.
1063                  */
1064                 ret = -EINVAL;
1065         }
1066
1067 out:    release_firmware(fw);
1068         return ret;
1069 }
1070
1071 /*
1072  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1073  * The allocated memory is cleared.
1074  */
1075 void *t4_alloc_mem(size_t size)
1076 {
1077         void *p = kzalloc(size, GFP_KERNEL);
1078
1079         if (!p)
1080                 p = vzalloc(size);
1081         return p;
1082 }
1083
1084 /*
1085  * Free memory allocated through alloc_mem().
1086  */
1087 static void t4_free_mem(void *addr)
1088 {
1089         if (is_vmalloc_addr(addr))
1090                 vfree(addr);
1091         else
1092                 kfree(addr);
1093 }
1094
1095 /* Send a Work Request to write the filter at a specified index.  We construct
1096  * a Firmware Filter Work Request to have the work done and put the indicated
1097  * filter into "pending" mode which will prevent any further actions against
1098  * it till we get a reply from the firmware on the completion status of the
1099  * request.
1100  */
1101 static int set_filter_wr(struct adapter *adapter, int fidx)
1102 {
1103         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1104         struct sk_buff *skb;
1105         struct fw_filter_wr *fwr;
1106         unsigned int ftid;
1107
1108         /* If the new filter requires loopback Destination MAC and/or VLAN
1109          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1110          * the filter.
1111          */
1112         if (f->fs.newdmac || f->fs.newvlan) {
1113                 /* allocate L2T entry for new filter */
1114                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1115                 if (f->l2t == NULL)
1116                         return -EAGAIN;
1117                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1118                                         f->fs.eport, f->fs.dmac)) {
1119                         cxgb4_l2t_release(f->l2t);
1120                         f->l2t = NULL;
1121                         return -ENOMEM;
1122                 }
1123         }
1124
1125         ftid = adapter->tids.ftid_base + fidx;
1126
1127         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1128         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1129         memset(fwr, 0, sizeof(*fwr));
1130
1131         /* It would be nice to put most of the following in t4_hw.c but most
1132          * of the work is translating the cxgbtool ch_filter_specification
1133          * into the Work Request and the definition of that structure is
1134          * currently in cxgbtool.h which isn't appropriate to pull into the
1135          * common code.  We may eventually try to come up with a more neutral
1136          * filter specification structure but for now it's easiest to simply
1137          * put this fairly direct code in line ...
1138          */
1139         fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1140         fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1141         fwr->tid_to_iq =
1142                 htonl(V_FW_FILTER_WR_TID(ftid) |
1143                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1144                       V_FW_FILTER_WR_NOREPLY(0) |
1145                       V_FW_FILTER_WR_IQ(f->fs.iq));
1146         fwr->del_filter_to_l2tix =
1147                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1148                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1149                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1150                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1151                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1152                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1153                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1154                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1155                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1156                                              f->fs.newvlan == VLAN_REWRITE) |
1157                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1158                                             f->fs.newvlan == VLAN_REWRITE) |
1159                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1160                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1161                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1162                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1163         fwr->ethtype = htons(f->fs.val.ethtype);
1164         fwr->ethtypem = htons(f->fs.mask.ethtype);
1165         fwr->frag_to_ovlan_vldm =
1166                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1167                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1168                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1169                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1170                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1171                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1172         fwr->smac_sel = 0;
1173         fwr->rx_chan_rx_rpl_iq =
1174                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1175                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1176         fwr->maci_to_matchtypem =
1177                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1178                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1179                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1180                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1181                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1182                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1183                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1184                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1185         fwr->ptcl = f->fs.val.proto;
1186         fwr->ptclm = f->fs.mask.proto;
1187         fwr->ttyp = f->fs.val.tos;
1188         fwr->ttypm = f->fs.mask.tos;
1189         fwr->ivlan = htons(f->fs.val.ivlan);
1190         fwr->ivlanm = htons(f->fs.mask.ivlan);
1191         fwr->ovlan = htons(f->fs.val.ovlan);
1192         fwr->ovlanm = htons(f->fs.mask.ovlan);
1193         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1194         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1195         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1196         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1197         fwr->lp = htons(f->fs.val.lport);
1198         fwr->lpm = htons(f->fs.mask.lport);
1199         fwr->fp = htons(f->fs.val.fport);
1200         fwr->fpm = htons(f->fs.mask.fport);
1201         if (f->fs.newsmac)
1202                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1203
1204         /* Mark the filter as "pending" and ship off the Filter Work Request.
1205          * When we get the Work Request Reply we'll clear the pending status.
1206          */
1207         f->pending = 1;
1208         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1209         t4_ofld_send(adapter, skb);
1210         return 0;
1211 }
1212
1213 /* Delete the filter at a specified index.
1214  */
1215 static int del_filter_wr(struct adapter *adapter, int fidx)
1216 {
1217         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1218         struct sk_buff *skb;
1219         struct fw_filter_wr *fwr;
1220         unsigned int len, ftid;
1221
1222         len = sizeof(*fwr);
1223         ftid = adapter->tids.ftid_base + fidx;
1224
1225         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1226         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1227         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1228
1229         /* Mark the filter as "pending" and ship off the Filter Work Request.
1230          * When we get the Work Request Reply we'll clear the pending status.
1231          */
1232         f->pending = 1;
1233         t4_mgmt_tx(adapter, skb);
1234         return 0;
1235 }
1236
1237 static inline int is_offload(const struct adapter *adap)
1238 {
1239         return adap->params.offload;
1240 }
1241
1242 /*
1243  * Implementation of ethtool operations.
1244  */
1245
1246 static u32 get_msglevel(struct net_device *dev)
1247 {
1248         return netdev2adap(dev)->msg_enable;
1249 }
1250
1251 static void set_msglevel(struct net_device *dev, u32 val)
1252 {
1253         netdev2adap(dev)->msg_enable = val;
1254 }
1255
1256 static char stats_strings[][ETH_GSTRING_LEN] = {
1257         "TxOctetsOK         ",
1258         "TxFramesOK         ",
1259         "TxBroadcastFrames  ",
1260         "TxMulticastFrames  ",
1261         "TxUnicastFrames    ",
1262         "TxErrorFrames      ",
1263
1264         "TxFrames64         ",
1265         "TxFrames65To127    ",
1266         "TxFrames128To255   ",
1267         "TxFrames256To511   ",
1268         "TxFrames512To1023  ",
1269         "TxFrames1024To1518 ",
1270         "TxFrames1519ToMax  ",
1271
1272         "TxFramesDropped    ",
1273         "TxPauseFrames      ",
1274         "TxPPP0Frames       ",
1275         "TxPPP1Frames       ",
1276         "TxPPP2Frames       ",
1277         "TxPPP3Frames       ",
1278         "TxPPP4Frames       ",
1279         "TxPPP5Frames       ",
1280         "TxPPP6Frames       ",
1281         "TxPPP7Frames       ",
1282
1283         "RxOctetsOK         ",
1284         "RxFramesOK         ",
1285         "RxBroadcastFrames  ",
1286         "RxMulticastFrames  ",
1287         "RxUnicastFrames    ",
1288
1289         "RxFramesTooLong    ",
1290         "RxJabberErrors     ",
1291         "RxFCSErrors        ",
1292         "RxLengthErrors     ",
1293         "RxSymbolErrors     ",
1294         "RxRuntFrames       ",
1295
1296         "RxFrames64         ",
1297         "RxFrames65To127    ",
1298         "RxFrames128To255   ",
1299         "RxFrames256To511   ",
1300         "RxFrames512To1023  ",
1301         "RxFrames1024To1518 ",
1302         "RxFrames1519ToMax  ",
1303
1304         "RxPauseFrames      ",
1305         "RxPPP0Frames       ",
1306         "RxPPP1Frames       ",
1307         "RxPPP2Frames       ",
1308         "RxPPP3Frames       ",
1309         "RxPPP4Frames       ",
1310         "RxPPP5Frames       ",
1311         "RxPPP6Frames       ",
1312         "RxPPP7Frames       ",
1313
1314         "RxBG0FramesDropped ",
1315         "RxBG1FramesDropped ",
1316         "RxBG2FramesDropped ",
1317         "RxBG3FramesDropped ",
1318         "RxBG0FramesTrunc   ",
1319         "RxBG1FramesTrunc   ",
1320         "RxBG2FramesTrunc   ",
1321         "RxBG3FramesTrunc   ",
1322
1323         "TSO                ",
1324         "TxCsumOffload      ",
1325         "RxCsumGood         ",
1326         "VLANextractions    ",
1327         "VLANinsertions     ",
1328         "GROpackets         ",
1329         "GROmerged          ",
1330         "WriteCoalSuccess   ",
1331         "WriteCoalFail      ",
1332 };
1333
1334 static int get_sset_count(struct net_device *dev, int sset)
1335 {
1336         switch (sset) {
1337         case ETH_SS_STATS:
1338                 return ARRAY_SIZE(stats_strings);
1339         default:
1340                 return -EOPNOTSUPP;
1341         }
1342 }
1343
1344 #define T4_REGMAP_SIZE (160 * 1024)
1345 #define T5_REGMAP_SIZE (332 * 1024)
1346
1347 static int get_regs_len(struct net_device *dev)
1348 {
1349         struct adapter *adap = netdev2adap(dev);
1350         if (is_t4(adap->chip))
1351                 return T4_REGMAP_SIZE;
1352         else
1353                 return T5_REGMAP_SIZE;
1354 }
1355
1356 static int get_eeprom_len(struct net_device *dev)
1357 {
1358         return EEPROMSIZE;
1359 }
1360
1361 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1362 {
1363         struct adapter *adapter = netdev2adap(dev);
1364
1365         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1366         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1367         strlcpy(info->bus_info, pci_name(adapter->pdev),
1368                 sizeof(info->bus_info));
1369
1370         if (adapter->params.fw_vers)
1371                 snprintf(info->fw_version, sizeof(info->fw_version),
1372                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1373                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1374                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1375                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1376                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1377                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1378                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1379                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1380                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1381 }
1382
1383 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1384 {
1385         if (stringset == ETH_SS_STATS)
1386                 memcpy(data, stats_strings, sizeof(stats_strings));
1387 }
1388
1389 /*
1390  * port stats maintained per queue of the port.  They should be in the same
1391  * order as in stats_strings above.
1392  */
1393 struct queue_port_stats {
1394         u64 tso;
1395         u64 tx_csum;
1396         u64 rx_csum;
1397         u64 vlan_ex;
1398         u64 vlan_ins;
1399         u64 gro_pkts;
1400         u64 gro_merged;
1401 };
1402
1403 static void collect_sge_port_stats(const struct adapter *adap,
1404                 const struct port_info *p, struct queue_port_stats *s)
1405 {
1406         int i;
1407         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1408         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1409
1410         memset(s, 0, sizeof(*s));
1411         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1412                 s->tso += tx->tso;
1413                 s->tx_csum += tx->tx_cso;
1414                 s->rx_csum += rx->stats.rx_cso;
1415                 s->vlan_ex += rx->stats.vlan_ex;
1416                 s->vlan_ins += tx->vlan_ins;
1417                 s->gro_pkts += rx->stats.lro_pkts;
1418                 s->gro_merged += rx->stats.lro_merged;
1419         }
1420 }
1421
1422 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1423                       u64 *data)
1424 {
1425         struct port_info *pi = netdev_priv(dev);
1426         struct adapter *adapter = pi->adapter;
1427         u32 val1, val2;
1428
1429         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1430
1431         data += sizeof(struct port_stats) / sizeof(u64);
1432         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1433         data += sizeof(struct queue_port_stats) / sizeof(u64);
1434         if (!is_t4(adapter->chip)) {
1435                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1436                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1437                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1438                 *data = val1 - val2;
1439                 data++;
1440                 *data = val2;
1441                 data++;
1442         } else {
1443                 memset(data, 0, 2 * sizeof(u64));
1444                 *data += 2;
1445         }
1446 }
1447
1448 /*
1449  * Return a version number to identify the type of adapter.  The scheme is:
1450  * - bits 0..9: chip version
1451  * - bits 10..15: chip revision
1452  * - bits 16..23: register dump version
1453  */
1454 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1455 {
1456         return CHELSIO_CHIP_VERSION(ap->chip) |
1457                 (CHELSIO_CHIP_RELEASE(ap->chip) << 10) | (1 << 16);
1458 }
1459
1460 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1461                            unsigned int end)
1462 {
1463         u32 *p = buf + start;
1464
1465         for ( ; start <= end; start += sizeof(u32))
1466                 *p++ = t4_read_reg(ap, start);
1467 }
1468
1469 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1470                      void *buf)
1471 {
1472         static const unsigned int t4_reg_ranges[] = {
1473                 0x1008, 0x1108,
1474                 0x1180, 0x11b4,
1475                 0x11fc, 0x123c,
1476                 0x1300, 0x173c,
1477                 0x1800, 0x18fc,
1478                 0x3000, 0x30d8,
1479                 0x30e0, 0x5924,
1480                 0x5960, 0x59d4,
1481                 0x5a00, 0x5af8,
1482                 0x6000, 0x6098,
1483                 0x6100, 0x6150,
1484                 0x6200, 0x6208,
1485                 0x6240, 0x6248,
1486                 0x6280, 0x6338,
1487                 0x6370, 0x638c,
1488                 0x6400, 0x643c,
1489                 0x6500, 0x6524,
1490                 0x6a00, 0x6a38,
1491                 0x6a60, 0x6a78,
1492                 0x6b00, 0x6b84,
1493                 0x6bf0, 0x6c84,
1494                 0x6cf0, 0x6d84,
1495                 0x6df0, 0x6e84,
1496                 0x6ef0, 0x6f84,
1497                 0x6ff0, 0x7084,
1498                 0x70f0, 0x7184,
1499                 0x71f0, 0x7284,
1500                 0x72f0, 0x7384,
1501                 0x73f0, 0x7450,
1502                 0x7500, 0x7530,
1503                 0x7600, 0x761c,
1504                 0x7680, 0x76cc,
1505                 0x7700, 0x7798,
1506                 0x77c0, 0x77fc,
1507                 0x7900, 0x79fc,
1508                 0x7b00, 0x7c38,
1509                 0x7d00, 0x7efc,
1510                 0x8dc0, 0x8e1c,
1511                 0x8e30, 0x8e78,
1512                 0x8ea0, 0x8f6c,
1513                 0x8fc0, 0x9074,
1514                 0x90fc, 0x90fc,
1515                 0x9400, 0x9458,
1516                 0x9600, 0x96bc,
1517                 0x9800, 0x9808,
1518                 0x9820, 0x983c,
1519                 0x9850, 0x9864,
1520                 0x9c00, 0x9c6c,
1521                 0x9c80, 0x9cec,
1522                 0x9d00, 0x9d6c,
1523                 0x9d80, 0x9dec,
1524                 0x9e00, 0x9e6c,
1525                 0x9e80, 0x9eec,
1526                 0x9f00, 0x9f6c,
1527                 0x9f80, 0x9fec,
1528                 0xd004, 0xd03c,
1529                 0xdfc0, 0xdfe0,
1530                 0xe000, 0xea7c,
1531                 0xf000, 0x11190,
1532                 0x19040, 0x1906c,
1533                 0x19078, 0x19080,
1534                 0x1908c, 0x19124,
1535                 0x19150, 0x191b0,
1536                 0x191d0, 0x191e8,
1537                 0x19238, 0x1924c,
1538                 0x193f8, 0x19474,
1539                 0x19490, 0x194f8,
1540                 0x19800, 0x19f30,
1541                 0x1a000, 0x1a06c,
1542                 0x1a0b0, 0x1a120,
1543                 0x1a128, 0x1a138,
1544                 0x1a190, 0x1a1c4,
1545                 0x1a1fc, 0x1a1fc,
1546                 0x1e040, 0x1e04c,
1547                 0x1e284, 0x1e28c,
1548                 0x1e2c0, 0x1e2c0,
1549                 0x1e2e0, 0x1e2e0,
1550                 0x1e300, 0x1e384,
1551                 0x1e3c0, 0x1e3c8,
1552                 0x1e440, 0x1e44c,
1553                 0x1e684, 0x1e68c,
1554                 0x1e6c0, 0x1e6c0,
1555                 0x1e6e0, 0x1e6e0,
1556                 0x1e700, 0x1e784,
1557                 0x1e7c0, 0x1e7c8,
1558                 0x1e840, 0x1e84c,
1559                 0x1ea84, 0x1ea8c,
1560                 0x1eac0, 0x1eac0,
1561                 0x1eae0, 0x1eae0,
1562                 0x1eb00, 0x1eb84,
1563                 0x1ebc0, 0x1ebc8,
1564                 0x1ec40, 0x1ec4c,
1565                 0x1ee84, 0x1ee8c,
1566                 0x1eec0, 0x1eec0,
1567                 0x1eee0, 0x1eee0,
1568                 0x1ef00, 0x1ef84,
1569                 0x1efc0, 0x1efc8,
1570                 0x1f040, 0x1f04c,
1571                 0x1f284, 0x1f28c,
1572                 0x1f2c0, 0x1f2c0,
1573                 0x1f2e0, 0x1f2e0,
1574                 0x1f300, 0x1f384,
1575                 0x1f3c0, 0x1f3c8,
1576                 0x1f440, 0x1f44c,
1577                 0x1f684, 0x1f68c,
1578                 0x1f6c0, 0x1f6c0,
1579                 0x1f6e0, 0x1f6e0,
1580                 0x1f700, 0x1f784,
1581                 0x1f7c0, 0x1f7c8,
1582                 0x1f840, 0x1f84c,
1583                 0x1fa84, 0x1fa8c,
1584                 0x1fac0, 0x1fac0,
1585                 0x1fae0, 0x1fae0,
1586                 0x1fb00, 0x1fb84,
1587                 0x1fbc0, 0x1fbc8,
1588                 0x1fc40, 0x1fc4c,
1589                 0x1fe84, 0x1fe8c,
1590                 0x1fec0, 0x1fec0,
1591                 0x1fee0, 0x1fee0,
1592                 0x1ff00, 0x1ff84,
1593                 0x1ffc0, 0x1ffc8,
1594                 0x20000, 0x2002c,
1595                 0x20100, 0x2013c,
1596                 0x20190, 0x201c8,
1597                 0x20200, 0x20318,
1598                 0x20400, 0x20528,
1599                 0x20540, 0x20614,
1600                 0x21000, 0x21040,
1601                 0x2104c, 0x21060,
1602                 0x210c0, 0x210ec,
1603                 0x21200, 0x21268,
1604                 0x21270, 0x21284,
1605                 0x212fc, 0x21388,
1606                 0x21400, 0x21404,
1607                 0x21500, 0x21518,
1608                 0x2152c, 0x2153c,
1609                 0x21550, 0x21554,
1610                 0x21600, 0x21600,
1611                 0x21608, 0x21628,
1612                 0x21630, 0x2163c,
1613                 0x21700, 0x2171c,
1614                 0x21780, 0x2178c,
1615                 0x21800, 0x21c38,
1616                 0x21c80, 0x21d7c,
1617                 0x21e00, 0x21e04,
1618                 0x22000, 0x2202c,
1619                 0x22100, 0x2213c,
1620                 0x22190, 0x221c8,
1621                 0x22200, 0x22318,
1622                 0x22400, 0x22528,
1623                 0x22540, 0x22614,
1624                 0x23000, 0x23040,
1625                 0x2304c, 0x23060,
1626                 0x230c0, 0x230ec,
1627                 0x23200, 0x23268,
1628                 0x23270, 0x23284,
1629                 0x232fc, 0x23388,
1630                 0x23400, 0x23404,
1631                 0x23500, 0x23518,
1632                 0x2352c, 0x2353c,
1633                 0x23550, 0x23554,
1634                 0x23600, 0x23600,
1635                 0x23608, 0x23628,
1636                 0x23630, 0x2363c,
1637                 0x23700, 0x2371c,
1638                 0x23780, 0x2378c,
1639                 0x23800, 0x23c38,
1640                 0x23c80, 0x23d7c,
1641                 0x23e00, 0x23e04,
1642                 0x24000, 0x2402c,
1643                 0x24100, 0x2413c,
1644                 0x24190, 0x241c8,
1645                 0x24200, 0x24318,
1646                 0x24400, 0x24528,
1647                 0x24540, 0x24614,
1648                 0x25000, 0x25040,
1649                 0x2504c, 0x25060,
1650                 0x250c0, 0x250ec,
1651                 0x25200, 0x25268,
1652                 0x25270, 0x25284,
1653                 0x252fc, 0x25388,
1654                 0x25400, 0x25404,
1655                 0x25500, 0x25518,
1656                 0x2552c, 0x2553c,
1657                 0x25550, 0x25554,
1658                 0x25600, 0x25600,
1659                 0x25608, 0x25628,
1660                 0x25630, 0x2563c,
1661                 0x25700, 0x2571c,
1662                 0x25780, 0x2578c,
1663                 0x25800, 0x25c38,
1664                 0x25c80, 0x25d7c,
1665                 0x25e00, 0x25e04,
1666                 0x26000, 0x2602c,
1667                 0x26100, 0x2613c,
1668                 0x26190, 0x261c8,
1669                 0x26200, 0x26318,
1670                 0x26400, 0x26528,
1671                 0x26540, 0x26614,
1672                 0x27000, 0x27040,
1673                 0x2704c, 0x27060,
1674                 0x270c0, 0x270ec,
1675                 0x27200, 0x27268,
1676                 0x27270, 0x27284,
1677                 0x272fc, 0x27388,
1678                 0x27400, 0x27404,
1679                 0x27500, 0x27518,
1680                 0x2752c, 0x2753c,
1681                 0x27550, 0x27554,
1682                 0x27600, 0x27600,
1683                 0x27608, 0x27628,
1684                 0x27630, 0x2763c,
1685                 0x27700, 0x2771c,
1686                 0x27780, 0x2778c,
1687                 0x27800, 0x27c38,
1688                 0x27c80, 0x27d7c,
1689                 0x27e00, 0x27e04
1690         };
1691
1692         static const unsigned int t5_reg_ranges[] = {
1693                 0x1008, 0x1148,
1694                 0x1180, 0x11b4,
1695                 0x11fc, 0x123c,
1696                 0x1280, 0x173c,
1697                 0x1800, 0x18fc,
1698                 0x3000, 0x3028,
1699                 0x3060, 0x30d8,
1700                 0x30e0, 0x30fc,
1701                 0x3140, 0x357c,
1702                 0x35a8, 0x35cc,
1703                 0x35ec, 0x35ec,
1704                 0x3600, 0x5624,
1705                 0x56cc, 0x575c,
1706                 0x580c, 0x5814,
1707                 0x5890, 0x58bc,
1708                 0x5940, 0x59dc,
1709                 0x59fc, 0x5a18,
1710                 0x5a60, 0x5a9c,
1711                 0x5b9c, 0x5bfc,
1712                 0x6000, 0x6040,
1713                 0x6058, 0x614c,
1714                 0x7700, 0x7798,
1715                 0x77c0, 0x78fc,
1716                 0x7b00, 0x7c54,
1717                 0x7d00, 0x7efc,
1718                 0x8dc0, 0x8de0,
1719                 0x8df8, 0x8e84,
1720                 0x8ea0, 0x8f84,
1721                 0x8fc0, 0x90f8,
1722                 0x9400, 0x9470,
1723                 0x9600, 0x96f4,
1724                 0x9800, 0x9808,
1725                 0x9820, 0x983c,
1726                 0x9850, 0x9864,
1727                 0x9c00, 0x9c6c,
1728                 0x9c80, 0x9cec,
1729                 0x9d00, 0x9d6c,
1730                 0x9d80, 0x9dec,
1731                 0x9e00, 0x9e6c,
1732                 0x9e80, 0x9eec,
1733                 0x9f00, 0x9f6c,
1734                 0x9f80, 0xa020,
1735                 0xd004, 0xd03c,
1736                 0xdfc0, 0xdfe0,
1737                 0xe000, 0x11088,
1738                 0x1109c, 0x1117c,
1739                 0x11190, 0x11204,
1740                 0x19040, 0x1906c,
1741                 0x19078, 0x19080,
1742                 0x1908c, 0x19124,
1743                 0x19150, 0x191b0,
1744                 0x191d0, 0x191e8,
1745                 0x19238, 0x19290,
1746                 0x193f8, 0x19474,
1747                 0x19490, 0x194cc,
1748                 0x194f0, 0x194f8,
1749                 0x19c00, 0x19c60,
1750                 0x19c94, 0x19e10,
1751                 0x19e50, 0x19f34,
1752                 0x19f40, 0x19f50,
1753                 0x19f90, 0x19fe4,
1754                 0x1a000, 0x1a06c,
1755                 0x1a0b0, 0x1a120,
1756                 0x1a128, 0x1a138,
1757                 0x1a190, 0x1a1c4,
1758                 0x1a1fc, 0x1a1fc,
1759                 0x1e008, 0x1e00c,
1760                 0x1e040, 0x1e04c,
1761                 0x1e284, 0x1e290,
1762                 0x1e2c0, 0x1e2c0,
1763                 0x1e2e0, 0x1e2e0,
1764                 0x1e300, 0x1e384,
1765                 0x1e3c0, 0x1e3c8,
1766                 0x1e408, 0x1e40c,
1767                 0x1e440, 0x1e44c,
1768                 0x1e684, 0x1e690,
1769                 0x1e6c0, 0x1e6c0,
1770                 0x1e6e0, 0x1e6e0,
1771                 0x1e700, 0x1e784,
1772                 0x1e7c0, 0x1e7c8,
1773                 0x1e808, 0x1e80c,
1774                 0x1e840, 0x1e84c,
1775                 0x1ea84, 0x1ea90,
1776                 0x1eac0, 0x1eac0,
1777                 0x1eae0, 0x1eae0,
1778                 0x1eb00, 0x1eb84,
1779                 0x1ebc0, 0x1ebc8,
1780                 0x1ec08, 0x1ec0c,
1781                 0x1ec40, 0x1ec4c,
1782                 0x1ee84, 0x1ee90,
1783                 0x1eec0, 0x1eec0,
1784                 0x1eee0, 0x1eee0,
1785                 0x1ef00, 0x1ef84,
1786                 0x1efc0, 0x1efc8,
1787                 0x1f008, 0x1f00c,
1788                 0x1f040, 0x1f04c,
1789                 0x1f284, 0x1f290,
1790                 0x1f2c0, 0x1f2c0,
1791                 0x1f2e0, 0x1f2e0,
1792                 0x1f300, 0x1f384,
1793                 0x1f3c0, 0x1f3c8,
1794                 0x1f408, 0x1f40c,
1795                 0x1f440, 0x1f44c,
1796                 0x1f684, 0x1f690,
1797                 0x1f6c0, 0x1f6c0,
1798                 0x1f6e0, 0x1f6e0,
1799                 0x1f700, 0x1f784,
1800                 0x1f7c0, 0x1f7c8,
1801                 0x1f808, 0x1f80c,
1802                 0x1f840, 0x1f84c,
1803                 0x1fa84, 0x1fa90,
1804                 0x1fac0, 0x1fac0,
1805                 0x1fae0, 0x1fae0,
1806                 0x1fb00, 0x1fb84,
1807                 0x1fbc0, 0x1fbc8,
1808                 0x1fc08, 0x1fc0c,
1809                 0x1fc40, 0x1fc4c,
1810                 0x1fe84, 0x1fe90,
1811                 0x1fec0, 0x1fec0,
1812                 0x1fee0, 0x1fee0,
1813                 0x1ff00, 0x1ff84,
1814                 0x1ffc0, 0x1ffc8,
1815                 0x30000, 0x30030,
1816                 0x30100, 0x30144,
1817                 0x30190, 0x301d0,
1818                 0x30200, 0x30318,
1819                 0x30400, 0x3052c,
1820                 0x30540, 0x3061c,
1821                 0x30800, 0x30834,
1822                 0x308c0, 0x30908,
1823                 0x30910, 0x309ac,
1824                 0x30a00, 0x30a04,
1825                 0x30a0c, 0x30a2c,
1826                 0x30a44, 0x30a50,
1827                 0x30a74, 0x30c24,
1828                 0x30d08, 0x30d14,
1829                 0x30d1c, 0x30d20,
1830                 0x30d3c, 0x30d50,
1831                 0x31200, 0x3120c,
1832                 0x31220, 0x31220,
1833                 0x31240, 0x31240,
1834                 0x31600, 0x31600,
1835                 0x31608, 0x3160c,
1836                 0x31a00, 0x31a1c,
1837                 0x31e04, 0x31e20,
1838                 0x31e38, 0x31e3c,
1839                 0x31e80, 0x31e80,
1840                 0x31e88, 0x31ea8,
1841                 0x31eb0, 0x31eb4,
1842                 0x31ec8, 0x31ed4,
1843                 0x31fb8, 0x32004,
1844                 0x32208, 0x3223c,
1845                 0x32600, 0x32630,
1846                 0x32a00, 0x32abc,
1847                 0x32b00, 0x32b70,
1848                 0x33000, 0x33048,
1849                 0x33060, 0x3309c,
1850                 0x330f0, 0x33148,
1851                 0x33160, 0x3319c,
1852                 0x331f0, 0x332e4,
1853                 0x332f8, 0x333e4,
1854                 0x333f8, 0x33448,
1855                 0x33460, 0x3349c,
1856                 0x334f0, 0x33548,
1857                 0x33560, 0x3359c,
1858                 0x335f0, 0x336e4,
1859                 0x336f8, 0x337e4,
1860                 0x337f8, 0x337fc,
1861                 0x33814, 0x33814,
1862                 0x3382c, 0x3382c,
1863                 0x33880, 0x3388c,
1864                 0x338e8, 0x338ec,
1865                 0x33900, 0x33948,
1866                 0x33960, 0x3399c,
1867                 0x339f0, 0x33ae4,
1868                 0x33af8, 0x33b10,
1869                 0x33b28, 0x33b28,
1870                 0x33b3c, 0x33b50,
1871                 0x33bf0, 0x33c10,
1872                 0x33c28, 0x33c28,
1873                 0x33c3c, 0x33c50,
1874                 0x33cf0, 0x33cfc,
1875                 0x34000, 0x34030,
1876                 0x34100, 0x34144,
1877                 0x34190, 0x341d0,
1878                 0x34200, 0x34318,
1879                 0x34400, 0x3452c,
1880                 0x34540, 0x3461c,
1881                 0x34800, 0x34834,
1882                 0x348c0, 0x34908,
1883                 0x34910, 0x349ac,
1884                 0x34a00, 0x34a04,
1885                 0x34a0c, 0x34a2c,
1886                 0x34a44, 0x34a50,
1887                 0x34a74, 0x34c24,
1888                 0x34d08, 0x34d14,
1889                 0x34d1c, 0x34d20,
1890                 0x34d3c, 0x34d50,
1891                 0x35200, 0x3520c,
1892                 0x35220, 0x35220,
1893                 0x35240, 0x35240,
1894                 0x35600, 0x35600,
1895                 0x35608, 0x3560c,
1896                 0x35a00, 0x35a1c,
1897                 0x35e04, 0x35e20,
1898                 0x35e38, 0x35e3c,
1899                 0x35e80, 0x35e80,
1900                 0x35e88, 0x35ea8,
1901                 0x35eb0, 0x35eb4,
1902                 0x35ec8, 0x35ed4,
1903                 0x35fb8, 0x36004,
1904                 0x36208, 0x3623c,
1905                 0x36600, 0x36630,
1906                 0x36a00, 0x36abc,
1907                 0x36b00, 0x36b70,
1908                 0x37000, 0x37048,
1909                 0x37060, 0x3709c,
1910                 0x370f0, 0x37148,
1911                 0x37160, 0x3719c,
1912                 0x371f0, 0x372e4,
1913                 0x372f8, 0x373e4,
1914                 0x373f8, 0x37448,
1915                 0x37460, 0x3749c,
1916                 0x374f0, 0x37548,
1917                 0x37560, 0x3759c,
1918                 0x375f0, 0x376e4,
1919                 0x376f8, 0x377e4,
1920                 0x377f8, 0x377fc,
1921                 0x37814, 0x37814,
1922                 0x3782c, 0x3782c,
1923                 0x37880, 0x3788c,
1924                 0x378e8, 0x378ec,
1925                 0x37900, 0x37948,
1926                 0x37960, 0x3799c,
1927                 0x379f0, 0x37ae4,
1928                 0x37af8, 0x37b10,
1929                 0x37b28, 0x37b28,
1930                 0x37b3c, 0x37b50,
1931                 0x37bf0, 0x37c10,
1932                 0x37c28, 0x37c28,
1933                 0x37c3c, 0x37c50,
1934                 0x37cf0, 0x37cfc,
1935                 0x38000, 0x38030,
1936                 0x38100, 0x38144,
1937                 0x38190, 0x381d0,
1938                 0x38200, 0x38318,
1939                 0x38400, 0x3852c,
1940                 0x38540, 0x3861c,
1941                 0x38800, 0x38834,
1942                 0x388c0, 0x38908,
1943                 0x38910, 0x389ac,
1944                 0x38a00, 0x38a04,
1945                 0x38a0c, 0x38a2c,
1946                 0x38a44, 0x38a50,
1947                 0x38a74, 0x38c24,
1948                 0x38d08, 0x38d14,
1949                 0x38d1c, 0x38d20,
1950                 0x38d3c, 0x38d50,
1951                 0x39200, 0x3920c,
1952                 0x39220, 0x39220,
1953                 0x39240, 0x39240,
1954                 0x39600, 0x39600,
1955                 0x39608, 0x3960c,
1956                 0x39a00, 0x39a1c,
1957                 0x39e04, 0x39e20,
1958                 0x39e38, 0x39e3c,
1959                 0x39e80, 0x39e80,
1960                 0x39e88, 0x39ea8,
1961                 0x39eb0, 0x39eb4,
1962                 0x39ec8, 0x39ed4,
1963                 0x39fb8, 0x3a004,
1964                 0x3a208, 0x3a23c,
1965                 0x3a600, 0x3a630,
1966                 0x3aa00, 0x3aabc,
1967                 0x3ab00, 0x3ab70,
1968                 0x3b000, 0x3b048,
1969                 0x3b060, 0x3b09c,
1970                 0x3b0f0, 0x3b148,
1971                 0x3b160, 0x3b19c,
1972                 0x3b1f0, 0x3b2e4,
1973                 0x3b2f8, 0x3b3e4,
1974                 0x3b3f8, 0x3b448,
1975                 0x3b460, 0x3b49c,
1976                 0x3b4f0, 0x3b548,
1977                 0x3b560, 0x3b59c,
1978                 0x3b5f0, 0x3b6e4,
1979                 0x3b6f8, 0x3b7e4,
1980                 0x3b7f8, 0x3b7fc,
1981                 0x3b814, 0x3b814,
1982                 0x3b82c, 0x3b82c,
1983                 0x3b880, 0x3b88c,
1984                 0x3b8e8, 0x3b8ec,
1985                 0x3b900, 0x3b948,
1986                 0x3b960, 0x3b99c,
1987                 0x3b9f0, 0x3bae4,
1988                 0x3baf8, 0x3bb10,
1989                 0x3bb28, 0x3bb28,
1990                 0x3bb3c, 0x3bb50,
1991                 0x3bbf0, 0x3bc10,
1992                 0x3bc28, 0x3bc28,
1993                 0x3bc3c, 0x3bc50,
1994                 0x3bcf0, 0x3bcfc,
1995                 0x3c000, 0x3c030,
1996                 0x3c100, 0x3c144,
1997                 0x3c190, 0x3c1d0,
1998                 0x3c200, 0x3c318,
1999                 0x3c400, 0x3c52c,
2000                 0x3c540, 0x3c61c,
2001                 0x3c800, 0x3c834,
2002                 0x3c8c0, 0x3c908,
2003                 0x3c910, 0x3c9ac,
2004                 0x3ca00, 0x3ca04,
2005                 0x3ca0c, 0x3ca2c,
2006                 0x3ca44, 0x3ca50,
2007                 0x3ca74, 0x3cc24,
2008                 0x3cd08, 0x3cd14,
2009                 0x3cd1c, 0x3cd20,
2010                 0x3cd3c, 0x3cd50,
2011                 0x3d200, 0x3d20c,
2012                 0x3d220, 0x3d220,
2013                 0x3d240, 0x3d240,
2014                 0x3d600, 0x3d600,
2015                 0x3d608, 0x3d60c,
2016                 0x3da00, 0x3da1c,
2017                 0x3de04, 0x3de20,
2018                 0x3de38, 0x3de3c,
2019                 0x3de80, 0x3de80,
2020                 0x3de88, 0x3dea8,
2021                 0x3deb0, 0x3deb4,
2022                 0x3dec8, 0x3ded4,
2023                 0x3dfb8, 0x3e004,
2024                 0x3e208, 0x3e23c,
2025                 0x3e600, 0x3e630,
2026                 0x3ea00, 0x3eabc,
2027                 0x3eb00, 0x3eb70,
2028                 0x3f000, 0x3f048,
2029                 0x3f060, 0x3f09c,
2030                 0x3f0f0, 0x3f148,
2031                 0x3f160, 0x3f19c,
2032                 0x3f1f0, 0x3f2e4,
2033                 0x3f2f8, 0x3f3e4,
2034                 0x3f3f8, 0x3f448,
2035                 0x3f460, 0x3f49c,
2036                 0x3f4f0, 0x3f548,
2037                 0x3f560, 0x3f59c,
2038                 0x3f5f0, 0x3f6e4,
2039                 0x3f6f8, 0x3f7e4,
2040                 0x3f7f8, 0x3f7fc,
2041                 0x3f814, 0x3f814,
2042                 0x3f82c, 0x3f82c,
2043                 0x3f880, 0x3f88c,
2044                 0x3f8e8, 0x3f8ec,
2045                 0x3f900, 0x3f948,
2046                 0x3f960, 0x3f99c,
2047                 0x3f9f0, 0x3fae4,
2048                 0x3faf8, 0x3fb10,
2049                 0x3fb28, 0x3fb28,
2050                 0x3fb3c, 0x3fb50,
2051                 0x3fbf0, 0x3fc10,
2052                 0x3fc28, 0x3fc28,
2053                 0x3fc3c, 0x3fc50,
2054                 0x3fcf0, 0x3fcfc,
2055                 0x40000, 0x4000c,
2056                 0x40040, 0x40068,
2057                 0x40080, 0x40144,
2058                 0x40180, 0x4018c,
2059                 0x40200, 0x40298,
2060                 0x402ac, 0x4033c,
2061                 0x403f8, 0x403fc,
2062                 0x41300, 0x413c4,
2063                 0x41400, 0x4141c,
2064                 0x41480, 0x414d0,
2065                 0x44000, 0x44078,
2066                 0x440c0, 0x44278,
2067                 0x442c0, 0x44478,
2068                 0x444c0, 0x44678,
2069                 0x446c0, 0x44878,
2070                 0x448c0, 0x449fc,
2071                 0x45000, 0x45068,
2072                 0x45080, 0x45084,
2073                 0x450a0, 0x450b0,
2074                 0x45200, 0x45268,
2075                 0x45280, 0x45284,
2076                 0x452a0, 0x452b0,
2077                 0x460c0, 0x460e4,
2078                 0x47000, 0x4708c,
2079                 0x47200, 0x47250,
2080                 0x47400, 0x47420,
2081                 0x47600, 0x47618,
2082                 0x47800, 0x47814,
2083                 0x48000, 0x4800c,
2084                 0x48040, 0x48068,
2085                 0x48080, 0x48144,
2086                 0x48180, 0x4818c,
2087                 0x48200, 0x48298,
2088                 0x482ac, 0x4833c,
2089                 0x483f8, 0x483fc,
2090                 0x49300, 0x493c4,
2091                 0x49400, 0x4941c,
2092                 0x49480, 0x494d0,
2093                 0x4c000, 0x4c078,
2094                 0x4c0c0, 0x4c278,
2095                 0x4c2c0, 0x4c478,
2096                 0x4c4c0, 0x4c678,
2097                 0x4c6c0, 0x4c878,
2098                 0x4c8c0, 0x4c9fc,
2099                 0x4d000, 0x4d068,
2100                 0x4d080, 0x4d084,
2101                 0x4d0a0, 0x4d0b0,
2102                 0x4d200, 0x4d268,
2103                 0x4d280, 0x4d284,
2104                 0x4d2a0, 0x4d2b0,
2105                 0x4e0c0, 0x4e0e4,
2106                 0x4f000, 0x4f08c,
2107                 0x4f200, 0x4f250,
2108                 0x4f400, 0x4f420,
2109                 0x4f600, 0x4f618,
2110                 0x4f800, 0x4f814,
2111                 0x50000, 0x500cc,
2112                 0x50400, 0x50400,
2113                 0x50800, 0x508cc,
2114                 0x50c00, 0x50c00,
2115                 0x51000, 0x5101c,
2116                 0x51300, 0x51308,
2117         };
2118
2119         int i;
2120         struct adapter *ap = netdev2adap(dev);
2121         static const unsigned int *reg_ranges;
2122         int arr_size = 0, buf_size = 0;
2123
2124         if (is_t4(ap->chip)) {
2125                 reg_ranges = &t4_reg_ranges[0];
2126                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2127                 buf_size = T4_REGMAP_SIZE;
2128         } else {
2129                 reg_ranges = &t5_reg_ranges[0];
2130                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2131                 buf_size = T5_REGMAP_SIZE;
2132         }
2133
2134         regs->version = mk_adap_vers(ap);
2135
2136         memset(buf, 0, buf_size);
2137         for (i = 0; i < arr_size; i += 2)
2138                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2139 }
2140
2141 static int restart_autoneg(struct net_device *dev)
2142 {
2143         struct port_info *p = netdev_priv(dev);
2144
2145         if (!netif_running(dev))
2146                 return -EAGAIN;
2147         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2148                 return -EINVAL;
2149         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2150         return 0;
2151 }
2152
2153 static int identify_port(struct net_device *dev,
2154                          enum ethtool_phys_id_state state)
2155 {
2156         unsigned int val;
2157         struct adapter *adap = netdev2adap(dev);
2158
2159         if (state == ETHTOOL_ID_ACTIVE)
2160                 val = 0xffff;
2161         else if (state == ETHTOOL_ID_INACTIVE)
2162                 val = 0;
2163         else
2164                 return -EINVAL;
2165
2166         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2167 }
2168
2169 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2170 {
2171         unsigned int v = 0;
2172
2173         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2174             type == FW_PORT_TYPE_BT_XAUI) {
2175                 v |= SUPPORTED_TP;
2176                 if (caps & FW_PORT_CAP_SPEED_100M)
2177                         v |= SUPPORTED_100baseT_Full;
2178                 if (caps & FW_PORT_CAP_SPEED_1G)
2179                         v |= SUPPORTED_1000baseT_Full;
2180                 if (caps & FW_PORT_CAP_SPEED_10G)
2181                         v |= SUPPORTED_10000baseT_Full;
2182         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2183                 v |= SUPPORTED_Backplane;
2184                 if (caps & FW_PORT_CAP_SPEED_1G)
2185                         v |= SUPPORTED_1000baseKX_Full;
2186                 if (caps & FW_PORT_CAP_SPEED_10G)
2187                         v |= SUPPORTED_10000baseKX4_Full;
2188         } else if (type == FW_PORT_TYPE_KR)
2189                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2190         else if (type == FW_PORT_TYPE_BP_AP)
2191                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2192                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2193         else if (type == FW_PORT_TYPE_BP4_AP)
2194                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2195                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2196                      SUPPORTED_10000baseKX4_Full;
2197         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2198                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2199                 v |= SUPPORTED_FIBRE;
2200
2201         if (caps & FW_PORT_CAP_ANEG)
2202                 v |= SUPPORTED_Autoneg;
2203         return v;
2204 }
2205
2206 static unsigned int to_fw_linkcaps(unsigned int caps)
2207 {
2208         unsigned int v = 0;
2209
2210         if (caps & ADVERTISED_100baseT_Full)
2211                 v |= FW_PORT_CAP_SPEED_100M;
2212         if (caps & ADVERTISED_1000baseT_Full)
2213                 v |= FW_PORT_CAP_SPEED_1G;
2214         if (caps & ADVERTISED_10000baseT_Full)
2215                 v |= FW_PORT_CAP_SPEED_10G;
2216         return v;
2217 }
2218
2219 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2220 {
2221         const struct port_info *p = netdev_priv(dev);
2222
2223         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2224             p->port_type == FW_PORT_TYPE_BT_XFI ||
2225             p->port_type == FW_PORT_TYPE_BT_XAUI)
2226                 cmd->port = PORT_TP;
2227         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2228                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2229                 cmd->port = PORT_FIBRE;
2230         else if (p->port_type == FW_PORT_TYPE_SFP) {
2231                 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2232                     p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2233                         cmd->port = PORT_DA;
2234                 else
2235                         cmd->port = PORT_FIBRE;
2236         } else
2237                 cmd->port = PORT_OTHER;
2238
2239         if (p->mdio_addr >= 0) {
2240                 cmd->phy_address = p->mdio_addr;
2241                 cmd->transceiver = XCVR_EXTERNAL;
2242                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2243                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2244         } else {
2245                 cmd->phy_address = 0;  /* not really, but no better option */
2246                 cmd->transceiver = XCVR_INTERNAL;
2247                 cmd->mdio_support = 0;
2248         }
2249
2250         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2251         cmd->advertising = from_fw_linkcaps(p->port_type,
2252                                             p->link_cfg.advertising);
2253         ethtool_cmd_speed_set(cmd,
2254                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2255         cmd->duplex = DUPLEX_FULL;
2256         cmd->autoneg = p->link_cfg.autoneg;
2257         cmd->maxtxpkt = 0;
2258         cmd->maxrxpkt = 0;
2259         return 0;
2260 }
2261
2262 static unsigned int speed_to_caps(int speed)
2263 {
2264         if (speed == SPEED_100)
2265                 return FW_PORT_CAP_SPEED_100M;
2266         if (speed == SPEED_1000)
2267                 return FW_PORT_CAP_SPEED_1G;
2268         if (speed == SPEED_10000)
2269                 return FW_PORT_CAP_SPEED_10G;
2270         return 0;
2271 }
2272
2273 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2274 {
2275         unsigned int cap;
2276         struct port_info *p = netdev_priv(dev);
2277         struct link_config *lc = &p->link_cfg;
2278         u32 speed = ethtool_cmd_speed(cmd);
2279
2280         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2281                 return -EINVAL;
2282
2283         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2284                 /*
2285                  * PHY offers a single speed.  See if that's what's
2286                  * being requested.
2287                  */
2288                 if (cmd->autoneg == AUTONEG_DISABLE &&
2289                     (lc->supported & speed_to_caps(speed)))
2290                         return 0;
2291                 return -EINVAL;
2292         }
2293
2294         if (cmd->autoneg == AUTONEG_DISABLE) {
2295                 cap = speed_to_caps(speed);
2296
2297                 if (!(lc->supported & cap) || (speed == SPEED_1000) ||
2298                     (speed == SPEED_10000))
2299                         return -EINVAL;
2300                 lc->requested_speed = cap;
2301                 lc->advertising = 0;
2302         } else {
2303                 cap = to_fw_linkcaps(cmd->advertising);
2304                 if (!(lc->supported & cap))
2305                         return -EINVAL;
2306                 lc->requested_speed = 0;
2307                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2308         }
2309         lc->autoneg = cmd->autoneg;
2310
2311         if (netif_running(dev))
2312                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2313                                      lc);
2314         return 0;
2315 }
2316
2317 static void get_pauseparam(struct net_device *dev,
2318                            struct ethtool_pauseparam *epause)
2319 {
2320         struct port_info *p = netdev_priv(dev);
2321
2322         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2323         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2324         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2325 }
2326
2327 static int set_pauseparam(struct net_device *dev,
2328                           struct ethtool_pauseparam *epause)
2329 {
2330         struct port_info *p = netdev_priv(dev);
2331         struct link_config *lc = &p->link_cfg;
2332
2333         if (epause->autoneg == AUTONEG_DISABLE)
2334                 lc->requested_fc = 0;
2335         else if (lc->supported & FW_PORT_CAP_ANEG)
2336                 lc->requested_fc = PAUSE_AUTONEG;
2337         else
2338                 return -EINVAL;
2339
2340         if (epause->rx_pause)
2341                 lc->requested_fc |= PAUSE_RX;
2342         if (epause->tx_pause)
2343                 lc->requested_fc |= PAUSE_TX;
2344         if (netif_running(dev))
2345                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2346                                      lc);
2347         return 0;
2348 }
2349
2350 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2351 {
2352         const struct port_info *pi = netdev_priv(dev);
2353         const struct sge *s = &pi->adapter->sge;
2354
2355         e->rx_max_pending = MAX_RX_BUFFERS;
2356         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2357         e->rx_jumbo_max_pending = 0;
2358         e->tx_max_pending = MAX_TXQ_ENTRIES;
2359
2360         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2361         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2362         e->rx_jumbo_pending = 0;
2363         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2364 }
2365
2366 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2367 {
2368         int i;
2369         const struct port_info *pi = netdev_priv(dev);
2370         struct adapter *adapter = pi->adapter;
2371         struct sge *s = &adapter->sge;
2372
2373         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2374             e->tx_pending > MAX_TXQ_ENTRIES ||
2375             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2376             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2377             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2378                 return -EINVAL;
2379
2380         if (adapter->flags & FULL_INIT_DONE)
2381                 return -EBUSY;
2382
2383         for (i = 0; i < pi->nqsets; ++i) {
2384                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2385                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2386                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2387         }
2388         return 0;
2389 }
2390
2391 static int closest_timer(const struct sge *s, int time)
2392 {
2393         int i, delta, match = 0, min_delta = INT_MAX;
2394
2395         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2396                 delta = time - s->timer_val[i];
2397                 if (delta < 0)
2398                         delta = -delta;
2399                 if (delta < min_delta) {
2400                         min_delta = delta;
2401                         match = i;
2402                 }
2403         }
2404         return match;
2405 }
2406
2407 static int closest_thres(const struct sge *s, int thres)
2408 {
2409         int i, delta, match = 0, min_delta = INT_MAX;
2410
2411         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2412                 delta = thres - s->counter_val[i];
2413                 if (delta < 0)
2414                         delta = -delta;
2415                 if (delta < min_delta) {
2416                         min_delta = delta;
2417                         match = i;
2418                 }
2419         }
2420         return match;
2421 }
2422
2423 /*
2424  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2425  */
2426 static unsigned int qtimer_val(const struct adapter *adap,
2427                                const struct sge_rspq *q)
2428 {
2429         unsigned int idx = q->intr_params >> 1;
2430
2431         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2432 }
2433
2434 /**
2435  *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
2436  *      @adap: the adapter
2437  *      @q: the Rx queue
2438  *      @us: the hold-off time in us, or 0 to disable timer
2439  *      @cnt: the hold-off packet count, or 0 to disable counter
2440  *
2441  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2442  *      one of the two needs to be enabled for the queue to generate interrupts.
2443  */
2444 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
2445                                unsigned int us, unsigned int cnt)
2446 {
2447         if ((us | cnt) == 0)
2448                 cnt = 1;
2449
2450         if (cnt) {
2451                 int err;
2452                 u32 v, new_idx;
2453
2454                 new_idx = closest_thres(&adap->sge, cnt);
2455                 if (q->desc && q->pktcnt_idx != new_idx) {
2456                         /* the queue has already been created, update it */
2457                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2458                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2459                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
2460                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2461                                             &new_idx);
2462                         if (err)
2463                                 return err;
2464                 }
2465                 q->pktcnt_idx = new_idx;
2466         }
2467
2468         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2469         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2470         return 0;
2471 }
2472
2473 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2474 {
2475         const struct port_info *pi = netdev_priv(dev);
2476         struct adapter *adap = pi->adapter;
2477         struct sge_rspq *q;
2478         int i;
2479         int r = 0;
2480
2481         for (i = pi->first_qset; i < pi->first_qset + pi->nqsets; i++) {
2482                 q = &adap->sge.ethrxq[i].rspq;
2483                 r = set_rxq_intr_params(adap, q, c->rx_coalesce_usecs,
2484                         c->rx_max_coalesced_frames);
2485                 if (r) {
2486                         dev_err(&dev->dev, "failed to set coalesce %d\n", r);
2487                         break;
2488                 }
2489         }
2490         return r;
2491 }
2492
2493 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2494 {
2495         const struct port_info *pi = netdev_priv(dev);
2496         const struct adapter *adap = pi->adapter;
2497         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2498
2499         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2500         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2501                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2502         return 0;
2503 }
2504
2505 /**
2506  *      eeprom_ptov - translate a physical EEPROM address to virtual
2507  *      @phys_addr: the physical EEPROM address
2508  *      @fn: the PCI function number
2509  *      @sz: size of function-specific area
2510  *
2511  *      Translate a physical EEPROM address to virtual.  The first 1K is
2512  *      accessed through virtual addresses starting at 31K, the rest is
2513  *      accessed through virtual addresses starting at 0.
2514  *
2515  *      The mapping is as follows:
2516  *      [0..1K) -> [31K..32K)
2517  *      [1K..1K+A) -> [31K-A..31K)
2518  *      [1K+A..ES) -> [0..ES-A-1K)
2519  *
2520  *      where A = @fn * @sz, and ES = EEPROM size.
2521  */
2522 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2523 {
2524         fn *= sz;
2525         if (phys_addr < 1024)
2526                 return phys_addr + (31 << 10);
2527         if (phys_addr < 1024 + fn)
2528                 return 31744 - fn + phys_addr - 1024;
2529         if (phys_addr < EEPROMSIZE)
2530                 return phys_addr - 1024 - fn;
2531         return -EINVAL;
2532 }
2533
2534 /*
2535  * The next two routines implement eeprom read/write from physical addresses.
2536  */
2537 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2538 {
2539         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2540
2541         if (vaddr >= 0)
2542                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2543         return vaddr < 0 ? vaddr : 0;
2544 }
2545
2546 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2547 {
2548         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2549
2550         if (vaddr >= 0)
2551                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2552         return vaddr < 0 ? vaddr : 0;
2553 }
2554
2555 #define EEPROM_MAGIC 0x38E2F10C
2556
2557 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2558                       u8 *data)
2559 {
2560         int i, err = 0;
2561         struct adapter *adapter = netdev2adap(dev);
2562
2563         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2564         if (!buf)
2565                 return -ENOMEM;
2566
2567         e->magic = EEPROM_MAGIC;
2568         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2569                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2570
2571         if (!err)
2572                 memcpy(data, buf + e->offset, e->len);
2573         kfree(buf);
2574         return err;
2575 }
2576
2577 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2578                       u8 *data)
2579 {
2580         u8 *buf;
2581         int err = 0;
2582         u32 aligned_offset, aligned_len, *p;
2583         struct adapter *adapter = netdev2adap(dev);
2584
2585         if (eeprom->magic != EEPROM_MAGIC)
2586                 return -EINVAL;
2587
2588         aligned_offset = eeprom->offset & ~3;
2589         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2590
2591         if (adapter->fn > 0) {
2592                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2593
2594                 if (aligned_offset < start ||
2595                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2596                         return -EPERM;
2597         }
2598
2599         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2600                 /*
2601                  * RMW possibly needed for first or last words.
2602                  */
2603                 buf = kmalloc(aligned_len, GFP_KERNEL);
2604                 if (!buf)
2605                         return -ENOMEM;
2606                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2607                 if (!err && aligned_len > 4)
2608                         err = eeprom_rd_phys(adapter,
2609                                              aligned_offset + aligned_len - 4,
2610                                              (u32 *)&buf[aligned_len - 4]);
2611                 if (err)
2612                         goto out;
2613                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2614         } else
2615                 buf = data;
2616
2617         err = t4_seeprom_wp(adapter, false);
2618         if (err)
2619                 goto out;
2620
2621         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2622                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2623                 aligned_offset += 4;
2624         }
2625
2626         if (!err)
2627                 err = t4_seeprom_wp(adapter, true);
2628 out:
2629         if (buf != data)
2630                 kfree(buf);
2631         return err;
2632 }
2633
2634 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2635 {
2636         int ret;
2637         const struct firmware *fw;
2638         struct adapter *adap = netdev2adap(netdev);
2639
2640         ef->data[sizeof(ef->data) - 1] = '\0';
2641         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2642         if (ret < 0)
2643                 return ret;
2644
2645         ret = t4_load_fw(adap, fw->data, fw->size);
2646         release_firmware(fw);
2647         if (!ret)
2648                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2649         return ret;
2650 }
2651
2652 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2653 #define BCAST_CRC 0xa0ccc1a6
2654
2655 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2656 {
2657         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2658         wol->wolopts = netdev2adap(dev)->wol;
2659         memset(&wol->sopass, 0, sizeof(wol->sopass));
2660 }
2661
2662 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2663 {
2664         int err = 0;
2665         struct port_info *pi = netdev_priv(dev);
2666
2667         if (wol->wolopts & ~WOL_SUPPORTED)
2668                 return -EINVAL;
2669         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2670                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2671         if (wol->wolopts & WAKE_BCAST) {
2672                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2673                                         ~0ULL, 0, false);
2674                 if (!err)
2675                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2676                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2677         } else
2678                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2679         return err;
2680 }
2681
2682 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2683 {
2684         const struct port_info *pi = netdev_priv(dev);
2685         netdev_features_t changed = dev->features ^ features;
2686         int err;
2687
2688         if (!(changed & NETIF_F_HW_VLAN_RX))
2689                 return 0;
2690
2691         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2692                             -1, -1, -1,
2693                             !!(features & NETIF_F_HW_VLAN_RX), true);
2694         if (unlikely(err))
2695                 dev->features = features ^ NETIF_F_HW_VLAN_RX;
2696         return err;
2697 }
2698
2699 static u32 get_rss_table_size(struct net_device *dev)
2700 {
2701         const struct port_info *pi = netdev_priv(dev);
2702
2703         return pi->rss_size;
2704 }
2705
2706 static int get_rss_table(struct net_device *dev, u32 *p)
2707 {
2708         const struct port_info *pi = netdev_priv(dev);
2709         unsigned int n = pi->rss_size;
2710
2711         while (n--)
2712                 p[n] = pi->rss[n];
2713         return 0;
2714 }
2715
2716 static int set_rss_table(struct net_device *dev, const u32 *p)
2717 {
2718         unsigned int i;
2719         struct port_info *pi = netdev_priv(dev);
2720
2721         for (i = 0; i < pi->rss_size; i++)
2722                 pi->rss[i] = p[i];
2723         if (pi->adapter->flags & FULL_INIT_DONE)
2724                 return write_rss(pi, pi->rss);
2725         return 0;
2726 }
2727
2728 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2729                      u32 *rules)
2730 {
2731         const struct port_info *pi = netdev_priv(dev);
2732
2733         switch (info->cmd) {
2734         case ETHTOOL_GRXFH: {
2735                 unsigned int v = pi->rss_mode;
2736
2737                 info->data = 0;
2738                 switch (info->flow_type) {
2739                 case TCP_V4_FLOW:
2740                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2741                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2742                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2743                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2744                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2745                         break;
2746                 case UDP_V4_FLOW:
2747                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2748                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2749                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2750                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2751                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2752                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2753                         break;
2754                 case SCTP_V4_FLOW:
2755                 case AH_ESP_V4_FLOW:
2756                 case IPV4_FLOW:
2757                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2758                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2759                         break;
2760                 case TCP_V6_FLOW:
2761                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2762                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2763                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2764                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2765                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2766                         break;
2767                 case UDP_V6_FLOW:
2768                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
2769                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2770                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2771                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2772                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2773                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2774                         break;
2775                 case SCTP_V6_FLOW:
2776                 case AH_ESP_V6_FLOW:
2777                 case IPV6_FLOW:
2778                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2779                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2780                         break;
2781                 }
2782                 return 0;
2783         }
2784         case ETHTOOL_GRXRINGS:
2785                 info->data = pi->nqsets;
2786                 return 0;
2787         }
2788         return -EOPNOTSUPP;
2789 }
2790
2791 static const struct ethtool_ops cxgb_ethtool_ops = {
2792         .get_settings      = get_settings,
2793         .set_settings      = set_settings,
2794         .get_drvinfo       = get_drvinfo,
2795         .get_msglevel      = get_msglevel,
2796         .set_msglevel      = set_msglevel,
2797         .get_ringparam     = get_sge_param,
2798         .set_ringparam     = set_sge_param,
2799         .get_coalesce      = get_coalesce,
2800         .set_coalesce      = set_coalesce,
2801         .get_eeprom_len    = get_eeprom_len,
2802         .get_eeprom        = get_eeprom,
2803         .set_eeprom        = set_eeprom,
2804         .get_pauseparam    = get_pauseparam,
2805         .set_pauseparam    = set_pauseparam,
2806         .get_link          = ethtool_op_get_link,
2807         .get_strings       = get_strings,
2808         .set_phys_id       = identify_port,
2809         .nway_reset        = restart_autoneg,
2810         .get_sset_count    = get_sset_count,
2811         .get_ethtool_stats = get_stats,
2812         .get_regs_len      = get_regs_len,
2813         .get_regs          = get_regs,
2814         .get_wol           = get_wol,
2815         .set_wol           = set_wol,
2816         .get_rxnfc         = get_rxnfc,
2817         .get_rxfh_indir_size = get_rss_table_size,
2818         .get_rxfh_indir    = get_rss_table,
2819         .set_rxfh_indir    = set_rss_table,
2820         .flash_device      = set_flash,
2821 };
2822
2823 /*
2824  * debugfs support
2825  */
2826 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2827                         loff_t *ppos)
2828 {
2829         loff_t pos = *ppos;
2830         loff_t avail = file_inode(file)->i_size;
2831         unsigned int mem = (uintptr_t)file->private_data & 3;
2832         struct adapter *adap = file->private_data - mem;
2833
2834         if (pos < 0)
2835                 return -EINVAL;
2836         if (pos >= avail)
2837                 return 0;
2838         if (count > avail - pos)
2839                 count = avail - pos;
2840
2841         while (count) {
2842                 size_t len;
2843                 int ret, ofst;
2844                 __be32 data[16];
2845
2846                 if ((mem == MEM_MC) || (mem == MEM_MC1))
2847                         ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL);
2848                 else
2849                         ret = t4_edc_read(adap, mem, pos, data, NULL);
2850                 if (ret)
2851                         return ret;
2852
2853                 ofst = pos % sizeof(data);
2854                 len = min(count, sizeof(data) - ofst);
2855                 if (copy_to_user(buf, (u8 *)data + ofst, len))
2856                         return -EFAULT;
2857
2858                 buf += len;
2859                 pos += len;
2860                 count -= len;
2861         }
2862         count = pos - *ppos;
2863         *ppos = pos;
2864         return count;
2865 }
2866
2867 static const struct file_operations mem_debugfs_fops = {
2868         .owner   = THIS_MODULE,
2869         .open    = simple_open,
2870         .read    = mem_read,
2871         .llseek  = default_llseek,
2872 };
2873
2874 static void add_debugfs_mem(struct adapter *adap, const char *name,
2875                             unsigned int idx, unsigned int size_mb)
2876 {
2877         struct dentry *de;
2878
2879         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2880                                  (void *)adap + idx, &mem_debugfs_fops);
2881         if (de && de->d_inode)
2882                 de->d_inode->i_size = size_mb << 20;
2883 }
2884
2885 static int setup_debugfs(struct adapter *adap)
2886 {
2887         int i;
2888         u32 size;
2889
2890         if (IS_ERR_OR_NULL(adap->debugfs_root))
2891                 return -1;
2892
2893         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2894         if (i & EDRAM0_ENABLE) {
2895                 size = t4_read_reg(adap, MA_EDRAM0_BAR);
2896                 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
2897         }
2898         if (i & EDRAM1_ENABLE) {
2899                 size = t4_read_reg(adap, MA_EDRAM1_BAR);
2900                 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
2901         }
2902         if (is_t4(adap->chip)) {
2903                 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
2904                 if (i & EXT_MEM_ENABLE)
2905                         add_debugfs_mem(adap, "mc", MEM_MC,
2906                                         EXT_MEM_SIZE_GET(size));
2907         } else {
2908                 if (i & EXT_MEM_ENABLE) {
2909                         size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
2910                         add_debugfs_mem(adap, "mc0", MEM_MC0,
2911                                         EXT_MEM_SIZE_GET(size));
2912                 }
2913                 if (i & EXT_MEM1_ENABLE) {
2914                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
2915                         add_debugfs_mem(adap, "mc1", MEM_MC1,
2916                                         EXT_MEM_SIZE_GET(size));
2917                 }
2918         }
2919         if (adap->l2t)
2920                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2921                                     &t4_l2t_fops);
2922         return 0;
2923 }
2924
2925 /*
2926  * upper-layer driver support
2927  */
2928
2929 /*
2930  * Allocate an active-open TID and set it to the supplied value.
2931  */
2932 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2933 {
2934         int atid = -1;
2935
2936         spin_lock_bh(&t->atid_lock);
2937         if (t->afree) {
2938                 union aopen_entry *p = t->afree;
2939
2940                 atid = (p - t->atid_tab) + t->atid_base;
2941                 t->afree = p->next;
2942                 p->data = data;
2943                 t->atids_in_use++;
2944         }
2945         spin_unlock_bh(&t->atid_lock);
2946         return atid;
2947 }
2948 EXPORT_SYMBOL(cxgb4_alloc_atid);
2949
2950 /*
2951  * Release an active-open TID.
2952  */
2953 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2954 {
2955         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
2956
2957         spin_lock_bh(&t->atid_lock);
2958         p->next = t->afree;
2959         t->afree = p;
2960         t->atids_in_use--;
2961         spin_unlock_bh(&t->atid_lock);
2962 }
2963 EXPORT_SYMBOL(cxgb4_free_atid);
2964
2965 /*
2966  * Allocate a server TID and set it to the supplied value.
2967  */
2968 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2969 {
2970         int stid;
2971
2972         spin_lock_bh(&t->stid_lock);
2973         if (family == PF_INET) {
2974                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2975                 if (stid < t->nstids)
2976                         __set_bit(stid, t->stid_bmap);
2977                 else
2978                         stid = -1;
2979         } else {
2980                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2981                 if (stid < 0)
2982                         stid = -1;
2983         }
2984         if (stid >= 0) {
2985                 t->stid_tab[stid].data = data;
2986                 stid += t->stid_base;
2987                 t->stids_in_use++;
2988         }
2989         spin_unlock_bh(&t->stid_lock);
2990         return stid;
2991 }
2992 EXPORT_SYMBOL(cxgb4_alloc_stid);
2993
2994 /* Allocate a server filter TID and set it to the supplied value.
2995  */
2996 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
2997 {
2998         int stid;
2999
3000         spin_lock_bh(&t->stid_lock);
3001         if (family == PF_INET) {
3002                 stid = find_next_zero_bit(t->stid_bmap,
3003                                 t->nstids + t->nsftids, t->nstids);
3004                 if (stid < (t->nstids + t->nsftids))
3005                         __set_bit(stid, t->stid_bmap);
3006                 else
3007                         stid = -1;
3008         } else {
3009                 stid = -1;
3010         }
3011         if (stid >= 0) {
3012                 t->stid_tab[stid].data = data;
3013                 stid += t->stid_base;
3014                 t->stids_in_use++;
3015         }
3016         spin_unlock_bh(&t->stid_lock);
3017         return stid;
3018 }
3019 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3020
3021 /* Release a server TID.
3022  */
3023 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3024 {
3025         stid -= t->stid_base;
3026         spin_lock_bh(&t->stid_lock);
3027         if (family == PF_INET)
3028                 __clear_bit(stid, t->stid_bmap);
3029         else
3030                 bitmap_release_region(t->stid_bmap, stid, 2);
3031         t->stid_tab[stid].data = NULL;
3032         t->stids_in_use--;
3033         spin_unlock_bh(&t->stid_lock);
3034 }
3035 EXPORT_SYMBOL(cxgb4_free_stid);
3036
3037 /*
3038  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3039  */
3040 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3041                            unsigned int tid)
3042 {
3043         struct cpl_tid_release *req;
3044
3045         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3046         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3047         INIT_TP_WR(req, tid);
3048         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3049 }
3050
3051 /*
3052  * Queue a TID release request and if necessary schedule a work queue to
3053  * process it.
3054  */
3055 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3056                                     unsigned int tid)
3057 {
3058         void **p = &t->tid_tab[tid];
3059         struct adapter *adap = container_of(t, struct adapter, tids);
3060
3061         spin_lock_bh(&adap->tid_release_lock);
3062         *p = adap->tid_release_head;
3063         /* Low 2 bits encode the Tx channel number */
3064         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3065         if (!adap->tid_release_task_busy) {
3066                 adap->tid_release_task_busy = true;
3067                 queue_work(workq, &adap->tid_release_task);
3068         }
3069         spin_unlock_bh(&adap->tid_release_lock);
3070 }
3071
3072 /*
3073  * Process the list of pending TID release requests.
3074  */
3075 static void process_tid_release_list(struct work_struct *work)
3076 {
3077         struct sk_buff *skb;
3078         struct adapter *adap;
3079
3080         adap = container_of(work, struct adapter, tid_release_task);
3081
3082         spin_lock_bh(&adap->tid_release_lock);
3083         while (adap->tid_release_head) {
3084                 void **p = adap->tid_release_head;
3085                 unsigned int chan = (uintptr_t)p & 3;
3086                 p = (void *)p - chan;
3087
3088                 adap->tid_release_head = *p;
3089                 *p = NULL;
3090                 spin_unlock_bh(&adap->tid_release_lock);
3091
3092                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3093                                          GFP_KERNEL)))
3094                         schedule_timeout_uninterruptible(1);
3095
3096                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3097                 t4_ofld_send(adap, skb);
3098                 spin_lock_bh(&adap->tid_release_lock);
3099         }
3100         adap->tid_release_task_busy = false;
3101         spin_unlock_bh(&adap->tid_release_lock);
3102 }
3103
3104 /*
3105  * Release a TID and inform HW.  If we are unable to allocate the release
3106  * message we defer to a work queue.
3107  */
3108 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3109 {
3110         void *old;
3111         struct sk_buff *skb;
3112         struct adapter *adap = container_of(t, struct adapter, tids);
3113
3114         old = t->tid_tab[tid];
3115         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3116         if (likely(skb)) {
3117                 t->tid_tab[tid] = NULL;
3118                 mk_tid_release(skb, chan, tid);
3119                 t4_ofld_send(adap, skb);
3120         } else
3121                 cxgb4_queue_tid_release(t, chan, tid);
3122         if (old)
3123                 atomic_dec(&t->tids_in_use);
3124 }
3125 EXPORT_SYMBOL(cxgb4_remove_tid);
3126
3127 /*
3128  * Allocate and initialize the TID tables.  Returns 0 on success.
3129  */
3130 static int tid_init(struct tid_info *t)
3131 {
3132         size_t size;
3133         unsigned int stid_bmap_size;
3134         unsigned int natids = t->natids;
3135
3136         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3137         size = t->ntids * sizeof(*t->tid_tab) +
3138                natids * sizeof(*t->atid_tab) +
3139                t->nstids * sizeof(*t->stid_tab) +
3140                t->nsftids * sizeof(*t->stid_tab) +
3141                stid_bmap_size * sizeof(long) +
3142                t->nftids * sizeof(*t->ftid_tab) +
3143                t->nsftids * sizeof(*t->ftid_tab);
3144
3145         t->tid_tab = t4_alloc_mem(size);
3146         if (!t->tid_tab)
3147                 return -ENOMEM;
3148
3149         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3150         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3151         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3152         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3153         spin_lock_init(&t->stid_lock);
3154         spin_lock_init(&t->atid_lock);
3155
3156         t->stids_in_use = 0;
3157         t->afree = NULL;
3158         t->atids_in_use = 0;
3159         atomic_set(&t->tids_in_use, 0);
3160
3161         /* Setup the free list for atid_tab and clear the stid bitmap. */
3162         if (natids) {
3163                 while (--natids)
3164                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3165                 t->afree = t->atid_tab;
3166         }
3167         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3168         return 0;
3169 }
3170
3171 /**
3172  *      cxgb4_create_server - create an IP server
3173  *      @dev: the device
3174  *      @stid: the server TID
3175  *      @sip: local IP address to bind server to
3176  *      @sport: the server's TCP port
3177  *      @queue: queue to direct messages from this server to
3178  *
3179  *      Create an IP server for the given port and address.
3180  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3181  */
3182 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3183                         __be32 sip, __be16 sport, __be16 vlan,
3184                         unsigned int queue)
3185 {
3186         unsigned int chan;
3187         struct sk_buff *skb;
3188         struct adapter *adap;
3189         struct cpl_pass_open_req *req;
3190
3191         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3192         if (!skb)
3193                 return -ENOMEM;
3194
3195         adap = netdev2adap(dev);
3196         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3197         INIT_TP_WR(req, 0);
3198         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3199         req->local_port = sport;
3200         req->peer_port = htons(0);
3201         req->local_ip = sip;
3202         req->peer_ip = htonl(0);
3203         chan = rxq_to_chan(&adap->sge, queue);
3204         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3205         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3206                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3207         return t4_mgmt_tx(adap, skb);
3208 }
3209 EXPORT_SYMBOL(cxgb4_create_server);
3210
3211 /**
3212  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3213  *      @mtus: the HW MTU table
3214  *      @mtu: the target MTU
3215  *      @idx: index of selected entry in the MTU table
3216  *
3217  *      Returns the index and the value in the HW MTU table that is closest to
3218  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3219  *      table, in which case that smallest available value is selected.
3220  */
3221 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3222                             unsigned int *idx)
3223 {
3224         unsigned int i = 0;
3225
3226         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3227                 ++i;
3228         if (idx)
3229                 *idx = i;
3230         return mtus[i];
3231 }
3232 EXPORT_SYMBOL(cxgb4_best_mtu);
3233
3234 /**
3235  *      cxgb4_port_chan - get the HW channel of a port
3236  *      @dev: the net device for the port
3237  *
3238  *      Return the HW Tx channel of the given port.
3239  */
3240 unsigned int cxgb4_port_chan(const struct net_device *dev)
3241 {
3242         return netdev2pinfo(dev)->tx_chan;
3243 }
3244 EXPORT_SYMBOL(cxgb4_port_chan);
3245
3246 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3247 {
3248         struct adapter *adap = netdev2adap(dev);
3249         u32 v1, v2, lp_count, hp_count;
3250
3251         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3252         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3253         if (is_t4(adap->chip)) {
3254                 lp_count = G_LP_COUNT(v1);
3255                 hp_count = G_HP_COUNT(v1);
3256         } else {
3257                 lp_count = G_LP_COUNT_T5(v1);
3258                 hp_count = G_HP_COUNT_T5(v2);
3259         }
3260         return lpfifo ? lp_count : hp_count;
3261 }
3262 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3263
3264 /**
3265  *      cxgb4_port_viid - get the VI id of a port
3266  *      @dev: the net device for the port
3267  *
3268  *      Return the VI id of the given port.
3269  */
3270 unsigned int cxgb4_port_viid(const struct net_device *dev)
3271 {
3272         return netdev2pinfo(dev)->viid;
3273 }
3274 EXPORT_SYMBOL(cxgb4_port_viid);
3275
3276 /**
3277  *      cxgb4_port_idx - get the index of a port
3278  *      @dev: the net device for the port
3279  *
3280  *      Return the index of the given port.
3281  */
3282 unsigned int cxgb4_port_idx(const struct net_device *dev)
3283 {
3284         return netdev2pinfo(dev)->port_id;
3285 }
3286 EXPORT_SYMBOL(cxgb4_port_idx);
3287
3288 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3289                          struct tp_tcp_stats *v6)
3290 {
3291         struct adapter *adap = pci_get_drvdata(pdev);
3292
3293         spin_lock(&adap->stats_lock);
3294         t4_tp_get_tcp_stats(adap, v4, v6);
3295         spin_unlock(&adap->stats_lock);
3296 }
3297 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3298
3299 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3300                       const unsigned int *pgsz_order)
3301 {
3302         struct adapter *adap = netdev2adap(dev);
3303
3304         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3305         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3306                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3307                      HPZ3(pgsz_order[3]));
3308 }
3309 EXPORT_SYMBOL(cxgb4_iscsi_init);
3310
3311 int cxgb4_flush_eq_cache(struct net_device *dev)
3312 {
3313         struct adapter *adap = netdev2adap(dev);
3314         int ret;
3315
3316         ret = t4_fwaddrspace_write(adap, adap->mbox,
3317                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3318         return ret;
3319 }
3320 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3321
3322 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3323 {
3324         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3325         __be64 indices;
3326         int ret;
3327
3328         ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
3329         if (!ret) {
3330                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3331                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3332         }
3333         return ret;
3334 }
3335
3336 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3337                         u16 size)
3338 {
3339         struct adapter *adap = netdev2adap(dev);
3340         u16 hw_pidx, hw_cidx;
3341         int ret;
3342
3343         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3344         if (ret)
3345                 goto out;
3346
3347         if (pidx != hw_pidx) {
3348                 u16 delta;
3349
3350                 if (pidx >= hw_pidx)
3351                         delta = pidx - hw_pidx;
3352                 else
3353                         delta = size - hw_pidx + pidx;
3354                 wmb();
3355                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3356                              QID(qid) | PIDX(delta));
3357         }
3358 out:
3359         return ret;
3360 }
3361 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3362
3363 static struct pci_driver cxgb4_driver;
3364
3365 static void check_neigh_update(struct neighbour *neigh)
3366 {
3367         const struct device *parent;
3368         const struct net_device *netdev = neigh->dev;
3369
3370         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3371                 netdev = vlan_dev_real_dev(netdev);
3372         parent = netdev->dev.parent;
3373         if (parent && parent->driver == &cxgb4_driver.driver)
3374                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3375 }
3376
3377 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3378                        void *data)
3379 {
3380         switch (event) {
3381         case NETEVENT_NEIGH_UPDATE:
3382                 check_neigh_update(data);
3383                 break;
3384         case NETEVENT_REDIRECT:
3385         default:
3386                 break;
3387         }
3388         return 0;
3389 }
3390
3391 static bool netevent_registered;
3392 static struct notifier_block cxgb4_netevent_nb = {
3393         .notifier_call = netevent_cb
3394 };
3395
3396 static void drain_db_fifo(struct adapter *adap, int usecs)
3397 {
3398         u32 v1, v2, lp_count, hp_count;
3399
3400         do {
3401                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3402                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3403                 if (is_t4(adap->chip)) {
3404                         lp_count = G_LP_COUNT(v1);
3405                         hp_count = G_HP_COUNT(v1);
3406                 } else {
3407                         lp_count = G_LP_COUNT_T5(v1);
3408                         hp_count = G_HP_COUNT_T5(v2);
3409                 }
3410
3411                 if (lp_count == 0 && hp_count == 0)
3412                         break;
3413                 set_current_state(TASK_UNINTERRUPTIBLE);
3414                 schedule_timeout(usecs_to_jiffies(usecs));
3415         } while (1);
3416 }
3417
3418 static void disable_txq_db(struct sge_txq *q)
3419 {
3420         spin_lock_irq(&q->db_lock);
3421         q->db_disabled = 1;
3422         spin_unlock_irq(&q->db_lock);
3423 }
3424
3425 static void enable_txq_db(struct sge_txq *q)
3426 {
3427         spin_lock_irq(&q->db_lock);
3428         q->db_disabled = 0;
3429         spin_unlock_irq(&q->db_lock);
3430 }
3431
3432 static void disable_dbs(struct adapter *adap)
3433 {
3434         int i;
3435
3436         for_each_ethrxq(&adap->sge, i)
3437                 disable_txq_db(&adap->sge.ethtxq[i].q);
3438         for_each_ofldrxq(&adap->sge, i)
3439                 disable_txq_db(&adap->sge.ofldtxq[i].q);
3440         for_each_port(adap, i)
3441                 disable_txq_db(&adap->sge.ctrlq[i].q);
3442 }
3443
3444 static void enable_dbs(struct adapter *adap)
3445 {
3446         int i;
3447
3448         for_each_ethrxq(&adap->sge, i)
3449                 enable_txq_db(&adap->sge.ethtxq[i].q);
3450         for_each_ofldrxq(&adap->sge, i)
3451                 enable_txq_db(&adap->sge.ofldtxq[i].q);
3452         for_each_port(adap, i)
3453                 enable_txq_db(&adap->sge.ctrlq[i].q);
3454 }
3455
3456 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3457 {
3458         u16 hw_pidx, hw_cidx;
3459         int ret;
3460
3461         spin_lock_bh(&q->db_lock);
3462         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3463         if (ret)
3464                 goto out;
3465         if (q->db_pidx != hw_pidx) {
3466                 u16 delta;
3467
3468                 if (q->db_pidx >= hw_pidx)
3469                         delta = q->db_pidx - hw_pidx;
3470                 else
3471                         delta = q->size - hw_pidx + q->db_pidx;
3472                 wmb();
3473                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3474                              QID(q->cntxt_id) | PIDX(delta));
3475         }
3476 out:
3477         q->db_disabled = 0;
3478         spin_unlock_bh(&q->db_lock);
3479         if (ret)
3480                 CH_WARN(adap, "DB drop recovery failed.\n");
3481 }
3482 static void recover_all_queues(struct adapter *adap)
3483 {
3484         int i;
3485
3486         for_each_ethrxq(&adap->sge, i)
3487                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3488         for_each_ofldrxq(&adap->sge, i)
3489                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3490         for_each_port(adap, i)
3491                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3492 }
3493
3494 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3495 {
3496         mutex_lock(&uld_mutex);
3497         if (adap->uld_handle[CXGB4_ULD_RDMA])
3498                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3499                                 cmd);
3500         mutex_unlock(&uld_mutex);
3501 }
3502
3503 static void process_db_full(struct work_struct *work)
3504 {
3505         struct adapter *adap;
3506
3507         adap = container_of(work, struct adapter, db_full_task);
3508
3509         notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
3510         drain_db_fifo(adap, dbfifo_drain_delay);
3511         t4_set_reg_field(adap, SGE_INT_ENABLE3,
3512                          DBFIFO_HP_INT | DBFIFO_LP_INT,
3513                          DBFIFO_HP_INT | DBFIFO_LP_INT);
3514         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3515 }
3516
3517 static void process_db_drop(struct work_struct *work)
3518 {
3519         struct adapter *adap;
3520
3521         adap = container_of(work, struct adapter, db_drop_task);
3522
3523         if (is_t4(adap->chip)) {
3524                 disable_dbs(adap);
3525                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
3526                 drain_db_fifo(adap, 1);
3527                 recover_all_queues(adap);
3528                 enable_dbs(adap);
3529         } else {
3530                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
3531                 u16 qid = (dropped_db >> 15) & 0x1ffff;
3532                 u16 pidx_inc = dropped_db & 0x1fff;
3533                 unsigned int s_qpp;
3534                 unsigned short udb_density;
3535                 unsigned long qpshift;
3536                 int page;
3537                 u32 udb;
3538
3539                 dev_warn(adap->pdev_dev,
3540                          "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
3541                          dropped_db, qid,
3542                          (dropped_db >> 14) & 1,
3543                          (dropped_db >> 13) & 1,
3544                          pidx_inc);
3545
3546                 drain_db_fifo(adap, 1);
3547
3548                 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
3549                 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
3550                                 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
3551                 qpshift = PAGE_SHIFT - ilog2(udb_density);
3552                 udb = qid << qpshift;
3553                 udb &= PAGE_MASK;
3554                 page = udb / PAGE_SIZE;
3555                 udb += (qid - (page * udb_density)) * 128;
3556
3557                 writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
3558
3559                 /* Re-enable BAR2 WC */
3560                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
3561         }
3562
3563         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
3564 }
3565
3566 void t4_db_full(struct adapter *adap)
3567 {
3568         if (is_t4(adap->chip)) {
3569                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
3570                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
3571                 queue_work(workq, &adap->db_full_task);
3572         }
3573 }
3574
3575 void t4_db_dropped(struct adapter *adap)
3576 {
3577         if (is_t4(adap->chip))
3578                 queue_work(workq, &adap->db_drop_task);
3579 }
3580
3581 static void uld_attach(struct adapter *adap, unsigned int uld)
3582 {
3583         void *handle;
3584         struct cxgb4_lld_info lli;
3585         unsigned short i;
3586
3587         lli.pdev = adap->pdev;
3588         lli.l2t = adap->l2t;
3589         lli.tids = &adap->tids;
3590         lli.ports = adap->port;
3591         lli.vr = &adap->vres;
3592         lli.mtus = adap->params.mtus;
3593         if (uld == CXGB4_ULD_RDMA) {
3594                 lli.rxq_ids = adap->sge.rdma_rxq;
3595                 lli.nrxq = adap->sge.rdmaqs;
3596         } else if (uld == CXGB4_ULD_ISCSI) {
3597                 lli.rxq_ids = adap->sge.ofld_rxq;
3598                 lli.nrxq = adap->sge.ofldqsets;
3599         }
3600         lli.ntxq = adap->sge.ofldqsets;
3601         lli.nchan = adap->params.nports;
3602         lli.nports = adap->params.nports;
3603         lli.wr_cred = adap->params.ofldq_wr_cred;
3604         lli.adapter_type = adap->params.rev;
3605         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
3606         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
3607                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
3608                         (adap->fn * 4));
3609         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
3610                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
3611                         (adap->fn * 4));
3612         lli.filt_mode = adap->filter_mode;
3613         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
3614         for (i = 0; i < NCHAN; i++)
3615                 lli.tx_modq[i] = i;
3616         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
3617         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
3618         lli.fw_vers = adap->params.fw_vers;
3619         lli.dbfifo_int_thresh = dbfifo_int_thresh;
3620         lli.sge_pktshift = adap->sge.pktshift;
3621         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
3622
3623         handle = ulds[uld].add(&lli);
3624         if (IS_ERR(handle)) {
3625                 dev_warn(adap->pdev_dev,
3626                          "could not attach to the %s driver, error %ld\n",
3627                          uld_str[uld], PTR_ERR(handle));
3628                 return;
3629         }
3630
3631         adap->uld_handle[uld] = handle;
3632
3633         if (!netevent_registered) {
3634                 register_netevent_notifier(&cxgb4_netevent_nb);
3635                 netevent_registered = true;
3636         }
3637
3638         if (adap->flags & FULL_INIT_DONE)
3639                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
3640 }
3641
3642 static void attach_ulds(struct adapter *adap)
3643 {
3644         unsigned int i;
3645
3646         mutex_lock(&uld_mutex);
3647         list_add_tail(&adap->list_node, &adapter_list);
3648         for (i = 0; i < CXGB4_ULD_MAX; i++)
3649                 if (ulds[i].add)
3650                         uld_attach(adap, i);
3651         mutex_unlock(&uld_mutex);
3652 }
3653
3654 static void detach_ulds(struct adapter *adap)
3655 {
3656         unsigned int i;
3657
3658         mutex_lock(&uld_mutex);
3659         list_del(&adap->list_node);
3660         for (i = 0; i < CXGB4_ULD_MAX; i++)
3661                 if (adap->uld_handle[i]) {
3662                         ulds[i].state_change(adap->uld_handle[i],
3663                                              CXGB4_STATE_DETACH);
3664                         adap->uld_handle[i] = NULL;
3665                 }
3666         if (netevent_registered && list_empty(&adapter_list)) {
3667                 unregister_netevent_notifier(&cxgb4_netevent_nb);
3668                 netevent_registered = false;
3669         }
3670         mutex_unlock(&uld_mutex);
3671 }
3672
3673 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
3674 {
3675         unsigned int i;
3676
3677         mutex_lock(&uld_mutex);
3678         for (i = 0; i < CXGB4_ULD_MAX; i++)
3679                 if (adap->uld_handle[i])
3680                         ulds[i].state_change(adap->uld_handle[i], new_state);
3681         mutex_unlock(&uld_mutex);
3682 }
3683
3684 /**
3685  *      cxgb4_register_uld - register an upper-layer driver
3686  *      @type: the ULD type
3687  *      @p: the ULD methods
3688  *
3689  *      Registers an upper-layer driver with this driver and notifies the ULD
3690  *      about any presently available devices that support its type.  Returns
3691  *      %-EBUSY if a ULD of the same type is already registered.
3692  */
3693 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
3694 {
3695         int ret = 0;
3696         struct adapter *adap;
3697
3698         if (type >= CXGB4_ULD_MAX)
3699                 return -EINVAL;
3700         mutex_lock(&uld_mutex);
3701         if (ulds[type].add) {
3702                 ret = -EBUSY;
3703                 goto out;
3704         }
3705         ulds[type] = *p;
3706         list_for_each_entry(adap, &adapter_list, list_node)
3707                 uld_attach(adap, type);
3708 out:    mutex_unlock(&uld_mutex);
3709         return ret;
3710 }
3711 EXPORT_SYMBOL(cxgb4_register_uld);
3712
3713 /**
3714  *      cxgb4_unregister_uld - unregister an upper-layer driver
3715  *      @type: the ULD type
3716  *
3717  *      Unregisters an existing upper-layer driver.
3718  */
3719 int cxgb4_unregister_uld(enum cxgb4_uld type)
3720 {
3721         struct adapter *adap;
3722
3723         if (type >= CXGB4_ULD_MAX)
3724                 return -EINVAL;
3725         mutex_lock(&uld_mutex);
3726         list_for_each_entry(adap, &adapter_list, list_node)
3727                 adap->uld_handle[type] = NULL;
3728         ulds[type].add = NULL;
3729         mutex_unlock(&uld_mutex);
3730         return 0;
3731 }
3732 EXPORT_SYMBOL(cxgb4_unregister_uld);
3733
3734 /**
3735  *      cxgb_up - enable the adapter
3736  *      @adap: adapter being enabled
3737  *
3738  *      Called when the first port is enabled, this function performs the
3739  *      actions necessary to make an adapter operational, such as completing
3740  *      the initialization of HW modules, and enabling interrupts.
3741  *
3742  *      Must be called with the rtnl lock held.
3743  */
3744 static int cxgb_up(struct adapter *adap)
3745 {
3746         int err;
3747
3748         err = setup_sge_queues(adap);
3749         if (err)
3750                 goto out;
3751         err = setup_rss(adap);
3752         if (err)
3753                 goto freeq;
3754
3755         if (adap->flags & USING_MSIX) {
3756                 name_msix_vecs(adap);
3757                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
3758                                   adap->msix_info[0].desc, adap);
3759                 if (err)
3760                         goto irq_err;
3761
3762                 err = request_msix_queue_irqs(adap);
3763                 if (err) {
3764                         free_irq(adap->msix_info[0].vec, adap);
3765                         goto irq_err;
3766                 }
3767         } else {
3768                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
3769                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
3770                                   adap->port[0]->name, adap);
3771                 if (err)
3772                         goto irq_err;
3773         }
3774         enable_rx(adap);
3775         t4_sge_start(adap);
3776         t4_intr_enable(adap);
3777         adap->flags |= FULL_INIT_DONE;
3778         notify_ulds(adap, CXGB4_STATE_UP);
3779  out:
3780         return err;
3781  irq_err:
3782         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
3783  freeq:
3784         t4_free_sge_resources(adap);
3785         goto out;
3786 }
3787
3788 static void cxgb_down(struct adapter *adapter)
3789 {
3790         t4_intr_disable(adapter);
3791         cancel_work_sync(&adapter->tid_release_task);
3792         cancel_work_sync(&adapter->db_full_task);
3793         cancel_work_sync(&adapter->db_drop_task);
3794         adapter->tid_release_task_busy = false;
3795         adapter->tid_release_head = NULL;
3796
3797         if (adapter->flags & USING_MSIX) {
3798                 free_msix_queue_irqs(adapter);
3799                 free_irq(adapter->msix_info[0].vec, adapter);
3800         } else
3801                 free_irq(adapter->pdev->irq, adapter);
3802         quiesce_rx(adapter);
3803         t4_sge_stop(adapter);
3804         t4_free_sge_resources(adapter);
3805         adapter->flags &= ~FULL_INIT_DONE;
3806 }
3807
3808 /*
3809  * net_device operations
3810  */
3811 static int cxgb_open(struct net_device *dev)
3812 {
3813         int err;
3814         struct port_info *pi = netdev_priv(dev);
3815         struct adapter *adapter = pi->adapter;
3816
3817         netif_carrier_off(dev);
3818
3819         if (!(adapter->flags & FULL_INIT_DONE)) {
3820                 err = cxgb_up(adapter);
3821                 if (err < 0)
3822                         return err;
3823         }
3824
3825         err = link_start(dev);
3826         if (!err)
3827                 netif_tx_start_all_queues(dev);
3828         return err;
3829 }
3830
3831 static int cxgb_close(struct net_device *dev)
3832 {
3833         struct port_info *pi = netdev_priv(dev);
3834         struct adapter *adapter = pi->adapter;
3835
3836         netif_tx_stop_all_queues(dev);
3837         netif_carrier_off(dev);
3838         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
3839 }
3840
3841 /* Return an error number if the indicated filter isn't writable ...
3842  */
3843 static int writable_filter(struct filter_entry *f)
3844 {
3845         if (f->locked)
3846                 return -EPERM;
3847         if (f->pending)
3848                 return -EBUSY;
3849
3850         return 0;
3851 }
3852
3853 /* Delete the filter at the specified index (if valid).  The checks for all
3854  * the common problems with doing this like the filter being locked, currently
3855  * pending in another operation, etc.
3856  */
3857 static int delete_filter(struct adapter *adapter, unsigned int fidx)
3858 {
3859         struct filter_entry *f;
3860         int ret;
3861
3862         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
3863                 return -EINVAL;
3864
3865         f = &adapter->tids.ftid_tab[fidx];
3866         ret = writable_filter(f);
3867         if (ret)
3868                 return ret;
3869         if (f->valid)
3870                 return del_filter_wr(adapter, fidx);
3871
3872         return 0;
3873 }
3874
3875 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
3876                 __be32 sip, __be16 sport, __be16 vlan,
3877                 unsigned int queue, unsigned char port, unsigned char mask)
3878 {
3879         int ret;
3880         struct filter_entry *f;
3881         struct adapter *adap;
3882         int i;
3883         u8 *val;
3884
3885         adap = netdev2adap(dev);
3886
3887         /* Adjust stid to correct filter index */
3888         stid -= adap->tids.nstids;
3889         stid += adap->tids.nftids;
3890
3891         /* Check to make sure the filter requested is writable ...
3892          */
3893         f = &adap->tids.ftid_tab[stid];
3894         ret = writable_filter(f);
3895         if (ret)
3896                 return ret;
3897
3898         /* Clear out any old resources being used by the filter before
3899          * we start constructing the new filter.
3900          */
3901         if (f->valid)
3902                 clear_filter(adap, f);
3903
3904         /* Clear out filter specifications */
3905         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
3906         f->fs.val.lport = cpu_to_be16(sport);
3907         f->fs.mask.lport  = ~0;
3908         val = (u8 *)&sip;
3909         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
3910                 for (i = 0; i < 4; i++) {
3911                         f->fs.val.lip[i] = val[i];
3912                         f->fs.mask.lip[i] = ~0;
3913                 }
3914                 if (adap->filter_mode & F_PORT) {
3915                         f->fs.val.iport = port;
3916                         f->fs.mask.iport = mask;
3917                 }
3918         }
3919
3920         f->fs.dirsteer = 1;
3921         f->fs.iq = queue;
3922         /* Mark filter as locked */
3923         f->locked = 1;
3924         f->fs.rpttid = 1;
3925
3926         ret = set_filter_wr(adap, stid);
3927         if (ret) {
3928                 clear_filter(adap, f);
3929                 return ret;
3930         }
3931
3932         return 0;
3933 }
3934 EXPORT_SYMBOL(cxgb4_create_server_filter);
3935
3936 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
3937                 unsigned int queue, bool ipv6)
3938 {
3939         int ret;
3940         struct filter_entry *f;
3941         struct adapter *adap;
3942
3943         adap = netdev2adap(dev);
3944
3945         /* Adjust stid to correct filter index */
3946         stid -= adap->tids.nstids;
3947         stid += adap->tids.nftids;
3948
3949         f = &adap->tids.ftid_tab[stid];
3950         /* Unlock the filter */
3951         f->locked = 0;
3952
3953         ret = delete_filter(adap, stid);
3954         if (ret)
3955                 return ret;
3956
3957         return 0;
3958 }
3959 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3960
3961 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
3962                                                 struct rtnl_link_stats64 *ns)
3963 {
3964         struct port_stats stats;
3965         struct port_info *p = netdev_priv(dev);
3966         struct adapter *adapter = p->adapter;
3967
3968         spin_lock(&adapter->stats_lock);
3969         t4_get_port_stats(adapter, p->tx_chan, &stats);
3970         spin_unlock(&adapter->stats_lock);
3971
3972         ns->tx_bytes   = stats.tx_octets;
3973         ns->tx_packets = stats.tx_frames;
3974         ns->rx_bytes   = stats.rx_octets;
3975         ns->rx_packets = stats.rx_frames;
3976         ns->multicast  = stats.rx_mcast_frames;
3977
3978         /* detailed rx_errors */
3979         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3980                                stats.rx_runt;
3981         ns->rx_over_errors   = 0;
3982         ns->rx_crc_errors    = stats.rx_fcs_err;
3983         ns->rx_frame_errors  = stats.rx_symbol_err;
3984         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
3985                                stats.rx_ovflow2 + stats.rx_ovflow3 +
3986                                stats.rx_trunc0 + stats.rx_trunc1 +
3987                                stats.rx_trunc2 + stats.rx_trunc3;
3988         ns->rx_missed_errors = 0;
3989
3990         /* detailed tx_errors */
3991         ns->tx_aborted_errors   = 0;
3992         ns->tx_carrier_errors   = 0;
3993         ns->tx_fifo_errors      = 0;
3994         ns->tx_heartbeat_errors = 0;
3995         ns->tx_window_errors    = 0;
3996
3997         ns->tx_errors = stats.tx_error_frames;
3998         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3999                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4000         return ns;
4001 }
4002
4003 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4004 {
4005         unsigned int mbox;
4006         int ret = 0, prtad, devad;
4007         struct port_info *pi = netdev_priv(dev);
4008         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4009
4010         switch (cmd) {
4011         case SIOCGMIIPHY:
4012                 if (pi->mdio_addr < 0)
4013                         return -EOPNOTSUPP;
4014                 data->phy_id = pi->mdio_addr;
4015                 break;
4016         case SIOCGMIIREG:
4017         case SIOCSMIIREG:
4018                 if (mdio_phy_id_is_c45(data->phy_id)) {
4019                         prtad = mdio_phy_id_prtad(data->phy_id);
4020                         devad = mdio_phy_id_devad(data->phy_id);
4021                 } else if (data->phy_id < 32) {
4022                         prtad = data->phy_id;
4023                         devad = 0;
4024                         data->reg_num &= 0x1f;
4025                 } else
4026                         return -EINVAL;
4027
4028                 mbox = pi->adapter->fn;
4029                 if (cmd == SIOCGMIIREG)
4030                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4031                                          data->reg_num, &data->val_out);
4032                 else
4033                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4034                                          data->reg_num, data->val_in);
4035                 break;
4036         default:
4037                 return -EOPNOTSUPP;
4038         }
4039         return ret;
4040 }
4041
4042 static void cxgb_set_rxmode(struct net_device *dev)
4043 {
4044         /* unfortunately we can't return errors to the stack */
4045         set_rxmode(dev, -1, false);
4046 }
4047
4048 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4049 {
4050         int ret;
4051         struct port_info *pi = netdev_priv(dev);
4052
4053         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4054                 return -EINVAL;
4055         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4056                             -1, -1, -1, true);
4057         if (!ret)
4058                 dev->mtu = new_mtu;
4059         return ret;
4060 }
4061
4062 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4063 {
4064         int ret;
4065         struct sockaddr *addr = p;
4066         struct port_info *pi = netdev_priv(dev);
4067
4068         if (!is_valid_ether_addr(addr->sa_data))
4069                 return -EADDRNOTAVAIL;
4070
4071         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4072                             pi->xact_addr_filt, addr->sa_data, true, true);
4073         if (ret < 0)
4074                 return ret;
4075
4076         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4077         pi->xact_addr_filt = ret;
4078         return 0;
4079 }
4080
4081 #ifdef CONFIG_NET_POLL_CONTROLLER
4082 static void cxgb_netpoll(struct net_device *dev)
4083 {
4084         struct port_info *pi = netdev_priv(dev);
4085         struct adapter *adap = pi->adapter;
4086
4087         if (adap->flags & USING_MSIX) {
4088                 int i;
4089                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4090
4091                 for (i = pi->nqsets; i; i--, rx++)
4092                         t4_sge_intr_msix(0, &rx->rspq);
4093         } else
4094                 t4_intr_handler(adap)(0, adap);
4095 }
4096 #endif
4097
4098 static const struct net_device_ops cxgb4_netdev_ops = {
4099         .ndo_open             = cxgb_open,
4100         .ndo_stop             = cxgb_close,
4101         .ndo_start_xmit       = t4_eth_xmit,
4102         .ndo_get_stats64      = cxgb_get_stats,
4103         .ndo_set_rx_mode      = cxgb_set_rxmode,
4104         .ndo_set_mac_address  = cxgb_set_mac_addr,
4105         .ndo_set_features     = cxgb_set_features,
4106         .ndo_validate_addr    = eth_validate_addr,
4107         .ndo_do_ioctl         = cxgb_ioctl,
4108         .ndo_change_mtu       = cxgb_change_mtu,
4109 #ifdef CONFIG_NET_POLL_CONTROLLER
4110         .ndo_poll_controller  = cxgb_netpoll,
4111 #endif
4112 };
4113
4114 void t4_fatal_err(struct adapter *adap)
4115 {
4116         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4117         t4_intr_disable(adap);
4118         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4119 }
4120
4121 static void setup_memwin(struct adapter *adap)
4122 {
4123         u32 bar0, mem_win0_base, mem_win1_base, mem_win2_base;
4124
4125         bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
4126         if (is_t4(adap->chip)) {
4127                 mem_win0_base = bar0 + MEMWIN0_BASE;
4128                 mem_win1_base = bar0 + MEMWIN1_BASE;
4129                 mem_win2_base = bar0 + MEMWIN2_BASE;
4130         } else {
4131                 /* For T5, only relative offset inside the PCIe BAR is passed */
4132                 mem_win0_base = MEMWIN0_BASE;
4133                 mem_win1_base = MEMWIN1_BASE_T5;
4134                 mem_win2_base = MEMWIN2_BASE_T5;
4135         }
4136         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4137                      mem_win0_base | BIR(0) |
4138                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4139         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4140                      mem_win1_base | BIR(0) |
4141                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4142         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4143                      mem_win2_base | BIR(0) |
4144                      WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
4145 }
4146
4147 static void setup_memwin_rdma(struct adapter *adap)
4148 {
4149         if (adap->vres.ocq.size) {
4150                 unsigned int start, sz_kb;
4151
4152                 start = pci_resource_start(adap->pdev, 2) +
4153                         OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4154                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4155                 t4_write_reg(adap,
4156                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4157                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
4158                 t4_write_reg(adap,
4159                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4160                              adap->vres.ocq.start);
4161                 t4_read_reg(adap,
4162                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4163         }
4164 }
4165
4166 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4167 {
4168         u32 v;
4169         int ret;
4170
4171         /* get device capabilities */
4172         memset(c, 0, sizeof(*c));
4173         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4174                                FW_CMD_REQUEST | FW_CMD_READ);
4175         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4176         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4177         if (ret < 0)
4178                 return ret;
4179
4180         /* select capabilities we'll be using */
4181         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4182                 if (!vf_acls)
4183                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4184                 else
4185                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4186         } else if (vf_acls) {
4187                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4188                 return ret;
4189         }
4190         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4191                                FW_CMD_REQUEST | FW_CMD_WRITE);
4192         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4193         if (ret < 0)
4194                 return ret;
4195
4196         ret = t4_config_glbl_rss(adap, adap->fn,
4197                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4198                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4199                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4200         if (ret < 0)
4201                 return ret;
4202
4203         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4204                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
4205         if (ret < 0)
4206                 return ret;
4207
4208         t4_sge_init(adap);
4209
4210         /* tweak some settings */
4211         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4212         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4213         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4214         v = t4_read_reg(adap, TP_PIO_DATA);
4215         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
4216
4217         /* first 4 Tx modulation queues point to consecutive Tx channels */
4218         adap->params.tp.tx_modq_map = 0xE4;
4219         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4220                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4221
4222         /* associate each Tx modulation queue with consecutive Tx channels */
4223         v = 0x84218421;
4224         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4225                           &v, 1, A_TP_TX_SCHED_HDR);
4226         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4227                           &v, 1, A_TP_TX_SCHED_FIFO);
4228         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4229                           &v, 1, A_TP_TX_SCHED_PCMD);
4230
4231 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4232         if (is_offload(adap)) {
4233                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4234                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4235                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4236                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4237                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4238                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4239                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4240                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4241                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4242                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4243         }
4244
4245         /* get basic stuff going */
4246         return t4_early_init(adap, adap->fn);
4247 }
4248
4249 /*
4250  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4251  */
4252 #define MAX_ATIDS 8192U
4253
4254 /*
4255  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4256  *
4257  * If the firmware we're dealing with has Configuration File support, then
4258  * we use that to perform all configuration
4259  */
4260
4261 /*
4262  * Tweak configuration based on module parameters, etc.  Most of these have
4263  * defaults assigned to them by Firmware Configuration Files (if we're using
4264  * them) but need to be explicitly set if we're using hard-coded
4265  * initialization.  But even in the case of using Firmware Configuration
4266  * Files, we'd like to expose the ability to change these via module
4267  * parameters so these are essentially common tweaks/settings for
4268  * Configuration Files and hard-coded initialization ...
4269  */
4270 static int adap_init0_tweaks(struct adapter *adapter)
4271 {
4272         /*
4273          * Fix up various Host-Dependent Parameters like Page Size, Cache
4274          * Line Size, etc.  The firmware default is for a 4KB Page Size and
4275          * 64B Cache Line Size ...
4276          */
4277         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4278
4279         /*
4280          * Process module parameters which affect early initialization.
4281          */
4282         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4283                 dev_err(&adapter->pdev->dev,
4284                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
4285                         rx_dma_offset);
4286                 rx_dma_offset = 2;
4287         }
4288         t4_set_reg_field(adapter, SGE_CONTROL,
4289                          PKTSHIFT_MASK,
4290                          PKTSHIFT(rx_dma_offset));
4291
4292         /*
4293          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4294          * adds the pseudo header itself.
4295          */
4296         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
4297                                CSUM_HAS_PSEUDO_HDR, 0);
4298
4299         return 0;
4300 }
4301
4302 /*
4303  * Attempt to initialize the adapter via a Firmware Configuration File.
4304  */
4305 static int adap_init0_config(struct adapter *adapter, int reset)
4306 {
4307         struct fw_caps_config_cmd caps_cmd;
4308         const struct firmware *cf;
4309         unsigned long mtype = 0, maddr = 0;
4310         u32 finiver, finicsum, cfcsum;
4311         int ret, using_flash;
4312         char *fw_config_file, fw_config_file_path[256];
4313
4314         /*
4315          * Reset device if necessary.
4316          */
4317         if (reset) {
4318                 ret = t4_fw_reset(adapter, adapter->mbox,
4319                                   PIORSTMODE | PIORST);
4320                 if (ret < 0)
4321                         goto bye;
4322         }
4323
4324         /*
4325          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4326          * then use that.  Otherwise, use the configuration file stored
4327          * in the adapter flash ...
4328          */
4329         switch (CHELSIO_CHIP_VERSION(adapter->chip)) {
4330         case CHELSIO_T4:
4331                 fw_config_file = FW_CFNAME;
4332                 break;
4333         case CHELSIO_T5:
4334                 fw_config_file = FW5_CFNAME;
4335                 break;
4336         default:
4337                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4338                        adapter->pdev->device);
4339                 ret = -EINVAL;
4340                 goto bye;
4341         }
4342
4343         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4344         if (ret < 0) {
4345                 using_flash = 1;
4346                 mtype = FW_MEMTYPE_CF_FLASH;
4347                 maddr = t4_flash_cfg_addr(adapter);
4348         } else {
4349                 u32 params[7], val[7];
4350
4351                 using_flash = 0;
4352                 if (cf->size >= FLASH_CFG_MAX_SIZE)
4353                         ret = -ENOMEM;
4354                 else {
4355                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4356                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4357                         ret = t4_query_params(adapter, adapter->mbox,
4358                                               adapter->fn, 0, 1, params, val);
4359                         if (ret == 0) {
4360                                 /*
4361                                  * For t4_memory_write() below addresses and
4362                                  * sizes have to be in terms of multiples of 4
4363                                  * bytes.  So, if the Configuration File isn't
4364                                  * a multiple of 4 bytes in length we'll have
4365                                  * to write that out separately since we can't
4366                                  * guarantee that the bytes following the
4367                                  * residual byte in the buffer returned by
4368                                  * request_firmware() are zeroed out ...
4369                                  */
4370                                 size_t resid = cf->size & 0x3;
4371                                 size_t size = cf->size & ~0x3;
4372                                 __be32 *data = (__be32 *)cf->data;
4373
4374                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
4375                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
4376
4377                                 ret = t4_memory_write(adapter, mtype, maddr,
4378                                                       size, data);
4379                                 if (ret == 0 && resid != 0) {
4380                                         union {
4381                                                 __be32 word;
4382                                                 char buf[4];
4383                                         } last;
4384                                         int i;
4385
4386                                         last.word = data[size >> 2];
4387                                         for (i = resid; i < 4; i++)
4388                                                 last.buf[i] = 0;
4389                                         ret = t4_memory_write(adapter, mtype,
4390                                                               maddr + size,
4391                                                               4, &last.word);
4392                                 }
4393                         }
4394                 }
4395
4396                 release_firmware(cf);
4397                 if (ret)
4398                         goto bye;
4399         }
4400
4401         /*
4402          * Issue a Capability Configuration command to the firmware to get it
4403          * to parse the Configuration File.  We don't use t4_fw_config_file()
4404          * because we want the ability to modify various features after we've
4405          * processed the configuration file ...
4406          */
4407         memset(&caps_cmd, 0, sizeof(caps_cmd));
4408         caps_cmd.op_to_write =
4409                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4410                       FW_CMD_REQUEST |
4411                       FW_CMD_READ);
4412         caps_cmd.cfvalid_to_len16 =
4413                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
4414                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4415                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
4416                       FW_LEN16(caps_cmd));
4417         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4418                          &caps_cmd);
4419         if (ret < 0)
4420                 goto bye;
4421
4422         finiver = ntohl(caps_cmd.finiver);
4423         finicsum = ntohl(caps_cmd.finicsum);
4424         cfcsum = ntohl(caps_cmd.cfcsum);
4425         if (finicsum != cfcsum)
4426                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4427                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4428                          finicsum, cfcsum);
4429
4430         /*
4431          * And now tell the firmware to use the configuration we just loaded.
4432          */
4433         caps_cmd.op_to_write =
4434                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4435                       FW_CMD_REQUEST |
4436                       FW_CMD_WRITE);
4437         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4438         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4439                          NULL);
4440         if (ret < 0)
4441                 goto bye;
4442
4443         /*
4444          * Tweak configuration based on system architecture, module
4445          * parameters, etc.
4446          */
4447         ret = adap_init0_tweaks(adapter);
4448         if (ret < 0)
4449                 goto bye;
4450
4451         /*
4452          * And finally tell the firmware to initialize itself using the
4453          * parameters from the Configuration File.
4454          */
4455         ret = t4_fw_initialize(adapter, adapter->mbox);
4456         if (ret < 0)
4457                 goto bye;
4458
4459         sprintf(fw_config_file_path, "/lib/firmware/%s", fw_config_file);
4460         /*
4461          * Return successfully and note that we're operating with parameters
4462          * not supplied by the driver, rather than from hard-wired
4463          * initialization constants burried in the driver.
4464          */
4465         adapter->flags |= USING_SOFT_PARAMS;
4466         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4467                  "Configuration File %s, version %#x, computed checksum %#x\n",
4468                  (using_flash
4469                   ? "in device FLASH"
4470                   : fw_config_file_path),
4471                  finiver, cfcsum);
4472         return 0;
4473
4474         /*
4475          * Something bad happened.  Return the error ...  (If the "error"
4476          * is that there's no Configuration File on the adapter we don't
4477          * want to issue a warning since this is fairly common.)
4478          */
4479 bye:
4480         if (ret != -ENOENT)
4481                 dev_warn(adapter->pdev_dev, "Configuration file error %d\n",
4482                          -ret);
4483         return ret;
4484 }
4485
4486 /*
4487  * Attempt to initialize the adapter via hard-coded, driver supplied
4488  * parameters ...
4489  */
4490 static int adap_init0_no_config(struct adapter *adapter, int reset)
4491 {
4492         struct sge *s = &adapter->sge;
4493         struct fw_caps_config_cmd caps_cmd;
4494         u32 v;
4495         int i, ret;
4496
4497         /*
4498          * Reset device if necessary
4499          */
4500         if (reset) {
4501                 ret = t4_fw_reset(adapter, adapter->mbox,
4502                                   PIORSTMODE | PIORST);
4503                 if (ret < 0)
4504                         goto bye;
4505         }
4506
4507         /*
4508          * Get device capabilities and select which we'll be using.
4509          */
4510         memset(&caps_cmd, 0, sizeof(caps_cmd));
4511         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4512                                      FW_CMD_REQUEST | FW_CMD_READ);
4513         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4514         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4515                          &caps_cmd);
4516         if (ret < 0)
4517                 goto bye;
4518
4519         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4520                 if (!vf_acls)
4521                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4522                 else
4523                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4524         } else if (vf_acls) {
4525                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
4526                 goto bye;
4527         }
4528         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4529                               FW_CMD_REQUEST | FW_CMD_WRITE);
4530         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4531                          NULL);
4532         if (ret < 0)
4533                 goto bye;
4534
4535         /*
4536          * Tweak configuration based on system architecture, module
4537          * parameters, etc.
4538          */
4539         ret = adap_init0_tweaks(adapter);
4540         if (ret < 0)
4541                 goto bye;
4542
4543         /*
4544          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
4545          * mode which maps each Virtual Interface to its own section of
4546          * the RSS Table and we turn on all map and hash enables ...
4547          */
4548         adapter->flags |= RSS_TNLALLLOOKUP;
4549         ret = t4_config_glbl_rss(adapter, adapter->mbox,
4550                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4551                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4552                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
4553                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
4554                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
4555         if (ret < 0)
4556                 goto bye;
4557
4558         /*
4559          * Set up our own fundamental resource provisioning ...
4560          */
4561         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
4562                           PFRES_NEQ, PFRES_NETHCTRL,
4563                           PFRES_NIQFLINT, PFRES_NIQ,
4564                           PFRES_TC, PFRES_NVI,
4565                           FW_PFVF_CMD_CMASK_MASK,
4566                           pfvfres_pmask(adapter, adapter->fn, 0),
4567                           PFRES_NEXACTF,
4568                           PFRES_R_CAPS, PFRES_WX_CAPS);
4569         if (ret < 0)
4570                 goto bye;
4571
4572         /*
4573          * Perform low level SGE initialization.  We need to do this before we
4574          * send the firmware the INITIALIZE command because that will cause
4575          * any other PF Drivers which are waiting for the Master
4576          * Initialization to proceed forward.
4577          */
4578         for (i = 0; i < SGE_NTIMERS - 1; i++)
4579                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
4580         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
4581         s->counter_val[0] = 1;
4582         for (i = 1; i < SGE_NCOUNTERS; i++)
4583                 s->counter_val[i] = min(intr_cnt[i - 1],
4584                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
4585         t4_sge_init(adapter);
4586
4587 #ifdef CONFIG_PCI_IOV
4588         /*
4589          * Provision resource limits for Virtual Functions.  We currently
4590          * grant them all the same static resource limits except for the Port
4591          * Access Rights Mask which we're assigning based on the PF.  All of
4592          * the static provisioning stuff for both the PF and VF really needs
4593          * to be managed in a persistent manner for each device which the
4594          * firmware controls.
4595          */
4596         {
4597                 int pf, vf;
4598                 int max_no_pf = is_t4(adapter->chip) ? NUM_OF_PF_WITH_SRIOV_T4 :
4599                                 NUM_OF_PF_WITH_SRIOV_T5;
4600
4601                 for (pf = 0; pf < max_no_pf; pf++) {
4602                         if (num_vf[pf] <= 0)
4603                                 continue;
4604
4605                         /* VF numbering starts at 1! */
4606                         for (vf = 1; vf <= num_vf[pf]; vf++) {
4607                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
4608                                                   pf, vf,
4609                                                   VFRES_NEQ, VFRES_NETHCTRL,
4610                                                   VFRES_NIQFLINT, VFRES_NIQ,
4611                                                   VFRES_TC, VFRES_NVI,
4612                                                   FW_PFVF_CMD_CMASK_MASK,
4613                                                   pfvfres_pmask(
4614                                                   adapter, pf, vf),
4615                                                   VFRES_NEXACTF,
4616                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
4617                                 if (ret < 0)
4618                                         dev_warn(adapter->pdev_dev,
4619                                                  "failed to "\
4620                                                  "provision pf/vf=%d/%d; "
4621                                                  "err=%d\n", pf, vf, ret);
4622                         }
4623                 }
4624         }
4625 #endif
4626
4627         /*
4628          * Set up the default filter mode.  Later we'll want to implement this
4629          * via a firmware command, etc. ...  This needs to be done before the
4630          * firmare initialization command ...  If the selected set of fields
4631          * isn't equal to the default value, we'll need to make sure that the
4632          * field selections will fit in the 36-bit budget.
4633          */
4634         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
4635                 int j, bits = 0;
4636
4637                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
4638                         switch (tp_vlan_pri_map & (1 << j)) {
4639                         case 0:
4640                                 /* compressed filter field not enabled */
4641                                 break;
4642                         case FCOE_MASK:
4643                                 bits +=  1;
4644                                 break;
4645                         case PORT_MASK:
4646                                 bits +=  3;
4647                                 break;
4648                         case VNIC_ID_MASK:
4649                                 bits += 17;
4650                                 break;
4651                         case VLAN_MASK:
4652                                 bits += 17;
4653                                 break;
4654                         case TOS_MASK:
4655                                 bits +=  8;
4656                                 break;
4657                         case PROTOCOL_MASK:
4658                                 bits +=  8;
4659                                 break;
4660                         case ETHERTYPE_MASK:
4661                                 bits += 16;
4662                                 break;
4663                         case MACMATCH_MASK:
4664                                 bits +=  9;
4665                                 break;
4666                         case MPSHITTYPE_MASK:
4667                                 bits +=  3;
4668                                 break;
4669                         case FRAGMENTATION_MASK:
4670                                 bits +=  1;
4671                                 break;
4672                         }
4673
4674                 if (bits > 36) {
4675                         dev_err(adapter->pdev_dev,
4676                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
4677                                 " using %#x\n", tp_vlan_pri_map, bits,
4678                                 TP_VLAN_PRI_MAP_DEFAULT);
4679                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
4680                 }
4681         }
4682         v = tp_vlan_pri_map;
4683         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
4684                           &v, 1, TP_VLAN_PRI_MAP);
4685
4686         /*
4687          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
4688          * to support any of the compressed filter fields above.  Newer
4689          * versions of the firmware do this automatically but it doesn't hurt
4690          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
4691          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
4692          * since the firmware automatically turns this on and off when we have
4693          * a non-zero number of filters active (since it does have a
4694          * performance impact).
4695          */
4696         if (tp_vlan_pri_map)
4697                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
4698                                  FIVETUPLELOOKUP_MASK,
4699                                  FIVETUPLELOOKUP_MASK);
4700
4701         /*
4702          * Tweak some settings.
4703          */
4704         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
4705                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
4706                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
4707                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
4708
4709         /*
4710          * Get basic stuff going by issuing the Firmware Initialize command.
4711          * Note that this _must_ be after all PFVF commands ...
4712          */
4713         ret = t4_fw_initialize(adapter, adapter->mbox);
4714         if (ret < 0)
4715                 goto bye;
4716
4717         /*
4718          * Return successfully!
4719          */
4720         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
4721                  "driver parameters\n");
4722         return 0;
4723
4724         /*
4725          * Something bad happened.  Return the error ...
4726          */
4727 bye:
4728         return ret;
4729 }
4730
4731 /*
4732  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4733  */
4734 static int adap_init0(struct adapter *adap)
4735 {
4736         int ret;
4737         u32 v, port_vec;
4738         enum dev_state state;
4739         u32 params[7], val[7];
4740         struct fw_caps_config_cmd caps_cmd;
4741         int reset = 1, j;
4742
4743         /*
4744          * Contact FW, advertising Master capability (and potentially forcing
4745          * ourselves as the Master PF if our module parameter force_init is
4746          * set).
4747          */
4748         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
4749                           force_init ? MASTER_MUST : MASTER_MAY,
4750                           &state);
4751         if (ret < 0) {
4752                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4753                         ret);
4754                 return ret;
4755         }
4756         if (ret == adap->mbox)
4757                 adap->flags |= MASTER_PF;
4758         if (force_init && state == DEV_STATE_INIT)
4759                 state = DEV_STATE_UNINIT;
4760
4761         /*
4762          * If we're the Master PF Driver and the device is uninitialized,
4763          * then let's consider upgrading the firmware ...  (We always want
4764          * to check the firmware version number in order to A. get it for
4765          * later reporting and B. to warn if the currently loaded firmware
4766          * is excessively mismatched relative to the driver.)
4767          */
4768         ret = t4_check_fw_version(adap);
4769         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4770                 if (ret == -EINVAL || ret > 0) {
4771                         if (upgrade_fw(adap) >= 0) {
4772                                 /*
4773                                  * Note that the chip was reset as part of the
4774                                  * firmware upgrade so we don't reset it again
4775                                  * below and grab the new firmware version.
4776                                  */
4777                                 reset = 0;
4778                                 ret = t4_check_fw_version(adap);
4779                         }
4780                 }
4781                 if (ret < 0)
4782                         return ret;
4783         }
4784
4785         /*
4786          * Grab VPD parameters.  This should be done after we establish a
4787          * connection to the firmware since some of the VPD parameters
4788          * (notably the Core Clock frequency) are retrieved via requests to
4789          * the firmware.  On the other hand, we need these fairly early on
4790          * so we do this right after getting ahold of the firmware.
4791          */
4792         ret = get_vpd_params(adap, &adap->params.vpd);
4793         if (ret < 0)
4794                 goto bye;
4795
4796         /*
4797          * Find out what ports are available to us.  Note that we need to do
4798          * this before calling adap_init0_no_config() since it needs nports
4799          * and portvec ...
4800          */
4801         v =
4802             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4803             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
4804         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
4805         if (ret < 0)
4806                 goto bye;
4807
4808         adap->params.nports = hweight32(port_vec);
4809         adap->params.portvec = port_vec;
4810
4811         /*
4812          * If the firmware is initialized already (and we're not forcing a
4813          * master initialization), note that we're living with existing
4814          * adapter parameters.  Otherwise, it's time to try initializing the
4815          * adapter ...
4816          */
4817         if (state == DEV_STATE_INIT) {
4818                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4819                          "Adapter already initialized\n",
4820                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4821                 adap->flags |= USING_SOFT_PARAMS;
4822         } else {
4823                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4824                          "Initializing adapter\n");
4825
4826                 /*
4827                  * If the firmware doesn't support Configuration
4828                  * Files warn user and exit,
4829                  */
4830                 if (ret < 0)
4831                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
4832                                  "configuration file.\n");
4833                 if (force_old_init)
4834                         ret = adap_init0_no_config(adap, reset);
4835                 else {
4836                         /*
4837                          * Find out whether we're dealing with a version of
4838                          * the firmware which has configuration file support.
4839                          */
4840                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4841                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4842                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
4843                                               params, val);
4844
4845                         /*
4846                          * If the firmware doesn't support Configuration
4847                          * Files, use the old Driver-based, hard-wired
4848                          * initialization.  Otherwise, try using the
4849                          * Configuration File support and fall back to the
4850                          * Driver-based initialization if there's no
4851                          * Configuration File found.
4852                          */
4853                         if (ret < 0)
4854                                 ret = adap_init0_no_config(adap, reset);
4855                         else {
4856                                 /*
4857                                  * The firmware provides us with a memory
4858                                  * buffer where we can load a Configuration
4859                                  * File from the host if we want to override
4860                                  * the Configuration File in flash.
4861                                  */
4862
4863                                 ret = adap_init0_config(adap, reset);
4864                                 if (ret == -ENOENT) {
4865                                         dev_info(adap->pdev_dev,
4866                                             "No Configuration File present "
4867                                             "on adapter.  Using hard-wired "
4868                                             "configuration parameters.\n");
4869                                         ret = adap_init0_no_config(adap, reset);
4870                                 }
4871                         }
4872                 }
4873                 if (ret < 0) {
4874                         dev_err(adap->pdev_dev,
4875                                 "could not initialize adapter, error %d\n",
4876                                 -ret);
4877                         goto bye;
4878                 }
4879         }
4880
4881         /*
4882          * If we're living with non-hard-coded parameters (either from a
4883          * Firmware Configuration File or values programmed by a different PF
4884          * Driver), give the SGE code a chance to pull in anything that it
4885          * needs ...  Note that this must be called after we retrieve our VPD
4886          * parameters in order to know how to convert core ticks to seconds.
4887          */
4888         if (adap->flags & USING_SOFT_PARAMS) {
4889                 ret = t4_sge_init(adap);
4890                 if (ret < 0)
4891                         goto bye;
4892         }
4893
4894         if (is_bypass_device(adap->pdev->device))
4895                 adap->params.bypass = 1;
4896
4897         /*
4898          * Grab some of our basic fundamental operating parameters.
4899          */
4900 #define FW_PARAM_DEV(param) \
4901         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
4902         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
4903
4904 #define FW_PARAM_PFVF(param) \
4905         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4906         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
4907         FW_PARAMS_PARAM_Y(0) | \
4908         FW_PARAMS_PARAM_Z(0)
4909
4910         params[0] = FW_PARAM_PFVF(EQ_START);
4911         params[1] = FW_PARAM_PFVF(L2T_START);
4912         params[2] = FW_PARAM_PFVF(L2T_END);
4913         params[3] = FW_PARAM_PFVF(FILTER_START);
4914         params[4] = FW_PARAM_PFVF(FILTER_END);
4915         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4916         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
4917         if (ret < 0)
4918                 goto bye;
4919         adap->sge.egr_start = val[0];
4920         adap->l2t_start = val[1];
4921         adap->l2t_end = val[2];
4922         adap->tids.ftid_base = val[3];
4923         adap->tids.nftids = val[4] - val[3] + 1;
4924         adap->sge.ingr_start = val[5];
4925
4926         /* query params related to active filter region */
4927         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4928         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4929         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
4930         /* If Active filter size is set we enable establishing
4931          * offload connection through firmware work request
4932          */
4933         if ((val[0] != val[1]) && (ret >= 0)) {
4934                 adap->flags |= FW_OFLD_CONN;
4935                 adap->tids.aftid_base = val[0];
4936                 adap->tids.aftid_end = val[1];
4937         }
4938
4939         /*
4940          * Get device capabilities so we can determine what resources we need
4941          * to manage.
4942          */
4943         memset(&caps_cmd, 0, sizeof(caps_cmd));
4944         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4945                                      FW_CMD_REQUEST | FW_CMD_READ);
4946         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4947         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4948                          &caps_cmd);
4949         if (ret < 0)
4950                 goto bye;
4951
4952         if (caps_cmd.ofldcaps) {
4953                 /* query offload-related parameters */
4954                 params[0] = FW_PARAM_DEV(NTID);
4955                 params[1] = FW_PARAM_PFVF(SERVER_START);
4956                 params[2] = FW_PARAM_PFVF(SERVER_END);
4957                 params[3] = FW_PARAM_PFVF(TDDP_START);
4958                 params[4] = FW_PARAM_PFVF(TDDP_END);
4959                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4960                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
4961                                       params, val);
4962                 if (ret < 0)
4963                         goto bye;
4964                 adap->tids.ntids = val[0];
4965                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4966                 adap->tids.stid_base = val[1];
4967                 adap->tids.nstids = val[2] - val[1] + 1;
4968                 /*
4969                  * Setup server filter region. Divide the availble filter
4970                  * region into two parts. Regular filters get 1/3rd and server
4971                  * filters get 2/3rd part. This is only enabled if workarond
4972                  * path is enabled.
4973                  * 1. For regular filters.
4974                  * 2. Server filter: This are special filters which are used
4975                  * to redirect SYN packets to offload queue.
4976                  */
4977                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4978                         adap->tids.sftid_base = adap->tids.ftid_base +
4979                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4980                         adap->tids.nsftids = adap->tids.nftids -
4981                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4982                         adap->tids.nftids = adap->tids.sftid_base -
4983                                                 adap->tids.ftid_base;
4984                 }
4985                 adap->vres.ddp.start = val[3];
4986                 adap->vres.ddp.size = val[4] - val[3] + 1;
4987                 adap->params.ofldq_wr_cred = val[5];
4988
4989                 adap->params.offload = 1;
4990         }
4991         if (caps_cmd.rdmacaps) {
4992                 params[0] = FW_PARAM_PFVF(STAG_START);
4993                 params[1] = FW_PARAM_PFVF(STAG_END);
4994                 params[2] = FW_PARAM_PFVF(RQ_START);
4995                 params[3] = FW_PARAM_PFVF(RQ_END);
4996                 params[4] = FW_PARAM_PFVF(PBL_START);
4997                 params[5] = FW_PARAM_PFVF(PBL_END);
4998                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
4999                                       params, val);
5000                 if (ret < 0)
5001                         goto bye;
5002                 adap->vres.stag.start = val[0];
5003                 adap->vres.stag.size = val[1] - val[0] + 1;
5004                 adap->vres.rq.start = val[2];
5005                 adap->vres.rq.size = val[3] - val[2] + 1;
5006                 adap->vres.pbl.start = val[4];
5007                 adap->vres.pbl.size = val[5] - val[4] + 1;
5008
5009                 params[0] = FW_PARAM_PFVF(SQRQ_START);
5010                 params[1] = FW_PARAM_PFVF(SQRQ_END);
5011                 params[2] = FW_PARAM_PFVF(CQ_START);
5012                 params[3] = FW_PARAM_PFVF(CQ_END);
5013                 params[4] = FW_PARAM_PFVF(OCQ_START);
5014                 params[5] = FW_PARAM_PFVF(OCQ_END);
5015                 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
5016                 if (ret < 0)
5017                         goto bye;
5018                 adap->vres.qp.start = val[0];
5019                 adap->vres.qp.size = val[1] - val[0] + 1;
5020                 adap->vres.cq.start = val[2];
5021                 adap->vres.cq.size = val[3] - val[2] + 1;
5022                 adap->vres.ocq.start = val[4];
5023                 adap->vres.ocq.size = val[5] - val[4] + 1;
5024         }
5025         if (caps_cmd.iscsicaps) {
5026                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5027                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5028                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5029                                       params, val);
5030                 if (ret < 0)
5031                         goto bye;
5032                 adap->vres.iscsi.start = val[0];
5033                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5034         }
5035 #undef FW_PARAM_PFVF
5036 #undef FW_PARAM_DEV
5037
5038         /*
5039          * These are finalized by FW initialization, load their values now.
5040          */
5041         v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
5042         adap->params.tp.tre = TIMERRESOLUTION_GET(v);
5043         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
5044         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5045         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5046                      adap->params.b_wnd);
5047
5048         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5049         for (j = 0; j < NCHAN; j++)
5050                 adap->params.tp.tx_modq[j] = j;
5051
5052         t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5053                          &adap->filter_mode, 1,
5054                          TP_VLAN_PRI_MAP);
5055
5056         adap->flags |= FW_OK;
5057         return 0;
5058
5059         /*
5060          * Something bad happened.  If a command timed out or failed with EIO
5061          * FW does not operate within its spec or something catastrophic
5062          * happened to HW/FW, stop issuing commands.
5063          */
5064 bye:
5065         if (ret != -ETIMEDOUT && ret != -EIO)
5066                 t4_fw_bye(adap, adap->mbox);
5067         return ret;
5068 }
5069
5070 /* EEH callbacks */
5071
5072 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5073                                          pci_channel_state_t state)
5074 {
5075         int i;
5076         struct adapter *adap = pci_get_drvdata(pdev);
5077
5078         if (!adap)
5079                 goto out;
5080
5081         rtnl_lock();
5082         adap->flags &= ~FW_OK;
5083         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5084         for_each_port(adap, i) {
5085                 struct net_device *dev = adap->port[i];
5086
5087                 netif_device_detach(dev);
5088                 netif_carrier_off(dev);
5089         }
5090         if (adap->flags & FULL_INIT_DONE)
5091                 cxgb_down(adap);
5092         rtnl_unlock();
5093         pci_disable_device(pdev);
5094 out:    return state == pci_channel_io_perm_failure ?
5095                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5096 }
5097
5098 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5099 {
5100         int i, ret;
5101         struct fw_caps_config_cmd c;
5102         struct adapter *adap = pci_get_drvdata(pdev);
5103
5104         if (!adap) {
5105                 pci_restore_state(pdev);
5106                 pci_save_state(pdev);
5107                 return PCI_ERS_RESULT_RECOVERED;
5108         }
5109
5110         if (pci_enable_device(pdev)) {
5111                 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
5112                 return PCI_ERS_RESULT_DISCONNECT;
5113         }
5114
5115         pci_set_master(pdev);
5116         pci_restore_state(pdev);
5117         pci_save_state(pdev);
5118         pci_cleanup_aer_uncorrect_error_status(pdev);
5119
5120         if (t4_wait_dev_ready(adap) < 0)
5121                 return PCI_ERS_RESULT_DISCONNECT;
5122         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL))
5123                 return PCI_ERS_RESULT_DISCONNECT;
5124         adap->flags |= FW_OK;
5125         if (adap_init1(adap, &c))
5126                 return PCI_ERS_RESULT_DISCONNECT;
5127
5128         for_each_port(adap, i) {
5129                 struct port_info *p = adap2pinfo(adap, i);
5130
5131                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
5132                                   NULL, NULL);
5133                 if (ret < 0)
5134                         return PCI_ERS_RESULT_DISCONNECT;
5135                 p->viid = ret;
5136                 p->xact_addr_filt = -1;
5137         }
5138
5139         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5140                      adap->params.b_wnd);
5141         setup_memwin(adap);
5142         if (cxgb_up(adap))
5143                 return PCI_ERS_RESULT_DISCONNECT;
5144         return PCI_ERS_RESULT_RECOVERED;
5145 }
5146
5147 static void eeh_resume(struct pci_dev *pdev)
5148 {
5149         int i;
5150         struct adapter *adap = pci_get_drvdata(pdev);
5151
5152         if (!adap)
5153                 return;
5154
5155         rtnl_lock();
5156         for_each_port(adap, i) {
5157                 struct net_device *dev = adap->port[i];
5158
5159                 if (netif_running(dev)) {
5160                         link_start(dev);
5161                         cxgb_set_rxmode(dev);
5162                 }
5163                 netif_device_attach(dev);
5164         }
5165         rtnl_unlock();
5166 }
5167
5168 static const struct pci_error_handlers cxgb4_eeh = {
5169         .error_detected = eeh_err_detected,
5170         .slot_reset     = eeh_slot_reset,
5171         .resume         = eeh_resume,
5172 };
5173
5174 static inline bool is_10g_port(const struct link_config *lc)
5175 {
5176         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
5177 }
5178
5179 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
5180                              unsigned int size, unsigned int iqe_size)
5181 {
5182         q->intr_params = QINTR_TIMER_IDX(timer_idx) |
5183                          (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
5184         q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
5185         q->iqe_len = iqe_size;
5186         q->size = size;
5187 }
5188
5189 /*
5190  * Perform default configuration of DMA queues depending on the number and type
5191  * of ports we found and the number of available CPUs.  Most settings can be
5192  * modified by the admin prior to actual use.
5193  */
5194 static void cfg_queues(struct adapter *adap)
5195 {
5196         struct sge *s = &adap->sge;
5197         int i, q10g = 0, n10g = 0, qidx = 0;
5198
5199         for_each_port(adap, i)
5200                 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
5201
5202         /*
5203          * We default to 1 queue per non-10G port and up to # of cores queues
5204          * per 10G port.
5205          */
5206         if (n10g)
5207                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5208         if (q10g > netif_get_num_default_rss_queues())
5209                 q10g = netif_get_num_default_rss_queues();
5210
5211         for_each_port(adap, i) {
5212                 struct port_info *pi = adap2pinfo(adap, i);
5213
5214                 pi->first_qset = qidx;
5215                 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
5216                 qidx += pi->nqsets;
5217         }
5218
5219         s->ethqsets = qidx;
5220         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5221
5222         if (is_offload(adap)) {
5223                 /*
5224                  * For offload we use 1 queue/channel if all ports are up to 1G,
5225                  * otherwise we divide all available queues amongst the channels
5226                  * capped by the number of available cores.
5227                  */
5228                 if (n10g) {
5229                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
5230                                   num_online_cpus());
5231                         s->ofldqsets = roundup(i, adap->params.nports);
5232                 } else
5233                         s->ofldqsets = adap->params.nports;
5234                 /* For RDMA one Rx queue per channel suffices */
5235                 s->rdmaqs = adap->params.nports;
5236         }
5237
5238         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5239                 struct sge_eth_rxq *r = &s->ethrxq[i];
5240
5241                 init_rspq(&r->rspq, 0, 0, 1024, 64);
5242                 r->fl.size = 72;
5243         }
5244
5245         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5246                 s->ethtxq[i].q.size = 1024;
5247
5248         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5249                 s->ctrlq[i].q.size = 512;
5250
5251         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
5252                 s->ofldtxq[i].q.size = 1024;
5253
5254         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
5255                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
5256
5257                 init_rspq(&r->rspq, 0, 0, 1024, 64);
5258                 r->rspq.uld = CXGB4_ULD_ISCSI;
5259                 r->fl.size = 72;
5260         }
5261
5262         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
5263                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
5264
5265                 init_rspq(&r->rspq, 0, 0, 511, 64);
5266                 r->rspq.uld = CXGB4_ULD_RDMA;
5267                 r->fl.size = 72;
5268         }
5269
5270         init_rspq(&s->fw_evtq, 6, 0, 512, 64);
5271         init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
5272 }
5273
5274 /*
5275  * Reduce the number of Ethernet queues across all ports to at most n.
5276  * n provides at least one queue per port.
5277  */
5278 static void reduce_ethqs(struct adapter *adap, int n)
5279 {
5280         int i;
5281         struct port_info *pi;
5282
5283         while (n < adap->sge.ethqsets)
5284                 for_each_port(adap, i) {
5285                         pi = adap2pinfo(adap, i);
5286                         if (pi->nqsets > 1) {
5287                                 pi->nqsets--;
5288                                 adap->sge.ethqsets--;
5289                                 if (adap->sge.ethqsets <= n)
5290                                         break;
5291                         }
5292                 }
5293
5294         n = 0;
5295         for_each_port(adap, i) {
5296                 pi = adap2pinfo(adap, i);
5297                 pi->first_qset = n;
5298                 n += pi->nqsets;
5299         }
5300 }
5301
5302 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5303 #define EXTRA_VECS 2
5304
5305 static int enable_msix(struct adapter *adap)
5306 {
5307         int ofld_need = 0;
5308         int i, err, want, need;
5309         struct sge *s = &adap->sge;
5310         unsigned int nchan = adap->params.nports;
5311         struct msix_entry entries[MAX_INGQ + 1];
5312
5313         for (i = 0; i < ARRAY_SIZE(entries); ++i)
5314                 entries[i].entry = i;
5315
5316         want = s->max_ethqsets + EXTRA_VECS;
5317         if (is_offload(adap)) {
5318                 want += s->rdmaqs + s->ofldqsets;
5319                 /* need nchan for each possible ULD */
5320                 ofld_need = 2 * nchan;
5321         }
5322         need = adap->params.nports + EXTRA_VECS + ofld_need;
5323
5324         while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
5325                 want = err;
5326
5327         if (!err) {
5328                 /*
5329                  * Distribute available vectors to the various queue groups.
5330                  * Every group gets its minimum requirement and NIC gets top
5331                  * priority for leftovers.
5332                  */
5333                 i = want - EXTRA_VECS - ofld_need;
5334                 if (i < s->max_ethqsets) {
5335                         s->max_ethqsets = i;
5336                         if (i < s->ethqsets)
5337                                 reduce_ethqs(adap, i);
5338                 }
5339                 if (is_offload(adap)) {
5340                         i = want - EXTRA_VECS - s->max_ethqsets;
5341                         i -= ofld_need - nchan;
5342                         s->ofldqsets = (i / nchan) * nchan;  /* round down */
5343                 }
5344                 for (i = 0; i < want; ++i)
5345                         adap->msix_info[i].vec = entries[i].vector;
5346         } else if (err > 0)
5347                 dev_info(adap->pdev_dev,
5348                          "only %d MSI-X vectors left, not using MSI-X\n", err);
5349         return err;
5350 }
5351
5352 #undef EXTRA_VECS
5353
5354 static int init_rss(struct adapter *adap)
5355 {
5356         unsigned int i, j;
5357
5358         for_each_port(adap, i) {
5359                 struct port_info *pi = adap2pinfo(adap, i);
5360
5361                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5362                 if (!pi->rss)
5363                         return -ENOMEM;
5364                 for (j = 0; j < pi->rss_size; j++)
5365                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
5366         }
5367         return 0;
5368 }
5369
5370 static void print_port_info(const struct net_device *dev)
5371 {
5372         static const char *base[] = {
5373                 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
5374                 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
5375         };
5376
5377         char buf[80];
5378         char *bufp = buf;
5379         const char *spd = "";
5380         const struct port_info *pi = netdev_priv(dev);
5381         const struct adapter *adap = pi->adapter;
5382
5383         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
5384                 spd = " 2.5 GT/s";
5385         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
5386                 spd = " 5 GT/s";
5387
5388         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
5389                 bufp += sprintf(bufp, "100/");
5390         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
5391                 bufp += sprintf(bufp, "1000/");
5392         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
5393                 bufp += sprintf(bufp, "10G/");
5394         if (bufp != buf)
5395                 --bufp;
5396         sprintf(bufp, "BASE-%s", base[pi->port_type]);
5397
5398         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
5399                     adap->params.vpd.id,
5400                     CHELSIO_CHIP_RELEASE(adap->params.rev), buf,
5401                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
5402                     (adap->flags & USING_MSIX) ? " MSI-X" :
5403                     (adap->flags & USING_MSI) ? " MSI" : "");
5404         netdev_info(dev, "S/N: %s, E/C: %s\n",
5405                     adap->params.vpd.sn, adap->params.vpd.ec);
5406 }
5407
5408 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
5409 {
5410         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
5411 }
5412
5413 /*
5414  * Free the following resources:
5415  * - memory used for tables
5416  * - MSI/MSI-X
5417  * - net devices
5418  * - resources FW is holding for us
5419  */
5420 static void free_some_resources(struct adapter *adapter)
5421 {
5422         unsigned int i;
5423
5424         t4_free_mem(adapter->l2t);
5425         t4_free_mem(adapter->tids.tid_tab);
5426         disable_msi(adapter);
5427
5428         for_each_port(adapter, i)
5429                 if (adapter->port[i]) {
5430                         kfree(adap2pinfo(adapter, i)->rss);
5431                         free_netdev(adapter->port[i]);
5432                 }
5433         if (adapter->flags & FW_OK)
5434                 t4_fw_bye(adapter, adapter->fn);
5435 }
5436
5437 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5438 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5439                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5440 #define SEGMENT_SIZE 128
5441
5442 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5443 {
5444         int func, i, err, s_qpp, qpp, num_seg;
5445         struct port_info *pi;
5446         bool highdma = false;
5447         struct adapter *adapter = NULL;
5448 #ifdef CONFIG_PCI_IOV
5449         int max_no_pf;
5450 #endif
5451
5452         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5453
5454         err = pci_request_regions(pdev, KBUILD_MODNAME);
5455         if (err) {
5456                 /* Just info, some other driver may have claimed the device. */
5457                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5458                 return err;
5459         }
5460
5461         /* We control everything through one PF */
5462         func = PCI_FUNC(pdev->devfn);
5463         if (func != ent->driver_data) {
5464                 pci_save_state(pdev);        /* to restore SR-IOV later */
5465                 goto sriov;
5466         }
5467
5468         err = pci_enable_device(pdev);
5469         if (err) {
5470                 dev_err(&pdev->dev, "cannot enable PCI device\n");
5471                 goto out_release_regions;
5472         }
5473
5474         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5475                 highdma = true;
5476                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5477                 if (err) {
5478                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5479                                 "coherent allocations\n");
5480                         goto out_disable_device;
5481                 }
5482         } else {
5483                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5484                 if (err) {
5485                         dev_err(&pdev->dev, "no usable DMA configuration\n");
5486                         goto out_disable_device;
5487                 }
5488         }
5489
5490         pci_enable_pcie_error_reporting(pdev);
5491         enable_pcie_relaxed_ordering(pdev);
5492         pci_set_master(pdev);
5493         pci_save_state(pdev);
5494
5495         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5496         if (!adapter) {
5497                 err = -ENOMEM;
5498                 goto out_disable_device;
5499         }
5500
5501         adapter->regs = pci_ioremap_bar(pdev, 0);
5502         if (!adapter->regs) {
5503                 dev_err(&pdev->dev, "cannot map device registers\n");
5504                 err = -ENOMEM;
5505                 goto out_free_adapter;
5506         }
5507
5508         adapter->pdev = pdev;
5509         adapter->pdev_dev = &pdev->dev;
5510         adapter->mbox = func;
5511         adapter->fn = func;
5512         adapter->msg_enable = dflt_msg_enable;
5513         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5514
5515         spin_lock_init(&adapter->stats_lock);
5516         spin_lock_init(&adapter->tid_release_lock);
5517
5518         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5519         INIT_WORK(&adapter->db_full_task, process_db_full);
5520         INIT_WORK(&adapter->db_drop_task, process_db_drop);
5521
5522         err = t4_prep_adapter(adapter);
5523         if (err)
5524                 goto out_unmap_bar0;
5525
5526         if (!is_t4(adapter->chip)) {
5527                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
5528                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
5529                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
5530                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5531
5532                 /* Each segment size is 128B. Write coalescing is enabled only
5533                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5534                  * queue is less no of segments that can be accommodated in
5535                  * a page size.
5536                  */
5537                 if (qpp > num_seg) {
5538                         dev_err(&pdev->dev,
5539                                 "Incorrect number of egress queues per page\n");
5540                         err = -EINVAL;
5541                         goto out_unmap_bar0;
5542                 }
5543                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5544                 pci_resource_len(pdev, 2));
5545                 if (!adapter->bar2) {
5546                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
5547                         err = -ENOMEM;
5548                         goto out_unmap_bar0;
5549                 }
5550         }
5551
5552         setup_memwin(adapter);
5553         err = adap_init0(adapter);
5554         setup_memwin_rdma(adapter);
5555         if (err)
5556                 goto out_unmap_bar;
5557
5558         for_each_port(adapter, i) {
5559                 struct net_device *netdev;
5560
5561                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5562                                            MAX_ETH_QSETS);
5563                 if (!netdev) {
5564                         err = -ENOMEM;
5565                         goto out_free_dev;
5566                 }
5567
5568                 SET_NETDEV_DEV(netdev, &pdev->dev);
5569
5570                 adapter->port[i] = netdev;
5571                 pi = netdev_priv(netdev);
5572                 pi->adapter = adapter;
5573                 pi->xact_addr_filt = -1;
5574                 pi->port_id = i;
5575                 netdev->irq = pdev->irq;
5576
5577                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5578                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5579                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
5580                         NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
5581                 if (highdma)
5582                         netdev->hw_features |= NETIF_F_HIGHDMA;
5583                 netdev->features |= netdev->hw_features;
5584                 netdev->vlan_features = netdev->features & VLAN_FEAT;
5585
5586                 netdev->priv_flags |= IFF_UNICAST_FLT;
5587
5588                 netdev->netdev_ops = &cxgb4_netdev_ops;
5589                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
5590         }
5591
5592         pci_set_drvdata(pdev, adapter);
5593
5594         if (adapter->flags & FW_OK) {
5595                 err = t4_port_init(adapter, func, func, 0);
5596                 if (err)
5597                         goto out_free_dev;
5598         }
5599
5600         /*
5601          * Configure queues and allocate tables now, they can be needed as
5602          * soon as the first register_netdev completes.
5603          */
5604         cfg_queues(adapter);
5605
5606         adapter->l2t = t4_init_l2t();
5607         if (!adapter->l2t) {
5608                 /* We tolerate a lack of L2T, giving up some functionality */
5609                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5610                 adapter->params.offload = 0;
5611         }
5612
5613         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5614                 dev_warn(&pdev->dev, "could not allocate TID table, "
5615                          "continuing\n");
5616                 adapter->params.offload = 0;
5617         }
5618
5619         /* See what interrupts we'll be using */
5620         if (msi > 1 && enable_msix(adapter) == 0)
5621                 adapter->flags |= USING_MSIX;
5622         else if (msi > 0 && pci_enable_msi(pdev) == 0)
5623                 adapter->flags |= USING_MSI;
5624
5625         err = init_rss(adapter);
5626         if (err)
5627                 goto out_free_dev;
5628
5629         /*
5630          * The card is now ready to go.  If any errors occur during device
5631          * registration we do not fail the whole card but rather proceed only
5632          * with the ports we manage to register successfully.  However we must
5633          * register at least one net device.
5634          */
5635         for_each_port(adapter, i) {
5636                 pi = adap2pinfo(adapter, i);
5637                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5638                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5639
5640                 err = register_netdev(adapter->port[i]);
5641                 if (err)
5642                         break;
5643                 adapter->chan_map[pi->tx_chan] = i;
5644                 print_port_info(adapter->port[i]);
5645         }
5646         if (i == 0) {
5647                 dev_err(&pdev->dev, "could not register any net devices\n");
5648                 goto out_free_dev;
5649         }
5650         if (err) {
5651                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5652                 err = 0;
5653         }
5654
5655         if (cxgb4_debugfs_root) {
5656                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5657                                                            cxgb4_debugfs_root);
5658                 setup_debugfs(adapter);
5659         }
5660
5661         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5662         pdev->needs_freset = 1;
5663
5664         if (is_offload(adapter))
5665                 attach_ulds(adapter);
5666
5667 sriov:
5668 #ifdef CONFIG_PCI_IOV
5669         max_no_pf = is_t4(adapter->chip) ? NUM_OF_PF_WITH_SRIOV_T4 :
5670                         NUM_OF_PF_WITH_SRIOV_T5;
5671
5672         if (func < max_no_pf && num_vf[func] > 0)
5673                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5674                         dev_info(&pdev->dev,
5675                                  "instantiated %u virtual functions\n",
5676                                  num_vf[func]);
5677 #endif
5678         return 0;
5679
5680  out_free_dev:
5681         free_some_resources(adapter);
5682  out_unmap_bar:
5683         if (!is_t4(adapter->chip))
5684                 iounmap(adapter->bar2);
5685  out_unmap_bar0:
5686         iounmap(adapter->regs);
5687  out_free_adapter:
5688         kfree(adapter);
5689  out_disable_device:
5690         pci_disable_pcie_error_reporting(pdev);
5691         pci_disable_device(pdev);
5692  out_release_regions:
5693         pci_release_regions(pdev);
5694         pci_set_drvdata(pdev, NULL);
5695         return err;
5696 }
5697
5698 static void remove_one(struct pci_dev *pdev)
5699 {
5700         struct adapter *adapter = pci_get_drvdata(pdev);
5701
5702 #ifdef CONFIG_PCI_IOV
5703         pci_disable_sriov(pdev);
5704
5705 #endif
5706
5707         if (adapter) {
5708                 int i;
5709
5710                 if (is_offload(adapter))
5711                         detach_ulds(adapter);
5712
5713                 for_each_port(adapter, i)
5714                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5715                                 unregister_netdev(adapter->port[i]);
5716
5717                 if (adapter->debugfs_root)
5718                         debugfs_remove_recursive(adapter->debugfs_root);
5719
5720                 /* If we allocated filters, free up state associated with any
5721                  * valid filters ...
5722                  */
5723                 if (adapter->tids.ftid_tab) {
5724                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
5725                         for (i = 0; i < (adapter->tids.nftids +
5726                                         adapter->tids.nsftids); i++, f++)
5727                                 if (f->valid)
5728                                         clear_filter(adapter, f);
5729                 }
5730
5731                 if (adapter->flags & FULL_INIT_DONE)
5732                         cxgb_down(adapter);
5733
5734                 free_some_resources(adapter);
5735                 iounmap(adapter->regs);
5736                 if (!is_t4(adapter->chip))
5737                         iounmap(adapter->bar2);
5738                 kfree(adapter);
5739                 pci_disable_pcie_error_reporting(pdev);
5740                 pci_disable_device(pdev);
5741                 pci_release_regions(pdev);
5742                 pci_set_drvdata(pdev, NULL);
5743         } else
5744                 pci_release_regions(pdev);
5745 }
5746
5747 static struct pci_driver cxgb4_driver = {
5748         .name     = KBUILD_MODNAME,
5749         .id_table = cxgb4_pci_tbl,
5750         .probe    = init_one,
5751         .remove   = remove_one,
5752         .err_handler = &cxgb4_eeh,
5753 };
5754
5755 static int __init cxgb4_init_module(void)
5756 {
5757         int ret;
5758
5759         workq = create_singlethread_workqueue("cxgb4");
5760         if (!workq)
5761                 return -ENOMEM;
5762
5763         /* Debugfs support is optional, just warn if this fails */
5764         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5765         if (!cxgb4_debugfs_root)
5766                 pr_warn("could not create debugfs entry, continuing\n");
5767
5768         ret = pci_register_driver(&cxgb4_driver);
5769         if (ret < 0)
5770                 debugfs_remove(cxgb4_debugfs_root);
5771         return ret;
5772 }
5773
5774 static void __exit cxgb4_cleanup_module(void)
5775 {
5776         pci_unregister_driver(&cxgb4_driver);
5777         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5778         flush_workqueue(workq);
5779         destroy_workqueue(workq);
5780 }
5781
5782 module_init(cxgb4_init_module);
5783 module_exit(cxgb4_cleanup_module);