cxgb4: Add T5 write combining support
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <asm/uaccess.h>
64
65 #include "cxgb4.h"
66 #include "t4_regs.h"
67 #include "t4_msg.h"
68 #include "t4fw_api.h"
69 #include "l2t.h"
70
71 #define DRV_VERSION "1.3.0-ko"
72 #define DRV_DESC "Chelsio T4 Network Driver"
73
74 /*
75  * Max interrupt hold-off timer value in us.  Queues fall back to this value
76  * under extreme memory pressure so it's largish to give the system time to
77  * recover.
78  */
79 #define MAX_SGE_TIMERVAL 200U
80
81 enum {
82         /*
83          * Physical Function provisioning constants.
84          */
85         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
86         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
87         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
88                                          */
89         PFRES_NEQ = 256,                /* # of egress queues */
90         PFRES_NIQ = 0,                  /* # of ingress queues */
91         PFRES_TC = 0,                   /* PCI-E traffic class */
92         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
93
94         PFRES_R_CAPS = FW_CMD_CAP_PF,
95         PFRES_WX_CAPS = FW_CMD_CAP_PF,
96
97 #ifdef CONFIG_PCI_IOV
98         /*
99          * Virtual Function provisioning constants.  We need two extra Ingress
100          * Queues with Interrupt capability to serve as the VF's Firmware
101          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
102          * neither will have Free Lists associated with them).  For each
103          * Ethernet/Control Egress Queue and for each Free List, we need an
104          * Egress Context.
105          */
106         VFRES_NPORTS = 1,               /* # of "ports" per VF */
107         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
108
109         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
110         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
111         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
112         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
113         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
114         VFRES_TC = 0,                   /* PCI-E traffic class */
115         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
116
117         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
118         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
119 #endif
120 };
121
122 /*
123  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
124  * static and likely not to be useful in the long run.  We really need to
125  * implement some form of persistent configuration which the firmware
126  * controls.
127  */
128 static unsigned int pfvfres_pmask(struct adapter *adapter,
129                                   unsigned int pf, unsigned int vf)
130 {
131         unsigned int portn, portvec;
132
133         /*
134          * Give PF's access to all of the ports.
135          */
136         if (vf == 0)
137                 return FW_PFVF_CMD_PMASK_MASK;
138
139         /*
140          * For VFs, we'll assign them access to the ports based purely on the
141          * PF.  We assign active ports in order, wrapping around if there are
142          * fewer active ports than PFs: e.g. active port[pf % nports].
143          * Unfortunately the adapter's port_info structs haven't been
144          * initialized yet so we have to compute this.
145          */
146         if (adapter->params.nports == 0)
147                 return 0;
148
149         portn = pf % adapter->params.nports;
150         portvec = adapter->params.portvec;
151         for (;;) {
152                 /*
153                  * Isolate the lowest set bit in the port vector.  If we're at
154                  * the port number that we want, return that as the pmask.
155                  * otherwise mask that bit out of the port vector and
156                  * decrement our port number ...
157                  */
158                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
159                 if (portn == 0)
160                         return pmask;
161                 portn--;
162                 portvec &= ~pmask;
163         }
164         /*NOTREACHED*/
165 }
166
167 enum {
168         MAX_TXQ_ENTRIES      = 16384,
169         MAX_CTRL_TXQ_ENTRIES = 1024,
170         MAX_RSPQ_ENTRIES     = 16384,
171         MAX_RX_BUFFERS       = 16384,
172         MIN_TXQ_ENTRIES      = 32,
173         MIN_CTRL_TXQ_ENTRIES = 32,
174         MIN_RSPQ_ENTRIES     = 128,
175         MIN_FL_ENTRIES       = 16
176 };
177
178 /* Host shadow copy of ingress filter entry.  This is in host native format
179  * and doesn't match the ordering or bit order, etc. of the hardware of the
180  * firmware command.  The use of bit-field structure elements is purely to
181  * remind ourselves of the field size limitations and save memory in the case
182  * where the filter table is large.
183  */
184 struct filter_entry {
185         /* Administrative fields for filter.
186          */
187         u32 valid:1;            /* filter allocated and valid */
188         u32 locked:1;           /* filter is administratively locked */
189
190         u32 pending:1;          /* filter action is pending firmware reply */
191         u32 smtidx:8;           /* Source MAC Table index for smac */
192         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
193
194         /* The filter itself.  Most of this is a straight copy of information
195          * provided by the extended ioctl().  Some fields are translated to
196          * internal forms -- for instance the Ingress Queue ID passed in from
197          * the ioctl() is translated into the Absolute Ingress Queue ID.
198          */
199         struct ch_filter_specification fs;
200 };
201
202 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
203                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
204                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
205
206 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
207
208 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
209         CH_DEVICE(0xa000, 0),  /* PE10K */
210         CH_DEVICE(0x4001, -1),
211         CH_DEVICE(0x4002, -1),
212         CH_DEVICE(0x4003, -1),
213         CH_DEVICE(0x4004, -1),
214         CH_DEVICE(0x4005, -1),
215         CH_DEVICE(0x4006, -1),
216         CH_DEVICE(0x4007, -1),
217         CH_DEVICE(0x4008, -1),
218         CH_DEVICE(0x4009, -1),
219         CH_DEVICE(0x400a, -1),
220         CH_DEVICE(0x4401, 4),
221         CH_DEVICE(0x4402, 4),
222         CH_DEVICE(0x4403, 4),
223         CH_DEVICE(0x4404, 4),
224         CH_DEVICE(0x4405, 4),
225         CH_DEVICE(0x4406, 4),
226         CH_DEVICE(0x4407, 4),
227         CH_DEVICE(0x4408, 4),
228         CH_DEVICE(0x4409, 4),
229         CH_DEVICE(0x440a, 4),
230         CH_DEVICE(0x440d, 4),
231         CH_DEVICE(0x440e, 4),
232         { 0, }
233 };
234
235 #define FW_FNAME "cxgb4/t4fw.bin"
236 #define FW5_FNAME "cxgb4/t5fw.bin"
237 #define FW_CFNAME "cxgb4/t4-config.txt"
238 #define FW5_CFNAME "cxgb4/t5-config.txt"
239
240 MODULE_DESCRIPTION(DRV_DESC);
241 MODULE_AUTHOR("Chelsio Communications");
242 MODULE_LICENSE("Dual BSD/GPL");
243 MODULE_VERSION(DRV_VERSION);
244 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
245 MODULE_FIRMWARE(FW_FNAME);
246 MODULE_FIRMWARE(FW5_FNAME);
247
248 /*
249  * Normally we're willing to become the firmware's Master PF but will be happy
250  * if another PF has already become the Master and initialized the adapter.
251  * Setting "force_init" will cause this driver to forcibly establish itself as
252  * the Master PF and initialize the adapter.
253  */
254 static uint force_init;
255
256 module_param(force_init, uint, 0644);
257 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
258
259 /*
260  * Normally if the firmware we connect to has Configuration File support, we
261  * use that and only fall back to the old Driver-based initialization if the
262  * Configuration File fails for some reason.  If force_old_init is set, then
263  * we'll always use the old Driver-based initialization sequence.
264  */
265 static uint force_old_init;
266
267 module_param(force_old_init, uint, 0644);
268 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
269
270 static int dflt_msg_enable = DFLT_MSG_ENABLE;
271
272 module_param(dflt_msg_enable, int, 0644);
273 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
274
275 /*
276  * The driver uses the best interrupt scheme available on a platform in the
277  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
278  * of these schemes the driver may consider as follows:
279  *
280  * msi = 2: choose from among all three options
281  * msi = 1: only consider MSI and INTx interrupts
282  * msi = 0: force INTx interrupts
283  */
284 static int msi = 2;
285
286 module_param(msi, int, 0644);
287 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
288
289 /*
290  * Queue interrupt hold-off timer values.  Queues default to the first of these
291  * upon creation.
292  */
293 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
294
295 module_param_array(intr_holdoff, uint, NULL, 0644);
296 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
297                  "0..4 in microseconds");
298
299 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
300
301 module_param_array(intr_cnt, uint, NULL, 0644);
302 MODULE_PARM_DESC(intr_cnt,
303                  "thresholds 1..3 for queue interrupt packet counters");
304
305 /*
306  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
307  * offset by 2 bytes in order to have the IP headers line up on 4-byte
308  * boundaries.  This is a requirement for many architectures which will throw
309  * a machine check fault if an attempt is made to access one of the 4-byte IP
310  * header fields on a non-4-byte boundary.  And it's a major performance issue
311  * even on some architectures which allow it like some implementations of the
312  * x86 ISA.  However, some architectures don't mind this and for some very
313  * edge-case performance sensitive applications (like forwarding large volumes
314  * of small packets), setting this DMA offset to 0 will decrease the number of
315  * PCI-E Bus transfers enough to measurably affect performance.
316  */
317 static int rx_dma_offset = 2;
318
319 static bool vf_acls;
320
321 #ifdef CONFIG_PCI_IOV
322 module_param(vf_acls, bool, 0644);
323 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
324
325 /* Since T5 has more num of PFs, using NUM_OF_PF_WITH_SRIOV_T5
326  * macro as num_vf array size
327  */
328 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV_T5];
329
330 module_param_array(num_vf, uint, NULL, 0644);
331 MODULE_PARM_DESC(num_vf,
332                  "number of VFs for each of PFs 0-3 for T4 and PFs 0-7 for T5");
333 #endif
334
335 /*
336  * The filter TCAM has a fixed portion and a variable portion.  The fixed
337  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
338  * ports.  The variable portion is 36 bits which can include things like Exact
339  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
340  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
341  * far exceed the 36-bit budget for this "compressed" header portion of the
342  * filter.  Thus, we have a scarce resource which must be carefully managed.
343  *
344  * By default we set this up to mostly match the set of filter matching
345  * capabilities of T3 but with accommodations for some of T4's more
346  * interesting features:
347  *
348  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
349  *     [Inner] VLAN (17), Port (3), FCoE (1) }
350  */
351 enum {
352         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
353         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
354         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
355 };
356
357 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
358
359 module_param(tp_vlan_pri_map, uint, 0644);
360 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
361
362 static struct dentry *cxgb4_debugfs_root;
363
364 static LIST_HEAD(adapter_list);
365 static DEFINE_MUTEX(uld_mutex);
366 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
367 static const char *uld_str[] = { "RDMA", "iSCSI" };
368
369 static void link_report(struct net_device *dev)
370 {
371         if (!netif_carrier_ok(dev))
372                 netdev_info(dev, "link down\n");
373         else {
374                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
375
376                 const char *s = "10Mbps";
377                 const struct port_info *p = netdev_priv(dev);
378
379                 switch (p->link_cfg.speed) {
380                 case SPEED_10000:
381                         s = "10Gbps";
382                         break;
383                 case SPEED_1000:
384                         s = "1000Mbps";
385                         break;
386                 case SPEED_100:
387                         s = "100Mbps";
388                         break;
389                 }
390
391                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
392                             fc[p->link_cfg.fc]);
393         }
394 }
395
396 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
397 {
398         struct net_device *dev = adapter->port[port_id];
399
400         /* Skip changes from disabled ports. */
401         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
402                 if (link_stat)
403                         netif_carrier_on(dev);
404                 else
405                         netif_carrier_off(dev);
406
407                 link_report(dev);
408         }
409 }
410
411 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
412 {
413         static const char *mod_str[] = {
414                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
415         };
416
417         const struct net_device *dev = adap->port[port_id];
418         const struct port_info *pi = netdev_priv(dev);
419
420         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
421                 netdev_info(dev, "port module unplugged\n");
422         else if (pi->mod_type < ARRAY_SIZE(mod_str))
423                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
424 }
425
426 /*
427  * Configure the exact and hash address filters to handle a port's multicast
428  * and secondary unicast MAC addresses.
429  */
430 static int set_addr_filters(const struct net_device *dev, bool sleep)
431 {
432         u64 mhash = 0;
433         u64 uhash = 0;
434         bool free = true;
435         u16 filt_idx[7];
436         const u8 *addr[7];
437         int ret, naddr = 0;
438         const struct netdev_hw_addr *ha;
439         int uc_cnt = netdev_uc_count(dev);
440         int mc_cnt = netdev_mc_count(dev);
441         const struct port_info *pi = netdev_priv(dev);
442         unsigned int mb = pi->adapter->fn;
443
444         /* first do the secondary unicast addresses */
445         netdev_for_each_uc_addr(ha, dev) {
446                 addr[naddr++] = ha->addr;
447                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
448                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
449                                         naddr, addr, filt_idx, &uhash, sleep);
450                         if (ret < 0)
451                                 return ret;
452
453                         free = false;
454                         naddr = 0;
455                 }
456         }
457
458         /* next set up the multicast addresses */
459         netdev_for_each_mc_addr(ha, dev) {
460                 addr[naddr++] = ha->addr;
461                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
462                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
463                                         naddr, addr, filt_idx, &mhash, sleep);
464                         if (ret < 0)
465                                 return ret;
466
467                         free = false;
468                         naddr = 0;
469                 }
470         }
471
472         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
473                                 uhash | mhash, sleep);
474 }
475
476 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
477 module_param(dbfifo_int_thresh, int, 0644);
478 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
479
480 /*
481  * usecs to sleep while draining the dbfifo
482  */
483 static int dbfifo_drain_delay = 1000;
484 module_param(dbfifo_drain_delay, int, 0644);
485 MODULE_PARM_DESC(dbfifo_drain_delay,
486                  "usecs to sleep while draining the dbfifo");
487
488 /*
489  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
490  * If @mtu is -1 it is left unchanged.
491  */
492 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
493 {
494         int ret;
495         struct port_info *pi = netdev_priv(dev);
496
497         ret = set_addr_filters(dev, sleep_ok);
498         if (ret == 0)
499                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
500                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
501                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
502                                     sleep_ok);
503         return ret;
504 }
505
506 static struct workqueue_struct *workq;
507
508 /**
509  *      link_start - enable a port
510  *      @dev: the port to enable
511  *
512  *      Performs the MAC and PHY actions needed to enable a port.
513  */
514 static int link_start(struct net_device *dev)
515 {
516         int ret;
517         struct port_info *pi = netdev_priv(dev);
518         unsigned int mb = pi->adapter->fn;
519
520         /*
521          * We do not set address filters and promiscuity here, the stack does
522          * that step explicitly.
523          */
524         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
525                             !!(dev->features & NETIF_F_HW_VLAN_RX), true);
526         if (ret == 0) {
527                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
528                                     pi->xact_addr_filt, dev->dev_addr, true,
529                                     true);
530                 if (ret >= 0) {
531                         pi->xact_addr_filt = ret;
532                         ret = 0;
533                 }
534         }
535         if (ret == 0)
536                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
537                                     &pi->link_cfg);
538         if (ret == 0)
539                 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
540         return ret;
541 }
542
543 /* Clear a filter and release any of its resources that we own.  This also
544  * clears the filter's "pending" status.
545  */
546 static void clear_filter(struct adapter *adap, struct filter_entry *f)
547 {
548         /* If the new or old filter have loopback rewriteing rules then we'll
549          * need to free any existing Layer Two Table (L2T) entries of the old
550          * filter rule.  The firmware will handle freeing up any Source MAC
551          * Table (SMT) entries used for rewriting Source MAC Addresses in
552          * loopback rules.
553          */
554         if (f->l2t)
555                 cxgb4_l2t_release(f->l2t);
556
557         /* The zeroing of the filter rule below clears the filter valid,
558          * pending, locked flags, l2t pointer, etc. so it's all we need for
559          * this operation.
560          */
561         memset(f, 0, sizeof(*f));
562 }
563
564 /* Handle a filter write/deletion reply.
565  */
566 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
567 {
568         unsigned int idx = GET_TID(rpl);
569         unsigned int nidx = idx - adap->tids.ftid_base;
570         unsigned int ret;
571         struct filter_entry *f;
572
573         if (idx >= adap->tids.ftid_base && nidx <
574            (adap->tids.nftids + adap->tids.nsftids)) {
575                 idx = nidx;
576                 ret = GET_TCB_COOKIE(rpl->cookie);
577                 f = &adap->tids.ftid_tab[idx];
578
579                 if (ret == FW_FILTER_WR_FLT_DELETED) {
580                         /* Clear the filter when we get confirmation from the
581                          * hardware that the filter has been deleted.
582                          */
583                         clear_filter(adap, f);
584                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
585                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
586                                 idx);
587                         clear_filter(adap, f);
588                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
589                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
590                         f->pending = 0;  /* asynchronous setup completed */
591                         f->valid = 1;
592                 } else {
593                         /* Something went wrong.  Issue a warning about the
594                          * problem and clear everything out.
595                          */
596                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
597                                 idx, ret);
598                         clear_filter(adap, f);
599                 }
600         }
601 }
602
603 /* Response queue handler for the FW event queue.
604  */
605 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
606                           const struct pkt_gl *gl)
607 {
608         u8 opcode = ((const struct rss_header *)rsp)->opcode;
609
610         rsp++;                                          /* skip RSS header */
611         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
612                 const struct cpl_sge_egr_update *p = (void *)rsp;
613                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
614                 struct sge_txq *txq;
615
616                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
617                 txq->restarts++;
618                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
619                         struct sge_eth_txq *eq;
620
621                         eq = container_of(txq, struct sge_eth_txq, q);
622                         netif_tx_wake_queue(eq->txq);
623                 } else {
624                         struct sge_ofld_txq *oq;
625
626                         oq = container_of(txq, struct sge_ofld_txq, q);
627                         tasklet_schedule(&oq->qresume_tsk);
628                 }
629         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
630                 const struct cpl_fw6_msg *p = (void *)rsp;
631
632                 if (p->type == 0)
633                         t4_handle_fw_rpl(q->adap, p->data);
634         } else if (opcode == CPL_L2T_WRITE_RPL) {
635                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
636
637                 do_l2t_write_rpl(q->adap, p);
638         } else if (opcode == CPL_SET_TCB_RPL) {
639                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
640
641                 filter_rpl(q->adap, p);
642         } else
643                 dev_err(q->adap->pdev_dev,
644                         "unexpected CPL %#x on FW event queue\n", opcode);
645         return 0;
646 }
647
648 /**
649  *      uldrx_handler - response queue handler for ULD queues
650  *      @q: the response queue that received the packet
651  *      @rsp: the response queue descriptor holding the offload message
652  *      @gl: the gather list of packet fragments
653  *
654  *      Deliver an ingress offload packet to a ULD.  All processing is done by
655  *      the ULD, we just maintain statistics.
656  */
657 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
658                          const struct pkt_gl *gl)
659 {
660         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
661
662         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
663                 rxq->stats.nomem++;
664                 return -1;
665         }
666         if (gl == NULL)
667                 rxq->stats.imm++;
668         else if (gl == CXGB4_MSG_AN)
669                 rxq->stats.an++;
670         else
671                 rxq->stats.pkts++;
672         return 0;
673 }
674
675 static void disable_msi(struct adapter *adapter)
676 {
677         if (adapter->flags & USING_MSIX) {
678                 pci_disable_msix(adapter->pdev);
679                 adapter->flags &= ~USING_MSIX;
680         } else if (adapter->flags & USING_MSI) {
681                 pci_disable_msi(adapter->pdev);
682                 adapter->flags &= ~USING_MSI;
683         }
684 }
685
686 /*
687  * Interrupt handler for non-data events used with MSI-X.
688  */
689 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
690 {
691         struct adapter *adap = cookie;
692
693         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
694         if (v & PFSW) {
695                 adap->swintr = 1;
696                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
697         }
698         t4_slow_intr_handler(adap);
699         return IRQ_HANDLED;
700 }
701
702 /*
703  * Name the MSI-X interrupts.
704  */
705 static void name_msix_vecs(struct adapter *adap)
706 {
707         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
708
709         /* non-data interrupts */
710         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
711
712         /* FW events */
713         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
714                  adap->port[0]->name);
715
716         /* Ethernet queues */
717         for_each_port(adap, j) {
718                 struct net_device *d = adap->port[j];
719                 const struct port_info *pi = netdev_priv(d);
720
721                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
722                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
723                                  d->name, i);
724         }
725
726         /* offload queues */
727         for_each_ofldrxq(&adap->sge, i)
728                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
729                          adap->port[0]->name, i);
730
731         for_each_rdmarxq(&adap->sge, i)
732                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
733                          adap->port[0]->name, i);
734 }
735
736 static int request_msix_queue_irqs(struct adapter *adap)
737 {
738         struct sge *s = &adap->sge;
739         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2;
740
741         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
742                           adap->msix_info[1].desc, &s->fw_evtq);
743         if (err)
744                 return err;
745
746         for_each_ethrxq(s, ethqidx) {
747                 err = request_irq(adap->msix_info[msi_index].vec,
748                                   t4_sge_intr_msix, 0,
749                                   adap->msix_info[msi_index].desc,
750                                   &s->ethrxq[ethqidx].rspq);
751                 if (err)
752                         goto unwind;
753                 msi_index++;
754         }
755         for_each_ofldrxq(s, ofldqidx) {
756                 err = request_irq(adap->msix_info[msi_index].vec,
757                                   t4_sge_intr_msix, 0,
758                                   adap->msix_info[msi_index].desc,
759                                   &s->ofldrxq[ofldqidx].rspq);
760                 if (err)
761                         goto unwind;
762                 msi_index++;
763         }
764         for_each_rdmarxq(s, rdmaqidx) {
765                 err = request_irq(adap->msix_info[msi_index].vec,
766                                   t4_sge_intr_msix, 0,
767                                   adap->msix_info[msi_index].desc,
768                                   &s->rdmarxq[rdmaqidx].rspq);
769                 if (err)
770                         goto unwind;
771                 msi_index++;
772         }
773         return 0;
774
775 unwind:
776         while (--rdmaqidx >= 0)
777                 free_irq(adap->msix_info[--msi_index].vec,
778                          &s->rdmarxq[rdmaqidx].rspq);
779         while (--ofldqidx >= 0)
780                 free_irq(adap->msix_info[--msi_index].vec,
781                          &s->ofldrxq[ofldqidx].rspq);
782         while (--ethqidx >= 0)
783                 free_irq(adap->msix_info[--msi_index].vec,
784                          &s->ethrxq[ethqidx].rspq);
785         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
786         return err;
787 }
788
789 static void free_msix_queue_irqs(struct adapter *adap)
790 {
791         int i, msi_index = 2;
792         struct sge *s = &adap->sge;
793
794         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
795         for_each_ethrxq(s, i)
796                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
797         for_each_ofldrxq(s, i)
798                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
799         for_each_rdmarxq(s, i)
800                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
801 }
802
803 /**
804  *      write_rss - write the RSS table for a given port
805  *      @pi: the port
806  *      @queues: array of queue indices for RSS
807  *
808  *      Sets up the portion of the HW RSS table for the port's VI to distribute
809  *      packets to the Rx queues in @queues.
810  */
811 static int write_rss(const struct port_info *pi, const u16 *queues)
812 {
813         u16 *rss;
814         int i, err;
815         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
816
817         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
818         if (!rss)
819                 return -ENOMEM;
820
821         /* map the queue indices to queue ids */
822         for (i = 0; i < pi->rss_size; i++, queues++)
823                 rss[i] = q[*queues].rspq.abs_id;
824
825         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
826                                   pi->rss_size, rss, pi->rss_size);
827         kfree(rss);
828         return err;
829 }
830
831 /**
832  *      setup_rss - configure RSS
833  *      @adap: the adapter
834  *
835  *      Sets up RSS for each port.
836  */
837 static int setup_rss(struct adapter *adap)
838 {
839         int i, err;
840
841         for_each_port(adap, i) {
842                 const struct port_info *pi = adap2pinfo(adap, i);
843
844                 err = write_rss(pi, pi->rss);
845                 if (err)
846                         return err;
847         }
848         return 0;
849 }
850
851 /*
852  * Return the channel of the ingress queue with the given qid.
853  */
854 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
855 {
856         qid -= p->ingr_start;
857         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
858 }
859
860 /*
861  * Wait until all NAPI handlers are descheduled.
862  */
863 static void quiesce_rx(struct adapter *adap)
864 {
865         int i;
866
867         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
868                 struct sge_rspq *q = adap->sge.ingr_map[i];
869
870                 if (q && q->handler)
871                         napi_disable(&q->napi);
872         }
873 }
874
875 /*
876  * Enable NAPI scheduling and interrupt generation for all Rx queues.
877  */
878 static void enable_rx(struct adapter *adap)
879 {
880         int i;
881
882         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
883                 struct sge_rspq *q = adap->sge.ingr_map[i];
884
885                 if (!q)
886                         continue;
887                 if (q->handler)
888                         napi_enable(&q->napi);
889                 /* 0-increment GTS to start the timer and enable interrupts */
890                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
891                              SEINTARM(q->intr_params) |
892                              INGRESSQID(q->cntxt_id));
893         }
894 }
895
896 /**
897  *      setup_sge_queues - configure SGE Tx/Rx/response queues
898  *      @adap: the adapter
899  *
900  *      Determines how many sets of SGE queues to use and initializes them.
901  *      We support multiple queue sets per port if we have MSI-X, otherwise
902  *      just one queue set per port.
903  */
904 static int setup_sge_queues(struct adapter *adap)
905 {
906         int err, msi_idx, i, j;
907         struct sge *s = &adap->sge;
908
909         bitmap_zero(s->starving_fl, MAX_EGRQ);
910         bitmap_zero(s->txq_maperr, MAX_EGRQ);
911
912         if (adap->flags & USING_MSIX)
913                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
914         else {
915                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
916                                        NULL, NULL);
917                 if (err)
918                         return err;
919                 msi_idx = -((int)s->intrq.abs_id + 1);
920         }
921
922         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
923                                msi_idx, NULL, fwevtq_handler);
924         if (err) {
925 freeout:        t4_free_sge_resources(adap);
926                 return err;
927         }
928
929         for_each_port(adap, i) {
930                 struct net_device *dev = adap->port[i];
931                 struct port_info *pi = netdev_priv(dev);
932                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
933                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
934
935                 for (j = 0; j < pi->nqsets; j++, q++) {
936                         if (msi_idx > 0)
937                                 msi_idx++;
938                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
939                                                msi_idx, &q->fl,
940                                                t4_ethrx_handler);
941                         if (err)
942                                 goto freeout;
943                         q->rspq.idx = j;
944                         memset(&q->stats, 0, sizeof(q->stats));
945                 }
946                 for (j = 0; j < pi->nqsets; j++, t++) {
947                         err = t4_sge_alloc_eth_txq(adap, t, dev,
948                                         netdev_get_tx_queue(dev, j),
949                                         s->fw_evtq.cntxt_id);
950                         if (err)
951                                 goto freeout;
952                 }
953         }
954
955         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
956         for_each_ofldrxq(s, i) {
957                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
958                 struct net_device *dev = adap->port[i / j];
959
960                 if (msi_idx > 0)
961                         msi_idx++;
962                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
963                                        &q->fl, uldrx_handler);
964                 if (err)
965                         goto freeout;
966                 memset(&q->stats, 0, sizeof(q->stats));
967                 s->ofld_rxq[i] = q->rspq.abs_id;
968                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
969                                             s->fw_evtq.cntxt_id);
970                 if (err)
971                         goto freeout;
972         }
973
974         for_each_rdmarxq(s, i) {
975                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
976
977                 if (msi_idx > 0)
978                         msi_idx++;
979                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
980                                        msi_idx, &q->fl, uldrx_handler);
981                 if (err)
982                         goto freeout;
983                 memset(&q->stats, 0, sizeof(q->stats));
984                 s->rdma_rxq[i] = q->rspq.abs_id;
985         }
986
987         for_each_port(adap, i) {
988                 /*
989                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
990                  * have RDMA queues, and that's the right value.
991                  */
992                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
993                                             s->fw_evtq.cntxt_id,
994                                             s->rdmarxq[i].rspq.cntxt_id);
995                 if (err)
996                         goto freeout;
997         }
998
999         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1000                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1001                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1002         return 0;
1003 }
1004
1005 /*
1006  * Returns 0 if new FW was successfully loaded, a positive errno if a load was
1007  * started but failed, and a negative errno if flash load couldn't start.
1008  */
1009 static int upgrade_fw(struct adapter *adap)
1010 {
1011         int ret;
1012         u32 vers, exp_major;
1013         const struct fw_hdr *hdr;
1014         const struct firmware *fw;
1015         struct device *dev = adap->pdev_dev;
1016         char *fw_file_name;
1017
1018         switch (CHELSIO_CHIP_VERSION(adap->chip)) {
1019         case CHELSIO_T4:
1020                 fw_file_name = FW_FNAME;
1021                 exp_major = FW_VERSION_MAJOR;
1022                 break;
1023         case CHELSIO_T5:
1024                 fw_file_name = FW5_FNAME;
1025                 exp_major = FW_VERSION_MAJOR_T5;
1026                 break;
1027         default:
1028                 dev_err(dev, "Unsupported chip type, %x\n", adap->chip);
1029                 return -EINVAL;
1030         }
1031
1032         ret = request_firmware(&fw, fw_file_name, dev);
1033         if (ret < 0) {
1034                 dev_err(dev, "unable to load firmware image %s, error %d\n",
1035                         fw_file_name, ret);
1036                 return ret;
1037         }
1038
1039         hdr = (const struct fw_hdr *)fw->data;
1040         vers = ntohl(hdr->fw_ver);
1041         if (FW_HDR_FW_VER_MAJOR_GET(vers) != exp_major) {
1042                 ret = -EINVAL;              /* wrong major version, won't do */
1043                 goto out;
1044         }
1045
1046         /*
1047          * If the flash FW is unusable or we found something newer, load it.
1048          */
1049         if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != exp_major ||
1050             vers > adap->params.fw_vers) {
1051                 dev_info(dev, "upgrading firmware ...\n");
1052                 ret = t4_fw_upgrade(adap, adap->mbox, fw->data, fw->size,
1053                                     /*force=*/false);
1054                 if (!ret)
1055                         dev_info(dev,
1056                                  "firmware upgraded to version %pI4 from %s\n",
1057                                  &hdr->fw_ver, fw_file_name);
1058                 else
1059                         dev_err(dev, "firmware upgrade failed! err=%d\n", -ret);
1060         } else {
1061                 /*
1062                  * Tell our caller that we didn't upgrade the firmware.
1063                  */
1064                 ret = -EINVAL;
1065         }
1066
1067 out:    release_firmware(fw);
1068         return ret;
1069 }
1070
1071 /*
1072  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1073  * The allocated memory is cleared.
1074  */
1075 void *t4_alloc_mem(size_t size)
1076 {
1077         void *p = kzalloc(size, GFP_KERNEL);
1078
1079         if (!p)
1080                 p = vzalloc(size);
1081         return p;
1082 }
1083
1084 /*
1085  * Free memory allocated through alloc_mem().
1086  */
1087 static void t4_free_mem(void *addr)
1088 {
1089         if (is_vmalloc_addr(addr))
1090                 vfree(addr);
1091         else
1092                 kfree(addr);
1093 }
1094
1095 /* Send a Work Request to write the filter at a specified index.  We construct
1096  * a Firmware Filter Work Request to have the work done and put the indicated
1097  * filter into "pending" mode which will prevent any further actions against
1098  * it till we get a reply from the firmware on the completion status of the
1099  * request.
1100  */
1101 static int set_filter_wr(struct adapter *adapter, int fidx)
1102 {
1103         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1104         struct sk_buff *skb;
1105         struct fw_filter_wr *fwr;
1106         unsigned int ftid;
1107
1108         /* If the new filter requires loopback Destination MAC and/or VLAN
1109          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1110          * the filter.
1111          */
1112         if (f->fs.newdmac || f->fs.newvlan) {
1113                 /* allocate L2T entry for new filter */
1114                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1115                 if (f->l2t == NULL)
1116                         return -EAGAIN;
1117                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1118                                         f->fs.eport, f->fs.dmac)) {
1119                         cxgb4_l2t_release(f->l2t);
1120                         f->l2t = NULL;
1121                         return -ENOMEM;
1122                 }
1123         }
1124
1125         ftid = adapter->tids.ftid_base + fidx;
1126
1127         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1128         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1129         memset(fwr, 0, sizeof(*fwr));
1130
1131         /* It would be nice to put most of the following in t4_hw.c but most
1132          * of the work is translating the cxgbtool ch_filter_specification
1133          * into the Work Request and the definition of that structure is
1134          * currently in cxgbtool.h which isn't appropriate to pull into the
1135          * common code.  We may eventually try to come up with a more neutral
1136          * filter specification structure but for now it's easiest to simply
1137          * put this fairly direct code in line ...
1138          */
1139         fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1140         fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1141         fwr->tid_to_iq =
1142                 htonl(V_FW_FILTER_WR_TID(ftid) |
1143                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1144                       V_FW_FILTER_WR_NOREPLY(0) |
1145                       V_FW_FILTER_WR_IQ(f->fs.iq));
1146         fwr->del_filter_to_l2tix =
1147                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1148                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1149                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1150                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1151                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1152                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1153                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1154                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1155                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1156                                              f->fs.newvlan == VLAN_REWRITE) |
1157                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1158                                             f->fs.newvlan == VLAN_REWRITE) |
1159                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1160                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1161                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1162                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1163         fwr->ethtype = htons(f->fs.val.ethtype);
1164         fwr->ethtypem = htons(f->fs.mask.ethtype);
1165         fwr->frag_to_ovlan_vldm =
1166                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1167                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1168                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1169                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1170                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1171                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1172         fwr->smac_sel = 0;
1173         fwr->rx_chan_rx_rpl_iq =
1174                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1175                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1176         fwr->maci_to_matchtypem =
1177                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1178                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1179                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1180                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1181                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1182                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1183                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1184                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1185         fwr->ptcl = f->fs.val.proto;
1186         fwr->ptclm = f->fs.mask.proto;
1187         fwr->ttyp = f->fs.val.tos;
1188         fwr->ttypm = f->fs.mask.tos;
1189         fwr->ivlan = htons(f->fs.val.ivlan);
1190         fwr->ivlanm = htons(f->fs.mask.ivlan);
1191         fwr->ovlan = htons(f->fs.val.ovlan);
1192         fwr->ovlanm = htons(f->fs.mask.ovlan);
1193         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1194         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1195         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1196         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1197         fwr->lp = htons(f->fs.val.lport);
1198         fwr->lpm = htons(f->fs.mask.lport);
1199         fwr->fp = htons(f->fs.val.fport);
1200         fwr->fpm = htons(f->fs.mask.fport);
1201         if (f->fs.newsmac)
1202                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1203
1204         /* Mark the filter as "pending" and ship off the Filter Work Request.
1205          * When we get the Work Request Reply we'll clear the pending status.
1206          */
1207         f->pending = 1;
1208         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1209         t4_ofld_send(adapter, skb);
1210         return 0;
1211 }
1212
1213 /* Delete the filter at a specified index.
1214  */
1215 static int del_filter_wr(struct adapter *adapter, int fidx)
1216 {
1217         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1218         struct sk_buff *skb;
1219         struct fw_filter_wr *fwr;
1220         unsigned int len, ftid;
1221
1222         len = sizeof(*fwr);
1223         ftid = adapter->tids.ftid_base + fidx;
1224
1225         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1226         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1227         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1228
1229         /* Mark the filter as "pending" and ship off the Filter Work Request.
1230          * When we get the Work Request Reply we'll clear the pending status.
1231          */
1232         f->pending = 1;
1233         t4_mgmt_tx(adapter, skb);
1234         return 0;
1235 }
1236
1237 static inline int is_offload(const struct adapter *adap)
1238 {
1239         return adap->params.offload;
1240 }
1241
1242 /*
1243  * Implementation of ethtool operations.
1244  */
1245
1246 static u32 get_msglevel(struct net_device *dev)
1247 {
1248         return netdev2adap(dev)->msg_enable;
1249 }
1250
1251 static void set_msglevel(struct net_device *dev, u32 val)
1252 {
1253         netdev2adap(dev)->msg_enable = val;
1254 }
1255
1256 static char stats_strings[][ETH_GSTRING_LEN] = {
1257         "TxOctetsOK         ",
1258         "TxFramesOK         ",
1259         "TxBroadcastFrames  ",
1260         "TxMulticastFrames  ",
1261         "TxUnicastFrames    ",
1262         "TxErrorFrames      ",
1263
1264         "TxFrames64         ",
1265         "TxFrames65To127    ",
1266         "TxFrames128To255   ",
1267         "TxFrames256To511   ",
1268         "TxFrames512To1023  ",
1269         "TxFrames1024To1518 ",
1270         "TxFrames1519ToMax  ",
1271
1272         "TxFramesDropped    ",
1273         "TxPauseFrames      ",
1274         "TxPPP0Frames       ",
1275         "TxPPP1Frames       ",
1276         "TxPPP2Frames       ",
1277         "TxPPP3Frames       ",
1278         "TxPPP4Frames       ",
1279         "TxPPP5Frames       ",
1280         "TxPPP6Frames       ",
1281         "TxPPP7Frames       ",
1282
1283         "RxOctetsOK         ",
1284         "RxFramesOK         ",
1285         "RxBroadcastFrames  ",
1286         "RxMulticastFrames  ",
1287         "RxUnicastFrames    ",
1288
1289         "RxFramesTooLong    ",
1290         "RxJabberErrors     ",
1291         "RxFCSErrors        ",
1292         "RxLengthErrors     ",
1293         "RxSymbolErrors     ",
1294         "RxRuntFrames       ",
1295
1296         "RxFrames64         ",
1297         "RxFrames65To127    ",
1298         "RxFrames128To255   ",
1299         "RxFrames256To511   ",
1300         "RxFrames512To1023  ",
1301         "RxFrames1024To1518 ",
1302         "RxFrames1519ToMax  ",
1303
1304         "RxPauseFrames      ",
1305         "RxPPP0Frames       ",
1306         "RxPPP1Frames       ",
1307         "RxPPP2Frames       ",
1308         "RxPPP3Frames       ",
1309         "RxPPP4Frames       ",
1310         "RxPPP5Frames       ",
1311         "RxPPP6Frames       ",
1312         "RxPPP7Frames       ",
1313
1314         "RxBG0FramesDropped ",
1315         "RxBG1FramesDropped ",
1316         "RxBG2FramesDropped ",
1317         "RxBG3FramesDropped ",
1318         "RxBG0FramesTrunc   ",
1319         "RxBG1FramesTrunc   ",
1320         "RxBG2FramesTrunc   ",
1321         "RxBG3FramesTrunc   ",
1322
1323         "TSO                ",
1324         "TxCsumOffload      ",
1325         "RxCsumGood         ",
1326         "VLANextractions    ",
1327         "VLANinsertions     ",
1328         "GROpackets         ",
1329         "GROmerged          ",
1330         "WriteCoalSuccess   ",
1331         "WriteCoalFail      ",
1332 };
1333
1334 static int get_sset_count(struct net_device *dev, int sset)
1335 {
1336         switch (sset) {
1337         case ETH_SS_STATS:
1338                 return ARRAY_SIZE(stats_strings);
1339         default:
1340                 return -EOPNOTSUPP;
1341         }
1342 }
1343
1344 #define T4_REGMAP_SIZE (160 * 1024)
1345 #define T5_REGMAP_SIZE (332 * 1024)
1346
1347 static int get_regs_len(struct net_device *dev)
1348 {
1349         struct adapter *adap = netdev2adap(dev);
1350         if (is_t4(adap->chip))
1351                 return T4_REGMAP_SIZE;
1352         else
1353                 return T5_REGMAP_SIZE;
1354 }
1355
1356 static int get_eeprom_len(struct net_device *dev)
1357 {
1358         return EEPROMSIZE;
1359 }
1360
1361 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1362 {
1363         struct adapter *adapter = netdev2adap(dev);
1364
1365         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1366         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1367         strlcpy(info->bus_info, pci_name(adapter->pdev),
1368                 sizeof(info->bus_info));
1369
1370         if (adapter->params.fw_vers)
1371                 snprintf(info->fw_version, sizeof(info->fw_version),
1372                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1373                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1374                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1375                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1376                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1377                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1378                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1379                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1380                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1381 }
1382
1383 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1384 {
1385         if (stringset == ETH_SS_STATS)
1386                 memcpy(data, stats_strings, sizeof(stats_strings));
1387 }
1388
1389 /*
1390  * port stats maintained per queue of the port.  They should be in the same
1391  * order as in stats_strings above.
1392  */
1393 struct queue_port_stats {
1394         u64 tso;
1395         u64 tx_csum;
1396         u64 rx_csum;
1397         u64 vlan_ex;
1398         u64 vlan_ins;
1399         u64 gro_pkts;
1400         u64 gro_merged;
1401 };
1402
1403 static void collect_sge_port_stats(const struct adapter *adap,
1404                 const struct port_info *p, struct queue_port_stats *s)
1405 {
1406         int i;
1407         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1408         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1409
1410         memset(s, 0, sizeof(*s));
1411         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1412                 s->tso += tx->tso;
1413                 s->tx_csum += tx->tx_cso;
1414                 s->rx_csum += rx->stats.rx_cso;
1415                 s->vlan_ex += rx->stats.vlan_ex;
1416                 s->vlan_ins += tx->vlan_ins;
1417                 s->gro_pkts += rx->stats.lro_pkts;
1418                 s->gro_merged += rx->stats.lro_merged;
1419         }
1420 }
1421
1422 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1423                       u64 *data)
1424 {
1425         struct port_info *pi = netdev_priv(dev);
1426         struct adapter *adapter = pi->adapter;
1427         u32 val1, val2;
1428
1429         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1430
1431         data += sizeof(struct port_stats) / sizeof(u64);
1432         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1433         data += sizeof(struct queue_port_stats) / sizeof(u64);
1434         if (!is_t4(adapter->chip)) {
1435                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1436                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1437                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1438                 *data = val1 - val2;
1439                 data++;
1440                 *data = val2;
1441                 data++;
1442         } else {
1443                 memset(data, 0, 2 * sizeof(u64));
1444                 *data += 2;
1445         }
1446 }
1447
1448 /*
1449  * Return a version number to identify the type of adapter.  The scheme is:
1450  * - bits 0..9: chip version
1451  * - bits 10..15: chip revision
1452  * - bits 16..23: register dump version
1453  */
1454 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1455 {
1456         return CHELSIO_CHIP_VERSION(ap->chip) |
1457                 (CHELSIO_CHIP_RELEASE(ap->chip) << 10) | (1 << 16);
1458 }
1459
1460 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1461                            unsigned int end)
1462 {
1463         u32 *p = buf + start;
1464
1465         for ( ; start <= end; start += sizeof(u32))
1466                 *p++ = t4_read_reg(ap, start);
1467 }
1468
1469 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1470                      void *buf)
1471 {
1472         static const unsigned int t4_reg_ranges[] = {
1473                 0x1008, 0x1108,
1474                 0x1180, 0x11b4,
1475                 0x11fc, 0x123c,
1476                 0x1300, 0x173c,
1477                 0x1800, 0x18fc,
1478                 0x3000, 0x30d8,
1479                 0x30e0, 0x5924,
1480                 0x5960, 0x59d4,
1481                 0x5a00, 0x5af8,
1482                 0x6000, 0x6098,
1483                 0x6100, 0x6150,
1484                 0x6200, 0x6208,
1485                 0x6240, 0x6248,
1486                 0x6280, 0x6338,
1487                 0x6370, 0x638c,
1488                 0x6400, 0x643c,
1489                 0x6500, 0x6524,
1490                 0x6a00, 0x6a38,
1491                 0x6a60, 0x6a78,
1492                 0x6b00, 0x6b84,
1493                 0x6bf0, 0x6c84,
1494                 0x6cf0, 0x6d84,
1495                 0x6df0, 0x6e84,
1496                 0x6ef0, 0x6f84,
1497                 0x6ff0, 0x7084,
1498                 0x70f0, 0x7184,
1499                 0x71f0, 0x7284,
1500                 0x72f0, 0x7384,
1501                 0x73f0, 0x7450,
1502                 0x7500, 0x7530,
1503                 0x7600, 0x761c,
1504                 0x7680, 0x76cc,
1505                 0x7700, 0x7798,
1506                 0x77c0, 0x77fc,
1507                 0x7900, 0x79fc,
1508                 0x7b00, 0x7c38,
1509                 0x7d00, 0x7efc,
1510                 0x8dc0, 0x8e1c,
1511                 0x8e30, 0x8e78,
1512                 0x8ea0, 0x8f6c,
1513                 0x8fc0, 0x9074,
1514                 0x90fc, 0x90fc,
1515                 0x9400, 0x9458,
1516                 0x9600, 0x96bc,
1517                 0x9800, 0x9808,
1518                 0x9820, 0x983c,
1519                 0x9850, 0x9864,
1520                 0x9c00, 0x9c6c,
1521                 0x9c80, 0x9cec,
1522                 0x9d00, 0x9d6c,
1523                 0x9d80, 0x9dec,
1524                 0x9e00, 0x9e6c,
1525                 0x9e80, 0x9eec,
1526                 0x9f00, 0x9f6c,
1527                 0x9f80, 0x9fec,
1528                 0xd004, 0xd03c,
1529                 0xdfc0, 0xdfe0,
1530                 0xe000, 0xea7c,
1531                 0xf000, 0x11190,
1532                 0x19040, 0x1906c,
1533                 0x19078, 0x19080,
1534                 0x1908c, 0x19124,
1535                 0x19150, 0x191b0,
1536                 0x191d0, 0x191e8,
1537                 0x19238, 0x1924c,
1538                 0x193f8, 0x19474,
1539                 0x19490, 0x194f8,
1540                 0x19800, 0x19f30,
1541                 0x1a000, 0x1a06c,
1542                 0x1a0b0, 0x1a120,
1543                 0x1a128, 0x1a138,
1544                 0x1a190, 0x1a1c4,
1545                 0x1a1fc, 0x1a1fc,
1546                 0x1e040, 0x1e04c,
1547                 0x1e284, 0x1e28c,
1548                 0x1e2c0, 0x1e2c0,
1549                 0x1e2e0, 0x1e2e0,
1550                 0x1e300, 0x1e384,
1551                 0x1e3c0, 0x1e3c8,
1552                 0x1e440, 0x1e44c,
1553                 0x1e684, 0x1e68c,
1554                 0x1e6c0, 0x1e6c0,
1555                 0x1e6e0, 0x1e6e0,
1556                 0x1e700, 0x1e784,
1557                 0x1e7c0, 0x1e7c8,
1558                 0x1e840, 0x1e84c,
1559                 0x1ea84, 0x1ea8c,
1560                 0x1eac0, 0x1eac0,
1561                 0x1eae0, 0x1eae0,
1562                 0x1eb00, 0x1eb84,
1563                 0x1ebc0, 0x1ebc8,
1564                 0x1ec40, 0x1ec4c,
1565                 0x1ee84, 0x1ee8c,
1566                 0x1eec0, 0x1eec0,
1567                 0x1eee0, 0x1eee0,
1568                 0x1ef00, 0x1ef84,
1569                 0x1efc0, 0x1efc8,
1570                 0x1f040, 0x1f04c,
1571                 0x1f284, 0x1f28c,
1572                 0x1f2c0, 0x1f2c0,
1573                 0x1f2e0, 0x1f2e0,
1574                 0x1f300, 0x1f384,
1575                 0x1f3c0, 0x1f3c8,
1576                 0x1f440, 0x1f44c,
1577                 0x1f684, 0x1f68c,
1578                 0x1f6c0, 0x1f6c0,
1579                 0x1f6e0, 0x1f6e0,
1580                 0x1f700, 0x1f784,
1581                 0x1f7c0, 0x1f7c8,
1582                 0x1f840, 0x1f84c,
1583                 0x1fa84, 0x1fa8c,
1584                 0x1fac0, 0x1fac0,
1585                 0x1fae0, 0x1fae0,
1586                 0x1fb00, 0x1fb84,
1587                 0x1fbc0, 0x1fbc8,
1588                 0x1fc40, 0x1fc4c,
1589                 0x1fe84, 0x1fe8c,
1590                 0x1fec0, 0x1fec0,
1591                 0x1fee0, 0x1fee0,
1592                 0x1ff00, 0x1ff84,
1593                 0x1ffc0, 0x1ffc8,
1594                 0x20000, 0x2002c,
1595                 0x20100, 0x2013c,
1596                 0x20190, 0x201c8,
1597                 0x20200, 0x20318,
1598                 0x20400, 0x20528,
1599                 0x20540, 0x20614,
1600                 0x21000, 0x21040,
1601                 0x2104c, 0x21060,
1602                 0x210c0, 0x210ec,
1603                 0x21200, 0x21268,
1604                 0x21270, 0x21284,
1605                 0x212fc, 0x21388,
1606                 0x21400, 0x21404,
1607                 0x21500, 0x21518,
1608                 0x2152c, 0x2153c,
1609                 0x21550, 0x21554,
1610                 0x21600, 0x21600,
1611                 0x21608, 0x21628,
1612                 0x21630, 0x2163c,
1613                 0x21700, 0x2171c,
1614                 0x21780, 0x2178c,
1615                 0x21800, 0x21c38,
1616                 0x21c80, 0x21d7c,
1617                 0x21e00, 0x21e04,
1618                 0x22000, 0x2202c,
1619                 0x22100, 0x2213c,
1620                 0x22190, 0x221c8,
1621                 0x22200, 0x22318,
1622                 0x22400, 0x22528,
1623                 0x22540, 0x22614,
1624                 0x23000, 0x23040,
1625                 0x2304c, 0x23060,
1626                 0x230c0, 0x230ec,
1627                 0x23200, 0x23268,
1628                 0x23270, 0x23284,
1629                 0x232fc, 0x23388,
1630                 0x23400, 0x23404,
1631                 0x23500, 0x23518,
1632                 0x2352c, 0x2353c,
1633                 0x23550, 0x23554,
1634                 0x23600, 0x23600,
1635                 0x23608, 0x23628,
1636                 0x23630, 0x2363c,
1637                 0x23700, 0x2371c,
1638                 0x23780, 0x2378c,
1639                 0x23800, 0x23c38,
1640                 0x23c80, 0x23d7c,
1641                 0x23e00, 0x23e04,
1642                 0x24000, 0x2402c,
1643                 0x24100, 0x2413c,
1644                 0x24190, 0x241c8,
1645                 0x24200, 0x24318,
1646                 0x24400, 0x24528,
1647                 0x24540, 0x24614,
1648                 0x25000, 0x25040,
1649                 0x2504c, 0x25060,
1650                 0x250c0, 0x250ec,
1651                 0x25200, 0x25268,
1652                 0x25270, 0x25284,
1653                 0x252fc, 0x25388,
1654                 0x25400, 0x25404,
1655                 0x25500, 0x25518,
1656                 0x2552c, 0x2553c,
1657                 0x25550, 0x25554,
1658                 0x25600, 0x25600,
1659                 0x25608, 0x25628,
1660                 0x25630, 0x2563c,
1661                 0x25700, 0x2571c,
1662                 0x25780, 0x2578c,
1663                 0x25800, 0x25c38,
1664                 0x25c80, 0x25d7c,
1665                 0x25e00, 0x25e04,
1666                 0x26000, 0x2602c,
1667                 0x26100, 0x2613c,
1668                 0x26190, 0x261c8,
1669                 0x26200, 0x26318,
1670                 0x26400, 0x26528,
1671                 0x26540, 0x26614,
1672                 0x27000, 0x27040,
1673                 0x2704c, 0x27060,
1674                 0x270c0, 0x270ec,
1675                 0x27200, 0x27268,
1676                 0x27270, 0x27284,
1677                 0x272fc, 0x27388,
1678                 0x27400, 0x27404,
1679                 0x27500, 0x27518,
1680                 0x2752c, 0x2753c,
1681                 0x27550, 0x27554,
1682                 0x27600, 0x27600,
1683                 0x27608, 0x27628,
1684                 0x27630, 0x2763c,
1685                 0x27700, 0x2771c,
1686                 0x27780, 0x2778c,
1687                 0x27800, 0x27c38,
1688                 0x27c80, 0x27d7c,
1689                 0x27e00, 0x27e04
1690         };
1691
1692         static const unsigned int t5_reg_ranges[] = {
1693                 0x1008, 0x1148,
1694                 0x1180, 0x11b4,
1695                 0x11fc, 0x123c,
1696                 0x1280, 0x173c,
1697                 0x1800, 0x18fc,
1698                 0x3000, 0x3028,
1699                 0x3060, 0x30d8,
1700                 0x30e0, 0x30fc,
1701                 0x3140, 0x357c,
1702                 0x35a8, 0x35cc,
1703                 0x35ec, 0x35ec,
1704                 0x3600, 0x5624,
1705                 0x56cc, 0x575c,
1706                 0x580c, 0x5814,
1707                 0x5890, 0x58bc,
1708                 0x5940, 0x59dc,
1709                 0x59fc, 0x5a18,
1710                 0x5a60, 0x5a9c,
1711                 0x5b9c, 0x5bfc,
1712                 0x6000, 0x6040,
1713                 0x6058, 0x614c,
1714                 0x7700, 0x7798,
1715                 0x77c0, 0x78fc,
1716                 0x7b00, 0x7c54,
1717                 0x7d00, 0x7efc,
1718                 0x8dc0, 0x8de0,
1719                 0x8df8, 0x8e84,
1720                 0x8ea0, 0x8f84,
1721                 0x8fc0, 0x90f8,
1722                 0x9400, 0x9470,
1723                 0x9600, 0x96f4,
1724                 0x9800, 0x9808,
1725                 0x9820, 0x983c,
1726                 0x9850, 0x9864,
1727                 0x9c00, 0x9c6c,
1728                 0x9c80, 0x9cec,
1729                 0x9d00, 0x9d6c,
1730                 0x9d80, 0x9dec,
1731                 0x9e00, 0x9e6c,
1732                 0x9e80, 0x9eec,
1733                 0x9f00, 0x9f6c,
1734                 0x9f80, 0xa020,
1735                 0xd004, 0xd03c,
1736                 0xdfc0, 0xdfe0,
1737                 0xe000, 0x11088,
1738                 0x1109c, 0x1117c,
1739                 0x11190, 0x11204,
1740                 0x19040, 0x1906c,
1741                 0x19078, 0x19080,
1742                 0x1908c, 0x19124,
1743                 0x19150, 0x191b0,
1744                 0x191d0, 0x191e8,
1745                 0x19238, 0x19290,
1746                 0x193f8, 0x19474,
1747                 0x19490, 0x194cc,
1748                 0x194f0, 0x194f8,
1749                 0x19c00, 0x19c60,
1750                 0x19c94, 0x19e10,
1751                 0x19e50, 0x19f34,
1752                 0x19f40, 0x19f50,
1753                 0x19f90, 0x19fe4,
1754                 0x1a000, 0x1a06c,
1755                 0x1a0b0, 0x1a120,
1756                 0x1a128, 0x1a138,
1757                 0x1a190, 0x1a1c4,
1758                 0x1a1fc, 0x1a1fc,
1759                 0x1e008, 0x1e00c,
1760                 0x1e040, 0x1e04c,
1761                 0x1e284, 0x1e290,
1762                 0x1e2c0, 0x1e2c0,
1763                 0x1e2e0, 0x1e2e0,
1764                 0x1e300, 0x1e384,
1765                 0x1e3c0, 0x1e3c8,
1766                 0x1e408, 0x1e40c,
1767                 0x1e440, 0x1e44c,
1768                 0x1e684, 0x1e690,
1769                 0x1e6c0, 0x1e6c0,
1770                 0x1e6e0, 0x1e6e0,
1771                 0x1e700, 0x1e784,
1772                 0x1e7c0, 0x1e7c8,
1773                 0x1e808, 0x1e80c,
1774                 0x1e840, 0x1e84c,
1775                 0x1ea84, 0x1ea90,
1776                 0x1eac0, 0x1eac0,
1777                 0x1eae0, 0x1eae0,
1778                 0x1eb00, 0x1eb84,
1779                 0x1ebc0, 0x1ebc8,
1780                 0x1ec08, 0x1ec0c,
1781                 0x1ec40, 0x1ec4c,
1782                 0x1ee84, 0x1ee90,
1783                 0x1eec0, 0x1eec0,
1784                 0x1eee0, 0x1eee0,
1785                 0x1ef00, 0x1ef84,
1786                 0x1efc0, 0x1efc8,
1787                 0x1f008, 0x1f00c,
1788                 0x1f040, 0x1f04c,
1789                 0x1f284, 0x1f290,
1790                 0x1f2c0, 0x1f2c0,
1791                 0x1f2e0, 0x1f2e0,
1792                 0x1f300, 0x1f384,
1793                 0x1f3c0, 0x1f3c8,
1794                 0x1f408, 0x1f40c,
1795                 0x1f440, 0x1f44c,
1796                 0x1f684, 0x1f690,
1797                 0x1f6c0, 0x1f6c0,
1798                 0x1f6e0, 0x1f6e0,
1799                 0x1f700, 0x1f784,
1800                 0x1f7c0, 0x1f7c8,
1801                 0x1f808, 0x1f80c,
1802                 0x1f840, 0x1f84c,
1803                 0x1fa84, 0x1fa90,
1804                 0x1fac0, 0x1fac0,
1805                 0x1fae0, 0x1fae0,
1806                 0x1fb00, 0x1fb84,
1807                 0x1fbc0, 0x1fbc8,
1808                 0x1fc08, 0x1fc0c,
1809                 0x1fc40, 0x1fc4c,
1810                 0x1fe84, 0x1fe90,
1811                 0x1fec0, 0x1fec0,
1812                 0x1fee0, 0x1fee0,
1813                 0x1ff00, 0x1ff84,
1814                 0x1ffc0, 0x1ffc8,
1815                 0x30000, 0x30030,
1816                 0x30100, 0x30144,
1817                 0x30190, 0x301d0,
1818                 0x30200, 0x30318,
1819                 0x30400, 0x3052c,
1820                 0x30540, 0x3061c,
1821                 0x30800, 0x30834,
1822                 0x308c0, 0x30908,
1823                 0x30910, 0x309ac,
1824                 0x30a00, 0x30a04,
1825                 0x30a0c, 0x30a2c,
1826                 0x30a44, 0x30a50,
1827                 0x30a74, 0x30c24,
1828                 0x30d08, 0x30d14,
1829                 0x30d1c, 0x30d20,
1830                 0x30d3c, 0x30d50,
1831                 0x31200, 0x3120c,
1832                 0x31220, 0x31220,
1833                 0x31240, 0x31240,
1834                 0x31600, 0x31600,
1835                 0x31608, 0x3160c,
1836                 0x31a00, 0x31a1c,
1837                 0x31e04, 0x31e20,
1838                 0x31e38, 0x31e3c,
1839                 0x31e80, 0x31e80,
1840                 0x31e88, 0x31ea8,
1841                 0x31eb0, 0x31eb4,
1842                 0x31ec8, 0x31ed4,
1843                 0x31fb8, 0x32004,
1844                 0x32208, 0x3223c,
1845                 0x32600, 0x32630,
1846                 0x32a00, 0x32abc,
1847                 0x32b00, 0x32b70,
1848                 0x33000, 0x33048,
1849                 0x33060, 0x3309c,
1850                 0x330f0, 0x33148,
1851                 0x33160, 0x3319c,
1852                 0x331f0, 0x332e4,
1853                 0x332f8, 0x333e4,
1854                 0x333f8, 0x33448,
1855                 0x33460, 0x3349c,
1856                 0x334f0, 0x33548,
1857                 0x33560, 0x3359c,
1858                 0x335f0, 0x336e4,
1859                 0x336f8, 0x337e4,
1860                 0x337f8, 0x337fc,
1861                 0x33814, 0x33814,
1862                 0x3382c, 0x3382c,
1863                 0x33880, 0x3388c,
1864                 0x338e8, 0x338ec,
1865                 0x33900, 0x33948,
1866                 0x33960, 0x3399c,
1867                 0x339f0, 0x33ae4,
1868                 0x33af8, 0x33b10,
1869                 0x33b28, 0x33b28,
1870                 0x33b3c, 0x33b50,
1871                 0x33bf0, 0x33c10,
1872                 0x33c28, 0x33c28,
1873                 0x33c3c, 0x33c50,
1874                 0x33cf0, 0x33cfc,
1875                 0x34000, 0x34030,
1876                 0x34100, 0x34144,
1877                 0x34190, 0x341d0,
1878                 0x34200, 0x34318,
1879                 0x34400, 0x3452c,
1880                 0x34540, 0x3461c,
1881                 0x34800, 0x34834,
1882                 0x348c0, 0x34908,
1883                 0x34910, 0x349ac,
1884                 0x34a00, 0x34a04,
1885                 0x34a0c, 0x34a2c,
1886                 0x34a44, 0x34a50,
1887                 0x34a74, 0x34c24,
1888                 0x34d08, 0x34d14,
1889                 0x34d1c, 0x34d20,
1890                 0x34d3c, 0x34d50,
1891                 0x35200, 0x3520c,
1892                 0x35220, 0x35220,
1893                 0x35240, 0x35240,
1894                 0x35600, 0x35600,
1895                 0x35608, 0x3560c,
1896                 0x35a00, 0x35a1c,
1897                 0x35e04, 0x35e20,
1898                 0x35e38, 0x35e3c,
1899                 0x35e80, 0x35e80,
1900                 0x35e88, 0x35ea8,
1901                 0x35eb0, 0x35eb4,
1902                 0x35ec8, 0x35ed4,
1903                 0x35fb8, 0x36004,
1904                 0x36208, 0x3623c,
1905                 0x36600, 0x36630,
1906                 0x36a00, 0x36abc,
1907                 0x36b00, 0x36b70,
1908                 0x37000, 0x37048,
1909                 0x37060, 0x3709c,
1910                 0x370f0, 0x37148,
1911                 0x37160, 0x3719c,
1912                 0x371f0, 0x372e4,
1913                 0x372f8, 0x373e4,
1914                 0x373f8, 0x37448,
1915                 0x37460, 0x3749c,
1916                 0x374f0, 0x37548,
1917                 0x37560, 0x3759c,
1918                 0x375f0, 0x376e4,
1919                 0x376f8, 0x377e4,
1920                 0x377f8, 0x377fc,
1921                 0x37814, 0x37814,
1922                 0x3782c, 0x3782c,
1923                 0x37880, 0x3788c,
1924                 0x378e8, 0x378ec,
1925                 0x37900, 0x37948,
1926                 0x37960, 0x3799c,
1927                 0x379f0, 0x37ae4,
1928                 0x37af8, 0x37b10,
1929                 0x37b28, 0x37b28,
1930                 0x37b3c, 0x37b50,
1931                 0x37bf0, 0x37c10,
1932                 0x37c28, 0x37c28,
1933                 0x37c3c, 0x37c50,
1934                 0x37cf0, 0x37cfc,
1935                 0x38000, 0x38030,
1936                 0x38100, 0x38144,
1937                 0x38190, 0x381d0,
1938                 0x38200, 0x38318,
1939                 0x38400, 0x3852c,
1940                 0x38540, 0x3861c,
1941                 0x38800, 0x38834,
1942                 0x388c0, 0x38908,
1943                 0x38910, 0x389ac,
1944                 0x38a00, 0x38a04,
1945                 0x38a0c, 0x38a2c,
1946                 0x38a44, 0x38a50,
1947                 0x38a74, 0x38c24,
1948                 0x38d08, 0x38d14,
1949                 0x38d1c, 0x38d20,
1950                 0x38d3c, 0x38d50,
1951                 0x39200, 0x3920c,
1952                 0x39220, 0x39220,
1953                 0x39240, 0x39240,
1954                 0x39600, 0x39600,
1955                 0x39608, 0x3960c,
1956                 0x39a00, 0x39a1c,
1957                 0x39e04, 0x39e20,
1958                 0x39e38, 0x39e3c,
1959                 0x39e80, 0x39e80,
1960                 0x39e88, 0x39ea8,
1961                 0x39eb0, 0x39eb4,
1962                 0x39ec8, 0x39ed4,
1963                 0x39fb8, 0x3a004,
1964                 0x3a208, 0x3a23c,
1965                 0x3a600, 0x3a630,
1966                 0x3aa00, 0x3aabc,
1967                 0x3ab00, 0x3ab70,
1968                 0x3b000, 0x3b048,
1969                 0x3b060, 0x3b09c,
1970                 0x3b0f0, 0x3b148,
1971                 0x3b160, 0x3b19c,
1972                 0x3b1f0, 0x3b2e4,
1973                 0x3b2f8, 0x3b3e4,
1974                 0x3b3f8, 0x3b448,
1975                 0x3b460, 0x3b49c,
1976                 0x3b4f0, 0x3b548,
1977                 0x3b560, 0x3b59c,
1978                 0x3b5f0, 0x3b6e4,
1979                 0x3b6f8, 0x3b7e4,
1980                 0x3b7f8, 0x3b7fc,
1981                 0x3b814, 0x3b814,
1982                 0x3b82c, 0x3b82c,
1983                 0x3b880, 0x3b88c,
1984                 0x3b8e8, 0x3b8ec,
1985                 0x3b900, 0x3b948,
1986                 0x3b960, 0x3b99c,
1987                 0x3b9f0, 0x3bae4,
1988                 0x3baf8, 0x3bb10,
1989                 0x3bb28, 0x3bb28,
1990                 0x3bb3c, 0x3bb50,
1991                 0x3bbf0, 0x3bc10,
1992                 0x3bc28, 0x3bc28,
1993                 0x3bc3c, 0x3bc50,
1994                 0x3bcf0, 0x3bcfc,
1995                 0x3c000, 0x3c030,
1996                 0x3c100, 0x3c144,
1997                 0x3c190, 0x3c1d0,
1998                 0x3c200, 0x3c318,
1999                 0x3c400, 0x3c52c,
2000                 0x3c540, 0x3c61c,
2001                 0x3c800, 0x3c834,
2002                 0x3c8c0, 0x3c908,
2003                 0x3c910, 0x3c9ac,
2004                 0x3ca00, 0x3ca04,
2005                 0x3ca0c, 0x3ca2c,
2006                 0x3ca44, 0x3ca50,
2007                 0x3ca74, 0x3cc24,
2008                 0x3cd08, 0x3cd14,
2009                 0x3cd1c, 0x3cd20,
2010                 0x3cd3c, 0x3cd50,
2011                 0x3d200, 0x3d20c,
2012                 0x3d220, 0x3d220,
2013                 0x3d240, 0x3d240,
2014                 0x3d600, 0x3d600,
2015                 0x3d608, 0x3d60c,
2016                 0x3da00, 0x3da1c,
2017                 0x3de04, 0x3de20,
2018                 0x3de38, 0x3de3c,
2019                 0x3de80, 0x3de80,
2020                 0x3de88, 0x3dea8,
2021                 0x3deb0, 0x3deb4,
2022                 0x3dec8, 0x3ded4,
2023                 0x3dfb8, 0x3e004,
2024                 0x3e208, 0x3e23c,
2025                 0x3e600, 0x3e630,
2026                 0x3ea00, 0x3eabc,
2027                 0x3eb00, 0x3eb70,
2028                 0x3f000, 0x3f048,
2029                 0x3f060, 0x3f09c,
2030                 0x3f0f0, 0x3f148,
2031                 0x3f160, 0x3f19c,
2032                 0x3f1f0, 0x3f2e4,
2033                 0x3f2f8, 0x3f3e4,
2034                 0x3f3f8, 0x3f448,
2035                 0x3f460, 0x3f49c,
2036                 0x3f4f0, 0x3f548,
2037                 0x3f560, 0x3f59c,
2038                 0x3f5f0, 0x3f6e4,
2039                 0x3f6f8, 0x3f7e4,
2040                 0x3f7f8, 0x3f7fc,
2041                 0x3f814, 0x3f814,
2042                 0x3f82c, 0x3f82c,
2043                 0x3f880, 0x3f88c,
2044                 0x3f8e8, 0x3f8ec,
2045                 0x3f900, 0x3f948,
2046                 0x3f960, 0x3f99c,
2047                 0x3f9f0, 0x3fae4,
2048                 0x3faf8, 0x3fb10,
2049                 0x3fb28, 0x3fb28,
2050                 0x3fb3c, 0x3fb50,
2051                 0x3fbf0, 0x3fc10,
2052                 0x3fc28, 0x3fc28,
2053                 0x3fc3c, 0x3fc50,
2054                 0x3fcf0, 0x3fcfc,
2055                 0x40000, 0x4000c,
2056                 0x40040, 0x40068,
2057                 0x40080, 0x40144,
2058                 0x40180, 0x4018c,
2059                 0x40200, 0x40298,
2060                 0x402ac, 0x4033c,
2061                 0x403f8, 0x403fc,
2062                 0x41300, 0x413c4,
2063                 0x41400, 0x4141c,
2064                 0x41480, 0x414d0,
2065                 0x44000, 0x44078,
2066                 0x440c0, 0x44278,
2067                 0x442c0, 0x44478,
2068                 0x444c0, 0x44678,
2069                 0x446c0, 0x44878,
2070                 0x448c0, 0x449fc,
2071                 0x45000, 0x45068,
2072                 0x45080, 0x45084,
2073                 0x450a0, 0x450b0,
2074                 0x45200, 0x45268,
2075                 0x45280, 0x45284,
2076                 0x452a0, 0x452b0,
2077                 0x460c0, 0x460e4,
2078                 0x47000, 0x4708c,
2079                 0x47200, 0x47250,
2080                 0x47400, 0x47420,
2081                 0x47600, 0x47618,
2082                 0x47800, 0x47814,
2083                 0x48000, 0x4800c,
2084                 0x48040, 0x48068,
2085                 0x48080, 0x48144,
2086                 0x48180, 0x4818c,
2087                 0x48200, 0x48298,
2088                 0x482ac, 0x4833c,
2089                 0x483f8, 0x483fc,
2090                 0x49300, 0x493c4,
2091                 0x49400, 0x4941c,
2092                 0x49480, 0x494d0,
2093                 0x4c000, 0x4c078,
2094                 0x4c0c0, 0x4c278,
2095                 0x4c2c0, 0x4c478,
2096                 0x4c4c0, 0x4c678,
2097                 0x4c6c0, 0x4c878,
2098                 0x4c8c0, 0x4c9fc,
2099                 0x4d000, 0x4d068,
2100                 0x4d080, 0x4d084,
2101                 0x4d0a0, 0x4d0b0,
2102                 0x4d200, 0x4d268,
2103                 0x4d280, 0x4d284,
2104                 0x4d2a0, 0x4d2b0,
2105                 0x4e0c0, 0x4e0e4,
2106                 0x4f000, 0x4f08c,
2107                 0x4f200, 0x4f250,
2108                 0x4f400, 0x4f420,
2109                 0x4f600, 0x4f618,
2110                 0x4f800, 0x4f814,
2111                 0x50000, 0x500cc,
2112                 0x50400, 0x50400,
2113                 0x50800, 0x508cc,
2114                 0x50c00, 0x50c00,
2115                 0x51000, 0x5101c,
2116                 0x51300, 0x51308,
2117         };
2118
2119         int i;
2120         struct adapter *ap = netdev2adap(dev);
2121         static const unsigned int *reg_ranges;
2122         int arr_size = 0, buf_size = 0;
2123
2124         if (is_t4(ap->chip)) {
2125                 reg_ranges = &t4_reg_ranges[0];
2126                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2127                 buf_size = T4_REGMAP_SIZE;
2128         } else {
2129                 reg_ranges = &t5_reg_ranges[0];
2130                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2131                 buf_size = T5_REGMAP_SIZE;
2132         }
2133
2134         regs->version = mk_adap_vers(ap);
2135
2136         memset(buf, 0, buf_size);
2137         for (i = 0; i < arr_size; i += 2)
2138                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2139 }
2140
2141 static int restart_autoneg(struct net_device *dev)
2142 {
2143         struct port_info *p = netdev_priv(dev);
2144
2145         if (!netif_running(dev))
2146                 return -EAGAIN;
2147         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2148                 return -EINVAL;
2149         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2150         return 0;
2151 }
2152
2153 static int identify_port(struct net_device *dev,
2154                          enum ethtool_phys_id_state state)
2155 {
2156         unsigned int val;
2157         struct adapter *adap = netdev2adap(dev);
2158
2159         if (state == ETHTOOL_ID_ACTIVE)
2160                 val = 0xffff;
2161         else if (state == ETHTOOL_ID_INACTIVE)
2162                 val = 0;
2163         else
2164                 return -EINVAL;
2165
2166         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2167 }
2168
2169 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2170 {
2171         unsigned int v = 0;
2172
2173         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2174             type == FW_PORT_TYPE_BT_XAUI) {
2175                 v |= SUPPORTED_TP;
2176                 if (caps & FW_PORT_CAP_SPEED_100M)
2177                         v |= SUPPORTED_100baseT_Full;
2178                 if (caps & FW_PORT_CAP_SPEED_1G)
2179                         v |= SUPPORTED_1000baseT_Full;
2180                 if (caps & FW_PORT_CAP_SPEED_10G)
2181                         v |= SUPPORTED_10000baseT_Full;
2182         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2183                 v |= SUPPORTED_Backplane;
2184                 if (caps & FW_PORT_CAP_SPEED_1G)
2185                         v |= SUPPORTED_1000baseKX_Full;
2186                 if (caps & FW_PORT_CAP_SPEED_10G)
2187                         v |= SUPPORTED_10000baseKX4_Full;
2188         } else if (type == FW_PORT_TYPE_KR)
2189                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2190         else if (type == FW_PORT_TYPE_BP_AP)
2191                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2192                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2193         else if (type == FW_PORT_TYPE_BP4_AP)
2194                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2195                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2196                      SUPPORTED_10000baseKX4_Full;
2197         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2198                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2199                 v |= SUPPORTED_FIBRE;
2200
2201         if (caps & FW_PORT_CAP_ANEG)
2202                 v |= SUPPORTED_Autoneg;
2203         return v;
2204 }
2205
2206 static unsigned int to_fw_linkcaps(unsigned int caps)
2207 {
2208         unsigned int v = 0;
2209
2210         if (caps & ADVERTISED_100baseT_Full)
2211                 v |= FW_PORT_CAP_SPEED_100M;
2212         if (caps & ADVERTISED_1000baseT_Full)
2213                 v |= FW_PORT_CAP_SPEED_1G;
2214         if (caps & ADVERTISED_10000baseT_Full)
2215                 v |= FW_PORT_CAP_SPEED_10G;
2216         return v;
2217 }
2218
2219 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2220 {
2221         const struct port_info *p = netdev_priv(dev);
2222
2223         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2224             p->port_type == FW_PORT_TYPE_BT_XFI ||
2225             p->port_type == FW_PORT_TYPE_BT_XAUI)
2226                 cmd->port = PORT_TP;
2227         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2228                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2229                 cmd->port = PORT_FIBRE;
2230         else if (p->port_type == FW_PORT_TYPE_SFP) {
2231                 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2232                     p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2233                         cmd->port = PORT_DA;
2234                 else
2235                         cmd->port = PORT_FIBRE;
2236         } else
2237                 cmd->port = PORT_OTHER;
2238
2239         if (p->mdio_addr >= 0) {
2240                 cmd->phy_address = p->mdio_addr;
2241                 cmd->transceiver = XCVR_EXTERNAL;
2242                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2243                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2244         } else {
2245                 cmd->phy_address = 0;  /* not really, but no better option */
2246                 cmd->transceiver = XCVR_INTERNAL;
2247                 cmd->mdio_support = 0;
2248         }
2249
2250         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2251         cmd->advertising = from_fw_linkcaps(p->port_type,
2252                                             p->link_cfg.advertising);
2253         ethtool_cmd_speed_set(cmd,
2254                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2255         cmd->duplex = DUPLEX_FULL;
2256         cmd->autoneg = p->link_cfg.autoneg;
2257         cmd->maxtxpkt = 0;
2258         cmd->maxrxpkt = 0;
2259         return 0;
2260 }
2261
2262 static unsigned int speed_to_caps(int speed)
2263 {
2264         if (speed == SPEED_100)
2265                 return FW_PORT_CAP_SPEED_100M;
2266         if (speed == SPEED_1000)
2267                 return FW_PORT_CAP_SPEED_1G;
2268         if (speed == SPEED_10000)
2269                 return FW_PORT_CAP_SPEED_10G;
2270         return 0;
2271 }
2272
2273 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2274 {
2275         unsigned int cap;
2276         struct port_info *p = netdev_priv(dev);
2277         struct link_config *lc = &p->link_cfg;
2278         u32 speed = ethtool_cmd_speed(cmd);
2279
2280         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2281                 return -EINVAL;
2282
2283         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2284                 /*
2285                  * PHY offers a single speed.  See if that's what's
2286                  * being requested.
2287                  */
2288                 if (cmd->autoneg == AUTONEG_DISABLE &&
2289                     (lc->supported & speed_to_caps(speed)))
2290                         return 0;
2291                 return -EINVAL;
2292         }
2293
2294         if (cmd->autoneg == AUTONEG_DISABLE) {
2295                 cap = speed_to_caps(speed);
2296
2297                 if (!(lc->supported & cap) || (speed == SPEED_1000) ||
2298                     (speed == SPEED_10000))
2299                         return -EINVAL;
2300                 lc->requested_speed = cap;
2301                 lc->advertising = 0;
2302         } else {
2303                 cap = to_fw_linkcaps(cmd->advertising);
2304                 if (!(lc->supported & cap))
2305                         return -EINVAL;
2306                 lc->requested_speed = 0;
2307                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2308         }
2309         lc->autoneg = cmd->autoneg;
2310
2311         if (netif_running(dev))
2312                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2313                                      lc);
2314         return 0;
2315 }
2316
2317 static void get_pauseparam(struct net_device *dev,
2318                            struct ethtool_pauseparam *epause)
2319 {
2320         struct port_info *p = netdev_priv(dev);
2321
2322         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2323         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2324         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2325 }
2326
2327 static int set_pauseparam(struct net_device *dev,
2328                           struct ethtool_pauseparam *epause)
2329 {
2330         struct port_info *p = netdev_priv(dev);
2331         struct link_config *lc = &p->link_cfg;
2332
2333         if (epause->autoneg == AUTONEG_DISABLE)
2334                 lc->requested_fc = 0;
2335         else if (lc->supported & FW_PORT_CAP_ANEG)
2336                 lc->requested_fc = PAUSE_AUTONEG;
2337         else
2338                 return -EINVAL;
2339
2340         if (epause->rx_pause)
2341                 lc->requested_fc |= PAUSE_RX;
2342         if (epause->tx_pause)
2343                 lc->requested_fc |= PAUSE_TX;
2344         if (netif_running(dev))
2345                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2346                                      lc);
2347         return 0;
2348 }
2349
2350 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2351 {
2352         const struct port_info *pi = netdev_priv(dev);
2353         const struct sge *s = &pi->adapter->sge;
2354
2355         e->rx_max_pending = MAX_RX_BUFFERS;
2356         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2357         e->rx_jumbo_max_pending = 0;
2358         e->tx_max_pending = MAX_TXQ_ENTRIES;
2359
2360         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2361         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2362         e->rx_jumbo_pending = 0;
2363         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2364 }
2365
2366 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2367 {
2368         int i;
2369         const struct port_info *pi = netdev_priv(dev);
2370         struct adapter *adapter = pi->adapter;
2371         struct sge *s = &adapter->sge;
2372
2373         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2374             e->tx_pending > MAX_TXQ_ENTRIES ||
2375             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2376             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2377             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2378                 return -EINVAL;
2379
2380         if (adapter->flags & FULL_INIT_DONE)
2381                 return -EBUSY;
2382
2383         for (i = 0; i < pi->nqsets; ++i) {
2384                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2385                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2386                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2387         }
2388         return 0;
2389 }
2390
2391 static int closest_timer(const struct sge *s, int time)
2392 {
2393         int i, delta, match = 0, min_delta = INT_MAX;
2394
2395         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2396                 delta = time - s->timer_val[i];
2397                 if (delta < 0)
2398                         delta = -delta;
2399                 if (delta < min_delta) {
2400                         min_delta = delta;
2401                         match = i;
2402                 }
2403         }
2404         return match;
2405 }
2406
2407 static int closest_thres(const struct sge *s, int thres)
2408 {
2409         int i, delta, match = 0, min_delta = INT_MAX;
2410
2411         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2412                 delta = thres - s->counter_val[i];
2413                 if (delta < 0)
2414                         delta = -delta;
2415                 if (delta < min_delta) {
2416                         min_delta = delta;
2417                         match = i;
2418                 }
2419         }
2420         return match;
2421 }
2422
2423 /*
2424  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2425  */
2426 static unsigned int qtimer_val(const struct adapter *adap,
2427                                const struct sge_rspq *q)
2428 {
2429         unsigned int idx = q->intr_params >> 1;
2430
2431         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2432 }
2433
2434 /**
2435  *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
2436  *      @adap: the adapter
2437  *      @q: the Rx queue
2438  *      @us: the hold-off time in us, or 0 to disable timer
2439  *      @cnt: the hold-off packet count, or 0 to disable counter
2440  *
2441  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2442  *      one of the two needs to be enabled for the queue to generate interrupts.
2443  */
2444 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
2445                                unsigned int us, unsigned int cnt)
2446 {
2447         if ((us | cnt) == 0)
2448                 cnt = 1;
2449
2450         if (cnt) {
2451                 int err;
2452                 u32 v, new_idx;
2453
2454                 new_idx = closest_thres(&adap->sge, cnt);
2455                 if (q->desc && q->pktcnt_idx != new_idx) {
2456                         /* the queue has already been created, update it */
2457                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2458                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2459                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
2460                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2461                                             &new_idx);
2462                         if (err)
2463                                 return err;
2464                 }
2465                 q->pktcnt_idx = new_idx;
2466         }
2467
2468         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2469         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2470         return 0;
2471 }
2472
2473 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2474 {
2475         const struct port_info *pi = netdev_priv(dev);
2476         struct adapter *adap = pi->adapter;
2477         struct sge_rspq *q;
2478         int i;
2479         int r = 0;
2480
2481         for (i = pi->first_qset; i < pi->first_qset + pi->nqsets; i++) {
2482                 q = &adap->sge.ethrxq[i].rspq;
2483                 r = set_rxq_intr_params(adap, q, c->rx_coalesce_usecs,
2484                         c->rx_max_coalesced_frames);
2485                 if (r) {
2486                         dev_err(&dev->dev, "failed to set coalesce %d\n", r);
2487                         break;
2488                 }
2489         }
2490         return r;
2491 }
2492
2493 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2494 {
2495         const struct port_info *pi = netdev_priv(dev);
2496         const struct adapter *adap = pi->adapter;
2497         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2498
2499         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2500         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2501                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2502         return 0;
2503 }
2504
2505 /**
2506  *      eeprom_ptov - translate a physical EEPROM address to virtual
2507  *      @phys_addr: the physical EEPROM address
2508  *      @fn: the PCI function number
2509  *      @sz: size of function-specific area
2510  *
2511  *      Translate a physical EEPROM address to virtual.  The first 1K is
2512  *      accessed through virtual addresses starting at 31K, the rest is
2513  *      accessed through virtual addresses starting at 0.
2514  *
2515  *      The mapping is as follows:
2516  *      [0..1K) -> [31K..32K)
2517  *      [1K..1K+A) -> [31K-A..31K)
2518  *      [1K+A..ES) -> [0..ES-A-1K)
2519  *
2520  *      where A = @fn * @sz, and ES = EEPROM size.
2521  */
2522 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2523 {
2524         fn *= sz;
2525         if (phys_addr < 1024)
2526                 return phys_addr + (31 << 10);
2527         if (phys_addr < 1024 + fn)
2528                 return 31744 - fn + phys_addr - 1024;
2529         if (phys_addr < EEPROMSIZE)
2530                 return phys_addr - 1024 - fn;
2531         return -EINVAL;
2532 }
2533
2534 /*
2535  * The next two routines implement eeprom read/write from physical addresses.
2536  */
2537 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2538 {
2539         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2540
2541         if (vaddr >= 0)
2542                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2543         return vaddr < 0 ? vaddr : 0;
2544 }
2545
2546 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2547 {
2548         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2549
2550         if (vaddr >= 0)
2551                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2552         return vaddr < 0 ? vaddr : 0;
2553 }
2554
2555 #define EEPROM_MAGIC 0x38E2F10C
2556
2557 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2558                       u8 *data)
2559 {
2560         int i, err = 0;
2561         struct adapter *adapter = netdev2adap(dev);
2562
2563         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2564         if (!buf)
2565                 return -ENOMEM;
2566
2567         e->magic = EEPROM_MAGIC;
2568         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2569                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2570
2571         if (!err)
2572                 memcpy(data, buf + e->offset, e->len);
2573         kfree(buf);
2574         return err;
2575 }
2576
2577 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2578                       u8 *data)
2579 {
2580         u8 *buf;
2581         int err = 0;
2582         u32 aligned_offset, aligned_len, *p;
2583         struct adapter *adapter = netdev2adap(dev);
2584
2585         if (eeprom->magic != EEPROM_MAGIC)
2586                 return -EINVAL;
2587
2588         aligned_offset = eeprom->offset & ~3;
2589         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2590
2591         if (adapter->fn > 0) {
2592                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2593
2594                 if (aligned_offset < start ||
2595                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2596                         return -EPERM;
2597         }
2598
2599         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2600                 /*
2601                  * RMW possibly needed for first or last words.
2602                  */
2603                 buf = kmalloc(aligned_len, GFP_KERNEL);
2604                 if (!buf)
2605                         return -ENOMEM;
2606                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2607                 if (!err && aligned_len > 4)
2608                         err = eeprom_rd_phys(adapter,
2609                                              aligned_offset + aligned_len - 4,
2610                                              (u32 *)&buf[aligned_len - 4]);
2611                 if (err)
2612                         goto out;
2613                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2614         } else
2615                 buf = data;
2616
2617         err = t4_seeprom_wp(adapter, false);
2618         if (err)
2619                 goto out;
2620
2621         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2622                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2623                 aligned_offset += 4;
2624         }
2625
2626         if (!err)
2627                 err = t4_seeprom_wp(adapter, true);
2628 out:
2629         if (buf != data)
2630                 kfree(buf);
2631         return err;
2632 }
2633
2634 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2635 {
2636         int ret;
2637         const struct firmware *fw;
2638         struct adapter *adap = netdev2adap(netdev);
2639
2640         ef->data[sizeof(ef->data) - 1] = '\0';
2641         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2642         if (ret < 0)
2643                 return ret;
2644
2645         ret = t4_load_fw(adap, fw->data, fw->size);
2646         release_firmware(fw);
2647         if (!ret)
2648                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2649         return ret;
2650 }
2651
2652 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2653 #define BCAST_CRC 0xa0ccc1a6
2654
2655 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2656 {
2657         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2658         wol->wolopts = netdev2adap(dev)->wol;
2659         memset(&wol->sopass, 0, sizeof(wol->sopass));
2660 }
2661
2662 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2663 {
2664         int err = 0;
2665         struct port_info *pi = netdev_priv(dev);
2666
2667         if (wol->wolopts & ~WOL_SUPPORTED)
2668                 return -EINVAL;
2669         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2670                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2671         if (wol->wolopts & WAKE_BCAST) {
2672                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2673                                         ~0ULL, 0, false);
2674                 if (!err)
2675                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2676                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2677         } else
2678                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2679         return err;
2680 }
2681
2682 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2683 {
2684         const struct port_info *pi = netdev_priv(dev);
2685         netdev_features_t changed = dev->features ^ features;
2686         int err;
2687
2688         if (!(changed & NETIF_F_HW_VLAN_RX))
2689                 return 0;
2690
2691         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2692                             -1, -1, -1,
2693                             !!(features & NETIF_F_HW_VLAN_RX), true);
2694         if (unlikely(err))
2695                 dev->features = features ^ NETIF_F_HW_VLAN_RX;
2696         return err;
2697 }
2698
2699 static u32 get_rss_table_size(struct net_device *dev)
2700 {
2701         const struct port_info *pi = netdev_priv(dev);
2702
2703         return pi->rss_size;
2704 }
2705
2706 static int get_rss_table(struct net_device *dev, u32 *p)
2707 {
2708         const struct port_info *pi = netdev_priv(dev);
2709         unsigned int n = pi->rss_size;
2710
2711         while (n--)
2712                 p[n] = pi->rss[n];
2713         return 0;
2714 }
2715
2716 static int set_rss_table(struct net_device *dev, const u32 *p)
2717 {
2718         unsigned int i;
2719         struct port_info *pi = netdev_priv(dev);
2720
2721         for (i = 0; i < pi->rss_size; i++)
2722                 pi->rss[i] = p[i];
2723         if (pi->adapter->flags & FULL_INIT_DONE)
2724                 return write_rss(pi, pi->rss);
2725         return 0;
2726 }
2727
2728 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2729                      u32 *rules)
2730 {
2731         const struct port_info *pi = netdev_priv(dev);
2732
2733         switch (info->cmd) {
2734         case ETHTOOL_GRXFH: {
2735                 unsigned int v = pi->rss_mode;
2736
2737                 info->data = 0;
2738                 switch (info->flow_type) {
2739                 case TCP_V4_FLOW:
2740                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2741                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2742                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2743                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2744                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2745                         break;
2746                 case UDP_V4_FLOW:
2747                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2748                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2749                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2750                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2751                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2752                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2753                         break;
2754                 case SCTP_V4_FLOW:
2755                 case AH_ESP_V4_FLOW:
2756                 case IPV4_FLOW:
2757                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2758                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2759                         break;
2760                 case TCP_V6_FLOW:
2761                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2762                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2763                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2764                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2765                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2766                         break;
2767                 case UDP_V6_FLOW:
2768                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
2769                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2770                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2771                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2772                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2773                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2774                         break;
2775                 case SCTP_V6_FLOW:
2776                 case AH_ESP_V6_FLOW:
2777                 case IPV6_FLOW:
2778                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2779                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2780                         break;
2781                 }
2782                 return 0;
2783         }
2784         case ETHTOOL_GRXRINGS:
2785                 info->data = pi->nqsets;
2786                 return 0;
2787         }
2788         return -EOPNOTSUPP;
2789 }
2790
2791 static const struct ethtool_ops cxgb_ethtool_ops = {
2792         .get_settings      = get_settings,
2793         .set_settings      = set_settings,
2794         .get_drvinfo       = get_drvinfo,
2795         .get_msglevel      = get_msglevel,
2796         .set_msglevel      = set_msglevel,
2797         .get_ringparam     = get_sge_param,
2798         .set_ringparam     = set_sge_param,
2799         .get_coalesce      = get_coalesce,
2800         .set_coalesce      = set_coalesce,
2801         .get_eeprom_len    = get_eeprom_len,
2802         .get_eeprom        = get_eeprom,
2803         .set_eeprom        = set_eeprom,
2804         .get_pauseparam    = get_pauseparam,
2805         .set_pauseparam    = set_pauseparam,
2806         .get_link          = ethtool_op_get_link,
2807         .get_strings       = get_strings,
2808         .set_phys_id       = identify_port,
2809         .nway_reset        = restart_autoneg,
2810         .get_sset_count    = get_sset_count,
2811         .get_ethtool_stats = get_stats,
2812         .get_regs_len      = get_regs_len,
2813         .get_regs          = get_regs,
2814         .get_wol           = get_wol,
2815         .set_wol           = set_wol,
2816         .get_rxnfc         = get_rxnfc,
2817         .get_rxfh_indir_size = get_rss_table_size,
2818         .get_rxfh_indir    = get_rss_table,
2819         .set_rxfh_indir    = set_rss_table,
2820         .flash_device      = set_flash,
2821 };
2822
2823 /*
2824  * debugfs support
2825  */
2826 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2827                         loff_t *ppos)
2828 {
2829         loff_t pos = *ppos;
2830         loff_t avail = file_inode(file)->i_size;
2831         unsigned int mem = (uintptr_t)file->private_data & 3;
2832         struct adapter *adap = file->private_data - mem;
2833
2834         if (pos < 0)
2835                 return -EINVAL;
2836         if (pos >= avail)
2837                 return 0;
2838         if (count > avail - pos)
2839                 count = avail - pos;
2840
2841         while (count) {
2842                 size_t len;
2843                 int ret, ofst;
2844                 __be32 data[16];
2845
2846                 if (mem == MEM_MC)
2847                         ret = t4_mc_read(adap, pos, data, NULL);
2848                 else
2849                         ret = t4_edc_read(adap, mem, pos, data, NULL);
2850                 if (ret)
2851                         return ret;
2852
2853                 ofst = pos % sizeof(data);
2854                 len = min(count, sizeof(data) - ofst);
2855                 if (copy_to_user(buf, (u8 *)data + ofst, len))
2856                         return -EFAULT;
2857
2858                 buf += len;
2859                 pos += len;
2860                 count -= len;
2861         }
2862         count = pos - *ppos;
2863         *ppos = pos;
2864         return count;
2865 }
2866
2867 static const struct file_operations mem_debugfs_fops = {
2868         .owner   = THIS_MODULE,
2869         .open    = simple_open,
2870         .read    = mem_read,
2871         .llseek  = default_llseek,
2872 };
2873
2874 static void add_debugfs_mem(struct adapter *adap, const char *name,
2875                             unsigned int idx, unsigned int size_mb)
2876 {
2877         struct dentry *de;
2878
2879         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2880                                  (void *)adap + idx, &mem_debugfs_fops);
2881         if (de && de->d_inode)
2882                 de->d_inode->i_size = size_mb << 20;
2883 }
2884
2885 static int setup_debugfs(struct adapter *adap)
2886 {
2887         int i;
2888
2889         if (IS_ERR_OR_NULL(adap->debugfs_root))
2890                 return -1;
2891
2892         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2893         if (i & EDRAM0_ENABLE)
2894                 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
2895         if (i & EDRAM1_ENABLE)
2896                 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
2897         if (i & EXT_MEM_ENABLE)
2898                 add_debugfs_mem(adap, "mc", MEM_MC,
2899                         EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
2900         if (adap->l2t)
2901                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2902                                     &t4_l2t_fops);
2903         return 0;
2904 }
2905
2906 /*
2907  * upper-layer driver support
2908  */
2909
2910 /*
2911  * Allocate an active-open TID and set it to the supplied value.
2912  */
2913 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2914 {
2915         int atid = -1;
2916
2917         spin_lock_bh(&t->atid_lock);
2918         if (t->afree) {
2919                 union aopen_entry *p = t->afree;
2920
2921                 atid = (p - t->atid_tab) + t->atid_base;
2922                 t->afree = p->next;
2923                 p->data = data;
2924                 t->atids_in_use++;
2925         }
2926         spin_unlock_bh(&t->atid_lock);
2927         return atid;
2928 }
2929 EXPORT_SYMBOL(cxgb4_alloc_atid);
2930
2931 /*
2932  * Release an active-open TID.
2933  */
2934 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2935 {
2936         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
2937
2938         spin_lock_bh(&t->atid_lock);
2939         p->next = t->afree;
2940         t->afree = p;
2941         t->atids_in_use--;
2942         spin_unlock_bh(&t->atid_lock);
2943 }
2944 EXPORT_SYMBOL(cxgb4_free_atid);
2945
2946 /*
2947  * Allocate a server TID and set it to the supplied value.
2948  */
2949 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2950 {
2951         int stid;
2952
2953         spin_lock_bh(&t->stid_lock);
2954         if (family == PF_INET) {
2955                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2956                 if (stid < t->nstids)
2957                         __set_bit(stid, t->stid_bmap);
2958                 else
2959                         stid = -1;
2960         } else {
2961                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2962                 if (stid < 0)
2963                         stid = -1;
2964         }
2965         if (stid >= 0) {
2966                 t->stid_tab[stid].data = data;
2967                 stid += t->stid_base;
2968                 t->stids_in_use++;
2969         }
2970         spin_unlock_bh(&t->stid_lock);
2971         return stid;
2972 }
2973 EXPORT_SYMBOL(cxgb4_alloc_stid);
2974
2975 /* Allocate a server filter TID and set it to the supplied value.
2976  */
2977 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
2978 {
2979         int stid;
2980
2981         spin_lock_bh(&t->stid_lock);
2982         if (family == PF_INET) {
2983                 stid = find_next_zero_bit(t->stid_bmap,
2984                                 t->nstids + t->nsftids, t->nstids);
2985                 if (stid < (t->nstids + t->nsftids))
2986                         __set_bit(stid, t->stid_bmap);
2987                 else
2988                         stid = -1;
2989         } else {
2990                 stid = -1;
2991         }
2992         if (stid >= 0) {
2993                 t->stid_tab[stid].data = data;
2994                 stid += t->stid_base;
2995                 t->stids_in_use++;
2996         }
2997         spin_unlock_bh(&t->stid_lock);
2998         return stid;
2999 }
3000 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3001
3002 /* Release a server TID.
3003  */
3004 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3005 {
3006         stid -= t->stid_base;
3007         spin_lock_bh(&t->stid_lock);
3008         if (family == PF_INET)
3009                 __clear_bit(stid, t->stid_bmap);
3010         else
3011                 bitmap_release_region(t->stid_bmap, stid, 2);
3012         t->stid_tab[stid].data = NULL;
3013         t->stids_in_use--;
3014         spin_unlock_bh(&t->stid_lock);
3015 }
3016 EXPORT_SYMBOL(cxgb4_free_stid);
3017
3018 /*
3019  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3020  */
3021 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3022                            unsigned int tid)
3023 {
3024         struct cpl_tid_release *req;
3025
3026         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3027         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3028         INIT_TP_WR(req, tid);
3029         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3030 }
3031
3032 /*
3033  * Queue a TID release request and if necessary schedule a work queue to
3034  * process it.
3035  */
3036 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3037                                     unsigned int tid)
3038 {
3039         void **p = &t->tid_tab[tid];
3040         struct adapter *adap = container_of(t, struct adapter, tids);
3041
3042         spin_lock_bh(&adap->tid_release_lock);
3043         *p = adap->tid_release_head;
3044         /* Low 2 bits encode the Tx channel number */
3045         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3046         if (!adap->tid_release_task_busy) {
3047                 adap->tid_release_task_busy = true;
3048                 queue_work(workq, &adap->tid_release_task);
3049         }
3050         spin_unlock_bh(&adap->tid_release_lock);
3051 }
3052
3053 /*
3054  * Process the list of pending TID release requests.
3055  */
3056 static void process_tid_release_list(struct work_struct *work)
3057 {
3058         struct sk_buff *skb;
3059         struct adapter *adap;
3060
3061         adap = container_of(work, struct adapter, tid_release_task);
3062
3063         spin_lock_bh(&adap->tid_release_lock);
3064         while (adap->tid_release_head) {
3065                 void **p = adap->tid_release_head;
3066                 unsigned int chan = (uintptr_t)p & 3;
3067                 p = (void *)p - chan;
3068
3069                 adap->tid_release_head = *p;
3070                 *p = NULL;
3071                 spin_unlock_bh(&adap->tid_release_lock);
3072
3073                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3074                                          GFP_KERNEL)))
3075                         schedule_timeout_uninterruptible(1);
3076
3077                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3078                 t4_ofld_send(adap, skb);
3079                 spin_lock_bh(&adap->tid_release_lock);
3080         }
3081         adap->tid_release_task_busy = false;
3082         spin_unlock_bh(&adap->tid_release_lock);
3083 }
3084
3085 /*
3086  * Release a TID and inform HW.  If we are unable to allocate the release
3087  * message we defer to a work queue.
3088  */
3089 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3090 {
3091         void *old;
3092         struct sk_buff *skb;
3093         struct adapter *adap = container_of(t, struct adapter, tids);
3094
3095         old = t->tid_tab[tid];
3096         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3097         if (likely(skb)) {
3098                 t->tid_tab[tid] = NULL;
3099                 mk_tid_release(skb, chan, tid);
3100                 t4_ofld_send(adap, skb);
3101         } else
3102                 cxgb4_queue_tid_release(t, chan, tid);
3103         if (old)
3104                 atomic_dec(&t->tids_in_use);
3105 }
3106 EXPORT_SYMBOL(cxgb4_remove_tid);
3107
3108 /*
3109  * Allocate and initialize the TID tables.  Returns 0 on success.
3110  */
3111 static int tid_init(struct tid_info *t)
3112 {
3113         size_t size;
3114         unsigned int stid_bmap_size;
3115         unsigned int natids = t->natids;
3116
3117         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3118         size = t->ntids * sizeof(*t->tid_tab) +
3119                natids * sizeof(*t->atid_tab) +
3120                t->nstids * sizeof(*t->stid_tab) +
3121                t->nsftids * sizeof(*t->stid_tab) +
3122                stid_bmap_size * sizeof(long) +
3123                t->nftids * sizeof(*t->ftid_tab) +
3124                t->nsftids * sizeof(*t->ftid_tab);
3125
3126         t->tid_tab = t4_alloc_mem(size);
3127         if (!t->tid_tab)
3128                 return -ENOMEM;
3129
3130         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3131         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3132         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3133         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3134         spin_lock_init(&t->stid_lock);
3135         spin_lock_init(&t->atid_lock);
3136
3137         t->stids_in_use = 0;
3138         t->afree = NULL;
3139         t->atids_in_use = 0;
3140         atomic_set(&t->tids_in_use, 0);
3141
3142         /* Setup the free list for atid_tab and clear the stid bitmap. */
3143         if (natids) {
3144                 while (--natids)
3145                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3146                 t->afree = t->atid_tab;
3147         }
3148         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3149         return 0;
3150 }
3151
3152 /**
3153  *      cxgb4_create_server - create an IP server
3154  *      @dev: the device
3155  *      @stid: the server TID
3156  *      @sip: local IP address to bind server to
3157  *      @sport: the server's TCP port
3158  *      @queue: queue to direct messages from this server to
3159  *
3160  *      Create an IP server for the given port and address.
3161  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3162  */
3163 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3164                         __be32 sip, __be16 sport, __be16 vlan,
3165                         unsigned int queue)
3166 {
3167         unsigned int chan;
3168         struct sk_buff *skb;
3169         struct adapter *adap;
3170         struct cpl_pass_open_req *req;
3171
3172         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3173         if (!skb)
3174                 return -ENOMEM;
3175
3176         adap = netdev2adap(dev);
3177         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3178         INIT_TP_WR(req, 0);
3179         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3180         req->local_port = sport;
3181         req->peer_port = htons(0);
3182         req->local_ip = sip;
3183         req->peer_ip = htonl(0);
3184         chan = rxq_to_chan(&adap->sge, queue);
3185         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3186         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3187                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3188         return t4_mgmt_tx(adap, skb);
3189 }
3190 EXPORT_SYMBOL(cxgb4_create_server);
3191
3192 /**
3193  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3194  *      @mtus: the HW MTU table
3195  *      @mtu: the target MTU
3196  *      @idx: index of selected entry in the MTU table
3197  *
3198  *      Returns the index and the value in the HW MTU table that is closest to
3199  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3200  *      table, in which case that smallest available value is selected.
3201  */
3202 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3203                             unsigned int *idx)
3204 {
3205         unsigned int i = 0;
3206
3207         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3208                 ++i;
3209         if (idx)
3210                 *idx = i;
3211         return mtus[i];
3212 }
3213 EXPORT_SYMBOL(cxgb4_best_mtu);
3214
3215 /**
3216  *      cxgb4_port_chan - get the HW channel of a port
3217  *      @dev: the net device for the port
3218  *
3219  *      Return the HW Tx channel of the given port.
3220  */
3221 unsigned int cxgb4_port_chan(const struct net_device *dev)
3222 {
3223         return netdev2pinfo(dev)->tx_chan;
3224 }
3225 EXPORT_SYMBOL(cxgb4_port_chan);
3226
3227 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3228 {
3229         struct adapter *adap = netdev2adap(dev);
3230         u32 v;
3231
3232         v = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3233         return lpfifo ? G_LP_COUNT(v) : G_HP_COUNT(v);
3234 }
3235 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3236
3237 /**
3238  *      cxgb4_port_viid - get the VI id of a port
3239  *      @dev: the net device for the port
3240  *
3241  *      Return the VI id of the given port.
3242  */
3243 unsigned int cxgb4_port_viid(const struct net_device *dev)
3244 {
3245         return netdev2pinfo(dev)->viid;
3246 }
3247 EXPORT_SYMBOL(cxgb4_port_viid);
3248
3249 /**
3250  *      cxgb4_port_idx - get the index of a port
3251  *      @dev: the net device for the port
3252  *
3253  *      Return the index of the given port.
3254  */
3255 unsigned int cxgb4_port_idx(const struct net_device *dev)
3256 {
3257         return netdev2pinfo(dev)->port_id;
3258 }
3259 EXPORT_SYMBOL(cxgb4_port_idx);
3260
3261 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3262                          struct tp_tcp_stats *v6)
3263 {
3264         struct adapter *adap = pci_get_drvdata(pdev);
3265
3266         spin_lock(&adap->stats_lock);
3267         t4_tp_get_tcp_stats(adap, v4, v6);
3268         spin_unlock(&adap->stats_lock);
3269 }
3270 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3271
3272 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3273                       const unsigned int *pgsz_order)
3274 {
3275         struct adapter *adap = netdev2adap(dev);
3276
3277         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3278         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3279                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3280                      HPZ3(pgsz_order[3]));
3281 }
3282 EXPORT_SYMBOL(cxgb4_iscsi_init);
3283
3284 int cxgb4_flush_eq_cache(struct net_device *dev)
3285 {
3286         struct adapter *adap = netdev2adap(dev);
3287         int ret;
3288
3289         ret = t4_fwaddrspace_write(adap, adap->mbox,
3290                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3291         return ret;
3292 }
3293 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3294
3295 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3296 {
3297         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3298         __be64 indices;
3299         int ret;
3300
3301         ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
3302         if (!ret) {
3303                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3304                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3305         }
3306         return ret;
3307 }
3308
3309 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3310                         u16 size)
3311 {
3312         struct adapter *adap = netdev2adap(dev);
3313         u16 hw_pidx, hw_cidx;
3314         int ret;
3315
3316         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3317         if (ret)
3318                 goto out;
3319
3320         if (pidx != hw_pidx) {
3321                 u16 delta;
3322
3323                 if (pidx >= hw_pidx)
3324                         delta = pidx - hw_pidx;
3325                 else
3326                         delta = size - hw_pidx + pidx;
3327                 wmb();
3328                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3329                              QID(qid) | PIDX(delta));
3330         }
3331 out:
3332         return ret;
3333 }
3334 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3335
3336 static struct pci_driver cxgb4_driver;
3337
3338 static void check_neigh_update(struct neighbour *neigh)
3339 {
3340         const struct device *parent;
3341         const struct net_device *netdev = neigh->dev;
3342
3343         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3344                 netdev = vlan_dev_real_dev(netdev);
3345         parent = netdev->dev.parent;
3346         if (parent && parent->driver == &cxgb4_driver.driver)
3347                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3348 }
3349
3350 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3351                        void *data)
3352 {
3353         switch (event) {
3354         case NETEVENT_NEIGH_UPDATE:
3355                 check_neigh_update(data);
3356                 break;
3357         case NETEVENT_REDIRECT:
3358         default:
3359                 break;
3360         }
3361         return 0;
3362 }
3363
3364 static bool netevent_registered;
3365 static struct notifier_block cxgb4_netevent_nb = {
3366         .notifier_call = netevent_cb
3367 };
3368
3369 static void drain_db_fifo(struct adapter *adap, int usecs)
3370 {
3371         u32 v;
3372
3373         do {
3374                 set_current_state(TASK_UNINTERRUPTIBLE);
3375                 schedule_timeout(usecs_to_jiffies(usecs));
3376                 v = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3377                 if (G_LP_COUNT(v) == 0 && G_HP_COUNT(v) == 0)
3378                         break;
3379         } while (1);
3380 }
3381
3382 static void disable_txq_db(struct sge_txq *q)
3383 {
3384         spin_lock_irq(&q->db_lock);
3385         q->db_disabled = 1;
3386         spin_unlock_irq(&q->db_lock);
3387 }
3388
3389 static void enable_txq_db(struct sge_txq *q)
3390 {
3391         spin_lock_irq(&q->db_lock);
3392         q->db_disabled = 0;
3393         spin_unlock_irq(&q->db_lock);
3394 }
3395
3396 static void disable_dbs(struct adapter *adap)
3397 {
3398         int i;
3399
3400         for_each_ethrxq(&adap->sge, i)
3401                 disable_txq_db(&adap->sge.ethtxq[i].q);
3402         for_each_ofldrxq(&adap->sge, i)
3403                 disable_txq_db(&adap->sge.ofldtxq[i].q);
3404         for_each_port(adap, i)
3405                 disable_txq_db(&adap->sge.ctrlq[i].q);
3406 }
3407
3408 static void enable_dbs(struct adapter *adap)
3409 {
3410         int i;
3411
3412         for_each_ethrxq(&adap->sge, i)
3413                 enable_txq_db(&adap->sge.ethtxq[i].q);
3414         for_each_ofldrxq(&adap->sge, i)
3415                 enable_txq_db(&adap->sge.ofldtxq[i].q);
3416         for_each_port(adap, i)
3417                 enable_txq_db(&adap->sge.ctrlq[i].q);
3418 }
3419
3420 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3421 {
3422         u16 hw_pidx, hw_cidx;
3423         int ret;
3424
3425         spin_lock_bh(&q->db_lock);
3426         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3427         if (ret)
3428                 goto out;
3429         if (q->db_pidx != hw_pidx) {
3430                 u16 delta;
3431
3432                 if (q->db_pidx >= hw_pidx)
3433                         delta = q->db_pidx - hw_pidx;
3434                 else
3435                         delta = q->size - hw_pidx + q->db_pidx;
3436                 wmb();
3437                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3438                              QID(q->cntxt_id) | PIDX(delta));
3439         }
3440 out:
3441         q->db_disabled = 0;
3442         spin_unlock_bh(&q->db_lock);
3443         if (ret)
3444                 CH_WARN(adap, "DB drop recovery failed.\n");
3445 }
3446 static void recover_all_queues(struct adapter *adap)
3447 {
3448         int i;
3449
3450         for_each_ethrxq(&adap->sge, i)
3451                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3452         for_each_ofldrxq(&adap->sge, i)
3453                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3454         for_each_port(adap, i)
3455                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3456 }
3457
3458 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3459 {
3460         mutex_lock(&uld_mutex);
3461         if (adap->uld_handle[CXGB4_ULD_RDMA])
3462                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3463                                 cmd);
3464         mutex_unlock(&uld_mutex);
3465 }
3466
3467 static void process_db_full(struct work_struct *work)
3468 {
3469         struct adapter *adap;
3470
3471         adap = container_of(work, struct adapter, db_full_task);
3472
3473         notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
3474         drain_db_fifo(adap, dbfifo_drain_delay);
3475         t4_set_reg_field(adap, SGE_INT_ENABLE3,
3476                          DBFIFO_HP_INT | DBFIFO_LP_INT,
3477                          DBFIFO_HP_INT | DBFIFO_LP_INT);
3478         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3479 }
3480
3481 static void process_db_drop(struct work_struct *work)
3482 {
3483         struct adapter *adap;
3484
3485         adap = container_of(work, struct adapter, db_drop_task);
3486
3487         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
3488         disable_dbs(adap);
3489         notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
3490         drain_db_fifo(adap, 1);
3491         recover_all_queues(adap);
3492         enable_dbs(adap);
3493 }
3494
3495 void t4_db_full(struct adapter *adap)
3496 {
3497         t4_set_reg_field(adap, SGE_INT_ENABLE3,
3498                          DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
3499         queue_work(workq, &adap->db_full_task);
3500 }
3501
3502 void t4_db_dropped(struct adapter *adap)
3503 {
3504         queue_work(workq, &adap->db_drop_task);
3505 }
3506
3507 static void uld_attach(struct adapter *adap, unsigned int uld)
3508 {
3509         void *handle;
3510         struct cxgb4_lld_info lli;
3511         unsigned short i;
3512
3513         lli.pdev = adap->pdev;
3514         lli.l2t = adap->l2t;
3515         lli.tids = &adap->tids;
3516         lli.ports = adap->port;
3517         lli.vr = &adap->vres;
3518         lli.mtus = adap->params.mtus;
3519         if (uld == CXGB4_ULD_RDMA) {
3520                 lli.rxq_ids = adap->sge.rdma_rxq;
3521                 lli.nrxq = adap->sge.rdmaqs;
3522         } else if (uld == CXGB4_ULD_ISCSI) {
3523                 lli.rxq_ids = adap->sge.ofld_rxq;
3524                 lli.nrxq = adap->sge.ofldqsets;
3525         }
3526         lli.ntxq = adap->sge.ofldqsets;
3527         lli.nchan = adap->params.nports;
3528         lli.nports = adap->params.nports;
3529         lli.wr_cred = adap->params.ofldq_wr_cred;
3530         lli.adapter_type = adap->params.rev;
3531         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
3532         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
3533                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
3534                         (adap->fn * 4));
3535         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
3536                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
3537                         (adap->fn * 4));
3538         lli.filt_mode = adap->filter_mode;
3539         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
3540         for (i = 0; i < NCHAN; i++)
3541                 lli.tx_modq[i] = i;
3542         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
3543         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
3544         lli.fw_vers = adap->params.fw_vers;
3545         lli.dbfifo_int_thresh = dbfifo_int_thresh;
3546         lli.sge_pktshift = adap->sge.pktshift;
3547         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
3548
3549         handle = ulds[uld].add(&lli);
3550         if (IS_ERR(handle)) {
3551                 dev_warn(adap->pdev_dev,
3552                          "could not attach to the %s driver, error %ld\n",
3553                          uld_str[uld], PTR_ERR(handle));
3554                 return;
3555         }
3556
3557         adap->uld_handle[uld] = handle;
3558
3559         if (!netevent_registered) {
3560                 register_netevent_notifier(&cxgb4_netevent_nb);
3561                 netevent_registered = true;
3562         }
3563
3564         if (adap->flags & FULL_INIT_DONE)
3565                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
3566 }
3567
3568 static void attach_ulds(struct adapter *adap)
3569 {
3570         unsigned int i;
3571
3572         mutex_lock(&uld_mutex);
3573         list_add_tail(&adap->list_node, &adapter_list);
3574         for (i = 0; i < CXGB4_ULD_MAX; i++)
3575                 if (ulds[i].add)
3576                         uld_attach(adap, i);
3577         mutex_unlock(&uld_mutex);
3578 }
3579
3580 static void detach_ulds(struct adapter *adap)
3581 {
3582         unsigned int i;
3583
3584         mutex_lock(&uld_mutex);
3585         list_del(&adap->list_node);
3586         for (i = 0; i < CXGB4_ULD_MAX; i++)
3587                 if (adap->uld_handle[i]) {
3588                         ulds[i].state_change(adap->uld_handle[i],
3589                                              CXGB4_STATE_DETACH);
3590                         adap->uld_handle[i] = NULL;
3591                 }
3592         if (netevent_registered && list_empty(&adapter_list)) {
3593                 unregister_netevent_notifier(&cxgb4_netevent_nb);
3594                 netevent_registered = false;
3595         }
3596         mutex_unlock(&uld_mutex);
3597 }
3598
3599 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
3600 {
3601         unsigned int i;
3602
3603         mutex_lock(&uld_mutex);
3604         for (i = 0; i < CXGB4_ULD_MAX; i++)
3605                 if (adap->uld_handle[i])
3606                         ulds[i].state_change(adap->uld_handle[i], new_state);
3607         mutex_unlock(&uld_mutex);
3608 }
3609
3610 /**
3611  *      cxgb4_register_uld - register an upper-layer driver
3612  *      @type: the ULD type
3613  *      @p: the ULD methods
3614  *
3615  *      Registers an upper-layer driver with this driver and notifies the ULD
3616  *      about any presently available devices that support its type.  Returns
3617  *      %-EBUSY if a ULD of the same type is already registered.
3618  */
3619 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
3620 {
3621         int ret = 0;
3622         struct adapter *adap;
3623
3624         if (type >= CXGB4_ULD_MAX)
3625                 return -EINVAL;
3626         mutex_lock(&uld_mutex);
3627         if (ulds[type].add) {
3628                 ret = -EBUSY;
3629                 goto out;
3630         }
3631         ulds[type] = *p;
3632         list_for_each_entry(adap, &adapter_list, list_node)
3633                 uld_attach(adap, type);
3634 out:    mutex_unlock(&uld_mutex);
3635         return ret;
3636 }
3637 EXPORT_SYMBOL(cxgb4_register_uld);
3638
3639 /**
3640  *      cxgb4_unregister_uld - unregister an upper-layer driver
3641  *      @type: the ULD type
3642  *
3643  *      Unregisters an existing upper-layer driver.
3644  */
3645 int cxgb4_unregister_uld(enum cxgb4_uld type)
3646 {
3647         struct adapter *adap;
3648
3649         if (type >= CXGB4_ULD_MAX)
3650                 return -EINVAL;
3651         mutex_lock(&uld_mutex);
3652         list_for_each_entry(adap, &adapter_list, list_node)
3653                 adap->uld_handle[type] = NULL;
3654         ulds[type].add = NULL;
3655         mutex_unlock(&uld_mutex);
3656         return 0;
3657 }
3658 EXPORT_SYMBOL(cxgb4_unregister_uld);
3659
3660 /**
3661  *      cxgb_up - enable the adapter
3662  *      @adap: adapter being enabled
3663  *
3664  *      Called when the first port is enabled, this function performs the
3665  *      actions necessary to make an adapter operational, such as completing
3666  *      the initialization of HW modules, and enabling interrupts.
3667  *
3668  *      Must be called with the rtnl lock held.
3669  */
3670 static int cxgb_up(struct adapter *adap)
3671 {
3672         int err;
3673
3674         err = setup_sge_queues(adap);
3675         if (err)
3676                 goto out;
3677         err = setup_rss(adap);
3678         if (err)
3679                 goto freeq;
3680
3681         if (adap->flags & USING_MSIX) {
3682                 name_msix_vecs(adap);
3683                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
3684                                   adap->msix_info[0].desc, adap);
3685                 if (err)
3686                         goto irq_err;
3687
3688                 err = request_msix_queue_irqs(adap);
3689                 if (err) {
3690                         free_irq(adap->msix_info[0].vec, adap);
3691                         goto irq_err;
3692                 }
3693         } else {
3694                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
3695                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
3696                                   adap->port[0]->name, adap);
3697                 if (err)
3698                         goto irq_err;
3699         }
3700         enable_rx(adap);
3701         t4_sge_start(adap);
3702         t4_intr_enable(adap);
3703         adap->flags |= FULL_INIT_DONE;
3704         notify_ulds(adap, CXGB4_STATE_UP);
3705  out:
3706         return err;
3707  irq_err:
3708         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
3709  freeq:
3710         t4_free_sge_resources(adap);
3711         goto out;
3712 }
3713
3714 static void cxgb_down(struct adapter *adapter)
3715 {
3716         t4_intr_disable(adapter);
3717         cancel_work_sync(&adapter->tid_release_task);
3718         cancel_work_sync(&adapter->db_full_task);
3719         cancel_work_sync(&adapter->db_drop_task);
3720         adapter->tid_release_task_busy = false;
3721         adapter->tid_release_head = NULL;
3722
3723         if (adapter->flags & USING_MSIX) {
3724                 free_msix_queue_irqs(adapter);
3725                 free_irq(adapter->msix_info[0].vec, adapter);
3726         } else
3727                 free_irq(adapter->pdev->irq, adapter);
3728         quiesce_rx(adapter);
3729         t4_sge_stop(adapter);
3730         t4_free_sge_resources(adapter);
3731         adapter->flags &= ~FULL_INIT_DONE;
3732 }
3733
3734 /*
3735  * net_device operations
3736  */
3737 static int cxgb_open(struct net_device *dev)
3738 {
3739         int err;
3740         struct port_info *pi = netdev_priv(dev);
3741         struct adapter *adapter = pi->adapter;
3742
3743         netif_carrier_off(dev);
3744
3745         if (!(adapter->flags & FULL_INIT_DONE)) {
3746                 err = cxgb_up(adapter);
3747                 if (err < 0)
3748                         return err;
3749         }
3750
3751         err = link_start(dev);
3752         if (!err)
3753                 netif_tx_start_all_queues(dev);
3754         return err;
3755 }
3756
3757 static int cxgb_close(struct net_device *dev)
3758 {
3759         struct port_info *pi = netdev_priv(dev);
3760         struct adapter *adapter = pi->adapter;
3761
3762         netif_tx_stop_all_queues(dev);
3763         netif_carrier_off(dev);
3764         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
3765 }
3766
3767 /* Return an error number if the indicated filter isn't writable ...
3768  */
3769 static int writable_filter(struct filter_entry *f)
3770 {
3771         if (f->locked)
3772                 return -EPERM;
3773         if (f->pending)
3774                 return -EBUSY;
3775
3776         return 0;
3777 }
3778
3779 /* Delete the filter at the specified index (if valid).  The checks for all
3780  * the common problems with doing this like the filter being locked, currently
3781  * pending in another operation, etc.
3782  */
3783 static int delete_filter(struct adapter *adapter, unsigned int fidx)
3784 {
3785         struct filter_entry *f;
3786         int ret;
3787
3788         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
3789                 return -EINVAL;
3790
3791         f = &adapter->tids.ftid_tab[fidx];
3792         ret = writable_filter(f);
3793         if (ret)
3794                 return ret;
3795         if (f->valid)
3796                 return del_filter_wr(adapter, fidx);
3797
3798         return 0;
3799 }
3800
3801 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
3802                 __be32 sip, __be16 sport, __be16 vlan,
3803                 unsigned int queue, unsigned char port, unsigned char mask)
3804 {
3805         int ret;
3806         struct filter_entry *f;
3807         struct adapter *adap;
3808         int i;
3809         u8 *val;
3810
3811         adap = netdev2adap(dev);
3812
3813         /* Adjust stid to correct filter index */
3814         stid -= adap->tids.nstids;
3815         stid += adap->tids.nftids;
3816
3817         /* Check to make sure the filter requested is writable ...
3818          */
3819         f = &adap->tids.ftid_tab[stid];
3820         ret = writable_filter(f);
3821         if (ret)
3822                 return ret;
3823
3824         /* Clear out any old resources being used by the filter before
3825          * we start constructing the new filter.
3826          */
3827         if (f->valid)
3828                 clear_filter(adap, f);
3829
3830         /* Clear out filter specifications */
3831         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
3832         f->fs.val.lport = cpu_to_be16(sport);
3833         f->fs.mask.lport  = ~0;
3834         val = (u8 *)&sip;
3835         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
3836                 for (i = 0; i < 4; i++) {
3837                         f->fs.val.lip[i] = val[i];
3838                         f->fs.mask.lip[i] = ~0;
3839                 }
3840                 if (adap->filter_mode & F_PORT) {
3841                         f->fs.val.iport = port;
3842                         f->fs.mask.iport = mask;
3843                 }
3844         }
3845
3846         f->fs.dirsteer = 1;
3847         f->fs.iq = queue;
3848         /* Mark filter as locked */
3849         f->locked = 1;
3850         f->fs.rpttid = 1;
3851
3852         ret = set_filter_wr(adap, stid);
3853         if (ret) {
3854                 clear_filter(adap, f);
3855                 return ret;
3856         }
3857
3858         return 0;
3859 }
3860 EXPORT_SYMBOL(cxgb4_create_server_filter);
3861
3862 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
3863                 unsigned int queue, bool ipv6)
3864 {
3865         int ret;
3866         struct filter_entry *f;
3867         struct adapter *adap;
3868
3869         adap = netdev2adap(dev);
3870
3871         /* Adjust stid to correct filter index */
3872         stid -= adap->tids.nstids;
3873         stid += adap->tids.nftids;
3874
3875         f = &adap->tids.ftid_tab[stid];
3876         /* Unlock the filter */
3877         f->locked = 0;
3878
3879         ret = delete_filter(adap, stid);
3880         if (ret)
3881                 return ret;
3882
3883         return 0;
3884 }
3885 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3886
3887 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
3888                                                 struct rtnl_link_stats64 *ns)
3889 {
3890         struct port_stats stats;
3891         struct port_info *p = netdev_priv(dev);
3892         struct adapter *adapter = p->adapter;
3893
3894         spin_lock(&adapter->stats_lock);
3895         t4_get_port_stats(adapter, p->tx_chan, &stats);
3896         spin_unlock(&adapter->stats_lock);
3897
3898         ns->tx_bytes   = stats.tx_octets;
3899         ns->tx_packets = stats.tx_frames;
3900         ns->rx_bytes   = stats.rx_octets;
3901         ns->rx_packets = stats.rx_frames;
3902         ns->multicast  = stats.rx_mcast_frames;
3903
3904         /* detailed rx_errors */
3905         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3906                                stats.rx_runt;
3907         ns->rx_over_errors   = 0;
3908         ns->rx_crc_errors    = stats.rx_fcs_err;
3909         ns->rx_frame_errors  = stats.rx_symbol_err;
3910         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
3911                                stats.rx_ovflow2 + stats.rx_ovflow3 +
3912                                stats.rx_trunc0 + stats.rx_trunc1 +
3913                                stats.rx_trunc2 + stats.rx_trunc3;
3914         ns->rx_missed_errors = 0;
3915
3916         /* detailed tx_errors */
3917         ns->tx_aborted_errors   = 0;
3918         ns->tx_carrier_errors   = 0;
3919         ns->tx_fifo_errors      = 0;
3920         ns->tx_heartbeat_errors = 0;
3921         ns->tx_window_errors    = 0;
3922
3923         ns->tx_errors = stats.tx_error_frames;
3924         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3925                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3926         return ns;
3927 }
3928
3929 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3930 {
3931         unsigned int mbox;
3932         int ret = 0, prtad, devad;
3933         struct port_info *pi = netdev_priv(dev);
3934         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3935
3936         switch (cmd) {
3937         case SIOCGMIIPHY:
3938                 if (pi->mdio_addr < 0)
3939                         return -EOPNOTSUPP;
3940                 data->phy_id = pi->mdio_addr;
3941                 break;
3942         case SIOCGMIIREG:
3943         case SIOCSMIIREG:
3944                 if (mdio_phy_id_is_c45(data->phy_id)) {
3945                         prtad = mdio_phy_id_prtad(data->phy_id);
3946                         devad = mdio_phy_id_devad(data->phy_id);
3947                 } else if (data->phy_id < 32) {
3948                         prtad = data->phy_id;
3949                         devad = 0;
3950                         data->reg_num &= 0x1f;
3951                 } else
3952                         return -EINVAL;
3953
3954                 mbox = pi->adapter->fn;
3955                 if (cmd == SIOCGMIIREG)
3956                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3957                                          data->reg_num, &data->val_out);
3958                 else
3959                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3960                                          data->reg_num, data->val_in);
3961                 break;
3962         default:
3963                 return -EOPNOTSUPP;
3964         }
3965         return ret;
3966 }
3967
3968 static void cxgb_set_rxmode(struct net_device *dev)
3969 {
3970         /* unfortunately we can't return errors to the stack */
3971         set_rxmode(dev, -1, false);
3972 }
3973
3974 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3975 {
3976         int ret;
3977         struct port_info *pi = netdev_priv(dev);
3978
3979         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3980                 return -EINVAL;
3981         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
3982                             -1, -1, -1, true);
3983         if (!ret)
3984                 dev->mtu = new_mtu;
3985         return ret;
3986 }
3987
3988 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3989 {
3990         int ret;
3991         struct sockaddr *addr = p;
3992         struct port_info *pi = netdev_priv(dev);
3993
3994         if (!is_valid_ether_addr(addr->sa_data))
3995                 return -EADDRNOTAVAIL;
3996
3997         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
3998                             pi->xact_addr_filt, addr->sa_data, true, true);
3999         if (ret < 0)
4000                 return ret;
4001
4002         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4003         pi->xact_addr_filt = ret;
4004         return 0;
4005 }
4006
4007 #ifdef CONFIG_NET_POLL_CONTROLLER
4008 static void cxgb_netpoll(struct net_device *dev)
4009 {
4010         struct port_info *pi = netdev_priv(dev);
4011         struct adapter *adap = pi->adapter;
4012
4013         if (adap->flags & USING_MSIX) {
4014                 int i;
4015                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4016
4017                 for (i = pi->nqsets; i; i--, rx++)
4018                         t4_sge_intr_msix(0, &rx->rspq);
4019         } else
4020                 t4_intr_handler(adap)(0, adap);
4021 }
4022 #endif
4023
4024 static const struct net_device_ops cxgb4_netdev_ops = {
4025         .ndo_open             = cxgb_open,
4026         .ndo_stop             = cxgb_close,
4027         .ndo_start_xmit       = t4_eth_xmit,
4028         .ndo_get_stats64      = cxgb_get_stats,
4029         .ndo_set_rx_mode      = cxgb_set_rxmode,
4030         .ndo_set_mac_address  = cxgb_set_mac_addr,
4031         .ndo_set_features     = cxgb_set_features,
4032         .ndo_validate_addr    = eth_validate_addr,
4033         .ndo_do_ioctl         = cxgb_ioctl,
4034         .ndo_change_mtu       = cxgb_change_mtu,
4035 #ifdef CONFIG_NET_POLL_CONTROLLER
4036         .ndo_poll_controller  = cxgb_netpoll,
4037 #endif
4038 };
4039
4040 void t4_fatal_err(struct adapter *adap)
4041 {
4042         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4043         t4_intr_disable(adap);
4044         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4045 }
4046
4047 static void setup_memwin(struct adapter *adap)
4048 {
4049         u32 bar0;
4050
4051         bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
4052         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4053                      (bar0 + MEMWIN0_BASE) | BIR(0) |
4054                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4055         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4056                      (bar0 + MEMWIN1_BASE) | BIR(0) |
4057                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4058         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4059                      (bar0 + MEMWIN2_BASE) | BIR(0) |
4060                      WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
4061 }
4062
4063 static void setup_memwin_rdma(struct adapter *adap)
4064 {
4065         if (adap->vres.ocq.size) {
4066                 unsigned int start, sz_kb;
4067
4068                 start = pci_resource_start(adap->pdev, 2) +
4069                         OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4070                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4071                 t4_write_reg(adap,
4072                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4073                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
4074                 t4_write_reg(adap,
4075                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4076                              adap->vres.ocq.start);
4077                 t4_read_reg(adap,
4078                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4079         }
4080 }
4081
4082 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4083 {
4084         u32 v;
4085         int ret;
4086
4087         /* get device capabilities */
4088         memset(c, 0, sizeof(*c));
4089         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4090                                FW_CMD_REQUEST | FW_CMD_READ);
4091         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4092         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4093         if (ret < 0)
4094                 return ret;
4095
4096         /* select capabilities we'll be using */
4097         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4098                 if (!vf_acls)
4099                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4100                 else
4101                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4102         } else if (vf_acls) {
4103                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4104                 return ret;
4105         }
4106         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4107                                FW_CMD_REQUEST | FW_CMD_WRITE);
4108         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4109         if (ret < 0)
4110                 return ret;
4111
4112         ret = t4_config_glbl_rss(adap, adap->fn,
4113                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4114                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4115                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4116         if (ret < 0)
4117                 return ret;
4118
4119         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4120                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
4121         if (ret < 0)
4122                 return ret;
4123
4124         t4_sge_init(adap);
4125
4126         /* tweak some settings */
4127         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4128         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4129         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4130         v = t4_read_reg(adap, TP_PIO_DATA);
4131         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
4132
4133         /* first 4 Tx modulation queues point to consecutive Tx channels */
4134         adap->params.tp.tx_modq_map = 0xE4;
4135         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4136                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4137
4138         /* associate each Tx modulation queue with consecutive Tx channels */
4139         v = 0x84218421;
4140         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4141                           &v, 1, A_TP_TX_SCHED_HDR);
4142         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4143                           &v, 1, A_TP_TX_SCHED_FIFO);
4144         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4145                           &v, 1, A_TP_TX_SCHED_PCMD);
4146
4147 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4148         if (is_offload(adap)) {
4149                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4150                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4151                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4152                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4153                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4154                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4155                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4156                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4157                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4158                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4159         }
4160
4161         /* get basic stuff going */
4162         return t4_early_init(adap, adap->fn);
4163 }
4164
4165 /*
4166  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4167  */
4168 #define MAX_ATIDS 8192U
4169
4170 /*
4171  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4172  *
4173  * If the firmware we're dealing with has Configuration File support, then
4174  * we use that to perform all configuration
4175  */
4176
4177 /*
4178  * Tweak configuration based on module parameters, etc.  Most of these have
4179  * defaults assigned to them by Firmware Configuration Files (if we're using
4180  * them) but need to be explicitly set if we're using hard-coded
4181  * initialization.  But even in the case of using Firmware Configuration
4182  * Files, we'd like to expose the ability to change these via module
4183  * parameters so these are essentially common tweaks/settings for
4184  * Configuration Files and hard-coded initialization ...
4185  */
4186 static int adap_init0_tweaks(struct adapter *adapter)
4187 {
4188         /*
4189          * Fix up various Host-Dependent Parameters like Page Size, Cache
4190          * Line Size, etc.  The firmware default is for a 4KB Page Size and
4191          * 64B Cache Line Size ...
4192          */
4193         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4194
4195         /*
4196          * Process module parameters which affect early initialization.
4197          */
4198         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4199                 dev_err(&adapter->pdev->dev,
4200                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
4201                         rx_dma_offset);
4202                 rx_dma_offset = 2;
4203         }
4204         t4_set_reg_field(adapter, SGE_CONTROL,
4205                          PKTSHIFT_MASK,
4206                          PKTSHIFT(rx_dma_offset));
4207
4208         /*
4209          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4210          * adds the pseudo header itself.
4211          */
4212         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
4213                                CSUM_HAS_PSEUDO_HDR, 0);
4214
4215         return 0;
4216 }
4217
4218 /*
4219  * Attempt to initialize the adapter via a Firmware Configuration File.
4220  */
4221 static int adap_init0_config(struct adapter *adapter, int reset)
4222 {
4223         struct fw_caps_config_cmd caps_cmd;
4224         const struct firmware *cf;
4225         unsigned long mtype = 0, maddr = 0;
4226         u32 finiver, finicsum, cfcsum;
4227         int ret, using_flash;
4228         char *fw_config_file, fw_config_file_path[256];
4229
4230         /*
4231          * Reset device if necessary.
4232          */
4233         if (reset) {
4234                 ret = t4_fw_reset(adapter, adapter->mbox,
4235                                   PIORSTMODE | PIORST);
4236                 if (ret < 0)
4237                         goto bye;
4238         }
4239
4240         /*
4241          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4242          * then use that.  Otherwise, use the configuration file stored
4243          * in the adapter flash ...
4244          */
4245         switch (CHELSIO_CHIP_VERSION(adapter->chip)) {
4246         case CHELSIO_T4:
4247                 fw_config_file = FW_CFNAME;
4248                 break;
4249         case CHELSIO_T5:
4250                 fw_config_file = FW5_CFNAME;
4251                 break;
4252         default:
4253                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4254                        adapter->pdev->device);
4255                 ret = -EINVAL;
4256                 goto bye;
4257         }
4258
4259         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4260         if (ret < 0) {
4261                 using_flash = 1;
4262                 mtype = FW_MEMTYPE_CF_FLASH;
4263                 maddr = t4_flash_cfg_addr(adapter);
4264         } else {
4265                 u32 params[7], val[7];
4266
4267                 using_flash = 0;
4268                 if (cf->size >= FLASH_CFG_MAX_SIZE)
4269                         ret = -ENOMEM;
4270                 else {
4271                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4272                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4273                         ret = t4_query_params(adapter, adapter->mbox,
4274                                               adapter->fn, 0, 1, params, val);
4275                         if (ret == 0) {
4276                                 /*
4277                                  * For t4_memory_write() below addresses and
4278                                  * sizes have to be in terms of multiples of 4
4279                                  * bytes.  So, if the Configuration File isn't
4280                                  * a multiple of 4 bytes in length we'll have
4281                                  * to write that out separately since we can't
4282                                  * guarantee that the bytes following the
4283                                  * residual byte in the buffer returned by
4284                                  * request_firmware() are zeroed out ...
4285                                  */
4286                                 size_t resid = cf->size & 0x3;
4287                                 size_t size = cf->size & ~0x3;
4288                                 __be32 *data = (__be32 *)cf->data;
4289
4290                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
4291                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
4292
4293                                 ret = t4_memory_write(adapter, mtype, maddr,
4294                                                       size, data);
4295                                 if (ret == 0 && resid != 0) {
4296                                         union {
4297                                                 __be32 word;
4298                                                 char buf[4];
4299                                         } last;
4300                                         int i;
4301
4302                                         last.word = data[size >> 2];
4303                                         for (i = resid; i < 4; i++)
4304                                                 last.buf[i] = 0;
4305                                         ret = t4_memory_write(adapter, mtype,
4306                                                               maddr + size,
4307                                                               4, &last.word);
4308                                 }
4309                         }
4310                 }
4311
4312                 release_firmware(cf);
4313                 if (ret)
4314                         goto bye;
4315         }
4316
4317         /*
4318          * Issue a Capability Configuration command to the firmware to get it
4319          * to parse the Configuration File.  We don't use t4_fw_config_file()
4320          * because we want the ability to modify various features after we've
4321          * processed the configuration file ...
4322          */
4323         memset(&caps_cmd, 0, sizeof(caps_cmd));
4324         caps_cmd.op_to_write =
4325                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4326                       FW_CMD_REQUEST |
4327                       FW_CMD_READ);
4328         caps_cmd.cfvalid_to_len16 =
4329                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
4330                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4331                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
4332                       FW_LEN16(caps_cmd));
4333         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4334                          &caps_cmd);
4335         if (ret < 0)
4336                 goto bye;
4337
4338         finiver = ntohl(caps_cmd.finiver);
4339         finicsum = ntohl(caps_cmd.finicsum);
4340         cfcsum = ntohl(caps_cmd.cfcsum);
4341         if (finicsum != cfcsum)
4342                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4343                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4344                          finicsum, cfcsum);
4345
4346         /*
4347          * And now tell the firmware to use the configuration we just loaded.
4348          */
4349         caps_cmd.op_to_write =
4350                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4351                       FW_CMD_REQUEST |
4352                       FW_CMD_WRITE);
4353         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4354         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4355                          NULL);
4356         if (ret < 0)
4357                 goto bye;
4358
4359         /*
4360          * Tweak configuration based on system architecture, module
4361          * parameters, etc.
4362          */
4363         ret = adap_init0_tweaks(adapter);
4364         if (ret < 0)
4365                 goto bye;
4366
4367         /*
4368          * And finally tell the firmware to initialize itself using the
4369          * parameters from the Configuration File.
4370          */
4371         ret = t4_fw_initialize(adapter, adapter->mbox);
4372         if (ret < 0)
4373                 goto bye;
4374
4375         sprintf(fw_config_file_path, "/lib/firmware/%s", fw_config_file);
4376         /*
4377          * Return successfully and note that we're operating with parameters
4378          * not supplied by the driver, rather than from hard-wired
4379          * initialization constants burried in the driver.
4380          */
4381         adapter->flags |= USING_SOFT_PARAMS;
4382         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4383                  "Configuration File %s, version %#x, computed checksum %#x\n",
4384                  (using_flash
4385                   ? "in device FLASH"
4386                   : fw_config_file_path),
4387                  finiver, cfcsum);
4388         return 0;
4389
4390         /*
4391          * Something bad happened.  Return the error ...  (If the "error"
4392          * is that there's no Configuration File on the adapter we don't
4393          * want to issue a warning since this is fairly common.)
4394          */
4395 bye:
4396         if (ret != -ENOENT)
4397                 dev_warn(adapter->pdev_dev, "Configuration file error %d\n",
4398                          -ret);
4399         return ret;
4400 }
4401
4402 /*
4403  * Attempt to initialize the adapter via hard-coded, driver supplied
4404  * parameters ...
4405  */
4406 static int adap_init0_no_config(struct adapter *adapter, int reset)
4407 {
4408         struct sge *s = &adapter->sge;
4409         struct fw_caps_config_cmd caps_cmd;
4410         u32 v;
4411         int i, ret;
4412
4413         /*
4414          * Reset device if necessary
4415          */
4416         if (reset) {
4417                 ret = t4_fw_reset(adapter, adapter->mbox,
4418                                   PIORSTMODE | PIORST);
4419                 if (ret < 0)
4420                         goto bye;
4421         }
4422
4423         /*
4424          * Get device capabilities and select which we'll be using.
4425          */
4426         memset(&caps_cmd, 0, sizeof(caps_cmd));
4427         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4428                                      FW_CMD_REQUEST | FW_CMD_READ);
4429         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4430         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4431                          &caps_cmd);
4432         if (ret < 0)
4433                 goto bye;
4434
4435         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4436                 if (!vf_acls)
4437                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4438                 else
4439                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4440         } else if (vf_acls) {
4441                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
4442                 goto bye;
4443         }
4444         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4445                               FW_CMD_REQUEST | FW_CMD_WRITE);
4446         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4447                          NULL);
4448         if (ret < 0)
4449                 goto bye;
4450
4451         /*
4452          * Tweak configuration based on system architecture, module
4453          * parameters, etc.
4454          */
4455         ret = adap_init0_tweaks(adapter);
4456         if (ret < 0)
4457                 goto bye;
4458
4459         /*
4460          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
4461          * mode which maps each Virtual Interface to its own section of
4462          * the RSS Table and we turn on all map and hash enables ...
4463          */
4464         adapter->flags |= RSS_TNLALLLOOKUP;
4465         ret = t4_config_glbl_rss(adapter, adapter->mbox,
4466                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4467                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4468                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
4469                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
4470                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
4471         if (ret < 0)
4472                 goto bye;
4473
4474         /*
4475          * Set up our own fundamental resource provisioning ...
4476          */
4477         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
4478                           PFRES_NEQ, PFRES_NETHCTRL,
4479                           PFRES_NIQFLINT, PFRES_NIQ,
4480                           PFRES_TC, PFRES_NVI,
4481                           FW_PFVF_CMD_CMASK_MASK,
4482                           pfvfres_pmask(adapter, adapter->fn, 0),
4483                           PFRES_NEXACTF,
4484                           PFRES_R_CAPS, PFRES_WX_CAPS);
4485         if (ret < 0)
4486                 goto bye;
4487
4488         /*
4489          * Perform low level SGE initialization.  We need to do this before we
4490          * send the firmware the INITIALIZE command because that will cause
4491          * any other PF Drivers which are waiting for the Master
4492          * Initialization to proceed forward.
4493          */
4494         for (i = 0; i < SGE_NTIMERS - 1; i++)
4495                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
4496         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
4497         s->counter_val[0] = 1;
4498         for (i = 1; i < SGE_NCOUNTERS; i++)
4499                 s->counter_val[i] = min(intr_cnt[i - 1],
4500                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
4501         t4_sge_init(adapter);
4502
4503 #ifdef CONFIG_PCI_IOV
4504         /*
4505          * Provision resource limits for Virtual Functions.  We currently
4506          * grant them all the same static resource limits except for the Port
4507          * Access Rights Mask which we're assigning based on the PF.  All of
4508          * the static provisioning stuff for both the PF and VF really needs
4509          * to be managed in a persistent manner for each device which the
4510          * firmware controls.
4511          */
4512         {
4513                 int pf, vf;
4514                 int max_no_pf = is_t4(adapter->chip) ? NUM_OF_PF_WITH_SRIOV_T4 :
4515                                 NUM_OF_PF_WITH_SRIOV_T5;
4516
4517                 for (pf = 0; pf < max_no_pf; pf++) {
4518                         if (num_vf[pf] <= 0)
4519                                 continue;
4520
4521                         /* VF numbering starts at 1! */
4522                         for (vf = 1; vf <= num_vf[pf]; vf++) {
4523                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
4524                                                   pf, vf,
4525                                                   VFRES_NEQ, VFRES_NETHCTRL,
4526                                                   VFRES_NIQFLINT, VFRES_NIQ,
4527                                                   VFRES_TC, VFRES_NVI,
4528                                                   FW_PFVF_CMD_CMASK_MASK,
4529                                                   pfvfres_pmask(
4530                                                   adapter, pf, vf),
4531                                                   VFRES_NEXACTF,
4532                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
4533                                 if (ret < 0)
4534                                         dev_warn(adapter->pdev_dev,
4535                                                  "failed to "\
4536                                                  "provision pf/vf=%d/%d; "
4537                                                  "err=%d\n", pf, vf, ret);
4538                         }
4539                 }
4540         }
4541 #endif
4542
4543         /*
4544          * Set up the default filter mode.  Later we'll want to implement this
4545          * via a firmware command, etc. ...  This needs to be done before the
4546          * firmare initialization command ...  If the selected set of fields
4547          * isn't equal to the default value, we'll need to make sure that the
4548          * field selections will fit in the 36-bit budget.
4549          */
4550         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
4551                 int j, bits = 0;
4552
4553                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
4554                         switch (tp_vlan_pri_map & (1 << j)) {
4555                         case 0:
4556                                 /* compressed filter field not enabled */
4557                                 break;
4558                         case FCOE_MASK:
4559                                 bits +=  1;
4560                                 break;
4561                         case PORT_MASK:
4562                                 bits +=  3;
4563                                 break;
4564                         case VNIC_ID_MASK:
4565                                 bits += 17;
4566                                 break;
4567                         case VLAN_MASK:
4568                                 bits += 17;
4569                                 break;
4570                         case TOS_MASK:
4571                                 bits +=  8;
4572                                 break;
4573                         case PROTOCOL_MASK:
4574                                 bits +=  8;
4575                                 break;
4576                         case ETHERTYPE_MASK:
4577                                 bits += 16;
4578                                 break;
4579                         case MACMATCH_MASK:
4580                                 bits +=  9;
4581                                 break;
4582                         case MPSHITTYPE_MASK:
4583                                 bits +=  3;
4584                                 break;
4585                         case FRAGMENTATION_MASK:
4586                                 bits +=  1;
4587                                 break;
4588                         }
4589
4590                 if (bits > 36) {
4591                         dev_err(adapter->pdev_dev,
4592                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
4593                                 " using %#x\n", tp_vlan_pri_map, bits,
4594                                 TP_VLAN_PRI_MAP_DEFAULT);
4595                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
4596                 }
4597         }
4598         v = tp_vlan_pri_map;
4599         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
4600                           &v, 1, TP_VLAN_PRI_MAP);
4601
4602         /*
4603          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
4604          * to support any of the compressed filter fields above.  Newer
4605          * versions of the firmware do this automatically but it doesn't hurt
4606          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
4607          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
4608          * since the firmware automatically turns this on and off when we have
4609          * a non-zero number of filters active (since it does have a
4610          * performance impact).
4611          */
4612         if (tp_vlan_pri_map)
4613                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
4614                                  FIVETUPLELOOKUP_MASK,
4615                                  FIVETUPLELOOKUP_MASK);
4616
4617         /*
4618          * Tweak some settings.
4619          */
4620         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
4621                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
4622                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
4623                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
4624
4625         /*
4626          * Get basic stuff going by issuing the Firmware Initialize command.
4627          * Note that this _must_ be after all PFVF commands ...
4628          */
4629         ret = t4_fw_initialize(adapter, adapter->mbox);
4630         if (ret < 0)
4631                 goto bye;
4632
4633         /*
4634          * Return successfully!
4635          */
4636         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
4637                  "driver parameters\n");
4638         return 0;
4639
4640         /*
4641          * Something bad happened.  Return the error ...
4642          */
4643 bye:
4644         return ret;
4645 }
4646
4647 /*
4648  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4649  */
4650 static int adap_init0(struct adapter *adap)
4651 {
4652         int ret;
4653         u32 v, port_vec;
4654         enum dev_state state;
4655         u32 params[7], val[7];
4656         struct fw_caps_config_cmd caps_cmd;
4657         int reset = 1, j;
4658
4659         /*
4660          * Contact FW, advertising Master capability (and potentially forcing
4661          * ourselves as the Master PF if our module parameter force_init is
4662          * set).
4663          */
4664         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
4665                           force_init ? MASTER_MUST : MASTER_MAY,
4666                           &state);
4667         if (ret < 0) {
4668                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4669                         ret);
4670                 return ret;
4671         }
4672         if (ret == adap->mbox)
4673                 adap->flags |= MASTER_PF;
4674         if (force_init && state == DEV_STATE_INIT)
4675                 state = DEV_STATE_UNINIT;
4676
4677         /*
4678          * If we're the Master PF Driver and the device is uninitialized,
4679          * then let's consider upgrading the firmware ...  (We always want
4680          * to check the firmware version number in order to A. get it for
4681          * later reporting and B. to warn if the currently loaded firmware
4682          * is excessively mismatched relative to the driver.)
4683          */
4684         ret = t4_check_fw_version(adap);
4685         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4686                 if (ret == -EINVAL || ret > 0) {
4687                         if (upgrade_fw(adap) >= 0) {
4688                                 /*
4689                                  * Note that the chip was reset as part of the
4690                                  * firmware upgrade so we don't reset it again
4691                                  * below and grab the new firmware version.
4692                                  */
4693                                 reset = 0;
4694                                 ret = t4_check_fw_version(adap);
4695                         }
4696                 }
4697                 if (ret < 0)
4698                         return ret;
4699         }
4700
4701         /*
4702          * Grab VPD parameters.  This should be done after we establish a
4703          * connection to the firmware since some of the VPD parameters
4704          * (notably the Core Clock frequency) are retrieved via requests to
4705          * the firmware.  On the other hand, we need these fairly early on
4706          * so we do this right after getting ahold of the firmware.
4707          */
4708         ret = get_vpd_params(adap, &adap->params.vpd);
4709         if (ret < 0)
4710                 goto bye;
4711
4712         /*
4713          * Find out what ports are available to us.  Note that we need to do
4714          * this before calling adap_init0_no_config() since it needs nports
4715          * and portvec ...
4716          */
4717         v =
4718             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4719             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
4720         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
4721         if (ret < 0)
4722                 goto bye;
4723
4724         adap->params.nports = hweight32(port_vec);
4725         adap->params.portvec = port_vec;
4726
4727         /*
4728          * If the firmware is initialized already (and we're not forcing a
4729          * master initialization), note that we're living with existing
4730          * adapter parameters.  Otherwise, it's time to try initializing the
4731          * adapter ...
4732          */
4733         if (state == DEV_STATE_INIT) {
4734                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4735                          "Adapter already initialized\n",
4736                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4737                 adap->flags |= USING_SOFT_PARAMS;
4738         } else {
4739                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4740                          "Initializing adapter\n");
4741
4742                 /*
4743                  * If the firmware doesn't support Configuration
4744                  * Files warn user and exit,
4745                  */
4746                 if (ret < 0)
4747                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
4748                                  "configuration file.\n");
4749                 if (force_old_init)
4750                         ret = adap_init0_no_config(adap, reset);
4751                 else {
4752                         /*
4753                          * Find out whether we're dealing with a version of
4754                          * the firmware which has configuration file support.
4755                          */
4756                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4757                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4758                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
4759                                               params, val);
4760
4761                         /*
4762                          * If the firmware doesn't support Configuration
4763                          * Files, use the old Driver-based, hard-wired
4764                          * initialization.  Otherwise, try using the
4765                          * Configuration File support and fall back to the
4766                          * Driver-based initialization if there's no
4767                          * Configuration File found.
4768                          */
4769                         if (ret < 0)
4770                                 ret = adap_init0_no_config(adap, reset);
4771                         else {
4772                                 /*
4773                                  * The firmware provides us with a memory
4774                                  * buffer where we can load a Configuration
4775                                  * File from the host if we want to override
4776                                  * the Configuration File in flash.
4777                                  */
4778
4779                                 ret = adap_init0_config(adap, reset);
4780                                 if (ret == -ENOENT) {
4781                                         dev_info(adap->pdev_dev,
4782                                             "No Configuration File present "
4783                                             "on adapter.  Using hard-wired "
4784                                             "configuration parameters.\n");
4785                                         ret = adap_init0_no_config(adap, reset);
4786                                 }
4787                         }
4788                 }
4789                 if (ret < 0) {
4790                         dev_err(adap->pdev_dev,
4791                                 "could not initialize adapter, error %d\n",
4792                                 -ret);
4793                         goto bye;
4794                 }
4795         }
4796
4797         /*
4798          * If we're living with non-hard-coded parameters (either from a
4799          * Firmware Configuration File or values programmed by a different PF
4800          * Driver), give the SGE code a chance to pull in anything that it
4801          * needs ...  Note that this must be called after we retrieve our VPD
4802          * parameters in order to know how to convert core ticks to seconds.
4803          */
4804         if (adap->flags & USING_SOFT_PARAMS) {
4805                 ret = t4_sge_init(adap);
4806                 if (ret < 0)
4807                         goto bye;
4808         }
4809
4810         if (is_bypass_device(adap->pdev->device))
4811                 adap->params.bypass = 1;
4812
4813         /*
4814          * Grab some of our basic fundamental operating parameters.
4815          */
4816 #define FW_PARAM_DEV(param) \
4817         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
4818         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
4819
4820 #define FW_PARAM_PFVF(param) \
4821         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4822         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
4823         FW_PARAMS_PARAM_Y(0) | \
4824         FW_PARAMS_PARAM_Z(0)
4825
4826         params[0] = FW_PARAM_PFVF(EQ_START);
4827         params[1] = FW_PARAM_PFVF(L2T_START);
4828         params[2] = FW_PARAM_PFVF(L2T_END);
4829         params[3] = FW_PARAM_PFVF(FILTER_START);
4830         params[4] = FW_PARAM_PFVF(FILTER_END);
4831         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4832         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
4833         if (ret < 0)
4834                 goto bye;
4835         adap->sge.egr_start = val[0];
4836         adap->l2t_start = val[1];
4837         adap->l2t_end = val[2];
4838         adap->tids.ftid_base = val[3];
4839         adap->tids.nftids = val[4] - val[3] + 1;
4840         adap->sge.ingr_start = val[5];
4841
4842         /* query params related to active filter region */
4843         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4844         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4845         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
4846         /* If Active filter size is set we enable establishing
4847          * offload connection through firmware work request
4848          */
4849         if ((val[0] != val[1]) && (ret >= 0)) {
4850                 adap->flags |= FW_OFLD_CONN;
4851                 adap->tids.aftid_base = val[0];
4852                 adap->tids.aftid_end = val[1];
4853         }
4854
4855         /*
4856          * Get device capabilities so we can determine what resources we need
4857          * to manage.
4858          */
4859         memset(&caps_cmd, 0, sizeof(caps_cmd));
4860         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4861                                      FW_CMD_REQUEST | FW_CMD_READ);
4862         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4863         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4864                          &caps_cmd);
4865         if (ret < 0)
4866                 goto bye;
4867
4868         if (caps_cmd.ofldcaps) {
4869                 /* query offload-related parameters */
4870                 params[0] = FW_PARAM_DEV(NTID);
4871                 params[1] = FW_PARAM_PFVF(SERVER_START);
4872                 params[2] = FW_PARAM_PFVF(SERVER_END);
4873                 params[3] = FW_PARAM_PFVF(TDDP_START);
4874                 params[4] = FW_PARAM_PFVF(TDDP_END);
4875                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4876                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
4877                                       params, val);
4878                 if (ret < 0)
4879                         goto bye;
4880                 adap->tids.ntids = val[0];
4881                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4882                 adap->tids.stid_base = val[1];
4883                 adap->tids.nstids = val[2] - val[1] + 1;
4884                 /*
4885                  * Setup server filter region. Divide the availble filter
4886                  * region into two parts. Regular filters get 1/3rd and server
4887                  * filters get 2/3rd part. This is only enabled if workarond
4888                  * path is enabled.
4889                  * 1. For regular filters.
4890                  * 2. Server filter: This are special filters which are used
4891                  * to redirect SYN packets to offload queue.
4892                  */
4893                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4894                         adap->tids.sftid_base = adap->tids.ftid_base +
4895                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4896                         adap->tids.nsftids = adap->tids.nftids -
4897                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4898                         adap->tids.nftids = adap->tids.sftid_base -
4899                                                 adap->tids.ftid_base;
4900                 }
4901                 adap->vres.ddp.start = val[3];
4902                 adap->vres.ddp.size = val[4] - val[3] + 1;
4903                 adap->params.ofldq_wr_cred = val[5];
4904
4905                 adap->params.offload = 1;
4906         }
4907         if (caps_cmd.rdmacaps) {
4908                 params[0] = FW_PARAM_PFVF(STAG_START);
4909                 params[1] = FW_PARAM_PFVF(STAG_END);
4910                 params[2] = FW_PARAM_PFVF(RQ_START);
4911                 params[3] = FW_PARAM_PFVF(RQ_END);
4912                 params[4] = FW_PARAM_PFVF(PBL_START);
4913                 params[5] = FW_PARAM_PFVF(PBL_END);
4914                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
4915                                       params, val);
4916                 if (ret < 0)
4917                         goto bye;
4918                 adap->vres.stag.start = val[0];
4919                 adap->vres.stag.size = val[1] - val[0] + 1;
4920                 adap->vres.rq.start = val[2];
4921                 adap->vres.rq.size = val[3] - val[2] + 1;
4922                 adap->vres.pbl.start = val[4];
4923                 adap->vres.pbl.size = val[5] - val[4] + 1;
4924
4925                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4926                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4927                 params[2] = FW_PARAM_PFVF(CQ_START);
4928                 params[3] = FW_PARAM_PFVF(CQ_END);
4929                 params[4] = FW_PARAM_PFVF(OCQ_START);
4930                 params[5] = FW_PARAM_PFVF(OCQ_END);
4931                 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
4932                 if (ret < 0)
4933                         goto bye;
4934                 adap->vres.qp.start = val[0];
4935                 adap->vres.qp.size = val[1] - val[0] + 1;
4936                 adap->vres.cq.start = val[2];
4937                 adap->vres.cq.size = val[3] - val[2] + 1;
4938                 adap->vres.ocq.start = val[4];
4939                 adap->vres.ocq.size = val[5] - val[4] + 1;
4940         }
4941         if (caps_cmd.iscsicaps) {
4942                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4943                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4944                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
4945                                       params, val);
4946                 if (ret < 0)
4947                         goto bye;
4948                 adap->vres.iscsi.start = val[0];
4949                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4950         }
4951 #undef FW_PARAM_PFVF
4952 #undef FW_PARAM_DEV
4953
4954         /*
4955          * These are finalized by FW initialization, load their values now.
4956          */
4957         v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
4958         adap->params.tp.tre = TIMERRESOLUTION_GET(v);
4959         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
4960         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4961         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4962                      adap->params.b_wnd);
4963
4964         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
4965         for (j = 0; j < NCHAN; j++)
4966                 adap->params.tp.tx_modq[j] = j;
4967
4968         t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4969                          &adap->filter_mode, 1,
4970                          TP_VLAN_PRI_MAP);
4971
4972         adap->flags |= FW_OK;
4973         return 0;
4974
4975         /*
4976          * Something bad happened.  If a command timed out or failed with EIO
4977          * FW does not operate within its spec or something catastrophic
4978          * happened to HW/FW, stop issuing commands.
4979          */
4980 bye:
4981         if (ret != -ETIMEDOUT && ret != -EIO)
4982                 t4_fw_bye(adap, adap->mbox);
4983         return ret;
4984 }
4985
4986 /* EEH callbacks */
4987
4988 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4989                                          pci_channel_state_t state)
4990 {
4991         int i;
4992         struct adapter *adap = pci_get_drvdata(pdev);
4993
4994         if (!adap)
4995                 goto out;
4996
4997         rtnl_lock();
4998         adap->flags &= ~FW_OK;
4999         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5000         for_each_port(adap, i) {
5001                 struct net_device *dev = adap->port[i];
5002
5003                 netif_device_detach(dev);
5004                 netif_carrier_off(dev);
5005         }
5006         if (adap->flags & FULL_INIT_DONE)
5007                 cxgb_down(adap);
5008         rtnl_unlock();
5009         pci_disable_device(pdev);
5010 out:    return state == pci_channel_io_perm_failure ?
5011                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5012 }
5013
5014 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5015 {
5016         int i, ret;
5017         struct fw_caps_config_cmd c;
5018         struct adapter *adap = pci_get_drvdata(pdev);
5019
5020         if (!adap) {
5021                 pci_restore_state(pdev);
5022                 pci_save_state(pdev);
5023                 return PCI_ERS_RESULT_RECOVERED;
5024         }
5025
5026         if (pci_enable_device(pdev)) {
5027                 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
5028                 return PCI_ERS_RESULT_DISCONNECT;
5029         }
5030
5031         pci_set_master(pdev);
5032         pci_restore_state(pdev);
5033         pci_save_state(pdev);
5034         pci_cleanup_aer_uncorrect_error_status(pdev);
5035
5036         if (t4_wait_dev_ready(adap) < 0)
5037                 return PCI_ERS_RESULT_DISCONNECT;
5038         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL))
5039                 return PCI_ERS_RESULT_DISCONNECT;
5040         adap->flags |= FW_OK;
5041         if (adap_init1(adap, &c))
5042                 return PCI_ERS_RESULT_DISCONNECT;
5043
5044         for_each_port(adap, i) {
5045                 struct port_info *p = adap2pinfo(adap, i);
5046
5047                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
5048                                   NULL, NULL);
5049                 if (ret < 0)
5050                         return PCI_ERS_RESULT_DISCONNECT;
5051                 p->viid = ret;
5052                 p->xact_addr_filt = -1;
5053         }
5054
5055         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5056                      adap->params.b_wnd);
5057         setup_memwin(adap);
5058         if (cxgb_up(adap))
5059                 return PCI_ERS_RESULT_DISCONNECT;
5060         return PCI_ERS_RESULT_RECOVERED;
5061 }
5062
5063 static void eeh_resume(struct pci_dev *pdev)
5064 {
5065         int i;
5066         struct adapter *adap = pci_get_drvdata(pdev);
5067
5068         if (!adap)
5069                 return;
5070
5071         rtnl_lock();
5072         for_each_port(adap, i) {
5073                 struct net_device *dev = adap->port[i];
5074
5075                 if (netif_running(dev)) {
5076                         link_start(dev);
5077                         cxgb_set_rxmode(dev);
5078                 }
5079                 netif_device_attach(dev);
5080         }
5081         rtnl_unlock();
5082 }
5083
5084 static const struct pci_error_handlers cxgb4_eeh = {
5085         .error_detected = eeh_err_detected,
5086         .slot_reset     = eeh_slot_reset,
5087         .resume         = eeh_resume,
5088 };
5089
5090 static inline bool is_10g_port(const struct link_config *lc)
5091 {
5092         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
5093 }
5094
5095 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
5096                              unsigned int size, unsigned int iqe_size)
5097 {
5098         q->intr_params = QINTR_TIMER_IDX(timer_idx) |
5099                          (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
5100         q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
5101         q->iqe_len = iqe_size;
5102         q->size = size;
5103 }
5104
5105 /*
5106  * Perform default configuration of DMA queues depending on the number and type
5107  * of ports we found and the number of available CPUs.  Most settings can be
5108  * modified by the admin prior to actual use.
5109  */
5110 static void cfg_queues(struct adapter *adap)
5111 {
5112         struct sge *s = &adap->sge;
5113         int i, q10g = 0, n10g = 0, qidx = 0;
5114
5115         for_each_port(adap, i)
5116                 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
5117
5118         /*
5119          * We default to 1 queue per non-10G port and up to # of cores queues
5120          * per 10G port.
5121          */
5122         if (n10g)
5123                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5124         if (q10g > netif_get_num_default_rss_queues())
5125                 q10g = netif_get_num_default_rss_queues();
5126
5127         for_each_port(adap, i) {
5128                 struct port_info *pi = adap2pinfo(adap, i);
5129
5130                 pi->first_qset = qidx;
5131                 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
5132                 qidx += pi->nqsets;
5133         }
5134
5135         s->ethqsets = qidx;
5136         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5137
5138         if (is_offload(adap)) {
5139                 /*
5140                  * For offload we use 1 queue/channel if all ports are up to 1G,
5141                  * otherwise we divide all available queues amongst the channels
5142                  * capped by the number of available cores.
5143                  */
5144                 if (n10g) {
5145                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
5146                                   num_online_cpus());
5147                         s->ofldqsets = roundup(i, adap->params.nports);
5148                 } else
5149                         s->ofldqsets = adap->params.nports;
5150                 /* For RDMA one Rx queue per channel suffices */
5151                 s->rdmaqs = adap->params.nports;
5152         }
5153
5154         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5155                 struct sge_eth_rxq *r = &s->ethrxq[i];
5156
5157                 init_rspq(&r->rspq, 0, 0, 1024, 64);
5158                 r->fl.size = 72;
5159         }
5160
5161         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5162                 s->ethtxq[i].q.size = 1024;
5163
5164         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5165                 s->ctrlq[i].q.size = 512;
5166
5167         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
5168                 s->ofldtxq[i].q.size = 1024;
5169
5170         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
5171                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
5172
5173                 init_rspq(&r->rspq, 0, 0, 1024, 64);
5174                 r->rspq.uld = CXGB4_ULD_ISCSI;
5175                 r->fl.size = 72;
5176         }
5177
5178         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
5179                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
5180
5181                 init_rspq(&r->rspq, 0, 0, 511, 64);
5182                 r->rspq.uld = CXGB4_ULD_RDMA;
5183                 r->fl.size = 72;
5184         }
5185
5186         init_rspq(&s->fw_evtq, 6, 0, 512, 64);
5187         init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
5188 }
5189
5190 /*
5191  * Reduce the number of Ethernet queues across all ports to at most n.
5192  * n provides at least one queue per port.
5193  */
5194 static void reduce_ethqs(struct adapter *adap, int n)
5195 {
5196         int i;
5197         struct port_info *pi;
5198
5199         while (n < adap->sge.ethqsets)
5200                 for_each_port(adap, i) {
5201                         pi = adap2pinfo(adap, i);
5202                         if (pi->nqsets > 1) {
5203                                 pi->nqsets--;
5204                                 adap->sge.ethqsets--;
5205                                 if (adap->sge.ethqsets <= n)
5206                                         break;
5207                         }
5208                 }
5209
5210         n = 0;
5211         for_each_port(adap, i) {
5212                 pi = adap2pinfo(adap, i);
5213                 pi->first_qset = n;
5214                 n += pi->nqsets;
5215         }
5216 }
5217
5218 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5219 #define EXTRA_VECS 2
5220
5221 static int enable_msix(struct adapter *adap)
5222 {
5223         int ofld_need = 0;
5224         int i, err, want, need;
5225         struct sge *s = &adap->sge;
5226         unsigned int nchan = adap->params.nports;
5227         struct msix_entry entries[MAX_INGQ + 1];
5228
5229         for (i = 0; i < ARRAY_SIZE(entries); ++i)
5230                 entries[i].entry = i;
5231
5232         want = s->max_ethqsets + EXTRA_VECS;
5233         if (is_offload(adap)) {
5234                 want += s->rdmaqs + s->ofldqsets;
5235                 /* need nchan for each possible ULD */
5236                 ofld_need = 2 * nchan;
5237         }
5238         need = adap->params.nports + EXTRA_VECS + ofld_need;
5239
5240         while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
5241                 want = err;
5242
5243         if (!err) {
5244                 /*
5245                  * Distribute available vectors to the various queue groups.
5246                  * Every group gets its minimum requirement and NIC gets top
5247                  * priority for leftovers.
5248                  */
5249                 i = want - EXTRA_VECS - ofld_need;
5250                 if (i < s->max_ethqsets) {
5251                         s->max_ethqsets = i;
5252                         if (i < s->ethqsets)
5253                                 reduce_ethqs(adap, i);
5254                 }
5255                 if (is_offload(adap)) {
5256                         i = want - EXTRA_VECS - s->max_ethqsets;
5257                         i -= ofld_need - nchan;
5258                         s->ofldqsets = (i / nchan) * nchan;  /* round down */
5259                 }
5260                 for (i = 0; i < want; ++i)
5261                         adap->msix_info[i].vec = entries[i].vector;
5262         } else if (err > 0)
5263                 dev_info(adap->pdev_dev,
5264                          "only %d MSI-X vectors left, not using MSI-X\n", err);
5265         return err;
5266 }
5267
5268 #undef EXTRA_VECS
5269
5270 static int init_rss(struct adapter *adap)
5271 {
5272         unsigned int i, j;
5273
5274         for_each_port(adap, i) {
5275                 struct port_info *pi = adap2pinfo(adap, i);
5276
5277                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5278                 if (!pi->rss)
5279                         return -ENOMEM;
5280                 for (j = 0; j < pi->rss_size; j++)
5281                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
5282         }
5283         return 0;
5284 }
5285
5286 static void print_port_info(const struct net_device *dev)
5287 {
5288         static const char *base[] = {
5289                 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
5290                 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
5291         };
5292
5293         char buf[80];
5294         char *bufp = buf;
5295         const char *spd = "";
5296         const struct port_info *pi = netdev_priv(dev);
5297         const struct adapter *adap = pi->adapter;
5298
5299         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
5300                 spd = " 2.5 GT/s";
5301         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
5302                 spd = " 5 GT/s";
5303
5304         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
5305                 bufp += sprintf(bufp, "100/");
5306         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
5307                 bufp += sprintf(bufp, "1000/");
5308         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
5309                 bufp += sprintf(bufp, "10G/");
5310         if (bufp != buf)
5311                 --bufp;
5312         sprintf(bufp, "BASE-%s", base[pi->port_type]);
5313
5314         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
5315                     adap->params.vpd.id,
5316                     CHELSIO_CHIP_RELEASE(adap->params.rev), buf,
5317                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
5318                     (adap->flags & USING_MSIX) ? " MSI-X" :
5319                     (adap->flags & USING_MSI) ? " MSI" : "");
5320         netdev_info(dev, "S/N: %s, E/C: %s\n",
5321                     adap->params.vpd.sn, adap->params.vpd.ec);
5322 }
5323
5324 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
5325 {
5326         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
5327 }
5328
5329 /*
5330  * Free the following resources:
5331  * - memory used for tables
5332  * - MSI/MSI-X
5333  * - net devices
5334  * - resources FW is holding for us
5335  */
5336 static void free_some_resources(struct adapter *adapter)
5337 {
5338         unsigned int i;
5339
5340         t4_free_mem(adapter->l2t);
5341         t4_free_mem(adapter->tids.tid_tab);
5342         disable_msi(adapter);
5343
5344         for_each_port(adapter, i)
5345                 if (adapter->port[i]) {
5346                         kfree(adap2pinfo(adapter, i)->rss);
5347                         free_netdev(adapter->port[i]);
5348                 }
5349         if (adapter->flags & FW_OK)
5350                 t4_fw_bye(adapter, adapter->fn);
5351 }
5352
5353 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5354 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5355                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5356 #define SEGMENT_SIZE 128
5357
5358 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5359 {
5360         int func, i, err, s_qpp, qpp, num_seg;
5361         struct port_info *pi;
5362         bool highdma = false;
5363         struct adapter *adapter = NULL;
5364 #ifdef CONFIG_PCI_IOV
5365         int max_no_pf;
5366 #endif
5367
5368         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5369
5370         err = pci_request_regions(pdev, KBUILD_MODNAME);
5371         if (err) {
5372                 /* Just info, some other driver may have claimed the device. */
5373                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5374                 return err;
5375         }
5376
5377         /* We control everything through one PF */
5378         func = PCI_FUNC(pdev->devfn);
5379         if (func != ent->driver_data) {
5380                 pci_save_state(pdev);        /* to restore SR-IOV later */
5381                 goto sriov;
5382         }
5383
5384         err = pci_enable_device(pdev);
5385         if (err) {
5386                 dev_err(&pdev->dev, "cannot enable PCI device\n");
5387                 goto out_release_regions;
5388         }
5389
5390         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5391                 highdma = true;
5392                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5393                 if (err) {
5394                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5395                                 "coherent allocations\n");
5396                         goto out_disable_device;
5397                 }
5398         } else {
5399                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5400                 if (err) {
5401                         dev_err(&pdev->dev, "no usable DMA configuration\n");
5402                         goto out_disable_device;
5403                 }
5404         }
5405
5406         pci_enable_pcie_error_reporting(pdev);
5407         enable_pcie_relaxed_ordering(pdev);
5408         pci_set_master(pdev);
5409         pci_save_state(pdev);
5410
5411         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5412         if (!adapter) {
5413                 err = -ENOMEM;
5414                 goto out_disable_device;
5415         }
5416
5417         adapter->regs = pci_ioremap_bar(pdev, 0);
5418         if (!adapter->regs) {
5419                 dev_err(&pdev->dev, "cannot map device registers\n");
5420                 err = -ENOMEM;
5421                 goto out_free_adapter;
5422         }
5423
5424         adapter->pdev = pdev;
5425         adapter->pdev_dev = &pdev->dev;
5426         adapter->mbox = func;
5427         adapter->fn = func;
5428         adapter->msg_enable = dflt_msg_enable;
5429         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5430
5431         spin_lock_init(&adapter->stats_lock);
5432         spin_lock_init(&adapter->tid_release_lock);
5433
5434         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5435         INIT_WORK(&adapter->db_full_task, process_db_full);
5436         INIT_WORK(&adapter->db_drop_task, process_db_drop);
5437
5438         err = t4_prep_adapter(adapter);
5439         if (err)
5440                 goto out_unmap_bar0;
5441
5442         if (!is_t4(adapter->chip)) {
5443                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
5444                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
5445                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
5446                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5447
5448                 /* Each segment size is 128B. Write coalescing is enabled only
5449                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5450                  * queue is less no of segments that can be accommodated in
5451                  * a page size.
5452                  */
5453                 if (qpp > num_seg) {
5454                         dev_err(&pdev->dev,
5455                                 "Incorrect number of egress queues per page\n");
5456                         err = -EINVAL;
5457                         goto out_unmap_bar0;
5458                 }
5459                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5460                 pci_resource_len(pdev, 2));
5461                 if (!adapter->bar2) {
5462                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
5463                         err = -ENOMEM;
5464                         goto out_unmap_bar0;
5465                 }
5466         }
5467
5468         setup_memwin(adapter);
5469         err = adap_init0(adapter);
5470         setup_memwin_rdma(adapter);
5471         if (err)
5472                 goto out_unmap_bar;
5473
5474         for_each_port(adapter, i) {
5475                 struct net_device *netdev;
5476
5477                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5478                                            MAX_ETH_QSETS);
5479                 if (!netdev) {
5480                         err = -ENOMEM;
5481                         goto out_free_dev;
5482                 }
5483
5484                 SET_NETDEV_DEV(netdev, &pdev->dev);
5485
5486                 adapter->port[i] = netdev;
5487                 pi = netdev_priv(netdev);
5488                 pi->adapter = adapter;
5489                 pi->xact_addr_filt = -1;
5490                 pi->port_id = i;
5491                 netdev->irq = pdev->irq;
5492
5493                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5494                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5495                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
5496                         NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
5497                 if (highdma)
5498                         netdev->hw_features |= NETIF_F_HIGHDMA;
5499                 netdev->features |= netdev->hw_features;
5500                 netdev->vlan_features = netdev->features & VLAN_FEAT;
5501
5502                 netdev->priv_flags |= IFF_UNICAST_FLT;
5503
5504                 netdev->netdev_ops = &cxgb4_netdev_ops;
5505                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
5506         }
5507
5508         pci_set_drvdata(pdev, adapter);
5509
5510         if (adapter->flags & FW_OK) {
5511                 err = t4_port_init(adapter, func, func, 0);
5512                 if (err)
5513                         goto out_free_dev;
5514         }
5515
5516         /*
5517          * Configure queues and allocate tables now, they can be needed as
5518          * soon as the first register_netdev completes.
5519          */
5520         cfg_queues(adapter);
5521
5522         adapter->l2t = t4_init_l2t();
5523         if (!adapter->l2t) {
5524                 /* We tolerate a lack of L2T, giving up some functionality */
5525                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5526                 adapter->params.offload = 0;
5527         }
5528
5529         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5530                 dev_warn(&pdev->dev, "could not allocate TID table, "
5531                          "continuing\n");
5532                 adapter->params.offload = 0;
5533         }
5534
5535         /* See what interrupts we'll be using */
5536         if (msi > 1 && enable_msix(adapter) == 0)
5537                 adapter->flags |= USING_MSIX;
5538         else if (msi > 0 && pci_enable_msi(pdev) == 0)
5539                 adapter->flags |= USING_MSI;
5540
5541         err = init_rss(adapter);
5542         if (err)
5543                 goto out_free_dev;
5544
5545         /*
5546          * The card is now ready to go.  If any errors occur during device
5547          * registration we do not fail the whole card but rather proceed only
5548          * with the ports we manage to register successfully.  However we must
5549          * register at least one net device.
5550          */
5551         for_each_port(adapter, i) {
5552                 pi = adap2pinfo(adapter, i);
5553                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5554                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5555
5556                 err = register_netdev(adapter->port[i]);
5557                 if (err)
5558                         break;
5559                 adapter->chan_map[pi->tx_chan] = i;
5560                 print_port_info(adapter->port[i]);
5561         }
5562         if (i == 0) {
5563                 dev_err(&pdev->dev, "could not register any net devices\n");
5564                 goto out_free_dev;
5565         }
5566         if (err) {
5567                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5568                 err = 0;
5569         }
5570
5571         if (cxgb4_debugfs_root) {
5572                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5573                                                            cxgb4_debugfs_root);
5574                 setup_debugfs(adapter);
5575         }
5576
5577         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5578         pdev->needs_freset = 1;
5579
5580         if (is_offload(adapter))
5581                 attach_ulds(adapter);
5582
5583 sriov:
5584 #ifdef CONFIG_PCI_IOV
5585         max_no_pf = is_t4(adapter->chip) ? NUM_OF_PF_WITH_SRIOV_T4 :
5586                         NUM_OF_PF_WITH_SRIOV_T5;
5587
5588         if (func < max_no_pf && num_vf[func] > 0)
5589                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5590                         dev_info(&pdev->dev,
5591                                  "instantiated %u virtual functions\n",
5592                                  num_vf[func]);
5593 #endif
5594         return 0;
5595
5596  out_free_dev:
5597         free_some_resources(adapter);
5598  out_unmap_bar:
5599         if (!is_t4(adapter->chip))
5600                 iounmap(adapter->bar2);
5601  out_unmap_bar0:
5602         iounmap(adapter->regs);
5603  out_free_adapter:
5604         kfree(adapter);
5605  out_disable_device:
5606         pci_disable_pcie_error_reporting(pdev);
5607         pci_disable_device(pdev);
5608  out_release_regions:
5609         pci_release_regions(pdev);
5610         pci_set_drvdata(pdev, NULL);
5611         return err;
5612 }
5613
5614 static void remove_one(struct pci_dev *pdev)
5615 {
5616         struct adapter *adapter = pci_get_drvdata(pdev);
5617
5618 #ifdef CONFIG_PCI_IOV
5619         pci_disable_sriov(pdev);
5620
5621 #endif
5622
5623         if (adapter) {
5624                 int i;
5625
5626                 if (is_offload(adapter))
5627                         detach_ulds(adapter);
5628
5629                 for_each_port(adapter, i)
5630                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5631                                 unregister_netdev(adapter->port[i]);
5632
5633                 if (adapter->debugfs_root)
5634                         debugfs_remove_recursive(adapter->debugfs_root);
5635
5636                 /* If we allocated filters, free up state associated with any
5637                  * valid filters ...
5638                  */
5639                 if (adapter->tids.ftid_tab) {
5640                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
5641                         for (i = 0; i < (adapter->tids.nftids +
5642                                         adapter->tids.nsftids); i++, f++)
5643                                 if (f->valid)
5644                                         clear_filter(adapter, f);
5645                 }
5646
5647                 if (adapter->flags & FULL_INIT_DONE)
5648                         cxgb_down(adapter);
5649
5650                 free_some_resources(adapter);
5651                 iounmap(adapter->regs);
5652                 if (!is_t4(adapter->chip))
5653                         iounmap(adapter->bar2);
5654                 kfree(adapter);
5655                 pci_disable_pcie_error_reporting(pdev);
5656                 pci_disable_device(pdev);
5657                 pci_release_regions(pdev);
5658                 pci_set_drvdata(pdev, NULL);
5659         } else
5660                 pci_release_regions(pdev);
5661 }
5662
5663 static struct pci_driver cxgb4_driver = {
5664         .name     = KBUILD_MODNAME,
5665         .id_table = cxgb4_pci_tbl,
5666         .probe    = init_one,
5667         .remove   = remove_one,
5668         .err_handler = &cxgb4_eeh,
5669 };
5670
5671 static int __init cxgb4_init_module(void)
5672 {
5673         int ret;
5674
5675         workq = create_singlethread_workqueue("cxgb4");
5676         if (!workq)
5677                 return -ENOMEM;
5678
5679         /* Debugfs support is optional, just warn if this fails */
5680         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5681         if (!cxgb4_debugfs_root)
5682                 pr_warn("could not create debugfs entry, continuing\n");
5683
5684         ret = pci_register_driver(&cxgb4_driver);
5685         if (ret < 0)
5686                 debugfs_remove(cxgb4_debugfs_root);
5687         return ret;
5688 }
5689
5690 static void __exit cxgb4_cleanup_module(void)
5691 {
5692         pci_unregister_driver(&cxgb4_driver);
5693         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5694         flush_workqueue(workq);
5695         destroy_workqueue(workq);
5696 }
5697
5698 module_init(cxgb4_init_module);
5699 module_exit(cxgb4_cleanup_module);