cxgb4: Enable doorbell drop recovery only for T4 adapter
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <asm/uaccess.h>
64
65 #include "cxgb4.h"
66 #include "t4_regs.h"
67 #include "t4_msg.h"
68 #include "t4fw_api.h"
69 #include "l2t.h"
70
71 #define DRV_VERSION "1.3.0-ko"
72 #define DRV_DESC "Chelsio T4 Network Driver"
73
74 /*
75  * Max interrupt hold-off timer value in us.  Queues fall back to this value
76  * under extreme memory pressure so it's largish to give the system time to
77  * recover.
78  */
79 #define MAX_SGE_TIMERVAL 200U
80
81 enum {
82         /*
83          * Physical Function provisioning constants.
84          */
85         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
86         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
87         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
88                                          */
89         PFRES_NEQ = 256,                /* # of egress queues */
90         PFRES_NIQ = 0,                  /* # of ingress queues */
91         PFRES_TC = 0,                   /* PCI-E traffic class */
92         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
93
94         PFRES_R_CAPS = FW_CMD_CAP_PF,
95         PFRES_WX_CAPS = FW_CMD_CAP_PF,
96
97 #ifdef CONFIG_PCI_IOV
98         /*
99          * Virtual Function provisioning constants.  We need two extra Ingress
100          * Queues with Interrupt capability to serve as the VF's Firmware
101          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
102          * neither will have Free Lists associated with them).  For each
103          * Ethernet/Control Egress Queue and for each Free List, we need an
104          * Egress Context.
105          */
106         VFRES_NPORTS = 1,               /* # of "ports" per VF */
107         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
108
109         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
110         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
111         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
112         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
113         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
114         VFRES_TC = 0,                   /* PCI-E traffic class */
115         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
116
117         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
118         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
119 #endif
120 };
121
122 /*
123  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
124  * static and likely not to be useful in the long run.  We really need to
125  * implement some form of persistent configuration which the firmware
126  * controls.
127  */
128 static unsigned int pfvfres_pmask(struct adapter *adapter,
129                                   unsigned int pf, unsigned int vf)
130 {
131         unsigned int portn, portvec;
132
133         /*
134          * Give PF's access to all of the ports.
135          */
136         if (vf == 0)
137                 return FW_PFVF_CMD_PMASK_MASK;
138
139         /*
140          * For VFs, we'll assign them access to the ports based purely on the
141          * PF.  We assign active ports in order, wrapping around if there are
142          * fewer active ports than PFs: e.g. active port[pf % nports].
143          * Unfortunately the adapter's port_info structs haven't been
144          * initialized yet so we have to compute this.
145          */
146         if (adapter->params.nports == 0)
147                 return 0;
148
149         portn = pf % adapter->params.nports;
150         portvec = adapter->params.portvec;
151         for (;;) {
152                 /*
153                  * Isolate the lowest set bit in the port vector.  If we're at
154                  * the port number that we want, return that as the pmask.
155                  * otherwise mask that bit out of the port vector and
156                  * decrement our port number ...
157                  */
158                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
159                 if (portn == 0)
160                         return pmask;
161                 portn--;
162                 portvec &= ~pmask;
163         }
164         /*NOTREACHED*/
165 }
166
167 enum {
168         MAX_TXQ_ENTRIES      = 16384,
169         MAX_CTRL_TXQ_ENTRIES = 1024,
170         MAX_RSPQ_ENTRIES     = 16384,
171         MAX_RX_BUFFERS       = 16384,
172         MIN_TXQ_ENTRIES      = 32,
173         MIN_CTRL_TXQ_ENTRIES = 32,
174         MIN_RSPQ_ENTRIES     = 128,
175         MIN_FL_ENTRIES       = 16
176 };
177
178 /* Host shadow copy of ingress filter entry.  This is in host native format
179  * and doesn't match the ordering or bit order, etc. of the hardware of the
180  * firmware command.  The use of bit-field structure elements is purely to
181  * remind ourselves of the field size limitations and save memory in the case
182  * where the filter table is large.
183  */
184 struct filter_entry {
185         /* Administrative fields for filter.
186          */
187         u32 valid:1;            /* filter allocated and valid */
188         u32 locked:1;           /* filter is administratively locked */
189
190         u32 pending:1;          /* filter action is pending firmware reply */
191         u32 smtidx:8;           /* Source MAC Table index for smac */
192         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
193
194         /* The filter itself.  Most of this is a straight copy of information
195          * provided by the extended ioctl().  Some fields are translated to
196          * internal forms -- for instance the Ingress Queue ID passed in from
197          * the ioctl() is translated into the Absolute Ingress Queue ID.
198          */
199         struct ch_filter_specification fs;
200 };
201
202 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
203                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
204                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
205
206 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
207
208 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
209         CH_DEVICE(0xa000, 0),  /* PE10K */
210         CH_DEVICE(0x4001, -1),
211         CH_DEVICE(0x4002, -1),
212         CH_DEVICE(0x4003, -1),
213         CH_DEVICE(0x4004, -1),
214         CH_DEVICE(0x4005, -1),
215         CH_DEVICE(0x4006, -1),
216         CH_DEVICE(0x4007, -1),
217         CH_DEVICE(0x4008, -1),
218         CH_DEVICE(0x4009, -1),
219         CH_DEVICE(0x400a, -1),
220         CH_DEVICE(0x4401, 4),
221         CH_DEVICE(0x4402, 4),
222         CH_DEVICE(0x4403, 4),
223         CH_DEVICE(0x4404, 4),
224         CH_DEVICE(0x4405, 4),
225         CH_DEVICE(0x4406, 4),
226         CH_DEVICE(0x4407, 4),
227         CH_DEVICE(0x4408, 4),
228         CH_DEVICE(0x4409, 4),
229         CH_DEVICE(0x440a, 4),
230         CH_DEVICE(0x440d, 4),
231         CH_DEVICE(0x440e, 4),
232         { 0, }
233 };
234
235 #define FW_FNAME "cxgb4/t4fw.bin"
236 #define FW5_FNAME "cxgb4/t5fw.bin"
237 #define FW_CFNAME "cxgb4/t4-config.txt"
238 #define FW5_CFNAME "cxgb4/t5-config.txt"
239
240 MODULE_DESCRIPTION(DRV_DESC);
241 MODULE_AUTHOR("Chelsio Communications");
242 MODULE_LICENSE("Dual BSD/GPL");
243 MODULE_VERSION(DRV_VERSION);
244 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
245 MODULE_FIRMWARE(FW_FNAME);
246 MODULE_FIRMWARE(FW5_FNAME);
247
248 /*
249  * Normally we're willing to become the firmware's Master PF but will be happy
250  * if another PF has already become the Master and initialized the adapter.
251  * Setting "force_init" will cause this driver to forcibly establish itself as
252  * the Master PF and initialize the adapter.
253  */
254 static uint force_init;
255
256 module_param(force_init, uint, 0644);
257 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
258
259 /*
260  * Normally if the firmware we connect to has Configuration File support, we
261  * use that and only fall back to the old Driver-based initialization if the
262  * Configuration File fails for some reason.  If force_old_init is set, then
263  * we'll always use the old Driver-based initialization sequence.
264  */
265 static uint force_old_init;
266
267 module_param(force_old_init, uint, 0644);
268 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
269
270 static int dflt_msg_enable = DFLT_MSG_ENABLE;
271
272 module_param(dflt_msg_enable, int, 0644);
273 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
274
275 /*
276  * The driver uses the best interrupt scheme available on a platform in the
277  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
278  * of these schemes the driver may consider as follows:
279  *
280  * msi = 2: choose from among all three options
281  * msi = 1: only consider MSI and INTx interrupts
282  * msi = 0: force INTx interrupts
283  */
284 static int msi = 2;
285
286 module_param(msi, int, 0644);
287 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
288
289 /*
290  * Queue interrupt hold-off timer values.  Queues default to the first of these
291  * upon creation.
292  */
293 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
294
295 module_param_array(intr_holdoff, uint, NULL, 0644);
296 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
297                  "0..4 in microseconds");
298
299 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
300
301 module_param_array(intr_cnt, uint, NULL, 0644);
302 MODULE_PARM_DESC(intr_cnt,
303                  "thresholds 1..3 for queue interrupt packet counters");
304
305 /*
306  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
307  * offset by 2 bytes in order to have the IP headers line up on 4-byte
308  * boundaries.  This is a requirement for many architectures which will throw
309  * a machine check fault if an attempt is made to access one of the 4-byte IP
310  * header fields on a non-4-byte boundary.  And it's a major performance issue
311  * even on some architectures which allow it like some implementations of the
312  * x86 ISA.  However, some architectures don't mind this and for some very
313  * edge-case performance sensitive applications (like forwarding large volumes
314  * of small packets), setting this DMA offset to 0 will decrease the number of
315  * PCI-E Bus transfers enough to measurably affect performance.
316  */
317 static int rx_dma_offset = 2;
318
319 static bool vf_acls;
320
321 #ifdef CONFIG_PCI_IOV
322 module_param(vf_acls, bool, 0644);
323 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
324
325 /* Since T5 has more num of PFs, using NUM_OF_PF_WITH_SRIOV_T5
326  * macro as num_vf array size
327  */
328 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV_T5];
329
330 module_param_array(num_vf, uint, NULL, 0644);
331 MODULE_PARM_DESC(num_vf,
332                  "number of VFs for each of PFs 0-3 for T4 and PFs 0-7 for T5");
333 #endif
334
335 /*
336  * The filter TCAM has a fixed portion and a variable portion.  The fixed
337  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
338  * ports.  The variable portion is 36 bits which can include things like Exact
339  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
340  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
341  * far exceed the 36-bit budget for this "compressed" header portion of the
342  * filter.  Thus, we have a scarce resource which must be carefully managed.
343  *
344  * By default we set this up to mostly match the set of filter matching
345  * capabilities of T3 but with accommodations for some of T4's more
346  * interesting features:
347  *
348  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
349  *     [Inner] VLAN (17), Port (3), FCoE (1) }
350  */
351 enum {
352         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
353         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
354         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
355 };
356
357 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
358
359 module_param(tp_vlan_pri_map, uint, 0644);
360 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
361
362 static struct dentry *cxgb4_debugfs_root;
363
364 static LIST_HEAD(adapter_list);
365 static DEFINE_MUTEX(uld_mutex);
366 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
367 static const char *uld_str[] = { "RDMA", "iSCSI" };
368
369 static void link_report(struct net_device *dev)
370 {
371         if (!netif_carrier_ok(dev))
372                 netdev_info(dev, "link down\n");
373         else {
374                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
375
376                 const char *s = "10Mbps";
377                 const struct port_info *p = netdev_priv(dev);
378
379                 switch (p->link_cfg.speed) {
380                 case SPEED_10000:
381                         s = "10Gbps";
382                         break;
383                 case SPEED_1000:
384                         s = "1000Mbps";
385                         break;
386                 case SPEED_100:
387                         s = "100Mbps";
388                         break;
389                 }
390
391                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
392                             fc[p->link_cfg.fc]);
393         }
394 }
395
396 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
397 {
398         struct net_device *dev = adapter->port[port_id];
399
400         /* Skip changes from disabled ports. */
401         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
402                 if (link_stat)
403                         netif_carrier_on(dev);
404                 else
405                         netif_carrier_off(dev);
406
407                 link_report(dev);
408         }
409 }
410
411 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
412 {
413         static const char *mod_str[] = {
414                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
415         };
416
417         const struct net_device *dev = adap->port[port_id];
418         const struct port_info *pi = netdev_priv(dev);
419
420         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
421                 netdev_info(dev, "port module unplugged\n");
422         else if (pi->mod_type < ARRAY_SIZE(mod_str))
423                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
424 }
425
426 /*
427  * Configure the exact and hash address filters to handle a port's multicast
428  * and secondary unicast MAC addresses.
429  */
430 static int set_addr_filters(const struct net_device *dev, bool sleep)
431 {
432         u64 mhash = 0;
433         u64 uhash = 0;
434         bool free = true;
435         u16 filt_idx[7];
436         const u8 *addr[7];
437         int ret, naddr = 0;
438         const struct netdev_hw_addr *ha;
439         int uc_cnt = netdev_uc_count(dev);
440         int mc_cnt = netdev_mc_count(dev);
441         const struct port_info *pi = netdev_priv(dev);
442         unsigned int mb = pi->adapter->fn;
443
444         /* first do the secondary unicast addresses */
445         netdev_for_each_uc_addr(ha, dev) {
446                 addr[naddr++] = ha->addr;
447                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
448                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
449                                         naddr, addr, filt_idx, &uhash, sleep);
450                         if (ret < 0)
451                                 return ret;
452
453                         free = false;
454                         naddr = 0;
455                 }
456         }
457
458         /* next set up the multicast addresses */
459         netdev_for_each_mc_addr(ha, dev) {
460                 addr[naddr++] = ha->addr;
461                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
462                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
463                                         naddr, addr, filt_idx, &mhash, sleep);
464                         if (ret < 0)
465                                 return ret;
466
467                         free = false;
468                         naddr = 0;
469                 }
470         }
471
472         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
473                                 uhash | mhash, sleep);
474 }
475
476 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
477 module_param(dbfifo_int_thresh, int, 0644);
478 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
479
480 /*
481  * usecs to sleep while draining the dbfifo
482  */
483 static int dbfifo_drain_delay = 1000;
484 module_param(dbfifo_drain_delay, int, 0644);
485 MODULE_PARM_DESC(dbfifo_drain_delay,
486                  "usecs to sleep while draining the dbfifo");
487
488 /*
489  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
490  * If @mtu is -1 it is left unchanged.
491  */
492 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
493 {
494         int ret;
495         struct port_info *pi = netdev_priv(dev);
496
497         ret = set_addr_filters(dev, sleep_ok);
498         if (ret == 0)
499                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
500                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
501                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
502                                     sleep_ok);
503         return ret;
504 }
505
506 static struct workqueue_struct *workq;
507
508 /**
509  *      link_start - enable a port
510  *      @dev: the port to enable
511  *
512  *      Performs the MAC and PHY actions needed to enable a port.
513  */
514 static int link_start(struct net_device *dev)
515 {
516         int ret;
517         struct port_info *pi = netdev_priv(dev);
518         unsigned int mb = pi->adapter->fn;
519
520         /*
521          * We do not set address filters and promiscuity here, the stack does
522          * that step explicitly.
523          */
524         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
525                             !!(dev->features & NETIF_F_HW_VLAN_RX), true);
526         if (ret == 0) {
527                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
528                                     pi->xact_addr_filt, dev->dev_addr, true,
529                                     true);
530                 if (ret >= 0) {
531                         pi->xact_addr_filt = ret;
532                         ret = 0;
533                 }
534         }
535         if (ret == 0)
536                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
537                                     &pi->link_cfg);
538         if (ret == 0)
539                 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
540         return ret;
541 }
542
543 /* Clear a filter and release any of its resources that we own.  This also
544  * clears the filter's "pending" status.
545  */
546 static void clear_filter(struct adapter *adap, struct filter_entry *f)
547 {
548         /* If the new or old filter have loopback rewriteing rules then we'll
549          * need to free any existing Layer Two Table (L2T) entries of the old
550          * filter rule.  The firmware will handle freeing up any Source MAC
551          * Table (SMT) entries used for rewriting Source MAC Addresses in
552          * loopback rules.
553          */
554         if (f->l2t)
555                 cxgb4_l2t_release(f->l2t);
556
557         /* The zeroing of the filter rule below clears the filter valid,
558          * pending, locked flags, l2t pointer, etc. so it's all we need for
559          * this operation.
560          */
561         memset(f, 0, sizeof(*f));
562 }
563
564 /* Handle a filter write/deletion reply.
565  */
566 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
567 {
568         unsigned int idx = GET_TID(rpl);
569         unsigned int nidx = idx - adap->tids.ftid_base;
570         unsigned int ret;
571         struct filter_entry *f;
572
573         if (idx >= adap->tids.ftid_base && nidx <
574            (adap->tids.nftids + adap->tids.nsftids)) {
575                 idx = nidx;
576                 ret = GET_TCB_COOKIE(rpl->cookie);
577                 f = &adap->tids.ftid_tab[idx];
578
579                 if (ret == FW_FILTER_WR_FLT_DELETED) {
580                         /* Clear the filter when we get confirmation from the
581                          * hardware that the filter has been deleted.
582                          */
583                         clear_filter(adap, f);
584                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
585                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
586                                 idx);
587                         clear_filter(adap, f);
588                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
589                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
590                         f->pending = 0;  /* asynchronous setup completed */
591                         f->valid = 1;
592                 } else {
593                         /* Something went wrong.  Issue a warning about the
594                          * problem and clear everything out.
595                          */
596                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
597                                 idx, ret);
598                         clear_filter(adap, f);
599                 }
600         }
601 }
602
603 /* Response queue handler for the FW event queue.
604  */
605 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
606                           const struct pkt_gl *gl)
607 {
608         u8 opcode = ((const struct rss_header *)rsp)->opcode;
609
610         rsp++;                                          /* skip RSS header */
611         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
612                 const struct cpl_sge_egr_update *p = (void *)rsp;
613                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
614                 struct sge_txq *txq;
615
616                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
617                 txq->restarts++;
618                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
619                         struct sge_eth_txq *eq;
620
621                         eq = container_of(txq, struct sge_eth_txq, q);
622                         netif_tx_wake_queue(eq->txq);
623                 } else {
624                         struct sge_ofld_txq *oq;
625
626                         oq = container_of(txq, struct sge_ofld_txq, q);
627                         tasklet_schedule(&oq->qresume_tsk);
628                 }
629         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
630                 const struct cpl_fw6_msg *p = (void *)rsp;
631
632                 if (p->type == 0)
633                         t4_handle_fw_rpl(q->adap, p->data);
634         } else if (opcode == CPL_L2T_WRITE_RPL) {
635                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
636
637                 do_l2t_write_rpl(q->adap, p);
638         } else if (opcode == CPL_SET_TCB_RPL) {
639                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
640
641                 filter_rpl(q->adap, p);
642         } else
643                 dev_err(q->adap->pdev_dev,
644                         "unexpected CPL %#x on FW event queue\n", opcode);
645         return 0;
646 }
647
648 /**
649  *      uldrx_handler - response queue handler for ULD queues
650  *      @q: the response queue that received the packet
651  *      @rsp: the response queue descriptor holding the offload message
652  *      @gl: the gather list of packet fragments
653  *
654  *      Deliver an ingress offload packet to a ULD.  All processing is done by
655  *      the ULD, we just maintain statistics.
656  */
657 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
658                          const struct pkt_gl *gl)
659 {
660         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
661
662         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
663                 rxq->stats.nomem++;
664                 return -1;
665         }
666         if (gl == NULL)
667                 rxq->stats.imm++;
668         else if (gl == CXGB4_MSG_AN)
669                 rxq->stats.an++;
670         else
671                 rxq->stats.pkts++;
672         return 0;
673 }
674
675 static void disable_msi(struct adapter *adapter)
676 {
677         if (adapter->flags & USING_MSIX) {
678                 pci_disable_msix(adapter->pdev);
679                 adapter->flags &= ~USING_MSIX;
680         } else if (adapter->flags & USING_MSI) {
681                 pci_disable_msi(adapter->pdev);
682                 adapter->flags &= ~USING_MSI;
683         }
684 }
685
686 /*
687  * Interrupt handler for non-data events used with MSI-X.
688  */
689 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
690 {
691         struct adapter *adap = cookie;
692
693         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
694         if (v & PFSW) {
695                 adap->swintr = 1;
696                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
697         }
698         t4_slow_intr_handler(adap);
699         return IRQ_HANDLED;
700 }
701
702 /*
703  * Name the MSI-X interrupts.
704  */
705 static void name_msix_vecs(struct adapter *adap)
706 {
707         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
708
709         /* non-data interrupts */
710         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
711
712         /* FW events */
713         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
714                  adap->port[0]->name);
715
716         /* Ethernet queues */
717         for_each_port(adap, j) {
718                 struct net_device *d = adap->port[j];
719                 const struct port_info *pi = netdev_priv(d);
720
721                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
722                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
723                                  d->name, i);
724         }
725
726         /* offload queues */
727         for_each_ofldrxq(&adap->sge, i)
728                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
729                          adap->port[0]->name, i);
730
731         for_each_rdmarxq(&adap->sge, i)
732                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
733                          adap->port[0]->name, i);
734 }
735
736 static int request_msix_queue_irqs(struct adapter *adap)
737 {
738         struct sge *s = &adap->sge;
739         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2;
740
741         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
742                           adap->msix_info[1].desc, &s->fw_evtq);
743         if (err)
744                 return err;
745
746         for_each_ethrxq(s, ethqidx) {
747                 err = request_irq(adap->msix_info[msi_index].vec,
748                                   t4_sge_intr_msix, 0,
749                                   adap->msix_info[msi_index].desc,
750                                   &s->ethrxq[ethqidx].rspq);
751                 if (err)
752                         goto unwind;
753                 msi_index++;
754         }
755         for_each_ofldrxq(s, ofldqidx) {
756                 err = request_irq(adap->msix_info[msi_index].vec,
757                                   t4_sge_intr_msix, 0,
758                                   adap->msix_info[msi_index].desc,
759                                   &s->ofldrxq[ofldqidx].rspq);
760                 if (err)
761                         goto unwind;
762                 msi_index++;
763         }
764         for_each_rdmarxq(s, rdmaqidx) {
765                 err = request_irq(adap->msix_info[msi_index].vec,
766                                   t4_sge_intr_msix, 0,
767                                   adap->msix_info[msi_index].desc,
768                                   &s->rdmarxq[rdmaqidx].rspq);
769                 if (err)
770                         goto unwind;
771                 msi_index++;
772         }
773         return 0;
774
775 unwind:
776         while (--rdmaqidx >= 0)
777                 free_irq(adap->msix_info[--msi_index].vec,
778                          &s->rdmarxq[rdmaqidx].rspq);
779         while (--ofldqidx >= 0)
780                 free_irq(adap->msix_info[--msi_index].vec,
781                          &s->ofldrxq[ofldqidx].rspq);
782         while (--ethqidx >= 0)
783                 free_irq(adap->msix_info[--msi_index].vec,
784                          &s->ethrxq[ethqidx].rspq);
785         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
786         return err;
787 }
788
789 static void free_msix_queue_irqs(struct adapter *adap)
790 {
791         int i, msi_index = 2;
792         struct sge *s = &adap->sge;
793
794         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
795         for_each_ethrxq(s, i)
796                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
797         for_each_ofldrxq(s, i)
798                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
799         for_each_rdmarxq(s, i)
800                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
801 }
802
803 /**
804  *      write_rss - write the RSS table for a given port
805  *      @pi: the port
806  *      @queues: array of queue indices for RSS
807  *
808  *      Sets up the portion of the HW RSS table for the port's VI to distribute
809  *      packets to the Rx queues in @queues.
810  */
811 static int write_rss(const struct port_info *pi, const u16 *queues)
812 {
813         u16 *rss;
814         int i, err;
815         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
816
817         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
818         if (!rss)
819                 return -ENOMEM;
820
821         /* map the queue indices to queue ids */
822         for (i = 0; i < pi->rss_size; i++, queues++)
823                 rss[i] = q[*queues].rspq.abs_id;
824
825         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
826                                   pi->rss_size, rss, pi->rss_size);
827         kfree(rss);
828         return err;
829 }
830
831 /**
832  *      setup_rss - configure RSS
833  *      @adap: the adapter
834  *
835  *      Sets up RSS for each port.
836  */
837 static int setup_rss(struct adapter *adap)
838 {
839         int i, err;
840
841         for_each_port(adap, i) {
842                 const struct port_info *pi = adap2pinfo(adap, i);
843
844                 err = write_rss(pi, pi->rss);
845                 if (err)
846                         return err;
847         }
848         return 0;
849 }
850
851 /*
852  * Return the channel of the ingress queue with the given qid.
853  */
854 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
855 {
856         qid -= p->ingr_start;
857         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
858 }
859
860 /*
861  * Wait until all NAPI handlers are descheduled.
862  */
863 static void quiesce_rx(struct adapter *adap)
864 {
865         int i;
866
867         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
868                 struct sge_rspq *q = adap->sge.ingr_map[i];
869
870                 if (q && q->handler)
871                         napi_disable(&q->napi);
872         }
873 }
874
875 /*
876  * Enable NAPI scheduling and interrupt generation for all Rx queues.
877  */
878 static void enable_rx(struct adapter *adap)
879 {
880         int i;
881
882         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
883                 struct sge_rspq *q = adap->sge.ingr_map[i];
884
885                 if (!q)
886                         continue;
887                 if (q->handler)
888                         napi_enable(&q->napi);
889                 /* 0-increment GTS to start the timer and enable interrupts */
890                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
891                              SEINTARM(q->intr_params) |
892                              INGRESSQID(q->cntxt_id));
893         }
894 }
895
896 /**
897  *      setup_sge_queues - configure SGE Tx/Rx/response queues
898  *      @adap: the adapter
899  *
900  *      Determines how many sets of SGE queues to use and initializes them.
901  *      We support multiple queue sets per port if we have MSI-X, otherwise
902  *      just one queue set per port.
903  */
904 static int setup_sge_queues(struct adapter *adap)
905 {
906         int err, msi_idx, i, j;
907         struct sge *s = &adap->sge;
908
909         bitmap_zero(s->starving_fl, MAX_EGRQ);
910         bitmap_zero(s->txq_maperr, MAX_EGRQ);
911
912         if (adap->flags & USING_MSIX)
913                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
914         else {
915                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
916                                        NULL, NULL);
917                 if (err)
918                         return err;
919                 msi_idx = -((int)s->intrq.abs_id + 1);
920         }
921
922         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
923                                msi_idx, NULL, fwevtq_handler);
924         if (err) {
925 freeout:        t4_free_sge_resources(adap);
926                 return err;
927         }
928
929         for_each_port(adap, i) {
930                 struct net_device *dev = adap->port[i];
931                 struct port_info *pi = netdev_priv(dev);
932                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
933                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
934
935                 for (j = 0; j < pi->nqsets; j++, q++) {
936                         if (msi_idx > 0)
937                                 msi_idx++;
938                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
939                                                msi_idx, &q->fl,
940                                                t4_ethrx_handler);
941                         if (err)
942                                 goto freeout;
943                         q->rspq.idx = j;
944                         memset(&q->stats, 0, sizeof(q->stats));
945                 }
946                 for (j = 0; j < pi->nqsets; j++, t++) {
947                         err = t4_sge_alloc_eth_txq(adap, t, dev,
948                                         netdev_get_tx_queue(dev, j),
949                                         s->fw_evtq.cntxt_id);
950                         if (err)
951                                 goto freeout;
952                 }
953         }
954
955         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
956         for_each_ofldrxq(s, i) {
957                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
958                 struct net_device *dev = adap->port[i / j];
959
960                 if (msi_idx > 0)
961                         msi_idx++;
962                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
963                                        &q->fl, uldrx_handler);
964                 if (err)
965                         goto freeout;
966                 memset(&q->stats, 0, sizeof(q->stats));
967                 s->ofld_rxq[i] = q->rspq.abs_id;
968                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
969                                             s->fw_evtq.cntxt_id);
970                 if (err)
971                         goto freeout;
972         }
973
974         for_each_rdmarxq(s, i) {
975                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
976
977                 if (msi_idx > 0)
978                         msi_idx++;
979                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
980                                        msi_idx, &q->fl, uldrx_handler);
981                 if (err)
982                         goto freeout;
983                 memset(&q->stats, 0, sizeof(q->stats));
984                 s->rdma_rxq[i] = q->rspq.abs_id;
985         }
986
987         for_each_port(adap, i) {
988                 /*
989                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
990                  * have RDMA queues, and that's the right value.
991                  */
992                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
993                                             s->fw_evtq.cntxt_id,
994                                             s->rdmarxq[i].rspq.cntxt_id);
995                 if (err)
996                         goto freeout;
997         }
998
999         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1000                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1001                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1002         return 0;
1003 }
1004
1005 /*
1006  * Returns 0 if new FW was successfully loaded, a positive errno if a load was
1007  * started but failed, and a negative errno if flash load couldn't start.
1008  */
1009 static int upgrade_fw(struct adapter *adap)
1010 {
1011         int ret;
1012         u32 vers, exp_major;
1013         const struct fw_hdr *hdr;
1014         const struct firmware *fw;
1015         struct device *dev = adap->pdev_dev;
1016         char *fw_file_name;
1017
1018         switch (CHELSIO_CHIP_VERSION(adap->chip)) {
1019         case CHELSIO_T4:
1020                 fw_file_name = FW_FNAME;
1021                 exp_major = FW_VERSION_MAJOR;
1022                 break;
1023         case CHELSIO_T5:
1024                 fw_file_name = FW5_FNAME;
1025                 exp_major = FW_VERSION_MAJOR_T5;
1026                 break;
1027         default:
1028                 dev_err(dev, "Unsupported chip type, %x\n", adap->chip);
1029                 return -EINVAL;
1030         }
1031
1032         ret = request_firmware(&fw, fw_file_name, dev);
1033         if (ret < 0) {
1034                 dev_err(dev, "unable to load firmware image %s, error %d\n",
1035                         fw_file_name, ret);
1036                 return ret;
1037         }
1038
1039         hdr = (const struct fw_hdr *)fw->data;
1040         vers = ntohl(hdr->fw_ver);
1041         if (FW_HDR_FW_VER_MAJOR_GET(vers) != exp_major) {
1042                 ret = -EINVAL;              /* wrong major version, won't do */
1043                 goto out;
1044         }
1045
1046         /*
1047          * If the flash FW is unusable or we found something newer, load it.
1048          */
1049         if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != exp_major ||
1050             vers > adap->params.fw_vers) {
1051                 dev_info(dev, "upgrading firmware ...\n");
1052                 ret = t4_fw_upgrade(adap, adap->mbox, fw->data, fw->size,
1053                                     /*force=*/false);
1054                 if (!ret)
1055                         dev_info(dev,
1056                                  "firmware upgraded to version %pI4 from %s\n",
1057                                  &hdr->fw_ver, fw_file_name);
1058                 else
1059                         dev_err(dev, "firmware upgrade failed! err=%d\n", -ret);
1060         } else {
1061                 /*
1062                  * Tell our caller that we didn't upgrade the firmware.
1063                  */
1064                 ret = -EINVAL;
1065         }
1066
1067 out:    release_firmware(fw);
1068         return ret;
1069 }
1070
1071 /*
1072  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1073  * The allocated memory is cleared.
1074  */
1075 void *t4_alloc_mem(size_t size)
1076 {
1077         void *p = kzalloc(size, GFP_KERNEL);
1078
1079         if (!p)
1080                 p = vzalloc(size);
1081         return p;
1082 }
1083
1084 /*
1085  * Free memory allocated through alloc_mem().
1086  */
1087 static void t4_free_mem(void *addr)
1088 {
1089         if (is_vmalloc_addr(addr))
1090                 vfree(addr);
1091         else
1092                 kfree(addr);
1093 }
1094
1095 /* Send a Work Request to write the filter at a specified index.  We construct
1096  * a Firmware Filter Work Request to have the work done and put the indicated
1097  * filter into "pending" mode which will prevent any further actions against
1098  * it till we get a reply from the firmware on the completion status of the
1099  * request.
1100  */
1101 static int set_filter_wr(struct adapter *adapter, int fidx)
1102 {
1103         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1104         struct sk_buff *skb;
1105         struct fw_filter_wr *fwr;
1106         unsigned int ftid;
1107
1108         /* If the new filter requires loopback Destination MAC and/or VLAN
1109          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1110          * the filter.
1111          */
1112         if (f->fs.newdmac || f->fs.newvlan) {
1113                 /* allocate L2T entry for new filter */
1114                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1115                 if (f->l2t == NULL)
1116                         return -EAGAIN;
1117                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1118                                         f->fs.eport, f->fs.dmac)) {
1119                         cxgb4_l2t_release(f->l2t);
1120                         f->l2t = NULL;
1121                         return -ENOMEM;
1122                 }
1123         }
1124
1125         ftid = adapter->tids.ftid_base + fidx;
1126
1127         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1128         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1129         memset(fwr, 0, sizeof(*fwr));
1130
1131         /* It would be nice to put most of the following in t4_hw.c but most
1132          * of the work is translating the cxgbtool ch_filter_specification
1133          * into the Work Request and the definition of that structure is
1134          * currently in cxgbtool.h which isn't appropriate to pull into the
1135          * common code.  We may eventually try to come up with a more neutral
1136          * filter specification structure but for now it's easiest to simply
1137          * put this fairly direct code in line ...
1138          */
1139         fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1140         fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1141         fwr->tid_to_iq =
1142                 htonl(V_FW_FILTER_WR_TID(ftid) |
1143                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1144                       V_FW_FILTER_WR_NOREPLY(0) |
1145                       V_FW_FILTER_WR_IQ(f->fs.iq));
1146         fwr->del_filter_to_l2tix =
1147                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1148                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1149                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1150                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1151                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1152                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1153                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1154                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1155                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1156                                              f->fs.newvlan == VLAN_REWRITE) |
1157                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1158                                             f->fs.newvlan == VLAN_REWRITE) |
1159                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1160                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1161                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1162                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1163         fwr->ethtype = htons(f->fs.val.ethtype);
1164         fwr->ethtypem = htons(f->fs.mask.ethtype);
1165         fwr->frag_to_ovlan_vldm =
1166                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1167                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1168                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1169                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1170                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1171                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1172         fwr->smac_sel = 0;
1173         fwr->rx_chan_rx_rpl_iq =
1174                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1175                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1176         fwr->maci_to_matchtypem =
1177                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1178                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1179                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1180                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1181                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1182                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1183                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1184                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1185         fwr->ptcl = f->fs.val.proto;
1186         fwr->ptclm = f->fs.mask.proto;
1187         fwr->ttyp = f->fs.val.tos;
1188         fwr->ttypm = f->fs.mask.tos;
1189         fwr->ivlan = htons(f->fs.val.ivlan);
1190         fwr->ivlanm = htons(f->fs.mask.ivlan);
1191         fwr->ovlan = htons(f->fs.val.ovlan);
1192         fwr->ovlanm = htons(f->fs.mask.ovlan);
1193         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1194         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1195         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1196         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1197         fwr->lp = htons(f->fs.val.lport);
1198         fwr->lpm = htons(f->fs.mask.lport);
1199         fwr->fp = htons(f->fs.val.fport);
1200         fwr->fpm = htons(f->fs.mask.fport);
1201         if (f->fs.newsmac)
1202                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1203
1204         /* Mark the filter as "pending" and ship off the Filter Work Request.
1205          * When we get the Work Request Reply we'll clear the pending status.
1206          */
1207         f->pending = 1;
1208         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1209         t4_ofld_send(adapter, skb);
1210         return 0;
1211 }
1212
1213 /* Delete the filter at a specified index.
1214  */
1215 static int del_filter_wr(struct adapter *adapter, int fidx)
1216 {
1217         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1218         struct sk_buff *skb;
1219         struct fw_filter_wr *fwr;
1220         unsigned int len, ftid;
1221
1222         len = sizeof(*fwr);
1223         ftid = adapter->tids.ftid_base + fidx;
1224
1225         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1226         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1227         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1228
1229         /* Mark the filter as "pending" and ship off the Filter Work Request.
1230          * When we get the Work Request Reply we'll clear the pending status.
1231          */
1232         f->pending = 1;
1233         t4_mgmt_tx(adapter, skb);
1234         return 0;
1235 }
1236
1237 static inline int is_offload(const struct adapter *adap)
1238 {
1239         return adap->params.offload;
1240 }
1241
1242 /*
1243  * Implementation of ethtool operations.
1244  */
1245
1246 static u32 get_msglevel(struct net_device *dev)
1247 {
1248         return netdev2adap(dev)->msg_enable;
1249 }
1250
1251 static void set_msglevel(struct net_device *dev, u32 val)
1252 {
1253         netdev2adap(dev)->msg_enable = val;
1254 }
1255
1256 static char stats_strings[][ETH_GSTRING_LEN] = {
1257         "TxOctetsOK         ",
1258         "TxFramesOK         ",
1259         "TxBroadcastFrames  ",
1260         "TxMulticastFrames  ",
1261         "TxUnicastFrames    ",
1262         "TxErrorFrames      ",
1263
1264         "TxFrames64         ",
1265         "TxFrames65To127    ",
1266         "TxFrames128To255   ",
1267         "TxFrames256To511   ",
1268         "TxFrames512To1023  ",
1269         "TxFrames1024To1518 ",
1270         "TxFrames1519ToMax  ",
1271
1272         "TxFramesDropped    ",
1273         "TxPauseFrames      ",
1274         "TxPPP0Frames       ",
1275         "TxPPP1Frames       ",
1276         "TxPPP2Frames       ",
1277         "TxPPP3Frames       ",
1278         "TxPPP4Frames       ",
1279         "TxPPP5Frames       ",
1280         "TxPPP6Frames       ",
1281         "TxPPP7Frames       ",
1282
1283         "RxOctetsOK         ",
1284         "RxFramesOK         ",
1285         "RxBroadcastFrames  ",
1286         "RxMulticastFrames  ",
1287         "RxUnicastFrames    ",
1288
1289         "RxFramesTooLong    ",
1290         "RxJabberErrors     ",
1291         "RxFCSErrors        ",
1292         "RxLengthErrors     ",
1293         "RxSymbolErrors     ",
1294         "RxRuntFrames       ",
1295
1296         "RxFrames64         ",
1297         "RxFrames65To127    ",
1298         "RxFrames128To255   ",
1299         "RxFrames256To511   ",
1300         "RxFrames512To1023  ",
1301         "RxFrames1024To1518 ",
1302         "RxFrames1519ToMax  ",
1303
1304         "RxPauseFrames      ",
1305         "RxPPP0Frames       ",
1306         "RxPPP1Frames       ",
1307         "RxPPP2Frames       ",
1308         "RxPPP3Frames       ",
1309         "RxPPP4Frames       ",
1310         "RxPPP5Frames       ",
1311         "RxPPP6Frames       ",
1312         "RxPPP7Frames       ",
1313
1314         "RxBG0FramesDropped ",
1315         "RxBG1FramesDropped ",
1316         "RxBG2FramesDropped ",
1317         "RxBG3FramesDropped ",
1318         "RxBG0FramesTrunc   ",
1319         "RxBG1FramesTrunc   ",
1320         "RxBG2FramesTrunc   ",
1321         "RxBG3FramesTrunc   ",
1322
1323         "TSO                ",
1324         "TxCsumOffload      ",
1325         "RxCsumGood         ",
1326         "VLANextractions    ",
1327         "VLANinsertions     ",
1328         "GROpackets         ",
1329         "GROmerged          ",
1330         "WriteCoalSuccess   ",
1331         "WriteCoalFail      ",
1332 };
1333
1334 static int get_sset_count(struct net_device *dev, int sset)
1335 {
1336         switch (sset) {
1337         case ETH_SS_STATS:
1338                 return ARRAY_SIZE(stats_strings);
1339         default:
1340                 return -EOPNOTSUPP;
1341         }
1342 }
1343
1344 #define T4_REGMAP_SIZE (160 * 1024)
1345 #define T5_REGMAP_SIZE (332 * 1024)
1346
1347 static int get_regs_len(struct net_device *dev)
1348 {
1349         struct adapter *adap = netdev2adap(dev);
1350         if (is_t4(adap->chip))
1351                 return T4_REGMAP_SIZE;
1352         else
1353                 return T5_REGMAP_SIZE;
1354 }
1355
1356 static int get_eeprom_len(struct net_device *dev)
1357 {
1358         return EEPROMSIZE;
1359 }
1360
1361 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1362 {
1363         struct adapter *adapter = netdev2adap(dev);
1364
1365         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1366         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1367         strlcpy(info->bus_info, pci_name(adapter->pdev),
1368                 sizeof(info->bus_info));
1369
1370         if (adapter->params.fw_vers)
1371                 snprintf(info->fw_version, sizeof(info->fw_version),
1372                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1373                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1374                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1375                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1376                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1377                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1378                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1379                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1380                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1381 }
1382
1383 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1384 {
1385         if (stringset == ETH_SS_STATS)
1386                 memcpy(data, stats_strings, sizeof(stats_strings));
1387 }
1388
1389 /*
1390  * port stats maintained per queue of the port.  They should be in the same
1391  * order as in stats_strings above.
1392  */
1393 struct queue_port_stats {
1394         u64 tso;
1395         u64 tx_csum;
1396         u64 rx_csum;
1397         u64 vlan_ex;
1398         u64 vlan_ins;
1399         u64 gro_pkts;
1400         u64 gro_merged;
1401 };
1402
1403 static void collect_sge_port_stats(const struct adapter *adap,
1404                 const struct port_info *p, struct queue_port_stats *s)
1405 {
1406         int i;
1407         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1408         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1409
1410         memset(s, 0, sizeof(*s));
1411         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1412                 s->tso += tx->tso;
1413                 s->tx_csum += tx->tx_cso;
1414                 s->rx_csum += rx->stats.rx_cso;
1415                 s->vlan_ex += rx->stats.vlan_ex;
1416                 s->vlan_ins += tx->vlan_ins;
1417                 s->gro_pkts += rx->stats.lro_pkts;
1418                 s->gro_merged += rx->stats.lro_merged;
1419         }
1420 }
1421
1422 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1423                       u64 *data)
1424 {
1425         struct port_info *pi = netdev_priv(dev);
1426         struct adapter *adapter = pi->adapter;
1427         u32 val1, val2;
1428
1429         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1430
1431         data += sizeof(struct port_stats) / sizeof(u64);
1432         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1433         data += sizeof(struct queue_port_stats) / sizeof(u64);
1434         if (!is_t4(adapter->chip)) {
1435                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1436                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1437                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1438                 *data = val1 - val2;
1439                 data++;
1440                 *data = val2;
1441                 data++;
1442         } else {
1443                 memset(data, 0, 2 * sizeof(u64));
1444                 *data += 2;
1445         }
1446 }
1447
1448 /*
1449  * Return a version number to identify the type of adapter.  The scheme is:
1450  * - bits 0..9: chip version
1451  * - bits 10..15: chip revision
1452  * - bits 16..23: register dump version
1453  */
1454 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1455 {
1456         return CHELSIO_CHIP_VERSION(ap->chip) |
1457                 (CHELSIO_CHIP_RELEASE(ap->chip) << 10) | (1 << 16);
1458 }
1459
1460 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1461                            unsigned int end)
1462 {
1463         u32 *p = buf + start;
1464
1465         for ( ; start <= end; start += sizeof(u32))
1466                 *p++ = t4_read_reg(ap, start);
1467 }
1468
1469 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1470                      void *buf)
1471 {
1472         static const unsigned int t4_reg_ranges[] = {
1473                 0x1008, 0x1108,
1474                 0x1180, 0x11b4,
1475                 0x11fc, 0x123c,
1476                 0x1300, 0x173c,
1477                 0x1800, 0x18fc,
1478                 0x3000, 0x30d8,
1479                 0x30e0, 0x5924,
1480                 0x5960, 0x59d4,
1481                 0x5a00, 0x5af8,
1482                 0x6000, 0x6098,
1483                 0x6100, 0x6150,
1484                 0x6200, 0x6208,
1485                 0x6240, 0x6248,
1486                 0x6280, 0x6338,
1487                 0x6370, 0x638c,
1488                 0x6400, 0x643c,
1489                 0x6500, 0x6524,
1490                 0x6a00, 0x6a38,
1491                 0x6a60, 0x6a78,
1492                 0x6b00, 0x6b84,
1493                 0x6bf0, 0x6c84,
1494                 0x6cf0, 0x6d84,
1495                 0x6df0, 0x6e84,
1496                 0x6ef0, 0x6f84,
1497                 0x6ff0, 0x7084,
1498                 0x70f0, 0x7184,
1499                 0x71f0, 0x7284,
1500                 0x72f0, 0x7384,
1501                 0x73f0, 0x7450,
1502                 0x7500, 0x7530,
1503                 0x7600, 0x761c,
1504                 0x7680, 0x76cc,
1505                 0x7700, 0x7798,
1506                 0x77c0, 0x77fc,
1507                 0x7900, 0x79fc,
1508                 0x7b00, 0x7c38,
1509                 0x7d00, 0x7efc,
1510                 0x8dc0, 0x8e1c,
1511                 0x8e30, 0x8e78,
1512                 0x8ea0, 0x8f6c,
1513                 0x8fc0, 0x9074,
1514                 0x90fc, 0x90fc,
1515                 0x9400, 0x9458,
1516                 0x9600, 0x96bc,
1517                 0x9800, 0x9808,
1518                 0x9820, 0x983c,
1519                 0x9850, 0x9864,
1520                 0x9c00, 0x9c6c,
1521                 0x9c80, 0x9cec,
1522                 0x9d00, 0x9d6c,
1523                 0x9d80, 0x9dec,
1524                 0x9e00, 0x9e6c,
1525                 0x9e80, 0x9eec,
1526                 0x9f00, 0x9f6c,
1527                 0x9f80, 0x9fec,
1528                 0xd004, 0xd03c,
1529                 0xdfc0, 0xdfe0,
1530                 0xe000, 0xea7c,
1531                 0xf000, 0x11190,
1532                 0x19040, 0x1906c,
1533                 0x19078, 0x19080,
1534                 0x1908c, 0x19124,
1535                 0x19150, 0x191b0,
1536                 0x191d0, 0x191e8,
1537                 0x19238, 0x1924c,
1538                 0x193f8, 0x19474,
1539                 0x19490, 0x194f8,
1540                 0x19800, 0x19f30,
1541                 0x1a000, 0x1a06c,
1542                 0x1a0b0, 0x1a120,
1543                 0x1a128, 0x1a138,
1544                 0x1a190, 0x1a1c4,
1545                 0x1a1fc, 0x1a1fc,
1546                 0x1e040, 0x1e04c,
1547                 0x1e284, 0x1e28c,
1548                 0x1e2c0, 0x1e2c0,
1549                 0x1e2e0, 0x1e2e0,
1550                 0x1e300, 0x1e384,
1551                 0x1e3c0, 0x1e3c8,
1552                 0x1e440, 0x1e44c,
1553                 0x1e684, 0x1e68c,
1554                 0x1e6c0, 0x1e6c0,
1555                 0x1e6e0, 0x1e6e0,
1556                 0x1e700, 0x1e784,
1557                 0x1e7c0, 0x1e7c8,
1558                 0x1e840, 0x1e84c,
1559                 0x1ea84, 0x1ea8c,
1560                 0x1eac0, 0x1eac0,
1561                 0x1eae0, 0x1eae0,
1562                 0x1eb00, 0x1eb84,
1563                 0x1ebc0, 0x1ebc8,
1564                 0x1ec40, 0x1ec4c,
1565                 0x1ee84, 0x1ee8c,
1566                 0x1eec0, 0x1eec0,
1567                 0x1eee0, 0x1eee0,
1568                 0x1ef00, 0x1ef84,
1569                 0x1efc0, 0x1efc8,
1570                 0x1f040, 0x1f04c,
1571                 0x1f284, 0x1f28c,
1572                 0x1f2c0, 0x1f2c0,
1573                 0x1f2e0, 0x1f2e0,
1574                 0x1f300, 0x1f384,
1575                 0x1f3c0, 0x1f3c8,
1576                 0x1f440, 0x1f44c,
1577                 0x1f684, 0x1f68c,
1578                 0x1f6c0, 0x1f6c0,
1579                 0x1f6e0, 0x1f6e0,
1580                 0x1f700, 0x1f784,
1581                 0x1f7c0, 0x1f7c8,
1582                 0x1f840, 0x1f84c,
1583                 0x1fa84, 0x1fa8c,
1584                 0x1fac0, 0x1fac0,
1585                 0x1fae0, 0x1fae0,
1586                 0x1fb00, 0x1fb84,
1587                 0x1fbc0, 0x1fbc8,
1588                 0x1fc40, 0x1fc4c,
1589                 0x1fe84, 0x1fe8c,
1590                 0x1fec0, 0x1fec0,
1591                 0x1fee0, 0x1fee0,
1592                 0x1ff00, 0x1ff84,
1593                 0x1ffc0, 0x1ffc8,
1594                 0x20000, 0x2002c,
1595                 0x20100, 0x2013c,
1596                 0x20190, 0x201c8,
1597                 0x20200, 0x20318,
1598                 0x20400, 0x20528,
1599                 0x20540, 0x20614,
1600                 0x21000, 0x21040,
1601                 0x2104c, 0x21060,
1602                 0x210c0, 0x210ec,
1603                 0x21200, 0x21268,
1604                 0x21270, 0x21284,
1605                 0x212fc, 0x21388,
1606                 0x21400, 0x21404,
1607                 0x21500, 0x21518,
1608                 0x2152c, 0x2153c,
1609                 0x21550, 0x21554,
1610                 0x21600, 0x21600,
1611                 0x21608, 0x21628,
1612                 0x21630, 0x2163c,
1613                 0x21700, 0x2171c,
1614                 0x21780, 0x2178c,
1615                 0x21800, 0x21c38,
1616                 0x21c80, 0x21d7c,
1617                 0x21e00, 0x21e04,
1618                 0x22000, 0x2202c,
1619                 0x22100, 0x2213c,
1620                 0x22190, 0x221c8,
1621                 0x22200, 0x22318,
1622                 0x22400, 0x22528,
1623                 0x22540, 0x22614,
1624                 0x23000, 0x23040,
1625                 0x2304c, 0x23060,
1626                 0x230c0, 0x230ec,
1627                 0x23200, 0x23268,
1628                 0x23270, 0x23284,
1629                 0x232fc, 0x23388,
1630                 0x23400, 0x23404,
1631                 0x23500, 0x23518,
1632                 0x2352c, 0x2353c,
1633                 0x23550, 0x23554,
1634                 0x23600, 0x23600,
1635                 0x23608, 0x23628,
1636                 0x23630, 0x2363c,
1637                 0x23700, 0x2371c,
1638                 0x23780, 0x2378c,
1639                 0x23800, 0x23c38,
1640                 0x23c80, 0x23d7c,
1641                 0x23e00, 0x23e04,
1642                 0x24000, 0x2402c,
1643                 0x24100, 0x2413c,
1644                 0x24190, 0x241c8,
1645                 0x24200, 0x24318,
1646                 0x24400, 0x24528,
1647                 0x24540, 0x24614,
1648                 0x25000, 0x25040,
1649                 0x2504c, 0x25060,
1650                 0x250c0, 0x250ec,
1651                 0x25200, 0x25268,
1652                 0x25270, 0x25284,
1653                 0x252fc, 0x25388,
1654                 0x25400, 0x25404,
1655                 0x25500, 0x25518,
1656                 0x2552c, 0x2553c,
1657                 0x25550, 0x25554,
1658                 0x25600, 0x25600,
1659                 0x25608, 0x25628,
1660                 0x25630, 0x2563c,
1661                 0x25700, 0x2571c,
1662                 0x25780, 0x2578c,
1663                 0x25800, 0x25c38,
1664                 0x25c80, 0x25d7c,
1665                 0x25e00, 0x25e04,
1666                 0x26000, 0x2602c,
1667                 0x26100, 0x2613c,
1668                 0x26190, 0x261c8,
1669                 0x26200, 0x26318,
1670                 0x26400, 0x26528,
1671                 0x26540, 0x26614,
1672                 0x27000, 0x27040,
1673                 0x2704c, 0x27060,
1674                 0x270c0, 0x270ec,
1675                 0x27200, 0x27268,
1676                 0x27270, 0x27284,
1677                 0x272fc, 0x27388,
1678                 0x27400, 0x27404,
1679                 0x27500, 0x27518,
1680                 0x2752c, 0x2753c,
1681                 0x27550, 0x27554,
1682                 0x27600, 0x27600,
1683                 0x27608, 0x27628,
1684                 0x27630, 0x2763c,
1685                 0x27700, 0x2771c,
1686                 0x27780, 0x2778c,
1687                 0x27800, 0x27c38,
1688                 0x27c80, 0x27d7c,
1689                 0x27e00, 0x27e04
1690         };
1691
1692         static const unsigned int t5_reg_ranges[] = {
1693                 0x1008, 0x1148,
1694                 0x1180, 0x11b4,
1695                 0x11fc, 0x123c,
1696                 0x1280, 0x173c,
1697                 0x1800, 0x18fc,
1698                 0x3000, 0x3028,
1699                 0x3060, 0x30d8,
1700                 0x30e0, 0x30fc,
1701                 0x3140, 0x357c,
1702                 0x35a8, 0x35cc,
1703                 0x35ec, 0x35ec,
1704                 0x3600, 0x5624,
1705                 0x56cc, 0x575c,
1706                 0x580c, 0x5814,
1707                 0x5890, 0x58bc,
1708                 0x5940, 0x59dc,
1709                 0x59fc, 0x5a18,
1710                 0x5a60, 0x5a9c,
1711                 0x5b9c, 0x5bfc,
1712                 0x6000, 0x6040,
1713                 0x6058, 0x614c,
1714                 0x7700, 0x7798,
1715                 0x77c0, 0x78fc,
1716                 0x7b00, 0x7c54,
1717                 0x7d00, 0x7efc,
1718                 0x8dc0, 0x8de0,
1719                 0x8df8, 0x8e84,
1720                 0x8ea0, 0x8f84,
1721                 0x8fc0, 0x90f8,
1722                 0x9400, 0x9470,
1723                 0x9600, 0x96f4,
1724                 0x9800, 0x9808,
1725                 0x9820, 0x983c,
1726                 0x9850, 0x9864,
1727                 0x9c00, 0x9c6c,
1728                 0x9c80, 0x9cec,
1729                 0x9d00, 0x9d6c,
1730                 0x9d80, 0x9dec,
1731                 0x9e00, 0x9e6c,
1732                 0x9e80, 0x9eec,
1733                 0x9f00, 0x9f6c,
1734                 0x9f80, 0xa020,
1735                 0xd004, 0xd03c,
1736                 0xdfc0, 0xdfe0,
1737                 0xe000, 0x11088,
1738                 0x1109c, 0x1117c,
1739                 0x11190, 0x11204,
1740                 0x19040, 0x1906c,
1741                 0x19078, 0x19080,
1742                 0x1908c, 0x19124,
1743                 0x19150, 0x191b0,
1744                 0x191d0, 0x191e8,
1745                 0x19238, 0x19290,
1746                 0x193f8, 0x19474,
1747                 0x19490, 0x194cc,
1748                 0x194f0, 0x194f8,
1749                 0x19c00, 0x19c60,
1750                 0x19c94, 0x19e10,
1751                 0x19e50, 0x19f34,
1752                 0x19f40, 0x19f50,
1753                 0x19f90, 0x19fe4,
1754                 0x1a000, 0x1a06c,
1755                 0x1a0b0, 0x1a120,
1756                 0x1a128, 0x1a138,
1757                 0x1a190, 0x1a1c4,
1758                 0x1a1fc, 0x1a1fc,
1759                 0x1e008, 0x1e00c,
1760                 0x1e040, 0x1e04c,
1761                 0x1e284, 0x1e290,
1762                 0x1e2c0, 0x1e2c0,
1763                 0x1e2e0, 0x1e2e0,
1764                 0x1e300, 0x1e384,
1765                 0x1e3c0, 0x1e3c8,
1766                 0x1e408, 0x1e40c,
1767                 0x1e440, 0x1e44c,
1768                 0x1e684, 0x1e690,
1769                 0x1e6c0, 0x1e6c0,
1770                 0x1e6e0, 0x1e6e0,
1771                 0x1e700, 0x1e784,
1772                 0x1e7c0, 0x1e7c8,
1773                 0x1e808, 0x1e80c,
1774                 0x1e840, 0x1e84c,
1775                 0x1ea84, 0x1ea90,
1776                 0x1eac0, 0x1eac0,
1777                 0x1eae0, 0x1eae0,
1778                 0x1eb00, 0x1eb84,
1779                 0x1ebc0, 0x1ebc8,
1780                 0x1ec08, 0x1ec0c,
1781                 0x1ec40, 0x1ec4c,
1782                 0x1ee84, 0x1ee90,
1783                 0x1eec0, 0x1eec0,
1784                 0x1eee0, 0x1eee0,
1785                 0x1ef00, 0x1ef84,
1786                 0x1efc0, 0x1efc8,
1787                 0x1f008, 0x1f00c,
1788                 0x1f040, 0x1f04c,
1789                 0x1f284, 0x1f290,
1790                 0x1f2c0, 0x1f2c0,
1791                 0x1f2e0, 0x1f2e0,
1792                 0x1f300, 0x1f384,
1793                 0x1f3c0, 0x1f3c8,
1794                 0x1f408, 0x1f40c,
1795                 0x1f440, 0x1f44c,
1796                 0x1f684, 0x1f690,
1797                 0x1f6c0, 0x1f6c0,
1798                 0x1f6e0, 0x1f6e0,
1799                 0x1f700, 0x1f784,
1800                 0x1f7c0, 0x1f7c8,
1801                 0x1f808, 0x1f80c,
1802                 0x1f840, 0x1f84c,
1803                 0x1fa84, 0x1fa90,
1804                 0x1fac0, 0x1fac0,
1805                 0x1fae0, 0x1fae0,
1806                 0x1fb00, 0x1fb84,
1807                 0x1fbc0, 0x1fbc8,
1808                 0x1fc08, 0x1fc0c,
1809                 0x1fc40, 0x1fc4c,
1810                 0x1fe84, 0x1fe90,
1811                 0x1fec0, 0x1fec0,
1812                 0x1fee0, 0x1fee0,
1813                 0x1ff00, 0x1ff84,
1814                 0x1ffc0, 0x1ffc8,
1815                 0x30000, 0x30030,
1816                 0x30100, 0x30144,
1817                 0x30190, 0x301d0,
1818                 0x30200, 0x30318,
1819                 0x30400, 0x3052c,
1820                 0x30540, 0x3061c,
1821                 0x30800, 0x30834,
1822                 0x308c0, 0x30908,
1823                 0x30910, 0x309ac,
1824                 0x30a00, 0x30a04,
1825                 0x30a0c, 0x30a2c,
1826                 0x30a44, 0x30a50,
1827                 0x30a74, 0x30c24,
1828                 0x30d08, 0x30d14,
1829                 0x30d1c, 0x30d20,
1830                 0x30d3c, 0x30d50,
1831                 0x31200, 0x3120c,
1832                 0x31220, 0x31220,
1833                 0x31240, 0x31240,
1834                 0x31600, 0x31600,
1835                 0x31608, 0x3160c,
1836                 0x31a00, 0x31a1c,
1837                 0x31e04, 0x31e20,
1838                 0x31e38, 0x31e3c,
1839                 0x31e80, 0x31e80,
1840                 0x31e88, 0x31ea8,
1841                 0x31eb0, 0x31eb4,
1842                 0x31ec8, 0x31ed4,
1843                 0x31fb8, 0x32004,
1844                 0x32208, 0x3223c,
1845                 0x32600, 0x32630,
1846                 0x32a00, 0x32abc,
1847                 0x32b00, 0x32b70,
1848                 0x33000, 0x33048,
1849                 0x33060, 0x3309c,
1850                 0x330f0, 0x33148,
1851                 0x33160, 0x3319c,
1852                 0x331f0, 0x332e4,
1853                 0x332f8, 0x333e4,
1854                 0x333f8, 0x33448,
1855                 0x33460, 0x3349c,
1856                 0x334f0, 0x33548,
1857                 0x33560, 0x3359c,
1858                 0x335f0, 0x336e4,
1859                 0x336f8, 0x337e4,
1860                 0x337f8, 0x337fc,
1861                 0x33814, 0x33814,
1862                 0x3382c, 0x3382c,
1863                 0x33880, 0x3388c,
1864                 0x338e8, 0x338ec,
1865                 0x33900, 0x33948,
1866                 0x33960, 0x3399c,
1867                 0x339f0, 0x33ae4,
1868                 0x33af8, 0x33b10,
1869                 0x33b28, 0x33b28,
1870                 0x33b3c, 0x33b50,
1871                 0x33bf0, 0x33c10,
1872                 0x33c28, 0x33c28,
1873                 0x33c3c, 0x33c50,
1874                 0x33cf0, 0x33cfc,
1875                 0x34000, 0x34030,
1876                 0x34100, 0x34144,
1877                 0x34190, 0x341d0,
1878                 0x34200, 0x34318,
1879                 0x34400, 0x3452c,
1880                 0x34540, 0x3461c,
1881                 0x34800, 0x34834,
1882                 0x348c0, 0x34908,
1883                 0x34910, 0x349ac,
1884                 0x34a00, 0x34a04,
1885                 0x34a0c, 0x34a2c,
1886                 0x34a44, 0x34a50,
1887                 0x34a74, 0x34c24,
1888                 0x34d08, 0x34d14,
1889                 0x34d1c, 0x34d20,
1890                 0x34d3c, 0x34d50,
1891                 0x35200, 0x3520c,
1892                 0x35220, 0x35220,
1893                 0x35240, 0x35240,
1894                 0x35600, 0x35600,
1895                 0x35608, 0x3560c,
1896                 0x35a00, 0x35a1c,
1897                 0x35e04, 0x35e20,
1898                 0x35e38, 0x35e3c,
1899                 0x35e80, 0x35e80,
1900                 0x35e88, 0x35ea8,
1901                 0x35eb0, 0x35eb4,
1902                 0x35ec8, 0x35ed4,
1903                 0x35fb8, 0x36004,
1904                 0x36208, 0x3623c,
1905                 0x36600, 0x36630,
1906                 0x36a00, 0x36abc,
1907                 0x36b00, 0x36b70,
1908                 0x37000, 0x37048,
1909                 0x37060, 0x3709c,
1910                 0x370f0, 0x37148,
1911                 0x37160, 0x3719c,
1912                 0x371f0, 0x372e4,
1913                 0x372f8, 0x373e4,
1914                 0x373f8, 0x37448,
1915                 0x37460, 0x3749c,
1916                 0x374f0, 0x37548,
1917                 0x37560, 0x3759c,
1918                 0x375f0, 0x376e4,
1919                 0x376f8, 0x377e4,
1920                 0x377f8, 0x377fc,
1921                 0x37814, 0x37814,
1922                 0x3782c, 0x3782c,
1923                 0x37880, 0x3788c,
1924                 0x378e8, 0x378ec,
1925                 0x37900, 0x37948,
1926                 0x37960, 0x3799c,
1927                 0x379f0, 0x37ae4,
1928                 0x37af8, 0x37b10,
1929                 0x37b28, 0x37b28,
1930                 0x37b3c, 0x37b50,
1931                 0x37bf0, 0x37c10,
1932                 0x37c28, 0x37c28,
1933                 0x37c3c, 0x37c50,
1934                 0x37cf0, 0x37cfc,
1935                 0x38000, 0x38030,
1936                 0x38100, 0x38144,
1937                 0x38190, 0x381d0,
1938                 0x38200, 0x38318,
1939                 0x38400, 0x3852c,
1940                 0x38540, 0x3861c,
1941                 0x38800, 0x38834,
1942                 0x388c0, 0x38908,
1943                 0x38910, 0x389ac,
1944                 0x38a00, 0x38a04,
1945                 0x38a0c, 0x38a2c,
1946                 0x38a44, 0x38a50,
1947                 0x38a74, 0x38c24,
1948                 0x38d08, 0x38d14,
1949                 0x38d1c, 0x38d20,
1950                 0x38d3c, 0x38d50,
1951                 0x39200, 0x3920c,
1952                 0x39220, 0x39220,
1953                 0x39240, 0x39240,
1954                 0x39600, 0x39600,
1955                 0x39608, 0x3960c,
1956                 0x39a00, 0x39a1c,
1957                 0x39e04, 0x39e20,
1958                 0x39e38, 0x39e3c,
1959                 0x39e80, 0x39e80,
1960                 0x39e88, 0x39ea8,
1961                 0x39eb0, 0x39eb4,
1962                 0x39ec8, 0x39ed4,
1963                 0x39fb8, 0x3a004,
1964                 0x3a208, 0x3a23c,
1965                 0x3a600, 0x3a630,
1966                 0x3aa00, 0x3aabc,
1967                 0x3ab00, 0x3ab70,
1968                 0x3b000, 0x3b048,
1969                 0x3b060, 0x3b09c,
1970                 0x3b0f0, 0x3b148,
1971                 0x3b160, 0x3b19c,
1972                 0x3b1f0, 0x3b2e4,
1973                 0x3b2f8, 0x3b3e4,
1974                 0x3b3f8, 0x3b448,
1975                 0x3b460, 0x3b49c,
1976                 0x3b4f0, 0x3b548,
1977                 0x3b560, 0x3b59c,
1978                 0x3b5f0, 0x3b6e4,
1979                 0x3b6f8, 0x3b7e4,
1980                 0x3b7f8, 0x3b7fc,
1981                 0x3b814, 0x3b814,
1982                 0x3b82c, 0x3b82c,
1983                 0x3b880, 0x3b88c,
1984                 0x3b8e8, 0x3b8ec,
1985                 0x3b900, 0x3b948,
1986                 0x3b960, 0x3b99c,
1987                 0x3b9f0, 0x3bae4,
1988                 0x3baf8, 0x3bb10,
1989                 0x3bb28, 0x3bb28,
1990                 0x3bb3c, 0x3bb50,
1991                 0x3bbf0, 0x3bc10,
1992                 0x3bc28, 0x3bc28,
1993                 0x3bc3c, 0x3bc50,
1994                 0x3bcf0, 0x3bcfc,
1995                 0x3c000, 0x3c030,
1996                 0x3c100, 0x3c144,
1997                 0x3c190, 0x3c1d0,
1998                 0x3c200, 0x3c318,
1999                 0x3c400, 0x3c52c,
2000                 0x3c540, 0x3c61c,
2001                 0x3c800, 0x3c834,
2002                 0x3c8c0, 0x3c908,
2003                 0x3c910, 0x3c9ac,
2004                 0x3ca00, 0x3ca04,
2005                 0x3ca0c, 0x3ca2c,
2006                 0x3ca44, 0x3ca50,
2007                 0x3ca74, 0x3cc24,
2008                 0x3cd08, 0x3cd14,
2009                 0x3cd1c, 0x3cd20,
2010                 0x3cd3c, 0x3cd50,
2011                 0x3d200, 0x3d20c,
2012                 0x3d220, 0x3d220,
2013                 0x3d240, 0x3d240,
2014                 0x3d600, 0x3d600,
2015                 0x3d608, 0x3d60c,
2016                 0x3da00, 0x3da1c,
2017                 0x3de04, 0x3de20,
2018                 0x3de38, 0x3de3c,
2019                 0x3de80, 0x3de80,
2020                 0x3de88, 0x3dea8,
2021                 0x3deb0, 0x3deb4,
2022                 0x3dec8, 0x3ded4,
2023                 0x3dfb8, 0x3e004,
2024                 0x3e208, 0x3e23c,
2025                 0x3e600, 0x3e630,
2026                 0x3ea00, 0x3eabc,
2027                 0x3eb00, 0x3eb70,
2028                 0x3f000, 0x3f048,
2029                 0x3f060, 0x3f09c,
2030                 0x3f0f0, 0x3f148,
2031                 0x3f160, 0x3f19c,
2032                 0x3f1f0, 0x3f2e4,
2033                 0x3f2f8, 0x3f3e4,
2034                 0x3f3f8, 0x3f448,
2035                 0x3f460, 0x3f49c,
2036                 0x3f4f0, 0x3f548,
2037                 0x3f560, 0x3f59c,
2038                 0x3f5f0, 0x3f6e4,
2039                 0x3f6f8, 0x3f7e4,
2040                 0x3f7f8, 0x3f7fc,
2041                 0x3f814, 0x3f814,
2042                 0x3f82c, 0x3f82c,
2043                 0x3f880, 0x3f88c,
2044                 0x3f8e8, 0x3f8ec,
2045                 0x3f900, 0x3f948,
2046                 0x3f960, 0x3f99c,
2047                 0x3f9f0, 0x3fae4,
2048                 0x3faf8, 0x3fb10,
2049                 0x3fb28, 0x3fb28,
2050                 0x3fb3c, 0x3fb50,
2051                 0x3fbf0, 0x3fc10,
2052                 0x3fc28, 0x3fc28,
2053                 0x3fc3c, 0x3fc50,
2054                 0x3fcf0, 0x3fcfc,
2055                 0x40000, 0x4000c,
2056                 0x40040, 0x40068,
2057                 0x40080, 0x40144,
2058                 0x40180, 0x4018c,
2059                 0x40200, 0x40298,
2060                 0x402ac, 0x4033c,
2061                 0x403f8, 0x403fc,
2062                 0x41300, 0x413c4,
2063                 0x41400, 0x4141c,
2064                 0x41480, 0x414d0,
2065                 0x44000, 0x44078,
2066                 0x440c0, 0x44278,
2067                 0x442c0, 0x44478,
2068                 0x444c0, 0x44678,
2069                 0x446c0, 0x44878,
2070                 0x448c0, 0x449fc,
2071                 0x45000, 0x45068,
2072                 0x45080, 0x45084,
2073                 0x450a0, 0x450b0,
2074                 0x45200, 0x45268,
2075                 0x45280, 0x45284,
2076                 0x452a0, 0x452b0,
2077                 0x460c0, 0x460e4,
2078                 0x47000, 0x4708c,
2079                 0x47200, 0x47250,
2080                 0x47400, 0x47420,
2081                 0x47600, 0x47618,
2082                 0x47800, 0x47814,
2083                 0x48000, 0x4800c,
2084                 0x48040, 0x48068,
2085                 0x48080, 0x48144,
2086                 0x48180, 0x4818c,
2087                 0x48200, 0x48298,
2088                 0x482ac, 0x4833c,
2089                 0x483f8, 0x483fc,
2090                 0x49300, 0x493c4,
2091                 0x49400, 0x4941c,
2092                 0x49480, 0x494d0,
2093                 0x4c000, 0x4c078,
2094                 0x4c0c0, 0x4c278,
2095                 0x4c2c0, 0x4c478,
2096                 0x4c4c0, 0x4c678,
2097                 0x4c6c0, 0x4c878,
2098                 0x4c8c0, 0x4c9fc,
2099                 0x4d000, 0x4d068,
2100                 0x4d080, 0x4d084,
2101                 0x4d0a0, 0x4d0b0,
2102                 0x4d200, 0x4d268,
2103                 0x4d280, 0x4d284,
2104                 0x4d2a0, 0x4d2b0,
2105                 0x4e0c0, 0x4e0e4,
2106                 0x4f000, 0x4f08c,
2107                 0x4f200, 0x4f250,
2108                 0x4f400, 0x4f420,
2109                 0x4f600, 0x4f618,
2110                 0x4f800, 0x4f814,
2111                 0x50000, 0x500cc,
2112                 0x50400, 0x50400,
2113                 0x50800, 0x508cc,
2114                 0x50c00, 0x50c00,
2115                 0x51000, 0x5101c,
2116                 0x51300, 0x51308,
2117         };
2118
2119         int i;
2120         struct adapter *ap = netdev2adap(dev);
2121         static const unsigned int *reg_ranges;
2122         int arr_size = 0, buf_size = 0;
2123
2124         if (is_t4(ap->chip)) {
2125                 reg_ranges = &t4_reg_ranges[0];
2126                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2127                 buf_size = T4_REGMAP_SIZE;
2128         } else {
2129                 reg_ranges = &t5_reg_ranges[0];
2130                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2131                 buf_size = T5_REGMAP_SIZE;
2132         }
2133
2134         regs->version = mk_adap_vers(ap);
2135
2136         memset(buf, 0, buf_size);
2137         for (i = 0; i < arr_size; i += 2)
2138                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2139 }
2140
2141 static int restart_autoneg(struct net_device *dev)
2142 {
2143         struct port_info *p = netdev_priv(dev);
2144
2145         if (!netif_running(dev))
2146                 return -EAGAIN;
2147         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2148                 return -EINVAL;
2149         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2150         return 0;
2151 }
2152
2153 static int identify_port(struct net_device *dev,
2154                          enum ethtool_phys_id_state state)
2155 {
2156         unsigned int val;
2157         struct adapter *adap = netdev2adap(dev);
2158
2159         if (state == ETHTOOL_ID_ACTIVE)
2160                 val = 0xffff;
2161         else if (state == ETHTOOL_ID_INACTIVE)
2162                 val = 0;
2163         else
2164                 return -EINVAL;
2165
2166         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2167 }
2168
2169 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2170 {
2171         unsigned int v = 0;
2172
2173         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2174             type == FW_PORT_TYPE_BT_XAUI) {
2175                 v |= SUPPORTED_TP;
2176                 if (caps & FW_PORT_CAP_SPEED_100M)
2177                         v |= SUPPORTED_100baseT_Full;
2178                 if (caps & FW_PORT_CAP_SPEED_1G)
2179                         v |= SUPPORTED_1000baseT_Full;
2180                 if (caps & FW_PORT_CAP_SPEED_10G)
2181                         v |= SUPPORTED_10000baseT_Full;
2182         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2183                 v |= SUPPORTED_Backplane;
2184                 if (caps & FW_PORT_CAP_SPEED_1G)
2185                         v |= SUPPORTED_1000baseKX_Full;
2186                 if (caps & FW_PORT_CAP_SPEED_10G)
2187                         v |= SUPPORTED_10000baseKX4_Full;
2188         } else if (type == FW_PORT_TYPE_KR)
2189                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2190         else if (type == FW_PORT_TYPE_BP_AP)
2191                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2192                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2193         else if (type == FW_PORT_TYPE_BP4_AP)
2194                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2195                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2196                      SUPPORTED_10000baseKX4_Full;
2197         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2198                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2199                 v |= SUPPORTED_FIBRE;
2200
2201         if (caps & FW_PORT_CAP_ANEG)
2202                 v |= SUPPORTED_Autoneg;
2203         return v;
2204 }
2205
2206 static unsigned int to_fw_linkcaps(unsigned int caps)
2207 {
2208         unsigned int v = 0;
2209
2210         if (caps & ADVERTISED_100baseT_Full)
2211                 v |= FW_PORT_CAP_SPEED_100M;
2212         if (caps & ADVERTISED_1000baseT_Full)
2213                 v |= FW_PORT_CAP_SPEED_1G;
2214         if (caps & ADVERTISED_10000baseT_Full)
2215                 v |= FW_PORT_CAP_SPEED_10G;
2216         return v;
2217 }
2218
2219 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2220 {
2221         const struct port_info *p = netdev_priv(dev);
2222
2223         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2224             p->port_type == FW_PORT_TYPE_BT_XFI ||
2225             p->port_type == FW_PORT_TYPE_BT_XAUI)
2226                 cmd->port = PORT_TP;
2227         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2228                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2229                 cmd->port = PORT_FIBRE;
2230         else if (p->port_type == FW_PORT_TYPE_SFP) {
2231                 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2232                     p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2233                         cmd->port = PORT_DA;
2234                 else
2235                         cmd->port = PORT_FIBRE;
2236         } else
2237                 cmd->port = PORT_OTHER;
2238
2239         if (p->mdio_addr >= 0) {
2240                 cmd->phy_address = p->mdio_addr;
2241                 cmd->transceiver = XCVR_EXTERNAL;
2242                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2243                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2244         } else {
2245                 cmd->phy_address = 0;  /* not really, but no better option */
2246                 cmd->transceiver = XCVR_INTERNAL;
2247                 cmd->mdio_support = 0;
2248         }
2249
2250         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2251         cmd->advertising = from_fw_linkcaps(p->port_type,
2252                                             p->link_cfg.advertising);
2253         ethtool_cmd_speed_set(cmd,
2254                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2255         cmd->duplex = DUPLEX_FULL;
2256         cmd->autoneg = p->link_cfg.autoneg;
2257         cmd->maxtxpkt = 0;
2258         cmd->maxrxpkt = 0;
2259         return 0;
2260 }
2261
2262 static unsigned int speed_to_caps(int speed)
2263 {
2264         if (speed == SPEED_100)
2265                 return FW_PORT_CAP_SPEED_100M;
2266         if (speed == SPEED_1000)
2267                 return FW_PORT_CAP_SPEED_1G;
2268         if (speed == SPEED_10000)
2269                 return FW_PORT_CAP_SPEED_10G;
2270         return 0;
2271 }
2272
2273 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2274 {
2275         unsigned int cap;
2276         struct port_info *p = netdev_priv(dev);
2277         struct link_config *lc = &p->link_cfg;
2278         u32 speed = ethtool_cmd_speed(cmd);
2279
2280         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2281                 return -EINVAL;
2282
2283         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2284                 /*
2285                  * PHY offers a single speed.  See if that's what's
2286                  * being requested.
2287                  */
2288                 if (cmd->autoneg == AUTONEG_DISABLE &&
2289                     (lc->supported & speed_to_caps(speed)))
2290                         return 0;
2291                 return -EINVAL;
2292         }
2293
2294         if (cmd->autoneg == AUTONEG_DISABLE) {
2295                 cap = speed_to_caps(speed);
2296
2297                 if (!(lc->supported & cap) || (speed == SPEED_1000) ||
2298                     (speed == SPEED_10000))
2299                         return -EINVAL;
2300                 lc->requested_speed = cap;
2301                 lc->advertising = 0;
2302         } else {
2303                 cap = to_fw_linkcaps(cmd->advertising);
2304                 if (!(lc->supported & cap))
2305                         return -EINVAL;
2306                 lc->requested_speed = 0;
2307                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2308         }
2309         lc->autoneg = cmd->autoneg;
2310
2311         if (netif_running(dev))
2312                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2313                                      lc);
2314         return 0;
2315 }
2316
2317 static void get_pauseparam(struct net_device *dev,
2318                            struct ethtool_pauseparam *epause)
2319 {
2320         struct port_info *p = netdev_priv(dev);
2321
2322         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2323         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2324         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2325 }
2326
2327 static int set_pauseparam(struct net_device *dev,
2328                           struct ethtool_pauseparam *epause)
2329 {
2330         struct port_info *p = netdev_priv(dev);
2331         struct link_config *lc = &p->link_cfg;
2332
2333         if (epause->autoneg == AUTONEG_DISABLE)
2334                 lc->requested_fc = 0;
2335         else if (lc->supported & FW_PORT_CAP_ANEG)
2336                 lc->requested_fc = PAUSE_AUTONEG;
2337         else
2338                 return -EINVAL;
2339
2340         if (epause->rx_pause)
2341                 lc->requested_fc |= PAUSE_RX;
2342         if (epause->tx_pause)
2343                 lc->requested_fc |= PAUSE_TX;
2344         if (netif_running(dev))
2345                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2346                                      lc);
2347         return 0;
2348 }
2349
2350 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2351 {
2352         const struct port_info *pi = netdev_priv(dev);
2353         const struct sge *s = &pi->adapter->sge;
2354
2355         e->rx_max_pending = MAX_RX_BUFFERS;
2356         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2357         e->rx_jumbo_max_pending = 0;
2358         e->tx_max_pending = MAX_TXQ_ENTRIES;
2359
2360         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2361         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2362         e->rx_jumbo_pending = 0;
2363         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2364 }
2365
2366 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2367 {
2368         int i;
2369         const struct port_info *pi = netdev_priv(dev);
2370         struct adapter *adapter = pi->adapter;
2371         struct sge *s = &adapter->sge;
2372
2373         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2374             e->tx_pending > MAX_TXQ_ENTRIES ||
2375             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2376             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2377             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2378                 return -EINVAL;
2379
2380         if (adapter->flags & FULL_INIT_DONE)
2381                 return -EBUSY;
2382
2383         for (i = 0; i < pi->nqsets; ++i) {
2384                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2385                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2386                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2387         }
2388         return 0;
2389 }
2390
2391 static int closest_timer(const struct sge *s, int time)
2392 {
2393         int i, delta, match = 0, min_delta = INT_MAX;
2394
2395         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2396                 delta = time - s->timer_val[i];
2397                 if (delta < 0)
2398                         delta = -delta;
2399                 if (delta < min_delta) {
2400                         min_delta = delta;
2401                         match = i;
2402                 }
2403         }
2404         return match;
2405 }
2406
2407 static int closest_thres(const struct sge *s, int thres)
2408 {
2409         int i, delta, match = 0, min_delta = INT_MAX;
2410
2411         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2412                 delta = thres - s->counter_val[i];
2413                 if (delta < 0)
2414                         delta = -delta;
2415                 if (delta < min_delta) {
2416                         min_delta = delta;
2417                         match = i;
2418                 }
2419         }
2420         return match;
2421 }
2422
2423 /*
2424  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2425  */
2426 static unsigned int qtimer_val(const struct adapter *adap,
2427                                const struct sge_rspq *q)
2428 {
2429         unsigned int idx = q->intr_params >> 1;
2430
2431         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2432 }
2433
2434 /**
2435  *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
2436  *      @adap: the adapter
2437  *      @q: the Rx queue
2438  *      @us: the hold-off time in us, or 0 to disable timer
2439  *      @cnt: the hold-off packet count, or 0 to disable counter
2440  *
2441  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2442  *      one of the two needs to be enabled for the queue to generate interrupts.
2443  */
2444 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
2445                                unsigned int us, unsigned int cnt)
2446 {
2447         if ((us | cnt) == 0)
2448                 cnt = 1;
2449
2450         if (cnt) {
2451                 int err;
2452                 u32 v, new_idx;
2453
2454                 new_idx = closest_thres(&adap->sge, cnt);
2455                 if (q->desc && q->pktcnt_idx != new_idx) {
2456                         /* the queue has already been created, update it */
2457                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2458                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2459                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
2460                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2461                                             &new_idx);
2462                         if (err)
2463                                 return err;
2464                 }
2465                 q->pktcnt_idx = new_idx;
2466         }
2467
2468         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2469         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2470         return 0;
2471 }
2472
2473 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2474 {
2475         const struct port_info *pi = netdev_priv(dev);
2476         struct adapter *adap = pi->adapter;
2477         struct sge_rspq *q;
2478         int i;
2479         int r = 0;
2480
2481         for (i = pi->first_qset; i < pi->first_qset + pi->nqsets; i++) {
2482                 q = &adap->sge.ethrxq[i].rspq;
2483                 r = set_rxq_intr_params(adap, q, c->rx_coalesce_usecs,
2484                         c->rx_max_coalesced_frames);
2485                 if (r) {
2486                         dev_err(&dev->dev, "failed to set coalesce %d\n", r);
2487                         break;
2488                 }
2489         }
2490         return r;
2491 }
2492
2493 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2494 {
2495         const struct port_info *pi = netdev_priv(dev);
2496         const struct adapter *adap = pi->adapter;
2497         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2498
2499         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2500         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2501                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2502         return 0;
2503 }
2504
2505 /**
2506  *      eeprom_ptov - translate a physical EEPROM address to virtual
2507  *      @phys_addr: the physical EEPROM address
2508  *      @fn: the PCI function number
2509  *      @sz: size of function-specific area
2510  *
2511  *      Translate a physical EEPROM address to virtual.  The first 1K is
2512  *      accessed through virtual addresses starting at 31K, the rest is
2513  *      accessed through virtual addresses starting at 0.
2514  *
2515  *      The mapping is as follows:
2516  *      [0..1K) -> [31K..32K)
2517  *      [1K..1K+A) -> [31K-A..31K)
2518  *      [1K+A..ES) -> [0..ES-A-1K)
2519  *
2520  *      where A = @fn * @sz, and ES = EEPROM size.
2521  */
2522 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2523 {
2524         fn *= sz;
2525         if (phys_addr < 1024)
2526                 return phys_addr + (31 << 10);
2527         if (phys_addr < 1024 + fn)
2528                 return 31744 - fn + phys_addr - 1024;
2529         if (phys_addr < EEPROMSIZE)
2530                 return phys_addr - 1024 - fn;
2531         return -EINVAL;
2532 }
2533
2534 /*
2535  * The next two routines implement eeprom read/write from physical addresses.
2536  */
2537 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2538 {
2539         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2540
2541         if (vaddr >= 0)
2542                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2543         return vaddr < 0 ? vaddr : 0;
2544 }
2545
2546 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2547 {
2548         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2549
2550         if (vaddr >= 0)
2551                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2552         return vaddr < 0 ? vaddr : 0;
2553 }
2554
2555 #define EEPROM_MAGIC 0x38E2F10C
2556
2557 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2558                       u8 *data)
2559 {
2560         int i, err = 0;
2561         struct adapter *adapter = netdev2adap(dev);
2562
2563         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2564         if (!buf)
2565                 return -ENOMEM;
2566
2567         e->magic = EEPROM_MAGIC;
2568         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2569                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2570
2571         if (!err)
2572                 memcpy(data, buf + e->offset, e->len);
2573         kfree(buf);
2574         return err;
2575 }
2576
2577 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2578                       u8 *data)
2579 {
2580         u8 *buf;
2581         int err = 0;
2582         u32 aligned_offset, aligned_len, *p;
2583         struct adapter *adapter = netdev2adap(dev);
2584
2585         if (eeprom->magic != EEPROM_MAGIC)
2586                 return -EINVAL;
2587
2588         aligned_offset = eeprom->offset & ~3;
2589         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2590
2591         if (adapter->fn > 0) {
2592                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2593
2594                 if (aligned_offset < start ||
2595                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2596                         return -EPERM;
2597         }
2598
2599         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2600                 /*
2601                  * RMW possibly needed for first or last words.
2602                  */
2603                 buf = kmalloc(aligned_len, GFP_KERNEL);
2604                 if (!buf)
2605                         return -ENOMEM;
2606                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2607                 if (!err && aligned_len > 4)
2608                         err = eeprom_rd_phys(adapter,
2609                                              aligned_offset + aligned_len - 4,
2610                                              (u32 *)&buf[aligned_len - 4]);
2611                 if (err)
2612                         goto out;
2613                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2614         } else
2615                 buf = data;
2616
2617         err = t4_seeprom_wp(adapter, false);
2618         if (err)
2619                 goto out;
2620
2621         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2622                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2623                 aligned_offset += 4;
2624         }
2625
2626         if (!err)
2627                 err = t4_seeprom_wp(adapter, true);
2628 out:
2629         if (buf != data)
2630                 kfree(buf);
2631         return err;
2632 }
2633
2634 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2635 {
2636         int ret;
2637         const struct firmware *fw;
2638         struct adapter *adap = netdev2adap(netdev);
2639
2640         ef->data[sizeof(ef->data) - 1] = '\0';
2641         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2642         if (ret < 0)
2643                 return ret;
2644
2645         ret = t4_load_fw(adap, fw->data, fw->size);
2646         release_firmware(fw);
2647         if (!ret)
2648                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2649         return ret;
2650 }
2651
2652 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2653 #define BCAST_CRC 0xa0ccc1a6
2654
2655 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2656 {
2657         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2658         wol->wolopts = netdev2adap(dev)->wol;
2659         memset(&wol->sopass, 0, sizeof(wol->sopass));
2660 }
2661
2662 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2663 {
2664         int err = 0;
2665         struct port_info *pi = netdev_priv(dev);
2666
2667         if (wol->wolopts & ~WOL_SUPPORTED)
2668                 return -EINVAL;
2669         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2670                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2671         if (wol->wolopts & WAKE_BCAST) {
2672                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2673                                         ~0ULL, 0, false);
2674                 if (!err)
2675                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2676                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2677         } else
2678                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2679         return err;
2680 }
2681
2682 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2683 {
2684         const struct port_info *pi = netdev_priv(dev);
2685         netdev_features_t changed = dev->features ^ features;
2686         int err;
2687
2688         if (!(changed & NETIF_F_HW_VLAN_RX))
2689                 return 0;
2690
2691         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2692                             -1, -1, -1,
2693                             !!(features & NETIF_F_HW_VLAN_RX), true);
2694         if (unlikely(err))
2695                 dev->features = features ^ NETIF_F_HW_VLAN_RX;
2696         return err;
2697 }
2698
2699 static u32 get_rss_table_size(struct net_device *dev)
2700 {
2701         const struct port_info *pi = netdev_priv(dev);
2702
2703         return pi->rss_size;
2704 }
2705
2706 static int get_rss_table(struct net_device *dev, u32 *p)
2707 {
2708         const struct port_info *pi = netdev_priv(dev);
2709         unsigned int n = pi->rss_size;
2710
2711         while (n--)
2712                 p[n] = pi->rss[n];
2713         return 0;
2714 }
2715
2716 static int set_rss_table(struct net_device *dev, const u32 *p)
2717 {
2718         unsigned int i;
2719         struct port_info *pi = netdev_priv(dev);
2720
2721         for (i = 0; i < pi->rss_size; i++)
2722                 pi->rss[i] = p[i];
2723         if (pi->adapter->flags & FULL_INIT_DONE)
2724                 return write_rss(pi, pi->rss);
2725         return 0;
2726 }
2727
2728 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2729                      u32 *rules)
2730 {
2731         const struct port_info *pi = netdev_priv(dev);
2732
2733         switch (info->cmd) {
2734         case ETHTOOL_GRXFH: {
2735                 unsigned int v = pi->rss_mode;
2736
2737                 info->data = 0;
2738                 switch (info->flow_type) {
2739                 case TCP_V4_FLOW:
2740                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2741                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2742                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2743                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2744                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2745                         break;
2746                 case UDP_V4_FLOW:
2747                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2748                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2749                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2750                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2751                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2752                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2753                         break;
2754                 case SCTP_V4_FLOW:
2755                 case AH_ESP_V4_FLOW:
2756                 case IPV4_FLOW:
2757                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2758                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2759                         break;
2760                 case TCP_V6_FLOW:
2761                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2762                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2763                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2764                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2765                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2766                         break;
2767                 case UDP_V6_FLOW:
2768                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
2769                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2770                                 info->data = RXH_IP_SRC | RXH_IP_DST |
2771                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
2772                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2773                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2774                         break;
2775                 case SCTP_V6_FLOW:
2776                 case AH_ESP_V6_FLOW:
2777                 case IPV6_FLOW:
2778                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2779                                 info->data = RXH_IP_SRC | RXH_IP_DST;
2780                         break;
2781                 }
2782                 return 0;
2783         }
2784         case ETHTOOL_GRXRINGS:
2785                 info->data = pi->nqsets;
2786                 return 0;
2787         }
2788         return -EOPNOTSUPP;
2789 }
2790
2791 static const struct ethtool_ops cxgb_ethtool_ops = {
2792         .get_settings      = get_settings,
2793         .set_settings      = set_settings,
2794         .get_drvinfo       = get_drvinfo,
2795         .get_msglevel      = get_msglevel,
2796         .set_msglevel      = set_msglevel,
2797         .get_ringparam     = get_sge_param,
2798         .set_ringparam     = set_sge_param,
2799         .get_coalesce      = get_coalesce,
2800         .set_coalesce      = set_coalesce,
2801         .get_eeprom_len    = get_eeprom_len,
2802         .get_eeprom        = get_eeprom,
2803         .set_eeprom        = set_eeprom,
2804         .get_pauseparam    = get_pauseparam,
2805         .set_pauseparam    = set_pauseparam,
2806         .get_link          = ethtool_op_get_link,
2807         .get_strings       = get_strings,
2808         .set_phys_id       = identify_port,
2809         .nway_reset        = restart_autoneg,
2810         .get_sset_count    = get_sset_count,
2811         .get_ethtool_stats = get_stats,
2812         .get_regs_len      = get_regs_len,
2813         .get_regs          = get_regs,
2814         .get_wol           = get_wol,
2815         .set_wol           = set_wol,
2816         .get_rxnfc         = get_rxnfc,
2817         .get_rxfh_indir_size = get_rss_table_size,
2818         .get_rxfh_indir    = get_rss_table,
2819         .set_rxfh_indir    = set_rss_table,
2820         .flash_device      = set_flash,
2821 };
2822
2823 /*
2824  * debugfs support
2825  */
2826 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2827                         loff_t *ppos)
2828 {
2829         loff_t pos = *ppos;
2830         loff_t avail = file_inode(file)->i_size;
2831         unsigned int mem = (uintptr_t)file->private_data & 3;
2832         struct adapter *adap = file->private_data - mem;
2833
2834         if (pos < 0)
2835                 return -EINVAL;
2836         if (pos >= avail)
2837                 return 0;
2838         if (count > avail - pos)
2839                 count = avail - pos;
2840
2841         while (count) {
2842                 size_t len;
2843                 int ret, ofst;
2844                 __be32 data[16];
2845
2846                 if (mem == MEM_MC)
2847                         ret = t4_mc_read(adap, pos, data, NULL);
2848                 else
2849                         ret = t4_edc_read(adap, mem, pos, data, NULL);
2850                 if (ret)
2851                         return ret;
2852
2853                 ofst = pos % sizeof(data);
2854                 len = min(count, sizeof(data) - ofst);
2855                 if (copy_to_user(buf, (u8 *)data + ofst, len))
2856                         return -EFAULT;
2857
2858                 buf += len;
2859                 pos += len;
2860                 count -= len;
2861         }
2862         count = pos - *ppos;
2863         *ppos = pos;
2864         return count;
2865 }
2866
2867 static const struct file_operations mem_debugfs_fops = {
2868         .owner   = THIS_MODULE,
2869         .open    = simple_open,
2870         .read    = mem_read,
2871         .llseek  = default_llseek,
2872 };
2873
2874 static void add_debugfs_mem(struct adapter *adap, const char *name,
2875                             unsigned int idx, unsigned int size_mb)
2876 {
2877         struct dentry *de;
2878
2879         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2880                                  (void *)adap + idx, &mem_debugfs_fops);
2881         if (de && de->d_inode)
2882                 de->d_inode->i_size = size_mb << 20;
2883 }
2884
2885 static int setup_debugfs(struct adapter *adap)
2886 {
2887         int i;
2888
2889         if (IS_ERR_OR_NULL(adap->debugfs_root))
2890                 return -1;
2891
2892         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2893         if (i & EDRAM0_ENABLE)
2894                 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
2895         if (i & EDRAM1_ENABLE)
2896                 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
2897         if (i & EXT_MEM_ENABLE)
2898                 add_debugfs_mem(adap, "mc", MEM_MC,
2899                         EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
2900         if (adap->l2t)
2901                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2902                                     &t4_l2t_fops);
2903         return 0;
2904 }
2905
2906 /*
2907  * upper-layer driver support
2908  */
2909
2910 /*
2911  * Allocate an active-open TID and set it to the supplied value.
2912  */
2913 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2914 {
2915         int atid = -1;
2916
2917         spin_lock_bh(&t->atid_lock);
2918         if (t->afree) {
2919                 union aopen_entry *p = t->afree;
2920
2921                 atid = (p - t->atid_tab) + t->atid_base;
2922                 t->afree = p->next;
2923                 p->data = data;
2924                 t->atids_in_use++;
2925         }
2926         spin_unlock_bh(&t->atid_lock);
2927         return atid;
2928 }
2929 EXPORT_SYMBOL(cxgb4_alloc_atid);
2930
2931 /*
2932  * Release an active-open TID.
2933  */
2934 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2935 {
2936         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
2937
2938         spin_lock_bh(&t->atid_lock);
2939         p->next = t->afree;
2940         t->afree = p;
2941         t->atids_in_use--;
2942         spin_unlock_bh(&t->atid_lock);
2943 }
2944 EXPORT_SYMBOL(cxgb4_free_atid);
2945
2946 /*
2947  * Allocate a server TID and set it to the supplied value.
2948  */
2949 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2950 {
2951         int stid;
2952
2953         spin_lock_bh(&t->stid_lock);
2954         if (family == PF_INET) {
2955                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2956                 if (stid < t->nstids)
2957                         __set_bit(stid, t->stid_bmap);
2958                 else
2959                         stid = -1;
2960         } else {
2961                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2962                 if (stid < 0)
2963                         stid = -1;
2964         }
2965         if (stid >= 0) {
2966                 t->stid_tab[stid].data = data;
2967                 stid += t->stid_base;
2968                 t->stids_in_use++;
2969         }
2970         spin_unlock_bh(&t->stid_lock);
2971         return stid;
2972 }
2973 EXPORT_SYMBOL(cxgb4_alloc_stid);
2974
2975 /* Allocate a server filter TID and set it to the supplied value.
2976  */
2977 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
2978 {
2979         int stid;
2980
2981         spin_lock_bh(&t->stid_lock);
2982         if (family == PF_INET) {
2983                 stid = find_next_zero_bit(t->stid_bmap,
2984                                 t->nstids + t->nsftids, t->nstids);
2985                 if (stid < (t->nstids + t->nsftids))
2986                         __set_bit(stid, t->stid_bmap);
2987                 else
2988                         stid = -1;
2989         } else {
2990                 stid = -1;
2991         }
2992         if (stid >= 0) {
2993                 t->stid_tab[stid].data = data;
2994                 stid += t->stid_base;
2995                 t->stids_in_use++;
2996         }
2997         spin_unlock_bh(&t->stid_lock);
2998         return stid;
2999 }
3000 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3001
3002 /* Release a server TID.
3003  */
3004 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3005 {
3006         stid -= t->stid_base;
3007         spin_lock_bh(&t->stid_lock);
3008         if (family == PF_INET)
3009                 __clear_bit(stid, t->stid_bmap);
3010         else
3011                 bitmap_release_region(t->stid_bmap, stid, 2);
3012         t->stid_tab[stid].data = NULL;
3013         t->stids_in_use--;
3014         spin_unlock_bh(&t->stid_lock);
3015 }
3016 EXPORT_SYMBOL(cxgb4_free_stid);
3017
3018 /*
3019  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3020  */
3021 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3022                            unsigned int tid)
3023 {
3024         struct cpl_tid_release *req;
3025
3026         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3027         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3028         INIT_TP_WR(req, tid);
3029         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3030 }
3031
3032 /*
3033  * Queue a TID release request and if necessary schedule a work queue to
3034  * process it.
3035  */
3036 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3037                                     unsigned int tid)
3038 {
3039         void **p = &t->tid_tab[tid];
3040         struct adapter *adap = container_of(t, struct adapter, tids);
3041
3042         spin_lock_bh(&adap->tid_release_lock);
3043         *p = adap->tid_release_head;
3044         /* Low 2 bits encode the Tx channel number */
3045         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3046         if (!adap->tid_release_task_busy) {
3047                 adap->tid_release_task_busy = true;
3048                 queue_work(workq, &adap->tid_release_task);
3049         }
3050         spin_unlock_bh(&adap->tid_release_lock);
3051 }
3052
3053 /*
3054  * Process the list of pending TID release requests.
3055  */
3056 static void process_tid_release_list(struct work_struct *work)
3057 {
3058         struct sk_buff *skb;
3059         struct adapter *adap;
3060
3061         adap = container_of(work, struct adapter, tid_release_task);
3062
3063         spin_lock_bh(&adap->tid_release_lock);
3064         while (adap->tid_release_head) {
3065                 void **p = adap->tid_release_head;
3066                 unsigned int chan = (uintptr_t)p & 3;
3067                 p = (void *)p - chan;
3068
3069                 adap->tid_release_head = *p;
3070                 *p = NULL;
3071                 spin_unlock_bh(&adap->tid_release_lock);
3072
3073                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3074                                          GFP_KERNEL)))
3075                         schedule_timeout_uninterruptible(1);
3076
3077                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3078                 t4_ofld_send(adap, skb);
3079                 spin_lock_bh(&adap->tid_release_lock);
3080         }
3081         adap->tid_release_task_busy = false;
3082         spin_unlock_bh(&adap->tid_release_lock);
3083 }
3084
3085 /*
3086  * Release a TID and inform HW.  If we are unable to allocate the release
3087  * message we defer to a work queue.
3088  */
3089 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3090 {
3091         void *old;
3092         struct sk_buff *skb;
3093         struct adapter *adap = container_of(t, struct adapter, tids);
3094
3095         old = t->tid_tab[tid];
3096         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3097         if (likely(skb)) {
3098                 t->tid_tab[tid] = NULL;
3099                 mk_tid_release(skb, chan, tid);
3100                 t4_ofld_send(adap, skb);
3101         } else
3102                 cxgb4_queue_tid_release(t, chan, tid);
3103         if (old)
3104                 atomic_dec(&t->tids_in_use);
3105 }
3106 EXPORT_SYMBOL(cxgb4_remove_tid);
3107
3108 /*
3109  * Allocate and initialize the TID tables.  Returns 0 on success.
3110  */
3111 static int tid_init(struct tid_info *t)
3112 {
3113         size_t size;
3114         unsigned int stid_bmap_size;
3115         unsigned int natids = t->natids;
3116
3117         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3118         size = t->ntids * sizeof(*t->tid_tab) +
3119                natids * sizeof(*t->atid_tab) +
3120                t->nstids * sizeof(*t->stid_tab) +
3121                t->nsftids * sizeof(*t->stid_tab) +
3122                stid_bmap_size * sizeof(long) +
3123                t->nftids * sizeof(*t->ftid_tab) +
3124                t->nsftids * sizeof(*t->ftid_tab);
3125
3126         t->tid_tab = t4_alloc_mem(size);
3127         if (!t->tid_tab)
3128                 return -ENOMEM;
3129
3130         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3131         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3132         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3133         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3134         spin_lock_init(&t->stid_lock);
3135         spin_lock_init(&t->atid_lock);
3136
3137         t->stids_in_use = 0;
3138         t->afree = NULL;
3139         t->atids_in_use = 0;
3140         atomic_set(&t->tids_in_use, 0);
3141
3142         /* Setup the free list for atid_tab and clear the stid bitmap. */
3143         if (natids) {
3144                 while (--natids)
3145                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3146                 t->afree = t->atid_tab;
3147         }
3148         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3149         return 0;
3150 }
3151
3152 /**
3153  *      cxgb4_create_server - create an IP server
3154  *      @dev: the device
3155  *      @stid: the server TID
3156  *      @sip: local IP address to bind server to
3157  *      @sport: the server's TCP port
3158  *      @queue: queue to direct messages from this server to
3159  *
3160  *      Create an IP server for the given port and address.
3161  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3162  */
3163 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3164                         __be32 sip, __be16 sport, __be16 vlan,
3165                         unsigned int queue)
3166 {
3167         unsigned int chan;
3168         struct sk_buff *skb;
3169         struct adapter *adap;
3170         struct cpl_pass_open_req *req;
3171
3172         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3173         if (!skb)
3174                 return -ENOMEM;
3175
3176         adap = netdev2adap(dev);
3177         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3178         INIT_TP_WR(req, 0);
3179         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3180         req->local_port = sport;
3181         req->peer_port = htons(0);
3182         req->local_ip = sip;
3183         req->peer_ip = htonl(0);
3184         chan = rxq_to_chan(&adap->sge, queue);
3185         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3186         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3187                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3188         return t4_mgmt_tx(adap, skb);
3189 }
3190 EXPORT_SYMBOL(cxgb4_create_server);
3191
3192 /**
3193  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3194  *      @mtus: the HW MTU table
3195  *      @mtu: the target MTU
3196  *      @idx: index of selected entry in the MTU table
3197  *
3198  *      Returns the index and the value in the HW MTU table that is closest to
3199  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3200  *      table, in which case that smallest available value is selected.
3201  */
3202 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3203                             unsigned int *idx)
3204 {
3205         unsigned int i = 0;
3206
3207         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3208                 ++i;
3209         if (idx)
3210                 *idx = i;
3211         return mtus[i];
3212 }
3213 EXPORT_SYMBOL(cxgb4_best_mtu);
3214
3215 /**
3216  *      cxgb4_port_chan - get the HW channel of a port
3217  *      @dev: the net device for the port
3218  *
3219  *      Return the HW Tx channel of the given port.
3220  */
3221 unsigned int cxgb4_port_chan(const struct net_device *dev)
3222 {
3223         return netdev2pinfo(dev)->tx_chan;
3224 }
3225 EXPORT_SYMBOL(cxgb4_port_chan);
3226
3227 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3228 {
3229         struct adapter *adap = netdev2adap(dev);
3230         u32 v1, v2, lp_count, hp_count;
3231
3232         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3233         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3234         if (is_t4(adap->chip)) {
3235                 lp_count = G_LP_COUNT(v1);
3236                 hp_count = G_HP_COUNT(v1);
3237         } else {
3238                 lp_count = G_LP_COUNT_T5(v1);
3239                 hp_count = G_HP_COUNT_T5(v2);
3240         }
3241         return lpfifo ? lp_count : hp_count;
3242 }
3243 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3244
3245 /**
3246  *      cxgb4_port_viid - get the VI id of a port
3247  *      @dev: the net device for the port
3248  *
3249  *      Return the VI id of the given port.
3250  */
3251 unsigned int cxgb4_port_viid(const struct net_device *dev)
3252 {
3253         return netdev2pinfo(dev)->viid;
3254 }
3255 EXPORT_SYMBOL(cxgb4_port_viid);
3256
3257 /**
3258  *      cxgb4_port_idx - get the index of a port
3259  *      @dev: the net device for the port
3260  *
3261  *      Return the index of the given port.
3262  */
3263 unsigned int cxgb4_port_idx(const struct net_device *dev)
3264 {
3265         return netdev2pinfo(dev)->port_id;
3266 }
3267 EXPORT_SYMBOL(cxgb4_port_idx);
3268
3269 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3270                          struct tp_tcp_stats *v6)
3271 {
3272         struct adapter *adap = pci_get_drvdata(pdev);
3273
3274         spin_lock(&adap->stats_lock);
3275         t4_tp_get_tcp_stats(adap, v4, v6);
3276         spin_unlock(&adap->stats_lock);
3277 }
3278 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3279
3280 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3281                       const unsigned int *pgsz_order)
3282 {
3283         struct adapter *adap = netdev2adap(dev);
3284
3285         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3286         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3287                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3288                      HPZ3(pgsz_order[3]));
3289 }
3290 EXPORT_SYMBOL(cxgb4_iscsi_init);
3291
3292 int cxgb4_flush_eq_cache(struct net_device *dev)
3293 {
3294         struct adapter *adap = netdev2adap(dev);
3295         int ret;
3296
3297         ret = t4_fwaddrspace_write(adap, adap->mbox,
3298                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3299         return ret;
3300 }
3301 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3302
3303 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3304 {
3305         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3306         __be64 indices;
3307         int ret;
3308
3309         ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
3310         if (!ret) {
3311                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3312                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3313         }
3314         return ret;
3315 }
3316
3317 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3318                         u16 size)
3319 {
3320         struct adapter *adap = netdev2adap(dev);
3321         u16 hw_pidx, hw_cidx;
3322         int ret;
3323
3324         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3325         if (ret)
3326                 goto out;
3327
3328         if (pidx != hw_pidx) {
3329                 u16 delta;
3330
3331                 if (pidx >= hw_pidx)
3332                         delta = pidx - hw_pidx;
3333                 else
3334                         delta = size - hw_pidx + pidx;
3335                 wmb();
3336                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3337                              QID(qid) | PIDX(delta));
3338         }
3339 out:
3340         return ret;
3341 }
3342 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3343
3344 static struct pci_driver cxgb4_driver;
3345
3346 static void check_neigh_update(struct neighbour *neigh)
3347 {
3348         const struct device *parent;
3349         const struct net_device *netdev = neigh->dev;
3350
3351         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3352                 netdev = vlan_dev_real_dev(netdev);
3353         parent = netdev->dev.parent;
3354         if (parent && parent->driver == &cxgb4_driver.driver)
3355                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3356 }
3357
3358 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3359                        void *data)
3360 {
3361         switch (event) {
3362         case NETEVENT_NEIGH_UPDATE:
3363                 check_neigh_update(data);
3364                 break;
3365         case NETEVENT_REDIRECT:
3366         default:
3367                 break;
3368         }
3369         return 0;
3370 }
3371
3372 static bool netevent_registered;
3373 static struct notifier_block cxgb4_netevent_nb = {
3374         .notifier_call = netevent_cb
3375 };
3376
3377 static void drain_db_fifo(struct adapter *adap, int usecs)
3378 {
3379         u32 v1, v2, lp_count, hp_count;
3380
3381         do {
3382                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3383                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3384                 if (is_t4(adap->chip)) {
3385                         lp_count = G_LP_COUNT(v1);
3386                         hp_count = G_HP_COUNT(v1);
3387                 } else {
3388                         lp_count = G_LP_COUNT_T5(v1);
3389                         hp_count = G_HP_COUNT_T5(v2);
3390                 }
3391
3392                 if (lp_count == 0 && hp_count == 0)
3393                         break;
3394                 set_current_state(TASK_UNINTERRUPTIBLE);
3395                 schedule_timeout(usecs_to_jiffies(usecs));
3396         } while (1);
3397 }
3398
3399 static void disable_txq_db(struct sge_txq *q)
3400 {
3401         spin_lock_irq(&q->db_lock);
3402         q->db_disabled = 1;
3403         spin_unlock_irq(&q->db_lock);
3404 }
3405
3406 static void enable_txq_db(struct sge_txq *q)
3407 {
3408         spin_lock_irq(&q->db_lock);
3409         q->db_disabled = 0;
3410         spin_unlock_irq(&q->db_lock);
3411 }
3412
3413 static void disable_dbs(struct adapter *adap)
3414 {
3415         int i;
3416
3417         for_each_ethrxq(&adap->sge, i)
3418                 disable_txq_db(&adap->sge.ethtxq[i].q);
3419         for_each_ofldrxq(&adap->sge, i)
3420                 disable_txq_db(&adap->sge.ofldtxq[i].q);
3421         for_each_port(adap, i)
3422                 disable_txq_db(&adap->sge.ctrlq[i].q);
3423 }
3424
3425 static void enable_dbs(struct adapter *adap)
3426 {
3427         int i;
3428
3429         for_each_ethrxq(&adap->sge, i)
3430                 enable_txq_db(&adap->sge.ethtxq[i].q);
3431         for_each_ofldrxq(&adap->sge, i)
3432                 enable_txq_db(&adap->sge.ofldtxq[i].q);
3433         for_each_port(adap, i)
3434                 enable_txq_db(&adap->sge.ctrlq[i].q);
3435 }
3436
3437 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3438 {
3439         u16 hw_pidx, hw_cidx;
3440         int ret;
3441
3442         spin_lock_bh(&q->db_lock);
3443         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3444         if (ret)
3445                 goto out;
3446         if (q->db_pidx != hw_pidx) {
3447                 u16 delta;
3448
3449                 if (q->db_pidx >= hw_pidx)
3450                         delta = q->db_pidx - hw_pidx;
3451                 else
3452                         delta = q->size - hw_pidx + q->db_pidx;
3453                 wmb();
3454                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3455                              QID(q->cntxt_id) | PIDX(delta));
3456         }
3457 out:
3458         q->db_disabled = 0;
3459         spin_unlock_bh(&q->db_lock);
3460         if (ret)
3461                 CH_WARN(adap, "DB drop recovery failed.\n");
3462 }
3463 static void recover_all_queues(struct adapter *adap)
3464 {
3465         int i;
3466
3467         for_each_ethrxq(&adap->sge, i)
3468                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3469         for_each_ofldrxq(&adap->sge, i)
3470                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3471         for_each_port(adap, i)
3472                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3473 }
3474
3475 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3476 {
3477         mutex_lock(&uld_mutex);
3478         if (adap->uld_handle[CXGB4_ULD_RDMA])
3479                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3480                                 cmd);
3481         mutex_unlock(&uld_mutex);
3482 }
3483
3484 static void process_db_full(struct work_struct *work)
3485 {
3486         struct adapter *adap;
3487
3488         adap = container_of(work, struct adapter, db_full_task);
3489
3490         notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
3491         drain_db_fifo(adap, dbfifo_drain_delay);
3492         t4_set_reg_field(adap, SGE_INT_ENABLE3,
3493                          DBFIFO_HP_INT | DBFIFO_LP_INT,
3494                          DBFIFO_HP_INT | DBFIFO_LP_INT);
3495         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3496 }
3497
3498 static void process_db_drop(struct work_struct *work)
3499 {
3500         struct adapter *adap;
3501
3502         adap = container_of(work, struct adapter, db_drop_task);
3503
3504         if (is_t4(adap->chip)) {
3505                 disable_dbs(adap);
3506                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
3507                 drain_db_fifo(adap, 1);
3508                 recover_all_queues(adap);
3509                 enable_dbs(adap);
3510         } else {
3511                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
3512                 u16 qid = (dropped_db >> 15) & 0x1ffff;
3513                 u16 pidx_inc = dropped_db & 0x1fff;
3514                 unsigned int s_qpp;
3515                 unsigned short udb_density;
3516                 unsigned long qpshift;
3517                 int page;
3518                 u32 udb;
3519
3520                 dev_warn(adap->pdev_dev,
3521                          "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
3522                          dropped_db, qid,
3523                          (dropped_db >> 14) & 1,
3524                          (dropped_db >> 13) & 1,
3525                          pidx_inc);
3526
3527                 drain_db_fifo(adap, 1);
3528
3529                 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
3530                 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
3531                                 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
3532                 qpshift = PAGE_SHIFT - ilog2(udb_density);
3533                 udb = qid << qpshift;
3534                 udb &= PAGE_MASK;
3535                 page = udb / PAGE_SIZE;
3536                 udb += (qid - (page * udb_density)) * 128;
3537
3538                 writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
3539
3540                 /* Re-enable BAR2 WC */
3541                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
3542         }
3543
3544         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
3545 }
3546
3547 void t4_db_full(struct adapter *adap)
3548 {
3549         if (is_t4(adap->chip)) {
3550                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
3551                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
3552                 queue_work(workq, &adap->db_full_task);
3553         }
3554 }
3555
3556 void t4_db_dropped(struct adapter *adap)
3557 {
3558         if (is_t4(adap->chip))
3559                 queue_work(workq, &adap->db_drop_task);
3560 }
3561
3562 static void uld_attach(struct adapter *adap, unsigned int uld)
3563 {
3564         void *handle;
3565         struct cxgb4_lld_info lli;
3566         unsigned short i;
3567
3568         lli.pdev = adap->pdev;
3569         lli.l2t = adap->l2t;
3570         lli.tids = &adap->tids;
3571         lli.ports = adap->port;
3572         lli.vr = &adap->vres;
3573         lli.mtus = adap->params.mtus;
3574         if (uld == CXGB4_ULD_RDMA) {
3575                 lli.rxq_ids = adap->sge.rdma_rxq;
3576                 lli.nrxq = adap->sge.rdmaqs;
3577         } else if (uld == CXGB4_ULD_ISCSI) {
3578                 lli.rxq_ids = adap->sge.ofld_rxq;
3579                 lli.nrxq = adap->sge.ofldqsets;
3580         }
3581         lli.ntxq = adap->sge.ofldqsets;
3582         lli.nchan = adap->params.nports;
3583         lli.nports = adap->params.nports;
3584         lli.wr_cred = adap->params.ofldq_wr_cred;
3585         lli.adapter_type = adap->params.rev;
3586         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
3587         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
3588                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
3589                         (adap->fn * 4));
3590         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
3591                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
3592                         (adap->fn * 4));
3593         lli.filt_mode = adap->filter_mode;
3594         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
3595         for (i = 0; i < NCHAN; i++)
3596                 lli.tx_modq[i] = i;
3597         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
3598         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
3599         lli.fw_vers = adap->params.fw_vers;
3600         lli.dbfifo_int_thresh = dbfifo_int_thresh;
3601         lli.sge_pktshift = adap->sge.pktshift;
3602         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
3603
3604         handle = ulds[uld].add(&lli);
3605         if (IS_ERR(handle)) {
3606                 dev_warn(adap->pdev_dev,
3607                          "could not attach to the %s driver, error %ld\n",
3608                          uld_str[uld], PTR_ERR(handle));
3609                 return;
3610         }
3611
3612         adap->uld_handle[uld] = handle;
3613
3614         if (!netevent_registered) {
3615                 register_netevent_notifier(&cxgb4_netevent_nb);
3616                 netevent_registered = true;
3617         }
3618
3619         if (adap->flags & FULL_INIT_DONE)
3620                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
3621 }
3622
3623 static void attach_ulds(struct adapter *adap)
3624 {
3625         unsigned int i;
3626
3627         mutex_lock(&uld_mutex);
3628         list_add_tail(&adap->list_node, &adapter_list);
3629         for (i = 0; i < CXGB4_ULD_MAX; i++)
3630                 if (ulds[i].add)
3631                         uld_attach(adap, i);
3632         mutex_unlock(&uld_mutex);
3633 }
3634
3635 static void detach_ulds(struct adapter *adap)
3636 {
3637         unsigned int i;
3638
3639         mutex_lock(&uld_mutex);
3640         list_del(&adap->list_node);
3641         for (i = 0; i < CXGB4_ULD_MAX; i++)
3642                 if (adap->uld_handle[i]) {
3643                         ulds[i].state_change(adap->uld_handle[i],
3644                                              CXGB4_STATE_DETACH);
3645                         adap->uld_handle[i] = NULL;
3646                 }
3647         if (netevent_registered && list_empty(&adapter_list)) {
3648                 unregister_netevent_notifier(&cxgb4_netevent_nb);
3649                 netevent_registered = false;
3650         }
3651         mutex_unlock(&uld_mutex);
3652 }
3653
3654 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
3655 {
3656         unsigned int i;
3657
3658         mutex_lock(&uld_mutex);
3659         for (i = 0; i < CXGB4_ULD_MAX; i++)
3660                 if (adap->uld_handle[i])
3661                         ulds[i].state_change(adap->uld_handle[i], new_state);
3662         mutex_unlock(&uld_mutex);
3663 }
3664
3665 /**
3666  *      cxgb4_register_uld - register an upper-layer driver
3667  *      @type: the ULD type
3668  *      @p: the ULD methods
3669  *
3670  *      Registers an upper-layer driver with this driver and notifies the ULD
3671  *      about any presently available devices that support its type.  Returns
3672  *      %-EBUSY if a ULD of the same type is already registered.
3673  */
3674 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
3675 {
3676         int ret = 0;
3677         struct adapter *adap;
3678
3679         if (type >= CXGB4_ULD_MAX)
3680                 return -EINVAL;
3681         mutex_lock(&uld_mutex);
3682         if (ulds[type].add) {
3683                 ret = -EBUSY;
3684                 goto out;
3685         }
3686         ulds[type] = *p;
3687         list_for_each_entry(adap, &adapter_list, list_node)
3688                 uld_attach(adap, type);
3689 out:    mutex_unlock(&uld_mutex);
3690         return ret;
3691 }
3692 EXPORT_SYMBOL(cxgb4_register_uld);
3693
3694 /**
3695  *      cxgb4_unregister_uld - unregister an upper-layer driver
3696  *      @type: the ULD type
3697  *
3698  *      Unregisters an existing upper-layer driver.
3699  */
3700 int cxgb4_unregister_uld(enum cxgb4_uld type)
3701 {
3702         struct adapter *adap;
3703
3704         if (type >= CXGB4_ULD_MAX)
3705                 return -EINVAL;
3706         mutex_lock(&uld_mutex);
3707         list_for_each_entry(adap, &adapter_list, list_node)
3708                 adap->uld_handle[type] = NULL;
3709         ulds[type].add = NULL;
3710         mutex_unlock(&uld_mutex);
3711         return 0;
3712 }
3713 EXPORT_SYMBOL(cxgb4_unregister_uld);
3714
3715 /**
3716  *      cxgb_up - enable the adapter
3717  *      @adap: adapter being enabled
3718  *
3719  *      Called when the first port is enabled, this function performs the
3720  *      actions necessary to make an adapter operational, such as completing
3721  *      the initialization of HW modules, and enabling interrupts.
3722  *
3723  *      Must be called with the rtnl lock held.
3724  */
3725 static int cxgb_up(struct adapter *adap)
3726 {
3727         int err;
3728
3729         err = setup_sge_queues(adap);
3730         if (err)
3731                 goto out;
3732         err = setup_rss(adap);
3733         if (err)
3734                 goto freeq;
3735
3736         if (adap->flags & USING_MSIX) {
3737                 name_msix_vecs(adap);
3738                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
3739                                   adap->msix_info[0].desc, adap);
3740                 if (err)
3741                         goto irq_err;
3742
3743                 err = request_msix_queue_irqs(adap);
3744                 if (err) {
3745                         free_irq(adap->msix_info[0].vec, adap);
3746                         goto irq_err;
3747                 }
3748         } else {
3749                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
3750                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
3751                                   adap->port[0]->name, adap);
3752                 if (err)
3753                         goto irq_err;
3754         }
3755         enable_rx(adap);
3756         t4_sge_start(adap);
3757         t4_intr_enable(adap);
3758         adap->flags |= FULL_INIT_DONE;
3759         notify_ulds(adap, CXGB4_STATE_UP);
3760  out:
3761         return err;
3762  irq_err:
3763         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
3764  freeq:
3765         t4_free_sge_resources(adap);
3766         goto out;
3767 }
3768
3769 static void cxgb_down(struct adapter *adapter)
3770 {
3771         t4_intr_disable(adapter);
3772         cancel_work_sync(&adapter->tid_release_task);
3773         cancel_work_sync(&adapter->db_full_task);
3774         cancel_work_sync(&adapter->db_drop_task);
3775         adapter->tid_release_task_busy = false;
3776         adapter->tid_release_head = NULL;
3777
3778         if (adapter->flags & USING_MSIX) {
3779                 free_msix_queue_irqs(adapter);
3780                 free_irq(adapter->msix_info[0].vec, adapter);
3781         } else
3782                 free_irq(adapter->pdev->irq, adapter);
3783         quiesce_rx(adapter);
3784         t4_sge_stop(adapter);
3785         t4_free_sge_resources(adapter);
3786         adapter->flags &= ~FULL_INIT_DONE;
3787 }
3788
3789 /*
3790  * net_device operations
3791  */
3792 static int cxgb_open(struct net_device *dev)
3793 {
3794         int err;
3795         struct port_info *pi = netdev_priv(dev);
3796         struct adapter *adapter = pi->adapter;
3797
3798         netif_carrier_off(dev);
3799
3800         if (!(adapter->flags & FULL_INIT_DONE)) {
3801                 err = cxgb_up(adapter);
3802                 if (err < 0)
3803                         return err;
3804         }
3805
3806         err = link_start(dev);
3807         if (!err)
3808                 netif_tx_start_all_queues(dev);
3809         return err;
3810 }
3811
3812 static int cxgb_close(struct net_device *dev)
3813 {
3814         struct port_info *pi = netdev_priv(dev);
3815         struct adapter *adapter = pi->adapter;
3816
3817         netif_tx_stop_all_queues(dev);
3818         netif_carrier_off(dev);
3819         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
3820 }
3821
3822 /* Return an error number if the indicated filter isn't writable ...
3823  */
3824 static int writable_filter(struct filter_entry *f)
3825 {
3826         if (f->locked)
3827                 return -EPERM;
3828         if (f->pending)
3829                 return -EBUSY;
3830
3831         return 0;
3832 }
3833
3834 /* Delete the filter at the specified index (if valid).  The checks for all
3835  * the common problems with doing this like the filter being locked, currently
3836  * pending in another operation, etc.
3837  */
3838 static int delete_filter(struct adapter *adapter, unsigned int fidx)
3839 {
3840         struct filter_entry *f;
3841         int ret;
3842
3843         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
3844                 return -EINVAL;
3845
3846         f = &adapter->tids.ftid_tab[fidx];
3847         ret = writable_filter(f);
3848         if (ret)
3849                 return ret;
3850         if (f->valid)
3851                 return del_filter_wr(adapter, fidx);
3852
3853         return 0;
3854 }
3855
3856 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
3857                 __be32 sip, __be16 sport, __be16 vlan,
3858                 unsigned int queue, unsigned char port, unsigned char mask)
3859 {
3860         int ret;
3861         struct filter_entry *f;
3862         struct adapter *adap;
3863         int i;
3864         u8 *val;
3865
3866         adap = netdev2adap(dev);
3867
3868         /* Adjust stid to correct filter index */
3869         stid -= adap->tids.nstids;
3870         stid += adap->tids.nftids;
3871
3872         /* Check to make sure the filter requested is writable ...
3873          */
3874         f = &adap->tids.ftid_tab[stid];
3875         ret = writable_filter(f);
3876         if (ret)
3877                 return ret;
3878
3879         /* Clear out any old resources being used by the filter before
3880          * we start constructing the new filter.
3881          */
3882         if (f->valid)
3883                 clear_filter(adap, f);
3884
3885         /* Clear out filter specifications */
3886         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
3887         f->fs.val.lport = cpu_to_be16(sport);
3888         f->fs.mask.lport  = ~0;
3889         val = (u8 *)&sip;
3890         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
3891                 for (i = 0; i < 4; i++) {
3892                         f->fs.val.lip[i] = val[i];
3893                         f->fs.mask.lip[i] = ~0;
3894                 }
3895                 if (adap->filter_mode & F_PORT) {
3896                         f->fs.val.iport = port;
3897                         f->fs.mask.iport = mask;
3898                 }
3899         }
3900
3901         f->fs.dirsteer = 1;
3902         f->fs.iq = queue;
3903         /* Mark filter as locked */
3904         f->locked = 1;
3905         f->fs.rpttid = 1;
3906
3907         ret = set_filter_wr(adap, stid);
3908         if (ret) {
3909                 clear_filter(adap, f);
3910                 return ret;
3911         }
3912
3913         return 0;
3914 }
3915 EXPORT_SYMBOL(cxgb4_create_server_filter);
3916
3917 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
3918                 unsigned int queue, bool ipv6)
3919 {
3920         int ret;
3921         struct filter_entry *f;
3922         struct adapter *adap;
3923
3924         adap = netdev2adap(dev);
3925
3926         /* Adjust stid to correct filter index */
3927         stid -= adap->tids.nstids;
3928         stid += adap->tids.nftids;
3929
3930         f = &adap->tids.ftid_tab[stid];
3931         /* Unlock the filter */
3932         f->locked = 0;
3933
3934         ret = delete_filter(adap, stid);
3935         if (ret)
3936                 return ret;
3937
3938         return 0;
3939 }
3940 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3941
3942 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
3943                                                 struct rtnl_link_stats64 *ns)
3944 {
3945         struct port_stats stats;
3946         struct port_info *p = netdev_priv(dev);
3947         struct adapter *adapter = p->adapter;
3948
3949         spin_lock(&adapter->stats_lock);
3950         t4_get_port_stats(adapter, p->tx_chan, &stats);
3951         spin_unlock(&adapter->stats_lock);
3952
3953         ns->tx_bytes   = stats.tx_octets;
3954         ns->tx_packets = stats.tx_frames;
3955         ns->rx_bytes   = stats.rx_octets;
3956         ns->rx_packets = stats.rx_frames;
3957         ns->multicast  = stats.rx_mcast_frames;
3958
3959         /* detailed rx_errors */
3960         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3961                                stats.rx_runt;
3962         ns->rx_over_errors   = 0;
3963         ns->rx_crc_errors    = stats.rx_fcs_err;
3964         ns->rx_frame_errors  = stats.rx_symbol_err;
3965         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
3966                                stats.rx_ovflow2 + stats.rx_ovflow3 +
3967                                stats.rx_trunc0 + stats.rx_trunc1 +
3968                                stats.rx_trunc2 + stats.rx_trunc3;
3969         ns->rx_missed_errors = 0;
3970
3971         /* detailed tx_errors */
3972         ns->tx_aborted_errors   = 0;
3973         ns->tx_carrier_errors   = 0;
3974         ns->tx_fifo_errors      = 0;
3975         ns->tx_heartbeat_errors = 0;
3976         ns->tx_window_errors    = 0;
3977
3978         ns->tx_errors = stats.tx_error_frames;
3979         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3980                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3981         return ns;
3982 }
3983
3984 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3985 {
3986         unsigned int mbox;
3987         int ret = 0, prtad, devad;
3988         struct port_info *pi = netdev_priv(dev);
3989         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3990
3991         switch (cmd) {
3992         case SIOCGMIIPHY:
3993                 if (pi->mdio_addr < 0)
3994                         return -EOPNOTSUPP;
3995                 data->phy_id = pi->mdio_addr;
3996                 break;
3997         case SIOCGMIIREG:
3998         case SIOCSMIIREG:
3999                 if (mdio_phy_id_is_c45(data->phy_id)) {
4000                         prtad = mdio_phy_id_prtad(data->phy_id);
4001                         devad = mdio_phy_id_devad(data->phy_id);
4002                 } else if (data->phy_id < 32) {
4003                         prtad = data->phy_id;
4004                         devad = 0;
4005                         data->reg_num &= 0x1f;
4006                 } else
4007                         return -EINVAL;
4008
4009                 mbox = pi->adapter->fn;
4010                 if (cmd == SIOCGMIIREG)
4011                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4012                                          data->reg_num, &data->val_out);
4013                 else
4014                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4015                                          data->reg_num, data->val_in);
4016                 break;
4017         default:
4018                 return -EOPNOTSUPP;
4019         }
4020         return ret;
4021 }
4022
4023 static void cxgb_set_rxmode(struct net_device *dev)
4024 {
4025         /* unfortunately we can't return errors to the stack */
4026         set_rxmode(dev, -1, false);
4027 }
4028
4029 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4030 {
4031         int ret;
4032         struct port_info *pi = netdev_priv(dev);
4033
4034         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4035                 return -EINVAL;
4036         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4037                             -1, -1, -1, true);
4038         if (!ret)
4039                 dev->mtu = new_mtu;
4040         return ret;
4041 }
4042
4043 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4044 {
4045         int ret;
4046         struct sockaddr *addr = p;
4047         struct port_info *pi = netdev_priv(dev);
4048
4049         if (!is_valid_ether_addr(addr->sa_data))
4050                 return -EADDRNOTAVAIL;
4051
4052         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4053                             pi->xact_addr_filt, addr->sa_data, true, true);
4054         if (ret < 0)
4055                 return ret;
4056
4057         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4058         pi->xact_addr_filt = ret;
4059         return 0;
4060 }
4061
4062 #ifdef CONFIG_NET_POLL_CONTROLLER
4063 static void cxgb_netpoll(struct net_device *dev)
4064 {
4065         struct port_info *pi = netdev_priv(dev);
4066         struct adapter *adap = pi->adapter;
4067
4068         if (adap->flags & USING_MSIX) {
4069                 int i;
4070                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4071
4072                 for (i = pi->nqsets; i; i--, rx++)
4073                         t4_sge_intr_msix(0, &rx->rspq);
4074         } else
4075                 t4_intr_handler(adap)(0, adap);
4076 }
4077 #endif
4078
4079 static const struct net_device_ops cxgb4_netdev_ops = {
4080         .ndo_open             = cxgb_open,
4081         .ndo_stop             = cxgb_close,
4082         .ndo_start_xmit       = t4_eth_xmit,
4083         .ndo_get_stats64      = cxgb_get_stats,
4084         .ndo_set_rx_mode      = cxgb_set_rxmode,
4085         .ndo_set_mac_address  = cxgb_set_mac_addr,
4086         .ndo_set_features     = cxgb_set_features,
4087         .ndo_validate_addr    = eth_validate_addr,
4088         .ndo_do_ioctl         = cxgb_ioctl,
4089         .ndo_change_mtu       = cxgb_change_mtu,
4090 #ifdef CONFIG_NET_POLL_CONTROLLER
4091         .ndo_poll_controller  = cxgb_netpoll,
4092 #endif
4093 };
4094
4095 void t4_fatal_err(struct adapter *adap)
4096 {
4097         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4098         t4_intr_disable(adap);
4099         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4100 }
4101
4102 static void setup_memwin(struct adapter *adap)
4103 {
4104         u32 bar0;
4105
4106         bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
4107         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4108                      (bar0 + MEMWIN0_BASE) | BIR(0) |
4109                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4110         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4111                      (bar0 + MEMWIN1_BASE) | BIR(0) |
4112                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4113         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4114                      (bar0 + MEMWIN2_BASE) | BIR(0) |
4115                      WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
4116 }
4117
4118 static void setup_memwin_rdma(struct adapter *adap)
4119 {
4120         if (adap->vres.ocq.size) {
4121                 unsigned int start, sz_kb;
4122
4123                 start = pci_resource_start(adap->pdev, 2) +
4124                         OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4125                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4126                 t4_write_reg(adap,
4127                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4128                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
4129                 t4_write_reg(adap,
4130                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4131                              adap->vres.ocq.start);
4132                 t4_read_reg(adap,
4133                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4134         }
4135 }
4136
4137 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4138 {
4139         u32 v;
4140         int ret;
4141
4142         /* get device capabilities */
4143         memset(c, 0, sizeof(*c));
4144         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4145                                FW_CMD_REQUEST | FW_CMD_READ);
4146         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4147         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4148         if (ret < 0)
4149                 return ret;
4150
4151         /* select capabilities we'll be using */
4152         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4153                 if (!vf_acls)
4154                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4155                 else
4156                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4157         } else if (vf_acls) {
4158                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4159                 return ret;
4160         }
4161         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4162                                FW_CMD_REQUEST | FW_CMD_WRITE);
4163         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4164         if (ret < 0)
4165                 return ret;
4166
4167         ret = t4_config_glbl_rss(adap, adap->fn,
4168                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4169                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4170                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4171         if (ret < 0)
4172                 return ret;
4173
4174         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4175                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
4176         if (ret < 0)
4177                 return ret;
4178
4179         t4_sge_init(adap);
4180
4181         /* tweak some settings */
4182         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4183         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4184         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4185         v = t4_read_reg(adap, TP_PIO_DATA);
4186         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
4187
4188         /* first 4 Tx modulation queues point to consecutive Tx channels */
4189         adap->params.tp.tx_modq_map = 0xE4;
4190         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4191                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4192
4193         /* associate each Tx modulation queue with consecutive Tx channels */
4194         v = 0x84218421;
4195         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4196                           &v, 1, A_TP_TX_SCHED_HDR);
4197         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4198                           &v, 1, A_TP_TX_SCHED_FIFO);
4199         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4200                           &v, 1, A_TP_TX_SCHED_PCMD);
4201
4202 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4203         if (is_offload(adap)) {
4204                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4205                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4206                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4207                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4208                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4209                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4210                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4211                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4212                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4213                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4214         }
4215
4216         /* get basic stuff going */
4217         return t4_early_init(adap, adap->fn);
4218 }
4219
4220 /*
4221  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4222  */
4223 #define MAX_ATIDS 8192U
4224
4225 /*
4226  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4227  *
4228  * If the firmware we're dealing with has Configuration File support, then
4229  * we use that to perform all configuration
4230  */
4231
4232 /*
4233  * Tweak configuration based on module parameters, etc.  Most of these have
4234  * defaults assigned to them by Firmware Configuration Files (if we're using
4235  * them) but need to be explicitly set if we're using hard-coded
4236  * initialization.  But even in the case of using Firmware Configuration
4237  * Files, we'd like to expose the ability to change these via module
4238  * parameters so these are essentially common tweaks/settings for
4239  * Configuration Files and hard-coded initialization ...
4240  */
4241 static int adap_init0_tweaks(struct adapter *adapter)
4242 {
4243         /*
4244          * Fix up various Host-Dependent Parameters like Page Size, Cache
4245          * Line Size, etc.  The firmware default is for a 4KB Page Size and
4246          * 64B Cache Line Size ...
4247          */
4248         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4249
4250         /*
4251          * Process module parameters which affect early initialization.
4252          */
4253         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4254                 dev_err(&adapter->pdev->dev,
4255                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
4256                         rx_dma_offset);
4257                 rx_dma_offset = 2;
4258         }
4259         t4_set_reg_field(adapter, SGE_CONTROL,
4260                          PKTSHIFT_MASK,
4261                          PKTSHIFT(rx_dma_offset));
4262
4263         /*
4264          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4265          * adds the pseudo header itself.
4266          */
4267         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
4268                                CSUM_HAS_PSEUDO_HDR, 0);
4269
4270         return 0;
4271 }
4272
4273 /*
4274  * Attempt to initialize the adapter via a Firmware Configuration File.
4275  */
4276 static int adap_init0_config(struct adapter *adapter, int reset)
4277 {
4278         struct fw_caps_config_cmd caps_cmd;
4279         const struct firmware *cf;
4280         unsigned long mtype = 0, maddr = 0;
4281         u32 finiver, finicsum, cfcsum;
4282         int ret, using_flash;
4283         char *fw_config_file, fw_config_file_path[256];
4284
4285         /*
4286          * Reset device if necessary.
4287          */
4288         if (reset) {
4289                 ret = t4_fw_reset(adapter, adapter->mbox,
4290                                   PIORSTMODE | PIORST);
4291                 if (ret < 0)
4292                         goto bye;
4293         }
4294
4295         /*
4296          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4297          * then use that.  Otherwise, use the configuration file stored
4298          * in the adapter flash ...
4299          */
4300         switch (CHELSIO_CHIP_VERSION(adapter->chip)) {
4301         case CHELSIO_T4:
4302                 fw_config_file = FW_CFNAME;
4303                 break;
4304         case CHELSIO_T5:
4305                 fw_config_file = FW5_CFNAME;
4306                 break;
4307         default:
4308                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4309                        adapter->pdev->device);
4310                 ret = -EINVAL;
4311                 goto bye;
4312         }
4313
4314         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4315         if (ret < 0) {
4316                 using_flash = 1;
4317                 mtype = FW_MEMTYPE_CF_FLASH;
4318                 maddr = t4_flash_cfg_addr(adapter);
4319         } else {
4320                 u32 params[7], val[7];
4321
4322                 using_flash = 0;
4323                 if (cf->size >= FLASH_CFG_MAX_SIZE)
4324                         ret = -ENOMEM;
4325                 else {
4326                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4327                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4328                         ret = t4_query_params(adapter, adapter->mbox,
4329                                               adapter->fn, 0, 1, params, val);
4330                         if (ret == 0) {
4331                                 /*
4332                                  * For t4_memory_write() below addresses and
4333                                  * sizes have to be in terms of multiples of 4
4334                                  * bytes.  So, if the Configuration File isn't
4335                                  * a multiple of 4 bytes in length we'll have
4336                                  * to write that out separately since we can't
4337                                  * guarantee that the bytes following the
4338                                  * residual byte in the buffer returned by
4339                                  * request_firmware() are zeroed out ...
4340                                  */
4341                                 size_t resid = cf->size & 0x3;
4342                                 size_t size = cf->size & ~0x3;
4343                                 __be32 *data = (__be32 *)cf->data;
4344
4345                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
4346                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
4347
4348                                 ret = t4_memory_write(adapter, mtype, maddr,
4349                                                       size, data);
4350                                 if (ret == 0 && resid != 0) {
4351                                         union {
4352                                                 __be32 word;
4353                                                 char buf[4];
4354                                         } last;
4355                                         int i;
4356
4357                                         last.word = data[size >> 2];
4358                                         for (i = resid; i < 4; i++)
4359                                                 last.buf[i] = 0;
4360                                         ret = t4_memory_write(adapter, mtype,
4361                                                               maddr + size,
4362                                                               4, &last.word);
4363                                 }
4364                         }
4365                 }
4366
4367                 release_firmware(cf);
4368                 if (ret)
4369                         goto bye;
4370         }
4371
4372         /*
4373          * Issue a Capability Configuration command to the firmware to get it
4374          * to parse the Configuration File.  We don't use t4_fw_config_file()
4375          * because we want the ability to modify various features after we've
4376          * processed the configuration file ...
4377          */
4378         memset(&caps_cmd, 0, sizeof(caps_cmd));
4379         caps_cmd.op_to_write =
4380                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4381                       FW_CMD_REQUEST |
4382                       FW_CMD_READ);
4383         caps_cmd.cfvalid_to_len16 =
4384                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
4385                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4386                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
4387                       FW_LEN16(caps_cmd));
4388         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4389                          &caps_cmd);
4390         if (ret < 0)
4391                 goto bye;
4392
4393         finiver = ntohl(caps_cmd.finiver);
4394         finicsum = ntohl(caps_cmd.finicsum);
4395         cfcsum = ntohl(caps_cmd.cfcsum);
4396         if (finicsum != cfcsum)
4397                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4398                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4399                          finicsum, cfcsum);
4400
4401         /*
4402          * And now tell the firmware to use the configuration we just loaded.
4403          */
4404         caps_cmd.op_to_write =
4405                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4406                       FW_CMD_REQUEST |
4407                       FW_CMD_WRITE);
4408         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4409         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4410                          NULL);
4411         if (ret < 0)
4412                 goto bye;
4413
4414         /*
4415          * Tweak configuration based on system architecture, module
4416          * parameters, etc.
4417          */
4418         ret = adap_init0_tweaks(adapter);
4419         if (ret < 0)
4420                 goto bye;
4421
4422         /*
4423          * And finally tell the firmware to initialize itself using the
4424          * parameters from the Configuration File.
4425          */
4426         ret = t4_fw_initialize(adapter, adapter->mbox);
4427         if (ret < 0)
4428                 goto bye;
4429
4430         sprintf(fw_config_file_path, "/lib/firmware/%s", fw_config_file);
4431         /*
4432          * Return successfully and note that we're operating with parameters
4433          * not supplied by the driver, rather than from hard-wired
4434          * initialization constants burried in the driver.
4435          */
4436         adapter->flags |= USING_SOFT_PARAMS;
4437         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4438                  "Configuration File %s, version %#x, computed checksum %#x\n",
4439                  (using_flash
4440                   ? "in device FLASH"
4441                   : fw_config_file_path),
4442                  finiver, cfcsum);
4443         return 0;
4444
4445         /*
4446          * Something bad happened.  Return the error ...  (If the "error"
4447          * is that there's no Configuration File on the adapter we don't
4448          * want to issue a warning since this is fairly common.)
4449          */
4450 bye:
4451         if (ret != -ENOENT)
4452                 dev_warn(adapter->pdev_dev, "Configuration file error %d\n",
4453                          -ret);
4454         return ret;
4455 }
4456
4457 /*
4458  * Attempt to initialize the adapter via hard-coded, driver supplied
4459  * parameters ...
4460  */
4461 static int adap_init0_no_config(struct adapter *adapter, int reset)
4462 {
4463         struct sge *s = &adapter->sge;
4464         struct fw_caps_config_cmd caps_cmd;
4465         u32 v;
4466         int i, ret;
4467
4468         /*
4469          * Reset device if necessary
4470          */
4471         if (reset) {
4472                 ret = t4_fw_reset(adapter, adapter->mbox,
4473                                   PIORSTMODE | PIORST);
4474                 if (ret < 0)
4475                         goto bye;
4476         }
4477
4478         /*
4479          * Get device capabilities and select which we'll be using.
4480          */
4481         memset(&caps_cmd, 0, sizeof(caps_cmd));
4482         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4483                                      FW_CMD_REQUEST | FW_CMD_READ);
4484         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4485         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4486                          &caps_cmd);
4487         if (ret < 0)
4488                 goto bye;
4489
4490         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4491                 if (!vf_acls)
4492                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4493                 else
4494                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4495         } else if (vf_acls) {
4496                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
4497                 goto bye;
4498         }
4499         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4500                               FW_CMD_REQUEST | FW_CMD_WRITE);
4501         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4502                          NULL);
4503         if (ret < 0)
4504                 goto bye;
4505
4506         /*
4507          * Tweak configuration based on system architecture, module
4508          * parameters, etc.
4509          */
4510         ret = adap_init0_tweaks(adapter);
4511         if (ret < 0)
4512                 goto bye;
4513
4514         /*
4515          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
4516          * mode which maps each Virtual Interface to its own section of
4517          * the RSS Table and we turn on all map and hash enables ...
4518          */
4519         adapter->flags |= RSS_TNLALLLOOKUP;
4520         ret = t4_config_glbl_rss(adapter, adapter->mbox,
4521                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4522                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4523                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
4524                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
4525                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
4526         if (ret < 0)
4527                 goto bye;
4528
4529         /*
4530          * Set up our own fundamental resource provisioning ...
4531          */
4532         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
4533                           PFRES_NEQ, PFRES_NETHCTRL,
4534                           PFRES_NIQFLINT, PFRES_NIQ,
4535                           PFRES_TC, PFRES_NVI,
4536                           FW_PFVF_CMD_CMASK_MASK,
4537                           pfvfres_pmask(adapter, adapter->fn, 0),
4538                           PFRES_NEXACTF,
4539                           PFRES_R_CAPS, PFRES_WX_CAPS);
4540         if (ret < 0)
4541                 goto bye;
4542
4543         /*
4544          * Perform low level SGE initialization.  We need to do this before we
4545          * send the firmware the INITIALIZE command because that will cause
4546          * any other PF Drivers which are waiting for the Master
4547          * Initialization to proceed forward.
4548          */
4549         for (i = 0; i < SGE_NTIMERS - 1; i++)
4550                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
4551         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
4552         s->counter_val[0] = 1;
4553         for (i = 1; i < SGE_NCOUNTERS; i++)
4554                 s->counter_val[i] = min(intr_cnt[i - 1],
4555                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
4556         t4_sge_init(adapter);
4557
4558 #ifdef CONFIG_PCI_IOV
4559         /*
4560          * Provision resource limits for Virtual Functions.  We currently
4561          * grant them all the same static resource limits except for the Port
4562          * Access Rights Mask which we're assigning based on the PF.  All of
4563          * the static provisioning stuff for both the PF and VF really needs
4564          * to be managed in a persistent manner for each device which the
4565          * firmware controls.
4566          */
4567         {
4568                 int pf, vf;
4569                 int max_no_pf = is_t4(adapter->chip) ? NUM_OF_PF_WITH_SRIOV_T4 :
4570                                 NUM_OF_PF_WITH_SRIOV_T5;
4571
4572                 for (pf = 0; pf < max_no_pf; pf++) {
4573                         if (num_vf[pf] <= 0)
4574                                 continue;
4575
4576                         /* VF numbering starts at 1! */
4577                         for (vf = 1; vf <= num_vf[pf]; vf++) {
4578                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
4579                                                   pf, vf,
4580                                                   VFRES_NEQ, VFRES_NETHCTRL,
4581                                                   VFRES_NIQFLINT, VFRES_NIQ,
4582                                                   VFRES_TC, VFRES_NVI,
4583                                                   FW_PFVF_CMD_CMASK_MASK,
4584                                                   pfvfres_pmask(
4585                                                   adapter, pf, vf),
4586                                                   VFRES_NEXACTF,
4587                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
4588                                 if (ret < 0)
4589                                         dev_warn(adapter->pdev_dev,
4590                                                  "failed to "\
4591                                                  "provision pf/vf=%d/%d; "
4592                                                  "err=%d\n", pf, vf, ret);
4593                         }
4594                 }
4595         }
4596 #endif
4597
4598         /*
4599          * Set up the default filter mode.  Later we'll want to implement this
4600          * via a firmware command, etc. ...  This needs to be done before the
4601          * firmare initialization command ...  If the selected set of fields
4602          * isn't equal to the default value, we'll need to make sure that the
4603          * field selections will fit in the 36-bit budget.
4604          */
4605         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
4606                 int j, bits = 0;
4607
4608                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
4609                         switch (tp_vlan_pri_map & (1 << j)) {
4610                         case 0:
4611                                 /* compressed filter field not enabled */
4612                                 break;
4613                         case FCOE_MASK:
4614                                 bits +=  1;
4615                                 break;
4616                         case PORT_MASK:
4617                                 bits +=  3;
4618                                 break;
4619                         case VNIC_ID_MASK:
4620                                 bits += 17;
4621                                 break;
4622                         case VLAN_MASK:
4623                                 bits += 17;
4624                                 break;
4625                         case TOS_MASK:
4626                                 bits +=  8;
4627                                 break;
4628                         case PROTOCOL_MASK:
4629                                 bits +=  8;
4630                                 break;
4631                         case ETHERTYPE_MASK:
4632                                 bits += 16;
4633                                 break;
4634                         case MACMATCH_MASK:
4635                                 bits +=  9;
4636                                 break;
4637                         case MPSHITTYPE_MASK:
4638                                 bits +=  3;
4639                                 break;
4640                         case FRAGMENTATION_MASK:
4641                                 bits +=  1;
4642                                 break;
4643                         }
4644
4645                 if (bits > 36) {
4646                         dev_err(adapter->pdev_dev,
4647                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
4648                                 " using %#x\n", tp_vlan_pri_map, bits,
4649                                 TP_VLAN_PRI_MAP_DEFAULT);
4650                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
4651                 }
4652         }
4653         v = tp_vlan_pri_map;
4654         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
4655                           &v, 1, TP_VLAN_PRI_MAP);
4656
4657         /*
4658          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
4659          * to support any of the compressed filter fields above.  Newer
4660          * versions of the firmware do this automatically but it doesn't hurt
4661          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
4662          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
4663          * since the firmware automatically turns this on and off when we have
4664          * a non-zero number of filters active (since it does have a
4665          * performance impact).
4666          */
4667         if (tp_vlan_pri_map)
4668                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
4669                                  FIVETUPLELOOKUP_MASK,
4670                                  FIVETUPLELOOKUP_MASK);
4671
4672         /*
4673          * Tweak some settings.
4674          */
4675         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
4676                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
4677                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
4678                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
4679
4680         /*
4681          * Get basic stuff going by issuing the Firmware Initialize command.
4682          * Note that this _must_ be after all PFVF commands ...
4683          */
4684         ret = t4_fw_initialize(adapter, adapter->mbox);
4685         if (ret < 0)
4686                 goto bye;
4687
4688         /*
4689          * Return successfully!
4690          */
4691         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
4692                  "driver parameters\n");
4693         return 0;
4694
4695         /*
4696          * Something bad happened.  Return the error ...
4697          */
4698 bye:
4699         return ret;
4700 }
4701
4702 /*
4703  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4704  */
4705 static int adap_init0(struct adapter *adap)
4706 {
4707         int ret;
4708         u32 v, port_vec;
4709         enum dev_state state;
4710         u32 params[7], val[7];
4711         struct fw_caps_config_cmd caps_cmd;
4712         int reset = 1, j;
4713
4714         /*
4715          * Contact FW, advertising Master capability (and potentially forcing
4716          * ourselves as the Master PF if our module parameter force_init is
4717          * set).
4718          */
4719         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
4720                           force_init ? MASTER_MUST : MASTER_MAY,
4721                           &state);
4722         if (ret < 0) {
4723                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4724                         ret);
4725                 return ret;
4726         }
4727         if (ret == adap->mbox)
4728                 adap->flags |= MASTER_PF;
4729         if (force_init && state == DEV_STATE_INIT)
4730                 state = DEV_STATE_UNINIT;
4731
4732         /*
4733          * If we're the Master PF Driver and the device is uninitialized,
4734          * then let's consider upgrading the firmware ...  (We always want
4735          * to check the firmware version number in order to A. get it for
4736          * later reporting and B. to warn if the currently loaded firmware
4737          * is excessively mismatched relative to the driver.)
4738          */
4739         ret = t4_check_fw_version(adap);
4740         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4741                 if (ret == -EINVAL || ret > 0) {
4742                         if (upgrade_fw(adap) >= 0) {
4743                                 /*
4744                                  * Note that the chip was reset as part of the
4745                                  * firmware upgrade so we don't reset it again
4746                                  * below and grab the new firmware version.
4747                                  */
4748                                 reset = 0;
4749                                 ret = t4_check_fw_version(adap);
4750                         }
4751                 }
4752                 if (ret < 0)
4753                         return ret;
4754         }
4755
4756         /*
4757          * Grab VPD parameters.  This should be done after we establish a
4758          * connection to the firmware since some of the VPD parameters
4759          * (notably the Core Clock frequency) are retrieved via requests to
4760          * the firmware.  On the other hand, we need these fairly early on
4761          * so we do this right after getting ahold of the firmware.
4762          */
4763         ret = get_vpd_params(adap, &adap->params.vpd);
4764         if (ret < 0)
4765                 goto bye;
4766
4767         /*
4768          * Find out what ports are available to us.  Note that we need to do
4769          * this before calling adap_init0_no_config() since it needs nports
4770          * and portvec ...
4771          */
4772         v =
4773             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4774             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
4775         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
4776         if (ret < 0)
4777                 goto bye;
4778
4779         adap->params.nports = hweight32(port_vec);
4780         adap->params.portvec = port_vec;
4781
4782         /*
4783          * If the firmware is initialized already (and we're not forcing a
4784          * master initialization), note that we're living with existing
4785          * adapter parameters.  Otherwise, it's time to try initializing the
4786          * adapter ...
4787          */
4788         if (state == DEV_STATE_INIT) {
4789                 dev_info(adap->pdev_dev, "Coming up as %s: "\
4790                          "Adapter already initialized\n",
4791                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4792                 adap->flags |= USING_SOFT_PARAMS;
4793         } else {
4794                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4795                          "Initializing adapter\n");
4796
4797                 /*
4798                  * If the firmware doesn't support Configuration
4799                  * Files warn user and exit,
4800                  */
4801                 if (ret < 0)
4802                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
4803                                  "configuration file.\n");
4804                 if (force_old_init)
4805                         ret = adap_init0_no_config(adap, reset);
4806                 else {
4807                         /*
4808                          * Find out whether we're dealing with a version of
4809                          * the firmware which has configuration file support.
4810                          */
4811                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4812                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4813                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
4814                                               params, val);
4815
4816                         /*
4817                          * If the firmware doesn't support Configuration
4818                          * Files, use the old Driver-based, hard-wired
4819                          * initialization.  Otherwise, try using the
4820                          * Configuration File support and fall back to the
4821                          * Driver-based initialization if there's no
4822                          * Configuration File found.
4823                          */
4824                         if (ret < 0)
4825                                 ret = adap_init0_no_config(adap, reset);
4826                         else {
4827                                 /*
4828                                  * The firmware provides us with a memory
4829                                  * buffer where we can load a Configuration
4830                                  * File from the host if we want to override
4831                                  * the Configuration File in flash.
4832                                  */
4833
4834                                 ret = adap_init0_config(adap, reset);
4835                                 if (ret == -ENOENT) {
4836                                         dev_info(adap->pdev_dev,
4837                                             "No Configuration File present "
4838                                             "on adapter.  Using hard-wired "
4839                                             "configuration parameters.\n");
4840                                         ret = adap_init0_no_config(adap, reset);
4841                                 }
4842                         }
4843                 }
4844                 if (ret < 0) {
4845                         dev_err(adap->pdev_dev,
4846                                 "could not initialize adapter, error %d\n",
4847                                 -ret);
4848                         goto bye;
4849                 }
4850         }
4851
4852         /*
4853          * If we're living with non-hard-coded parameters (either from a
4854          * Firmware Configuration File or values programmed by a different PF
4855          * Driver), give the SGE code a chance to pull in anything that it
4856          * needs ...  Note that this must be called after we retrieve our VPD
4857          * parameters in order to know how to convert core ticks to seconds.
4858          */
4859         if (adap->flags & USING_SOFT_PARAMS) {
4860                 ret = t4_sge_init(adap);
4861                 if (ret < 0)
4862                         goto bye;
4863         }
4864
4865         if (is_bypass_device(adap->pdev->device))
4866                 adap->params.bypass = 1;
4867
4868         /*
4869          * Grab some of our basic fundamental operating parameters.
4870          */
4871 #define FW_PARAM_DEV(param) \
4872         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
4873         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
4874
4875 #define FW_PARAM_PFVF(param) \
4876         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4877         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
4878         FW_PARAMS_PARAM_Y(0) | \
4879         FW_PARAMS_PARAM_Z(0)
4880
4881         params[0] = FW_PARAM_PFVF(EQ_START);
4882         params[1] = FW_PARAM_PFVF(L2T_START);
4883         params[2] = FW_PARAM_PFVF(L2T_END);
4884         params[3] = FW_PARAM_PFVF(FILTER_START);
4885         params[4] = FW_PARAM_PFVF(FILTER_END);
4886         params[5] = FW_PARAM_PFVF(IQFLINT_START);
4887         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
4888         if (ret < 0)
4889                 goto bye;
4890         adap->sge.egr_start = val[0];
4891         adap->l2t_start = val[1];
4892         adap->l2t_end = val[2];
4893         adap->tids.ftid_base = val[3];
4894         adap->tids.nftids = val[4] - val[3] + 1;
4895         adap->sge.ingr_start = val[5];
4896
4897         /* query params related to active filter region */
4898         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4899         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4900         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
4901         /* If Active filter size is set we enable establishing
4902          * offload connection through firmware work request
4903          */
4904         if ((val[0] != val[1]) && (ret >= 0)) {
4905                 adap->flags |= FW_OFLD_CONN;
4906                 adap->tids.aftid_base = val[0];
4907                 adap->tids.aftid_end = val[1];
4908         }
4909
4910         /*
4911          * Get device capabilities so we can determine what resources we need
4912          * to manage.
4913          */
4914         memset(&caps_cmd, 0, sizeof(caps_cmd));
4915         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4916                                      FW_CMD_REQUEST | FW_CMD_READ);
4917         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4918         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4919                          &caps_cmd);
4920         if (ret < 0)
4921                 goto bye;
4922
4923         if (caps_cmd.ofldcaps) {
4924                 /* query offload-related parameters */
4925                 params[0] = FW_PARAM_DEV(NTID);
4926                 params[1] = FW_PARAM_PFVF(SERVER_START);
4927                 params[2] = FW_PARAM_PFVF(SERVER_END);
4928                 params[3] = FW_PARAM_PFVF(TDDP_START);
4929                 params[4] = FW_PARAM_PFVF(TDDP_END);
4930                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4931                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
4932                                       params, val);
4933                 if (ret < 0)
4934                         goto bye;
4935                 adap->tids.ntids = val[0];
4936                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4937                 adap->tids.stid_base = val[1];
4938                 adap->tids.nstids = val[2] - val[1] + 1;
4939                 /*
4940                  * Setup server filter region. Divide the availble filter
4941                  * region into two parts. Regular filters get 1/3rd and server
4942                  * filters get 2/3rd part. This is only enabled if workarond
4943                  * path is enabled.
4944                  * 1. For regular filters.
4945                  * 2. Server filter: This are special filters which are used
4946                  * to redirect SYN packets to offload queue.
4947                  */
4948                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4949                         adap->tids.sftid_base = adap->tids.ftid_base +
4950                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4951                         adap->tids.nsftids = adap->tids.nftids -
4952                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4953                         adap->tids.nftids = adap->tids.sftid_base -
4954                                                 adap->tids.ftid_base;
4955                 }
4956                 adap->vres.ddp.start = val[3];
4957                 adap->vres.ddp.size = val[4] - val[3] + 1;
4958                 adap->params.ofldq_wr_cred = val[5];
4959
4960                 adap->params.offload = 1;
4961         }
4962         if (caps_cmd.rdmacaps) {
4963                 params[0] = FW_PARAM_PFVF(STAG_START);
4964                 params[1] = FW_PARAM_PFVF(STAG_END);
4965                 params[2] = FW_PARAM_PFVF(RQ_START);
4966                 params[3] = FW_PARAM_PFVF(RQ_END);
4967                 params[4] = FW_PARAM_PFVF(PBL_START);
4968                 params[5] = FW_PARAM_PFVF(PBL_END);
4969                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
4970                                       params, val);
4971                 if (ret < 0)
4972                         goto bye;
4973                 adap->vres.stag.start = val[0];
4974                 adap->vres.stag.size = val[1] - val[0] + 1;
4975                 adap->vres.rq.start = val[2];
4976                 adap->vres.rq.size = val[3] - val[2] + 1;
4977                 adap->vres.pbl.start = val[4];
4978                 adap->vres.pbl.size = val[5] - val[4] + 1;
4979
4980                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4981                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4982                 params[2] = FW_PARAM_PFVF(CQ_START);
4983                 params[3] = FW_PARAM_PFVF(CQ_END);
4984                 params[4] = FW_PARAM_PFVF(OCQ_START);
4985                 params[5] = FW_PARAM_PFVF(OCQ_END);
4986                 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
4987                 if (ret < 0)
4988                         goto bye;
4989                 adap->vres.qp.start = val[0];
4990                 adap->vres.qp.size = val[1] - val[0] + 1;
4991                 adap->vres.cq.start = val[2];
4992                 adap->vres.cq.size = val[3] - val[2] + 1;
4993                 adap->vres.ocq.start = val[4];
4994                 adap->vres.ocq.size = val[5] - val[4] + 1;
4995         }
4996         if (caps_cmd.iscsicaps) {
4997                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4998                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4999                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5000                                       params, val);
5001                 if (ret < 0)
5002                         goto bye;
5003                 adap->vres.iscsi.start = val[0];
5004                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5005         }
5006 #undef FW_PARAM_PFVF
5007 #undef FW_PARAM_DEV
5008
5009         /*
5010          * These are finalized by FW initialization, load their values now.
5011          */
5012         v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
5013         adap->params.tp.tre = TIMERRESOLUTION_GET(v);
5014         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
5015         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5016         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5017                      adap->params.b_wnd);
5018
5019         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5020         for (j = 0; j < NCHAN; j++)
5021                 adap->params.tp.tx_modq[j] = j;
5022
5023         t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5024                          &adap->filter_mode, 1,
5025                          TP_VLAN_PRI_MAP);
5026
5027         adap->flags |= FW_OK;
5028         return 0;
5029
5030         /*
5031          * Something bad happened.  If a command timed out or failed with EIO
5032          * FW does not operate within its spec or something catastrophic
5033          * happened to HW/FW, stop issuing commands.
5034          */
5035 bye:
5036         if (ret != -ETIMEDOUT && ret != -EIO)
5037                 t4_fw_bye(adap, adap->mbox);
5038         return ret;
5039 }
5040
5041 /* EEH callbacks */
5042
5043 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5044                                          pci_channel_state_t state)
5045 {
5046         int i;
5047         struct adapter *adap = pci_get_drvdata(pdev);
5048
5049         if (!adap)
5050                 goto out;
5051
5052         rtnl_lock();
5053         adap->flags &= ~FW_OK;
5054         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5055         for_each_port(adap, i) {
5056                 struct net_device *dev = adap->port[i];
5057
5058                 netif_device_detach(dev);
5059                 netif_carrier_off(dev);
5060         }
5061         if (adap->flags & FULL_INIT_DONE)
5062                 cxgb_down(adap);
5063         rtnl_unlock();
5064         pci_disable_device(pdev);
5065 out:    return state == pci_channel_io_perm_failure ?
5066                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5067 }
5068
5069 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5070 {
5071         int i, ret;
5072         struct fw_caps_config_cmd c;
5073         struct adapter *adap = pci_get_drvdata(pdev);
5074
5075         if (!adap) {
5076                 pci_restore_state(pdev);
5077                 pci_save_state(pdev);
5078                 return PCI_ERS_RESULT_RECOVERED;
5079         }
5080
5081         if (pci_enable_device(pdev)) {
5082                 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
5083                 return PCI_ERS_RESULT_DISCONNECT;
5084         }
5085
5086         pci_set_master(pdev);
5087         pci_restore_state(pdev);
5088         pci_save_state(pdev);
5089         pci_cleanup_aer_uncorrect_error_status(pdev);
5090
5091         if (t4_wait_dev_ready(adap) < 0)
5092                 return PCI_ERS_RESULT_DISCONNECT;
5093         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL))
5094                 return PCI_ERS_RESULT_DISCONNECT;
5095         adap->flags |= FW_OK;
5096         if (adap_init1(adap, &c))
5097                 return PCI_ERS_RESULT_DISCONNECT;
5098
5099         for_each_port(adap, i) {
5100                 struct port_info *p = adap2pinfo(adap, i);
5101
5102                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
5103                                   NULL, NULL);
5104                 if (ret < 0)
5105                         return PCI_ERS_RESULT_DISCONNECT;
5106                 p->viid = ret;
5107                 p->xact_addr_filt = -1;
5108         }
5109
5110         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5111                      adap->params.b_wnd);
5112         setup_memwin(adap);
5113         if (cxgb_up(adap))
5114                 return PCI_ERS_RESULT_DISCONNECT;
5115         return PCI_ERS_RESULT_RECOVERED;
5116 }
5117
5118 static void eeh_resume(struct pci_dev *pdev)
5119 {
5120         int i;
5121         struct adapter *adap = pci_get_drvdata(pdev);
5122
5123         if (!adap)
5124                 return;
5125
5126         rtnl_lock();
5127         for_each_port(adap, i) {
5128                 struct net_device *dev = adap->port[i];
5129
5130                 if (netif_running(dev)) {
5131                         link_start(dev);
5132                         cxgb_set_rxmode(dev);
5133                 }
5134                 netif_device_attach(dev);
5135         }
5136         rtnl_unlock();
5137 }
5138
5139 static const struct pci_error_handlers cxgb4_eeh = {
5140         .error_detected = eeh_err_detected,
5141         .slot_reset     = eeh_slot_reset,
5142         .resume         = eeh_resume,
5143 };
5144
5145 static inline bool is_10g_port(const struct link_config *lc)
5146 {
5147         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
5148 }
5149
5150 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
5151                              unsigned int size, unsigned int iqe_size)
5152 {
5153         q->intr_params = QINTR_TIMER_IDX(timer_idx) |
5154                          (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
5155         q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
5156         q->iqe_len = iqe_size;
5157         q->size = size;
5158 }
5159
5160 /*
5161  * Perform default configuration of DMA queues depending on the number and type
5162  * of ports we found and the number of available CPUs.  Most settings can be
5163  * modified by the admin prior to actual use.
5164  */
5165 static void cfg_queues(struct adapter *adap)
5166 {
5167         struct sge *s = &adap->sge;
5168         int i, q10g = 0, n10g = 0, qidx = 0;
5169
5170         for_each_port(adap, i)
5171                 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
5172
5173         /*
5174          * We default to 1 queue per non-10G port and up to # of cores queues
5175          * per 10G port.
5176          */
5177         if (n10g)
5178                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5179         if (q10g > netif_get_num_default_rss_queues())
5180                 q10g = netif_get_num_default_rss_queues();
5181
5182         for_each_port(adap, i) {
5183                 struct port_info *pi = adap2pinfo(adap, i);
5184
5185                 pi->first_qset = qidx;
5186                 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
5187                 qidx += pi->nqsets;
5188         }
5189
5190         s->ethqsets = qidx;
5191         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5192
5193         if (is_offload(adap)) {
5194                 /*
5195                  * For offload we use 1 queue/channel if all ports are up to 1G,
5196                  * otherwise we divide all available queues amongst the channels
5197                  * capped by the number of available cores.
5198                  */
5199                 if (n10g) {
5200                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
5201                                   num_online_cpus());
5202                         s->ofldqsets = roundup(i, adap->params.nports);
5203                 } else
5204                         s->ofldqsets = adap->params.nports;
5205                 /* For RDMA one Rx queue per channel suffices */
5206                 s->rdmaqs = adap->params.nports;
5207         }
5208
5209         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5210                 struct sge_eth_rxq *r = &s->ethrxq[i];
5211
5212                 init_rspq(&r->rspq, 0, 0, 1024, 64);
5213                 r->fl.size = 72;
5214         }
5215
5216         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5217                 s->ethtxq[i].q.size = 1024;
5218
5219         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5220                 s->ctrlq[i].q.size = 512;
5221
5222         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
5223                 s->ofldtxq[i].q.size = 1024;
5224
5225         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
5226                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
5227
5228                 init_rspq(&r->rspq, 0, 0, 1024, 64);
5229                 r->rspq.uld = CXGB4_ULD_ISCSI;
5230                 r->fl.size = 72;
5231         }
5232
5233         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
5234                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
5235
5236                 init_rspq(&r->rspq, 0, 0, 511, 64);
5237                 r->rspq.uld = CXGB4_ULD_RDMA;
5238                 r->fl.size = 72;
5239         }
5240
5241         init_rspq(&s->fw_evtq, 6, 0, 512, 64);
5242         init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
5243 }
5244
5245 /*
5246  * Reduce the number of Ethernet queues across all ports to at most n.
5247  * n provides at least one queue per port.
5248  */
5249 static void reduce_ethqs(struct adapter *adap, int n)
5250 {
5251         int i;
5252         struct port_info *pi;
5253
5254         while (n < adap->sge.ethqsets)
5255                 for_each_port(adap, i) {
5256                         pi = adap2pinfo(adap, i);
5257                         if (pi->nqsets > 1) {
5258                                 pi->nqsets--;
5259                                 adap->sge.ethqsets--;
5260                                 if (adap->sge.ethqsets <= n)
5261                                         break;
5262                         }
5263                 }
5264
5265         n = 0;
5266         for_each_port(adap, i) {
5267                 pi = adap2pinfo(adap, i);
5268                 pi->first_qset = n;
5269                 n += pi->nqsets;
5270         }
5271 }
5272
5273 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5274 #define EXTRA_VECS 2
5275
5276 static int enable_msix(struct adapter *adap)
5277 {
5278         int ofld_need = 0;
5279         int i, err, want, need;
5280         struct sge *s = &adap->sge;
5281         unsigned int nchan = adap->params.nports;
5282         struct msix_entry entries[MAX_INGQ + 1];
5283
5284         for (i = 0; i < ARRAY_SIZE(entries); ++i)
5285                 entries[i].entry = i;
5286
5287         want = s->max_ethqsets + EXTRA_VECS;
5288         if (is_offload(adap)) {
5289                 want += s->rdmaqs + s->ofldqsets;
5290                 /* need nchan for each possible ULD */
5291                 ofld_need = 2 * nchan;
5292         }
5293         need = adap->params.nports + EXTRA_VECS + ofld_need;
5294
5295         while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
5296                 want = err;
5297
5298         if (!err) {
5299                 /*
5300                  * Distribute available vectors to the various queue groups.
5301                  * Every group gets its minimum requirement and NIC gets top
5302                  * priority for leftovers.
5303                  */
5304                 i = want - EXTRA_VECS - ofld_need;
5305                 if (i < s->max_ethqsets) {
5306                         s->max_ethqsets = i;
5307                         if (i < s->ethqsets)
5308                                 reduce_ethqs(adap, i);
5309                 }
5310                 if (is_offload(adap)) {
5311                         i = want - EXTRA_VECS - s->max_ethqsets;
5312                         i -= ofld_need - nchan;
5313                         s->ofldqsets = (i / nchan) * nchan;  /* round down */
5314                 }
5315                 for (i = 0; i < want; ++i)
5316                         adap->msix_info[i].vec = entries[i].vector;
5317         } else if (err > 0)
5318                 dev_info(adap->pdev_dev,
5319                          "only %d MSI-X vectors left, not using MSI-X\n", err);
5320         return err;
5321 }
5322
5323 #undef EXTRA_VECS
5324
5325 static int init_rss(struct adapter *adap)
5326 {
5327         unsigned int i, j;
5328
5329         for_each_port(adap, i) {
5330                 struct port_info *pi = adap2pinfo(adap, i);
5331
5332                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5333                 if (!pi->rss)
5334                         return -ENOMEM;
5335                 for (j = 0; j < pi->rss_size; j++)
5336                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
5337         }
5338         return 0;
5339 }
5340
5341 static void print_port_info(const struct net_device *dev)
5342 {
5343         static const char *base[] = {
5344                 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
5345                 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
5346         };
5347
5348         char buf[80];
5349         char *bufp = buf;
5350         const char *spd = "";
5351         const struct port_info *pi = netdev_priv(dev);
5352         const struct adapter *adap = pi->adapter;
5353
5354         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
5355                 spd = " 2.5 GT/s";
5356         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
5357                 spd = " 5 GT/s";
5358
5359         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
5360                 bufp += sprintf(bufp, "100/");
5361         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
5362                 bufp += sprintf(bufp, "1000/");
5363         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
5364                 bufp += sprintf(bufp, "10G/");
5365         if (bufp != buf)
5366                 --bufp;
5367         sprintf(bufp, "BASE-%s", base[pi->port_type]);
5368
5369         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
5370                     adap->params.vpd.id,
5371                     CHELSIO_CHIP_RELEASE(adap->params.rev), buf,
5372                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
5373                     (adap->flags & USING_MSIX) ? " MSI-X" :
5374                     (adap->flags & USING_MSI) ? " MSI" : "");
5375         netdev_info(dev, "S/N: %s, E/C: %s\n",
5376                     adap->params.vpd.sn, adap->params.vpd.ec);
5377 }
5378
5379 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
5380 {
5381         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
5382 }
5383
5384 /*
5385  * Free the following resources:
5386  * - memory used for tables
5387  * - MSI/MSI-X
5388  * - net devices
5389  * - resources FW is holding for us
5390  */
5391 static void free_some_resources(struct adapter *adapter)
5392 {
5393         unsigned int i;
5394
5395         t4_free_mem(adapter->l2t);
5396         t4_free_mem(adapter->tids.tid_tab);
5397         disable_msi(adapter);
5398
5399         for_each_port(adapter, i)
5400                 if (adapter->port[i]) {
5401                         kfree(adap2pinfo(adapter, i)->rss);
5402                         free_netdev(adapter->port[i]);
5403                 }
5404         if (adapter->flags & FW_OK)
5405                 t4_fw_bye(adapter, adapter->fn);
5406 }
5407
5408 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5409 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5410                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5411 #define SEGMENT_SIZE 128
5412
5413 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5414 {
5415         int func, i, err, s_qpp, qpp, num_seg;
5416         struct port_info *pi;
5417         bool highdma = false;
5418         struct adapter *adapter = NULL;
5419 #ifdef CONFIG_PCI_IOV
5420         int max_no_pf;
5421 #endif
5422
5423         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5424
5425         err = pci_request_regions(pdev, KBUILD_MODNAME);
5426         if (err) {
5427                 /* Just info, some other driver may have claimed the device. */
5428                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5429                 return err;
5430         }
5431
5432         /* We control everything through one PF */
5433         func = PCI_FUNC(pdev->devfn);
5434         if (func != ent->driver_data) {
5435                 pci_save_state(pdev);        /* to restore SR-IOV later */
5436                 goto sriov;
5437         }
5438
5439         err = pci_enable_device(pdev);
5440         if (err) {
5441                 dev_err(&pdev->dev, "cannot enable PCI device\n");
5442                 goto out_release_regions;
5443         }
5444
5445         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5446                 highdma = true;
5447                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5448                 if (err) {
5449                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5450                                 "coherent allocations\n");
5451                         goto out_disable_device;
5452                 }
5453         } else {
5454                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5455                 if (err) {
5456                         dev_err(&pdev->dev, "no usable DMA configuration\n");
5457                         goto out_disable_device;
5458                 }
5459         }
5460
5461         pci_enable_pcie_error_reporting(pdev);
5462         enable_pcie_relaxed_ordering(pdev);
5463         pci_set_master(pdev);
5464         pci_save_state(pdev);
5465
5466         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5467         if (!adapter) {
5468                 err = -ENOMEM;
5469                 goto out_disable_device;
5470         }
5471
5472         adapter->regs = pci_ioremap_bar(pdev, 0);
5473         if (!adapter->regs) {
5474                 dev_err(&pdev->dev, "cannot map device registers\n");
5475                 err = -ENOMEM;
5476                 goto out_free_adapter;
5477         }
5478
5479         adapter->pdev = pdev;
5480         adapter->pdev_dev = &pdev->dev;
5481         adapter->mbox = func;
5482         adapter->fn = func;
5483         adapter->msg_enable = dflt_msg_enable;
5484         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5485
5486         spin_lock_init(&adapter->stats_lock);
5487         spin_lock_init(&adapter->tid_release_lock);
5488
5489         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5490         INIT_WORK(&adapter->db_full_task, process_db_full);
5491         INIT_WORK(&adapter->db_drop_task, process_db_drop);
5492
5493         err = t4_prep_adapter(adapter);
5494         if (err)
5495                 goto out_unmap_bar0;
5496
5497         if (!is_t4(adapter->chip)) {
5498                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
5499                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
5500                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
5501                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5502
5503                 /* Each segment size is 128B. Write coalescing is enabled only
5504                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5505                  * queue is less no of segments that can be accommodated in
5506                  * a page size.
5507                  */
5508                 if (qpp > num_seg) {
5509                         dev_err(&pdev->dev,
5510                                 "Incorrect number of egress queues per page\n");
5511                         err = -EINVAL;
5512                         goto out_unmap_bar0;
5513                 }
5514                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5515                 pci_resource_len(pdev, 2));
5516                 if (!adapter->bar2) {
5517                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
5518                         err = -ENOMEM;
5519                         goto out_unmap_bar0;
5520                 }
5521         }
5522
5523         setup_memwin(adapter);
5524         err = adap_init0(adapter);
5525         setup_memwin_rdma(adapter);
5526         if (err)
5527                 goto out_unmap_bar;
5528
5529         for_each_port(adapter, i) {
5530                 struct net_device *netdev;
5531
5532                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5533                                            MAX_ETH_QSETS);
5534                 if (!netdev) {
5535                         err = -ENOMEM;
5536                         goto out_free_dev;
5537                 }
5538
5539                 SET_NETDEV_DEV(netdev, &pdev->dev);
5540
5541                 adapter->port[i] = netdev;
5542                 pi = netdev_priv(netdev);
5543                 pi->adapter = adapter;
5544                 pi->xact_addr_filt = -1;
5545                 pi->port_id = i;
5546                 netdev->irq = pdev->irq;
5547
5548                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5549                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5550                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
5551                         NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
5552                 if (highdma)
5553                         netdev->hw_features |= NETIF_F_HIGHDMA;
5554                 netdev->features |= netdev->hw_features;
5555                 netdev->vlan_features = netdev->features & VLAN_FEAT;
5556
5557                 netdev->priv_flags |= IFF_UNICAST_FLT;
5558
5559                 netdev->netdev_ops = &cxgb4_netdev_ops;
5560                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
5561         }
5562
5563         pci_set_drvdata(pdev, adapter);
5564
5565         if (adapter->flags & FW_OK) {
5566                 err = t4_port_init(adapter, func, func, 0);
5567                 if (err)
5568                         goto out_free_dev;
5569         }
5570
5571         /*
5572          * Configure queues and allocate tables now, they can be needed as
5573          * soon as the first register_netdev completes.
5574          */
5575         cfg_queues(adapter);
5576
5577         adapter->l2t = t4_init_l2t();
5578         if (!adapter->l2t) {
5579                 /* We tolerate a lack of L2T, giving up some functionality */
5580                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5581                 adapter->params.offload = 0;
5582         }
5583
5584         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5585                 dev_warn(&pdev->dev, "could not allocate TID table, "
5586                          "continuing\n");
5587                 adapter->params.offload = 0;
5588         }
5589
5590         /* See what interrupts we'll be using */
5591         if (msi > 1 && enable_msix(adapter) == 0)
5592                 adapter->flags |= USING_MSIX;
5593         else if (msi > 0 && pci_enable_msi(pdev) == 0)
5594                 adapter->flags |= USING_MSI;
5595
5596         err = init_rss(adapter);
5597         if (err)
5598                 goto out_free_dev;
5599
5600         /*
5601          * The card is now ready to go.  If any errors occur during device
5602          * registration we do not fail the whole card but rather proceed only
5603          * with the ports we manage to register successfully.  However we must
5604          * register at least one net device.
5605          */
5606         for_each_port(adapter, i) {
5607                 pi = adap2pinfo(adapter, i);
5608                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5609                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5610
5611                 err = register_netdev(adapter->port[i]);
5612                 if (err)
5613                         break;
5614                 adapter->chan_map[pi->tx_chan] = i;
5615                 print_port_info(adapter->port[i]);
5616         }
5617         if (i == 0) {
5618                 dev_err(&pdev->dev, "could not register any net devices\n");
5619                 goto out_free_dev;
5620         }
5621         if (err) {
5622                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5623                 err = 0;
5624         }
5625
5626         if (cxgb4_debugfs_root) {
5627                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5628                                                            cxgb4_debugfs_root);
5629                 setup_debugfs(adapter);
5630         }
5631
5632         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5633         pdev->needs_freset = 1;
5634
5635         if (is_offload(adapter))
5636                 attach_ulds(adapter);
5637
5638 sriov:
5639 #ifdef CONFIG_PCI_IOV
5640         max_no_pf = is_t4(adapter->chip) ? NUM_OF_PF_WITH_SRIOV_T4 :
5641                         NUM_OF_PF_WITH_SRIOV_T5;
5642
5643         if (func < max_no_pf && num_vf[func] > 0)
5644                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5645                         dev_info(&pdev->dev,
5646                                  "instantiated %u virtual functions\n",
5647                                  num_vf[func]);
5648 #endif
5649         return 0;
5650
5651  out_free_dev:
5652         free_some_resources(adapter);
5653  out_unmap_bar:
5654         if (!is_t4(adapter->chip))
5655                 iounmap(adapter->bar2);
5656  out_unmap_bar0:
5657         iounmap(adapter->regs);
5658  out_free_adapter:
5659         kfree(adapter);
5660  out_disable_device:
5661         pci_disable_pcie_error_reporting(pdev);
5662         pci_disable_device(pdev);
5663  out_release_regions:
5664         pci_release_regions(pdev);
5665         pci_set_drvdata(pdev, NULL);
5666         return err;
5667 }
5668
5669 static void remove_one(struct pci_dev *pdev)
5670 {
5671         struct adapter *adapter = pci_get_drvdata(pdev);
5672
5673 #ifdef CONFIG_PCI_IOV
5674         pci_disable_sriov(pdev);
5675
5676 #endif
5677
5678         if (adapter) {
5679                 int i;
5680
5681                 if (is_offload(adapter))
5682                         detach_ulds(adapter);
5683
5684                 for_each_port(adapter, i)
5685                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5686                                 unregister_netdev(adapter->port[i]);
5687
5688                 if (adapter->debugfs_root)
5689                         debugfs_remove_recursive(adapter->debugfs_root);
5690
5691                 /* If we allocated filters, free up state associated with any
5692                  * valid filters ...
5693                  */
5694                 if (adapter->tids.ftid_tab) {
5695                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
5696                         for (i = 0; i < (adapter->tids.nftids +
5697                                         adapter->tids.nsftids); i++, f++)
5698                                 if (f->valid)
5699                                         clear_filter(adapter, f);
5700                 }
5701
5702                 if (adapter->flags & FULL_INIT_DONE)
5703                         cxgb_down(adapter);
5704
5705                 free_some_resources(adapter);
5706                 iounmap(adapter->regs);
5707                 if (!is_t4(adapter->chip))
5708                         iounmap(adapter->bar2);
5709                 kfree(adapter);
5710                 pci_disable_pcie_error_reporting(pdev);
5711                 pci_disable_device(pdev);
5712                 pci_release_regions(pdev);
5713                 pci_set_drvdata(pdev, NULL);
5714         } else
5715                 pci_release_regions(pdev);
5716 }
5717
5718 static struct pci_driver cxgb4_driver = {
5719         .name     = KBUILD_MODNAME,
5720         .id_table = cxgb4_pci_tbl,
5721         .probe    = init_one,
5722         .remove   = remove_one,
5723         .err_handler = &cxgb4_eeh,
5724 };
5725
5726 static int __init cxgb4_init_module(void)
5727 {
5728         int ret;
5729
5730         workq = create_singlethread_workqueue("cxgb4");
5731         if (!workq)
5732                 return -ENOMEM;
5733
5734         /* Debugfs support is optional, just warn if this fails */
5735         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5736         if (!cxgb4_debugfs_root)
5737                 pr_warn("could not create debugfs entry, continuing\n");
5738
5739         ret = pci_register_driver(&cxgb4_driver);
5740         if (ret < 0)
5741                 debugfs_remove(cxgb4_debugfs_root);
5742         return ret;
5743 }
5744
5745 static void __exit cxgb4_cleanup_module(void)
5746 {
5747         pci_unregister_driver(&cxgb4_driver);
5748         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5749         flush_workqueue(workq);
5750         destroy_workqueue(workq);
5751 }
5752
5753 module_init(cxgb4_init_module);
5754 module_exit(cxgb4_cleanup_module);