Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "l2t.h"
72
73 #include <../drivers/net/bonding/bonding.h>
74
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80
81 /*
82  * Max interrupt hold-off timer value in us.  Queues fall back to this value
83  * under extreme memory pressure so it's largish to give the system time to
84  * recover.
85  */
86 #define MAX_SGE_TIMERVAL 200U
87
88 enum {
89         /*
90          * Physical Function provisioning constants.
91          */
92         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
93         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
94         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
95                                          */
96         PFRES_NEQ = 256,                /* # of egress queues */
97         PFRES_NIQ = 0,                  /* # of ingress queues */
98         PFRES_TC = 0,                   /* PCI-E traffic class */
99         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
100
101         PFRES_R_CAPS = FW_CMD_CAP_PF,
102         PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104 #ifdef CONFIG_PCI_IOV
105         /*
106          * Virtual Function provisioning constants.  We need two extra Ingress
107          * Queues with Interrupt capability to serve as the VF's Firmware
108          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109          * neither will have Free Lists associated with them).  For each
110          * Ethernet/Control Egress Queue and for each Free List, we need an
111          * Egress Context.
112          */
113         VFRES_NPORTS = 1,               /* # of "ports" per VF */
114         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
115
116         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
117         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
118         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
120         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
121         VFRES_TC = 0,                   /* PCI-E traffic class */
122         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
123
124         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128
129 /*
130  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
131  * static and likely not to be useful in the long run.  We really need to
132  * implement some form of persistent configuration which the firmware
133  * controls.
134  */
135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136                                   unsigned int pf, unsigned int vf)
137 {
138         unsigned int portn, portvec;
139
140         /*
141          * Give PF's access to all of the ports.
142          */
143         if (vf == 0)
144                 return FW_PFVF_CMD_PMASK_MASK;
145
146         /*
147          * For VFs, we'll assign them access to the ports based purely on the
148          * PF.  We assign active ports in order, wrapping around if there are
149          * fewer active ports than PFs: e.g. active port[pf % nports].
150          * Unfortunately the adapter's port_info structs haven't been
151          * initialized yet so we have to compute this.
152          */
153         if (adapter->params.nports == 0)
154                 return 0;
155
156         portn = pf % adapter->params.nports;
157         portvec = adapter->params.portvec;
158         for (;;) {
159                 /*
160                  * Isolate the lowest set bit in the port vector.  If we're at
161                  * the port number that we want, return that as the pmask.
162                  * otherwise mask that bit out of the port vector and
163                  * decrement our port number ...
164                  */
165                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166                 if (portn == 0)
167                         return pmask;
168                 portn--;
169                 portvec &= ~pmask;
170         }
171         /*NOTREACHED*/
172 }
173
174 enum {
175         MAX_TXQ_ENTRIES      = 16384,
176         MAX_CTRL_TXQ_ENTRIES = 1024,
177         MAX_RSPQ_ENTRIES     = 16384,
178         MAX_RX_BUFFERS       = 16384,
179         MIN_TXQ_ENTRIES      = 32,
180         MIN_CTRL_TXQ_ENTRIES = 32,
181         MIN_RSPQ_ENTRIES     = 128,
182         MIN_FL_ENTRIES       = 16
183 };
184
185 /* Host shadow copy of ingress filter entry.  This is in host native format
186  * and doesn't match the ordering or bit order, etc. of the hardware of the
187  * firmware command.  The use of bit-field structure elements is purely to
188  * remind ourselves of the field size limitations and save memory in the case
189  * where the filter table is large.
190  */
191 struct filter_entry {
192         /* Administrative fields for filter.
193          */
194         u32 valid:1;            /* filter allocated and valid */
195         u32 locked:1;           /* filter is administratively locked */
196
197         u32 pending:1;          /* filter action is pending firmware reply */
198         u32 smtidx:8;           /* Source MAC Table index for smac */
199         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
200
201         /* The filter itself.  Most of this is a straight copy of information
202          * provided by the extended ioctl().  Some fields are translated to
203          * internal forms -- for instance the Ingress Queue ID passed in from
204          * the ioctl() is translated into the Absolute Ingress Queue ID.
205          */
206         struct ch_filter_specification fs;
207 };
208
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
213 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
214
215 static const struct pci_device_id cxgb4_pci_tbl[] = {
216         CH_DEVICE(0xa000, 0),  /* PE10K */
217         CH_DEVICE(0x4001, -1),
218         CH_DEVICE(0x4002, -1),
219         CH_DEVICE(0x4003, -1),
220         CH_DEVICE(0x4004, -1),
221         CH_DEVICE(0x4005, -1),
222         CH_DEVICE(0x4006, -1),
223         CH_DEVICE(0x4007, -1),
224         CH_DEVICE(0x4008, -1),
225         CH_DEVICE(0x4009, -1),
226         CH_DEVICE(0x400a, -1),
227         CH_DEVICE(0x400d, -1),
228         CH_DEVICE(0x400e, -1),
229         CH_DEVICE(0x4080, -1),
230         CH_DEVICE(0x4081, -1),
231         CH_DEVICE(0x4082, -1),
232         CH_DEVICE(0x4083, -1),
233         CH_DEVICE(0x4084, -1),
234         CH_DEVICE(0x4085, -1),
235         CH_DEVICE(0x4086, -1),
236         CH_DEVICE(0x4087, -1),
237         CH_DEVICE(0x4088, -1),
238         CH_DEVICE(0x4401, 4),
239         CH_DEVICE(0x4402, 4),
240         CH_DEVICE(0x4403, 4),
241         CH_DEVICE(0x4404, 4),
242         CH_DEVICE(0x4405, 4),
243         CH_DEVICE(0x4406, 4),
244         CH_DEVICE(0x4407, 4),
245         CH_DEVICE(0x4408, 4),
246         CH_DEVICE(0x4409, 4),
247         CH_DEVICE(0x440a, 4),
248         CH_DEVICE(0x440d, 4),
249         CH_DEVICE(0x440e, 4),
250         CH_DEVICE(0x4480, 4),
251         CH_DEVICE(0x4481, 4),
252         CH_DEVICE(0x4482, 4),
253         CH_DEVICE(0x4483, 4),
254         CH_DEVICE(0x4484, 4),
255         CH_DEVICE(0x4485, 4),
256         CH_DEVICE(0x4486, 4),
257         CH_DEVICE(0x4487, 4),
258         CH_DEVICE(0x4488, 4),
259         CH_DEVICE(0x5001, 4),
260         CH_DEVICE(0x5002, 4),
261         CH_DEVICE(0x5003, 4),
262         CH_DEVICE(0x5004, 4),
263         CH_DEVICE(0x5005, 4),
264         CH_DEVICE(0x5006, 4),
265         CH_DEVICE(0x5007, 4),
266         CH_DEVICE(0x5008, 4),
267         CH_DEVICE(0x5009, 4),
268         CH_DEVICE(0x500A, 4),
269         CH_DEVICE(0x500B, 4),
270         CH_DEVICE(0x500C, 4),
271         CH_DEVICE(0x500D, 4),
272         CH_DEVICE(0x500E, 4),
273         CH_DEVICE(0x500F, 4),
274         CH_DEVICE(0x5010, 4),
275         CH_DEVICE(0x5011, 4),
276         CH_DEVICE(0x5012, 4),
277         CH_DEVICE(0x5013, 4),
278         CH_DEVICE(0x5014, 4),
279         CH_DEVICE(0x5015, 4),
280         CH_DEVICE(0x5080, 4),
281         CH_DEVICE(0x5081, 4),
282         CH_DEVICE(0x5082, 4),
283         CH_DEVICE(0x5083, 4),
284         CH_DEVICE(0x5084, 4),
285         CH_DEVICE(0x5085, 4),
286         CH_DEVICE(0x5086, 4),
287         CH_DEVICE(0x5087, 4),
288         CH_DEVICE(0x5088, 4),
289         CH_DEVICE(0x5401, 4),
290         CH_DEVICE(0x5402, 4),
291         CH_DEVICE(0x5403, 4),
292         CH_DEVICE(0x5404, 4),
293         CH_DEVICE(0x5405, 4),
294         CH_DEVICE(0x5406, 4),
295         CH_DEVICE(0x5407, 4),
296         CH_DEVICE(0x5408, 4),
297         CH_DEVICE(0x5409, 4),
298         CH_DEVICE(0x540A, 4),
299         CH_DEVICE(0x540B, 4),
300         CH_DEVICE(0x540C, 4),
301         CH_DEVICE(0x540D, 4),
302         CH_DEVICE(0x540E, 4),
303         CH_DEVICE(0x540F, 4),
304         CH_DEVICE(0x5410, 4),
305         CH_DEVICE(0x5411, 4),
306         CH_DEVICE(0x5412, 4),
307         CH_DEVICE(0x5413, 4),
308         CH_DEVICE(0x5414, 4),
309         CH_DEVICE(0x5415, 4),
310         CH_DEVICE(0x5480, 4),
311         CH_DEVICE(0x5481, 4),
312         CH_DEVICE(0x5482, 4),
313         CH_DEVICE(0x5483, 4),
314         CH_DEVICE(0x5484, 4),
315         CH_DEVICE(0x5485, 4),
316         CH_DEVICE(0x5486, 4),
317         CH_DEVICE(0x5487, 4),
318         CH_DEVICE(0x5488, 4),
319         { 0, }
320 };
321
322 #define FW4_FNAME "cxgb4/t4fw.bin"
323 #define FW5_FNAME "cxgb4/t5fw.bin"
324 #define FW4_CFNAME "cxgb4/t4-config.txt"
325 #define FW5_CFNAME "cxgb4/t5-config.txt"
326
327 MODULE_DESCRIPTION(DRV_DESC);
328 MODULE_AUTHOR("Chelsio Communications");
329 MODULE_LICENSE("Dual BSD/GPL");
330 MODULE_VERSION(DRV_VERSION);
331 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
332 MODULE_FIRMWARE(FW4_FNAME);
333 MODULE_FIRMWARE(FW5_FNAME);
334
335 /*
336  * Normally we're willing to become the firmware's Master PF but will be happy
337  * if another PF has already become the Master and initialized the adapter.
338  * Setting "force_init" will cause this driver to forcibly establish itself as
339  * the Master PF and initialize the adapter.
340  */
341 static uint force_init;
342
343 module_param(force_init, uint, 0644);
344 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
345
346 /*
347  * Normally if the firmware we connect to has Configuration File support, we
348  * use that and only fall back to the old Driver-based initialization if the
349  * Configuration File fails for some reason.  If force_old_init is set, then
350  * we'll always use the old Driver-based initialization sequence.
351  */
352 static uint force_old_init;
353
354 module_param(force_old_init, uint, 0644);
355 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
356
357 static int dflt_msg_enable = DFLT_MSG_ENABLE;
358
359 module_param(dflt_msg_enable, int, 0644);
360 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
361
362 /*
363  * The driver uses the best interrupt scheme available on a platform in the
364  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
365  * of these schemes the driver may consider as follows:
366  *
367  * msi = 2: choose from among all three options
368  * msi = 1: only consider MSI and INTx interrupts
369  * msi = 0: force INTx interrupts
370  */
371 static int msi = 2;
372
373 module_param(msi, int, 0644);
374 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
375
376 /*
377  * Queue interrupt hold-off timer values.  Queues default to the first of these
378  * upon creation.
379  */
380 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
381
382 module_param_array(intr_holdoff, uint, NULL, 0644);
383 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
384                  "0..4 in microseconds");
385
386 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
387
388 module_param_array(intr_cnt, uint, NULL, 0644);
389 MODULE_PARM_DESC(intr_cnt,
390                  "thresholds 1..3 for queue interrupt packet counters");
391
392 /*
393  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
394  * offset by 2 bytes in order to have the IP headers line up on 4-byte
395  * boundaries.  This is a requirement for many architectures which will throw
396  * a machine check fault if an attempt is made to access one of the 4-byte IP
397  * header fields on a non-4-byte boundary.  And it's a major performance issue
398  * even on some architectures which allow it like some implementations of the
399  * x86 ISA.  However, some architectures don't mind this and for some very
400  * edge-case performance sensitive applications (like forwarding large volumes
401  * of small packets), setting this DMA offset to 0 will decrease the number of
402  * PCI-E Bus transfers enough to measurably affect performance.
403  */
404 static int rx_dma_offset = 2;
405
406 static bool vf_acls;
407
408 #ifdef CONFIG_PCI_IOV
409 module_param(vf_acls, bool, 0644);
410 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
411
412 /* Configure the number of PCI-E Virtual Function which are to be instantiated
413  * on SR-IOV Capable Physical Functions.
414  */
415 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
416
417 module_param_array(num_vf, uint, NULL, 0644);
418 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
419 #endif
420
421 /* TX Queue select used to determine what algorithm to use for selecting TX
422  * queue. Select between the kernel provided function (select_queue=0) or user
423  * cxgb_select_queue function (select_queue=1)
424  *
425  * Default: select_queue=0
426  */
427 static int select_queue;
428 module_param(select_queue, int, 0644);
429 MODULE_PARM_DESC(select_queue,
430                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
431
432 /*
433  * The filter TCAM has a fixed portion and a variable portion.  The fixed
434  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
435  * ports.  The variable portion is 36 bits which can include things like Exact
436  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
437  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
438  * far exceed the 36-bit budget for this "compressed" header portion of the
439  * filter.  Thus, we have a scarce resource which must be carefully managed.
440  *
441  * By default we set this up to mostly match the set of filter matching
442  * capabilities of T3 but with accommodations for some of T4's more
443  * interesting features:
444  *
445  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
446  *     [Inner] VLAN (17), Port (3), FCoE (1) }
447  */
448 enum {
449         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
450         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
451         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
452 };
453
454 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
455
456 module_param(tp_vlan_pri_map, uint, 0644);
457 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
458
459 static struct dentry *cxgb4_debugfs_root;
460
461 static LIST_HEAD(adapter_list);
462 static DEFINE_MUTEX(uld_mutex);
463 /* Adapter list to be accessed from atomic context */
464 static LIST_HEAD(adap_rcu_list);
465 static DEFINE_SPINLOCK(adap_rcu_lock);
466 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
467 static const char *uld_str[] = { "RDMA", "iSCSI" };
468
469 static void link_report(struct net_device *dev)
470 {
471         if (!netif_carrier_ok(dev))
472                 netdev_info(dev, "link down\n");
473         else {
474                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
475
476                 const char *s = "10Mbps";
477                 const struct port_info *p = netdev_priv(dev);
478
479                 switch (p->link_cfg.speed) {
480                 case 10000:
481                         s = "10Gbps";
482                         break;
483                 case 1000:
484                         s = "1000Mbps";
485                         break;
486                 case 100:
487                         s = "100Mbps";
488                         break;
489                 case 40000:
490                         s = "40Gbps";
491                         break;
492                 }
493
494                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
495                             fc[p->link_cfg.fc]);
496         }
497 }
498
499 #ifdef CONFIG_CHELSIO_T4_DCB
500 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
501 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
502 {
503         struct port_info *pi = netdev_priv(dev);
504         struct adapter *adap = pi->adapter;
505         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
506         int i;
507
508         /* We use a simple mapping of Port TX Queue Index to DCB
509          * Priority when we're enabling DCB.
510          */
511         for (i = 0; i < pi->nqsets; i++, txq++) {
512                 u32 name, value;
513                 int err;
514
515                 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
516                         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
517                         FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
518                 value = enable ? i : 0xffffffff;
519
520                 /* Since we can be called while atomic (from "interrupt
521                  * level") we need to issue the Set Parameters Commannd
522                  * without sleeping (timeout < 0).
523                  */
524                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
525                                             &name, &value);
526
527                 if (err)
528                         dev_err(adap->pdev_dev,
529                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
530                                 enable ? "set" : "unset", pi->port_id, i, -err);
531                 else
532                         txq->dcb_prio = value;
533         }
534 }
535 #endif /* CONFIG_CHELSIO_T4_DCB */
536
537 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
538 {
539         struct net_device *dev = adapter->port[port_id];
540
541         /* Skip changes from disabled ports. */
542         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
543                 if (link_stat)
544                         netif_carrier_on(dev);
545                 else {
546 #ifdef CONFIG_CHELSIO_T4_DCB
547                         cxgb4_dcb_state_init(dev);
548                         dcb_tx_queue_prio_enable(dev, false);
549 #endif /* CONFIG_CHELSIO_T4_DCB */
550                         netif_carrier_off(dev);
551                 }
552
553                 link_report(dev);
554         }
555 }
556
557 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
558 {
559         static const char *mod_str[] = {
560                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
561         };
562
563         const struct net_device *dev = adap->port[port_id];
564         const struct port_info *pi = netdev_priv(dev);
565
566         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
567                 netdev_info(dev, "port module unplugged\n");
568         else if (pi->mod_type < ARRAY_SIZE(mod_str))
569                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
570 }
571
572 /*
573  * Configure the exact and hash address filters to handle a port's multicast
574  * and secondary unicast MAC addresses.
575  */
576 static int set_addr_filters(const struct net_device *dev, bool sleep)
577 {
578         u64 mhash = 0;
579         u64 uhash = 0;
580         bool free = true;
581         u16 filt_idx[7];
582         const u8 *addr[7];
583         int ret, naddr = 0;
584         const struct netdev_hw_addr *ha;
585         int uc_cnt = netdev_uc_count(dev);
586         int mc_cnt = netdev_mc_count(dev);
587         const struct port_info *pi = netdev_priv(dev);
588         unsigned int mb = pi->adapter->fn;
589
590         /* first do the secondary unicast addresses */
591         netdev_for_each_uc_addr(ha, dev) {
592                 addr[naddr++] = ha->addr;
593                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
594                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
595                                         naddr, addr, filt_idx, &uhash, sleep);
596                         if (ret < 0)
597                                 return ret;
598
599                         free = false;
600                         naddr = 0;
601                 }
602         }
603
604         /* next set up the multicast addresses */
605         netdev_for_each_mc_addr(ha, dev) {
606                 addr[naddr++] = ha->addr;
607                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
608                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
609                                         naddr, addr, filt_idx, &mhash, sleep);
610                         if (ret < 0)
611                                 return ret;
612
613                         free = false;
614                         naddr = 0;
615                 }
616         }
617
618         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
619                                 uhash | mhash, sleep);
620 }
621
622 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
623 module_param(dbfifo_int_thresh, int, 0644);
624 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
625
626 /*
627  * usecs to sleep while draining the dbfifo
628  */
629 static int dbfifo_drain_delay = 1000;
630 module_param(dbfifo_drain_delay, int, 0644);
631 MODULE_PARM_DESC(dbfifo_drain_delay,
632                  "usecs to sleep while draining the dbfifo");
633
634 /*
635  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
636  * If @mtu is -1 it is left unchanged.
637  */
638 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
639 {
640         int ret;
641         struct port_info *pi = netdev_priv(dev);
642
643         ret = set_addr_filters(dev, sleep_ok);
644         if (ret == 0)
645                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
646                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
647                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
648                                     sleep_ok);
649         return ret;
650 }
651
652 /**
653  *      link_start - enable a port
654  *      @dev: the port to enable
655  *
656  *      Performs the MAC and PHY actions needed to enable a port.
657  */
658 static int link_start(struct net_device *dev)
659 {
660         int ret;
661         struct port_info *pi = netdev_priv(dev);
662         unsigned int mb = pi->adapter->fn;
663
664         /*
665          * We do not set address filters and promiscuity here, the stack does
666          * that step explicitly.
667          */
668         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
669                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
670         if (ret == 0) {
671                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
672                                     pi->xact_addr_filt, dev->dev_addr, true,
673                                     true);
674                 if (ret >= 0) {
675                         pi->xact_addr_filt = ret;
676                         ret = 0;
677                 }
678         }
679         if (ret == 0)
680                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
681                                     &pi->link_cfg);
682         if (ret == 0) {
683                 local_bh_disable();
684                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
685                                           true, CXGB4_DCB_ENABLED);
686                 local_bh_enable();
687         }
688
689         return ret;
690 }
691
692 int cxgb4_dcb_enabled(const struct net_device *dev)
693 {
694 #ifdef CONFIG_CHELSIO_T4_DCB
695         struct port_info *pi = netdev_priv(dev);
696
697         return pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED;
698 #else
699         return 0;
700 #endif
701 }
702 EXPORT_SYMBOL(cxgb4_dcb_enabled);
703
704 #ifdef CONFIG_CHELSIO_T4_DCB
705 /* Handle a Data Center Bridging update message from the firmware. */
706 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
707 {
708         int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
709         struct net_device *dev = adap->port[port];
710         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
711         int new_dcb_enabled;
712
713         cxgb4_dcb_handle_fw_update(adap, pcmd);
714         new_dcb_enabled = cxgb4_dcb_enabled(dev);
715
716         /* If the DCB has become enabled or disabled on the port then we're
717          * going to need to set up/tear down DCB Priority parameters for the
718          * TX Queues associated with the port.
719          */
720         if (new_dcb_enabled != old_dcb_enabled)
721                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
722 }
723 #endif /* CONFIG_CHELSIO_T4_DCB */
724
725 /* Clear a filter and release any of its resources that we own.  This also
726  * clears the filter's "pending" status.
727  */
728 static void clear_filter(struct adapter *adap, struct filter_entry *f)
729 {
730         /* If the new or old filter have loopback rewriteing rules then we'll
731          * need to free any existing Layer Two Table (L2T) entries of the old
732          * filter rule.  The firmware will handle freeing up any Source MAC
733          * Table (SMT) entries used for rewriting Source MAC Addresses in
734          * loopback rules.
735          */
736         if (f->l2t)
737                 cxgb4_l2t_release(f->l2t);
738
739         /* The zeroing of the filter rule below clears the filter valid,
740          * pending, locked flags, l2t pointer, etc. so it's all we need for
741          * this operation.
742          */
743         memset(f, 0, sizeof(*f));
744 }
745
746 /* Handle a filter write/deletion reply.
747  */
748 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
749 {
750         unsigned int idx = GET_TID(rpl);
751         unsigned int nidx = idx - adap->tids.ftid_base;
752         unsigned int ret;
753         struct filter_entry *f;
754
755         if (idx >= adap->tids.ftid_base && nidx <
756            (adap->tids.nftids + adap->tids.nsftids)) {
757                 idx = nidx;
758                 ret = GET_TCB_COOKIE(rpl->cookie);
759                 f = &adap->tids.ftid_tab[idx];
760
761                 if (ret == FW_FILTER_WR_FLT_DELETED) {
762                         /* Clear the filter when we get confirmation from the
763                          * hardware that the filter has been deleted.
764                          */
765                         clear_filter(adap, f);
766                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
767                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
768                                 idx);
769                         clear_filter(adap, f);
770                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
771                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
772                         f->pending = 0;  /* asynchronous setup completed */
773                         f->valid = 1;
774                 } else {
775                         /* Something went wrong.  Issue a warning about the
776                          * problem and clear everything out.
777                          */
778                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
779                                 idx, ret);
780                         clear_filter(adap, f);
781                 }
782         }
783 }
784
785 /* Response queue handler for the FW event queue.
786  */
787 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
788                           const struct pkt_gl *gl)
789 {
790         u8 opcode = ((const struct rss_header *)rsp)->opcode;
791
792         rsp++;                                          /* skip RSS header */
793
794         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
795          */
796         if (unlikely(opcode == CPL_FW4_MSG &&
797            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
798                 rsp++;
799                 opcode = ((const struct rss_header *)rsp)->opcode;
800                 rsp++;
801                 if (opcode != CPL_SGE_EGR_UPDATE) {
802                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
803                                 , opcode);
804                         goto out;
805                 }
806         }
807
808         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
809                 const struct cpl_sge_egr_update *p = (void *)rsp;
810                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
811                 struct sge_txq *txq;
812
813                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
814                 txq->restarts++;
815                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
816                         struct sge_eth_txq *eq;
817
818                         eq = container_of(txq, struct sge_eth_txq, q);
819                         netif_tx_wake_queue(eq->txq);
820                 } else {
821                         struct sge_ofld_txq *oq;
822
823                         oq = container_of(txq, struct sge_ofld_txq, q);
824                         tasklet_schedule(&oq->qresume_tsk);
825                 }
826         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
827                 const struct cpl_fw6_msg *p = (void *)rsp;
828
829 #ifdef CONFIG_CHELSIO_T4_DCB
830                 const struct fw_port_cmd *pcmd = (const void *)p->data;
831                 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
832                 unsigned int action =
833                         FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
834
835                 if (cmd == FW_PORT_CMD &&
836                     action == FW_PORT_ACTION_GET_PORT_INFO) {
837                         int port = FW_PORT_CMD_PORTID_GET(
838                                         be32_to_cpu(pcmd->op_to_portid));
839                         struct net_device *dev = q->adap->port[port];
840                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
841                                             FW_PORT_CMD_DCBXDIS)
842                                            ? CXGB4_DCB_INPUT_FW_DISABLED
843                                            : CXGB4_DCB_INPUT_FW_ENABLED);
844
845                         cxgb4_dcb_state_fsm(dev, state_input);
846                 }
847
848                 if (cmd == FW_PORT_CMD &&
849                     action == FW_PORT_ACTION_L2_DCB_CFG)
850                         dcb_rpl(q->adap, pcmd);
851                 else
852 #endif
853                         if (p->type == 0)
854                                 t4_handle_fw_rpl(q->adap, p->data);
855         } else if (opcode == CPL_L2T_WRITE_RPL) {
856                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
857
858                 do_l2t_write_rpl(q->adap, p);
859         } else if (opcode == CPL_SET_TCB_RPL) {
860                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
861
862                 filter_rpl(q->adap, p);
863         } else
864                 dev_err(q->adap->pdev_dev,
865                         "unexpected CPL %#x on FW event queue\n", opcode);
866 out:
867         return 0;
868 }
869
870 /**
871  *      uldrx_handler - response queue handler for ULD queues
872  *      @q: the response queue that received the packet
873  *      @rsp: the response queue descriptor holding the offload message
874  *      @gl: the gather list of packet fragments
875  *
876  *      Deliver an ingress offload packet to a ULD.  All processing is done by
877  *      the ULD, we just maintain statistics.
878  */
879 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
880                          const struct pkt_gl *gl)
881 {
882         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
883
884         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
885          */
886         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
887             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
888                 rsp += 2;
889
890         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
891                 rxq->stats.nomem++;
892                 return -1;
893         }
894         if (gl == NULL)
895                 rxq->stats.imm++;
896         else if (gl == CXGB4_MSG_AN)
897                 rxq->stats.an++;
898         else
899                 rxq->stats.pkts++;
900         return 0;
901 }
902
903 static void disable_msi(struct adapter *adapter)
904 {
905         if (adapter->flags & USING_MSIX) {
906                 pci_disable_msix(adapter->pdev);
907                 adapter->flags &= ~USING_MSIX;
908         } else if (adapter->flags & USING_MSI) {
909                 pci_disable_msi(adapter->pdev);
910                 adapter->flags &= ~USING_MSI;
911         }
912 }
913
914 /*
915  * Interrupt handler for non-data events used with MSI-X.
916  */
917 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
918 {
919         struct adapter *adap = cookie;
920
921         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
922         if (v & PFSW) {
923                 adap->swintr = 1;
924                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
925         }
926         t4_slow_intr_handler(adap);
927         return IRQ_HANDLED;
928 }
929
930 /*
931  * Name the MSI-X interrupts.
932  */
933 static void name_msix_vecs(struct adapter *adap)
934 {
935         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
936
937         /* non-data interrupts */
938         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
939
940         /* FW events */
941         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
942                  adap->port[0]->name);
943
944         /* Ethernet queues */
945         for_each_port(adap, j) {
946                 struct net_device *d = adap->port[j];
947                 const struct port_info *pi = netdev_priv(d);
948
949                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
950                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
951                                  d->name, i);
952         }
953
954         /* offload queues */
955         for_each_ofldrxq(&adap->sge, i)
956                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
957                          adap->port[0]->name, i);
958
959         for_each_rdmarxq(&adap->sge, i)
960                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
961                          adap->port[0]->name, i);
962
963         for_each_rdmaciq(&adap->sge, i)
964                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
965                          adap->port[0]->name, i);
966 }
967
968 static int request_msix_queue_irqs(struct adapter *adap)
969 {
970         struct sge *s = &adap->sge;
971         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
972         int msi_index = 2;
973
974         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
975                           adap->msix_info[1].desc, &s->fw_evtq);
976         if (err)
977                 return err;
978
979         for_each_ethrxq(s, ethqidx) {
980                 err = request_irq(adap->msix_info[msi_index].vec,
981                                   t4_sge_intr_msix, 0,
982                                   adap->msix_info[msi_index].desc,
983                                   &s->ethrxq[ethqidx].rspq);
984                 if (err)
985                         goto unwind;
986                 msi_index++;
987         }
988         for_each_ofldrxq(s, ofldqidx) {
989                 err = request_irq(adap->msix_info[msi_index].vec,
990                                   t4_sge_intr_msix, 0,
991                                   adap->msix_info[msi_index].desc,
992                                   &s->ofldrxq[ofldqidx].rspq);
993                 if (err)
994                         goto unwind;
995                 msi_index++;
996         }
997         for_each_rdmarxq(s, rdmaqidx) {
998                 err = request_irq(adap->msix_info[msi_index].vec,
999                                   t4_sge_intr_msix, 0,
1000                                   adap->msix_info[msi_index].desc,
1001                                   &s->rdmarxq[rdmaqidx].rspq);
1002                 if (err)
1003                         goto unwind;
1004                 msi_index++;
1005         }
1006         for_each_rdmaciq(s, rdmaciqqidx) {
1007                 err = request_irq(adap->msix_info[msi_index].vec,
1008                                   t4_sge_intr_msix, 0,
1009                                   adap->msix_info[msi_index].desc,
1010                                   &s->rdmaciq[rdmaciqqidx].rspq);
1011                 if (err)
1012                         goto unwind;
1013                 msi_index++;
1014         }
1015         return 0;
1016
1017 unwind:
1018         while (--rdmaciqqidx >= 0)
1019                 free_irq(adap->msix_info[--msi_index].vec,
1020                          &s->rdmaciq[rdmaciqqidx].rspq);
1021         while (--rdmaqidx >= 0)
1022                 free_irq(adap->msix_info[--msi_index].vec,
1023                          &s->rdmarxq[rdmaqidx].rspq);
1024         while (--ofldqidx >= 0)
1025                 free_irq(adap->msix_info[--msi_index].vec,
1026                          &s->ofldrxq[ofldqidx].rspq);
1027         while (--ethqidx >= 0)
1028                 free_irq(adap->msix_info[--msi_index].vec,
1029                          &s->ethrxq[ethqidx].rspq);
1030         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1031         return err;
1032 }
1033
1034 static void free_msix_queue_irqs(struct adapter *adap)
1035 {
1036         int i, msi_index = 2;
1037         struct sge *s = &adap->sge;
1038
1039         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1040         for_each_ethrxq(s, i)
1041                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1042         for_each_ofldrxq(s, i)
1043                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1044         for_each_rdmarxq(s, i)
1045                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1046         for_each_rdmaciq(s, i)
1047                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1048 }
1049
1050 /**
1051  *      write_rss - write the RSS table for a given port
1052  *      @pi: the port
1053  *      @queues: array of queue indices for RSS
1054  *
1055  *      Sets up the portion of the HW RSS table for the port's VI to distribute
1056  *      packets to the Rx queues in @queues.
1057  */
1058 static int write_rss(const struct port_info *pi, const u16 *queues)
1059 {
1060         u16 *rss;
1061         int i, err;
1062         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1063
1064         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1065         if (!rss)
1066                 return -ENOMEM;
1067
1068         /* map the queue indices to queue ids */
1069         for (i = 0; i < pi->rss_size; i++, queues++)
1070                 rss[i] = q[*queues].rspq.abs_id;
1071
1072         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1073                                   pi->rss_size, rss, pi->rss_size);
1074         kfree(rss);
1075         return err;
1076 }
1077
1078 /**
1079  *      setup_rss - configure RSS
1080  *      @adap: the adapter
1081  *
1082  *      Sets up RSS for each port.
1083  */
1084 static int setup_rss(struct adapter *adap)
1085 {
1086         int i, err;
1087
1088         for_each_port(adap, i) {
1089                 const struct port_info *pi = adap2pinfo(adap, i);
1090
1091                 err = write_rss(pi, pi->rss);
1092                 if (err)
1093                         return err;
1094         }
1095         return 0;
1096 }
1097
1098 /*
1099  * Return the channel of the ingress queue with the given qid.
1100  */
1101 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1102 {
1103         qid -= p->ingr_start;
1104         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1105 }
1106
1107 /*
1108  * Wait until all NAPI handlers are descheduled.
1109  */
1110 static void quiesce_rx(struct adapter *adap)
1111 {
1112         int i;
1113
1114         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1115                 struct sge_rspq *q = adap->sge.ingr_map[i];
1116
1117                 if (q && q->handler)
1118                         napi_disable(&q->napi);
1119         }
1120 }
1121
1122 /*
1123  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1124  */
1125 static void enable_rx(struct adapter *adap)
1126 {
1127         int i;
1128
1129         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1130                 struct sge_rspq *q = adap->sge.ingr_map[i];
1131
1132                 if (!q)
1133                         continue;
1134                 if (q->handler)
1135                         napi_enable(&q->napi);
1136                 /* 0-increment GTS to start the timer and enable interrupts */
1137                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1138                              SEINTARM(q->intr_params) |
1139                              INGRESSQID(q->cntxt_id));
1140         }
1141 }
1142
1143 /**
1144  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1145  *      @adap: the adapter
1146  *
1147  *      Determines how many sets of SGE queues to use and initializes them.
1148  *      We support multiple queue sets per port if we have MSI-X, otherwise
1149  *      just one queue set per port.
1150  */
1151 static int setup_sge_queues(struct adapter *adap)
1152 {
1153         int err, msi_idx, i, j;
1154         struct sge *s = &adap->sge;
1155
1156         bitmap_zero(s->starving_fl, MAX_EGRQ);
1157         bitmap_zero(s->txq_maperr, MAX_EGRQ);
1158
1159         if (adap->flags & USING_MSIX)
1160                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1161         else {
1162                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1163                                        NULL, NULL);
1164                 if (err)
1165                         return err;
1166                 msi_idx = -((int)s->intrq.abs_id + 1);
1167         }
1168
1169         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1170                                msi_idx, NULL, fwevtq_handler);
1171         if (err) {
1172 freeout:        t4_free_sge_resources(adap);
1173                 return err;
1174         }
1175
1176         for_each_port(adap, i) {
1177                 struct net_device *dev = adap->port[i];
1178                 struct port_info *pi = netdev_priv(dev);
1179                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1180                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1181
1182                 for (j = 0; j < pi->nqsets; j++, q++) {
1183                         if (msi_idx > 0)
1184                                 msi_idx++;
1185                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1186                                                msi_idx, &q->fl,
1187                                                t4_ethrx_handler);
1188                         if (err)
1189                                 goto freeout;
1190                         q->rspq.idx = j;
1191                         memset(&q->stats, 0, sizeof(q->stats));
1192                 }
1193                 for (j = 0; j < pi->nqsets; j++, t++) {
1194                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1195                                         netdev_get_tx_queue(dev, j),
1196                                         s->fw_evtq.cntxt_id);
1197                         if (err)
1198                                 goto freeout;
1199                 }
1200         }
1201
1202         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1203         for_each_ofldrxq(s, i) {
1204                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1205                 struct net_device *dev = adap->port[i / j];
1206
1207                 if (msi_idx > 0)
1208                         msi_idx++;
1209                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1210                                        q->fl.size ? &q->fl : NULL,
1211                                        uldrx_handler);
1212                 if (err)
1213                         goto freeout;
1214                 memset(&q->stats, 0, sizeof(q->stats));
1215                 s->ofld_rxq[i] = q->rspq.abs_id;
1216                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1217                                             s->fw_evtq.cntxt_id);
1218                 if (err)
1219                         goto freeout;
1220         }
1221
1222         for_each_rdmarxq(s, i) {
1223                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1224
1225                 if (msi_idx > 0)
1226                         msi_idx++;
1227                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1228                                        msi_idx, q->fl.size ? &q->fl : NULL,
1229                                        uldrx_handler);
1230                 if (err)
1231                         goto freeout;
1232                 memset(&q->stats, 0, sizeof(q->stats));
1233                 s->rdma_rxq[i] = q->rspq.abs_id;
1234         }
1235
1236         for_each_rdmaciq(s, i) {
1237                 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1238
1239                 if (msi_idx > 0)
1240                         msi_idx++;
1241                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1242                                        msi_idx, q->fl.size ? &q->fl : NULL,
1243                                        uldrx_handler);
1244                 if (err)
1245                         goto freeout;
1246                 memset(&q->stats, 0, sizeof(q->stats));
1247                 s->rdma_ciq[i] = q->rspq.abs_id;
1248         }
1249
1250         for_each_port(adap, i) {
1251                 /*
1252                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1253                  * have RDMA queues, and that's the right value.
1254                  */
1255                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1256                                             s->fw_evtq.cntxt_id,
1257                                             s->rdmarxq[i].rspq.cntxt_id);
1258                 if (err)
1259                         goto freeout;
1260         }
1261
1262         t4_write_reg(adap, is_t4(adap->params.chip) ?
1263                                 MPS_TRC_RSS_CONTROL :
1264                                 MPS_T5_TRC_RSS_CONTROL,
1265                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1266                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1267         return 0;
1268 }
1269
1270 /*
1271  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1272  * The allocated memory is cleared.
1273  */
1274 void *t4_alloc_mem(size_t size)
1275 {
1276         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1277
1278         if (!p)
1279                 p = vzalloc(size);
1280         return p;
1281 }
1282
1283 /*
1284  * Free memory allocated through alloc_mem().
1285  */
1286 static void t4_free_mem(void *addr)
1287 {
1288         if (is_vmalloc_addr(addr))
1289                 vfree(addr);
1290         else
1291                 kfree(addr);
1292 }
1293
1294 /* Send a Work Request to write the filter at a specified index.  We construct
1295  * a Firmware Filter Work Request to have the work done and put the indicated
1296  * filter into "pending" mode which will prevent any further actions against
1297  * it till we get a reply from the firmware on the completion status of the
1298  * request.
1299  */
1300 static int set_filter_wr(struct adapter *adapter, int fidx)
1301 {
1302         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1303         struct sk_buff *skb;
1304         struct fw_filter_wr *fwr;
1305         unsigned int ftid;
1306
1307         /* If the new filter requires loopback Destination MAC and/or VLAN
1308          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1309          * the filter.
1310          */
1311         if (f->fs.newdmac || f->fs.newvlan) {
1312                 /* allocate L2T entry for new filter */
1313                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1314                 if (f->l2t == NULL)
1315                         return -EAGAIN;
1316                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1317                                         f->fs.eport, f->fs.dmac)) {
1318                         cxgb4_l2t_release(f->l2t);
1319                         f->l2t = NULL;
1320                         return -ENOMEM;
1321                 }
1322         }
1323
1324         ftid = adapter->tids.ftid_base + fidx;
1325
1326         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1327         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1328         memset(fwr, 0, sizeof(*fwr));
1329
1330         /* It would be nice to put most of the following in t4_hw.c but most
1331          * of the work is translating the cxgbtool ch_filter_specification
1332          * into the Work Request and the definition of that structure is
1333          * currently in cxgbtool.h which isn't appropriate to pull into the
1334          * common code.  We may eventually try to come up with a more neutral
1335          * filter specification structure but for now it's easiest to simply
1336          * put this fairly direct code in line ...
1337          */
1338         fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1339         fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1340         fwr->tid_to_iq =
1341                 htonl(V_FW_FILTER_WR_TID(ftid) |
1342                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1343                       V_FW_FILTER_WR_NOREPLY(0) |
1344                       V_FW_FILTER_WR_IQ(f->fs.iq));
1345         fwr->del_filter_to_l2tix =
1346                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1347                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1348                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1349                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1350                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1351                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1352                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1353                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1354                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1355                                              f->fs.newvlan == VLAN_REWRITE) |
1356                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1357                                             f->fs.newvlan == VLAN_REWRITE) |
1358                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1359                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1360                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1361                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1362         fwr->ethtype = htons(f->fs.val.ethtype);
1363         fwr->ethtypem = htons(f->fs.mask.ethtype);
1364         fwr->frag_to_ovlan_vldm =
1365                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1366                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1367                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1368                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1369                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1370                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1371         fwr->smac_sel = 0;
1372         fwr->rx_chan_rx_rpl_iq =
1373                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1374                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1375         fwr->maci_to_matchtypem =
1376                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1377                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1378                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1379                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1380                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1381                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1382                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1383                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1384         fwr->ptcl = f->fs.val.proto;
1385         fwr->ptclm = f->fs.mask.proto;
1386         fwr->ttyp = f->fs.val.tos;
1387         fwr->ttypm = f->fs.mask.tos;
1388         fwr->ivlan = htons(f->fs.val.ivlan);
1389         fwr->ivlanm = htons(f->fs.mask.ivlan);
1390         fwr->ovlan = htons(f->fs.val.ovlan);
1391         fwr->ovlanm = htons(f->fs.mask.ovlan);
1392         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1393         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1394         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1395         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1396         fwr->lp = htons(f->fs.val.lport);
1397         fwr->lpm = htons(f->fs.mask.lport);
1398         fwr->fp = htons(f->fs.val.fport);
1399         fwr->fpm = htons(f->fs.mask.fport);
1400         if (f->fs.newsmac)
1401                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1402
1403         /* Mark the filter as "pending" and ship off the Filter Work Request.
1404          * When we get the Work Request Reply we'll clear the pending status.
1405          */
1406         f->pending = 1;
1407         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1408         t4_ofld_send(adapter, skb);
1409         return 0;
1410 }
1411
1412 /* Delete the filter at a specified index.
1413  */
1414 static int del_filter_wr(struct adapter *adapter, int fidx)
1415 {
1416         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1417         struct sk_buff *skb;
1418         struct fw_filter_wr *fwr;
1419         unsigned int len, ftid;
1420
1421         len = sizeof(*fwr);
1422         ftid = adapter->tids.ftid_base + fidx;
1423
1424         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1425         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1426         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1427
1428         /* Mark the filter as "pending" and ship off the Filter Work Request.
1429          * When we get the Work Request Reply we'll clear the pending status.
1430          */
1431         f->pending = 1;
1432         t4_mgmt_tx(adapter, skb);
1433         return 0;
1434 }
1435
1436 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1437                              void *accel_priv, select_queue_fallback_t fallback)
1438 {
1439         int txq;
1440
1441 #ifdef CONFIG_CHELSIO_T4_DCB
1442         /* If a Data Center Bridging has been successfully negotiated on this
1443          * link then we'll use the skb's priority to map it to a TX Queue.
1444          * The skb's priority is determined via the VLAN Tag Priority Code
1445          * Point field.
1446          */
1447         if (cxgb4_dcb_enabled(dev)) {
1448                 u16 vlan_tci;
1449                 int err;
1450
1451                 err = vlan_get_tag(skb, &vlan_tci);
1452                 if (unlikely(err)) {
1453                         if (net_ratelimit())
1454                                 netdev_warn(dev,
1455                                             "TX Packet without VLAN Tag on DCB Link\n");
1456                         txq = 0;
1457                 } else {
1458                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1459                 }
1460                 return txq;
1461         }
1462 #endif /* CONFIG_CHELSIO_T4_DCB */
1463
1464         if (select_queue) {
1465                 txq = (skb_rx_queue_recorded(skb)
1466                         ? skb_get_rx_queue(skb)
1467                         : smp_processor_id());
1468
1469                 while (unlikely(txq >= dev->real_num_tx_queues))
1470                         txq -= dev->real_num_tx_queues;
1471
1472                 return txq;
1473         }
1474
1475         return fallback(dev, skb) % dev->real_num_tx_queues;
1476 }
1477
1478 static inline int is_offload(const struct adapter *adap)
1479 {
1480         return adap->params.offload;
1481 }
1482
1483 /*
1484  * Implementation of ethtool operations.
1485  */
1486
1487 static u32 get_msglevel(struct net_device *dev)
1488 {
1489         return netdev2adap(dev)->msg_enable;
1490 }
1491
1492 static void set_msglevel(struct net_device *dev, u32 val)
1493 {
1494         netdev2adap(dev)->msg_enable = val;
1495 }
1496
1497 static char stats_strings[][ETH_GSTRING_LEN] = {
1498         "TxOctetsOK         ",
1499         "TxFramesOK         ",
1500         "TxBroadcastFrames  ",
1501         "TxMulticastFrames  ",
1502         "TxUnicastFrames    ",
1503         "TxErrorFrames      ",
1504
1505         "TxFrames64         ",
1506         "TxFrames65To127    ",
1507         "TxFrames128To255   ",
1508         "TxFrames256To511   ",
1509         "TxFrames512To1023  ",
1510         "TxFrames1024To1518 ",
1511         "TxFrames1519ToMax  ",
1512
1513         "TxFramesDropped    ",
1514         "TxPauseFrames      ",
1515         "TxPPP0Frames       ",
1516         "TxPPP1Frames       ",
1517         "TxPPP2Frames       ",
1518         "TxPPP3Frames       ",
1519         "TxPPP4Frames       ",
1520         "TxPPP5Frames       ",
1521         "TxPPP6Frames       ",
1522         "TxPPP7Frames       ",
1523
1524         "RxOctetsOK         ",
1525         "RxFramesOK         ",
1526         "RxBroadcastFrames  ",
1527         "RxMulticastFrames  ",
1528         "RxUnicastFrames    ",
1529
1530         "RxFramesTooLong    ",
1531         "RxJabberErrors     ",
1532         "RxFCSErrors        ",
1533         "RxLengthErrors     ",
1534         "RxSymbolErrors     ",
1535         "RxRuntFrames       ",
1536
1537         "RxFrames64         ",
1538         "RxFrames65To127    ",
1539         "RxFrames128To255   ",
1540         "RxFrames256To511   ",
1541         "RxFrames512To1023  ",
1542         "RxFrames1024To1518 ",
1543         "RxFrames1519ToMax  ",
1544
1545         "RxPauseFrames      ",
1546         "RxPPP0Frames       ",
1547         "RxPPP1Frames       ",
1548         "RxPPP2Frames       ",
1549         "RxPPP3Frames       ",
1550         "RxPPP4Frames       ",
1551         "RxPPP5Frames       ",
1552         "RxPPP6Frames       ",
1553         "RxPPP7Frames       ",
1554
1555         "RxBG0FramesDropped ",
1556         "RxBG1FramesDropped ",
1557         "RxBG2FramesDropped ",
1558         "RxBG3FramesDropped ",
1559         "RxBG0FramesTrunc   ",
1560         "RxBG1FramesTrunc   ",
1561         "RxBG2FramesTrunc   ",
1562         "RxBG3FramesTrunc   ",
1563
1564         "TSO                ",
1565         "TxCsumOffload      ",
1566         "RxCsumGood         ",
1567         "VLANextractions    ",
1568         "VLANinsertions     ",
1569         "GROpackets         ",
1570         "GROmerged          ",
1571         "WriteCoalSuccess   ",
1572         "WriteCoalFail      ",
1573 };
1574
1575 static int get_sset_count(struct net_device *dev, int sset)
1576 {
1577         switch (sset) {
1578         case ETH_SS_STATS:
1579                 return ARRAY_SIZE(stats_strings);
1580         default:
1581                 return -EOPNOTSUPP;
1582         }
1583 }
1584
1585 #define T4_REGMAP_SIZE (160 * 1024)
1586 #define T5_REGMAP_SIZE (332 * 1024)
1587
1588 static int get_regs_len(struct net_device *dev)
1589 {
1590         struct adapter *adap = netdev2adap(dev);
1591         if (is_t4(adap->params.chip))
1592                 return T4_REGMAP_SIZE;
1593         else
1594                 return T5_REGMAP_SIZE;
1595 }
1596
1597 static int get_eeprom_len(struct net_device *dev)
1598 {
1599         return EEPROMSIZE;
1600 }
1601
1602 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1603 {
1604         struct adapter *adapter = netdev2adap(dev);
1605
1606         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1607         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1608         strlcpy(info->bus_info, pci_name(adapter->pdev),
1609                 sizeof(info->bus_info));
1610
1611         if (adapter->params.fw_vers)
1612                 snprintf(info->fw_version, sizeof(info->fw_version),
1613                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1614                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1615                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1616                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1617                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1618                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1619                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1620                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1621                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1622 }
1623
1624 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1625 {
1626         if (stringset == ETH_SS_STATS)
1627                 memcpy(data, stats_strings, sizeof(stats_strings));
1628 }
1629
1630 /*
1631  * port stats maintained per queue of the port.  They should be in the same
1632  * order as in stats_strings above.
1633  */
1634 struct queue_port_stats {
1635         u64 tso;
1636         u64 tx_csum;
1637         u64 rx_csum;
1638         u64 vlan_ex;
1639         u64 vlan_ins;
1640         u64 gro_pkts;
1641         u64 gro_merged;
1642 };
1643
1644 static void collect_sge_port_stats(const struct adapter *adap,
1645                 const struct port_info *p, struct queue_port_stats *s)
1646 {
1647         int i;
1648         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1649         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1650
1651         memset(s, 0, sizeof(*s));
1652         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1653                 s->tso += tx->tso;
1654                 s->tx_csum += tx->tx_cso;
1655                 s->rx_csum += rx->stats.rx_cso;
1656                 s->vlan_ex += rx->stats.vlan_ex;
1657                 s->vlan_ins += tx->vlan_ins;
1658                 s->gro_pkts += rx->stats.lro_pkts;
1659                 s->gro_merged += rx->stats.lro_merged;
1660         }
1661 }
1662
1663 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1664                       u64 *data)
1665 {
1666         struct port_info *pi = netdev_priv(dev);
1667         struct adapter *adapter = pi->adapter;
1668         u32 val1, val2;
1669
1670         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1671
1672         data += sizeof(struct port_stats) / sizeof(u64);
1673         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1674         data += sizeof(struct queue_port_stats) / sizeof(u64);
1675         if (!is_t4(adapter->params.chip)) {
1676                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1677                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1678                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1679                 *data = val1 - val2;
1680                 data++;
1681                 *data = val2;
1682                 data++;
1683         } else {
1684                 memset(data, 0, 2 * sizeof(u64));
1685                 *data += 2;
1686         }
1687 }
1688
1689 /*
1690  * Return a version number to identify the type of adapter.  The scheme is:
1691  * - bits 0..9: chip version
1692  * - bits 10..15: chip revision
1693  * - bits 16..23: register dump version
1694  */
1695 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1696 {
1697         return CHELSIO_CHIP_VERSION(ap->params.chip) |
1698                 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1699 }
1700
1701 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1702                            unsigned int end)
1703 {
1704         u32 *p = buf + start;
1705
1706         for ( ; start <= end; start += sizeof(u32))
1707                 *p++ = t4_read_reg(ap, start);
1708 }
1709
1710 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1711                      void *buf)
1712 {
1713         static const unsigned int t4_reg_ranges[] = {
1714                 0x1008, 0x1108,
1715                 0x1180, 0x11b4,
1716                 0x11fc, 0x123c,
1717                 0x1300, 0x173c,
1718                 0x1800, 0x18fc,
1719                 0x3000, 0x30d8,
1720                 0x30e0, 0x5924,
1721                 0x5960, 0x59d4,
1722                 0x5a00, 0x5af8,
1723                 0x6000, 0x6098,
1724                 0x6100, 0x6150,
1725                 0x6200, 0x6208,
1726                 0x6240, 0x6248,
1727                 0x6280, 0x6338,
1728                 0x6370, 0x638c,
1729                 0x6400, 0x643c,
1730                 0x6500, 0x6524,
1731                 0x6a00, 0x6a38,
1732                 0x6a60, 0x6a78,
1733                 0x6b00, 0x6b84,
1734                 0x6bf0, 0x6c84,
1735                 0x6cf0, 0x6d84,
1736                 0x6df0, 0x6e84,
1737                 0x6ef0, 0x6f84,
1738                 0x6ff0, 0x7084,
1739                 0x70f0, 0x7184,
1740                 0x71f0, 0x7284,
1741                 0x72f0, 0x7384,
1742                 0x73f0, 0x7450,
1743                 0x7500, 0x7530,
1744                 0x7600, 0x761c,
1745                 0x7680, 0x76cc,
1746                 0x7700, 0x7798,
1747                 0x77c0, 0x77fc,
1748                 0x7900, 0x79fc,
1749                 0x7b00, 0x7c38,
1750                 0x7d00, 0x7efc,
1751                 0x8dc0, 0x8e1c,
1752                 0x8e30, 0x8e78,
1753                 0x8ea0, 0x8f6c,
1754                 0x8fc0, 0x9074,
1755                 0x90fc, 0x90fc,
1756                 0x9400, 0x9458,
1757                 0x9600, 0x96bc,
1758                 0x9800, 0x9808,
1759                 0x9820, 0x983c,
1760                 0x9850, 0x9864,
1761                 0x9c00, 0x9c6c,
1762                 0x9c80, 0x9cec,
1763                 0x9d00, 0x9d6c,
1764                 0x9d80, 0x9dec,
1765                 0x9e00, 0x9e6c,
1766                 0x9e80, 0x9eec,
1767                 0x9f00, 0x9f6c,
1768                 0x9f80, 0x9fec,
1769                 0xd004, 0xd03c,
1770                 0xdfc0, 0xdfe0,
1771                 0xe000, 0xea7c,
1772                 0xf000, 0x11110,
1773                 0x11118, 0x11190,
1774                 0x19040, 0x1906c,
1775                 0x19078, 0x19080,
1776                 0x1908c, 0x19124,
1777                 0x19150, 0x191b0,
1778                 0x191d0, 0x191e8,
1779                 0x19238, 0x1924c,
1780                 0x193f8, 0x19474,
1781                 0x19490, 0x194f8,
1782                 0x19800, 0x19f30,
1783                 0x1a000, 0x1a06c,
1784                 0x1a0b0, 0x1a120,
1785                 0x1a128, 0x1a138,
1786                 0x1a190, 0x1a1c4,
1787                 0x1a1fc, 0x1a1fc,
1788                 0x1e040, 0x1e04c,
1789                 0x1e284, 0x1e28c,
1790                 0x1e2c0, 0x1e2c0,
1791                 0x1e2e0, 0x1e2e0,
1792                 0x1e300, 0x1e384,
1793                 0x1e3c0, 0x1e3c8,
1794                 0x1e440, 0x1e44c,
1795                 0x1e684, 0x1e68c,
1796                 0x1e6c0, 0x1e6c0,
1797                 0x1e6e0, 0x1e6e0,
1798                 0x1e700, 0x1e784,
1799                 0x1e7c0, 0x1e7c8,
1800                 0x1e840, 0x1e84c,
1801                 0x1ea84, 0x1ea8c,
1802                 0x1eac0, 0x1eac0,
1803                 0x1eae0, 0x1eae0,
1804                 0x1eb00, 0x1eb84,
1805                 0x1ebc0, 0x1ebc8,
1806                 0x1ec40, 0x1ec4c,
1807                 0x1ee84, 0x1ee8c,
1808                 0x1eec0, 0x1eec0,
1809                 0x1eee0, 0x1eee0,
1810                 0x1ef00, 0x1ef84,
1811                 0x1efc0, 0x1efc8,
1812                 0x1f040, 0x1f04c,
1813                 0x1f284, 0x1f28c,
1814                 0x1f2c0, 0x1f2c0,
1815                 0x1f2e0, 0x1f2e0,
1816                 0x1f300, 0x1f384,
1817                 0x1f3c0, 0x1f3c8,
1818                 0x1f440, 0x1f44c,
1819                 0x1f684, 0x1f68c,
1820                 0x1f6c0, 0x1f6c0,
1821                 0x1f6e0, 0x1f6e0,
1822                 0x1f700, 0x1f784,
1823                 0x1f7c0, 0x1f7c8,
1824                 0x1f840, 0x1f84c,
1825                 0x1fa84, 0x1fa8c,
1826                 0x1fac0, 0x1fac0,
1827                 0x1fae0, 0x1fae0,
1828                 0x1fb00, 0x1fb84,
1829                 0x1fbc0, 0x1fbc8,
1830                 0x1fc40, 0x1fc4c,
1831                 0x1fe84, 0x1fe8c,
1832                 0x1fec0, 0x1fec0,
1833                 0x1fee0, 0x1fee0,
1834                 0x1ff00, 0x1ff84,
1835                 0x1ffc0, 0x1ffc8,
1836                 0x20000, 0x2002c,
1837                 0x20100, 0x2013c,
1838                 0x20190, 0x201c8,
1839                 0x20200, 0x20318,
1840                 0x20400, 0x20528,
1841                 0x20540, 0x20614,
1842                 0x21000, 0x21040,
1843                 0x2104c, 0x21060,
1844                 0x210c0, 0x210ec,
1845                 0x21200, 0x21268,
1846                 0x21270, 0x21284,
1847                 0x212fc, 0x21388,
1848                 0x21400, 0x21404,
1849                 0x21500, 0x21518,
1850                 0x2152c, 0x2153c,
1851                 0x21550, 0x21554,
1852                 0x21600, 0x21600,
1853                 0x21608, 0x21628,
1854                 0x21630, 0x2163c,
1855                 0x21700, 0x2171c,
1856                 0x21780, 0x2178c,
1857                 0x21800, 0x21c38,
1858                 0x21c80, 0x21d7c,
1859                 0x21e00, 0x21e04,
1860                 0x22000, 0x2202c,
1861                 0x22100, 0x2213c,
1862                 0x22190, 0x221c8,
1863                 0x22200, 0x22318,
1864                 0x22400, 0x22528,
1865                 0x22540, 0x22614,
1866                 0x23000, 0x23040,
1867                 0x2304c, 0x23060,
1868                 0x230c0, 0x230ec,
1869                 0x23200, 0x23268,
1870                 0x23270, 0x23284,
1871                 0x232fc, 0x23388,
1872                 0x23400, 0x23404,
1873                 0x23500, 0x23518,
1874                 0x2352c, 0x2353c,
1875                 0x23550, 0x23554,
1876                 0x23600, 0x23600,
1877                 0x23608, 0x23628,
1878                 0x23630, 0x2363c,
1879                 0x23700, 0x2371c,
1880                 0x23780, 0x2378c,
1881                 0x23800, 0x23c38,
1882                 0x23c80, 0x23d7c,
1883                 0x23e00, 0x23e04,
1884                 0x24000, 0x2402c,
1885                 0x24100, 0x2413c,
1886                 0x24190, 0x241c8,
1887                 0x24200, 0x24318,
1888                 0x24400, 0x24528,
1889                 0x24540, 0x24614,
1890                 0x25000, 0x25040,
1891                 0x2504c, 0x25060,
1892                 0x250c0, 0x250ec,
1893                 0x25200, 0x25268,
1894                 0x25270, 0x25284,
1895                 0x252fc, 0x25388,
1896                 0x25400, 0x25404,
1897                 0x25500, 0x25518,
1898                 0x2552c, 0x2553c,
1899                 0x25550, 0x25554,
1900                 0x25600, 0x25600,
1901                 0x25608, 0x25628,
1902                 0x25630, 0x2563c,
1903                 0x25700, 0x2571c,
1904                 0x25780, 0x2578c,
1905                 0x25800, 0x25c38,
1906                 0x25c80, 0x25d7c,
1907                 0x25e00, 0x25e04,
1908                 0x26000, 0x2602c,
1909                 0x26100, 0x2613c,
1910                 0x26190, 0x261c8,
1911                 0x26200, 0x26318,
1912                 0x26400, 0x26528,
1913                 0x26540, 0x26614,
1914                 0x27000, 0x27040,
1915                 0x2704c, 0x27060,
1916                 0x270c0, 0x270ec,
1917                 0x27200, 0x27268,
1918                 0x27270, 0x27284,
1919                 0x272fc, 0x27388,
1920                 0x27400, 0x27404,
1921                 0x27500, 0x27518,
1922                 0x2752c, 0x2753c,
1923                 0x27550, 0x27554,
1924                 0x27600, 0x27600,
1925                 0x27608, 0x27628,
1926                 0x27630, 0x2763c,
1927                 0x27700, 0x2771c,
1928                 0x27780, 0x2778c,
1929                 0x27800, 0x27c38,
1930                 0x27c80, 0x27d7c,
1931                 0x27e00, 0x27e04
1932         };
1933
1934         static const unsigned int t5_reg_ranges[] = {
1935                 0x1008, 0x1148,
1936                 0x1180, 0x11b4,
1937                 0x11fc, 0x123c,
1938                 0x1280, 0x173c,
1939                 0x1800, 0x18fc,
1940                 0x3000, 0x3028,
1941                 0x3060, 0x30d8,
1942                 0x30e0, 0x30fc,
1943                 0x3140, 0x357c,
1944                 0x35a8, 0x35cc,
1945                 0x35ec, 0x35ec,
1946                 0x3600, 0x5624,
1947                 0x56cc, 0x575c,
1948                 0x580c, 0x5814,
1949                 0x5890, 0x58bc,
1950                 0x5940, 0x59dc,
1951                 0x59fc, 0x5a18,
1952                 0x5a60, 0x5a9c,
1953                 0x5b9c, 0x5bfc,
1954                 0x6000, 0x6040,
1955                 0x6058, 0x614c,
1956                 0x7700, 0x7798,
1957                 0x77c0, 0x78fc,
1958                 0x7b00, 0x7c54,
1959                 0x7d00, 0x7efc,
1960                 0x8dc0, 0x8de0,
1961                 0x8df8, 0x8e84,
1962                 0x8ea0, 0x8f84,
1963                 0x8fc0, 0x90f8,
1964                 0x9400, 0x9470,
1965                 0x9600, 0x96f4,
1966                 0x9800, 0x9808,
1967                 0x9820, 0x983c,
1968                 0x9850, 0x9864,
1969                 0x9c00, 0x9c6c,
1970                 0x9c80, 0x9cec,
1971                 0x9d00, 0x9d6c,
1972                 0x9d80, 0x9dec,
1973                 0x9e00, 0x9e6c,
1974                 0x9e80, 0x9eec,
1975                 0x9f00, 0x9f6c,
1976                 0x9f80, 0xa020,
1977                 0xd004, 0xd03c,
1978                 0xdfc0, 0xdfe0,
1979                 0xe000, 0x11088,
1980                 0x1109c, 0x11110,
1981                 0x11118, 0x1117c,
1982                 0x11190, 0x11204,
1983                 0x19040, 0x1906c,
1984                 0x19078, 0x19080,
1985                 0x1908c, 0x19124,
1986                 0x19150, 0x191b0,
1987                 0x191d0, 0x191e8,
1988                 0x19238, 0x19290,
1989                 0x193f8, 0x19474,
1990                 0x19490, 0x194cc,
1991                 0x194f0, 0x194f8,
1992                 0x19c00, 0x19c60,
1993                 0x19c94, 0x19e10,
1994                 0x19e50, 0x19f34,
1995                 0x19f40, 0x19f50,
1996                 0x19f90, 0x19fe4,
1997                 0x1a000, 0x1a06c,
1998                 0x1a0b0, 0x1a120,
1999                 0x1a128, 0x1a138,
2000                 0x1a190, 0x1a1c4,
2001                 0x1a1fc, 0x1a1fc,
2002                 0x1e008, 0x1e00c,
2003                 0x1e040, 0x1e04c,
2004                 0x1e284, 0x1e290,
2005                 0x1e2c0, 0x1e2c0,
2006                 0x1e2e0, 0x1e2e0,
2007                 0x1e300, 0x1e384,
2008                 0x1e3c0, 0x1e3c8,
2009                 0x1e408, 0x1e40c,
2010                 0x1e440, 0x1e44c,
2011                 0x1e684, 0x1e690,
2012                 0x1e6c0, 0x1e6c0,
2013                 0x1e6e0, 0x1e6e0,
2014                 0x1e700, 0x1e784,
2015                 0x1e7c0, 0x1e7c8,
2016                 0x1e808, 0x1e80c,
2017                 0x1e840, 0x1e84c,
2018                 0x1ea84, 0x1ea90,
2019                 0x1eac0, 0x1eac0,
2020                 0x1eae0, 0x1eae0,
2021                 0x1eb00, 0x1eb84,
2022                 0x1ebc0, 0x1ebc8,
2023                 0x1ec08, 0x1ec0c,
2024                 0x1ec40, 0x1ec4c,
2025                 0x1ee84, 0x1ee90,
2026                 0x1eec0, 0x1eec0,
2027                 0x1eee0, 0x1eee0,
2028                 0x1ef00, 0x1ef84,
2029                 0x1efc0, 0x1efc8,
2030                 0x1f008, 0x1f00c,
2031                 0x1f040, 0x1f04c,
2032                 0x1f284, 0x1f290,
2033                 0x1f2c0, 0x1f2c0,
2034                 0x1f2e0, 0x1f2e0,
2035                 0x1f300, 0x1f384,
2036                 0x1f3c0, 0x1f3c8,
2037                 0x1f408, 0x1f40c,
2038                 0x1f440, 0x1f44c,
2039                 0x1f684, 0x1f690,
2040                 0x1f6c0, 0x1f6c0,
2041                 0x1f6e0, 0x1f6e0,
2042                 0x1f700, 0x1f784,
2043                 0x1f7c0, 0x1f7c8,
2044                 0x1f808, 0x1f80c,
2045                 0x1f840, 0x1f84c,
2046                 0x1fa84, 0x1fa90,
2047                 0x1fac0, 0x1fac0,
2048                 0x1fae0, 0x1fae0,
2049                 0x1fb00, 0x1fb84,
2050                 0x1fbc0, 0x1fbc8,
2051                 0x1fc08, 0x1fc0c,
2052                 0x1fc40, 0x1fc4c,
2053                 0x1fe84, 0x1fe90,
2054                 0x1fec0, 0x1fec0,
2055                 0x1fee0, 0x1fee0,
2056                 0x1ff00, 0x1ff84,
2057                 0x1ffc0, 0x1ffc8,
2058                 0x30000, 0x30030,
2059                 0x30100, 0x30144,
2060                 0x30190, 0x301d0,
2061                 0x30200, 0x30318,
2062                 0x30400, 0x3052c,
2063                 0x30540, 0x3061c,
2064                 0x30800, 0x30834,
2065                 0x308c0, 0x30908,
2066                 0x30910, 0x309ac,
2067                 0x30a00, 0x30a04,
2068                 0x30a0c, 0x30a2c,
2069                 0x30a44, 0x30a50,
2070                 0x30a74, 0x30c24,
2071                 0x30d08, 0x30d14,
2072                 0x30d1c, 0x30d20,
2073                 0x30d3c, 0x30d50,
2074                 0x31200, 0x3120c,
2075                 0x31220, 0x31220,
2076                 0x31240, 0x31240,
2077                 0x31600, 0x31600,
2078                 0x31608, 0x3160c,
2079                 0x31a00, 0x31a1c,
2080                 0x31e04, 0x31e20,
2081                 0x31e38, 0x31e3c,
2082                 0x31e80, 0x31e80,
2083                 0x31e88, 0x31ea8,
2084                 0x31eb0, 0x31eb4,
2085                 0x31ec8, 0x31ed4,
2086                 0x31fb8, 0x32004,
2087                 0x32208, 0x3223c,
2088                 0x32600, 0x32630,
2089                 0x32a00, 0x32abc,
2090                 0x32b00, 0x32b70,
2091                 0x33000, 0x33048,
2092                 0x33060, 0x3309c,
2093                 0x330f0, 0x33148,
2094                 0x33160, 0x3319c,
2095                 0x331f0, 0x332e4,
2096                 0x332f8, 0x333e4,
2097                 0x333f8, 0x33448,
2098                 0x33460, 0x3349c,
2099                 0x334f0, 0x33548,
2100                 0x33560, 0x3359c,
2101                 0x335f0, 0x336e4,
2102                 0x336f8, 0x337e4,
2103                 0x337f8, 0x337fc,
2104                 0x33814, 0x33814,
2105                 0x3382c, 0x3382c,
2106                 0x33880, 0x3388c,
2107                 0x338e8, 0x338ec,
2108                 0x33900, 0x33948,
2109                 0x33960, 0x3399c,
2110                 0x339f0, 0x33ae4,
2111                 0x33af8, 0x33b10,
2112                 0x33b28, 0x33b28,
2113                 0x33b3c, 0x33b50,
2114                 0x33bf0, 0x33c10,
2115                 0x33c28, 0x33c28,
2116                 0x33c3c, 0x33c50,
2117                 0x33cf0, 0x33cfc,
2118                 0x34000, 0x34030,
2119                 0x34100, 0x34144,
2120                 0x34190, 0x341d0,
2121                 0x34200, 0x34318,
2122                 0x34400, 0x3452c,
2123                 0x34540, 0x3461c,
2124                 0x34800, 0x34834,
2125                 0x348c0, 0x34908,
2126                 0x34910, 0x349ac,
2127                 0x34a00, 0x34a04,
2128                 0x34a0c, 0x34a2c,
2129                 0x34a44, 0x34a50,
2130                 0x34a74, 0x34c24,
2131                 0x34d08, 0x34d14,
2132                 0x34d1c, 0x34d20,
2133                 0x34d3c, 0x34d50,
2134                 0x35200, 0x3520c,
2135                 0x35220, 0x35220,
2136                 0x35240, 0x35240,
2137                 0x35600, 0x35600,
2138                 0x35608, 0x3560c,
2139                 0x35a00, 0x35a1c,
2140                 0x35e04, 0x35e20,
2141                 0x35e38, 0x35e3c,
2142                 0x35e80, 0x35e80,
2143                 0x35e88, 0x35ea8,
2144                 0x35eb0, 0x35eb4,
2145                 0x35ec8, 0x35ed4,
2146                 0x35fb8, 0x36004,
2147                 0x36208, 0x3623c,
2148                 0x36600, 0x36630,
2149                 0x36a00, 0x36abc,
2150                 0x36b00, 0x36b70,
2151                 0x37000, 0x37048,
2152                 0x37060, 0x3709c,
2153                 0x370f0, 0x37148,
2154                 0x37160, 0x3719c,
2155                 0x371f0, 0x372e4,
2156                 0x372f8, 0x373e4,
2157                 0x373f8, 0x37448,
2158                 0x37460, 0x3749c,
2159                 0x374f0, 0x37548,
2160                 0x37560, 0x3759c,
2161                 0x375f0, 0x376e4,
2162                 0x376f8, 0x377e4,
2163                 0x377f8, 0x377fc,
2164                 0x37814, 0x37814,
2165                 0x3782c, 0x3782c,
2166                 0x37880, 0x3788c,
2167                 0x378e8, 0x378ec,
2168                 0x37900, 0x37948,
2169                 0x37960, 0x3799c,
2170                 0x379f0, 0x37ae4,
2171                 0x37af8, 0x37b10,
2172                 0x37b28, 0x37b28,
2173                 0x37b3c, 0x37b50,
2174                 0x37bf0, 0x37c10,
2175                 0x37c28, 0x37c28,
2176                 0x37c3c, 0x37c50,
2177                 0x37cf0, 0x37cfc,
2178                 0x38000, 0x38030,
2179                 0x38100, 0x38144,
2180                 0x38190, 0x381d0,
2181                 0x38200, 0x38318,
2182                 0x38400, 0x3852c,
2183                 0x38540, 0x3861c,
2184                 0x38800, 0x38834,
2185                 0x388c0, 0x38908,
2186                 0x38910, 0x389ac,
2187                 0x38a00, 0x38a04,
2188                 0x38a0c, 0x38a2c,
2189                 0x38a44, 0x38a50,
2190                 0x38a74, 0x38c24,
2191                 0x38d08, 0x38d14,
2192                 0x38d1c, 0x38d20,
2193                 0x38d3c, 0x38d50,
2194                 0x39200, 0x3920c,
2195                 0x39220, 0x39220,
2196                 0x39240, 0x39240,
2197                 0x39600, 0x39600,
2198                 0x39608, 0x3960c,
2199                 0x39a00, 0x39a1c,
2200                 0x39e04, 0x39e20,
2201                 0x39e38, 0x39e3c,
2202                 0x39e80, 0x39e80,
2203                 0x39e88, 0x39ea8,
2204                 0x39eb0, 0x39eb4,
2205                 0x39ec8, 0x39ed4,
2206                 0x39fb8, 0x3a004,
2207                 0x3a208, 0x3a23c,
2208                 0x3a600, 0x3a630,
2209                 0x3aa00, 0x3aabc,
2210                 0x3ab00, 0x3ab70,
2211                 0x3b000, 0x3b048,
2212                 0x3b060, 0x3b09c,
2213                 0x3b0f0, 0x3b148,
2214                 0x3b160, 0x3b19c,
2215                 0x3b1f0, 0x3b2e4,
2216                 0x3b2f8, 0x3b3e4,
2217                 0x3b3f8, 0x3b448,
2218                 0x3b460, 0x3b49c,
2219                 0x3b4f0, 0x3b548,
2220                 0x3b560, 0x3b59c,
2221                 0x3b5f0, 0x3b6e4,
2222                 0x3b6f8, 0x3b7e4,
2223                 0x3b7f8, 0x3b7fc,
2224                 0x3b814, 0x3b814,
2225                 0x3b82c, 0x3b82c,
2226                 0x3b880, 0x3b88c,
2227                 0x3b8e8, 0x3b8ec,
2228                 0x3b900, 0x3b948,
2229                 0x3b960, 0x3b99c,
2230                 0x3b9f0, 0x3bae4,
2231                 0x3baf8, 0x3bb10,
2232                 0x3bb28, 0x3bb28,
2233                 0x3bb3c, 0x3bb50,
2234                 0x3bbf0, 0x3bc10,
2235                 0x3bc28, 0x3bc28,
2236                 0x3bc3c, 0x3bc50,
2237                 0x3bcf0, 0x3bcfc,
2238                 0x3c000, 0x3c030,
2239                 0x3c100, 0x3c144,
2240                 0x3c190, 0x3c1d0,
2241                 0x3c200, 0x3c318,
2242                 0x3c400, 0x3c52c,
2243                 0x3c540, 0x3c61c,
2244                 0x3c800, 0x3c834,
2245                 0x3c8c0, 0x3c908,
2246                 0x3c910, 0x3c9ac,
2247                 0x3ca00, 0x3ca04,
2248                 0x3ca0c, 0x3ca2c,
2249                 0x3ca44, 0x3ca50,
2250                 0x3ca74, 0x3cc24,
2251                 0x3cd08, 0x3cd14,
2252                 0x3cd1c, 0x3cd20,
2253                 0x3cd3c, 0x3cd50,
2254                 0x3d200, 0x3d20c,
2255                 0x3d220, 0x3d220,
2256                 0x3d240, 0x3d240,
2257                 0x3d600, 0x3d600,
2258                 0x3d608, 0x3d60c,
2259                 0x3da00, 0x3da1c,
2260                 0x3de04, 0x3de20,
2261                 0x3de38, 0x3de3c,
2262                 0x3de80, 0x3de80,
2263                 0x3de88, 0x3dea8,
2264                 0x3deb0, 0x3deb4,
2265                 0x3dec8, 0x3ded4,
2266                 0x3dfb8, 0x3e004,
2267                 0x3e208, 0x3e23c,
2268                 0x3e600, 0x3e630,
2269                 0x3ea00, 0x3eabc,
2270                 0x3eb00, 0x3eb70,
2271                 0x3f000, 0x3f048,
2272                 0x3f060, 0x3f09c,
2273                 0x3f0f0, 0x3f148,
2274                 0x3f160, 0x3f19c,
2275                 0x3f1f0, 0x3f2e4,
2276                 0x3f2f8, 0x3f3e4,
2277                 0x3f3f8, 0x3f448,
2278                 0x3f460, 0x3f49c,
2279                 0x3f4f0, 0x3f548,
2280                 0x3f560, 0x3f59c,
2281                 0x3f5f0, 0x3f6e4,
2282                 0x3f6f8, 0x3f7e4,
2283                 0x3f7f8, 0x3f7fc,
2284                 0x3f814, 0x3f814,
2285                 0x3f82c, 0x3f82c,
2286                 0x3f880, 0x3f88c,
2287                 0x3f8e8, 0x3f8ec,
2288                 0x3f900, 0x3f948,
2289                 0x3f960, 0x3f99c,
2290                 0x3f9f0, 0x3fae4,
2291                 0x3faf8, 0x3fb10,
2292                 0x3fb28, 0x3fb28,
2293                 0x3fb3c, 0x3fb50,
2294                 0x3fbf0, 0x3fc10,
2295                 0x3fc28, 0x3fc28,
2296                 0x3fc3c, 0x3fc50,
2297                 0x3fcf0, 0x3fcfc,
2298                 0x40000, 0x4000c,
2299                 0x40040, 0x40068,
2300                 0x40080, 0x40144,
2301                 0x40180, 0x4018c,
2302                 0x40200, 0x40298,
2303                 0x402ac, 0x4033c,
2304                 0x403f8, 0x403fc,
2305                 0x41304, 0x413c4,
2306                 0x41400, 0x4141c,
2307                 0x41480, 0x414d0,
2308                 0x44000, 0x44078,
2309                 0x440c0, 0x44278,
2310                 0x442c0, 0x44478,
2311                 0x444c0, 0x44678,
2312                 0x446c0, 0x44878,
2313                 0x448c0, 0x449fc,
2314                 0x45000, 0x45068,
2315                 0x45080, 0x45084,
2316                 0x450a0, 0x450b0,
2317                 0x45200, 0x45268,
2318                 0x45280, 0x45284,
2319                 0x452a0, 0x452b0,
2320                 0x460c0, 0x460e4,
2321                 0x47000, 0x4708c,
2322                 0x47200, 0x47250,
2323                 0x47400, 0x47420,
2324                 0x47600, 0x47618,
2325                 0x47800, 0x47814,
2326                 0x48000, 0x4800c,
2327                 0x48040, 0x48068,
2328                 0x48080, 0x48144,
2329                 0x48180, 0x4818c,
2330                 0x48200, 0x48298,
2331                 0x482ac, 0x4833c,
2332                 0x483f8, 0x483fc,
2333                 0x49304, 0x493c4,
2334                 0x49400, 0x4941c,
2335                 0x49480, 0x494d0,
2336                 0x4c000, 0x4c078,
2337                 0x4c0c0, 0x4c278,
2338                 0x4c2c0, 0x4c478,
2339                 0x4c4c0, 0x4c678,
2340                 0x4c6c0, 0x4c878,
2341                 0x4c8c0, 0x4c9fc,
2342                 0x4d000, 0x4d068,
2343                 0x4d080, 0x4d084,
2344                 0x4d0a0, 0x4d0b0,
2345                 0x4d200, 0x4d268,
2346                 0x4d280, 0x4d284,
2347                 0x4d2a0, 0x4d2b0,
2348                 0x4e0c0, 0x4e0e4,
2349                 0x4f000, 0x4f08c,
2350                 0x4f200, 0x4f250,
2351                 0x4f400, 0x4f420,
2352                 0x4f600, 0x4f618,
2353                 0x4f800, 0x4f814,
2354                 0x50000, 0x500cc,
2355                 0x50400, 0x50400,
2356                 0x50800, 0x508cc,
2357                 0x50c00, 0x50c00,
2358                 0x51000, 0x5101c,
2359                 0x51300, 0x51308,
2360         };
2361
2362         int i;
2363         struct adapter *ap = netdev2adap(dev);
2364         static const unsigned int *reg_ranges;
2365         int arr_size = 0, buf_size = 0;
2366
2367         if (is_t4(ap->params.chip)) {
2368                 reg_ranges = &t4_reg_ranges[0];
2369                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2370                 buf_size = T4_REGMAP_SIZE;
2371         } else {
2372                 reg_ranges = &t5_reg_ranges[0];
2373                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2374                 buf_size = T5_REGMAP_SIZE;
2375         }
2376
2377         regs->version = mk_adap_vers(ap);
2378
2379         memset(buf, 0, buf_size);
2380         for (i = 0; i < arr_size; i += 2)
2381                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2382 }
2383
2384 static int restart_autoneg(struct net_device *dev)
2385 {
2386         struct port_info *p = netdev_priv(dev);
2387
2388         if (!netif_running(dev))
2389                 return -EAGAIN;
2390         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2391                 return -EINVAL;
2392         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2393         return 0;
2394 }
2395
2396 static int identify_port(struct net_device *dev,
2397                          enum ethtool_phys_id_state state)
2398 {
2399         unsigned int val;
2400         struct adapter *adap = netdev2adap(dev);
2401
2402         if (state == ETHTOOL_ID_ACTIVE)
2403                 val = 0xffff;
2404         else if (state == ETHTOOL_ID_INACTIVE)
2405                 val = 0;
2406         else
2407                 return -EINVAL;
2408
2409         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2410 }
2411
2412 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2413 {
2414         unsigned int v = 0;
2415
2416         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2417             type == FW_PORT_TYPE_BT_XAUI) {
2418                 v |= SUPPORTED_TP;
2419                 if (caps & FW_PORT_CAP_SPEED_100M)
2420                         v |= SUPPORTED_100baseT_Full;
2421                 if (caps & FW_PORT_CAP_SPEED_1G)
2422                         v |= SUPPORTED_1000baseT_Full;
2423                 if (caps & FW_PORT_CAP_SPEED_10G)
2424                         v |= SUPPORTED_10000baseT_Full;
2425         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2426                 v |= SUPPORTED_Backplane;
2427                 if (caps & FW_PORT_CAP_SPEED_1G)
2428                         v |= SUPPORTED_1000baseKX_Full;
2429                 if (caps & FW_PORT_CAP_SPEED_10G)
2430                         v |= SUPPORTED_10000baseKX4_Full;
2431         } else if (type == FW_PORT_TYPE_KR)
2432                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2433         else if (type == FW_PORT_TYPE_BP_AP)
2434                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2435                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2436         else if (type == FW_PORT_TYPE_BP4_AP)
2437                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2438                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2439                      SUPPORTED_10000baseKX4_Full;
2440         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2441                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2442                 v |= SUPPORTED_FIBRE;
2443         else if (type == FW_PORT_TYPE_BP40_BA)
2444                 v |= SUPPORTED_40000baseSR4_Full;
2445
2446         if (caps & FW_PORT_CAP_ANEG)
2447                 v |= SUPPORTED_Autoneg;
2448         return v;
2449 }
2450
2451 static unsigned int to_fw_linkcaps(unsigned int caps)
2452 {
2453         unsigned int v = 0;
2454
2455         if (caps & ADVERTISED_100baseT_Full)
2456                 v |= FW_PORT_CAP_SPEED_100M;
2457         if (caps & ADVERTISED_1000baseT_Full)
2458                 v |= FW_PORT_CAP_SPEED_1G;
2459         if (caps & ADVERTISED_10000baseT_Full)
2460                 v |= FW_PORT_CAP_SPEED_10G;
2461         if (caps & ADVERTISED_40000baseSR4_Full)
2462                 v |= FW_PORT_CAP_SPEED_40G;
2463         return v;
2464 }
2465
2466 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2467 {
2468         const struct port_info *p = netdev_priv(dev);
2469
2470         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2471             p->port_type == FW_PORT_TYPE_BT_XFI ||
2472             p->port_type == FW_PORT_TYPE_BT_XAUI)
2473                 cmd->port = PORT_TP;
2474         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2475                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2476                 cmd->port = PORT_FIBRE;
2477         else if (p->port_type == FW_PORT_TYPE_SFP ||
2478                  p->port_type == FW_PORT_TYPE_QSFP_10G ||
2479                  p->port_type == FW_PORT_TYPE_QSFP) {
2480                 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2481                     p->mod_type == FW_PORT_MOD_TYPE_SR ||
2482                     p->mod_type == FW_PORT_MOD_TYPE_ER ||
2483                     p->mod_type == FW_PORT_MOD_TYPE_LRM)
2484                         cmd->port = PORT_FIBRE;
2485                 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2486                          p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2487                         cmd->port = PORT_DA;
2488                 else
2489                         cmd->port = PORT_OTHER;
2490         } else
2491                 cmd->port = PORT_OTHER;
2492
2493         if (p->mdio_addr >= 0) {
2494                 cmd->phy_address = p->mdio_addr;
2495                 cmd->transceiver = XCVR_EXTERNAL;
2496                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2497                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2498         } else {
2499                 cmd->phy_address = 0;  /* not really, but no better option */
2500                 cmd->transceiver = XCVR_INTERNAL;
2501                 cmd->mdio_support = 0;
2502         }
2503
2504         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2505         cmd->advertising = from_fw_linkcaps(p->port_type,
2506                                             p->link_cfg.advertising);
2507         ethtool_cmd_speed_set(cmd,
2508                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2509         cmd->duplex = DUPLEX_FULL;
2510         cmd->autoneg = p->link_cfg.autoneg;
2511         cmd->maxtxpkt = 0;
2512         cmd->maxrxpkt = 0;
2513         return 0;
2514 }
2515
2516 static unsigned int speed_to_caps(int speed)
2517 {
2518         if (speed == 100)
2519                 return FW_PORT_CAP_SPEED_100M;
2520         if (speed == 1000)
2521                 return FW_PORT_CAP_SPEED_1G;
2522         if (speed == 10000)
2523                 return FW_PORT_CAP_SPEED_10G;
2524         if (speed == 40000)
2525                 return FW_PORT_CAP_SPEED_40G;
2526         return 0;
2527 }
2528
2529 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2530 {
2531         unsigned int cap;
2532         struct port_info *p = netdev_priv(dev);
2533         struct link_config *lc = &p->link_cfg;
2534         u32 speed = ethtool_cmd_speed(cmd);
2535
2536         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2537                 return -EINVAL;
2538
2539         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2540                 /*
2541                  * PHY offers a single speed.  See if that's what's
2542                  * being requested.
2543                  */
2544                 if (cmd->autoneg == AUTONEG_DISABLE &&
2545                     (lc->supported & speed_to_caps(speed)))
2546                         return 0;
2547                 return -EINVAL;
2548         }
2549
2550         if (cmd->autoneg == AUTONEG_DISABLE) {
2551                 cap = speed_to_caps(speed);
2552
2553                 if (!(lc->supported & cap) ||
2554                     (speed == 1000) ||
2555                     (speed == 10000) ||
2556                     (speed == 40000))
2557                         return -EINVAL;
2558                 lc->requested_speed = cap;
2559                 lc->advertising = 0;
2560         } else {
2561                 cap = to_fw_linkcaps(cmd->advertising);
2562                 if (!(lc->supported & cap))
2563                         return -EINVAL;
2564                 lc->requested_speed = 0;
2565                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2566         }
2567         lc->autoneg = cmd->autoneg;
2568
2569         if (netif_running(dev))
2570                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2571                                      lc);
2572         return 0;
2573 }
2574
2575 static void get_pauseparam(struct net_device *dev,
2576                            struct ethtool_pauseparam *epause)
2577 {
2578         struct port_info *p = netdev_priv(dev);
2579
2580         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2581         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2582         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2583 }
2584
2585 static int set_pauseparam(struct net_device *dev,
2586                           struct ethtool_pauseparam *epause)
2587 {
2588         struct port_info *p = netdev_priv(dev);
2589         struct link_config *lc = &p->link_cfg;
2590
2591         if (epause->autoneg == AUTONEG_DISABLE)
2592                 lc->requested_fc = 0;
2593         else if (lc->supported & FW_PORT_CAP_ANEG)
2594                 lc->requested_fc = PAUSE_AUTONEG;
2595         else
2596                 return -EINVAL;
2597
2598         if (epause->rx_pause)
2599                 lc->requested_fc |= PAUSE_RX;
2600         if (epause->tx_pause)
2601                 lc->requested_fc |= PAUSE_TX;
2602         if (netif_running(dev))
2603                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2604                                      lc);
2605         return 0;
2606 }
2607
2608 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2609 {
2610         const struct port_info *pi = netdev_priv(dev);
2611         const struct sge *s = &pi->adapter->sge;
2612
2613         e->rx_max_pending = MAX_RX_BUFFERS;
2614         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2615         e->rx_jumbo_max_pending = 0;
2616         e->tx_max_pending = MAX_TXQ_ENTRIES;
2617
2618         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2619         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2620         e->rx_jumbo_pending = 0;
2621         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2622 }
2623
2624 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2625 {
2626         int i;
2627         const struct port_info *pi = netdev_priv(dev);
2628         struct adapter *adapter = pi->adapter;
2629         struct sge *s = &adapter->sge;
2630
2631         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2632             e->tx_pending > MAX_TXQ_ENTRIES ||
2633             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2634             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2635             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2636                 return -EINVAL;
2637
2638         if (adapter->flags & FULL_INIT_DONE)
2639                 return -EBUSY;
2640
2641         for (i = 0; i < pi->nqsets; ++i) {
2642                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2643                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2644                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2645         }
2646         return 0;
2647 }
2648
2649 static int closest_timer(const struct sge *s, int time)
2650 {
2651         int i, delta, match = 0, min_delta = INT_MAX;
2652
2653         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2654                 delta = time - s->timer_val[i];
2655                 if (delta < 0)
2656                         delta = -delta;
2657                 if (delta < min_delta) {
2658                         min_delta = delta;
2659                         match = i;
2660                 }
2661         }
2662         return match;
2663 }
2664
2665 static int closest_thres(const struct sge *s, int thres)
2666 {
2667         int i, delta, match = 0, min_delta = INT_MAX;
2668
2669         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2670                 delta = thres - s->counter_val[i];
2671                 if (delta < 0)
2672                         delta = -delta;
2673                 if (delta < min_delta) {
2674                         min_delta = delta;
2675                         match = i;
2676                 }
2677         }
2678         return match;
2679 }
2680
2681 /*
2682  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2683  */
2684 static unsigned int qtimer_val(const struct adapter *adap,
2685                                const struct sge_rspq *q)
2686 {
2687         unsigned int idx = q->intr_params >> 1;
2688
2689         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2690 }
2691
2692 /**
2693  *      set_rspq_intr_params - set a queue's interrupt holdoff parameters
2694  *      @q: the Rx queue
2695  *      @us: the hold-off time in us, or 0 to disable timer
2696  *      @cnt: the hold-off packet count, or 0 to disable counter
2697  *
2698  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2699  *      one of the two needs to be enabled for the queue to generate interrupts.
2700  */
2701 static int set_rspq_intr_params(struct sge_rspq *q,
2702                                 unsigned int us, unsigned int cnt)
2703 {
2704         struct adapter *adap = q->adap;
2705
2706         if ((us | cnt) == 0)
2707                 cnt = 1;
2708
2709         if (cnt) {
2710                 int err;
2711                 u32 v, new_idx;
2712
2713                 new_idx = closest_thres(&adap->sge, cnt);
2714                 if (q->desc && q->pktcnt_idx != new_idx) {
2715                         /* the queue has already been created, update it */
2716                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2717                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2718                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
2719                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2720                                             &new_idx);
2721                         if (err)
2722                                 return err;
2723                 }
2724                 q->pktcnt_idx = new_idx;
2725         }
2726
2727         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2728         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2729         return 0;
2730 }
2731
2732 /**
2733  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2734  * @dev: the network device
2735  * @us: the hold-off time in us, or 0 to disable timer
2736  * @cnt: the hold-off packet count, or 0 to disable counter
2737  *
2738  * Set the RX interrupt hold-off parameters for a network device.
2739  */
2740 static int set_rx_intr_params(struct net_device *dev,
2741                               unsigned int us, unsigned int cnt)
2742 {
2743         int i, err;
2744         struct port_info *pi = netdev_priv(dev);
2745         struct adapter *adap = pi->adapter;
2746         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2747
2748         for (i = 0; i < pi->nqsets; i++, q++) {
2749                 err = set_rspq_intr_params(&q->rspq, us, cnt);
2750                 if (err)
2751                         return err;
2752         }
2753         return 0;
2754 }
2755
2756 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
2757 {
2758         int i;
2759         struct port_info *pi = netdev_priv(dev);
2760         struct adapter *adap = pi->adapter;
2761         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2762
2763         for (i = 0; i < pi->nqsets; i++, q++)
2764                 q->rspq.adaptive_rx = adaptive_rx;
2765
2766         return 0;
2767 }
2768
2769 static int get_adaptive_rx_setting(struct net_device *dev)
2770 {
2771         struct port_info *pi = netdev_priv(dev);
2772         struct adapter *adap = pi->adapter;
2773         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2774
2775         return q->rspq.adaptive_rx;
2776 }
2777
2778 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2779 {
2780         set_adaptive_rx_setting(dev, c->use_adaptive_rx_coalesce);
2781         return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2782                                   c->rx_max_coalesced_frames);
2783 }
2784
2785 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2786 {
2787         const struct port_info *pi = netdev_priv(dev);
2788         const struct adapter *adap = pi->adapter;
2789         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2790
2791         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2792         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2793                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2794         c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
2795         return 0;
2796 }
2797
2798 /**
2799  *      eeprom_ptov - translate a physical EEPROM address to virtual
2800  *      @phys_addr: the physical EEPROM address
2801  *      @fn: the PCI function number
2802  *      @sz: size of function-specific area
2803  *
2804  *      Translate a physical EEPROM address to virtual.  The first 1K is
2805  *      accessed through virtual addresses starting at 31K, the rest is
2806  *      accessed through virtual addresses starting at 0.
2807  *
2808  *      The mapping is as follows:
2809  *      [0..1K) -> [31K..32K)
2810  *      [1K..1K+A) -> [31K-A..31K)
2811  *      [1K+A..ES) -> [0..ES-A-1K)
2812  *
2813  *      where A = @fn * @sz, and ES = EEPROM size.
2814  */
2815 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2816 {
2817         fn *= sz;
2818         if (phys_addr < 1024)
2819                 return phys_addr + (31 << 10);
2820         if (phys_addr < 1024 + fn)
2821                 return 31744 - fn + phys_addr - 1024;
2822         if (phys_addr < EEPROMSIZE)
2823                 return phys_addr - 1024 - fn;
2824         return -EINVAL;
2825 }
2826
2827 /*
2828  * The next two routines implement eeprom read/write from physical addresses.
2829  */
2830 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2831 {
2832         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2833
2834         if (vaddr >= 0)
2835                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2836         return vaddr < 0 ? vaddr : 0;
2837 }
2838
2839 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2840 {
2841         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2842
2843         if (vaddr >= 0)
2844                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2845         return vaddr < 0 ? vaddr : 0;
2846 }
2847
2848 #define EEPROM_MAGIC 0x38E2F10C
2849
2850 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2851                       u8 *data)
2852 {
2853         int i, err = 0;
2854         struct adapter *adapter = netdev2adap(dev);
2855
2856         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2857         if (!buf)
2858                 return -ENOMEM;
2859
2860         e->magic = EEPROM_MAGIC;
2861         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2862                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2863
2864         if (!err)
2865                 memcpy(data, buf + e->offset, e->len);
2866         kfree(buf);
2867         return err;
2868 }
2869
2870 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2871                       u8 *data)
2872 {
2873         u8 *buf;
2874         int err = 0;
2875         u32 aligned_offset, aligned_len, *p;
2876         struct adapter *adapter = netdev2adap(dev);
2877
2878         if (eeprom->magic != EEPROM_MAGIC)
2879                 return -EINVAL;
2880
2881         aligned_offset = eeprom->offset & ~3;
2882         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2883
2884         if (adapter->fn > 0) {
2885                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2886
2887                 if (aligned_offset < start ||
2888                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2889                         return -EPERM;
2890         }
2891
2892         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2893                 /*
2894                  * RMW possibly needed for first or last words.
2895                  */
2896                 buf = kmalloc(aligned_len, GFP_KERNEL);
2897                 if (!buf)
2898                         return -ENOMEM;
2899                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2900                 if (!err && aligned_len > 4)
2901                         err = eeprom_rd_phys(adapter,
2902                                              aligned_offset + aligned_len - 4,
2903                                              (u32 *)&buf[aligned_len - 4]);
2904                 if (err)
2905                         goto out;
2906                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2907         } else
2908                 buf = data;
2909
2910         err = t4_seeprom_wp(adapter, false);
2911         if (err)
2912                 goto out;
2913
2914         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2915                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2916                 aligned_offset += 4;
2917         }
2918
2919         if (!err)
2920                 err = t4_seeprom_wp(adapter, true);
2921 out:
2922         if (buf != data)
2923                 kfree(buf);
2924         return err;
2925 }
2926
2927 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2928 {
2929         int ret;
2930         const struct firmware *fw;
2931         struct adapter *adap = netdev2adap(netdev);
2932
2933         ef->data[sizeof(ef->data) - 1] = '\0';
2934         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2935         if (ret < 0)
2936                 return ret;
2937
2938         ret = t4_load_fw(adap, fw->data, fw->size);
2939         release_firmware(fw);
2940         if (!ret)
2941                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2942         return ret;
2943 }
2944
2945 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2946 #define BCAST_CRC 0xa0ccc1a6
2947
2948 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2949 {
2950         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2951         wol->wolopts = netdev2adap(dev)->wol;
2952         memset(&wol->sopass, 0, sizeof(wol->sopass));
2953 }
2954
2955 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2956 {
2957         int err = 0;
2958         struct port_info *pi = netdev_priv(dev);
2959
2960         if (wol->wolopts & ~WOL_SUPPORTED)
2961                 return -EINVAL;
2962         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2963                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2964         if (wol->wolopts & WAKE_BCAST) {
2965                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2966                                         ~0ULL, 0, false);
2967                 if (!err)
2968                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2969                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2970         } else
2971                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2972         return err;
2973 }
2974
2975 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2976 {
2977         const struct port_info *pi = netdev_priv(dev);
2978         netdev_features_t changed = dev->features ^ features;
2979         int err;
2980
2981         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2982                 return 0;
2983
2984         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2985                             -1, -1, -1,
2986                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2987         if (unlikely(err))
2988                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2989         return err;
2990 }
2991
2992 static u32 get_rss_table_size(struct net_device *dev)
2993 {
2994         const struct port_info *pi = netdev_priv(dev);
2995
2996         return pi->rss_size;
2997 }
2998
2999 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
3000 {
3001         const struct port_info *pi = netdev_priv(dev);
3002         unsigned int n = pi->rss_size;
3003
3004         while (n--)
3005                 p[n] = pi->rss[n];
3006         return 0;
3007 }
3008
3009 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
3010 {
3011         unsigned int i;
3012         struct port_info *pi = netdev_priv(dev);
3013
3014         for (i = 0; i < pi->rss_size; i++)
3015                 pi->rss[i] = p[i];
3016         if (pi->adapter->flags & FULL_INIT_DONE)
3017                 return write_rss(pi, pi->rss);
3018         return 0;
3019 }
3020
3021 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
3022                      u32 *rules)
3023 {
3024         const struct port_info *pi = netdev_priv(dev);
3025
3026         switch (info->cmd) {
3027         case ETHTOOL_GRXFH: {
3028                 unsigned int v = pi->rss_mode;
3029
3030                 info->data = 0;
3031                 switch (info->flow_type) {
3032                 case TCP_V4_FLOW:
3033                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3034                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3035                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3036                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3037                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3038                         break;
3039                 case UDP_V4_FLOW:
3040                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3041                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3042                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3043                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3044                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3045                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3046                         break;
3047                 case SCTP_V4_FLOW:
3048                 case AH_ESP_V4_FLOW:
3049                 case IPV4_FLOW:
3050                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3051                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3052                         break;
3053                 case TCP_V6_FLOW:
3054                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3055                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3056                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3057                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3058                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3059                         break;
3060                 case UDP_V6_FLOW:
3061                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3062                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3063                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3064                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3065                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3066                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3067                         break;
3068                 case SCTP_V6_FLOW:
3069                 case AH_ESP_V6_FLOW:
3070                 case IPV6_FLOW:
3071                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3072                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3073                         break;
3074                 }
3075                 return 0;
3076         }
3077         case ETHTOOL_GRXRINGS:
3078                 info->data = pi->nqsets;
3079                 return 0;
3080         }
3081         return -EOPNOTSUPP;
3082 }
3083
3084 static const struct ethtool_ops cxgb_ethtool_ops = {
3085         .get_settings      = get_settings,
3086         .set_settings      = set_settings,
3087         .get_drvinfo       = get_drvinfo,
3088         .get_msglevel      = get_msglevel,
3089         .set_msglevel      = set_msglevel,
3090         .get_ringparam     = get_sge_param,
3091         .set_ringparam     = set_sge_param,
3092         .get_coalesce      = get_coalesce,
3093         .set_coalesce      = set_coalesce,
3094         .get_eeprom_len    = get_eeprom_len,
3095         .get_eeprom        = get_eeprom,
3096         .set_eeprom        = set_eeprom,
3097         .get_pauseparam    = get_pauseparam,
3098         .set_pauseparam    = set_pauseparam,
3099         .get_link          = ethtool_op_get_link,
3100         .get_strings       = get_strings,
3101         .set_phys_id       = identify_port,
3102         .nway_reset        = restart_autoneg,
3103         .get_sset_count    = get_sset_count,
3104         .get_ethtool_stats = get_stats,
3105         .get_regs_len      = get_regs_len,
3106         .get_regs          = get_regs,
3107         .get_wol           = get_wol,
3108         .set_wol           = set_wol,
3109         .get_rxnfc         = get_rxnfc,
3110         .get_rxfh_indir_size = get_rss_table_size,
3111         .get_rxfh          = get_rss_table,
3112         .set_rxfh          = set_rss_table,
3113         .flash_device      = set_flash,
3114 };
3115
3116 /*
3117  * debugfs support
3118  */
3119 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3120                         loff_t *ppos)
3121 {
3122         loff_t pos = *ppos;
3123         loff_t avail = file_inode(file)->i_size;
3124         unsigned int mem = (uintptr_t)file->private_data & 3;
3125         struct adapter *adap = file->private_data - mem;
3126         __be32 *data;
3127         int ret;
3128
3129         if (pos < 0)
3130                 return -EINVAL;
3131         if (pos >= avail)
3132                 return 0;
3133         if (count > avail - pos)
3134                 count = avail - pos;
3135
3136         data = t4_alloc_mem(count);
3137         if (!data)
3138                 return -ENOMEM;
3139
3140         spin_lock(&adap->win0_lock);
3141         ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3142         spin_unlock(&adap->win0_lock);
3143         if (ret) {
3144                 t4_free_mem(data);
3145                 return ret;
3146         }
3147         ret = copy_to_user(buf, data, count);
3148
3149         t4_free_mem(data);
3150         if (ret)
3151                 return -EFAULT;
3152
3153         *ppos = pos + count;
3154         return count;
3155 }
3156
3157 static const struct file_operations mem_debugfs_fops = {
3158         .owner   = THIS_MODULE,
3159         .open    = simple_open,
3160         .read    = mem_read,
3161         .llseek  = default_llseek,
3162 };
3163
3164 static void add_debugfs_mem(struct adapter *adap, const char *name,
3165                             unsigned int idx, unsigned int size_mb)
3166 {
3167         struct dentry *de;
3168
3169         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3170                                  (void *)adap + idx, &mem_debugfs_fops);
3171         if (de && de->d_inode)
3172                 de->d_inode->i_size = size_mb << 20;
3173 }
3174
3175 static int setup_debugfs(struct adapter *adap)
3176 {
3177         int i;
3178         u32 size;
3179
3180         if (IS_ERR_OR_NULL(adap->debugfs_root))
3181                 return -1;
3182
3183         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
3184         if (i & EDRAM0_ENABLE) {
3185                 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3186                 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3187         }
3188         if (i & EDRAM1_ENABLE) {
3189                 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3190                 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3191         }
3192         if (is_t4(adap->params.chip)) {
3193                 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3194                 if (i & EXT_MEM_ENABLE)
3195                         add_debugfs_mem(adap, "mc", MEM_MC,
3196                                         EXT_MEM_SIZE_GET(size));
3197         } else {
3198                 if (i & EXT_MEM_ENABLE) {
3199                         size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3200                         add_debugfs_mem(adap, "mc0", MEM_MC0,
3201                                         EXT_MEM_SIZE_GET(size));
3202                 }
3203                 if (i & EXT_MEM1_ENABLE) {
3204                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3205                         add_debugfs_mem(adap, "mc1", MEM_MC1,
3206                                         EXT_MEM_SIZE_GET(size));
3207                 }
3208         }
3209         if (adap->l2t)
3210                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3211                                     &t4_l2t_fops);
3212         return 0;
3213 }
3214
3215 /*
3216  * upper-layer driver support
3217  */
3218
3219 /*
3220  * Allocate an active-open TID and set it to the supplied value.
3221  */
3222 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3223 {
3224         int atid = -1;
3225
3226         spin_lock_bh(&t->atid_lock);
3227         if (t->afree) {
3228                 union aopen_entry *p = t->afree;
3229
3230                 atid = (p - t->atid_tab) + t->atid_base;
3231                 t->afree = p->next;
3232                 p->data = data;
3233                 t->atids_in_use++;
3234         }
3235         spin_unlock_bh(&t->atid_lock);
3236         return atid;
3237 }
3238 EXPORT_SYMBOL(cxgb4_alloc_atid);
3239
3240 /*
3241  * Release an active-open TID.
3242  */
3243 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3244 {
3245         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3246
3247         spin_lock_bh(&t->atid_lock);
3248         p->next = t->afree;
3249         t->afree = p;
3250         t->atids_in_use--;
3251         spin_unlock_bh(&t->atid_lock);
3252 }
3253 EXPORT_SYMBOL(cxgb4_free_atid);
3254
3255 /*
3256  * Allocate a server TID and set it to the supplied value.
3257  */
3258 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3259 {
3260         int stid;
3261
3262         spin_lock_bh(&t->stid_lock);
3263         if (family == PF_INET) {
3264                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3265                 if (stid < t->nstids)
3266                         __set_bit(stid, t->stid_bmap);
3267                 else
3268                         stid = -1;
3269         } else {
3270                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3271                 if (stid < 0)
3272                         stid = -1;
3273         }
3274         if (stid >= 0) {
3275                 t->stid_tab[stid].data = data;
3276                 stid += t->stid_base;
3277                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3278                  * This is equivalent to 4 TIDs. With CLIP enabled it
3279                  * needs 2 TIDs.
3280                  */
3281                 if (family == PF_INET)
3282                         t->stids_in_use++;
3283                 else
3284                         t->stids_in_use += 4;
3285         }
3286         spin_unlock_bh(&t->stid_lock);
3287         return stid;
3288 }
3289 EXPORT_SYMBOL(cxgb4_alloc_stid);
3290
3291 /* Allocate a server filter TID and set it to the supplied value.
3292  */
3293 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3294 {
3295         int stid;
3296
3297         spin_lock_bh(&t->stid_lock);
3298         if (family == PF_INET) {
3299                 stid = find_next_zero_bit(t->stid_bmap,
3300                                 t->nstids + t->nsftids, t->nstids);
3301                 if (stid < (t->nstids + t->nsftids))
3302                         __set_bit(stid, t->stid_bmap);
3303                 else
3304                         stid = -1;
3305         } else {
3306                 stid = -1;
3307         }
3308         if (stid >= 0) {
3309                 t->stid_tab[stid].data = data;
3310                 stid -= t->nstids;
3311                 stid += t->sftid_base;
3312                 t->stids_in_use++;
3313         }
3314         spin_unlock_bh(&t->stid_lock);
3315         return stid;
3316 }
3317 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3318
3319 /* Release a server TID.
3320  */
3321 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3322 {
3323         /* Is it a server filter TID? */
3324         if (t->nsftids && (stid >= t->sftid_base)) {
3325                 stid -= t->sftid_base;
3326                 stid += t->nstids;
3327         } else {
3328                 stid -= t->stid_base;
3329         }
3330
3331         spin_lock_bh(&t->stid_lock);
3332         if (family == PF_INET)
3333                 __clear_bit(stid, t->stid_bmap);
3334         else
3335                 bitmap_release_region(t->stid_bmap, stid, 2);
3336         t->stid_tab[stid].data = NULL;
3337         if (family == PF_INET)
3338                 t->stids_in_use--;
3339         else
3340                 t->stids_in_use -= 4;
3341         spin_unlock_bh(&t->stid_lock);
3342 }
3343 EXPORT_SYMBOL(cxgb4_free_stid);
3344
3345 /*
3346  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3347  */
3348 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3349                            unsigned int tid)
3350 {
3351         struct cpl_tid_release *req;
3352
3353         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3354         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3355         INIT_TP_WR(req, tid);
3356         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3357 }
3358
3359 /*
3360  * Queue a TID release request and if necessary schedule a work queue to
3361  * process it.
3362  */
3363 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3364                                     unsigned int tid)
3365 {
3366         void **p = &t->tid_tab[tid];
3367         struct adapter *adap = container_of(t, struct adapter, tids);
3368
3369         spin_lock_bh(&adap->tid_release_lock);
3370         *p = adap->tid_release_head;
3371         /* Low 2 bits encode the Tx channel number */
3372         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3373         if (!adap->tid_release_task_busy) {
3374                 adap->tid_release_task_busy = true;
3375                 queue_work(adap->workq, &adap->tid_release_task);
3376         }
3377         spin_unlock_bh(&adap->tid_release_lock);
3378 }
3379
3380 /*
3381  * Process the list of pending TID release requests.
3382  */
3383 static void process_tid_release_list(struct work_struct *work)
3384 {
3385         struct sk_buff *skb;
3386         struct adapter *adap;
3387
3388         adap = container_of(work, struct adapter, tid_release_task);
3389
3390         spin_lock_bh(&adap->tid_release_lock);
3391         while (adap->tid_release_head) {
3392                 void **p = adap->tid_release_head;
3393                 unsigned int chan = (uintptr_t)p & 3;
3394                 p = (void *)p - chan;
3395
3396                 adap->tid_release_head = *p;
3397                 *p = NULL;
3398                 spin_unlock_bh(&adap->tid_release_lock);
3399
3400                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3401                                          GFP_KERNEL)))
3402                         schedule_timeout_uninterruptible(1);
3403
3404                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3405                 t4_ofld_send(adap, skb);
3406                 spin_lock_bh(&adap->tid_release_lock);
3407         }
3408         adap->tid_release_task_busy = false;
3409         spin_unlock_bh(&adap->tid_release_lock);
3410 }
3411
3412 /*
3413  * Release a TID and inform HW.  If we are unable to allocate the release
3414  * message we defer to a work queue.
3415  */
3416 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3417 {
3418         void *old;
3419         struct sk_buff *skb;
3420         struct adapter *adap = container_of(t, struct adapter, tids);
3421
3422         old = t->tid_tab[tid];
3423         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3424         if (likely(skb)) {
3425                 t->tid_tab[tid] = NULL;
3426                 mk_tid_release(skb, chan, tid);
3427                 t4_ofld_send(adap, skb);
3428         } else
3429                 cxgb4_queue_tid_release(t, chan, tid);
3430         if (old)
3431                 atomic_dec(&t->tids_in_use);
3432 }
3433 EXPORT_SYMBOL(cxgb4_remove_tid);
3434
3435 /*
3436  * Allocate and initialize the TID tables.  Returns 0 on success.
3437  */
3438 static int tid_init(struct tid_info *t)
3439 {
3440         size_t size;
3441         unsigned int stid_bmap_size;
3442         unsigned int natids = t->natids;
3443         struct adapter *adap = container_of(t, struct adapter, tids);
3444
3445         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3446         size = t->ntids * sizeof(*t->tid_tab) +
3447                natids * sizeof(*t->atid_tab) +
3448                t->nstids * sizeof(*t->stid_tab) +
3449                t->nsftids * sizeof(*t->stid_tab) +
3450                stid_bmap_size * sizeof(long) +
3451                t->nftids * sizeof(*t->ftid_tab) +
3452                t->nsftids * sizeof(*t->ftid_tab);
3453
3454         t->tid_tab = t4_alloc_mem(size);
3455         if (!t->tid_tab)
3456                 return -ENOMEM;
3457
3458         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3459         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3460         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3461         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3462         spin_lock_init(&t->stid_lock);
3463         spin_lock_init(&t->atid_lock);
3464
3465         t->stids_in_use = 0;
3466         t->afree = NULL;
3467         t->atids_in_use = 0;
3468         atomic_set(&t->tids_in_use, 0);
3469
3470         /* Setup the free list for atid_tab and clear the stid bitmap. */
3471         if (natids) {
3472                 while (--natids)
3473                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3474                 t->afree = t->atid_tab;
3475         }
3476         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3477         /* Reserve stid 0 for T4/T5 adapters */
3478         if (!t->stid_base &&
3479             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3480                 __set_bit(0, t->stid_bmap);
3481
3482         return 0;
3483 }
3484
3485 int cxgb4_clip_get(const struct net_device *dev,
3486                    const struct in6_addr *lip)
3487 {
3488         struct adapter *adap;
3489         struct fw_clip_cmd c;
3490
3491         adap = netdev2adap(dev);
3492         memset(&c, 0, sizeof(c));
3493         c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3494                         FW_CMD_REQUEST | FW_CMD_WRITE);
3495         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3496         c.ip_hi = *(__be64 *)(lip->s6_addr);
3497         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3498         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3499 }
3500 EXPORT_SYMBOL(cxgb4_clip_get);
3501
3502 int cxgb4_clip_release(const struct net_device *dev,
3503                        const struct in6_addr *lip)
3504 {
3505         struct adapter *adap;
3506         struct fw_clip_cmd c;
3507
3508         adap = netdev2adap(dev);
3509         memset(&c, 0, sizeof(c));
3510         c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3511                         FW_CMD_REQUEST | FW_CMD_READ);
3512         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3513         c.ip_hi = *(__be64 *)(lip->s6_addr);
3514         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3515         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3516 }
3517 EXPORT_SYMBOL(cxgb4_clip_release);
3518
3519 /**
3520  *      cxgb4_create_server - create an IP server
3521  *      @dev: the device
3522  *      @stid: the server TID
3523  *      @sip: local IP address to bind server to
3524  *      @sport: the server's TCP port
3525  *      @queue: queue to direct messages from this server to
3526  *
3527  *      Create an IP server for the given port and address.
3528  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3529  */
3530 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3531                         __be32 sip, __be16 sport, __be16 vlan,
3532                         unsigned int queue)
3533 {
3534         unsigned int chan;
3535         struct sk_buff *skb;
3536         struct adapter *adap;
3537         struct cpl_pass_open_req *req;
3538         int ret;
3539
3540         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3541         if (!skb)
3542                 return -ENOMEM;
3543
3544         adap = netdev2adap(dev);
3545         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3546         INIT_TP_WR(req, 0);
3547         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3548         req->local_port = sport;
3549         req->peer_port = htons(0);
3550         req->local_ip = sip;
3551         req->peer_ip = htonl(0);
3552         chan = rxq_to_chan(&adap->sge, queue);
3553         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3554         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3555                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3556         ret = t4_mgmt_tx(adap, skb);
3557         return net_xmit_eval(ret);
3558 }
3559 EXPORT_SYMBOL(cxgb4_create_server);
3560
3561 /*      cxgb4_create_server6 - create an IPv6 server
3562  *      @dev: the device
3563  *      @stid: the server TID
3564  *      @sip: local IPv6 address to bind server to
3565  *      @sport: the server's TCP port
3566  *      @queue: queue to direct messages from this server to
3567  *
3568  *      Create an IPv6 server for the given port and address.
3569  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3570  */
3571 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3572                          const struct in6_addr *sip, __be16 sport,
3573                          unsigned int queue)
3574 {
3575         unsigned int chan;
3576         struct sk_buff *skb;
3577         struct adapter *adap;
3578         struct cpl_pass_open_req6 *req;
3579         int ret;
3580
3581         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3582         if (!skb)
3583                 return -ENOMEM;
3584
3585         adap = netdev2adap(dev);
3586         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3587         INIT_TP_WR(req, 0);
3588         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3589         req->local_port = sport;
3590         req->peer_port = htons(0);
3591         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3592         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3593         req->peer_ip_hi = cpu_to_be64(0);
3594         req->peer_ip_lo = cpu_to_be64(0);
3595         chan = rxq_to_chan(&adap->sge, queue);
3596         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3597         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3598                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3599         ret = t4_mgmt_tx(adap, skb);
3600         return net_xmit_eval(ret);
3601 }
3602 EXPORT_SYMBOL(cxgb4_create_server6);
3603
3604 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3605                         unsigned int queue, bool ipv6)
3606 {
3607         struct sk_buff *skb;
3608         struct adapter *adap;
3609         struct cpl_close_listsvr_req *req;
3610         int ret;
3611
3612         adap = netdev2adap(dev);
3613
3614         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3615         if (!skb)
3616                 return -ENOMEM;
3617
3618         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3619         INIT_TP_WR(req, 0);
3620         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3621         req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3622                                 LISTSVR_IPV6(0)) | QUEUENO(queue));
3623         ret = t4_mgmt_tx(adap, skb);
3624         return net_xmit_eval(ret);
3625 }
3626 EXPORT_SYMBOL(cxgb4_remove_server);
3627
3628 /**
3629  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3630  *      @mtus: the HW MTU table
3631  *      @mtu: the target MTU
3632  *      @idx: index of selected entry in the MTU table
3633  *
3634  *      Returns the index and the value in the HW MTU table that is closest to
3635  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3636  *      table, in which case that smallest available value is selected.
3637  */
3638 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3639                             unsigned int *idx)
3640 {
3641         unsigned int i = 0;
3642
3643         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3644                 ++i;
3645         if (idx)
3646                 *idx = i;
3647         return mtus[i];
3648 }
3649 EXPORT_SYMBOL(cxgb4_best_mtu);
3650
3651 /**
3652  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3653  *     @mtus: the HW MTU table
3654  *     @header_size: Header Size
3655  *     @data_size_max: maximum Data Segment Size
3656  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3657  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3658  *
3659  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3660  *     MTU Table based solely on a Maximum MTU parameter, we break that
3661  *     parameter up into a Header Size and Maximum Data Segment Size, and
3662  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3663  *     the Hardware MTU Table which will result in a Data Segment Size with
3664  *     the requested alignment _and_ that MTU isn't "too far" from the
3665  *     closest MTU, then we'll return that rather than the closest MTU.
3666  */
3667 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3668                                     unsigned short header_size,
3669                                     unsigned short data_size_max,
3670                                     unsigned short data_size_align,
3671                                     unsigned int *mtu_idxp)
3672 {
3673         unsigned short max_mtu = header_size + data_size_max;
3674         unsigned short data_size_align_mask = data_size_align - 1;
3675         int mtu_idx, aligned_mtu_idx;
3676
3677         /* Scan the MTU Table till we find an MTU which is larger than our
3678          * Maximum MTU or we reach the end of the table.  Along the way,
3679          * record the last MTU found, if any, which will result in a Data
3680          * Segment Length matching the requested alignment.
3681          */
3682         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3683                 unsigned short data_size = mtus[mtu_idx] - header_size;
3684
3685                 /* If this MTU minus the Header Size would result in a
3686                  * Data Segment Size of the desired alignment, remember it.
3687                  */
3688                 if ((data_size & data_size_align_mask) == 0)
3689                         aligned_mtu_idx = mtu_idx;
3690
3691                 /* If we're not at the end of the Hardware MTU Table and the
3692                  * next element is larger than our Maximum MTU, drop out of
3693                  * the loop.
3694                  */
3695                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3696                         break;
3697         }
3698
3699         /* If we fell out of the loop because we ran to the end of the table,
3700          * then we just have to use the last [largest] entry.
3701          */
3702         if (mtu_idx == NMTUS)
3703                 mtu_idx--;
3704
3705         /* If we found an MTU which resulted in the requested Data Segment
3706          * Length alignment and that's "not far" from the largest MTU which is
3707          * less than or equal to the maximum MTU, then use that.
3708          */
3709         if (aligned_mtu_idx >= 0 &&
3710             mtu_idx - aligned_mtu_idx <= 1)
3711                 mtu_idx = aligned_mtu_idx;
3712
3713         /* If the caller has passed in an MTU Index pointer, pass the
3714          * MTU Index back.  Return the MTU value.
3715          */
3716         if (mtu_idxp)
3717                 *mtu_idxp = mtu_idx;
3718         return mtus[mtu_idx];
3719 }
3720 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3721
3722 /**
3723  *      cxgb4_port_chan - get the HW channel of a port
3724  *      @dev: the net device for the port
3725  *
3726  *      Return the HW Tx channel of the given port.
3727  */
3728 unsigned int cxgb4_port_chan(const struct net_device *dev)
3729 {
3730         return netdev2pinfo(dev)->tx_chan;
3731 }
3732 EXPORT_SYMBOL(cxgb4_port_chan);
3733
3734 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3735 {
3736         struct adapter *adap = netdev2adap(dev);
3737         u32 v1, v2, lp_count, hp_count;
3738
3739         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3740         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3741         if (is_t4(adap->params.chip)) {
3742                 lp_count = G_LP_COUNT(v1);
3743                 hp_count = G_HP_COUNT(v1);
3744         } else {
3745                 lp_count = G_LP_COUNT_T5(v1);
3746                 hp_count = G_HP_COUNT_T5(v2);
3747         }
3748         return lpfifo ? lp_count : hp_count;
3749 }
3750 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3751
3752 /**
3753  *      cxgb4_port_viid - get the VI id of a port
3754  *      @dev: the net device for the port
3755  *
3756  *      Return the VI id of the given port.
3757  */
3758 unsigned int cxgb4_port_viid(const struct net_device *dev)
3759 {
3760         return netdev2pinfo(dev)->viid;
3761 }
3762 EXPORT_SYMBOL(cxgb4_port_viid);
3763
3764 /**
3765  *      cxgb4_port_idx - get the index of a port
3766  *      @dev: the net device for the port
3767  *
3768  *      Return the index of the given port.
3769  */
3770 unsigned int cxgb4_port_idx(const struct net_device *dev)
3771 {
3772         return netdev2pinfo(dev)->port_id;
3773 }
3774 EXPORT_SYMBOL(cxgb4_port_idx);
3775
3776 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3777                          struct tp_tcp_stats *v6)
3778 {
3779         struct adapter *adap = pci_get_drvdata(pdev);
3780
3781         spin_lock(&adap->stats_lock);
3782         t4_tp_get_tcp_stats(adap, v4, v6);
3783         spin_unlock(&adap->stats_lock);
3784 }
3785 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3786
3787 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3788                       const unsigned int *pgsz_order)
3789 {
3790         struct adapter *adap = netdev2adap(dev);
3791
3792         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3793         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3794                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3795                      HPZ3(pgsz_order[3]));
3796 }
3797 EXPORT_SYMBOL(cxgb4_iscsi_init);
3798
3799 int cxgb4_flush_eq_cache(struct net_device *dev)
3800 {
3801         struct adapter *adap = netdev2adap(dev);
3802         int ret;
3803
3804         ret = t4_fwaddrspace_write(adap, adap->mbox,
3805                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3806         return ret;
3807 }
3808 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3809
3810 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3811 {
3812         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3813         __be64 indices;
3814         int ret;
3815
3816         spin_lock(&adap->win0_lock);
3817         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3818                            sizeof(indices), (__be32 *)&indices,
3819                            T4_MEMORY_READ);
3820         spin_unlock(&adap->win0_lock);
3821         if (!ret) {
3822                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3823                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3824         }
3825         return ret;
3826 }
3827
3828 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3829                         u16 size)
3830 {
3831         struct adapter *adap = netdev2adap(dev);
3832         u16 hw_pidx, hw_cidx;
3833         int ret;
3834
3835         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3836         if (ret)
3837                 goto out;
3838
3839         if (pidx != hw_pidx) {
3840                 u16 delta;
3841
3842                 if (pidx >= hw_pidx)
3843                         delta = pidx - hw_pidx;
3844                 else
3845                         delta = size - hw_pidx + pidx;
3846                 wmb();
3847                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3848                              QID(qid) | PIDX(delta));
3849         }
3850 out:
3851         return ret;
3852 }
3853 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3854
3855 void cxgb4_disable_db_coalescing(struct net_device *dev)
3856 {
3857         struct adapter *adap;
3858
3859         adap = netdev2adap(dev);
3860         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3861                          F_NOCOALESCE);
3862 }
3863 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3864
3865 void cxgb4_enable_db_coalescing(struct net_device *dev)
3866 {
3867         struct adapter *adap;
3868
3869         adap = netdev2adap(dev);
3870         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3871 }
3872 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3873
3874 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3875 {
3876         struct adapter *adap;
3877         u32 offset, memtype, memaddr;
3878         u32 edc0_size, edc1_size, mc0_size, mc1_size;
3879         u32 edc0_end, edc1_end, mc0_end, mc1_end;
3880         int ret;
3881
3882         adap = netdev2adap(dev);
3883
3884         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3885
3886         /* Figure out where the offset lands in the Memory Type/Address scheme.
3887          * This code assumes that the memory is laid out starting at offset 0
3888          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3889          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
3890          * MC0, and some have both MC0 and MC1.
3891          */
3892         edc0_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)) << 20;
3893         edc1_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM1_BAR)) << 20;
3894         mc0_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)) << 20;
3895
3896         edc0_end = edc0_size;
3897         edc1_end = edc0_end + edc1_size;
3898         mc0_end = edc1_end + mc0_size;
3899
3900         if (offset < edc0_end) {
3901                 memtype = MEM_EDC0;
3902                 memaddr = offset;
3903         } else if (offset < edc1_end) {
3904                 memtype = MEM_EDC1;
3905                 memaddr = offset - edc0_end;
3906         } else {
3907                 if (offset < mc0_end) {
3908                         memtype = MEM_MC0;
3909                         memaddr = offset - edc1_end;
3910                 } else if (is_t4(adap->params.chip)) {
3911                         /* T4 only has a single memory channel */
3912                         goto err;
3913                 } else {
3914                         mc1_size = EXT_MEM_SIZE_GET(
3915                                         t4_read_reg(adap,
3916                                                     MA_EXT_MEMORY1_BAR)) << 20;
3917                         mc1_end = mc0_end + mc1_size;
3918                         if (offset < mc1_end) {
3919                                 memtype = MEM_MC1;
3920                                 memaddr = offset - mc0_end;
3921                         } else {
3922                                 /* offset beyond the end of any memory */
3923                                 goto err;
3924                         }
3925                 }
3926         }
3927
3928         spin_lock(&adap->win0_lock);
3929         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3930         spin_unlock(&adap->win0_lock);
3931         return ret;
3932
3933 err:
3934         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3935                 stag, offset);
3936         return -EINVAL;
3937 }
3938 EXPORT_SYMBOL(cxgb4_read_tpte);
3939
3940 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3941 {
3942         u32 hi, lo;
3943         struct adapter *adap;
3944
3945         adap = netdev2adap(dev);
3946         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3947         hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3948
3949         return ((u64)hi << 32) | (u64)lo;
3950 }
3951 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3952
3953 static struct pci_driver cxgb4_driver;
3954
3955 static void check_neigh_update(struct neighbour *neigh)
3956 {
3957         const struct device *parent;
3958         const struct net_device *netdev = neigh->dev;
3959
3960         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3961                 netdev = vlan_dev_real_dev(netdev);
3962         parent = netdev->dev.parent;
3963         if (parent && parent->driver == &cxgb4_driver.driver)
3964                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3965 }
3966
3967 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3968                        void *data)
3969 {
3970         switch (event) {
3971         case NETEVENT_NEIGH_UPDATE:
3972                 check_neigh_update(data);
3973                 break;
3974         case NETEVENT_REDIRECT:
3975         default:
3976                 break;
3977         }
3978         return 0;
3979 }
3980
3981 static bool netevent_registered;
3982 static struct notifier_block cxgb4_netevent_nb = {
3983         .notifier_call = netevent_cb
3984 };
3985
3986 static void drain_db_fifo(struct adapter *adap, int usecs)
3987 {
3988         u32 v1, v2, lp_count, hp_count;
3989
3990         do {
3991                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3992                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3993                 if (is_t4(adap->params.chip)) {
3994                         lp_count = G_LP_COUNT(v1);
3995                         hp_count = G_HP_COUNT(v1);
3996                 } else {
3997                         lp_count = G_LP_COUNT_T5(v1);
3998                         hp_count = G_HP_COUNT_T5(v2);
3999                 }
4000
4001                 if (lp_count == 0 && hp_count == 0)
4002                         break;
4003                 set_current_state(TASK_UNINTERRUPTIBLE);
4004                 schedule_timeout(usecs_to_jiffies(usecs));
4005         } while (1);
4006 }
4007
4008 static void disable_txq_db(struct sge_txq *q)
4009 {
4010         unsigned long flags;
4011
4012         spin_lock_irqsave(&q->db_lock, flags);
4013         q->db_disabled = 1;
4014         spin_unlock_irqrestore(&q->db_lock, flags);
4015 }
4016
4017 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
4018 {
4019         spin_lock_irq(&q->db_lock);
4020         if (q->db_pidx_inc) {
4021                 /* Make sure that all writes to the TX descriptors
4022                  * are committed before we tell HW about them.
4023                  */
4024                 wmb();
4025                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4026                              QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
4027                 q->db_pidx_inc = 0;
4028         }
4029         q->db_disabled = 0;
4030         spin_unlock_irq(&q->db_lock);
4031 }
4032
4033 static void disable_dbs(struct adapter *adap)
4034 {
4035         int i;
4036
4037         for_each_ethrxq(&adap->sge, i)
4038                 disable_txq_db(&adap->sge.ethtxq[i].q);
4039         for_each_ofldrxq(&adap->sge, i)
4040                 disable_txq_db(&adap->sge.ofldtxq[i].q);
4041         for_each_port(adap, i)
4042                 disable_txq_db(&adap->sge.ctrlq[i].q);
4043 }
4044
4045 static void enable_dbs(struct adapter *adap)
4046 {
4047         int i;
4048
4049         for_each_ethrxq(&adap->sge, i)
4050                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
4051         for_each_ofldrxq(&adap->sge, i)
4052                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
4053         for_each_port(adap, i)
4054                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
4055 }
4056
4057 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
4058 {
4059         if (adap->uld_handle[CXGB4_ULD_RDMA])
4060                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
4061                                 cmd);
4062 }
4063
4064 static void process_db_full(struct work_struct *work)
4065 {
4066         struct adapter *adap;
4067
4068         adap = container_of(work, struct adapter, db_full_task);
4069
4070         drain_db_fifo(adap, dbfifo_drain_delay);
4071         enable_dbs(adap);
4072         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4073         t4_set_reg_field(adap, SGE_INT_ENABLE3,
4074                          DBFIFO_HP_INT | DBFIFO_LP_INT,
4075                          DBFIFO_HP_INT | DBFIFO_LP_INT);
4076 }
4077
4078 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4079 {
4080         u16 hw_pidx, hw_cidx;
4081         int ret;
4082
4083         spin_lock_irq(&q->db_lock);
4084         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4085         if (ret)
4086                 goto out;
4087         if (q->db_pidx != hw_pidx) {
4088                 u16 delta;
4089
4090                 if (q->db_pidx >= hw_pidx)
4091                         delta = q->db_pidx - hw_pidx;
4092                 else
4093                         delta = q->size - hw_pidx + q->db_pidx;
4094                 wmb();
4095                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4096                              QID(q->cntxt_id) | PIDX(delta));
4097         }
4098 out:
4099         q->db_disabled = 0;
4100         q->db_pidx_inc = 0;
4101         spin_unlock_irq(&q->db_lock);
4102         if (ret)
4103                 CH_WARN(adap, "DB drop recovery failed.\n");
4104 }
4105 static void recover_all_queues(struct adapter *adap)
4106 {
4107         int i;
4108
4109         for_each_ethrxq(&adap->sge, i)
4110                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4111         for_each_ofldrxq(&adap->sge, i)
4112                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4113         for_each_port(adap, i)
4114                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4115 }
4116
4117 static void process_db_drop(struct work_struct *work)
4118 {
4119         struct adapter *adap;
4120
4121         adap = container_of(work, struct adapter, db_drop_task);
4122
4123         if (is_t4(adap->params.chip)) {
4124                 drain_db_fifo(adap, dbfifo_drain_delay);
4125                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4126                 drain_db_fifo(adap, dbfifo_drain_delay);
4127                 recover_all_queues(adap);
4128                 drain_db_fifo(adap, dbfifo_drain_delay);
4129                 enable_dbs(adap);
4130                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4131         } else {
4132                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4133                 u16 qid = (dropped_db >> 15) & 0x1ffff;
4134                 u16 pidx_inc = dropped_db & 0x1fff;
4135                 unsigned int s_qpp;
4136                 unsigned short udb_density;
4137                 unsigned long qpshift;
4138                 int page;
4139                 u32 udb;
4140
4141                 dev_warn(adap->pdev_dev,
4142                          "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4143                          dropped_db, qid,
4144                          (dropped_db >> 14) & 1,
4145                          (dropped_db >> 13) & 1,
4146                          pidx_inc);
4147
4148                 drain_db_fifo(adap, 1);
4149
4150                 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4151                 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4152                                 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4153                 qpshift = PAGE_SHIFT - ilog2(udb_density);
4154                 udb = qid << qpshift;
4155                 udb &= PAGE_MASK;
4156                 page = udb / PAGE_SIZE;
4157                 udb += (qid - (page * udb_density)) * 128;
4158
4159                 writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
4160
4161                 /* Re-enable BAR2 WC */
4162                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4163         }
4164
4165         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4166 }
4167
4168 void t4_db_full(struct adapter *adap)
4169 {
4170         if (is_t4(adap->params.chip)) {
4171                 disable_dbs(adap);
4172                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4173                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4174                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4175                 queue_work(adap->workq, &adap->db_full_task);
4176         }
4177 }
4178
4179 void t4_db_dropped(struct adapter *adap)
4180 {
4181         if (is_t4(adap->params.chip)) {
4182                 disable_dbs(adap);
4183                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4184         }
4185         queue_work(adap->workq, &adap->db_drop_task);
4186 }
4187
4188 static void uld_attach(struct adapter *adap, unsigned int uld)
4189 {
4190         void *handle;
4191         struct cxgb4_lld_info lli;
4192         unsigned short i;
4193
4194         lli.pdev = adap->pdev;
4195         lli.pf = adap->fn;
4196         lli.l2t = adap->l2t;
4197         lli.tids = &adap->tids;
4198         lli.ports = adap->port;
4199         lli.vr = &adap->vres;
4200         lli.mtus = adap->params.mtus;
4201         if (uld == CXGB4_ULD_RDMA) {
4202                 lli.rxq_ids = adap->sge.rdma_rxq;
4203                 lli.ciq_ids = adap->sge.rdma_ciq;
4204                 lli.nrxq = adap->sge.rdmaqs;
4205                 lli.nciq = adap->sge.rdmaciqs;
4206         } else if (uld == CXGB4_ULD_ISCSI) {
4207                 lli.rxq_ids = adap->sge.ofld_rxq;
4208                 lli.nrxq = adap->sge.ofldqsets;
4209         }
4210         lli.ntxq = adap->sge.ofldqsets;
4211         lli.nchan = adap->params.nports;
4212         lli.nports = adap->params.nports;
4213         lli.wr_cred = adap->params.ofldq_wr_cred;
4214         lli.adapter_type = adap->params.chip;
4215         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4216         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4217         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4218                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4219                         (adap->fn * 4));
4220         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4221                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4222                         (adap->fn * 4));
4223         lli.filt_mode = adap->params.tp.vlan_pri_map;
4224         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4225         for (i = 0; i < NCHAN; i++)
4226                 lli.tx_modq[i] = i;
4227         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4228         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4229         lli.fw_vers = adap->params.fw_vers;
4230         lli.dbfifo_int_thresh = dbfifo_int_thresh;
4231         lli.sge_ingpadboundary = adap->sge.fl_align;
4232         lli.sge_egrstatuspagesize = adap->sge.stat_len;
4233         lli.sge_pktshift = adap->sge.pktshift;
4234         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4235         lli.max_ordird_qp = adap->params.max_ordird_qp;
4236         lli.max_ird_adapter = adap->params.max_ird_adapter;
4237         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4238
4239         handle = ulds[uld].add(&lli);
4240         if (IS_ERR(handle)) {
4241                 dev_warn(adap->pdev_dev,
4242                          "could not attach to the %s driver, error %ld\n",
4243                          uld_str[uld], PTR_ERR(handle));
4244                 return;
4245         }
4246
4247         adap->uld_handle[uld] = handle;
4248
4249         if (!netevent_registered) {
4250                 register_netevent_notifier(&cxgb4_netevent_nb);
4251                 netevent_registered = true;
4252         }
4253
4254         if (adap->flags & FULL_INIT_DONE)
4255                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4256 }
4257
4258 static void attach_ulds(struct adapter *adap)
4259 {
4260         unsigned int i;
4261
4262         spin_lock(&adap_rcu_lock);
4263         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4264         spin_unlock(&adap_rcu_lock);
4265
4266         mutex_lock(&uld_mutex);
4267         list_add_tail(&adap->list_node, &adapter_list);
4268         for (i = 0; i < CXGB4_ULD_MAX; i++)
4269                 if (ulds[i].add)
4270                         uld_attach(adap, i);
4271         mutex_unlock(&uld_mutex);
4272 }
4273
4274 static void detach_ulds(struct adapter *adap)
4275 {
4276         unsigned int i;
4277
4278         mutex_lock(&uld_mutex);
4279         list_del(&adap->list_node);
4280         for (i = 0; i < CXGB4_ULD_MAX; i++)
4281                 if (adap->uld_handle[i]) {
4282                         ulds[i].state_change(adap->uld_handle[i],
4283                                              CXGB4_STATE_DETACH);
4284                         adap->uld_handle[i] = NULL;
4285                 }
4286         if (netevent_registered && list_empty(&adapter_list)) {
4287                 unregister_netevent_notifier(&cxgb4_netevent_nb);
4288                 netevent_registered = false;
4289         }
4290         mutex_unlock(&uld_mutex);
4291
4292         spin_lock(&adap_rcu_lock);
4293         list_del_rcu(&adap->rcu_node);
4294         spin_unlock(&adap_rcu_lock);
4295 }
4296
4297 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4298 {
4299         unsigned int i;
4300
4301         mutex_lock(&uld_mutex);
4302         for (i = 0; i < CXGB4_ULD_MAX; i++)
4303                 if (adap->uld_handle[i])
4304                         ulds[i].state_change(adap->uld_handle[i], new_state);
4305         mutex_unlock(&uld_mutex);
4306 }
4307
4308 /**
4309  *      cxgb4_register_uld - register an upper-layer driver
4310  *      @type: the ULD type
4311  *      @p: the ULD methods
4312  *
4313  *      Registers an upper-layer driver with this driver and notifies the ULD
4314  *      about any presently available devices that support its type.  Returns
4315  *      %-EBUSY if a ULD of the same type is already registered.
4316  */
4317 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4318 {
4319         int ret = 0;
4320         struct adapter *adap;
4321
4322         if (type >= CXGB4_ULD_MAX)
4323                 return -EINVAL;
4324         mutex_lock(&uld_mutex);
4325         if (ulds[type].add) {
4326                 ret = -EBUSY;
4327                 goto out;
4328         }
4329         ulds[type] = *p;
4330         list_for_each_entry(adap, &adapter_list, list_node)
4331                 uld_attach(adap, type);
4332 out:    mutex_unlock(&uld_mutex);
4333         return ret;
4334 }
4335 EXPORT_SYMBOL(cxgb4_register_uld);
4336
4337 /**
4338  *      cxgb4_unregister_uld - unregister an upper-layer driver
4339  *      @type: the ULD type
4340  *
4341  *      Unregisters an existing upper-layer driver.
4342  */
4343 int cxgb4_unregister_uld(enum cxgb4_uld type)
4344 {
4345         struct adapter *adap;
4346
4347         if (type >= CXGB4_ULD_MAX)
4348                 return -EINVAL;
4349         mutex_lock(&uld_mutex);
4350         list_for_each_entry(adap, &adapter_list, list_node)
4351                 adap->uld_handle[type] = NULL;
4352         ulds[type].add = NULL;
4353         mutex_unlock(&uld_mutex);
4354         return 0;
4355 }
4356 EXPORT_SYMBOL(cxgb4_unregister_uld);
4357
4358 /* Check if netdev on which event is occured belongs to us or not. Return
4359  * success (true) if it belongs otherwise failure (false).
4360  * Called with rcu_read_lock() held.
4361  */
4362 static bool cxgb4_netdev(const struct net_device *netdev)
4363 {
4364         struct adapter *adap;
4365         int i;
4366
4367         list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4368                 for (i = 0; i < MAX_NPORTS; i++)
4369                         if (adap->port[i] == netdev)
4370                                 return true;
4371         return false;
4372 }
4373
4374 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4375                     unsigned long event)
4376 {
4377         int ret = NOTIFY_DONE;
4378
4379         rcu_read_lock();
4380         if (cxgb4_netdev(event_dev)) {
4381                 switch (event) {
4382                 case NETDEV_UP:
4383                         ret = cxgb4_clip_get(event_dev,
4384                                 (const struct in6_addr *)ifa->addr.s6_addr);
4385                         if (ret < 0) {
4386                                 rcu_read_unlock();
4387                                 return ret;
4388                         }
4389                         ret = NOTIFY_OK;
4390                         break;
4391                 case NETDEV_DOWN:
4392                         cxgb4_clip_release(event_dev,
4393                                 (const struct in6_addr *)ifa->addr.s6_addr);
4394                         ret = NOTIFY_OK;
4395                         break;
4396                 default:
4397                         break;
4398                 }
4399         }
4400         rcu_read_unlock();
4401         return ret;
4402 }
4403
4404 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4405                 unsigned long event, void *data)
4406 {
4407         struct inet6_ifaddr *ifa = data;
4408         struct net_device *event_dev;
4409         int ret = NOTIFY_DONE;
4410         struct bonding *bond = netdev_priv(ifa->idev->dev);
4411         struct list_head *iter;
4412         struct slave *slave;
4413         struct pci_dev *first_pdev = NULL;
4414
4415         if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4416                 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4417                 ret = clip_add(event_dev, ifa, event);
4418         } else if (ifa->idev->dev->flags & IFF_MASTER) {
4419                 /* It is possible that two different adapters are bonded in one
4420                  * bond. We need to find such different adapters and add clip
4421                  * in all of them only once.
4422                  */
4423                 bond_for_each_slave(bond, slave, iter) {
4424                         if (!first_pdev) {
4425                                 ret = clip_add(slave->dev, ifa, event);
4426                                 /* If clip_add is success then only initialize
4427                                  * first_pdev since it means it is our device
4428                                  */
4429                                 if (ret == NOTIFY_OK)
4430                                         first_pdev = to_pci_dev(
4431                                                         slave->dev->dev.parent);
4432                         } else if (first_pdev !=
4433                                    to_pci_dev(slave->dev->dev.parent))
4434                                         ret = clip_add(slave->dev, ifa, event);
4435                 }
4436         } else
4437                 ret = clip_add(ifa->idev->dev, ifa, event);
4438
4439         return ret;
4440 }
4441
4442 static struct notifier_block cxgb4_inet6addr_notifier = {
4443         .notifier_call = cxgb4_inet6addr_handler
4444 };
4445
4446 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4447  * a physical device.
4448  * The physical device reference is needed to send the actul CLIP command.
4449  */
4450 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4451 {
4452         struct inet6_dev *idev = NULL;
4453         struct inet6_ifaddr *ifa;
4454         int ret = 0;
4455
4456         idev = __in6_dev_get(root_dev);
4457         if (!idev)
4458                 return ret;
4459
4460         read_lock_bh(&idev->lock);
4461         list_for_each_entry(ifa, &idev->addr_list, if_list) {
4462                 ret = cxgb4_clip_get(dev,
4463                                 (const struct in6_addr *)ifa->addr.s6_addr);
4464                 if (ret < 0)
4465                         break;
4466         }
4467         read_unlock_bh(&idev->lock);
4468
4469         return ret;
4470 }
4471
4472 static int update_root_dev_clip(struct net_device *dev)
4473 {
4474         struct net_device *root_dev = NULL;
4475         int i, ret = 0;
4476
4477         /* First populate the real net device's IPv6 addresses */
4478         ret = update_dev_clip(dev, dev);
4479         if (ret)
4480                 return ret;
4481
4482         /* Parse all bond and vlan devices layered on top of the physical dev */
4483         for (i = 0; i < VLAN_N_VID; i++) {
4484                 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4485                 if (!root_dev)
4486                         continue;
4487
4488                 ret = update_dev_clip(root_dev, dev);
4489                 if (ret)
4490                         break;
4491         }
4492         return ret;
4493 }
4494
4495 static void update_clip(const struct adapter *adap)
4496 {
4497         int i;
4498         struct net_device *dev;
4499         int ret;
4500
4501         rcu_read_lock();
4502
4503         for (i = 0; i < MAX_NPORTS; i++) {
4504                 dev = adap->port[i];
4505                 ret = 0;
4506
4507                 if (dev)
4508                         ret = update_root_dev_clip(dev);
4509
4510                 if (ret < 0)
4511                         break;
4512         }
4513         rcu_read_unlock();
4514 }
4515
4516 /**
4517  *      cxgb_up - enable the adapter
4518  *      @adap: adapter being enabled
4519  *
4520  *      Called when the first port is enabled, this function performs the
4521  *      actions necessary to make an adapter operational, such as completing
4522  *      the initialization of HW modules, and enabling interrupts.
4523  *
4524  *      Must be called with the rtnl lock held.
4525  */
4526 static int cxgb_up(struct adapter *adap)
4527 {
4528         int err;
4529
4530         err = setup_sge_queues(adap);
4531         if (err)
4532                 goto out;
4533         err = setup_rss(adap);
4534         if (err)
4535                 goto freeq;
4536
4537         if (adap->flags & USING_MSIX) {
4538                 name_msix_vecs(adap);
4539                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4540                                   adap->msix_info[0].desc, adap);
4541                 if (err)
4542                         goto irq_err;
4543
4544                 err = request_msix_queue_irqs(adap);
4545                 if (err) {
4546                         free_irq(adap->msix_info[0].vec, adap);
4547                         goto irq_err;
4548                 }
4549         } else {
4550                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4551                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4552                                   adap->port[0]->name, adap);
4553                 if (err)
4554                         goto irq_err;
4555         }
4556         enable_rx(adap);
4557         t4_sge_start(adap);
4558         t4_intr_enable(adap);
4559         adap->flags |= FULL_INIT_DONE;
4560         notify_ulds(adap, CXGB4_STATE_UP);
4561         update_clip(adap);
4562  out:
4563         return err;
4564  irq_err:
4565         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4566  freeq:
4567         t4_free_sge_resources(adap);
4568         goto out;
4569 }
4570
4571 static void cxgb_down(struct adapter *adapter)
4572 {
4573         t4_intr_disable(adapter);
4574         cancel_work_sync(&adapter->tid_release_task);
4575         cancel_work_sync(&adapter->db_full_task);
4576         cancel_work_sync(&adapter->db_drop_task);
4577         adapter->tid_release_task_busy = false;
4578         adapter->tid_release_head = NULL;
4579
4580         if (adapter->flags & USING_MSIX) {
4581                 free_msix_queue_irqs(adapter);
4582                 free_irq(adapter->msix_info[0].vec, adapter);
4583         } else
4584                 free_irq(adapter->pdev->irq, adapter);
4585         quiesce_rx(adapter);
4586         t4_sge_stop(adapter);
4587         t4_free_sge_resources(adapter);
4588         adapter->flags &= ~FULL_INIT_DONE;
4589 }
4590
4591 /*
4592  * net_device operations
4593  */
4594 static int cxgb_open(struct net_device *dev)
4595 {
4596         int err;
4597         struct port_info *pi = netdev_priv(dev);
4598         struct adapter *adapter = pi->adapter;
4599
4600         netif_carrier_off(dev);
4601
4602         if (!(adapter->flags & FULL_INIT_DONE)) {
4603                 err = cxgb_up(adapter);
4604                 if (err < 0)
4605                         return err;
4606         }
4607
4608         err = link_start(dev);
4609         if (!err)
4610                 netif_tx_start_all_queues(dev);
4611         return err;
4612 }
4613
4614 static int cxgb_close(struct net_device *dev)
4615 {
4616         struct port_info *pi = netdev_priv(dev);
4617         struct adapter *adapter = pi->adapter;
4618
4619         netif_tx_stop_all_queues(dev);
4620         netif_carrier_off(dev);
4621         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4622 }
4623
4624 /* Return an error number if the indicated filter isn't writable ...
4625  */
4626 static int writable_filter(struct filter_entry *f)
4627 {
4628         if (f->locked)
4629                 return -EPERM;
4630         if (f->pending)
4631                 return -EBUSY;
4632
4633         return 0;
4634 }
4635
4636 /* Delete the filter at the specified index (if valid).  The checks for all
4637  * the common problems with doing this like the filter being locked, currently
4638  * pending in another operation, etc.
4639  */
4640 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4641 {
4642         struct filter_entry *f;
4643         int ret;
4644
4645         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4646                 return -EINVAL;
4647
4648         f = &adapter->tids.ftid_tab[fidx];
4649         ret = writable_filter(f);
4650         if (ret)
4651                 return ret;
4652         if (f->valid)
4653                 return del_filter_wr(adapter, fidx);
4654
4655         return 0;
4656 }
4657
4658 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4659                 __be32 sip, __be16 sport, __be16 vlan,
4660                 unsigned int queue, unsigned char port, unsigned char mask)
4661 {
4662         int ret;
4663         struct filter_entry *f;
4664         struct adapter *adap;
4665         int i;
4666         u8 *val;
4667
4668         adap = netdev2adap(dev);
4669
4670         /* Adjust stid to correct filter index */
4671         stid -= adap->tids.sftid_base;
4672         stid += adap->tids.nftids;
4673
4674         /* Check to make sure the filter requested is writable ...
4675          */
4676         f = &adap->tids.ftid_tab[stid];
4677         ret = writable_filter(f);
4678         if (ret)
4679                 return ret;
4680
4681         /* Clear out any old resources being used by the filter before
4682          * we start constructing the new filter.
4683          */
4684         if (f->valid)
4685                 clear_filter(adap, f);
4686
4687         /* Clear out filter specifications */
4688         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4689         f->fs.val.lport = cpu_to_be16(sport);
4690         f->fs.mask.lport  = ~0;
4691         val = (u8 *)&sip;
4692         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4693                 for (i = 0; i < 4; i++) {
4694                         f->fs.val.lip[i] = val[i];
4695                         f->fs.mask.lip[i] = ~0;
4696                 }
4697                 if (adap->params.tp.vlan_pri_map & F_PORT) {
4698                         f->fs.val.iport = port;
4699                         f->fs.mask.iport = mask;
4700                 }
4701         }
4702
4703         if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4704                 f->fs.val.proto = IPPROTO_TCP;
4705                 f->fs.mask.proto = ~0;
4706         }
4707
4708         f->fs.dirsteer = 1;
4709         f->fs.iq = queue;
4710         /* Mark filter as locked */
4711         f->locked = 1;
4712         f->fs.rpttid = 1;
4713
4714         ret = set_filter_wr(adap, stid);
4715         if (ret) {
4716                 clear_filter(adap, f);
4717                 return ret;
4718         }
4719
4720         return 0;
4721 }
4722 EXPORT_SYMBOL(cxgb4_create_server_filter);
4723
4724 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4725                 unsigned int queue, bool ipv6)
4726 {
4727         int ret;
4728         struct filter_entry *f;
4729         struct adapter *adap;
4730
4731         adap = netdev2adap(dev);
4732
4733         /* Adjust stid to correct filter index */
4734         stid -= adap->tids.sftid_base;
4735         stid += adap->tids.nftids;
4736
4737         f = &adap->tids.ftid_tab[stid];
4738         /* Unlock the filter */
4739         f->locked = 0;
4740
4741         ret = delete_filter(adap, stid);
4742         if (ret)
4743                 return ret;
4744
4745         return 0;
4746 }
4747 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4748
4749 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4750                                                 struct rtnl_link_stats64 *ns)
4751 {
4752         struct port_stats stats;
4753         struct port_info *p = netdev_priv(dev);
4754         struct adapter *adapter = p->adapter;
4755
4756         /* Block retrieving statistics during EEH error
4757          * recovery. Otherwise, the recovery might fail
4758          * and the PCI device will be removed permanently
4759          */
4760         spin_lock(&adapter->stats_lock);
4761         if (!netif_device_present(dev)) {
4762                 spin_unlock(&adapter->stats_lock);
4763                 return ns;
4764         }
4765         t4_get_port_stats(adapter, p->tx_chan, &stats);
4766         spin_unlock(&adapter->stats_lock);
4767
4768         ns->tx_bytes   = stats.tx_octets;
4769         ns->tx_packets = stats.tx_frames;
4770         ns->rx_bytes   = stats.rx_octets;
4771         ns->rx_packets = stats.rx_frames;
4772         ns->multicast  = stats.rx_mcast_frames;
4773
4774         /* detailed rx_errors */
4775         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4776                                stats.rx_runt;
4777         ns->rx_over_errors   = 0;
4778         ns->rx_crc_errors    = stats.rx_fcs_err;
4779         ns->rx_frame_errors  = stats.rx_symbol_err;
4780         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4781                                stats.rx_ovflow2 + stats.rx_ovflow3 +
4782                                stats.rx_trunc0 + stats.rx_trunc1 +
4783                                stats.rx_trunc2 + stats.rx_trunc3;
4784         ns->rx_missed_errors = 0;
4785
4786         /* detailed tx_errors */
4787         ns->tx_aborted_errors   = 0;
4788         ns->tx_carrier_errors   = 0;
4789         ns->tx_fifo_errors      = 0;
4790         ns->tx_heartbeat_errors = 0;
4791         ns->tx_window_errors    = 0;
4792
4793         ns->tx_errors = stats.tx_error_frames;
4794         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4795                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4796         return ns;
4797 }
4798
4799 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4800 {
4801         unsigned int mbox;
4802         int ret = 0, prtad, devad;
4803         struct port_info *pi = netdev_priv(dev);
4804         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4805
4806         switch (cmd) {
4807         case SIOCGMIIPHY:
4808                 if (pi->mdio_addr < 0)
4809                         return -EOPNOTSUPP;
4810                 data->phy_id = pi->mdio_addr;
4811                 break;
4812         case SIOCGMIIREG:
4813         case SIOCSMIIREG:
4814                 if (mdio_phy_id_is_c45(data->phy_id)) {
4815                         prtad = mdio_phy_id_prtad(data->phy_id);
4816                         devad = mdio_phy_id_devad(data->phy_id);
4817                 } else if (data->phy_id < 32) {
4818                         prtad = data->phy_id;
4819                         devad = 0;
4820                         data->reg_num &= 0x1f;
4821                 } else
4822                         return -EINVAL;
4823
4824                 mbox = pi->adapter->fn;
4825                 if (cmd == SIOCGMIIREG)
4826                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4827                                          data->reg_num, &data->val_out);
4828                 else
4829                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4830                                          data->reg_num, data->val_in);
4831                 break;
4832         default:
4833                 return -EOPNOTSUPP;
4834         }
4835         return ret;
4836 }
4837
4838 static void cxgb_set_rxmode(struct net_device *dev)
4839 {
4840         /* unfortunately we can't return errors to the stack */
4841         set_rxmode(dev, -1, false);
4842 }
4843
4844 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4845 {
4846         int ret;
4847         struct port_info *pi = netdev_priv(dev);
4848
4849         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4850                 return -EINVAL;
4851         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4852                             -1, -1, -1, true);
4853         if (!ret)
4854                 dev->mtu = new_mtu;
4855         return ret;
4856 }
4857
4858 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4859 {
4860         int ret;
4861         struct sockaddr *addr = p;
4862         struct port_info *pi = netdev_priv(dev);
4863
4864         if (!is_valid_ether_addr(addr->sa_data))
4865                 return -EADDRNOTAVAIL;
4866
4867         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4868                             pi->xact_addr_filt, addr->sa_data, true, true);
4869         if (ret < 0)
4870                 return ret;
4871
4872         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4873         pi->xact_addr_filt = ret;
4874         return 0;
4875 }
4876
4877 #ifdef CONFIG_NET_POLL_CONTROLLER
4878 static void cxgb_netpoll(struct net_device *dev)
4879 {
4880         struct port_info *pi = netdev_priv(dev);
4881         struct adapter *adap = pi->adapter;
4882
4883         if (adap->flags & USING_MSIX) {
4884                 int i;
4885                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4886
4887                 for (i = pi->nqsets; i; i--, rx++)
4888                         t4_sge_intr_msix(0, &rx->rspq);
4889         } else
4890                 t4_intr_handler(adap)(0, adap);
4891 }
4892 #endif
4893
4894 static const struct net_device_ops cxgb4_netdev_ops = {
4895         .ndo_open             = cxgb_open,
4896         .ndo_stop             = cxgb_close,
4897         .ndo_start_xmit       = t4_eth_xmit,
4898         .ndo_select_queue     = cxgb_select_queue,
4899         .ndo_get_stats64      = cxgb_get_stats,
4900         .ndo_set_rx_mode      = cxgb_set_rxmode,
4901         .ndo_set_mac_address  = cxgb_set_mac_addr,
4902         .ndo_set_features     = cxgb_set_features,
4903         .ndo_validate_addr    = eth_validate_addr,
4904         .ndo_do_ioctl         = cxgb_ioctl,
4905         .ndo_change_mtu       = cxgb_change_mtu,
4906 #ifdef CONFIG_NET_POLL_CONTROLLER
4907         .ndo_poll_controller  = cxgb_netpoll,
4908 #endif
4909 };
4910
4911 void t4_fatal_err(struct adapter *adap)
4912 {
4913         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4914         t4_intr_disable(adap);
4915         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4916 }
4917
4918 /* Return the specified PCI-E Configuration Space register from our Physical
4919  * Function.  We try first via a Firmware LDST Command since we prefer to let
4920  * the firmware own all of these registers, but if that fails we go for it
4921  * directly ourselves.
4922  */
4923 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4924 {
4925         struct fw_ldst_cmd ldst_cmd;
4926         u32 val;
4927         int ret;
4928
4929         /* Construct and send the Firmware LDST Command to retrieve the
4930          * specified PCI-E Configuration Space register.
4931          */
4932         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4933         ldst_cmd.op_to_addrspace =
4934                 htonl(FW_CMD_OP(FW_LDST_CMD) |
4935                       FW_CMD_REQUEST |
4936                       FW_CMD_READ |
4937                       FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4938         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4939         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4940         ldst_cmd.u.pcie.ctrl_to_fn =
4941                 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4942         ldst_cmd.u.pcie.r = reg;
4943         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4944                          &ldst_cmd);
4945
4946         /* If the LDST Command suucceeded, exctract the returned register
4947          * value.  Otherwise read it directly ourself.
4948          */
4949         if (ret == 0)
4950                 val = ntohl(ldst_cmd.u.pcie.data[0]);
4951         else
4952                 t4_hw_pci_read_cfg4(adap, reg, &val);
4953
4954         return val;
4955 }
4956
4957 static void setup_memwin(struct adapter *adap)
4958 {
4959         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4960
4961         if (is_t4(adap->params.chip)) {
4962                 u32 bar0;
4963
4964                 /* Truncation intentional: we only read the bottom 32-bits of
4965                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
4966                  * mechanism to read BAR0 instead of using
4967                  * pci_resource_start() because we could be operating from
4968                  * within a Virtual Machine which is trapping our accesses to
4969                  * our Configuration Space and we need to set up the PCI-E
4970                  * Memory Window decoders with the actual addresses which will
4971                  * be coming across the PCI-E link.
4972                  */
4973                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4974                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4975                 adap->t4_bar0 = bar0;
4976
4977                 mem_win0_base = bar0 + MEMWIN0_BASE;
4978                 mem_win1_base = bar0 + MEMWIN1_BASE;
4979                 mem_win2_base = bar0 + MEMWIN2_BASE;
4980                 mem_win2_aperture = MEMWIN2_APERTURE;
4981         } else {
4982                 /* For T5, only relative offset inside the PCIe BAR is passed */
4983                 mem_win0_base = MEMWIN0_BASE;
4984                 mem_win1_base = MEMWIN1_BASE;
4985                 mem_win2_base = MEMWIN2_BASE_T5;
4986                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
4987         }
4988         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4989                      mem_win0_base | BIR(0) |
4990                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4991         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4992                      mem_win1_base | BIR(0) |
4993                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4994         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4995                      mem_win2_base | BIR(0) |
4996                      WINDOW(ilog2(mem_win2_aperture) - 10));
4997         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
4998 }
4999
5000 static void setup_memwin_rdma(struct adapter *adap)
5001 {
5002         if (adap->vres.ocq.size) {
5003                 u32 start;
5004                 unsigned int sz_kb;
5005
5006                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
5007                 start &= PCI_BASE_ADDRESS_MEM_MASK;
5008                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
5009                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
5010                 t4_write_reg(adap,
5011                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
5012                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
5013                 t4_write_reg(adap,
5014                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
5015                              adap->vres.ocq.start);
5016                 t4_read_reg(adap,
5017                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
5018         }
5019 }
5020
5021 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
5022 {
5023         u32 v;
5024         int ret;
5025
5026         /* get device capabilities */
5027         memset(c, 0, sizeof(*c));
5028         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5029                                FW_CMD_REQUEST | FW_CMD_READ);
5030         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
5031         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
5032         if (ret < 0)
5033                 return ret;
5034
5035         /* select capabilities we'll be using */
5036         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5037                 if (!vf_acls)
5038                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5039                 else
5040                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5041         } else if (vf_acls) {
5042                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
5043                 return ret;
5044         }
5045         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5046                                FW_CMD_REQUEST | FW_CMD_WRITE);
5047         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
5048         if (ret < 0)
5049                 return ret;
5050
5051         ret = t4_config_glbl_rss(adap, adap->fn,
5052                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5053                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5054                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
5055         if (ret < 0)
5056                 return ret;
5057
5058         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
5059                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
5060         if (ret < 0)
5061                 return ret;
5062
5063         t4_sge_init(adap);
5064
5065         /* tweak some settings */
5066         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5067         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5068         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5069         v = t4_read_reg(adap, TP_PIO_DATA);
5070         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5071
5072         /* first 4 Tx modulation queues point to consecutive Tx channels */
5073         adap->params.tp.tx_modq_map = 0xE4;
5074         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5075                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5076
5077         /* associate each Tx modulation queue with consecutive Tx channels */
5078         v = 0x84218421;
5079         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5080                           &v, 1, A_TP_TX_SCHED_HDR);
5081         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5082                           &v, 1, A_TP_TX_SCHED_FIFO);
5083         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5084                           &v, 1, A_TP_TX_SCHED_PCMD);
5085
5086 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5087         if (is_offload(adap)) {
5088                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5089                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5090                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5091                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5092                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5093                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5094                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5095                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5096                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5097                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5098         }
5099
5100         /* get basic stuff going */
5101         return t4_early_init(adap, adap->fn);
5102 }
5103
5104 /*
5105  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
5106  */
5107 #define MAX_ATIDS 8192U
5108
5109 /*
5110  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5111  *
5112  * If the firmware we're dealing with has Configuration File support, then
5113  * we use that to perform all configuration
5114  */
5115
5116 /*
5117  * Tweak configuration based on module parameters, etc.  Most of these have
5118  * defaults assigned to them by Firmware Configuration Files (if we're using
5119  * them) but need to be explicitly set if we're using hard-coded
5120  * initialization.  But even in the case of using Firmware Configuration
5121  * Files, we'd like to expose the ability to change these via module
5122  * parameters so these are essentially common tweaks/settings for
5123  * Configuration Files and hard-coded initialization ...
5124  */
5125 static int adap_init0_tweaks(struct adapter *adapter)
5126 {
5127         /*
5128          * Fix up various Host-Dependent Parameters like Page Size, Cache
5129          * Line Size, etc.  The firmware default is for a 4KB Page Size and
5130          * 64B Cache Line Size ...
5131          */
5132         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5133
5134         /*
5135          * Process module parameters which affect early initialization.
5136          */
5137         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5138                 dev_err(&adapter->pdev->dev,
5139                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
5140                         rx_dma_offset);
5141                 rx_dma_offset = 2;
5142         }
5143         t4_set_reg_field(adapter, SGE_CONTROL,
5144                          PKTSHIFT_MASK,
5145                          PKTSHIFT(rx_dma_offset));
5146
5147         /*
5148          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5149          * adds the pseudo header itself.
5150          */
5151         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5152                                CSUM_HAS_PSEUDO_HDR, 0);
5153
5154         return 0;
5155 }
5156
5157 /*
5158  * Attempt to initialize the adapter via a Firmware Configuration File.
5159  */
5160 static int adap_init0_config(struct adapter *adapter, int reset)
5161 {
5162         struct fw_caps_config_cmd caps_cmd;
5163         const struct firmware *cf;
5164         unsigned long mtype = 0, maddr = 0;
5165         u32 finiver, finicsum, cfcsum;
5166         int ret;
5167         int config_issued = 0;
5168         char *fw_config_file, fw_config_file_path[256];
5169         char *config_name = NULL;
5170
5171         /*
5172          * Reset device if necessary.
5173          */
5174         if (reset) {
5175                 ret = t4_fw_reset(adapter, adapter->mbox,
5176                                   PIORSTMODE | PIORST);
5177                 if (ret < 0)
5178                         goto bye;
5179         }
5180
5181         /*
5182          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5183          * then use that.  Otherwise, use the configuration file stored
5184          * in the adapter flash ...
5185          */
5186         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5187         case CHELSIO_T4:
5188                 fw_config_file = FW4_CFNAME;
5189                 break;
5190         case CHELSIO_T5:
5191                 fw_config_file = FW5_CFNAME;
5192                 break;
5193         default:
5194                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5195                        adapter->pdev->device);
5196                 ret = -EINVAL;
5197                 goto bye;
5198         }
5199
5200         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5201         if (ret < 0) {
5202                 config_name = "On FLASH";
5203                 mtype = FW_MEMTYPE_CF_FLASH;
5204                 maddr = t4_flash_cfg_addr(adapter);
5205         } else {
5206                 u32 params[7], val[7];
5207
5208                 sprintf(fw_config_file_path,
5209                         "/lib/firmware/%s", fw_config_file);
5210                 config_name = fw_config_file_path;
5211
5212                 if (cf->size >= FLASH_CFG_MAX_SIZE)
5213                         ret = -ENOMEM;
5214                 else {
5215                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5216                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5217                         ret = t4_query_params(adapter, adapter->mbox,
5218                                               adapter->fn, 0, 1, params, val);
5219                         if (ret == 0) {
5220                                 /*
5221                                  * For t4_memory_rw() below addresses and
5222                                  * sizes have to be in terms of multiples of 4
5223                                  * bytes.  So, if the Configuration File isn't
5224                                  * a multiple of 4 bytes in length we'll have
5225                                  * to write that out separately since we can't
5226                                  * guarantee that the bytes following the
5227                                  * residual byte in the buffer returned by
5228                                  * request_firmware() are zeroed out ...
5229                                  */
5230                                 size_t resid = cf->size & 0x3;
5231                                 size_t size = cf->size & ~0x3;
5232                                 __be32 *data = (__be32 *)cf->data;
5233
5234                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5235                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5236
5237                                 spin_lock(&adapter->win0_lock);
5238                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5239                                                    size, data, T4_MEMORY_WRITE);
5240                                 if (ret == 0 && resid != 0) {
5241                                         union {
5242                                                 __be32 word;
5243                                                 char buf[4];
5244                                         } last;
5245                                         int i;
5246
5247                                         last.word = data[size >> 2];
5248                                         for (i = resid; i < 4; i++)
5249                                                 last.buf[i] = 0;
5250                                         ret = t4_memory_rw(adapter, 0, mtype,
5251                                                            maddr + size,
5252                                                            4, &last.word,
5253                                                            T4_MEMORY_WRITE);
5254                                 }
5255                                 spin_unlock(&adapter->win0_lock);
5256                         }
5257                 }
5258
5259                 release_firmware(cf);
5260                 if (ret)
5261                         goto bye;
5262         }
5263
5264         /*
5265          * Issue a Capability Configuration command to the firmware to get it
5266          * to parse the Configuration File.  We don't use t4_fw_config_file()
5267          * because we want the ability to modify various features after we've
5268          * processed the configuration file ...
5269          */
5270         memset(&caps_cmd, 0, sizeof(caps_cmd));
5271         caps_cmd.op_to_write =
5272                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5273                       FW_CMD_REQUEST |
5274                       FW_CMD_READ);
5275         caps_cmd.cfvalid_to_len16 =
5276                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5277                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5278                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5279                       FW_LEN16(caps_cmd));
5280         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5281                          &caps_cmd);
5282
5283         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5284          * Configuration File in FLASH), our last gasp effort is to use the
5285          * Firmware Configuration File which is embedded in the firmware.  A
5286          * very few early versions of the firmware didn't have one embedded
5287          * but we can ignore those.
5288          */
5289         if (ret == -ENOENT) {
5290                 memset(&caps_cmd, 0, sizeof(caps_cmd));
5291                 caps_cmd.op_to_write =
5292                         htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5293                                         FW_CMD_REQUEST |
5294                                         FW_CMD_READ);
5295                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5296                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5297                                 sizeof(caps_cmd), &caps_cmd);
5298                 config_name = "Firmware Default";
5299         }
5300
5301         config_issued = 1;
5302         if (ret < 0)
5303                 goto bye;
5304
5305         finiver = ntohl(caps_cmd.finiver);
5306         finicsum = ntohl(caps_cmd.finicsum);
5307         cfcsum = ntohl(caps_cmd.cfcsum);
5308         if (finicsum != cfcsum)
5309                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5310                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5311                          finicsum, cfcsum);
5312
5313         /*
5314          * And now tell the firmware to use the configuration we just loaded.
5315          */
5316         caps_cmd.op_to_write =
5317                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5318                       FW_CMD_REQUEST |
5319                       FW_CMD_WRITE);
5320         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5321         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5322                          NULL);
5323         if (ret < 0)
5324                 goto bye;
5325
5326         /*
5327          * Tweak configuration based on system architecture, module
5328          * parameters, etc.
5329          */
5330         ret = adap_init0_tweaks(adapter);
5331         if (ret < 0)
5332                 goto bye;
5333
5334         /*
5335          * And finally tell the firmware to initialize itself using the
5336          * parameters from the Configuration File.
5337          */
5338         ret = t4_fw_initialize(adapter, adapter->mbox);
5339         if (ret < 0)
5340                 goto bye;
5341
5342         /*
5343          * Return successfully and note that we're operating with parameters
5344          * not supplied by the driver, rather than from hard-wired
5345          * initialization constants burried in the driver.
5346          */
5347         adapter->flags |= USING_SOFT_PARAMS;
5348         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5349                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5350                  config_name, finiver, cfcsum);
5351         return 0;
5352
5353         /*
5354          * Something bad happened.  Return the error ...  (If the "error"
5355          * is that there's no Configuration File on the adapter we don't
5356          * want to issue a warning since this is fairly common.)
5357          */
5358 bye:
5359         if (config_issued && ret != -ENOENT)
5360                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5361                          config_name, -ret);
5362         return ret;
5363 }
5364
5365 /*
5366  * Attempt to initialize the adapter via hard-coded, driver supplied
5367  * parameters ...
5368  */
5369 static int adap_init0_no_config(struct adapter *adapter, int reset)
5370 {
5371         struct sge *s = &adapter->sge;
5372         struct fw_caps_config_cmd caps_cmd;
5373         u32 v;
5374         int i, ret;
5375
5376         /*
5377          * Reset device if necessary
5378          */
5379         if (reset) {
5380                 ret = t4_fw_reset(adapter, adapter->mbox,
5381                                   PIORSTMODE | PIORST);
5382                 if (ret < 0)
5383                         goto bye;
5384         }
5385
5386         /*
5387          * Get device capabilities and select which we'll be using.
5388          */
5389         memset(&caps_cmd, 0, sizeof(caps_cmd));
5390         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5391                                      FW_CMD_REQUEST | FW_CMD_READ);
5392         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5393         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5394                          &caps_cmd);
5395         if (ret < 0)
5396                 goto bye;
5397
5398         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5399                 if (!vf_acls)
5400                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5401                 else
5402                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5403         } else if (vf_acls) {
5404                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5405                 goto bye;
5406         }
5407         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5408                               FW_CMD_REQUEST | FW_CMD_WRITE);
5409         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5410                          NULL);
5411         if (ret < 0)
5412                 goto bye;
5413
5414         /*
5415          * Tweak configuration based on system architecture, module
5416          * parameters, etc.
5417          */
5418         ret = adap_init0_tweaks(adapter);
5419         if (ret < 0)
5420                 goto bye;
5421
5422         /*
5423          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5424          * mode which maps each Virtual Interface to its own section of
5425          * the RSS Table and we turn on all map and hash enables ...
5426          */
5427         adapter->flags |= RSS_TNLALLLOOKUP;
5428         ret = t4_config_glbl_rss(adapter, adapter->mbox,
5429                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5430                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5431                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5432                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
5433                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5434         if (ret < 0)
5435                 goto bye;
5436
5437         /*
5438          * Set up our own fundamental resource provisioning ...
5439          */
5440         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5441                           PFRES_NEQ, PFRES_NETHCTRL,
5442                           PFRES_NIQFLINT, PFRES_NIQ,
5443                           PFRES_TC, PFRES_NVI,
5444                           FW_PFVF_CMD_CMASK_MASK,
5445                           pfvfres_pmask(adapter, adapter->fn, 0),
5446                           PFRES_NEXACTF,
5447                           PFRES_R_CAPS, PFRES_WX_CAPS);
5448         if (ret < 0)
5449                 goto bye;
5450
5451         /*
5452          * Perform low level SGE initialization.  We need to do this before we
5453          * send the firmware the INITIALIZE command because that will cause
5454          * any other PF Drivers which are waiting for the Master
5455          * Initialization to proceed forward.
5456          */
5457         for (i = 0; i < SGE_NTIMERS - 1; i++)
5458                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5459         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5460         s->counter_val[0] = 1;
5461         for (i = 1; i < SGE_NCOUNTERS; i++)
5462                 s->counter_val[i] = min(intr_cnt[i - 1],
5463                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
5464         t4_sge_init(adapter);
5465
5466 #ifdef CONFIG_PCI_IOV
5467         /*
5468          * Provision resource limits for Virtual Functions.  We currently
5469          * grant them all the same static resource limits except for the Port
5470          * Access Rights Mask which we're assigning based on the PF.  All of
5471          * the static provisioning stuff for both the PF and VF really needs
5472          * to be managed in a persistent manner for each device which the
5473          * firmware controls.
5474          */
5475         {
5476                 int pf, vf;
5477
5478                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5479                         if (num_vf[pf] <= 0)
5480                                 continue;
5481
5482                         /* VF numbering starts at 1! */
5483                         for (vf = 1; vf <= num_vf[pf]; vf++) {
5484                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5485                                                   pf, vf,
5486                                                   VFRES_NEQ, VFRES_NETHCTRL,
5487                                                   VFRES_NIQFLINT, VFRES_NIQ,
5488                                                   VFRES_TC, VFRES_NVI,
5489                                                   FW_PFVF_CMD_CMASK_MASK,
5490                                                   pfvfres_pmask(
5491                                                   adapter, pf, vf),
5492                                                   VFRES_NEXACTF,
5493                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
5494                                 if (ret < 0)
5495                                         dev_warn(adapter->pdev_dev,
5496                                                  "failed to "\
5497                                                  "provision pf/vf=%d/%d; "
5498                                                  "err=%d\n", pf, vf, ret);
5499                         }
5500                 }
5501         }
5502 #endif
5503
5504         /*
5505          * Set up the default filter mode.  Later we'll want to implement this
5506          * via a firmware command, etc. ...  This needs to be done before the
5507          * firmare initialization command ...  If the selected set of fields
5508          * isn't equal to the default value, we'll need to make sure that the
5509          * field selections will fit in the 36-bit budget.
5510          */
5511         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5512                 int j, bits = 0;
5513
5514                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5515                         switch (tp_vlan_pri_map & (1 << j)) {
5516                         case 0:
5517                                 /* compressed filter field not enabled */
5518                                 break;
5519                         case FCOE_MASK:
5520                                 bits +=  1;
5521                                 break;
5522                         case PORT_MASK:
5523                                 bits +=  3;
5524                                 break;
5525                         case VNIC_ID_MASK:
5526                                 bits += 17;
5527                                 break;
5528                         case VLAN_MASK:
5529                                 bits += 17;
5530                                 break;
5531                         case TOS_MASK:
5532                                 bits +=  8;
5533                                 break;
5534                         case PROTOCOL_MASK:
5535                                 bits +=  8;
5536                                 break;
5537                         case ETHERTYPE_MASK:
5538                                 bits += 16;
5539                                 break;
5540                         case MACMATCH_MASK:
5541                                 bits +=  9;
5542                                 break;
5543                         case MPSHITTYPE_MASK:
5544                                 bits +=  3;
5545                                 break;
5546                         case FRAGMENTATION_MASK:
5547                                 bits +=  1;
5548                                 break;
5549                         }
5550
5551                 if (bits > 36) {
5552                         dev_err(adapter->pdev_dev,
5553                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5554                                 " using %#x\n", tp_vlan_pri_map, bits,
5555                                 TP_VLAN_PRI_MAP_DEFAULT);
5556                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5557                 }
5558         }
5559         v = tp_vlan_pri_map;
5560         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5561                           &v, 1, TP_VLAN_PRI_MAP);
5562
5563         /*
5564          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5565          * to support any of the compressed filter fields above.  Newer
5566          * versions of the firmware do this automatically but it doesn't hurt
5567          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5568          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5569          * since the firmware automatically turns this on and off when we have
5570          * a non-zero number of filters active (since it does have a
5571          * performance impact).
5572          */
5573         if (tp_vlan_pri_map)
5574                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5575                                  FIVETUPLELOOKUP_MASK,
5576                                  FIVETUPLELOOKUP_MASK);
5577
5578         /*
5579          * Tweak some settings.
5580          */
5581         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5582                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5583                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5584                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5585
5586         /*
5587          * Get basic stuff going by issuing the Firmware Initialize command.
5588          * Note that this _must_ be after all PFVF commands ...
5589          */
5590         ret = t4_fw_initialize(adapter, adapter->mbox);
5591         if (ret < 0)
5592                 goto bye;
5593
5594         /*
5595          * Return successfully!
5596          */
5597         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5598                  "driver parameters\n");
5599         return 0;
5600
5601         /*
5602          * Something bad happened.  Return the error ...
5603          */
5604 bye:
5605         return ret;
5606 }
5607
5608 static struct fw_info fw_info_array[] = {
5609         {
5610                 .chip = CHELSIO_T4,
5611                 .fs_name = FW4_CFNAME,
5612                 .fw_mod_name = FW4_FNAME,
5613                 .fw_hdr = {
5614                         .chip = FW_HDR_CHIP_T4,
5615                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5616                         .intfver_nic = FW_INTFVER(T4, NIC),
5617                         .intfver_vnic = FW_INTFVER(T4, VNIC),
5618                         .intfver_ri = FW_INTFVER(T4, RI),
5619                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5620                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
5621                 },
5622         }, {
5623                 .chip = CHELSIO_T5,
5624                 .fs_name = FW5_CFNAME,
5625                 .fw_mod_name = FW5_FNAME,
5626                 .fw_hdr = {
5627                         .chip = FW_HDR_CHIP_T5,
5628                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5629                         .intfver_nic = FW_INTFVER(T5, NIC),
5630                         .intfver_vnic = FW_INTFVER(T5, VNIC),
5631                         .intfver_ri = FW_INTFVER(T5, RI),
5632                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5633                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
5634                 },
5635         }
5636 };
5637
5638 static struct fw_info *find_fw_info(int chip)
5639 {
5640         int i;
5641
5642         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5643                 if (fw_info_array[i].chip == chip)
5644                         return &fw_info_array[i];
5645         }
5646         return NULL;
5647 }
5648
5649 /*
5650  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5651  */
5652 static int adap_init0(struct adapter *adap)
5653 {
5654         int ret;
5655         u32 v, port_vec;
5656         enum dev_state state;
5657         u32 params[7], val[7];
5658         struct fw_caps_config_cmd caps_cmd;
5659         int reset = 1;
5660
5661         /*
5662          * Contact FW, advertising Master capability (and potentially forcing
5663          * ourselves as the Master PF if our module parameter force_init is
5664          * set).
5665          */
5666         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5667                           force_init ? MASTER_MUST : MASTER_MAY,
5668                           &state);
5669         if (ret < 0) {
5670                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5671                         ret);
5672                 return ret;
5673         }
5674         if (ret == adap->mbox)
5675                 adap->flags |= MASTER_PF;
5676         if (force_init && state == DEV_STATE_INIT)
5677                 state = DEV_STATE_UNINIT;
5678
5679         /*
5680          * If we're the Master PF Driver and the device is uninitialized,
5681          * then let's consider upgrading the firmware ...  (We always want
5682          * to check the firmware version number in order to A. get it for
5683          * later reporting and B. to warn if the currently loaded firmware
5684          * is excessively mismatched relative to the driver.)
5685          */
5686         t4_get_fw_version(adap, &adap->params.fw_vers);
5687         t4_get_tp_version(adap, &adap->params.tp_vers);
5688         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5689                 struct fw_info *fw_info;
5690                 struct fw_hdr *card_fw;
5691                 const struct firmware *fw;
5692                 const u8 *fw_data = NULL;
5693                 unsigned int fw_size = 0;
5694
5695                 /* This is the firmware whose headers the driver was compiled
5696                  * against
5697                  */
5698                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5699                 if (fw_info == NULL) {
5700                         dev_err(adap->pdev_dev,
5701                                 "unable to get firmware info for chip %d.\n",
5702                                 CHELSIO_CHIP_VERSION(adap->params.chip));
5703                         return -EINVAL;
5704                 }
5705
5706                 /* allocate memory to read the header of the firmware on the
5707                  * card
5708                  */
5709                 card_fw = t4_alloc_mem(sizeof(*card_fw));
5710
5711                 /* Get FW from from /lib/firmware/ */
5712                 ret = request_firmware(&fw, fw_info->fw_mod_name,
5713                                        adap->pdev_dev);
5714                 if (ret < 0) {
5715                         dev_err(adap->pdev_dev,
5716                                 "unable to load firmware image %s, error %d\n",
5717                                 fw_info->fw_mod_name, ret);
5718                 } else {
5719                         fw_data = fw->data;
5720                         fw_size = fw->size;
5721                 }
5722
5723                 /* upgrade FW logic */
5724                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5725                                  state, &reset);
5726
5727                 /* Cleaning up */
5728                 if (fw != NULL)
5729                         release_firmware(fw);
5730                 t4_free_mem(card_fw);
5731
5732                 if (ret < 0)
5733                         goto bye;
5734         }
5735
5736         /*
5737          * Grab VPD parameters.  This should be done after we establish a
5738          * connection to the firmware since some of the VPD parameters
5739          * (notably the Core Clock frequency) are retrieved via requests to
5740          * the firmware.  On the other hand, we need these fairly early on
5741          * so we do this right after getting ahold of the firmware.
5742          */
5743         ret = get_vpd_params(adap, &adap->params.vpd);
5744         if (ret < 0)
5745                 goto bye;
5746
5747         /*
5748          * Find out what ports are available to us.  Note that we need to do
5749          * this before calling adap_init0_no_config() since it needs nports
5750          * and portvec ...
5751          */
5752         v =
5753             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5754             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5755         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5756         if (ret < 0)
5757                 goto bye;
5758
5759         adap->params.nports = hweight32(port_vec);
5760         adap->params.portvec = port_vec;
5761
5762         /*
5763          * If the firmware is initialized already (and we're not forcing a
5764          * master initialization), note that we're living with existing
5765          * adapter parameters.  Otherwise, it's time to try initializing the
5766          * adapter ...
5767          */
5768         if (state == DEV_STATE_INIT) {
5769                 dev_info(adap->pdev_dev, "Coming up as %s: "\
5770                          "Adapter already initialized\n",
5771                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5772                 adap->flags |= USING_SOFT_PARAMS;
5773         } else {
5774                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5775                          "Initializing adapter\n");
5776
5777                 /*
5778                  * If the firmware doesn't support Configuration
5779                  * Files warn user and exit,
5780                  */
5781                 if (ret < 0)
5782                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
5783                                  "configuration file.\n");
5784                 if (force_old_init)
5785                         ret = adap_init0_no_config(adap, reset);
5786                 else {
5787                         /*
5788                          * Find out whether we're dealing with a version of
5789                          * the firmware which has configuration file support.
5790                          */
5791                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5792                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5793                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5794                                               params, val);
5795
5796                         /*
5797                          * If the firmware doesn't support Configuration
5798                          * Files, use the old Driver-based, hard-wired
5799                          * initialization.  Otherwise, try using the
5800                          * Configuration File support and fall back to the
5801                          * Driver-based initialization if there's no
5802                          * Configuration File found.
5803                          */
5804                         if (ret < 0)
5805                                 ret = adap_init0_no_config(adap, reset);
5806                         else {
5807                                 /*
5808                                  * The firmware provides us with a memory
5809                                  * buffer where we can load a Configuration
5810                                  * File from the host if we want to override
5811                                  * the Configuration File in flash.
5812                                  */
5813
5814                                 ret = adap_init0_config(adap, reset);
5815                                 if (ret == -ENOENT) {
5816                                         dev_info(adap->pdev_dev,
5817                                             "No Configuration File present "
5818                                             "on adapter. Using hard-wired "
5819                                             "configuration parameters.\n");
5820                                         ret = adap_init0_no_config(adap, reset);
5821                                 }
5822                         }
5823                 }
5824                 if (ret < 0) {
5825                         dev_err(adap->pdev_dev,
5826                                 "could not initialize adapter, error %d\n",
5827                                 -ret);
5828                         goto bye;
5829                 }
5830         }
5831
5832         /*
5833          * If we're living with non-hard-coded parameters (either from a
5834          * Firmware Configuration File or values programmed by a different PF
5835          * Driver), give the SGE code a chance to pull in anything that it
5836          * needs ...  Note that this must be called after we retrieve our VPD
5837          * parameters in order to know how to convert core ticks to seconds.
5838          */
5839         if (adap->flags & USING_SOFT_PARAMS) {
5840                 ret = t4_sge_init(adap);
5841                 if (ret < 0)
5842                         goto bye;
5843         }
5844
5845         if (is_bypass_device(adap->pdev->device))
5846                 adap->params.bypass = 1;
5847
5848         /*
5849          * Grab some of our basic fundamental operating parameters.
5850          */
5851 #define FW_PARAM_DEV(param) \
5852         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5853         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5854
5855 #define FW_PARAM_PFVF(param) \
5856         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5857         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
5858         FW_PARAMS_PARAM_Y(0) | \
5859         FW_PARAMS_PARAM_Z(0)
5860
5861         params[0] = FW_PARAM_PFVF(EQ_START);
5862         params[1] = FW_PARAM_PFVF(L2T_START);
5863         params[2] = FW_PARAM_PFVF(L2T_END);
5864         params[3] = FW_PARAM_PFVF(FILTER_START);
5865         params[4] = FW_PARAM_PFVF(FILTER_END);
5866         params[5] = FW_PARAM_PFVF(IQFLINT_START);
5867         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5868         if (ret < 0)
5869                 goto bye;
5870         adap->sge.egr_start = val[0];
5871         adap->l2t_start = val[1];
5872         adap->l2t_end = val[2];
5873         adap->tids.ftid_base = val[3];
5874         adap->tids.nftids = val[4] - val[3] + 1;
5875         adap->sge.ingr_start = val[5];
5876
5877         /* query params related to active filter region */
5878         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5879         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5880         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5881         /* If Active filter size is set we enable establishing
5882          * offload connection through firmware work request
5883          */
5884         if ((val[0] != val[1]) && (ret >= 0)) {
5885                 adap->flags |= FW_OFLD_CONN;
5886                 adap->tids.aftid_base = val[0];
5887                 adap->tids.aftid_end = val[1];
5888         }
5889
5890         /* If we're running on newer firmware, let it know that we're
5891          * prepared to deal with encapsulated CPL messages.  Older
5892          * firmware won't understand this and we'll just get
5893          * unencapsulated messages ...
5894          */
5895         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5896         val[0] = 1;
5897         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5898
5899         /*
5900          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5901          * capability.  Earlier versions of the firmware didn't have the
5902          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5903          * permission to use ULPTX MEMWRITE DSGL.
5904          */
5905         if (is_t4(adap->params.chip)) {
5906                 adap->params.ulptx_memwrite_dsgl = false;
5907         } else {
5908                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5909                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5910                                       1, params, val);
5911                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5912         }
5913
5914         /*
5915          * Get device capabilities so we can determine what resources we need
5916          * to manage.
5917          */
5918         memset(&caps_cmd, 0, sizeof(caps_cmd));
5919         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5920                                      FW_CMD_REQUEST | FW_CMD_READ);
5921         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5922         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5923                          &caps_cmd);
5924         if (ret < 0)
5925                 goto bye;
5926
5927         if (caps_cmd.ofldcaps) {
5928                 /* query offload-related parameters */
5929                 params[0] = FW_PARAM_DEV(NTID);
5930                 params[1] = FW_PARAM_PFVF(SERVER_START);
5931                 params[2] = FW_PARAM_PFVF(SERVER_END);
5932                 params[3] = FW_PARAM_PFVF(TDDP_START);
5933                 params[4] = FW_PARAM_PFVF(TDDP_END);
5934                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5935                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5936                                       params, val);
5937                 if (ret < 0)
5938                         goto bye;
5939                 adap->tids.ntids = val[0];
5940                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5941                 adap->tids.stid_base = val[1];
5942                 adap->tids.nstids = val[2] - val[1] + 1;
5943                 /*
5944                  * Setup server filter region. Divide the availble filter
5945                  * region into two parts. Regular filters get 1/3rd and server
5946                  * filters get 2/3rd part. This is only enabled if workarond
5947                  * path is enabled.
5948                  * 1. For regular filters.
5949                  * 2. Server filter: This are special filters which are used
5950                  * to redirect SYN packets to offload queue.
5951                  */
5952                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5953                         adap->tids.sftid_base = adap->tids.ftid_base +
5954                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5955                         adap->tids.nsftids = adap->tids.nftids -
5956                                          DIV_ROUND_UP(adap->tids.nftids, 3);
5957                         adap->tids.nftids = adap->tids.sftid_base -
5958                                                 adap->tids.ftid_base;
5959                 }
5960                 adap->vres.ddp.start = val[3];
5961                 adap->vres.ddp.size = val[4] - val[3] + 1;
5962                 adap->params.ofldq_wr_cred = val[5];
5963
5964                 adap->params.offload = 1;
5965         }
5966         if (caps_cmd.rdmacaps) {
5967                 params[0] = FW_PARAM_PFVF(STAG_START);
5968                 params[1] = FW_PARAM_PFVF(STAG_END);
5969                 params[2] = FW_PARAM_PFVF(RQ_START);
5970                 params[3] = FW_PARAM_PFVF(RQ_END);
5971                 params[4] = FW_PARAM_PFVF(PBL_START);
5972                 params[5] = FW_PARAM_PFVF(PBL_END);
5973                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5974                                       params, val);
5975                 if (ret < 0)
5976                         goto bye;
5977                 adap->vres.stag.start = val[0];
5978                 adap->vres.stag.size = val[1] - val[0] + 1;
5979                 adap->vres.rq.start = val[2];
5980                 adap->vres.rq.size = val[3] - val[2] + 1;
5981                 adap->vres.pbl.start = val[4];
5982                 adap->vres.pbl.size = val[5] - val[4] + 1;
5983
5984                 params[0] = FW_PARAM_PFVF(SQRQ_START);
5985                 params[1] = FW_PARAM_PFVF(SQRQ_END);
5986                 params[2] = FW_PARAM_PFVF(CQ_START);
5987                 params[3] = FW_PARAM_PFVF(CQ_END);
5988                 params[4] = FW_PARAM_PFVF(OCQ_START);
5989                 params[5] = FW_PARAM_PFVF(OCQ_END);
5990                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
5991                                       val);
5992                 if (ret < 0)
5993                         goto bye;
5994                 adap->vres.qp.start = val[0];
5995                 adap->vres.qp.size = val[1] - val[0] + 1;
5996                 adap->vres.cq.start = val[2];
5997                 adap->vres.cq.size = val[3] - val[2] + 1;
5998                 adap->vres.ocq.start = val[4];
5999                 adap->vres.ocq.size = val[5] - val[4] + 1;
6000
6001                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
6002                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
6003                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
6004                                       val);
6005                 if (ret < 0) {
6006                         adap->params.max_ordird_qp = 8;
6007                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
6008                         ret = 0;
6009                 } else {
6010                         adap->params.max_ordird_qp = val[0];
6011                         adap->params.max_ird_adapter = val[1];
6012                 }
6013                 dev_info(adap->pdev_dev,
6014                          "max_ordird_qp %d max_ird_adapter %d\n",
6015                          adap->params.max_ordird_qp,
6016                          adap->params.max_ird_adapter);
6017         }
6018         if (caps_cmd.iscsicaps) {
6019                 params[0] = FW_PARAM_PFVF(ISCSI_START);
6020                 params[1] = FW_PARAM_PFVF(ISCSI_END);
6021                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
6022                                       params, val);
6023                 if (ret < 0)
6024                         goto bye;
6025                 adap->vres.iscsi.start = val[0];
6026                 adap->vres.iscsi.size = val[1] - val[0] + 1;
6027         }
6028 #undef FW_PARAM_PFVF
6029 #undef FW_PARAM_DEV
6030
6031         /* The MTU/MSS Table is initialized by now, so load their values.  If
6032          * we're initializing the adapter, then we'll make any modifications
6033          * we want to the MTU/MSS Table and also initialize the congestion
6034          * parameters.
6035          */
6036         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
6037         if (state != DEV_STATE_INIT) {
6038                 int i;
6039
6040                 /* The default MTU Table contains values 1492 and 1500.
6041                  * However, for TCP, it's better to have two values which are
6042                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
6043                  * This allows us to have a TCP Data Payload which is a
6044                  * multiple of 8 regardless of what combination of TCP Options
6045                  * are in use (always a multiple of 4 bytes) which is
6046                  * important for performance reasons.  For instance, if no
6047                  * options are in use, then we have a 20-byte IP header and a
6048                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
6049                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
6050                  * which is not a multiple of 8.  So using an MSS of 1488 in
6051                  * this case results in a TCP Data Payload of 1448 bytes which
6052                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
6053                  * Stamps have been negotiated, then an MTU of 1500 bytes
6054                  * results in a TCP Data Payload of 1448 bytes which, as
6055                  * above, is a multiple of 8 bytes ...
6056                  */
6057                 for (i = 0; i < NMTUS; i++)
6058                         if (adap->params.mtus[i] == 1492) {
6059                                 adap->params.mtus[i] = 1488;
6060                                 break;
6061                         }
6062
6063                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6064                              adap->params.b_wnd);
6065         }
6066         t4_init_tp_params(adap);
6067         adap->flags |= FW_OK;
6068         return 0;
6069
6070         /*
6071          * Something bad happened.  If a command timed out or failed with EIO
6072          * FW does not operate within its spec or something catastrophic
6073          * happened to HW/FW, stop issuing commands.
6074          */
6075 bye:
6076         if (ret != -ETIMEDOUT && ret != -EIO)
6077                 t4_fw_bye(adap, adap->mbox);
6078         return ret;
6079 }
6080
6081 /* EEH callbacks */
6082
6083 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6084                                          pci_channel_state_t state)
6085 {
6086         int i;
6087         struct adapter *adap = pci_get_drvdata(pdev);
6088
6089         if (!adap)
6090                 goto out;
6091
6092         rtnl_lock();
6093         adap->flags &= ~FW_OK;
6094         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6095         spin_lock(&adap->stats_lock);
6096         for_each_port(adap, i) {
6097                 struct net_device *dev = adap->port[i];
6098
6099                 netif_device_detach(dev);
6100                 netif_carrier_off(dev);
6101         }
6102         spin_unlock(&adap->stats_lock);
6103         if (adap->flags & FULL_INIT_DONE)
6104                 cxgb_down(adap);
6105         rtnl_unlock();
6106         if ((adap->flags & DEV_ENABLED)) {
6107                 pci_disable_device(pdev);
6108                 adap->flags &= ~DEV_ENABLED;
6109         }
6110 out:    return state == pci_channel_io_perm_failure ?
6111                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6112 }
6113
6114 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6115 {
6116         int i, ret;
6117         struct fw_caps_config_cmd c;
6118         struct adapter *adap = pci_get_drvdata(pdev);
6119
6120         if (!adap) {
6121                 pci_restore_state(pdev);
6122                 pci_save_state(pdev);
6123                 return PCI_ERS_RESULT_RECOVERED;
6124         }
6125
6126         if (!(adap->flags & DEV_ENABLED)) {
6127                 if (pci_enable_device(pdev)) {
6128                         dev_err(&pdev->dev, "Cannot reenable PCI "
6129                                             "device after reset\n");
6130                         return PCI_ERS_RESULT_DISCONNECT;
6131                 }
6132                 adap->flags |= DEV_ENABLED;
6133         }
6134
6135         pci_set_master(pdev);
6136         pci_restore_state(pdev);
6137         pci_save_state(pdev);
6138         pci_cleanup_aer_uncorrect_error_status(pdev);
6139
6140         if (t4_wait_dev_ready(adap->regs) < 0)
6141                 return PCI_ERS_RESULT_DISCONNECT;
6142         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6143                 return PCI_ERS_RESULT_DISCONNECT;
6144         adap->flags |= FW_OK;
6145         if (adap_init1(adap, &c))
6146                 return PCI_ERS_RESULT_DISCONNECT;
6147
6148         for_each_port(adap, i) {
6149                 struct port_info *p = adap2pinfo(adap, i);
6150
6151                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6152                                   NULL, NULL);
6153                 if (ret < 0)
6154                         return PCI_ERS_RESULT_DISCONNECT;
6155                 p->viid = ret;
6156                 p->xact_addr_filt = -1;
6157         }
6158
6159         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6160                      adap->params.b_wnd);
6161         setup_memwin(adap);
6162         if (cxgb_up(adap))
6163                 return PCI_ERS_RESULT_DISCONNECT;
6164         return PCI_ERS_RESULT_RECOVERED;
6165 }
6166
6167 static void eeh_resume(struct pci_dev *pdev)
6168 {
6169         int i;
6170         struct adapter *adap = pci_get_drvdata(pdev);
6171
6172         if (!adap)
6173                 return;
6174
6175         rtnl_lock();
6176         for_each_port(adap, i) {
6177                 struct net_device *dev = adap->port[i];
6178
6179                 if (netif_running(dev)) {
6180                         link_start(dev);
6181                         cxgb_set_rxmode(dev);
6182                 }
6183                 netif_device_attach(dev);
6184         }
6185         rtnl_unlock();
6186 }
6187
6188 static const struct pci_error_handlers cxgb4_eeh = {
6189         .error_detected = eeh_err_detected,
6190         .slot_reset     = eeh_slot_reset,
6191         .resume         = eeh_resume,
6192 };
6193
6194 static inline bool is_x_10g_port(const struct link_config *lc)
6195 {
6196         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6197                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6198 }
6199
6200 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6201                              unsigned int us, unsigned int cnt,
6202                              unsigned int size, unsigned int iqe_size)
6203 {
6204         q->adap = adap;
6205         set_rspq_intr_params(q, us, cnt);
6206         q->iqe_len = iqe_size;
6207         q->size = size;
6208 }
6209
6210 /*
6211  * Perform default configuration of DMA queues depending on the number and type
6212  * of ports we found and the number of available CPUs.  Most settings can be
6213  * modified by the admin prior to actual use.
6214  */
6215 static void cfg_queues(struct adapter *adap)
6216 {
6217         struct sge *s = &adap->sge;
6218         int i, n10g = 0, qidx = 0;
6219 #ifndef CONFIG_CHELSIO_T4_DCB
6220         int q10g = 0;
6221 #endif
6222         int ciq_size;
6223
6224         for_each_port(adap, i)
6225                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6226 #ifdef CONFIG_CHELSIO_T4_DCB
6227         /* For Data Center Bridging support we need to be able to support up
6228          * to 8 Traffic Priorities; each of which will be assigned to its
6229          * own TX Queue in order to prevent Head-Of-Line Blocking.
6230          */
6231         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6232                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6233                         MAX_ETH_QSETS, adap->params.nports * 8);
6234                 BUG_ON(1);
6235         }
6236
6237         for_each_port(adap, i) {
6238                 struct port_info *pi = adap2pinfo(adap, i);
6239
6240                 pi->first_qset = qidx;
6241                 pi->nqsets = 8;
6242                 qidx += pi->nqsets;
6243         }
6244 #else /* !CONFIG_CHELSIO_T4_DCB */
6245         /*
6246          * We default to 1 queue per non-10G port and up to # of cores queues
6247          * per 10G port.
6248          */
6249         if (n10g)
6250                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6251         if (q10g > netif_get_num_default_rss_queues())
6252                 q10g = netif_get_num_default_rss_queues();
6253
6254         for_each_port(adap, i) {
6255                 struct port_info *pi = adap2pinfo(adap, i);
6256
6257                 pi->first_qset = qidx;
6258                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6259                 qidx += pi->nqsets;
6260         }
6261 #endif /* !CONFIG_CHELSIO_T4_DCB */
6262
6263         s->ethqsets = qidx;
6264         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
6265
6266         if (is_offload(adap)) {
6267                 /*
6268                  * For offload we use 1 queue/channel if all ports are up to 1G,
6269                  * otherwise we divide all available queues amongst the channels
6270                  * capped by the number of available cores.
6271                  */
6272                 if (n10g) {
6273                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6274                                   num_online_cpus());
6275                         s->ofldqsets = roundup(i, adap->params.nports);
6276                 } else
6277                         s->ofldqsets = adap->params.nports;
6278                 /* For RDMA one Rx queue per channel suffices */
6279                 s->rdmaqs = adap->params.nports;
6280                 s->rdmaciqs = adap->params.nports;
6281         }
6282
6283         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6284                 struct sge_eth_rxq *r = &s->ethrxq[i];
6285
6286                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6287                 r->fl.size = 72;
6288         }
6289
6290         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6291                 s->ethtxq[i].q.size = 1024;
6292
6293         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6294                 s->ctrlq[i].q.size = 512;
6295
6296         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6297                 s->ofldtxq[i].q.size = 1024;
6298
6299         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6300                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6301
6302                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6303                 r->rspq.uld = CXGB4_ULD_ISCSI;
6304                 r->fl.size = 72;
6305         }
6306
6307         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6308                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6309
6310                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6311                 r->rspq.uld = CXGB4_ULD_RDMA;
6312                 r->fl.size = 72;
6313         }
6314
6315         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6316         if (ciq_size > SGE_MAX_IQ_SIZE) {
6317                 CH_WARN(adap, "CIQ size too small for available IQs\n");
6318                 ciq_size = SGE_MAX_IQ_SIZE;
6319         }
6320
6321         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6322                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6323
6324                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6325                 r->rspq.uld = CXGB4_ULD_RDMA;
6326         }
6327
6328         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6329         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6330 }
6331
6332 /*
6333  * Reduce the number of Ethernet queues across all ports to at most n.
6334  * n provides at least one queue per port.
6335  */
6336 static void reduce_ethqs(struct adapter *adap, int n)
6337 {
6338         int i;
6339         struct port_info *pi;
6340
6341         while (n < adap->sge.ethqsets)
6342                 for_each_port(adap, i) {
6343                         pi = adap2pinfo(adap, i);
6344                         if (pi->nqsets > 1) {
6345                                 pi->nqsets--;
6346                                 adap->sge.ethqsets--;
6347                                 if (adap->sge.ethqsets <= n)
6348                                         break;
6349                         }
6350                 }
6351
6352         n = 0;
6353         for_each_port(adap, i) {
6354                 pi = adap2pinfo(adap, i);
6355                 pi->first_qset = n;
6356                 n += pi->nqsets;
6357         }
6358 }
6359
6360 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6361 #define EXTRA_VECS 2
6362
6363 static int enable_msix(struct adapter *adap)
6364 {
6365         int ofld_need = 0;
6366         int i, want, need;
6367         struct sge *s = &adap->sge;
6368         unsigned int nchan = adap->params.nports;
6369         struct msix_entry entries[MAX_INGQ + 1];
6370
6371         for (i = 0; i < ARRAY_SIZE(entries); ++i)
6372                 entries[i].entry = i;
6373
6374         want = s->max_ethqsets + EXTRA_VECS;
6375         if (is_offload(adap)) {
6376                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6377                 /* need nchan for each possible ULD */
6378                 ofld_need = 3 * nchan;
6379         }
6380 #ifdef CONFIG_CHELSIO_T4_DCB
6381         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6382          * each port.
6383          */
6384         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6385 #else
6386         need = adap->params.nports + EXTRA_VECS + ofld_need;
6387 #endif
6388         want = pci_enable_msix_range(adap->pdev, entries, need, want);
6389         if (want < 0)
6390                 return want;
6391
6392         /*
6393          * Distribute available vectors to the various queue groups.
6394          * Every group gets its minimum requirement and NIC gets top
6395          * priority for leftovers.
6396          */
6397         i = want - EXTRA_VECS - ofld_need;
6398         if (i < s->max_ethqsets) {
6399                 s->max_ethqsets = i;
6400                 if (i < s->ethqsets)
6401                         reduce_ethqs(adap, i);
6402         }
6403         if (is_offload(adap)) {
6404                 i = want - EXTRA_VECS - s->max_ethqsets;
6405                 i -= ofld_need - nchan;
6406                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
6407         }
6408         for (i = 0; i < want; ++i)
6409                 adap->msix_info[i].vec = entries[i].vector;
6410
6411         return 0;
6412 }
6413
6414 #undef EXTRA_VECS
6415
6416 static int init_rss(struct adapter *adap)
6417 {
6418         unsigned int i, j;
6419
6420         for_each_port(adap, i) {
6421                 struct port_info *pi = adap2pinfo(adap, i);
6422
6423                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6424                 if (!pi->rss)
6425                         return -ENOMEM;
6426                 for (j = 0; j < pi->rss_size; j++)
6427                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6428         }
6429         return 0;
6430 }
6431
6432 static void print_port_info(const struct net_device *dev)
6433 {
6434         char buf[80];
6435         char *bufp = buf;
6436         const char *spd = "";
6437         const struct port_info *pi = netdev_priv(dev);
6438         const struct adapter *adap = pi->adapter;
6439
6440         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6441                 spd = " 2.5 GT/s";
6442         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6443                 spd = " 5 GT/s";
6444         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6445                 spd = " 8 GT/s";
6446
6447         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6448                 bufp += sprintf(bufp, "100/");
6449         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6450                 bufp += sprintf(bufp, "1000/");
6451         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6452                 bufp += sprintf(bufp, "10G/");
6453         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6454                 bufp += sprintf(bufp, "40G/");
6455         if (bufp != buf)
6456                 --bufp;
6457         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6458
6459         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6460                     adap->params.vpd.id,
6461                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6462                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6463                     (adap->flags & USING_MSIX) ? " MSI-X" :
6464                     (adap->flags & USING_MSI) ? " MSI" : "");
6465         netdev_info(dev, "S/N: %s, P/N: %s\n",
6466                     adap->params.vpd.sn, adap->params.vpd.pn);
6467 }
6468
6469 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6470 {
6471         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6472 }
6473
6474 /*
6475  * Free the following resources:
6476  * - memory used for tables
6477  * - MSI/MSI-X
6478  * - net devices
6479  * - resources FW is holding for us
6480  */
6481 static void free_some_resources(struct adapter *adapter)
6482 {
6483         unsigned int i;
6484
6485         t4_free_mem(adapter->l2t);
6486         t4_free_mem(adapter->tids.tid_tab);
6487         disable_msi(adapter);
6488
6489         for_each_port(adapter, i)
6490                 if (adapter->port[i]) {
6491                         kfree(adap2pinfo(adapter, i)->rss);
6492                         free_netdev(adapter->port[i]);
6493                 }
6494         if (adapter->flags & FW_OK)
6495                 t4_fw_bye(adapter, adapter->fn);
6496 }
6497
6498 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6499 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6500                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6501 #define SEGMENT_SIZE 128
6502
6503 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6504 {
6505         int func, i, err, s_qpp, qpp, num_seg;
6506         struct port_info *pi;
6507         bool highdma = false;
6508         struct adapter *adapter = NULL;
6509         void __iomem *regs;
6510
6511         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6512
6513         err = pci_request_regions(pdev, KBUILD_MODNAME);
6514         if (err) {
6515                 /* Just info, some other driver may have claimed the device. */
6516                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6517                 return err;
6518         }
6519
6520         err = pci_enable_device(pdev);
6521         if (err) {
6522                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6523                 goto out_release_regions;
6524         }
6525
6526         regs = pci_ioremap_bar(pdev, 0);
6527         if (!regs) {
6528                 dev_err(&pdev->dev, "cannot map device registers\n");
6529                 err = -ENOMEM;
6530                 goto out_disable_device;
6531         }
6532
6533         err = t4_wait_dev_ready(regs);
6534         if (err < 0)
6535                 goto out_unmap_bar0;
6536
6537         /* We control everything through one PF */
6538         func = SOURCEPF_GET(readl(regs + PL_WHOAMI));
6539         if (func != ent->driver_data) {
6540                 iounmap(regs);
6541                 pci_disable_device(pdev);
6542                 pci_save_state(pdev);        /* to restore SR-IOV later */
6543                 goto sriov;
6544         }
6545
6546         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6547                 highdma = true;
6548                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6549                 if (err) {
6550                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6551                                 "coherent allocations\n");
6552                         goto out_unmap_bar0;
6553                 }
6554         } else {
6555                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6556                 if (err) {
6557                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6558                         goto out_unmap_bar0;
6559                 }
6560         }
6561
6562         pci_enable_pcie_error_reporting(pdev);
6563         enable_pcie_relaxed_ordering(pdev);
6564         pci_set_master(pdev);
6565         pci_save_state(pdev);
6566
6567         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6568         if (!adapter) {
6569                 err = -ENOMEM;
6570                 goto out_unmap_bar0;
6571         }
6572
6573         adapter->workq = create_singlethread_workqueue("cxgb4");
6574         if (!adapter->workq) {
6575                 err = -ENOMEM;
6576                 goto out_free_adapter;
6577         }
6578
6579         /* PCI device has been enabled */
6580         adapter->flags |= DEV_ENABLED;
6581
6582         adapter->regs = regs;
6583         adapter->pdev = pdev;
6584         adapter->pdev_dev = &pdev->dev;
6585         adapter->mbox = func;
6586         adapter->fn = func;
6587         adapter->msg_enable = dflt_msg_enable;
6588         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6589
6590         spin_lock_init(&adapter->stats_lock);
6591         spin_lock_init(&adapter->tid_release_lock);
6592
6593         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6594         INIT_WORK(&adapter->db_full_task, process_db_full);
6595         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6596
6597         err = t4_prep_adapter(adapter);
6598         if (err)
6599                 goto out_free_adapter;
6600
6601
6602         if (!is_t4(adapter->params.chip)) {
6603                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6604                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6605                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6606                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6607
6608                 /* Each segment size is 128B. Write coalescing is enabled only
6609                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6610                  * queue is less no of segments that can be accommodated in
6611                  * a page size.
6612                  */
6613                 if (qpp > num_seg) {
6614                         dev_err(&pdev->dev,
6615                                 "Incorrect number of egress queues per page\n");
6616                         err = -EINVAL;
6617                         goto out_free_adapter;
6618                 }
6619                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6620                 pci_resource_len(pdev, 2));
6621                 if (!adapter->bar2) {
6622                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6623                         err = -ENOMEM;
6624                         goto out_free_adapter;
6625                 }
6626         }
6627
6628         setup_memwin(adapter);
6629         err = adap_init0(adapter);
6630         setup_memwin_rdma(adapter);
6631         if (err)
6632                 goto out_unmap_bar;
6633
6634         for_each_port(adapter, i) {
6635                 struct net_device *netdev;
6636
6637                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6638                                            MAX_ETH_QSETS);
6639                 if (!netdev) {
6640                         err = -ENOMEM;
6641                         goto out_free_dev;
6642                 }
6643
6644                 SET_NETDEV_DEV(netdev, &pdev->dev);
6645
6646                 adapter->port[i] = netdev;
6647                 pi = netdev_priv(netdev);
6648                 pi->adapter = adapter;
6649                 pi->xact_addr_filt = -1;
6650                 pi->port_id = i;
6651                 netdev->irq = pdev->irq;
6652
6653                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6654                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6655                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
6656                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6657                 if (highdma)
6658                         netdev->hw_features |= NETIF_F_HIGHDMA;
6659                 netdev->features |= netdev->hw_features;
6660                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6661
6662                 netdev->priv_flags |= IFF_UNICAST_FLT;
6663
6664                 netdev->netdev_ops = &cxgb4_netdev_ops;
6665 #ifdef CONFIG_CHELSIO_T4_DCB
6666                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6667                 cxgb4_dcb_state_init(netdev);
6668 #endif
6669                 netdev->ethtool_ops = &cxgb_ethtool_ops;
6670         }
6671
6672         pci_set_drvdata(pdev, adapter);
6673
6674         if (adapter->flags & FW_OK) {
6675                 err = t4_port_init(adapter, func, func, 0);
6676                 if (err)
6677                         goto out_free_dev;
6678         }
6679
6680         /*
6681          * Configure queues and allocate tables now, they can be needed as
6682          * soon as the first register_netdev completes.
6683          */
6684         cfg_queues(adapter);
6685
6686         adapter->l2t = t4_init_l2t();
6687         if (!adapter->l2t) {
6688                 /* We tolerate a lack of L2T, giving up some functionality */
6689                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6690                 adapter->params.offload = 0;
6691         }
6692
6693         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6694                 dev_warn(&pdev->dev, "could not allocate TID table, "
6695                          "continuing\n");
6696                 adapter->params.offload = 0;
6697         }
6698
6699         /* See what interrupts we'll be using */
6700         if (msi > 1 && enable_msix(adapter) == 0)
6701                 adapter->flags |= USING_MSIX;
6702         else if (msi > 0 && pci_enable_msi(pdev) == 0)
6703                 adapter->flags |= USING_MSI;
6704
6705         err = init_rss(adapter);
6706         if (err)
6707                 goto out_free_dev;
6708
6709         /*
6710          * The card is now ready to go.  If any errors occur during device
6711          * registration we do not fail the whole card but rather proceed only
6712          * with the ports we manage to register successfully.  However we must
6713          * register at least one net device.
6714          */
6715         for_each_port(adapter, i) {
6716                 pi = adap2pinfo(adapter, i);
6717                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6718                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6719
6720                 err = register_netdev(adapter->port[i]);
6721                 if (err)
6722                         break;
6723                 adapter->chan_map[pi->tx_chan] = i;
6724                 print_port_info(adapter->port[i]);
6725         }
6726         if (i == 0) {
6727                 dev_err(&pdev->dev, "could not register any net devices\n");
6728                 goto out_free_dev;
6729         }
6730         if (err) {
6731                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6732                 err = 0;
6733         }
6734
6735         if (cxgb4_debugfs_root) {
6736                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6737                                                            cxgb4_debugfs_root);
6738                 setup_debugfs(adapter);
6739         }
6740
6741         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6742         pdev->needs_freset = 1;
6743
6744         if (is_offload(adapter))
6745                 attach_ulds(adapter);
6746
6747 sriov:
6748 #ifdef CONFIG_PCI_IOV
6749         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6750                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6751                         dev_info(&pdev->dev,
6752                                  "instantiated %u virtual functions\n",
6753                                  num_vf[func]);
6754 #endif
6755         return 0;
6756
6757  out_free_dev:
6758         free_some_resources(adapter);
6759  out_unmap_bar:
6760         if (!is_t4(adapter->params.chip))
6761                 iounmap(adapter->bar2);
6762  out_free_adapter:
6763         if (adapter->workq)
6764                 destroy_workqueue(adapter->workq);
6765
6766         kfree(adapter);
6767  out_unmap_bar0:
6768         iounmap(regs);
6769  out_disable_device:
6770         pci_disable_pcie_error_reporting(pdev);
6771         pci_disable_device(pdev);
6772  out_release_regions:
6773         pci_release_regions(pdev);
6774         return err;
6775 }
6776
6777 static void remove_one(struct pci_dev *pdev)
6778 {
6779         struct adapter *adapter = pci_get_drvdata(pdev);
6780
6781 #ifdef CONFIG_PCI_IOV
6782         pci_disable_sriov(pdev);
6783
6784 #endif
6785
6786         if (adapter) {
6787                 int i;
6788
6789                 /* Tear down per-adapter Work Queue first since it can contain
6790                  * references to our adapter data structure.
6791                  */
6792                 destroy_workqueue(adapter->workq);
6793
6794                 if (is_offload(adapter))
6795                         detach_ulds(adapter);
6796
6797                 for_each_port(adapter, i)
6798                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6799                                 unregister_netdev(adapter->port[i]);
6800
6801                 debugfs_remove_recursive(adapter->debugfs_root);
6802
6803                 /* If we allocated filters, free up state associated with any
6804                  * valid filters ...
6805                  */
6806                 if (adapter->tids.ftid_tab) {
6807                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
6808                         for (i = 0; i < (adapter->tids.nftids +
6809                                         adapter->tids.nsftids); i++, f++)
6810                                 if (f->valid)
6811                                         clear_filter(adapter, f);
6812                 }
6813
6814                 if (adapter->flags & FULL_INIT_DONE)
6815                         cxgb_down(adapter);
6816
6817                 free_some_resources(adapter);
6818                 iounmap(adapter->regs);
6819                 if (!is_t4(adapter->params.chip))
6820                         iounmap(adapter->bar2);
6821                 pci_disable_pcie_error_reporting(pdev);
6822                 if ((adapter->flags & DEV_ENABLED)) {
6823                         pci_disable_device(pdev);
6824                         adapter->flags &= ~DEV_ENABLED;
6825                 }
6826                 pci_release_regions(pdev);
6827                 synchronize_rcu();
6828                 kfree(adapter);
6829         } else
6830                 pci_release_regions(pdev);
6831 }
6832
6833 static struct pci_driver cxgb4_driver = {
6834         .name     = KBUILD_MODNAME,
6835         .id_table = cxgb4_pci_tbl,
6836         .probe    = init_one,
6837         .remove   = remove_one,
6838         .shutdown = remove_one,
6839         .err_handler = &cxgb4_eeh,
6840 };
6841
6842 static int __init cxgb4_init_module(void)
6843 {
6844         int ret;
6845
6846         /* Debugfs support is optional, just warn if this fails */
6847         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6848         if (!cxgb4_debugfs_root)
6849                 pr_warn("could not create debugfs entry, continuing\n");
6850
6851         ret = pci_register_driver(&cxgb4_driver);
6852         if (ret < 0)
6853                 debugfs_remove(cxgb4_debugfs_root);
6854
6855         register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6856
6857         return ret;
6858 }
6859
6860 static void __exit cxgb4_cleanup_module(void)
6861 {
6862         unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6863         pci_unregister_driver(&cxgb4_driver);
6864         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6865 }
6866
6867 module_init(cxgb4_init_module);
6868 module_exit(cxgb4_cleanup_module);