2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4fw_api.h"
51 #include "../cxgb4/t4_msg.h"
54 * Decoded Adapter Parameters.
56 static u32 FL_PG_ORDER; /* large page allocation size */
57 static u32 STAT_LEN; /* length of status page at ring end */
58 static u32 PKTSHIFT; /* padding between CPL and packet data */
59 static u32 FL_ALIGN; /* response queue message alignment */
66 * Egress Queue sizes, producer and consumer indices are all in units
67 * of Egress Context Units bytes. Note that as far as the hardware is
68 * concerned, the free list is an Egress Queue (the host produces free
69 * buffers which the hardware consumes) and free list entries are
70 * 64-bit PCI DMA addresses.
72 EQ_UNIT = SGE_EQ_IDXSIZE,
73 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
74 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
77 * Max number of TX descriptors we clean up at a time. Should be
78 * modest as freeing skbs isn't cheap and it happens while holding
79 * locks. We just need to free packets faster than they arrive, we
80 * eventually catch up and keep the amortized cost reasonable.
85 * Max number of Rx buffers we replenish at a time. Again keep this
86 * modest, allocating buffers isn't cheap either.
91 * Period of the Rx queue check timer. This timer is infrequent as it
92 * has something to do only when the system experiences severe memory
95 RX_QCHECK_PERIOD = (HZ / 2),
98 * Period of the TX queue check timer and the maximum number of TX
99 * descriptors to be reclaimed by the TX timer.
101 TX_QCHECK_PERIOD = (HZ / 2),
102 MAX_TIMER_TX_RECLAIM = 100,
105 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic
106 * timer will attempt to refill it.
111 * Suspend an Ethernet TX queue with fewer available descriptors than
112 * this. We always want to have room for a maximum sized packet:
113 * inline immediate data + MAX_SKB_FRAGS. This is the same as
114 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
115 * (see that function and its helpers for a description of the
118 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
119 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
120 ((ETHTXQ_MAX_FRAGS-1) & 1) +
122 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
123 sizeof(struct cpl_tx_pkt_lso_core) +
124 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
125 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
127 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
130 * Max TX descriptor space we allow for an Ethernet packet to be
131 * inlined into a WR. This is limited by the maximum value which
132 * we can specify for immediate data in the firmware Ethernet TX
135 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK,
138 * Max size of a WR sent through a control TX queue.
140 MAX_CTRL_WR_LEN = 256,
143 * Maximum amount of data which we'll ever need to inline into a
144 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
146 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
151 * For incoming packets less than RX_COPY_THRES, we copy the data into
152 * an skb rather than referencing the data. We allocate enough
153 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
154 * of the data (header).
160 * Main body length for sk_buffs used for RX Ethernet packets with
161 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give
162 * pskb_may_pull() some room.
168 * Software state per TX descriptor.
171 struct sk_buff *skb; /* socket buffer of TX data source */
172 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */
176 * Software state per RX Free List descriptor. We keep track of the allocated
177 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
178 * page size and its PCI DMA mapped state are stored in the low bits of the
179 * PCI DMA address as per below.
182 struct page *page; /* Free List page buffer */
183 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */
184 /* and flags (see below) */
188 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
189 * SGE also uses the low 4 bits to determine the size of the buffer. It uses
190 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
191 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
192 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
193 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
194 * maintained in an inverse sense so the hardware never sees that bit high.
197 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
198 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
202 * get_buf_addr - return DMA buffer address of software descriptor
203 * @sdesc: pointer to the software buffer descriptor
205 * Return the DMA buffer address of a software descriptor (stripping out
206 * our low-order flag bits).
208 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
210 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
214 * is_buf_mapped - is buffer mapped for DMA?
215 * @sdesc: pointer to the software buffer descriptor
217 * Determine whether the buffer associated with a software descriptor in
218 * mapped for DMA or not.
220 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
222 return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
226 * need_skb_unmap - does the platform need unmapping of sk_buffs?
228 * Returns true if the platform needs sk_buff unmapping. The compiler
229 * optimizes away unnecessary code if this returns true.
231 static inline int need_skb_unmap(void)
233 #ifdef CONFIG_NEED_DMA_MAP_STATE
241 * txq_avail - return the number of available slots in a TX queue
244 * Returns the number of available descriptors in a TX queue.
246 static inline unsigned int txq_avail(const struct sge_txq *tq)
248 return tq->size - 1 - tq->in_use;
252 * fl_cap - return the capacity of a Free List
255 * Returns the capacity of a Free List. The capacity is less than the
256 * size because an Egress Queue Index Unit worth of descriptors needs to
257 * be left unpopulated, otherwise the Producer and Consumer indices PIDX
258 * and CIDX will match and the hardware will think the FL is empty.
260 static inline unsigned int fl_cap(const struct sge_fl *fl)
262 return fl->size - FL_PER_EQ_UNIT;
266 * fl_starving - return whether a Free List is starving.
269 * Tests specified Free List to see whether the number of buffers
270 * available to the hardware has falled below our "starvation"
273 static inline bool fl_starving(const struct sge_fl *fl)
275 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
279 * map_skb - map an skb for DMA to the device
280 * @dev: the egress net device
281 * @skb: the packet to map
282 * @addr: a pointer to the base of the DMA mapping array
284 * Map an skb for DMA to the device and return an array of DMA addresses.
286 static int map_skb(struct device *dev, const struct sk_buff *skb,
289 const skb_frag_t *fp, *end;
290 const struct skb_shared_info *si;
292 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
293 if (dma_mapping_error(dev, *addr))
296 si = skb_shinfo(skb);
297 end = &si->frags[si->nr_frags];
298 for (fp = si->frags; fp < end; fp++) {
299 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
301 if (dma_mapping_error(dev, *addr))
307 while (fp-- > si->frags)
308 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
309 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
315 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
316 const struct ulptx_sgl *sgl, const struct sge_txq *tq)
318 const struct ulptx_sge_pair *p;
319 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
321 if (likely(skb_headlen(skb)))
322 dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
323 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
325 dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
326 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
331 * the complexity below is because of the possibility of a wrap-around
332 * in the middle of an SGL
334 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
335 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
337 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
338 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
339 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
340 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
342 } else if ((u8 *)p == (u8 *)tq->stat) {
343 p = (const struct ulptx_sge_pair *)tq->desc;
345 } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
346 const __be64 *addr = (const __be64 *)tq->desc;
348 dma_unmap_page(dev, be64_to_cpu(addr[0]),
349 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
350 dma_unmap_page(dev, be64_to_cpu(addr[1]),
351 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
352 p = (const struct ulptx_sge_pair *)&addr[2];
354 const __be64 *addr = (const __be64 *)tq->desc;
356 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
357 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
358 dma_unmap_page(dev, be64_to_cpu(addr[0]),
359 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
360 p = (const struct ulptx_sge_pair *)&addr[1];
366 if ((u8 *)p == (u8 *)tq->stat)
367 p = (const struct ulptx_sge_pair *)tq->desc;
368 addr = ((u8 *)p + 16 <= (u8 *)tq->stat
370 : *(const __be64 *)tq->desc);
371 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
377 * free_tx_desc - reclaims TX descriptors and their buffers
378 * @adapter: the adapter
379 * @tq: the TX queue to reclaim descriptors from
380 * @n: the number of descriptors to reclaim
381 * @unmap: whether the buffers should be unmapped for DMA
383 * Reclaims TX descriptors from an SGE TX queue and frees the associated
384 * TX buffers. Called with the TX queue lock held.
386 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
387 unsigned int n, bool unmap)
389 struct tx_sw_desc *sdesc;
390 unsigned int cidx = tq->cidx;
391 struct device *dev = adapter->pdev_dev;
393 const int need_unmap = need_skb_unmap() && unmap;
395 sdesc = &tq->sdesc[cidx];
398 * If we kept a reference to the original TX skb, we need to
399 * unmap it from PCI DMA space (if required) and free it.
403 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
404 kfree_skb(sdesc->skb);
409 if (++cidx == tq->size) {
418 * Return the number of reclaimable descriptors in a TX queue.
420 static inline int reclaimable(const struct sge_txq *tq)
422 int hw_cidx = be16_to_cpu(tq->stat->cidx);
423 int reclaimable = hw_cidx - tq->cidx;
425 reclaimable += tq->size;
430 * reclaim_completed_tx - reclaims completed TX descriptors
431 * @adapter: the adapter
432 * @tq: the TX queue to reclaim completed descriptors from
433 * @unmap: whether the buffers should be unmapped for DMA
435 * Reclaims TX descriptors that the SGE has indicated it has processed,
436 * and frees the associated buffers if possible. Called with the TX
439 static inline void reclaim_completed_tx(struct adapter *adapter,
443 int avail = reclaimable(tq);
447 * Limit the amount of clean up work we do at a time to keep
448 * the TX lock hold time O(1).
450 if (avail > MAX_TX_RECLAIM)
451 avail = MAX_TX_RECLAIM;
453 free_tx_desc(adapter, tq, avail, unmap);
459 * get_buf_size - return the size of an RX Free List buffer.
460 * @sdesc: pointer to the software buffer descriptor
462 static inline int get_buf_size(const struct rx_sw_desc *sdesc)
464 return FL_PG_ORDER > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
465 ? (PAGE_SIZE << FL_PG_ORDER)
470 * free_rx_bufs - free RX buffers on an SGE Free List
471 * @adapter: the adapter
472 * @fl: the SGE Free List to free buffers from
473 * @n: how many buffers to free
475 * Release the next @n buffers on an SGE Free List RX queue. The
476 * buffers must be made inaccessible to hardware before calling this
479 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
482 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
484 if (is_buf_mapped(sdesc))
485 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
486 get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
487 put_page(sdesc->page);
489 if (++fl->cidx == fl->size)
496 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
497 * @adapter: the adapter
498 * @fl: the SGE Free List
500 * Unmap the current buffer on an SGE Free List RX queue. The
501 * buffer must be made inaccessible to HW before calling this function.
503 * This is similar to @free_rx_bufs above but does not free the buffer.
504 * Do note that the FL still loses any further access to the buffer.
505 * This is used predominantly to "transfer ownership" of an FL buffer
506 * to another entity (typically an skb's fragment list).
508 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
510 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
512 if (is_buf_mapped(sdesc))
513 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
514 get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
516 if (++fl->cidx == fl->size)
522 * ring_fl_db - righ doorbell on free list
523 * @adapter: the adapter
524 * @fl: the Free List whose doorbell should be rung ...
526 * Tell the Scatter Gather Engine that there are new free list entries
529 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
534 * The SGE keeps track of its Producer and Consumer Indices in terms
535 * of Egress Queue Units so we can only tell it about integral numbers
536 * of multiples of Free List Entries per Egress Queue Units ...
538 if (fl->pend_cred >= FL_PER_EQ_UNIT) {
539 val = PIDX(fl->pend_cred / FL_PER_EQ_UNIT);
540 if (!is_t4(adapter->chip))
543 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
545 QID(fl->cntxt_id) | val);
546 fl->pend_cred %= FL_PER_EQ_UNIT;
551 * set_rx_sw_desc - initialize software RX buffer descriptor
552 * @sdesc: pointer to the softwore RX buffer descriptor
553 * @page: pointer to the page data structure backing the RX buffer
554 * @dma_addr: PCI DMA address (possibly with low-bit flags)
556 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
560 sdesc->dma_addr = dma_addr;
564 * Support for poisoning RX buffers ...
566 #define POISON_BUF_VAL -1
568 static inline void poison_buf(struct page *page, size_t sz)
570 #if POISON_BUF_VAL >= 0
571 memset(page_address(page), POISON_BUF_VAL, sz);
576 * refill_fl - refill an SGE RX buffer ring
577 * @adapter: the adapter
578 * @fl: the Free List ring to refill
579 * @n: the number of new buffers to allocate
580 * @gfp: the gfp flags for the allocations
582 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
583 * allocated with the supplied gfp flags. The caller must assure that
584 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
585 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
586 * of buffers allocated. If afterwards the queue is found critically low,
587 * mark it as starving in the bitmap of starving FLs.
589 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
594 unsigned int cred = fl->avail;
595 __be64 *d = &fl->desc[fl->pidx];
596 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
599 * Sanity: ensure that the result of adding n Free List buffers
600 * won't result in wrapping the SGE's Producer Index around to
601 * it's Consumer Index thereby indicating an empty Free List ...
603 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
606 * If we support large pages, prefer large buffers and fail over to
607 * small pages if we can't allocate large pages to satisfy the refill.
608 * If we don't support large pages, drop directly into the small page
611 if (FL_PG_ORDER == 0)
612 goto alloc_small_pages;
615 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
617 if (unlikely(!page)) {
619 * We've failed inour attempt to allocate a "large
620 * page". Fail over to the "small page" allocation
623 fl->large_alloc_failed++;
626 poison_buf(page, PAGE_SIZE << FL_PG_ORDER);
628 dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
629 PAGE_SIZE << FL_PG_ORDER,
631 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
633 * We've run out of DMA mapping space. Free up the
634 * buffer and return with what we've managed to put
635 * into the free list. We don't want to fail over to
636 * the small page allocation below in this case
637 * because DMA mapping resources are typically
638 * critical resources once they become scarse.
640 __free_pages(page, FL_PG_ORDER);
643 dma_addr |= RX_LARGE_BUF;
644 *d++ = cpu_to_be64(dma_addr);
646 set_rx_sw_desc(sdesc, page, dma_addr);
650 if (++fl->pidx == fl->size) {
660 page = __skb_alloc_page(gfp | __GFP_NOWARN, NULL);
661 if (unlikely(!page)) {
665 poison_buf(page, PAGE_SIZE);
667 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
669 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
673 *d++ = cpu_to_be64(dma_addr);
675 set_rx_sw_desc(sdesc, page, dma_addr);
679 if (++fl->pidx == fl->size) {
688 * Update our accounting state to incorporate the new Free List
689 * buffers, tell the hardware about them and return the number of
690 * buffers which we were able to allocate.
692 cred = fl->avail - cred;
693 fl->pend_cred += cred;
694 ring_fl_db(adapter, fl);
696 if (unlikely(fl_starving(fl))) {
698 set_bit(fl->cntxt_id, adapter->sge.starving_fl);
705 * Refill a Free List to its capacity or the Maximum Refill Increment,
706 * whichever is smaller ...
708 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
710 refill_fl(adapter, fl,
711 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
716 * alloc_ring - allocate resources for an SGE descriptor ring
717 * @dev: the PCI device's core device
718 * @nelem: the number of descriptors
719 * @hwsize: the size of each hardware descriptor
720 * @swsize: the size of each software descriptor
721 * @busaddrp: the physical PCI bus address of the allocated ring
722 * @swringp: return address pointer for software ring
723 * @stat_size: extra space in hardware ring for status information
725 * Allocates resources for an SGE descriptor ring, such as TX queues,
726 * free buffer lists, response queues, etc. Each SGE ring requires
727 * space for its hardware descriptors plus, optionally, space for software
728 * state associated with each hardware entry (the metadata). The function
729 * returns three values: the virtual address for the hardware ring (the
730 * return value of the function), the PCI bus address of the hardware
731 * ring (in *busaddrp), and the address of the software ring (in swringp).
732 * Both the hardware and software rings are returned zeroed out.
734 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
735 size_t swsize, dma_addr_t *busaddrp, void *swringp,
739 * Allocate the hardware ring and PCI DMA bus address space for said.
741 size_t hwlen = nelem * hwsize + stat_size;
742 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
748 * If the caller wants a software ring, allocate it and return a
749 * pointer to it in *swringp.
751 BUG_ON((swsize != 0) != (swringp != NULL));
753 void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
756 dma_free_coherent(dev, hwlen, hwring, *busaddrp);
759 *(void **)swringp = swring;
763 * Zero out the hardware ring and return its address as our function
766 memset(hwring, 0, hwlen);
771 * sgl_len - calculates the size of an SGL of the given capacity
772 * @n: the number of SGL entries
774 * Calculates the number of flits (8-byte units) needed for a Direct
775 * Scatter/Gather List that can hold the given number of entries.
777 static inline unsigned int sgl_len(unsigned int n)
780 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
781 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
782 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
783 * repeated sequences of { Length[i], Length[i+1], Address[i],
784 * Address[i+1] } (this ensures that all addresses are on 64-bit
785 * boundaries). If N is even, then Length[N+1] should be set to 0 and
786 * Address[N+1] is omitted.
788 * The following calculation incorporates all of the above. It's
789 * somewhat hard to follow but, briefly: the "+2" accounts for the
790 * first two flits which include the DSGL header, Length0 and
791 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
792 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
793 * finally the "+((n-1)&1)" adds the one remaining flit needed if
797 return (3 * n) / 2 + (n & 1) + 2;
801 * flits_to_desc - returns the num of TX descriptors for the given flits
802 * @flits: the number of flits
804 * Returns the number of TX descriptors needed for the supplied number
807 static inline unsigned int flits_to_desc(unsigned int flits)
809 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
810 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
814 * is_eth_imm - can an Ethernet packet be sent as immediate data?
817 * Returns whether an Ethernet packet is small enough to fit completely as
820 static inline int is_eth_imm(const struct sk_buff *skb)
823 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
824 * which does not accommodate immediate data. We could dike out all
825 * of the support code for immediate data but that would tie our hands
826 * too much if we ever want to enhace the firmware. It would also
827 * create more differences between the PF and VF Drivers.
833 * calc_tx_flits - calculate the number of flits for a packet TX WR
836 * Returns the number of flits needed for a TX Work Request for the
837 * given Ethernet packet, including the needed WR and CPL headers.
839 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
844 * If the skb is small enough, we can pump it out as a work request
845 * with only immediate data. In that case we just have to have the
846 * TX Packet header plus the skb data in the Work Request.
849 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
853 * Otherwise, we're going to have to construct a Scatter gather list
854 * of the skb body and fragments. We also include the flits necessary
855 * for the TX Packet Work Request and CPL. We always have a firmware
856 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
857 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
858 * message or, if we're doing a Large Send Offload, an LSO CPL message
859 * with an embeded TX Packet Write CPL message.
861 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
862 if (skb_shinfo(skb)->gso_size)
863 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
864 sizeof(struct cpl_tx_pkt_lso_core) +
865 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
867 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
868 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
873 * write_sgl - populate a Scatter/Gather List for a packet
875 * @tq: the TX queue we are writing into
876 * @sgl: starting location for writing the SGL
877 * @end: points right after the end of the SGL
878 * @start: start offset into skb main-body data to include in the SGL
879 * @addr: the list of DMA bus addresses for the SGL elements
881 * Generates a Scatter/Gather List for the buffers that make up a packet.
882 * The caller must provide adequate space for the SGL that will be written.
883 * The SGL includes all of the packet's page fragments and the data in its
884 * main body except for the first @start bytes. @pos must be 16-byte
885 * aligned and within a TX descriptor with available space. @end points
886 * write after the end of the SGL but does not account for any potential
887 * wrap around, i.e., @end > @tq->stat.
889 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
890 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
891 const dma_addr_t *addr)
894 struct ulptx_sge_pair *to;
895 const struct skb_shared_info *si = skb_shinfo(skb);
896 unsigned int nfrags = si->nr_frags;
897 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
899 len = skb_headlen(skb) - start;
901 sgl->len0 = htonl(len);
902 sgl->addr0 = cpu_to_be64(addr[0] + start);
905 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
906 sgl->addr0 = cpu_to_be64(addr[1]);
909 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) |
911 if (likely(--nfrags == 0))
914 * Most of the complexity below deals with the possibility we hit the
915 * end of the queue in the middle of writing the SGL. For this case
916 * only we create the SGL in a temporary buffer and then copy it.
918 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
920 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
921 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
922 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
923 to->addr[0] = cpu_to_be64(addr[i]);
924 to->addr[1] = cpu_to_be64(addr[++i]);
927 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
928 to->len[1] = cpu_to_be32(0);
929 to->addr[0] = cpu_to_be64(addr[i + 1]);
931 if (unlikely((u8 *)end > (u8 *)tq->stat)) {
932 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
935 memcpy(sgl->sge, buf, part0);
936 part1 = (u8 *)end - (u8 *)tq->stat;
937 memcpy(tq->desc, (u8 *)buf + part0, part1);
938 end = (void *)tq->desc + part1;
940 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
945 * check_ring_tx_db - check and potentially ring a TX queue's doorbell
946 * @adapter: the adapter
948 * @n: number of new descriptors to give to HW
950 * Ring the doorbel for a TX queue.
952 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
956 * Warn if we write doorbells with the wrong priority and write
957 * descriptors before telling HW.
959 WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO(1));
961 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
962 QID(tq->cntxt_id) | PIDX(n));
966 * inline_tx_skb - inline a packet's data into TX descriptors
968 * @tq: the TX queue where the packet will be inlined
969 * @pos: starting position in the TX queue to inline the packet
971 * Inline a packet's contents directly into TX descriptors, starting at
972 * the given position within the TX DMA ring.
973 * Most of the complexity of this operation is dealing with wrap arounds
974 * in the middle of the packet we want to inline.
976 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
980 int left = (void *)tq->stat - pos;
982 if (likely(skb->len <= left)) {
983 if (likely(!skb->data_len))
984 skb_copy_from_linear_data(skb, pos, skb->len);
986 skb_copy_bits(skb, 0, pos, skb->len);
989 skb_copy_bits(skb, 0, pos, left);
990 skb_copy_bits(skb, left, tq->desc, skb->len - left);
991 pos = (void *)tq->desc + (skb->len - left);
994 /* 0-pad to multiple of 16 */
995 p = PTR_ALIGN(pos, 8);
996 if ((uintptr_t)p & 8)
1001 * Figure out what HW csum a packet wants and return the appropriate control
1004 static u64 hwcsum(const struct sk_buff *skb)
1007 const struct iphdr *iph = ip_hdr(skb);
1009 if (iph->version == 4) {
1010 if (iph->protocol == IPPROTO_TCP)
1011 csum_type = TX_CSUM_TCPIP;
1012 else if (iph->protocol == IPPROTO_UDP)
1013 csum_type = TX_CSUM_UDPIP;
1017 * unknown protocol, disable HW csum
1018 * and hope a bad packet is detected
1020 return TXPKT_L4CSUM_DIS;
1024 * this doesn't work with extension headers
1026 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1028 if (ip6h->nexthdr == IPPROTO_TCP)
1029 csum_type = TX_CSUM_TCPIP6;
1030 else if (ip6h->nexthdr == IPPROTO_UDP)
1031 csum_type = TX_CSUM_UDPIP6;
1036 if (likely(csum_type >= TX_CSUM_TCPIP))
1037 return TXPKT_CSUM_TYPE(csum_type) |
1038 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1039 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1041 int start = skb_transport_offset(skb);
1043 return TXPKT_CSUM_TYPE(csum_type) |
1044 TXPKT_CSUM_START(start) |
1045 TXPKT_CSUM_LOC(start + skb->csum_offset);
1050 * Stop an Ethernet TX queue and record that state change.
1052 static void txq_stop(struct sge_eth_txq *txq)
1054 netif_tx_stop_queue(txq->txq);
1059 * Advance our software state for a TX queue by adding n in use descriptors.
1061 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1065 if (tq->pidx >= tq->size)
1066 tq->pidx -= tq->size;
1070 * t4vf_eth_xmit - add a packet to an Ethernet TX queue
1072 * @dev: the egress net device
1074 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1076 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1081 unsigned int flits, ndesc;
1082 struct adapter *adapter;
1083 struct sge_eth_txq *txq;
1084 const struct port_info *pi;
1085 struct fw_eth_tx_pkt_vm_wr *wr;
1086 struct cpl_tx_pkt_core *cpl;
1087 const struct skb_shared_info *ssi;
1088 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1089 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1090 sizeof(wr->ethmacsrc) +
1091 sizeof(wr->ethtype) +
1092 sizeof(wr->vlantci));
1095 * The chip minimum packet length is 10 octets but the firmware
1096 * command that we are using requires that we copy the Ethernet header
1097 * (including the VLAN tag) into the header so we reject anything
1098 * smaller than that ...
1100 if (unlikely(skb->len < fw_hdr_copy_len))
1104 * Figure out which TX Queue we're going to use.
1106 pi = netdev_priv(dev);
1107 adapter = pi->adapter;
1108 qidx = skb_get_queue_mapping(skb);
1109 BUG_ON(qidx >= pi->nqsets);
1110 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1113 * Take this opportunity to reclaim any TX Descriptors whose DMA
1114 * transfers have completed.
1116 reclaim_completed_tx(adapter, &txq->q, true);
1119 * Calculate the number of flits and TX Descriptors we're going to
1120 * need along with how many TX Descriptors will be left over after
1121 * we inject our Work Request.
1123 flits = calc_tx_flits(skb);
1124 ndesc = flits_to_desc(flits);
1125 credits = txq_avail(&txq->q) - ndesc;
1127 if (unlikely(credits < 0)) {
1129 * Not enough room for this packet's Work Request. Stop the
1130 * TX Queue and return a "busy" condition. The queue will get
1131 * started later on when the firmware informs us that space
1135 dev_err(adapter->pdev_dev,
1136 "%s: TX ring %u full while queue awake!\n",
1138 return NETDEV_TX_BUSY;
1141 if (!is_eth_imm(skb) &&
1142 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1144 * We need to map the skb into PCI DMA space (because it can't
1145 * be in-lined directly into the Work Request) and the mapping
1146 * operation failed. Record the error and drop the packet.
1152 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1153 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1155 * After we're done injecting the Work Request for this
1156 * packet, we'll be below our "stop threshold" so stop the TX
1157 * Queue now and schedule a request for an SGE Egress Queue
1158 * Update message. The queue will get started later on when
1159 * the firmware processes this Work Request and sends us an
1160 * Egress Queue Status Update message indicating that space
1164 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
1168 * Start filling in our Work Request. Note that we do _not_ handle
1169 * the WR Header wrapping around the TX Descriptor Ring. If our
1170 * maximum header size ever exceeds one TX Descriptor, we'll need to
1171 * do something else here.
1173 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1174 wr = (void *)&txq->q.desc[txq->q.pidx];
1175 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1176 wr->r3[0] = cpu_to_be64(0);
1177 wr->r3[1] = cpu_to_be64(0);
1178 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1179 end = (u64 *)wr + flits;
1182 * If this is a Large Send Offload packet we'll put in an LSO CPL
1183 * message with an encapsulated TX Packet CPL message. Otherwise we
1184 * just use a TX Packet CPL message.
1186 ssi = skb_shinfo(skb);
1187 if (ssi->gso_size) {
1188 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1189 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1190 int l3hdr_len = skb_network_header_len(skb);
1191 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1194 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1195 FW_WR_IMMDLEN(sizeof(*lso) +
1198 * Fill in the LSO CPL message.
1201 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1205 LSO_ETHHDR_LEN(eth_xtra_len/4) |
1206 LSO_IPHDR_LEN(l3hdr_len/4) |
1207 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1208 lso->ipid_ofst = cpu_to_be16(0);
1209 lso->mss = cpu_to_be16(ssi->gso_size);
1210 lso->seqno_offset = cpu_to_be32(0);
1211 lso->len = cpu_to_be32(skb->len);
1214 * Set up TX Packet CPL pointer, control word and perform
1217 cpl = (void *)(lso + 1);
1218 cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1219 TXPKT_IPHDR_LEN(l3hdr_len) |
1220 TXPKT_ETHHDR_LEN(eth_xtra_len));
1222 txq->tx_cso += ssi->gso_segs;
1226 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1228 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1229 FW_WR_IMMDLEN(len));
1232 * Set up TX Packet CPL pointer, control word and perform
1235 cpl = (void *)(wr + 1);
1236 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1237 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1240 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1244 * If there's a VLAN tag present, add that to the list of things to
1245 * do in this Work Request.
1247 if (vlan_tx_tag_present(skb)) {
1249 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1253 * Fill in the TX Packet CPL message header.
1255 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1256 TXPKT_INTF(pi->port_id) |
1258 cpl->pack = cpu_to_be16(0);
1259 cpl->len = cpu_to_be16(skb->len);
1260 cpl->ctrl1 = cpu_to_be64(cntrl);
1263 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1264 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1265 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1269 * Fill in the body of the TX Packet CPL message with either in-lined
1270 * data or a Scatter/Gather List.
1272 if (is_eth_imm(skb)) {
1274 * In-line the packet's data and free the skb since we don't
1275 * need it any longer.
1277 inline_tx_skb(skb, &txq->q, cpl + 1);
1281 * Write the skb's Scatter/Gather list into the TX Packet CPL
1282 * message and retain a pointer to the skb so we can free it
1283 * later when its DMA completes. (We store the skb pointer
1284 * in the Software Descriptor corresponding to the last TX
1285 * Descriptor used by the Work Request.)
1287 * The retained skb will be freed when the corresponding TX
1288 * Descriptors are reclaimed after their DMAs complete.
1289 * However, this could take quite a while since, in general,
1290 * the hardware is set up to be lazy about sending DMA
1291 * completion notifications to us and we mostly perform TX
1292 * reclaims in the transmit routine.
1294 * This is good for performamce but means that we rely on new
1295 * TX packets arriving to run the destructors of completed
1296 * packets, which open up space in their sockets' send queues.
1297 * Sometimes we do not get such new packets causing TX to
1298 * stall. A single UDP transmitter is a good example of this
1299 * situation. We have a clean up timer that periodically
1300 * reclaims completed packets but it doesn't run often enough
1301 * (nor do we want it to) to prevent lengthy stalls. A
1302 * solution to this problem is to run the destructor early,
1303 * after the packet is queued but before it's DMAd. A con is
1304 * that we lie to socket memory accounting, but the amount of
1305 * extra memory is reasonable (limited by the number of TX
1306 * descriptors), the packets do actually get freed quickly by
1307 * new packets almost always, and for protocols like TCP that
1308 * wait for acks to really free up the data the extra memory
1309 * is even less. On the positive side we run the destructors
1310 * on the sending CPU rather than on a potentially different
1311 * completing CPU, usually a good thing.
1313 * Run the destructor before telling the DMA engine about the
1314 * packet to make sure it doesn't complete and get freed
1317 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1318 struct sge_txq *tq = &txq->q;
1322 * If the Work Request header was an exact multiple of our TX
1323 * Descriptor length, then it's possible that the starting SGL
1324 * pointer lines up exactly with the end of our TX Descriptor
1325 * ring. If that's the case, wrap around to the beginning
1328 if (unlikely((void *)sgl == (void *)tq->stat)) {
1329 sgl = (void *)tq->desc;
1330 end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1333 write_sgl(skb, tq, sgl, end, 0, addr);
1336 last_desc = tq->pidx + ndesc - 1;
1337 if (last_desc >= tq->size)
1338 last_desc -= tq->size;
1339 tq->sdesc[last_desc].skb = skb;
1340 tq->sdesc[last_desc].sgl = sgl;
1344 * Advance our internal TX Queue state, tell the hardware about
1345 * the new TX descriptors and return success.
1347 txq_advance(&txq->q, ndesc);
1348 dev->trans_start = jiffies;
1349 ring_tx_db(adapter, &txq->q, ndesc);
1350 return NETDEV_TX_OK;
1354 * An error of some sort happened. Free the TX skb and tell the
1355 * OS that we've "dealt" with the packet ...
1358 return NETDEV_TX_OK;
1362 * copy_frags - copy fragments from gather list into skb_shared_info
1363 * @skb: destination skb
1364 * @gl: source internal packet gather list
1365 * @offset: packet start offset in first page
1367 * Copy an internal packet gather list into a Linux skb_shared_info
1370 static inline void copy_frags(struct sk_buff *skb,
1371 const struct pkt_gl *gl,
1372 unsigned int offset)
1376 /* usually there's just one frag */
1377 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1378 gl->frags[0].offset + offset,
1379 gl->frags[0].size - offset);
1380 skb_shinfo(skb)->nr_frags = gl->nfrags;
1381 for (i = 1; i < gl->nfrags; i++)
1382 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1383 gl->frags[i].offset,
1386 /* get a reference to the last page, we don't own it */
1387 get_page(gl->frags[gl->nfrags - 1].page);
1391 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1392 * @gl: the gather list
1393 * @skb_len: size of sk_buff main body if it carries fragments
1394 * @pull_len: amount of data to move to the sk_buff's main body
1396 * Builds an sk_buff from the given packet gather list. Returns the
1397 * sk_buff or %NULL if sk_buff allocation failed.
1399 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1400 unsigned int skb_len,
1401 unsigned int pull_len)
1403 struct sk_buff *skb;
1406 * If the ingress packet is small enough, allocate an skb large enough
1407 * for all of the data and copy it inline. Otherwise, allocate an skb
1408 * with enough room to pull in the header and reference the rest of
1409 * the data via the skb fragment list.
1411 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1412 * buff! size, which is expected since buffers are at least
1413 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one
1416 if (gl->tot_len <= RX_COPY_THRES) {
1417 /* small packets have only one fragment */
1418 skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1421 __skb_put(skb, gl->tot_len);
1422 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1424 skb = alloc_skb(skb_len, GFP_ATOMIC);
1427 __skb_put(skb, pull_len);
1428 skb_copy_to_linear_data(skb, gl->va, pull_len);
1430 copy_frags(skb, gl, pull_len);
1431 skb->len = gl->tot_len;
1432 skb->data_len = skb->len - pull_len;
1433 skb->truesize += skb->data_len;
1441 * t4vf_pktgl_free - free a packet gather list
1442 * @gl: the gather list
1444 * Releases the pages of a packet gather list. We do not own the last
1445 * page on the list and do not free it.
1447 static void t4vf_pktgl_free(const struct pkt_gl *gl)
1451 frag = gl->nfrags - 1;
1453 put_page(gl->frags[frag].page);
1457 * do_gro - perform Generic Receive Offload ingress packet processing
1458 * @rxq: ingress RX Ethernet Queue
1459 * @gl: gather list for ingress packet
1460 * @pkt: CPL header for last packet fragment
1462 * Perform Generic Receive Offload (GRO) ingress packet processing.
1463 * We use the standard Linux GRO interfaces for this.
1465 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1466 const struct cpl_rx_pkt *pkt)
1469 struct sk_buff *skb;
1471 skb = napi_get_frags(&rxq->rspq.napi);
1472 if (unlikely(!skb)) {
1473 t4vf_pktgl_free(gl);
1474 rxq->stats.rx_drops++;
1478 copy_frags(skb, gl, PKTSHIFT);
1479 skb->len = gl->tot_len - PKTSHIFT;
1480 skb->data_len = skb->len;
1481 skb->truesize += skb->data_len;
1482 skb->ip_summed = CHECKSUM_UNNECESSARY;
1483 skb_record_rx_queue(skb, rxq->rspq.idx);
1486 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1487 be16_to_cpu(pkt->vlan));
1488 rxq->stats.vlan_ex++;
1490 ret = napi_gro_frags(&rxq->rspq.napi);
1492 if (ret == GRO_HELD)
1493 rxq->stats.lro_pkts++;
1494 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1495 rxq->stats.lro_merged++;
1497 rxq->stats.rx_cso++;
1501 * t4vf_ethrx_handler - process an ingress ethernet packet
1502 * @rspq: the response queue that received the packet
1503 * @rsp: the response queue descriptor holding the RX_PKT message
1504 * @gl: the gather list of packet fragments
1506 * Process an ingress ethernet packet and deliver it to the stack.
1508 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1509 const struct pkt_gl *gl)
1511 struct sk_buff *skb;
1512 const struct cpl_rx_pkt *pkt = (void *)rsp;
1513 bool csum_ok = pkt->csum_calc && !pkt->err_vec;
1514 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1517 * If this is a good TCP packet and we have Generic Receive Offload
1518 * enabled, handle the packet in the GRO path.
1520 if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
1521 (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1523 do_gro(rxq, gl, pkt);
1528 * Convert the Packet Gather List into an skb.
1530 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1531 if (unlikely(!skb)) {
1532 t4vf_pktgl_free(gl);
1533 rxq->stats.rx_drops++;
1536 __skb_pull(skb, PKTSHIFT);
1537 skb->protocol = eth_type_trans(skb, rspq->netdev);
1538 skb_record_rx_queue(skb, rspq->idx);
1541 if (csum_ok && (rspq->netdev->features & NETIF_F_RXCSUM) &&
1542 !pkt->err_vec && (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
1544 skb->ip_summed = CHECKSUM_UNNECESSARY;
1546 __sum16 c = (__force __sum16)pkt->csum;
1547 skb->csum = csum_unfold(c);
1548 skb->ip_summed = CHECKSUM_COMPLETE;
1550 rxq->stats.rx_cso++;
1552 skb_checksum_none_assert(skb);
1555 rxq->stats.vlan_ex++;
1556 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
1559 netif_receive_skb(skb);
1565 * is_new_response - check if a response is newly written
1566 * @rc: the response control descriptor
1567 * @rspq: the response queue
1569 * Returns true if a response descriptor contains a yet unprocessed
1572 static inline bool is_new_response(const struct rsp_ctrl *rc,
1573 const struct sge_rspq *rspq)
1575 return RSPD_GEN(rc->type_gen) == rspq->gen;
1579 * restore_rx_bufs - put back a packet's RX buffers
1580 * @gl: the packet gather list
1581 * @fl: the SGE Free List
1582 * @nfrags: how many fragments in @si
1584 * Called when we find out that the current packet, @si, can't be
1585 * processed right away for some reason. This is a very rare event and
1586 * there's no effort to make this suspension/resumption process
1587 * particularly efficient.
1589 * We implement the suspension by putting all of the RX buffers associated
1590 * with the current packet back on the original Free List. The buffers
1591 * have already been unmapped and are left unmapped, we mark them as
1592 * unmapped in order to prevent further unmapping attempts. (Effectively
1593 * this function undoes the series of @unmap_rx_buf calls which were done
1594 * to create the current packet's gather list.) This leaves us ready to
1595 * restart processing of the packet the next time we start processing the
1598 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1601 struct rx_sw_desc *sdesc;
1605 fl->cidx = fl->size - 1;
1608 sdesc = &fl->sdesc[fl->cidx];
1609 sdesc->page = gl->frags[frags].page;
1610 sdesc->dma_addr |= RX_UNMAPPED_BUF;
1616 * rspq_next - advance to the next entry in a response queue
1619 * Updates the state of a response queue to advance it to the next entry.
1621 static inline void rspq_next(struct sge_rspq *rspq)
1623 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1624 if (unlikely(++rspq->cidx == rspq->size)) {
1627 rspq->cur_desc = rspq->desc;
1632 * process_responses - process responses from an SGE response queue
1633 * @rspq: the ingress response queue to process
1634 * @budget: how many responses can be processed in this round
1636 * Process responses from a Scatter Gather Engine response queue up to
1637 * the supplied budget. Responses include received packets as well as
1638 * control messages from firmware or hardware.
1640 * Additionally choose the interrupt holdoff time for the next interrupt
1641 * on this queue. If the system is under memory shortage use a fairly
1642 * long delay to help recovery.
1644 static int process_responses(struct sge_rspq *rspq, int budget)
1646 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1647 int budget_left = budget;
1649 while (likely(budget_left)) {
1651 const struct rsp_ctrl *rc;
1653 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1654 if (!is_new_response(rc, rspq))
1658 * Figure out what kind of response we've received from the
1662 rsp_type = RSPD_TYPE(rc->type_gen);
1663 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1664 struct page_frag *fp;
1666 const struct rx_sw_desc *sdesc;
1668 u32 len = be32_to_cpu(rc->pldbuflen_qid);
1671 * If we get a "new buffer" message from the SGE we
1672 * need to move on to the next Free List buffer.
1674 if (len & RSPD_NEWBUF) {
1676 * We get one "new buffer" message when we
1677 * first start up a queue so we need to ignore
1678 * it when our offset into the buffer is 0.
1680 if (likely(rspq->offset > 0)) {
1681 free_rx_bufs(rspq->adapter, &rxq->fl,
1685 len = RSPD_LEN(len);
1690 * Gather packet fragments.
1692 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1693 BUG_ON(frag >= MAX_SKB_FRAGS);
1694 BUG_ON(rxq->fl.avail == 0);
1695 sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1696 bufsz = get_buf_size(sdesc);
1697 fp->page = sdesc->page;
1698 fp->offset = rspq->offset;
1699 fp->size = min(bufsz, len);
1703 unmap_rx_buf(rspq->adapter, &rxq->fl);
1708 * Last buffer remains mapped so explicitly make it
1709 * coherent for CPU access and start preloading first
1712 dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1713 get_buf_addr(sdesc),
1714 fp->size, DMA_FROM_DEVICE);
1715 gl.va = (page_address(gl.frags[0].page) +
1716 gl.frags[0].offset);
1720 * Hand the new ingress packet to the handler for
1721 * this Response Queue.
1723 ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1724 if (likely(ret == 0))
1725 rspq->offset += ALIGN(fp->size, FL_ALIGN);
1727 restore_rx_bufs(&gl, &rxq->fl, frag);
1728 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1729 ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1731 WARN_ON(rsp_type > RSP_TYPE_CPL);
1735 if (unlikely(ret)) {
1737 * Couldn't process descriptor, back off for recovery.
1738 * We use the SGE's last timer which has the longest
1739 * interrupt coalescing value ...
1741 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1742 rspq->next_intr_params =
1743 QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1752 * If this is a Response Queue with an associated Free List and
1753 * at least two Egress Queue units available in the Free List
1754 * for new buffer pointers, refill the Free List.
1756 if (rspq->offset >= 0 &&
1757 rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1758 __refill_fl(rspq->adapter, &rxq->fl);
1759 return budget - budget_left;
1763 * napi_rx_handler - the NAPI handler for RX processing
1764 * @napi: the napi instance
1765 * @budget: how many packets we can process in this round
1767 * Handler for new data events when using NAPI. This does not need any
1768 * locking or protection from interrupts as data interrupts are off at
1769 * this point and other adapter interrupts do not interfere (the latter
1770 * in not a concern at all with MSI-X as non-data interrupts then have
1771 * a separate handler).
1773 static int napi_rx_handler(struct napi_struct *napi, int budget)
1775 unsigned int intr_params;
1776 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1777 int work_done = process_responses(rspq, budget);
1779 if (likely(work_done < budget)) {
1780 napi_complete(napi);
1781 intr_params = rspq->next_intr_params;
1782 rspq->next_intr_params = rspq->intr_params;
1784 intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1786 if (unlikely(work_done == 0))
1787 rspq->unhandled_irqs++;
1789 t4_write_reg(rspq->adapter,
1790 T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1791 CIDXINC(work_done) |
1792 INGRESSQID((u32)rspq->cntxt_id) |
1793 SEINTARM(intr_params));
1798 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1799 * (i.e., response queue serviced by NAPI polling).
1801 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1803 struct sge_rspq *rspq = cookie;
1805 napi_schedule(&rspq->napi);
1810 * Process the indirect interrupt entries in the interrupt queue and kick off
1811 * NAPI for each queue that has generated an entry.
1813 static unsigned int process_intrq(struct adapter *adapter)
1815 struct sge *s = &adapter->sge;
1816 struct sge_rspq *intrq = &s->intrq;
1817 unsigned int work_done;
1819 spin_lock(&adapter->sge.intrq_lock);
1820 for (work_done = 0; ; work_done++) {
1821 const struct rsp_ctrl *rc;
1822 unsigned int qid, iq_idx;
1823 struct sge_rspq *rspq;
1826 * Grab the next response from the interrupt queue and bail
1827 * out if it's not a new response.
1829 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1830 if (!is_new_response(rc, intrq))
1834 * If the response isn't a forwarded interrupt message issue a
1835 * error and go on to the next response message. This should
1839 if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1840 dev_err(adapter->pdev_dev,
1841 "Unexpected INTRQ response type %d\n",
1842 RSPD_TYPE(rc->type_gen));
1847 * Extract the Queue ID from the interrupt message and perform
1848 * sanity checking to make sure it really refers to one of our
1849 * Ingress Queues which is active and matches the queue's ID.
1850 * None of these error conditions should ever happen so we may
1851 * want to either make them fatal and/or conditionalized under
1854 qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1855 iq_idx = IQ_IDX(s, qid);
1856 if (unlikely(iq_idx >= MAX_INGQ)) {
1857 dev_err(adapter->pdev_dev,
1858 "Ingress QID %d out of range\n", qid);
1861 rspq = s->ingr_map[iq_idx];
1862 if (unlikely(rspq == NULL)) {
1863 dev_err(adapter->pdev_dev,
1864 "Ingress QID %d RSPQ=NULL\n", qid);
1867 if (unlikely(rspq->abs_id != qid)) {
1868 dev_err(adapter->pdev_dev,
1869 "Ingress QID %d refers to RSPQ %d\n",
1875 * Schedule NAPI processing on the indicated Response Queue
1876 * and move on to the next entry in the Forwarded Interrupt
1879 napi_schedule(&rspq->napi);
1883 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1884 CIDXINC(work_done) |
1885 INGRESSQID(intrq->cntxt_id) |
1886 SEINTARM(intrq->intr_params));
1888 spin_unlock(&adapter->sge.intrq_lock);
1894 * The MSI interrupt handler handles data events from SGE response queues as
1895 * well as error and other async events as they all use the same MSI vector.
1897 static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
1899 struct adapter *adapter = cookie;
1901 process_intrq(adapter);
1906 * t4vf_intr_handler - select the top-level interrupt handler
1907 * @adapter: the adapter
1909 * Selects the top-level interrupt handler based on the type of interrupts
1912 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
1914 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
1915 if (adapter->flags & USING_MSIX)
1916 return t4vf_sge_intr_msix;
1918 return t4vf_intr_msi;
1922 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
1923 * @data: the adapter
1925 * Runs periodically from a timer to perform maintenance of SGE RX queues.
1927 * a) Replenishes RX queues that have run out due to memory shortage.
1928 * Normally new RX buffers are added when existing ones are consumed but
1929 * when out of memory a queue can become empty. We schedule NAPI to do
1930 * the actual refill.
1932 static void sge_rx_timer_cb(unsigned long data)
1934 struct adapter *adapter = (struct adapter *)data;
1935 struct sge *s = &adapter->sge;
1939 * Scan the "Starving Free Lists" flag array looking for any Free
1940 * Lists in need of more free buffers. If we find one and it's not
1941 * being actively polled, then bump its "starving" counter and attempt
1942 * to refill it. If we're successful in adding enough buffers to push
1943 * the Free List over the starving threshold, then we can clear its
1944 * "starving" status.
1946 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
1949 for (m = s->starving_fl[i]; m; m &= m - 1) {
1950 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1951 struct sge_fl *fl = s->egr_map[id];
1953 clear_bit(id, s->starving_fl);
1954 smp_mb__after_clear_bit();
1957 * Since we are accessing fl without a lock there's a
1958 * small probability of a false positive where we
1959 * schedule napi but the FL is no longer starving.
1962 if (fl_starving(fl)) {
1963 struct sge_eth_rxq *rxq;
1965 rxq = container_of(fl, struct sge_eth_rxq, fl);
1966 if (napi_reschedule(&rxq->rspq.napi))
1969 set_bit(id, s->starving_fl);
1975 * Reschedule the next scan for starving Free Lists ...
1977 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1981 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
1982 * @data: the adapter
1984 * Runs periodically from a timer to perform maintenance of SGE TX queues.
1986 * b) Reclaims completed Tx packets for the Ethernet queues. Normally
1987 * packets are cleaned up by new Tx packets, this timer cleans up packets
1988 * when no new packets are being submitted. This is essential for pktgen,
1991 static void sge_tx_timer_cb(unsigned long data)
1993 struct adapter *adapter = (struct adapter *)data;
1994 struct sge *s = &adapter->sge;
1995 unsigned int i, budget;
1997 budget = MAX_TIMER_TX_RECLAIM;
1998 i = s->ethtxq_rover;
2000 struct sge_eth_txq *txq = &s->ethtxq[i];
2002 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2003 int avail = reclaimable(&txq->q);
2008 free_tx_desc(adapter, &txq->q, avail, true);
2009 txq->q.in_use -= avail;
2010 __netif_tx_unlock(txq->txq);
2018 if (i >= s->ethqsets)
2020 } while (i != s->ethtxq_rover);
2021 s->ethtxq_rover = i;
2024 * If we found too many reclaimable packets schedule a timer in the
2025 * near future to continue where we left off. Otherwise the next timer
2026 * will be at its normal interval.
2028 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2032 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2033 * @adapter: the adapter
2034 * @rspq: pointer to to the new rxq's Response Queue to be filled in
2035 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2036 * @dev: the network device associated with the new rspq
2037 * @intr_dest: MSI-X vector index (overriden in MSI mode)
2038 * @fl: pointer to the new rxq's Free List to be filled in
2039 * @hnd: the interrupt handler to invoke for the rspq
2041 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2042 bool iqasynch, struct net_device *dev,
2044 struct sge_fl *fl, rspq_handler_t hnd)
2046 struct port_info *pi = netdev_priv(dev);
2047 struct fw_iq_cmd cmd, rpl;
2048 int ret, iqandst, flsz = 0;
2051 * If we're using MSI interrupts and we're not initializing the
2052 * Forwarded Interrupt Queue itself, then set up this queue for
2053 * indirect interrupts to the Forwarded Interrupt Queue. Obviously
2054 * the Forwarded Interrupt Queue must be set up before any other
2057 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2058 iqandst = SGE_INTRDST_IQ;
2059 intr_dest = adapter->sge.intrq.abs_id;
2061 iqandst = SGE_INTRDST_PCI;
2064 * Allocate the hardware ring for the Response Queue. The size needs
2065 * to be a multiple of 16 which includes the mandatory status entry
2066 * (regardless of whether the Status Page capabilities are enabled or
2069 rspq->size = roundup(rspq->size, 16);
2070 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2071 0, &rspq->phys_addr, NULL, 0);
2076 * Fill in the Ingress Queue Command. Note: Ideally this code would
2077 * be in t4vf_hw.c but there are so many parameters and dependencies
2078 * on our Linux SGE state that we would end up having to pass tons of
2079 * parameters. We'll have to think about how this might be migrated
2080 * into OS-independent common code ...
2082 memset(&cmd, 0, sizeof(cmd));
2083 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
2087 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC |
2088 FW_IQ_CMD_IQSTART(1) |
2090 cmd.type_to_iqandstindex =
2091 cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2092 FW_IQ_CMD_IQASYNCH(iqasynch) |
2093 FW_IQ_CMD_VIID(pi->viid) |
2094 FW_IQ_CMD_IQANDST(iqandst) |
2095 FW_IQ_CMD_IQANUS(1) |
2096 FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) |
2097 FW_IQ_CMD_IQANDSTINDEX(intr_dest));
2098 cmd.iqdroprss_to_iqesize =
2099 cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) |
2100 FW_IQ_CMD_IQGTSMODE |
2101 FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) |
2102 FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4));
2103 cmd.iqsize = cpu_to_be16(rspq->size);
2104 cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2108 * Allocate the ring for the hardware free list (with space
2109 * for its status page) along with the associated software
2110 * descriptor ring. The free list size needs to be a multiple
2111 * of the Egress Queue Unit.
2113 fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2114 fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2115 sizeof(__be64), sizeof(struct rx_sw_desc),
2116 &fl->addr, &fl->sdesc, STAT_LEN);
2123 * Calculate the size of the hardware free list ring plus
2124 * Status Page (which the SGE will place after the end of the
2125 * free list ring) in Egress Queue Units.
2127 flsz = (fl->size / FL_PER_EQ_UNIT +
2128 STAT_LEN / EQ_UNIT);
2131 * Fill in all the relevant firmware Ingress Queue Command
2132 * fields for the free list.
2134 cmd.iqns_to_fl0congen =
2136 FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) |
2137 FW_IQ_CMD_FL0PACKEN(1) |
2138 FW_IQ_CMD_FL0PADEN(1));
2139 cmd.fl0dcaen_to_fl0cidxfthresh =
2141 FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) |
2142 FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B));
2143 cmd.fl0size = cpu_to_be16(flsz);
2144 cmd.fl0addr = cpu_to_be64(fl->addr);
2148 * Issue the firmware Ingress Queue Command and extract the results if
2149 * it completes successfully.
2151 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2155 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2156 rspq->cur_desc = rspq->desc;
2159 rspq->next_intr_params = rspq->intr_params;
2160 rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2161 rspq->abs_id = be16_to_cpu(rpl.physiqid);
2162 rspq->size--; /* subtract status entry */
2163 rspq->adapter = adapter;
2165 rspq->handler = hnd;
2167 /* set offset to -1 to distinguish ingress queues without FL */
2168 rspq->offset = fl ? 0 : -1;
2171 fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2176 fl->alloc_failed = 0;
2177 fl->large_alloc_failed = 0;
2179 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2186 * An error occurred. Clean up our partial allocation state and
2190 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2191 rspq->desc, rspq->phys_addr);
2194 if (fl && fl->desc) {
2197 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2198 fl->desc, fl->addr);
2205 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2206 * @adapter: the adapter
2207 * @txq: pointer to the new txq to be filled in
2208 * @devq: the network TX queue associated with the new txq
2209 * @iqid: the relative ingress queue ID to which events relating to
2210 * the new txq should be directed
2212 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2213 struct net_device *dev, struct netdev_queue *devq,
2217 struct fw_eq_eth_cmd cmd, rpl;
2218 struct port_info *pi = netdev_priv(dev);
2221 * Calculate the size of the hardware TX Queue (including the Status
2222 * Page on the end of the TX Queue) in units of TX Descriptors.
2224 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2227 * Allocate the hardware ring for the TX ring (with space for its
2228 * status page) along with the associated software descriptor ring.
2230 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2231 sizeof(struct tx_desc),
2232 sizeof(struct tx_sw_desc),
2233 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
2238 * Fill in the Egress Queue Command. Note: As with the direct use of
2239 * the firmware Ingress Queue COmmand above in our RXQ allocation
2240 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
2241 * have to see if there's some reasonable way to parameterize it
2242 * into the common code ...
2244 memset(&cmd, 0, sizeof(cmd));
2245 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
2249 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC |
2250 FW_EQ_ETH_CMD_EQSTART |
2252 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_VIID(pi->viid));
2253 cmd.fetchszm_to_iqid =
2254 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) |
2255 FW_EQ_ETH_CMD_PCIECHN(pi->port_id) |
2256 FW_EQ_ETH_CMD_IQID(iqid));
2257 cmd.dcaen_to_eqsize =
2258 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) |
2259 FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) |
2260 FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) |
2261 FW_EQ_ETH_CMD_EQSIZE(nentries));
2262 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2265 * Issue the firmware Egress Queue Command and extract the results if
2266 * it completes successfully.
2268 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2271 * The girmware Ingress Queue Command failed for some reason.
2272 * Free up our partial allocation state and return the error.
2274 kfree(txq->q.sdesc);
2275 txq->q.sdesc = NULL;
2276 dma_free_coherent(adapter->pdev_dev,
2277 nentries * sizeof(struct tx_desc),
2278 txq->q.desc, txq->q.phys_addr);
2286 txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2287 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd));
2289 FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd));
2295 txq->q.restarts = 0;
2296 txq->mapping_err = 0;
2301 * Free the DMA map resources associated with a TX queue.
2303 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2305 dma_free_coherent(adapter->pdev_dev,
2306 tq->size * sizeof(*tq->desc) + STAT_LEN,
2307 tq->desc, tq->phys_addr);
2314 * Free the resources associated with a response queue (possibly including a
2317 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2320 unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2322 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2323 rspq->cntxt_id, flid, 0xffff);
2324 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2325 rspq->desc, rspq->phys_addr);
2326 netif_napi_del(&rspq->napi);
2327 rspq->netdev = NULL;
2333 free_rx_bufs(adapter, fl, fl->avail);
2334 dma_free_coherent(adapter->pdev_dev,
2335 fl->size * sizeof(*fl->desc) + STAT_LEN,
2336 fl->desc, fl->addr);
2345 * t4vf_free_sge_resources - free SGE resources
2346 * @adapter: the adapter
2348 * Frees resources used by the SGE queue sets.
2350 void t4vf_free_sge_resources(struct adapter *adapter)
2352 struct sge *s = &adapter->sge;
2353 struct sge_eth_rxq *rxq = s->ethrxq;
2354 struct sge_eth_txq *txq = s->ethtxq;
2355 struct sge_rspq *evtq = &s->fw_evtq;
2356 struct sge_rspq *intrq = &s->intrq;
2359 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2361 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2363 t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2364 free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2365 kfree(txq->q.sdesc);
2366 free_txq(adapter, &txq->q);
2370 free_rspq_fl(adapter, evtq, NULL);
2372 free_rspq_fl(adapter, intrq, NULL);
2376 * t4vf_sge_start - enable SGE operation
2377 * @adapter: the adapter
2379 * Start tasklets and timers associated with the DMA engine.
2381 void t4vf_sge_start(struct adapter *adapter)
2383 adapter->sge.ethtxq_rover = 0;
2384 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2385 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2389 * t4vf_sge_stop - disable SGE operation
2390 * @adapter: the adapter
2392 * Stop tasklets and timers associated with the DMA engine. Note that
2393 * this is effective only if measures have been taken to disable any HW
2394 * events that may restart them.
2396 void t4vf_sge_stop(struct adapter *adapter)
2398 struct sge *s = &adapter->sge;
2400 if (s->rx_timer.function)
2401 del_timer_sync(&s->rx_timer);
2402 if (s->tx_timer.function)
2403 del_timer_sync(&s->tx_timer);
2407 * t4vf_sge_init - initialize SGE
2408 * @adapter: the adapter
2410 * Performs SGE initialization needed every time after a chip reset.
2411 * We do not initialize any of the queue sets here, instead the driver
2412 * top-level must request those individually. We also do not enable DMA
2413 * here, that should be done after the queues have been set up.
2415 int t4vf_sge_init(struct adapter *adapter)
2417 struct sge_params *sge_params = &adapter->params.sge;
2418 u32 fl0 = sge_params->sge_fl_buffer_size[0];
2419 u32 fl1 = sge_params->sge_fl_buffer_size[1];
2420 struct sge *s = &adapter->sge;
2423 * Start by vetting the basic SGE parameters which have been set up by
2424 * the Physical Function Driver. Ideally we should be able to deal
2425 * with _any_ configuration. Practice is different ...
2427 if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2428 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2432 if ((sge_params->sge_control & RXPKTCPLMODE_MASK) == 0) {
2433 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2438 * Now translate the adapter parameters into our internal forms.
2441 FL_PG_ORDER = ilog2(fl1) - PAGE_SHIFT;
2442 STAT_LEN = ((sge_params->sge_control & EGRSTATUSPAGESIZE_MASK)
2444 PKTSHIFT = PKTSHIFT_GET(sge_params->sge_control);
2445 FL_ALIGN = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
2446 SGE_INGPADBOUNDARY_SHIFT);
2449 * Set up tasklet timers.
2451 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2452 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2455 * Initialize Forwarded Interrupt Queue lock.
2457 spin_lock_init(&s->intrq_lock);