9e2bcb8079236d4e579de07fc43811bfc2801897
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / freescale / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61                  "Freescale bitmapped debugging message enable value");
62
63 #ifdef CONFIG_NET_POLL_CONTROLLER
64 static void fs_enet_netpoll(struct net_device *dev);
65 #endif
66
67 static void fs_set_multicast_list(struct net_device *dev)
68 {
69         struct fs_enet_private *fep = netdev_priv(dev);
70
71         (*fep->ops->set_multicast_list)(dev);
72 }
73
74 static void skb_align(struct sk_buff *skb, int align)
75 {
76         int off = ((unsigned long)skb->data) & (align - 1);
77
78         if (off)
79                 skb_reserve(skb, align - off);
80 }
81
82 /* NAPI receive function */
83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
84 {
85         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86         struct net_device *dev = fep->ndev;
87         const struct fs_platform_info *fpi = fep->fpi;
88         cbd_t __iomem *bdp;
89         struct sk_buff *skb, *skbn, *skbt;
90         int received = 0;
91         u16 pkt_len, sc;
92         int curidx;
93
94         if (budget <= 0)
95                 return received;
96
97         /*
98          * First, grab all of the stats for the incoming packet.
99          * These get messed up if we get called due to a busy condition.
100          */
101         bdp = fep->cur_rx;
102
103         /* clear RX status bits for napi*/
104         (*fep->ops->napi_clear_rx_event)(dev);
105
106         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107                 curidx = bdp - fep->rx_bd_base;
108
109                 /*
110                  * Since we have allocated space to hold a complete frame,
111                  * the last indicator should be set.
112                  */
113                 if ((sc & BD_ENET_RX_LAST) == 0)
114                         dev_warn(fep->dev, "rcv is not +last\n");
115
116                 /*
117                  * Check for errors.
118                  */
119                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121                         fep->stats.rx_errors++;
122                         /* Frame too long or too short. */
123                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124                                 fep->stats.rx_length_errors++;
125                         /* Frame alignment */
126                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127                                 fep->stats.rx_frame_errors++;
128                         /* CRC Error */
129                         if (sc & BD_ENET_RX_CR)
130                                 fep->stats.rx_crc_errors++;
131                         /* FIFO overrun */
132                         if (sc & BD_ENET_RX_OV)
133                                 fep->stats.rx_crc_errors++;
134
135                         skb = fep->rx_skbuff[curidx];
136
137                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139                                 DMA_FROM_DEVICE);
140
141                         skbn = skb;
142
143                 } else {
144                         skb = fep->rx_skbuff[curidx];
145
146                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148                                 DMA_FROM_DEVICE);
149
150                         /*
151                          * Process the incoming frame.
152                          */
153                         fep->stats.rx_packets++;
154                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
155                         fep->stats.rx_bytes += pkt_len + 4;
156
157                         if (pkt_len <= fpi->rx_copybreak) {
158                                 /* +2 to make IP header L1 cache aligned */
159                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
160                                 if (skbn != NULL) {
161                                         skb_reserve(skbn, 2);   /* align IP header */
162                                         skb_copy_from_linear_data(skb,
163                                                       skbn->data, pkt_len);
164                                         /* swap */
165                                         skbt = skb;
166                                         skb = skbn;
167                                         skbn = skbt;
168                                 }
169                         } else {
170                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
171
172                                 if (skbn)
173                                         skb_align(skbn, ENET_RX_ALIGN);
174                         }
175
176                         if (skbn != NULL) {
177                                 skb_put(skb, pkt_len);  /* Make room */
178                                 skb->protocol = eth_type_trans(skb, dev);
179                                 received++;
180                                 netif_receive_skb(skb);
181                         } else {
182                                 fep->stats.rx_dropped++;
183                                 skbn = skb;
184                         }
185                 }
186
187                 fep->rx_skbuff[curidx] = skbn;
188                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190                              DMA_FROM_DEVICE));
191                 CBDW_DATLEN(bdp, 0);
192                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193
194                 /*
195                  * Update BD pointer to next entry.
196                  */
197                 if ((sc & BD_ENET_RX_WRAP) == 0)
198                         bdp++;
199                 else
200                         bdp = fep->rx_bd_base;
201
202                 (*fep->ops->rx_bd_done)(dev);
203
204                 if (received >= budget)
205                         break;
206         }
207
208         fep->cur_rx = bdp;
209
210         if (received < budget) {
211                 /* done */
212                 napi_complete(napi);
213                 (*fep->ops->napi_enable_rx)(dev);
214         }
215         return received;
216 }
217
218 static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
219 {
220         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
221                                                    napi_tx);
222         struct net_device *dev = fep->ndev;
223         cbd_t __iomem *bdp;
224         struct sk_buff *skb;
225         int dirtyidx, do_wake, do_restart;
226         u16 sc;
227         int has_tx_work = 0;
228
229         spin_lock(&fep->tx_lock);
230         bdp = fep->dirty_tx;
231
232         /* clear TX status bits for napi*/
233         (*fep->ops->napi_clear_tx_event)(dev);
234
235         do_wake = do_restart = 0;
236         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
237                 dirtyidx = bdp - fep->tx_bd_base;
238
239                 if (fep->tx_free == fep->tx_ring)
240                         break;
241
242                 skb = fep->tx_skbuff[dirtyidx];
243
244                 /*
245                  * Check for errors.
246                  */
247                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
248                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
249
250                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
251                                 fep->stats.tx_heartbeat_errors++;
252                         if (sc & BD_ENET_TX_LC) /* Late collision */
253                                 fep->stats.tx_window_errors++;
254                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
255                                 fep->stats.tx_aborted_errors++;
256                         if (sc & BD_ENET_TX_UN) /* Underrun */
257                                 fep->stats.tx_fifo_errors++;
258                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
259                                 fep->stats.tx_carrier_errors++;
260
261                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
262                                 fep->stats.tx_errors++;
263                                 do_restart = 1;
264                         }
265                 } else
266                         fep->stats.tx_packets++;
267
268                 if (sc & BD_ENET_TX_READY) {
269                         dev_warn(fep->dev,
270                                  "HEY! Enet xmit interrupt and TX_READY.\n");
271                 }
272
273                 /*
274                  * Deferred means some collisions occurred during transmit,
275                  * but we eventually sent the packet OK.
276                  */
277                 if (sc & BD_ENET_TX_DEF)
278                         fep->stats.collisions++;
279
280                 /* unmap */
281                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
282                                 skb->len, DMA_TO_DEVICE);
283
284                 /*
285                  * Free the sk buffer associated with this last transmit.
286                  */
287                 dev_kfree_skb(skb);
288                 fep->tx_skbuff[dirtyidx] = NULL;
289
290                 /*
291                  * Update pointer to next buffer descriptor to be transmitted.
292                  */
293                 if ((sc & BD_ENET_TX_WRAP) == 0)
294                         bdp++;
295                 else
296                         bdp = fep->tx_bd_base;
297
298                 /*
299                  * Since we have freed up a buffer, the ring is no longer
300                  * full.
301                  */
302                 if (!fep->tx_free++)
303                         do_wake = 1;
304                 has_tx_work = 1;
305         }
306
307         fep->dirty_tx = bdp;
308
309         if (do_restart)
310                 (*fep->ops->tx_restart)(dev);
311
312         if (!has_tx_work) {
313                 napi_complete(napi);
314                 (*fep->ops->napi_enable_tx)(dev);
315         }
316
317         spin_unlock(&fep->tx_lock);
318
319         if (do_wake)
320                 netif_wake_queue(dev);
321
322         if (has_tx_work)
323                 return budget;
324         return 0;
325 }
326
327 /*
328  * The interrupt handler.
329  * This is called from the MPC core interrupt.
330  */
331 static irqreturn_t
332 fs_enet_interrupt(int irq, void *dev_id)
333 {
334         struct net_device *dev = dev_id;
335         struct fs_enet_private *fep;
336         const struct fs_platform_info *fpi;
337         u32 int_events;
338         u32 int_clr_events;
339         int nr, napi_ok;
340         int handled;
341
342         fep = netdev_priv(dev);
343         fpi = fep->fpi;
344
345         nr = 0;
346         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
347                 nr++;
348
349                 int_clr_events = int_events;
350                 int_clr_events &= ~fep->ev_napi_rx;
351
352                 (*fep->ops->clear_int_events)(dev, int_clr_events);
353
354                 if (int_events & fep->ev_err)
355                         (*fep->ops->ev_error)(dev, int_events);
356
357                 if (int_events & fep->ev_rx) {
358                         napi_ok = napi_schedule_prep(&fep->napi);
359
360                         (*fep->ops->napi_disable_rx)(dev);
361                         (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
362
363                         /* NOTE: it is possible for FCCs in NAPI mode    */
364                         /* to submit a spurious interrupt while in poll  */
365                         if (napi_ok)
366                                 __napi_schedule(&fep->napi);
367                 }
368
369                 if (int_events & fep->ev_tx) {
370                         napi_ok = napi_schedule_prep(&fep->napi_tx);
371
372                         (*fep->ops->napi_disable_tx)(dev);
373                         (*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
374
375                         /* NOTE: it is possible for FCCs in NAPI mode    */
376                         /* to submit a spurious interrupt while in poll  */
377                         if (napi_ok)
378                                 __napi_schedule(&fep->napi_tx);
379                 }
380         }
381
382         handled = nr > 0;
383         return IRQ_RETVAL(handled);
384 }
385
386 void fs_init_bds(struct net_device *dev)
387 {
388         struct fs_enet_private *fep = netdev_priv(dev);
389         cbd_t __iomem *bdp;
390         struct sk_buff *skb;
391         int i;
392
393         fs_cleanup_bds(dev);
394
395         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
396         fep->tx_free = fep->tx_ring;
397         fep->cur_rx = fep->rx_bd_base;
398
399         /*
400          * Initialize the receive buffer descriptors.
401          */
402         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
403                 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
404                 if (skb == NULL)
405                         break;
406
407                 skb_align(skb, ENET_RX_ALIGN);
408                 fep->rx_skbuff[i] = skb;
409                 CBDW_BUFADDR(bdp,
410                         dma_map_single(fep->dev, skb->data,
411                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
412                                 DMA_FROM_DEVICE));
413                 CBDW_DATLEN(bdp, 0);    /* zero */
414                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
415                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
416         }
417         /*
418          * if we failed, fillup remainder
419          */
420         for (; i < fep->rx_ring; i++, bdp++) {
421                 fep->rx_skbuff[i] = NULL;
422                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
423         }
424
425         /*
426          * ...and the same for transmit.
427          */
428         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
429                 fep->tx_skbuff[i] = NULL;
430                 CBDW_BUFADDR(bdp, 0);
431                 CBDW_DATLEN(bdp, 0);
432                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
433         }
434 }
435
436 void fs_cleanup_bds(struct net_device *dev)
437 {
438         struct fs_enet_private *fep = netdev_priv(dev);
439         struct sk_buff *skb;
440         cbd_t __iomem *bdp;
441         int i;
442
443         /*
444          * Reset SKB transmit buffers.
445          */
446         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
447                 if ((skb = fep->tx_skbuff[i]) == NULL)
448                         continue;
449
450                 /* unmap */
451                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
452                                 skb->len, DMA_TO_DEVICE);
453
454                 fep->tx_skbuff[i] = NULL;
455                 dev_kfree_skb(skb);
456         }
457
458         /*
459          * Reset SKB receive buffers
460          */
461         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
462                 if ((skb = fep->rx_skbuff[i]) == NULL)
463                         continue;
464
465                 /* unmap */
466                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
467                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
468                         DMA_FROM_DEVICE);
469
470                 fep->rx_skbuff[i] = NULL;
471
472                 dev_kfree_skb(skb);
473         }
474 }
475
476 /**********************************************************************************/
477
478 #ifdef CONFIG_FS_ENET_MPC5121_FEC
479 /*
480  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
481  */
482 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
483                                                struct sk_buff *skb)
484 {
485         struct sk_buff *new_skb;
486
487         /* Alloc new skb */
488         new_skb = netdev_alloc_skb(dev, skb->len + 4);
489         if (!new_skb)
490                 return NULL;
491
492         /* Make sure new skb is properly aligned */
493         skb_align(new_skb, 4);
494
495         /* Copy data to new skb ... */
496         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
497         skb_put(new_skb, skb->len);
498
499         /* ... and free an old one */
500         dev_kfree_skb_any(skb);
501
502         return new_skb;
503 }
504 #endif
505
506 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
507 {
508         struct fs_enet_private *fep = netdev_priv(dev);
509         cbd_t __iomem *bdp;
510         int curidx;
511         u16 sc;
512
513 #ifdef CONFIG_FS_ENET_MPC5121_FEC
514         if (((unsigned long)skb->data) & 0x3) {
515                 skb = tx_skb_align_workaround(dev, skb);
516                 if (!skb) {
517                         /*
518                          * We have lost packet due to memory allocation error
519                          * in tx_skb_align_workaround(). Hopefully original
520                          * skb is still valid, so try transmit it later.
521                          */
522                         return NETDEV_TX_BUSY;
523                 }
524         }
525 #endif
526         spin_lock(&fep->tx_lock);
527
528         /*
529          * Fill in a Tx ring entry
530          */
531         bdp = fep->cur_tx;
532
533         if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
534                 netif_stop_queue(dev);
535                 spin_unlock(&fep->tx_lock);
536
537                 /*
538                  * Ooops.  All transmit buffers are full.  Bail out.
539                  * This should not happen, since the tx queue should be stopped.
540                  */
541                 dev_warn(fep->dev, "tx queue full!.\n");
542                 return NETDEV_TX_BUSY;
543         }
544
545         curidx = bdp - fep->tx_bd_base;
546         /*
547          * Clear all of the status flags.
548          */
549         CBDC_SC(bdp, BD_ENET_TX_STATS);
550
551         /*
552          * Save skb pointer.
553          */
554         fep->tx_skbuff[curidx] = skb;
555
556         fep->stats.tx_bytes += skb->len;
557
558         /*
559          * Push the data cache so the CPM does not get stale memory data.
560          */
561         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
562                                 skb->data, skb->len, DMA_TO_DEVICE));
563         CBDW_DATLEN(bdp, skb->len);
564
565         /*
566          * If this was the last BD in the ring, start at the beginning again.
567          */
568         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
569                 fep->cur_tx++;
570         else
571                 fep->cur_tx = fep->tx_bd_base;
572
573         if (!--fep->tx_free)
574                 netif_stop_queue(dev);
575
576         /* Trigger transmission start */
577         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
578              BD_ENET_TX_LAST | BD_ENET_TX_TC;
579
580         /* note that while FEC does not have this bit
581          * it marks it as available for software use
582          * yay for hw reuse :) */
583         if (skb->len <= 60)
584                 sc |= BD_ENET_TX_PAD;
585         CBDS_SC(bdp, sc);
586
587         skb_tx_timestamp(skb);
588
589         (*fep->ops->tx_kickstart)(dev);
590
591         spin_unlock(&fep->tx_lock);
592
593         return NETDEV_TX_OK;
594 }
595
596 static void fs_timeout(struct net_device *dev)
597 {
598         struct fs_enet_private *fep = netdev_priv(dev);
599         unsigned long flags;
600         int wake = 0;
601
602         fep->stats.tx_errors++;
603
604         spin_lock_irqsave(&fep->lock, flags);
605
606         if (dev->flags & IFF_UP) {
607                 phy_stop(fep->phydev);
608                 (*fep->ops->stop)(dev);
609                 (*fep->ops->restart)(dev);
610                 phy_start(fep->phydev);
611         }
612
613         phy_start(fep->phydev);
614         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
615         spin_unlock_irqrestore(&fep->lock, flags);
616
617         if (wake)
618                 netif_wake_queue(dev);
619 }
620
621 /*-----------------------------------------------------------------------------
622  *  generic link-change handler - should be sufficient for most cases
623  *-----------------------------------------------------------------------------*/
624 static void generic_adjust_link(struct  net_device *dev)
625 {
626         struct fs_enet_private *fep = netdev_priv(dev);
627         struct phy_device *phydev = fep->phydev;
628         int new_state = 0;
629
630         if (phydev->link) {
631                 /* adjust to duplex mode */
632                 if (phydev->duplex != fep->oldduplex) {
633                         new_state = 1;
634                         fep->oldduplex = phydev->duplex;
635                 }
636
637                 if (phydev->speed != fep->oldspeed) {
638                         new_state = 1;
639                         fep->oldspeed = phydev->speed;
640                 }
641
642                 if (!fep->oldlink) {
643                         new_state = 1;
644                         fep->oldlink = 1;
645                 }
646
647                 if (new_state)
648                         fep->ops->restart(dev);
649         } else if (fep->oldlink) {
650                 new_state = 1;
651                 fep->oldlink = 0;
652                 fep->oldspeed = 0;
653                 fep->oldduplex = -1;
654         }
655
656         if (new_state && netif_msg_link(fep))
657                 phy_print_status(phydev);
658 }
659
660
661 static void fs_adjust_link(struct net_device *dev)
662 {
663         struct fs_enet_private *fep = netdev_priv(dev);
664         unsigned long flags;
665
666         spin_lock_irqsave(&fep->lock, flags);
667
668         if(fep->ops->adjust_link)
669                 fep->ops->adjust_link(dev);
670         else
671                 generic_adjust_link(dev);
672
673         spin_unlock_irqrestore(&fep->lock, flags);
674 }
675
676 static int fs_init_phy(struct net_device *dev)
677 {
678         struct fs_enet_private *fep = netdev_priv(dev);
679         struct phy_device *phydev;
680         phy_interface_t iface;
681
682         fep->oldlink = 0;
683         fep->oldspeed = 0;
684         fep->oldduplex = -1;
685
686         iface = fep->fpi->use_rmii ?
687                 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
688
689         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
690                                 iface);
691         if (!phydev) {
692                 dev_err(&dev->dev, "Could not attach to PHY\n");
693                 return -ENODEV;
694         }
695
696         fep->phydev = phydev;
697
698         return 0;
699 }
700
701 static int fs_enet_open(struct net_device *dev)
702 {
703         struct fs_enet_private *fep = netdev_priv(dev);
704         int r;
705         int err;
706
707         /* to initialize the fep->cur_rx,... */
708         /* not doing this, will cause a crash in fs_enet_rx_napi */
709         fs_init_bds(fep->ndev);
710
711         napi_enable(&fep->napi);
712         napi_enable(&fep->napi_tx);
713
714         /* Install our interrupt handler. */
715         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
716                         "fs_enet-mac", dev);
717         if (r != 0) {
718                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
719                 napi_disable(&fep->napi);
720                 napi_disable(&fep->napi_tx);
721                 return -EINVAL;
722         }
723
724         err = fs_init_phy(dev);
725         if (err) {
726                 free_irq(fep->interrupt, dev);
727                 napi_disable(&fep->napi);
728                 napi_disable(&fep->napi_tx);
729                 return err;
730         }
731         phy_start(fep->phydev);
732
733         netif_start_queue(dev);
734
735         return 0;
736 }
737
738 static int fs_enet_close(struct net_device *dev)
739 {
740         struct fs_enet_private *fep = netdev_priv(dev);
741         unsigned long flags;
742
743         netif_stop_queue(dev);
744         netif_carrier_off(dev);
745         napi_disable(&fep->napi);
746         napi_disable(&fep->napi_tx);
747         phy_stop(fep->phydev);
748
749         spin_lock_irqsave(&fep->lock, flags);
750         spin_lock(&fep->tx_lock);
751         (*fep->ops->stop)(dev);
752         spin_unlock(&fep->tx_lock);
753         spin_unlock_irqrestore(&fep->lock, flags);
754
755         /* release any irqs */
756         phy_disconnect(fep->phydev);
757         fep->phydev = NULL;
758         free_irq(fep->interrupt, dev);
759
760         return 0;
761 }
762
763 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
764 {
765         struct fs_enet_private *fep = netdev_priv(dev);
766         return &fep->stats;
767 }
768
769 /*************************************************************************/
770
771 static void fs_get_drvinfo(struct net_device *dev,
772                             struct ethtool_drvinfo *info)
773 {
774         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
775         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
776 }
777
778 static int fs_get_regs_len(struct net_device *dev)
779 {
780         struct fs_enet_private *fep = netdev_priv(dev);
781
782         return (*fep->ops->get_regs_len)(dev);
783 }
784
785 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
786                          void *p)
787 {
788         struct fs_enet_private *fep = netdev_priv(dev);
789         unsigned long flags;
790         int r, len;
791
792         len = regs->len;
793
794         spin_lock_irqsave(&fep->lock, flags);
795         r = (*fep->ops->get_regs)(dev, p, &len);
796         spin_unlock_irqrestore(&fep->lock, flags);
797
798         if (r == 0)
799                 regs->version = 0;
800 }
801
802 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
803 {
804         struct fs_enet_private *fep = netdev_priv(dev);
805
806         if (!fep->phydev)
807                 return -ENODEV;
808
809         return phy_ethtool_gset(fep->phydev, cmd);
810 }
811
812 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
813 {
814         struct fs_enet_private *fep = netdev_priv(dev);
815
816         if (!fep->phydev)
817                 return -ENODEV;
818
819         return phy_ethtool_sset(fep->phydev, cmd);
820 }
821
822 static int fs_nway_reset(struct net_device *dev)
823 {
824         return 0;
825 }
826
827 static u32 fs_get_msglevel(struct net_device *dev)
828 {
829         struct fs_enet_private *fep = netdev_priv(dev);
830         return fep->msg_enable;
831 }
832
833 static void fs_set_msglevel(struct net_device *dev, u32 value)
834 {
835         struct fs_enet_private *fep = netdev_priv(dev);
836         fep->msg_enable = value;
837 }
838
839 static const struct ethtool_ops fs_ethtool_ops = {
840         .get_drvinfo = fs_get_drvinfo,
841         .get_regs_len = fs_get_regs_len,
842         .get_settings = fs_get_settings,
843         .set_settings = fs_set_settings,
844         .nway_reset = fs_nway_reset,
845         .get_link = ethtool_op_get_link,
846         .get_msglevel = fs_get_msglevel,
847         .set_msglevel = fs_set_msglevel,
848         .get_regs = fs_get_regs,
849         .get_ts_info = ethtool_op_get_ts_info,
850 };
851
852 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
853 {
854         struct fs_enet_private *fep = netdev_priv(dev);
855
856         if (!netif_running(dev))
857                 return -EINVAL;
858
859         return phy_mii_ioctl(fep->phydev, rq, cmd);
860 }
861
862 extern int fs_mii_connect(struct net_device *dev);
863 extern void fs_mii_disconnect(struct net_device *dev);
864
865 /**************************************************************************************/
866
867 #ifdef CONFIG_FS_ENET_HAS_FEC
868 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
869 #else
870 #define IS_FEC(match) 0
871 #endif
872
873 static const struct net_device_ops fs_enet_netdev_ops = {
874         .ndo_open               = fs_enet_open,
875         .ndo_stop               = fs_enet_close,
876         .ndo_get_stats          = fs_enet_get_stats,
877         .ndo_start_xmit         = fs_enet_start_xmit,
878         .ndo_tx_timeout         = fs_timeout,
879         .ndo_set_rx_mode        = fs_set_multicast_list,
880         .ndo_do_ioctl           = fs_ioctl,
881         .ndo_validate_addr      = eth_validate_addr,
882         .ndo_set_mac_address    = eth_mac_addr,
883         .ndo_change_mtu         = eth_change_mtu,
884 #ifdef CONFIG_NET_POLL_CONTROLLER
885         .ndo_poll_controller    = fs_enet_netpoll,
886 #endif
887 };
888
889 static struct of_device_id fs_enet_match[];
890 static int fs_enet_probe(struct platform_device *ofdev)
891 {
892         const struct of_device_id *match;
893         struct net_device *ndev;
894         struct fs_enet_private *fep;
895         struct fs_platform_info *fpi;
896         const u32 *data;
897         struct clk *clk;
898         int err;
899         const u8 *mac_addr;
900         const char *phy_connection_type;
901         int privsize, len, ret = -ENODEV;
902
903         match = of_match_device(fs_enet_match, &ofdev->dev);
904         if (!match)
905                 return -EINVAL;
906
907         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
908         if (!fpi)
909                 return -ENOMEM;
910
911         if (!IS_FEC(match)) {
912                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
913                 if (!data || len != 4)
914                         goto out_free_fpi;
915
916                 fpi->cp_command = *data;
917         }
918
919         fpi->rx_ring = 32;
920         fpi->tx_ring = 32;
921         fpi->rx_copybreak = 240;
922         fpi->napi_weight = 17;
923         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
924         if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
925                 err = of_phy_register_fixed_link(ofdev->dev.of_node);
926                 if (err)
927                         goto out_free_fpi;
928
929                 /* In the case of a fixed PHY, the DT node associated
930                  * to the PHY is the Ethernet MAC DT node.
931                  */
932                 fpi->phy_node = of_node_get(ofdev->dev.of_node);
933         }
934
935         if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
936                 phy_connection_type = of_get_property(ofdev->dev.of_node,
937                                                 "phy-connection-type", NULL);
938                 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
939                         fpi->use_rmii = 1;
940         }
941
942         /* make clock lookup non-fatal (the driver is shared among platforms),
943          * but require enable to succeed when a clock was specified/found,
944          * keep a reference to the clock upon successful acquisition
945          */
946         clk = devm_clk_get(&ofdev->dev, "per");
947         if (!IS_ERR(clk)) {
948                 err = clk_prepare_enable(clk);
949                 if (err) {
950                         ret = err;
951                         goto out_free_fpi;
952                 }
953                 fpi->clk_per = clk;
954         }
955
956         privsize = sizeof(*fep) +
957                    sizeof(struct sk_buff **) *
958                    (fpi->rx_ring + fpi->tx_ring);
959
960         ndev = alloc_etherdev(privsize);
961         if (!ndev) {
962                 ret = -ENOMEM;
963                 goto out_put;
964         }
965
966         SET_NETDEV_DEV(ndev, &ofdev->dev);
967         platform_set_drvdata(ofdev, ndev);
968
969         fep = netdev_priv(ndev);
970         fep->dev = &ofdev->dev;
971         fep->ndev = ndev;
972         fep->fpi = fpi;
973         fep->ops = match->data;
974
975         ret = fep->ops->setup_data(ndev);
976         if (ret)
977                 goto out_free_dev;
978
979         fep->rx_skbuff = (struct sk_buff **)&fep[1];
980         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
981
982         spin_lock_init(&fep->lock);
983         spin_lock_init(&fep->tx_lock);
984
985         mac_addr = of_get_mac_address(ofdev->dev.of_node);
986         if (mac_addr)
987                 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
988
989         ret = fep->ops->allocate_bd(ndev);
990         if (ret)
991                 goto out_cleanup_data;
992
993         fep->rx_bd_base = fep->ring_base;
994         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
995
996         fep->tx_ring = fpi->tx_ring;
997         fep->rx_ring = fpi->rx_ring;
998
999         ndev->netdev_ops = &fs_enet_netdev_ops;
1000         ndev->watchdog_timeo = 2 * HZ;
1001         netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1002         netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1003
1004         ndev->ethtool_ops = &fs_ethtool_ops;
1005
1006         init_timer(&fep->phy_timer_list);
1007
1008         netif_carrier_off(ndev);
1009
1010         ret = register_netdev(ndev);
1011         if (ret)
1012                 goto out_free_bd;
1013
1014         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1015
1016         return 0;
1017
1018 out_free_bd:
1019         fep->ops->free_bd(ndev);
1020 out_cleanup_data:
1021         fep->ops->cleanup_data(ndev);
1022 out_free_dev:
1023         free_netdev(ndev);
1024 out_put:
1025         of_node_put(fpi->phy_node);
1026         if (fpi->clk_per)
1027                 clk_disable_unprepare(fpi->clk_per);
1028 out_free_fpi:
1029         kfree(fpi);
1030         return ret;
1031 }
1032
1033 static int fs_enet_remove(struct platform_device *ofdev)
1034 {
1035         struct net_device *ndev = platform_get_drvdata(ofdev);
1036         struct fs_enet_private *fep = netdev_priv(ndev);
1037
1038         unregister_netdev(ndev);
1039
1040         fep->ops->free_bd(ndev);
1041         fep->ops->cleanup_data(ndev);
1042         dev_set_drvdata(fep->dev, NULL);
1043         of_node_put(fep->fpi->phy_node);
1044         if (fep->fpi->clk_per)
1045                 clk_disable_unprepare(fep->fpi->clk_per);
1046         free_netdev(ndev);
1047         return 0;
1048 }
1049
1050 static struct of_device_id fs_enet_match[] = {
1051 #ifdef CONFIG_FS_ENET_HAS_SCC
1052         {
1053                 .compatible = "fsl,cpm1-scc-enet",
1054                 .data = (void *)&fs_scc_ops,
1055         },
1056         {
1057                 .compatible = "fsl,cpm2-scc-enet",
1058                 .data = (void *)&fs_scc_ops,
1059         },
1060 #endif
1061 #ifdef CONFIG_FS_ENET_HAS_FCC
1062         {
1063                 .compatible = "fsl,cpm2-fcc-enet",
1064                 .data = (void *)&fs_fcc_ops,
1065         },
1066 #endif
1067 #ifdef CONFIG_FS_ENET_HAS_FEC
1068 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1069         {
1070                 .compatible = "fsl,mpc5121-fec",
1071                 .data = (void *)&fs_fec_ops,
1072         },
1073         {
1074                 .compatible = "fsl,mpc5125-fec",
1075                 .data = (void *)&fs_fec_ops,
1076         },
1077 #else
1078         {
1079                 .compatible = "fsl,pq1-fec-enet",
1080                 .data = (void *)&fs_fec_ops,
1081         },
1082 #endif
1083 #endif
1084         {}
1085 };
1086 MODULE_DEVICE_TABLE(of, fs_enet_match);
1087
1088 static struct platform_driver fs_enet_driver = {
1089         .driver = {
1090                 .name = "fs_enet",
1091                 .of_match_table = fs_enet_match,
1092         },
1093         .probe = fs_enet_probe,
1094         .remove = fs_enet_remove,
1095 };
1096
1097 #ifdef CONFIG_NET_POLL_CONTROLLER
1098 static void fs_enet_netpoll(struct net_device *dev)
1099 {
1100        disable_irq(dev->irq);
1101        fs_enet_interrupt(dev->irq, dev);
1102        enable_irq(dev->irq);
1103 }
1104 #endif
1105
1106 module_platform_driver(fs_enet_driver);