Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / freescale / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_platform.h>
42 #include <linux/of_gpio.h>
43 #include <linux/of_net.h>
44
45 #include <linux/vmalloc.h>
46 #include <asm/pgtable.h>
47 #include <asm/irq.h>
48 #include <asm/uaccess.h>
49
50 #include "fs_enet.h"
51
52 /*************************************************/
53
54 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
55 MODULE_DESCRIPTION("Freescale Ethernet Driver");
56 MODULE_LICENSE("GPL");
57 MODULE_VERSION(DRV_MODULE_VERSION);
58
59 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
60 module_param(fs_enet_debug, int, 0);
61 MODULE_PARM_DESC(fs_enet_debug,
62                  "Freescale bitmapped debugging message enable value");
63
64 #ifdef CONFIG_NET_POLL_CONTROLLER
65 static void fs_enet_netpoll(struct net_device *dev);
66 #endif
67
68 static void fs_set_multicast_list(struct net_device *dev)
69 {
70         struct fs_enet_private *fep = netdev_priv(dev);
71
72         (*fep->ops->set_multicast_list)(dev);
73 }
74
75 static void skb_align(struct sk_buff *skb, int align)
76 {
77         int off = ((unsigned long)skb->data) & (align - 1);
78
79         if (off)
80                 skb_reserve(skb, align - off);
81 }
82
83 /* NAPI receive function */
84 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
85 {
86         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
87         struct net_device *dev = fep->ndev;
88         const struct fs_platform_info *fpi = fep->fpi;
89         cbd_t __iomem *bdp;
90         struct sk_buff *skb, *skbn, *skbt;
91         int received = 0;
92         u16 pkt_len, sc;
93         int curidx;
94
95         /*
96          * First, grab all of the stats for the incoming packet.
97          * These get messed up if we get called due to a busy condition.
98          */
99         bdp = fep->cur_rx;
100
101         /* clear RX status bits for napi*/
102         (*fep->ops->napi_clear_rx_event)(dev);
103
104         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
105                 curidx = bdp - fep->rx_bd_base;
106
107                 /*
108                  * Since we have allocated space to hold a complete frame,
109                  * the last indicator should be set.
110                  */
111                 if ((sc & BD_ENET_RX_LAST) == 0)
112                         dev_warn(fep->dev, "rcv is not +last\n");
113
114                 /*
115                  * Check for errors.
116                  */
117                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
118                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
119                         fep->stats.rx_errors++;
120                         /* Frame too long or too short. */
121                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
122                                 fep->stats.rx_length_errors++;
123                         /* Frame alignment */
124                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
125                                 fep->stats.rx_frame_errors++;
126                         /* CRC Error */
127                         if (sc & BD_ENET_RX_CR)
128                                 fep->stats.rx_crc_errors++;
129                         /* FIFO overrun */
130                         if (sc & BD_ENET_RX_OV)
131                                 fep->stats.rx_crc_errors++;
132
133                         skb = fep->rx_skbuff[curidx];
134
135                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
136                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
137                                 DMA_FROM_DEVICE);
138
139                         skbn = skb;
140
141                 } else {
142                         skb = fep->rx_skbuff[curidx];
143
144                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
145                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
146                                 DMA_FROM_DEVICE);
147
148                         /*
149                          * Process the incoming frame.
150                          */
151                         fep->stats.rx_packets++;
152                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
153                         fep->stats.rx_bytes += pkt_len + 4;
154
155                         if (pkt_len <= fpi->rx_copybreak) {
156                                 /* +2 to make IP header L1 cache aligned */
157                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
158                                 if (skbn != NULL) {
159                                         skb_reserve(skbn, 2);   /* align IP header */
160                                         skb_copy_from_linear_data(skb,
161                                                       skbn->data, pkt_len);
162                                         /* swap */
163                                         skbt = skb;
164                                         skb = skbn;
165                                         skbn = skbt;
166                                 }
167                         } else {
168                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
169
170                                 if (skbn)
171                                         skb_align(skbn, ENET_RX_ALIGN);
172                         }
173
174                         if (skbn != NULL) {
175                                 skb_put(skb, pkt_len);  /* Make room */
176                                 skb->protocol = eth_type_trans(skb, dev);
177                                 received++;
178                                 netif_receive_skb(skb);
179                         } else {
180                                 fep->stats.rx_dropped++;
181                                 skbn = skb;
182                         }
183                 }
184
185                 fep->rx_skbuff[curidx] = skbn;
186                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
187                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
188                              DMA_FROM_DEVICE));
189                 CBDW_DATLEN(bdp, 0);
190                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
191
192                 /*
193                  * Update BD pointer to next entry.
194                  */
195                 if ((sc & BD_ENET_RX_WRAP) == 0)
196                         bdp++;
197                 else
198                         bdp = fep->rx_bd_base;
199
200                 (*fep->ops->rx_bd_done)(dev);
201
202                 if (received >= budget)
203                         break;
204         }
205
206         fep->cur_rx = bdp;
207
208         if (received < budget) {
209                 /* done */
210                 napi_complete(napi);
211                 (*fep->ops->napi_enable_rx)(dev);
212         }
213         return received;
214 }
215
216 /* non NAPI receive function */
217 static int fs_enet_rx_non_napi(struct net_device *dev)
218 {
219         struct fs_enet_private *fep = netdev_priv(dev);
220         const struct fs_platform_info *fpi = fep->fpi;
221         cbd_t __iomem *bdp;
222         struct sk_buff *skb, *skbn, *skbt;
223         int received = 0;
224         u16 pkt_len, sc;
225         int curidx;
226         /*
227          * First, grab all of the stats for the incoming packet.
228          * These get messed up if we get called due to a busy condition.
229          */
230         bdp = fep->cur_rx;
231
232         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
233
234                 curidx = bdp - fep->rx_bd_base;
235
236                 /*
237                  * Since we have allocated space to hold a complete frame,
238                  * the last indicator should be set.
239                  */
240                 if ((sc & BD_ENET_RX_LAST) == 0)
241                         dev_warn(fep->dev, "rcv is not +last\n");
242
243                 /*
244                  * Check for errors.
245                  */
246                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
247                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
248                         fep->stats.rx_errors++;
249                         /* Frame too long or too short. */
250                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
251                                 fep->stats.rx_length_errors++;
252                         /* Frame alignment */
253                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
254                                 fep->stats.rx_frame_errors++;
255                         /* CRC Error */
256                         if (sc & BD_ENET_RX_CR)
257                                 fep->stats.rx_crc_errors++;
258                         /* FIFO overrun */
259                         if (sc & BD_ENET_RX_OV)
260                                 fep->stats.rx_crc_errors++;
261
262                         skb = fep->rx_skbuff[curidx];
263
264                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
265                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
266                                 DMA_FROM_DEVICE);
267
268                         skbn = skb;
269
270                 } else {
271
272                         skb = fep->rx_skbuff[curidx];
273
274                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
275                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
276                                 DMA_FROM_DEVICE);
277
278                         /*
279                          * Process the incoming frame.
280                          */
281                         fep->stats.rx_packets++;
282                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
283                         fep->stats.rx_bytes += pkt_len + 4;
284
285                         if (pkt_len <= fpi->rx_copybreak) {
286                                 /* +2 to make IP header L1 cache aligned */
287                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
288                                 if (skbn != NULL) {
289                                         skb_reserve(skbn, 2);   /* align IP header */
290                                         skb_copy_from_linear_data(skb,
291                                                       skbn->data, pkt_len);
292                                         /* swap */
293                                         skbt = skb;
294                                         skb = skbn;
295                                         skbn = skbt;
296                                 }
297                         } else {
298                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
299
300                                 if (skbn)
301                                         skb_align(skbn, ENET_RX_ALIGN);
302                         }
303
304                         if (skbn != NULL) {
305                                 skb_put(skb, pkt_len);  /* Make room */
306                                 skb->protocol = eth_type_trans(skb, dev);
307                                 received++;
308                                 netif_rx(skb);
309                         } else {
310                                 fep->stats.rx_dropped++;
311                                 skbn = skb;
312                         }
313                 }
314
315                 fep->rx_skbuff[curidx] = skbn;
316                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
317                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
318                              DMA_FROM_DEVICE));
319                 CBDW_DATLEN(bdp, 0);
320                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
321
322                 /*
323                  * Update BD pointer to next entry.
324                  */
325                 if ((sc & BD_ENET_RX_WRAP) == 0)
326                         bdp++;
327                 else
328                         bdp = fep->rx_bd_base;
329
330                 (*fep->ops->rx_bd_done)(dev);
331         }
332
333         fep->cur_rx = bdp;
334
335         return 0;
336 }
337
338 static void fs_enet_tx(struct net_device *dev)
339 {
340         struct fs_enet_private *fep = netdev_priv(dev);
341         cbd_t __iomem *bdp;
342         struct sk_buff *skb;
343         int dirtyidx, do_wake, do_restart;
344         u16 sc;
345
346         spin_lock(&fep->tx_lock);
347         bdp = fep->dirty_tx;
348
349         do_wake = do_restart = 0;
350         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
351                 dirtyidx = bdp - fep->tx_bd_base;
352
353                 if (fep->tx_free == fep->tx_ring)
354                         break;
355
356                 skb = fep->tx_skbuff[dirtyidx];
357
358                 /*
359                  * Check for errors.
360                  */
361                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
362                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
363
364                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
365                                 fep->stats.tx_heartbeat_errors++;
366                         if (sc & BD_ENET_TX_LC) /* Late collision */
367                                 fep->stats.tx_window_errors++;
368                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
369                                 fep->stats.tx_aborted_errors++;
370                         if (sc & BD_ENET_TX_UN) /* Underrun */
371                                 fep->stats.tx_fifo_errors++;
372                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
373                                 fep->stats.tx_carrier_errors++;
374
375                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
376                                 fep->stats.tx_errors++;
377                                 do_restart = 1;
378                         }
379                 } else
380                         fep->stats.tx_packets++;
381
382                 if (sc & BD_ENET_TX_READY) {
383                         dev_warn(fep->dev,
384                                  "HEY! Enet xmit interrupt and TX_READY.\n");
385                 }
386
387                 /*
388                  * Deferred means some collisions occurred during transmit,
389                  * but we eventually sent the packet OK.
390                  */
391                 if (sc & BD_ENET_TX_DEF)
392                         fep->stats.collisions++;
393
394                 /* unmap */
395                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
396                                 skb->len, DMA_TO_DEVICE);
397
398                 /*
399                  * Free the sk buffer associated with this last transmit.
400                  */
401                 dev_kfree_skb_irq(skb);
402                 fep->tx_skbuff[dirtyidx] = NULL;
403
404                 /*
405                  * Update pointer to next buffer descriptor to be transmitted.
406                  */
407                 if ((sc & BD_ENET_TX_WRAP) == 0)
408                         bdp++;
409                 else
410                         bdp = fep->tx_bd_base;
411
412                 /*
413                  * Since we have freed up a buffer, the ring is no longer
414                  * full.
415                  */
416                 if (!fep->tx_free++)
417                         do_wake = 1;
418         }
419
420         fep->dirty_tx = bdp;
421
422         if (do_restart)
423                 (*fep->ops->tx_restart)(dev);
424
425         spin_unlock(&fep->tx_lock);
426
427         if (do_wake)
428                 netif_wake_queue(dev);
429 }
430
431 /*
432  * The interrupt handler.
433  * This is called from the MPC core interrupt.
434  */
435 static irqreturn_t
436 fs_enet_interrupt(int irq, void *dev_id)
437 {
438         struct net_device *dev = dev_id;
439         struct fs_enet_private *fep;
440         const struct fs_platform_info *fpi;
441         u32 int_events;
442         u32 int_clr_events;
443         int nr, napi_ok;
444         int handled;
445
446         fep = netdev_priv(dev);
447         fpi = fep->fpi;
448
449         nr = 0;
450         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
451                 nr++;
452
453                 int_clr_events = int_events;
454                 if (fpi->use_napi)
455                         int_clr_events &= ~fep->ev_napi_rx;
456
457                 (*fep->ops->clear_int_events)(dev, int_clr_events);
458
459                 if (int_events & fep->ev_err)
460                         (*fep->ops->ev_error)(dev, int_events);
461
462                 if (int_events & fep->ev_rx) {
463                         if (!fpi->use_napi)
464                                 fs_enet_rx_non_napi(dev);
465                         else {
466                                 napi_ok = napi_schedule_prep(&fep->napi);
467
468                                 (*fep->ops->napi_disable_rx)(dev);
469                                 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
470
471                                 /* NOTE: it is possible for FCCs in NAPI mode    */
472                                 /* to submit a spurious interrupt while in poll  */
473                                 if (napi_ok)
474                                         __napi_schedule(&fep->napi);
475                         }
476                 }
477
478                 if (int_events & fep->ev_tx)
479                         fs_enet_tx(dev);
480         }
481
482         handled = nr > 0;
483         return IRQ_RETVAL(handled);
484 }
485
486 void fs_init_bds(struct net_device *dev)
487 {
488         struct fs_enet_private *fep = netdev_priv(dev);
489         cbd_t __iomem *bdp;
490         struct sk_buff *skb;
491         int i;
492
493         fs_cleanup_bds(dev);
494
495         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
496         fep->tx_free = fep->tx_ring;
497         fep->cur_rx = fep->rx_bd_base;
498
499         /*
500          * Initialize the receive buffer descriptors.
501          */
502         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
503                 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
504                 if (skb == NULL)
505                         break;
506
507                 skb_align(skb, ENET_RX_ALIGN);
508                 fep->rx_skbuff[i] = skb;
509                 CBDW_BUFADDR(bdp,
510                         dma_map_single(fep->dev, skb->data,
511                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
512                                 DMA_FROM_DEVICE));
513                 CBDW_DATLEN(bdp, 0);    /* zero */
514                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
515                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
516         }
517         /*
518          * if we failed, fillup remainder
519          */
520         for (; i < fep->rx_ring; i++, bdp++) {
521                 fep->rx_skbuff[i] = NULL;
522                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
523         }
524
525         /*
526          * ...and the same for transmit.
527          */
528         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
529                 fep->tx_skbuff[i] = NULL;
530                 CBDW_BUFADDR(bdp, 0);
531                 CBDW_DATLEN(bdp, 0);
532                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
533         }
534 }
535
536 void fs_cleanup_bds(struct net_device *dev)
537 {
538         struct fs_enet_private *fep = netdev_priv(dev);
539         struct sk_buff *skb;
540         cbd_t __iomem *bdp;
541         int i;
542
543         /*
544          * Reset SKB transmit buffers.
545          */
546         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
547                 if ((skb = fep->tx_skbuff[i]) == NULL)
548                         continue;
549
550                 /* unmap */
551                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
552                                 skb->len, DMA_TO_DEVICE);
553
554                 fep->tx_skbuff[i] = NULL;
555                 dev_kfree_skb(skb);
556         }
557
558         /*
559          * Reset SKB receive buffers
560          */
561         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
562                 if ((skb = fep->rx_skbuff[i]) == NULL)
563                         continue;
564
565                 /* unmap */
566                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
567                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
568                         DMA_FROM_DEVICE);
569
570                 fep->rx_skbuff[i] = NULL;
571
572                 dev_kfree_skb(skb);
573         }
574 }
575
576 /**********************************************************************************/
577
578 #ifdef CONFIG_FS_ENET_MPC5121_FEC
579 /*
580  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
581  */
582 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
583                                                struct sk_buff *skb)
584 {
585         struct sk_buff *new_skb;
586         struct fs_enet_private *fep = netdev_priv(dev);
587
588         /* Alloc new skb */
589         new_skb = netdev_alloc_skb(dev, skb->len + 4);
590         if (!new_skb)
591                 return NULL;
592
593         /* Make sure new skb is properly aligned */
594         skb_align(new_skb, 4);
595
596         /* Copy data to new skb ... */
597         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
598         skb_put(new_skb, skb->len);
599
600         /* ... and free an old one */
601         dev_kfree_skb_any(skb);
602
603         return new_skb;
604 }
605 #endif
606
607 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
608 {
609         struct fs_enet_private *fep = netdev_priv(dev);
610         cbd_t __iomem *bdp;
611         int curidx;
612         u16 sc;
613         unsigned long flags;
614
615 #ifdef CONFIG_FS_ENET_MPC5121_FEC
616         if (((unsigned long)skb->data) & 0x3) {
617                 skb = tx_skb_align_workaround(dev, skb);
618                 if (!skb) {
619                         /*
620                          * We have lost packet due to memory allocation error
621                          * in tx_skb_align_workaround(). Hopefully original
622                          * skb is still valid, so try transmit it later.
623                          */
624                         return NETDEV_TX_BUSY;
625                 }
626         }
627 #endif
628         spin_lock_irqsave(&fep->tx_lock, flags);
629
630         /*
631          * Fill in a Tx ring entry
632          */
633         bdp = fep->cur_tx;
634
635         if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
636                 netif_stop_queue(dev);
637                 spin_unlock_irqrestore(&fep->tx_lock, flags);
638
639                 /*
640                  * Ooops.  All transmit buffers are full.  Bail out.
641                  * This should not happen, since the tx queue should be stopped.
642                  */
643                 dev_warn(fep->dev, "tx queue full!.\n");
644                 return NETDEV_TX_BUSY;
645         }
646
647         curidx = bdp - fep->tx_bd_base;
648         /*
649          * Clear all of the status flags.
650          */
651         CBDC_SC(bdp, BD_ENET_TX_STATS);
652
653         /*
654          * Save skb pointer.
655          */
656         fep->tx_skbuff[curidx] = skb;
657
658         fep->stats.tx_bytes += skb->len;
659
660         /*
661          * Push the data cache so the CPM does not get stale memory data.
662          */
663         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
664                                 skb->data, skb->len, DMA_TO_DEVICE));
665         CBDW_DATLEN(bdp, skb->len);
666
667         /*
668          * If this was the last BD in the ring, start at the beginning again.
669          */
670         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
671                 fep->cur_tx++;
672         else
673                 fep->cur_tx = fep->tx_bd_base;
674
675         if (!--fep->tx_free)
676                 netif_stop_queue(dev);
677
678         /* Trigger transmission start */
679         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
680              BD_ENET_TX_LAST | BD_ENET_TX_TC;
681
682         /* note that while FEC does not have this bit
683          * it marks it as available for software use
684          * yay for hw reuse :) */
685         if (skb->len <= 60)
686                 sc |= BD_ENET_TX_PAD;
687         CBDS_SC(bdp, sc);
688
689         skb_tx_timestamp(skb);
690
691         (*fep->ops->tx_kickstart)(dev);
692
693         spin_unlock_irqrestore(&fep->tx_lock, flags);
694
695         return NETDEV_TX_OK;
696 }
697
698 static void fs_timeout(struct net_device *dev)
699 {
700         struct fs_enet_private *fep = netdev_priv(dev);
701         unsigned long flags;
702         int wake = 0;
703
704         fep->stats.tx_errors++;
705
706         spin_lock_irqsave(&fep->lock, flags);
707
708         if (dev->flags & IFF_UP) {
709                 phy_stop(fep->phydev);
710                 (*fep->ops->stop)(dev);
711                 (*fep->ops->restart)(dev);
712                 phy_start(fep->phydev);
713         }
714
715         phy_start(fep->phydev);
716         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
717         spin_unlock_irqrestore(&fep->lock, flags);
718
719         if (wake)
720                 netif_wake_queue(dev);
721 }
722
723 /*-----------------------------------------------------------------------------
724  *  generic link-change handler - should be sufficient for most cases
725  *-----------------------------------------------------------------------------*/
726 static void generic_adjust_link(struct  net_device *dev)
727 {
728         struct fs_enet_private *fep = netdev_priv(dev);
729         struct phy_device *phydev = fep->phydev;
730         int new_state = 0;
731
732         if (phydev->link) {
733                 /* adjust to duplex mode */
734                 if (phydev->duplex != fep->oldduplex) {
735                         new_state = 1;
736                         fep->oldduplex = phydev->duplex;
737                 }
738
739                 if (phydev->speed != fep->oldspeed) {
740                         new_state = 1;
741                         fep->oldspeed = phydev->speed;
742                 }
743
744                 if (!fep->oldlink) {
745                         new_state = 1;
746                         fep->oldlink = 1;
747                 }
748
749                 if (new_state)
750                         fep->ops->restart(dev);
751         } else if (fep->oldlink) {
752                 new_state = 1;
753                 fep->oldlink = 0;
754                 fep->oldspeed = 0;
755                 fep->oldduplex = -1;
756         }
757
758         if (new_state && netif_msg_link(fep))
759                 phy_print_status(phydev);
760 }
761
762
763 static void fs_adjust_link(struct net_device *dev)
764 {
765         struct fs_enet_private *fep = netdev_priv(dev);
766         unsigned long flags;
767
768         spin_lock_irqsave(&fep->lock, flags);
769
770         if(fep->ops->adjust_link)
771                 fep->ops->adjust_link(dev);
772         else
773                 generic_adjust_link(dev);
774
775         spin_unlock_irqrestore(&fep->lock, flags);
776 }
777
778 static int fs_init_phy(struct net_device *dev)
779 {
780         struct fs_enet_private *fep = netdev_priv(dev);
781         struct phy_device *phydev;
782         phy_interface_t iface;
783
784         fep->oldlink = 0;
785         fep->oldspeed = 0;
786         fep->oldduplex = -1;
787
788         iface = fep->fpi->use_rmii ?
789                 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
790
791         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
792                                 iface);
793         if (!phydev) {
794                 phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link,
795                                                    iface);
796         }
797         if (!phydev) {
798                 dev_err(&dev->dev, "Could not attach to PHY\n");
799                 return -ENODEV;
800         }
801
802         fep->phydev = phydev;
803
804         return 0;
805 }
806
807 static int fs_enet_open(struct net_device *dev)
808 {
809         struct fs_enet_private *fep = netdev_priv(dev);
810         int r;
811         int err;
812
813         /* to initialize the fep->cur_rx,... */
814         /* not doing this, will cause a crash in fs_enet_rx_napi */
815         fs_init_bds(fep->ndev);
816
817         if (fep->fpi->use_napi)
818                 napi_enable(&fep->napi);
819
820         /* Install our interrupt handler. */
821         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
822                         "fs_enet-mac", dev);
823         if (r != 0) {
824                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
825                 if (fep->fpi->use_napi)
826                         napi_disable(&fep->napi);
827                 return -EINVAL;
828         }
829
830         err = fs_init_phy(dev);
831         if (err) {
832                 free_irq(fep->interrupt, dev);
833                 if (fep->fpi->use_napi)
834                         napi_disable(&fep->napi);
835                 return err;
836         }
837         phy_start(fep->phydev);
838
839         netif_start_queue(dev);
840
841         return 0;
842 }
843
844 static int fs_enet_close(struct net_device *dev)
845 {
846         struct fs_enet_private *fep = netdev_priv(dev);
847         unsigned long flags;
848
849         netif_stop_queue(dev);
850         netif_carrier_off(dev);
851         if (fep->fpi->use_napi)
852                 napi_disable(&fep->napi);
853         phy_stop(fep->phydev);
854
855         spin_lock_irqsave(&fep->lock, flags);
856         spin_lock(&fep->tx_lock);
857         (*fep->ops->stop)(dev);
858         spin_unlock(&fep->tx_lock);
859         spin_unlock_irqrestore(&fep->lock, flags);
860
861         /* release any irqs */
862         phy_disconnect(fep->phydev);
863         fep->phydev = NULL;
864         free_irq(fep->interrupt, dev);
865
866         return 0;
867 }
868
869 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
870 {
871         struct fs_enet_private *fep = netdev_priv(dev);
872         return &fep->stats;
873 }
874
875 /*************************************************************************/
876
877 static void fs_get_drvinfo(struct net_device *dev,
878                             struct ethtool_drvinfo *info)
879 {
880         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
881         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
882 }
883
884 static int fs_get_regs_len(struct net_device *dev)
885 {
886         struct fs_enet_private *fep = netdev_priv(dev);
887
888         return (*fep->ops->get_regs_len)(dev);
889 }
890
891 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
892                          void *p)
893 {
894         struct fs_enet_private *fep = netdev_priv(dev);
895         unsigned long flags;
896         int r, len;
897
898         len = regs->len;
899
900         spin_lock_irqsave(&fep->lock, flags);
901         r = (*fep->ops->get_regs)(dev, p, &len);
902         spin_unlock_irqrestore(&fep->lock, flags);
903
904         if (r == 0)
905                 regs->version = 0;
906 }
907
908 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
909 {
910         struct fs_enet_private *fep = netdev_priv(dev);
911
912         if (!fep->phydev)
913                 return -ENODEV;
914
915         return phy_ethtool_gset(fep->phydev, cmd);
916 }
917
918 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
919 {
920         struct fs_enet_private *fep = netdev_priv(dev);
921
922         if (!fep->phydev)
923                 return -ENODEV;
924
925         return phy_ethtool_sset(fep->phydev, cmd);
926 }
927
928 static int fs_nway_reset(struct net_device *dev)
929 {
930         return 0;
931 }
932
933 static u32 fs_get_msglevel(struct net_device *dev)
934 {
935         struct fs_enet_private *fep = netdev_priv(dev);
936         return fep->msg_enable;
937 }
938
939 static void fs_set_msglevel(struct net_device *dev, u32 value)
940 {
941         struct fs_enet_private *fep = netdev_priv(dev);
942         fep->msg_enable = value;
943 }
944
945 static const struct ethtool_ops fs_ethtool_ops = {
946         .get_drvinfo = fs_get_drvinfo,
947         .get_regs_len = fs_get_regs_len,
948         .get_settings = fs_get_settings,
949         .set_settings = fs_set_settings,
950         .nway_reset = fs_nway_reset,
951         .get_link = ethtool_op_get_link,
952         .get_msglevel = fs_get_msglevel,
953         .set_msglevel = fs_set_msglevel,
954         .get_regs = fs_get_regs,
955         .get_ts_info = ethtool_op_get_ts_info,
956 };
957
958 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
959 {
960         struct fs_enet_private *fep = netdev_priv(dev);
961
962         if (!netif_running(dev))
963                 return -EINVAL;
964
965         return phy_mii_ioctl(fep->phydev, rq, cmd);
966 }
967
968 extern int fs_mii_connect(struct net_device *dev);
969 extern void fs_mii_disconnect(struct net_device *dev);
970
971 /**************************************************************************************/
972
973 #ifdef CONFIG_FS_ENET_HAS_FEC
974 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
975 #else
976 #define IS_FEC(match) 0
977 #endif
978
979 static const struct net_device_ops fs_enet_netdev_ops = {
980         .ndo_open               = fs_enet_open,
981         .ndo_stop               = fs_enet_close,
982         .ndo_get_stats          = fs_enet_get_stats,
983         .ndo_start_xmit         = fs_enet_start_xmit,
984         .ndo_tx_timeout         = fs_timeout,
985         .ndo_set_rx_mode        = fs_set_multicast_list,
986         .ndo_do_ioctl           = fs_ioctl,
987         .ndo_validate_addr      = eth_validate_addr,
988         .ndo_set_mac_address    = eth_mac_addr,
989         .ndo_change_mtu         = eth_change_mtu,
990 #ifdef CONFIG_NET_POLL_CONTROLLER
991         .ndo_poll_controller    = fs_enet_netpoll,
992 #endif
993 };
994
995 static struct of_device_id fs_enet_match[];
996 static int fs_enet_probe(struct platform_device *ofdev)
997 {
998         const struct of_device_id *match;
999         struct net_device *ndev;
1000         struct fs_enet_private *fep;
1001         struct fs_platform_info *fpi;
1002         const u32 *data;
1003         const u8 *mac_addr;
1004         const char *phy_connection_type;
1005         int privsize, len, ret = -ENODEV;
1006
1007         match = of_match_device(fs_enet_match, &ofdev->dev);
1008         if (!match)
1009                 return -EINVAL;
1010
1011         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1012         if (!fpi)
1013                 return -ENOMEM;
1014
1015         if (!IS_FEC(match)) {
1016                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
1017                 if (!data || len != 4)
1018                         goto out_free_fpi;
1019
1020                 fpi->cp_command = *data;
1021         }
1022
1023         fpi->rx_ring = 32;
1024         fpi->tx_ring = 32;
1025         fpi->rx_copybreak = 240;
1026         fpi->use_napi = 1;
1027         fpi->napi_weight = 17;
1028         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
1029         if ((!fpi->phy_node) && (!of_get_property(ofdev->dev.of_node, "fixed-link",
1030                                                   NULL)))
1031                 goto out_free_fpi;
1032
1033         if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
1034                 phy_connection_type = of_get_property(ofdev->dev.of_node,
1035                                                 "phy-connection-type", NULL);
1036                 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
1037                         fpi->use_rmii = 1;
1038         }
1039
1040         privsize = sizeof(*fep) +
1041                    sizeof(struct sk_buff **) *
1042                    (fpi->rx_ring + fpi->tx_ring);
1043
1044         ndev = alloc_etherdev(privsize);
1045         if (!ndev) {
1046                 ret = -ENOMEM;
1047                 goto out_put;
1048         }
1049
1050         SET_NETDEV_DEV(ndev, &ofdev->dev);
1051         dev_set_drvdata(&ofdev->dev, ndev);
1052
1053         fep = netdev_priv(ndev);
1054         fep->dev = &ofdev->dev;
1055         fep->ndev = ndev;
1056         fep->fpi = fpi;
1057         fep->ops = match->data;
1058
1059         ret = fep->ops->setup_data(ndev);
1060         if (ret)
1061                 goto out_free_dev;
1062
1063         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1064         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1065
1066         spin_lock_init(&fep->lock);
1067         spin_lock_init(&fep->tx_lock);
1068
1069         mac_addr = of_get_mac_address(ofdev->dev.of_node);
1070         if (mac_addr)
1071                 memcpy(ndev->dev_addr, mac_addr, 6);
1072
1073         ret = fep->ops->allocate_bd(ndev);
1074         if (ret)
1075                 goto out_cleanup_data;
1076
1077         fep->rx_bd_base = fep->ring_base;
1078         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1079
1080         fep->tx_ring = fpi->tx_ring;
1081         fep->rx_ring = fpi->rx_ring;
1082
1083         ndev->netdev_ops = &fs_enet_netdev_ops;
1084         ndev->watchdog_timeo = 2 * HZ;
1085         if (fpi->use_napi)
1086                 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1087                                fpi->napi_weight);
1088
1089         ndev->ethtool_ops = &fs_ethtool_ops;
1090
1091         init_timer(&fep->phy_timer_list);
1092
1093         netif_carrier_off(ndev);
1094
1095         ret = register_netdev(ndev);
1096         if (ret)
1097                 goto out_free_bd;
1098
1099         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1100
1101         return 0;
1102
1103 out_free_bd:
1104         fep->ops->free_bd(ndev);
1105 out_cleanup_data:
1106         fep->ops->cleanup_data(ndev);
1107 out_free_dev:
1108         free_netdev(ndev);
1109         dev_set_drvdata(&ofdev->dev, NULL);
1110 out_put:
1111         of_node_put(fpi->phy_node);
1112 out_free_fpi:
1113         kfree(fpi);
1114         return ret;
1115 }
1116
1117 static int fs_enet_remove(struct platform_device *ofdev)
1118 {
1119         struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1120         struct fs_enet_private *fep = netdev_priv(ndev);
1121
1122         unregister_netdev(ndev);
1123
1124         fep->ops->free_bd(ndev);
1125         fep->ops->cleanup_data(ndev);
1126         dev_set_drvdata(fep->dev, NULL);
1127         of_node_put(fep->fpi->phy_node);
1128         free_netdev(ndev);
1129         return 0;
1130 }
1131
1132 static struct of_device_id fs_enet_match[] = {
1133 #ifdef CONFIG_FS_ENET_HAS_SCC
1134         {
1135                 .compatible = "fsl,cpm1-scc-enet",
1136                 .data = (void *)&fs_scc_ops,
1137         },
1138         {
1139                 .compatible = "fsl,cpm2-scc-enet",
1140                 .data = (void *)&fs_scc_ops,
1141         },
1142 #endif
1143 #ifdef CONFIG_FS_ENET_HAS_FCC
1144         {
1145                 .compatible = "fsl,cpm2-fcc-enet",
1146                 .data = (void *)&fs_fcc_ops,
1147         },
1148 #endif
1149 #ifdef CONFIG_FS_ENET_HAS_FEC
1150 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1151         {
1152                 .compatible = "fsl,mpc5121-fec",
1153                 .data = (void *)&fs_fec_ops,
1154         },
1155         {
1156                 .compatible = "fsl,mpc5125-fec",
1157                 .data = (void *)&fs_fec_ops,
1158         },
1159 #else
1160         {
1161                 .compatible = "fsl,pq1-fec-enet",
1162                 .data = (void *)&fs_fec_ops,
1163         },
1164 #endif
1165 #endif
1166         {}
1167 };
1168 MODULE_DEVICE_TABLE(of, fs_enet_match);
1169
1170 static struct platform_driver fs_enet_driver = {
1171         .driver = {
1172                 .owner = THIS_MODULE,
1173                 .name = "fs_enet",
1174                 .of_match_table = fs_enet_match,
1175         },
1176         .probe = fs_enet_probe,
1177         .remove = fs_enet_remove,
1178 };
1179
1180 #ifdef CONFIG_NET_POLL_CONTROLLER
1181 static void fs_enet_netpoll(struct net_device *dev)
1182 {
1183        disable_irq(dev->irq);
1184        fs_enet_interrupt(dev->irq, dev);
1185        enable_irq(dev->irq);
1186 }
1187 #endif
1188
1189 module_platform_driver(fs_enet_driver);