gianfar: Cleanup dead code and minor formatting
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                            struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137                                int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143                                   const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151                             dma_addr_t buf)
152 {
153         u32 lstatus;
154
155         bdp->bufPtr = buf;
156
157         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159                 lstatus |= BD_LFLAG(RXBD_WRAP);
160
161         eieio();
162
163         bdp->lstatus = lstatus;
164 }
165
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168         struct gfar_private *priv = netdev_priv(ndev);
169         struct gfar_priv_tx_q *tx_queue = NULL;
170         struct gfar_priv_rx_q *rx_queue = NULL;
171         struct txbd8 *txbdp;
172         struct rxbd8 *rxbdp;
173         int i, j;
174
175         for (i = 0; i < priv->num_tx_queues; i++) {
176                 tx_queue = priv->tx_queue[i];
177                 /* Initialize some variables in our dev structure */
178                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180                 tx_queue->cur_tx = tx_queue->tx_bd_base;
181                 tx_queue->skb_curtx = 0;
182                 tx_queue->skb_dirtytx = 0;
183
184                 /* Initialize Transmit Descriptor Ring */
185                 txbdp = tx_queue->tx_bd_base;
186                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187                         txbdp->lstatus = 0;
188                         txbdp->bufPtr = 0;
189                         txbdp++;
190                 }
191
192                 /* Set the last descriptor in the ring to indicate wrap */
193                 txbdp--;
194                 txbdp->status |= TXBD_WRAP;
195         }
196
197         for (i = 0; i < priv->num_rx_queues; i++) {
198                 rx_queue = priv->rx_queue[i];
199                 rx_queue->cur_rx = rx_queue->rx_bd_base;
200                 rx_queue->skb_currx = 0;
201                 rxbdp = rx_queue->rx_bd_base;
202
203                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
204                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
205
206                         if (skb) {
207                                 gfar_init_rxbdp(rx_queue, rxbdp,
208                                                 rxbdp->bufPtr);
209                         } else {
210                                 skb = gfar_new_skb(ndev);
211                                 if (!skb) {
212                                         netdev_err(ndev, "Can't allocate RX buffers\n");
213                                         return -ENOMEM;
214                                 }
215                                 rx_queue->rx_skbuff[j] = skb;
216
217                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
218                         }
219
220                         rxbdp++;
221                 }
222
223         }
224
225         return 0;
226 }
227
228 static int gfar_alloc_skb_resources(struct net_device *ndev)
229 {
230         void *vaddr;
231         dma_addr_t addr;
232         int i, j, k;
233         struct gfar_private *priv = netdev_priv(ndev);
234         struct device *dev = priv->dev;
235         struct gfar_priv_tx_q *tx_queue = NULL;
236         struct gfar_priv_rx_q *rx_queue = NULL;
237
238         priv->total_tx_ring_size = 0;
239         for (i = 0; i < priv->num_tx_queues; i++)
240                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
241
242         priv->total_rx_ring_size = 0;
243         for (i = 0; i < priv->num_rx_queues; i++)
244                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
245
246         /* Allocate memory for the buffer descriptors */
247         vaddr = dma_alloc_coherent(dev,
248                                    (priv->total_tx_ring_size *
249                                     sizeof(struct txbd8)) +
250                                    (priv->total_rx_ring_size *
251                                     sizeof(struct rxbd8)),
252                                    &addr, GFP_KERNEL);
253         if (!vaddr)
254                 return -ENOMEM;
255
256         for (i = 0; i < priv->num_tx_queues; i++) {
257                 tx_queue = priv->tx_queue[i];
258                 tx_queue->tx_bd_base = vaddr;
259                 tx_queue->tx_bd_dma_base = addr;
260                 tx_queue->dev = ndev;
261                 /* enet DMA only understands physical addresses */
262                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
263                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264         }
265
266         /* Start the rx descriptor ring where the tx ring leaves off */
267         for (i = 0; i < priv->num_rx_queues; i++) {
268                 rx_queue = priv->rx_queue[i];
269                 rx_queue->rx_bd_base = vaddr;
270                 rx_queue->rx_bd_dma_base = addr;
271                 rx_queue->dev = ndev;
272                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
273                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274         }
275
276         /* Setup the skbuff rings */
277         for (i = 0; i < priv->num_tx_queues; i++) {
278                 tx_queue = priv->tx_queue[i];
279                 tx_queue->tx_skbuff =
280                         kmalloc_array(tx_queue->tx_ring_size,
281                                       sizeof(*tx_queue->tx_skbuff),
282                                       GFP_KERNEL);
283                 if (!tx_queue->tx_skbuff)
284                         goto cleanup;
285
286                 for (k = 0; k < tx_queue->tx_ring_size; k++)
287                         tx_queue->tx_skbuff[k] = NULL;
288         }
289
290         for (i = 0; i < priv->num_rx_queues; i++) {
291                 rx_queue = priv->rx_queue[i];
292                 rx_queue->rx_skbuff =
293                         kmalloc_array(rx_queue->rx_ring_size,
294                                       sizeof(*rx_queue->rx_skbuff),
295                                       GFP_KERNEL);
296                 if (!rx_queue->rx_skbuff)
297                         goto cleanup;
298
299                 for (j = 0; j < rx_queue->rx_ring_size; j++)
300                         rx_queue->rx_skbuff[j] = NULL;
301         }
302
303         if (gfar_init_bds(ndev))
304                 goto cleanup;
305
306         return 0;
307
308 cleanup:
309         free_skb_resources(priv);
310         return -ENOMEM;
311 }
312
313 static void gfar_init_tx_rx_base(struct gfar_private *priv)
314 {
315         struct gfar __iomem *regs = priv->gfargrp[0].regs;
316         u32 __iomem *baddr;
317         int i;
318
319         baddr = &regs->tbase0;
320         for (i = 0; i < priv->num_tx_queues; i++) {
321                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
322                 baddr += 2;
323         }
324
325         baddr = &regs->rbase0;
326         for (i = 0; i < priv->num_rx_queues; i++) {
327                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
328                 baddr += 2;
329         }
330 }
331
332 static void gfar_init_mac(struct net_device *ndev)
333 {
334         struct gfar_private *priv = netdev_priv(ndev);
335         struct gfar __iomem *regs = priv->gfargrp[0].regs;
336         u32 rctrl = 0;
337         u32 tctrl = 0;
338         u32 attrs = 0;
339
340         /* write the tx/rx base registers */
341         gfar_init_tx_rx_base(priv);
342
343         /* Configure the coalescing support */
344         gfar_configure_coalescing_all(priv);
345
346         /* set this when rx hw offload (TOE) functions are being used */
347         priv->uses_rxfcb = 0;
348
349         if (priv->rx_filer_enable) {
350                 rctrl |= RCTRL_FILREN;
351                 /* Program the RIR0 reg with the required distribution */
352                 gfar_write(&regs->rir0, DEFAULT_RIR0);
353         }
354
355         /* Restore PROMISC mode */
356         if (ndev->flags & IFF_PROMISC)
357                 rctrl |= RCTRL_PROM;
358
359         if (ndev->features & NETIF_F_RXCSUM) {
360                 rctrl |= RCTRL_CHECKSUMMING;
361                 priv->uses_rxfcb = 1;
362         }
363
364         if (priv->extended_hash) {
365                 rctrl |= RCTRL_EXTHASH;
366
367                 gfar_clear_exact_match(ndev);
368                 rctrl |= RCTRL_EMEN;
369         }
370
371         if (priv->padding) {
372                 rctrl &= ~RCTRL_PAL_MASK;
373                 rctrl |= RCTRL_PADDING(priv->padding);
374         }
375
376         /* Insert receive time stamps into padding alignment bytes */
377         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
378                 rctrl &= ~RCTRL_PAL_MASK;
379                 rctrl |= RCTRL_PADDING(8);
380                 priv->padding = 8;
381         }
382
383         /* Enable HW time stamping if requested from user space */
384         if (priv->hwts_rx_en) {
385                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
386                 priv->uses_rxfcb = 1;
387         }
388
389         if (ndev->features & NETIF_F_HW_VLAN_RX) {
390                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391                 priv->uses_rxfcb = 1;
392         }
393
394         /* Init rctrl based on our settings */
395         gfar_write(&regs->rctrl, rctrl);
396
397         if (ndev->features & NETIF_F_IP_CSUM)
398                 tctrl |= TCTRL_INIT_CSUM;
399
400         if (priv->prio_sched_en)
401                 tctrl |= TCTRL_TXSCHED_PRIO;
402         else {
403                 tctrl |= TCTRL_TXSCHED_WRRS;
404                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
405                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
406         }
407
408         gfar_write(&regs->tctrl, tctrl);
409
410         /* Set the extraction length and index */
411         attrs = ATTRELI_EL(priv->rx_stash_size) |
412                 ATTRELI_EI(priv->rx_stash_index);
413
414         gfar_write(&regs->attreli, attrs);
415
416         /* Start with defaults, and add stashing or locking
417          * depending on the approprate variables
418          */
419         attrs = ATTR_INIT_SETTINGS;
420
421         if (priv->bd_stash_en)
422                 attrs |= ATTR_BDSTASH;
423
424         if (priv->rx_stash_size != 0)
425                 attrs |= ATTR_BUFSTASH;
426
427         gfar_write(&regs->attr, attrs);
428
429         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
430         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
431         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
432 }
433
434 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
435 {
436         struct gfar_private *priv = netdev_priv(dev);
437         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
438         unsigned long tx_packets = 0, tx_bytes = 0;
439         int i;
440
441         for (i = 0; i < priv->num_rx_queues; i++) {
442                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
443                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
444                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
445         }
446
447         dev->stats.rx_packets = rx_packets;
448         dev->stats.rx_bytes   = rx_bytes;
449         dev->stats.rx_dropped = rx_dropped;
450
451         for (i = 0; i < priv->num_tx_queues; i++) {
452                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
453                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
454         }
455
456         dev->stats.tx_bytes   = tx_bytes;
457         dev->stats.tx_packets = tx_packets;
458
459         return &dev->stats;
460 }
461
462 static const struct net_device_ops gfar_netdev_ops = {
463         .ndo_open = gfar_enet_open,
464         .ndo_start_xmit = gfar_start_xmit,
465         .ndo_stop = gfar_close,
466         .ndo_change_mtu = gfar_change_mtu,
467         .ndo_set_features = gfar_set_features,
468         .ndo_set_rx_mode = gfar_set_multi,
469         .ndo_tx_timeout = gfar_timeout,
470         .ndo_do_ioctl = gfar_ioctl,
471         .ndo_get_stats = gfar_get_stats,
472         .ndo_set_mac_address = eth_mac_addr,
473         .ndo_validate_addr = eth_validate_addr,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475         .ndo_poll_controller = gfar_netpoll,
476 #endif
477 };
478
479 void lock_rx_qs(struct gfar_private *priv)
480 {
481         int i;
482
483         for (i = 0; i < priv->num_rx_queues; i++)
484                 spin_lock(&priv->rx_queue[i]->rxlock);
485 }
486
487 void lock_tx_qs(struct gfar_private *priv)
488 {
489         int i;
490
491         for (i = 0; i < priv->num_tx_queues; i++)
492                 spin_lock(&priv->tx_queue[i]->txlock);
493 }
494
495 void unlock_rx_qs(struct gfar_private *priv)
496 {
497         int i;
498
499         for (i = 0; i < priv->num_rx_queues; i++)
500                 spin_unlock(&priv->rx_queue[i]->rxlock);
501 }
502
503 void unlock_tx_qs(struct gfar_private *priv)
504 {
505         int i;
506
507         for (i = 0; i < priv->num_tx_queues; i++)
508                 spin_unlock(&priv->tx_queue[i]->txlock);
509 }
510
511 static void free_tx_pointers(struct gfar_private *priv)
512 {
513         int i;
514
515         for (i = 0; i < priv->num_tx_queues; i++)
516                 kfree(priv->tx_queue[i]);
517 }
518
519 static void free_rx_pointers(struct gfar_private *priv)
520 {
521         int i;
522
523         for (i = 0; i < priv->num_rx_queues; i++)
524                 kfree(priv->rx_queue[i]);
525 }
526
527 static void unmap_group_regs(struct gfar_private *priv)
528 {
529         int i;
530
531         for (i = 0; i < MAXGROUPS; i++)
532                 if (priv->gfargrp[i].regs)
533                         iounmap(priv->gfargrp[i].regs);
534 }
535
536 static void free_gfar_dev(struct gfar_private *priv)
537 {
538         int i, j;
539
540         for (i = 0; i < priv->num_grps; i++)
541                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
542                         kfree(priv->gfargrp[i].irqinfo[j]);
543                         priv->gfargrp[i].irqinfo[j] = NULL;
544                 }
545
546         free_netdev(priv->ndev);
547 }
548
549 static void disable_napi(struct gfar_private *priv)
550 {
551         int i;
552
553         for (i = 0; i < priv->num_grps; i++)
554                 napi_disable(&priv->gfargrp[i].napi);
555 }
556
557 static void enable_napi(struct gfar_private *priv)
558 {
559         int i;
560
561         for (i = 0; i < priv->num_grps; i++)
562                 napi_enable(&priv->gfargrp[i].napi);
563 }
564
565 static int gfar_parse_group(struct device_node *np,
566                             struct gfar_private *priv, const char *model)
567 {
568         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
569         u32 *queue_mask;
570         int i;
571
572         for (i = 0; i < GFAR_NUM_IRQS; i++) {
573                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
574                                           GFP_KERNEL);
575                 if (!grp->irqinfo[i])
576                         return -ENOMEM;
577         }
578
579         grp->regs = of_iomap(np, 0);
580         if (!grp->regs)
581                 return -ENOMEM;
582
583         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
584
585         /* If we aren't the FEC we have multiple interrupts */
586         if (model && strcasecmp(model, "FEC")) {
587                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
588                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
589                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
590                     gfar_irq(grp, RX)->irq == NO_IRQ ||
591                     gfar_irq(grp, ER)->irq == NO_IRQ)
592                         return -EINVAL;
593         }
594
595         grp->grp_id = priv->num_grps;
596         grp->priv = priv;
597         spin_lock_init(&grp->grplock);
598         if (priv->mode == MQ_MG_MODE) {
599                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
600                 grp->rx_bit_map = queue_mask ?
601                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
602                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
603                 grp->tx_bit_map = queue_mask ?
604                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
605         } else {
606                 grp->rx_bit_map = 0xFF;
607                 grp->tx_bit_map = 0xFF;
608         }
609         priv->num_grps++;
610
611         return 0;
612 }
613
614 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
615 {
616         const char *model;
617         const char *ctype;
618         const void *mac_addr;
619         int err = 0, i;
620         struct net_device *dev = NULL;
621         struct gfar_private *priv = NULL;
622         struct device_node *np = ofdev->dev.of_node;
623         struct device_node *child = NULL;
624         const u32 *stash;
625         const u32 *stash_len;
626         const u32 *stash_idx;
627         unsigned int num_tx_qs, num_rx_qs;
628         u32 *tx_queues, *rx_queues;
629
630         if (!np || !of_device_is_available(np))
631                 return -ENODEV;
632
633         /* parse the num of tx and rx queues */
634         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
635         num_tx_qs = tx_queues ? *tx_queues : 1;
636
637         if (num_tx_qs > MAX_TX_QS) {
638                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
639                        num_tx_qs, MAX_TX_QS);
640                 pr_err("Cannot do alloc_etherdev, aborting\n");
641                 return -EINVAL;
642         }
643
644         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
645         num_rx_qs = rx_queues ? *rx_queues : 1;
646
647         if (num_rx_qs > MAX_RX_QS) {
648                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
649                        num_rx_qs, MAX_RX_QS);
650                 pr_err("Cannot do alloc_etherdev, aborting\n");
651                 return -EINVAL;
652         }
653
654         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
655         dev = *pdev;
656         if (NULL == dev)
657                 return -ENOMEM;
658
659         priv = netdev_priv(dev);
660         priv->ndev = dev;
661
662         priv->num_tx_queues = num_tx_qs;
663         netif_set_real_num_rx_queues(dev, num_rx_qs);
664         priv->num_rx_queues = num_rx_qs;
665         priv->num_grps = 0x0;
666
667         /* Init Rx queue filer rule set linked list */
668         INIT_LIST_HEAD(&priv->rx_list.list);
669         priv->rx_list.count = 0;
670         mutex_init(&priv->rx_queue_access);
671
672         model = of_get_property(np, "model", NULL);
673
674         for (i = 0; i < MAXGROUPS; i++)
675                 priv->gfargrp[i].regs = NULL;
676
677         /* Parse and initialize group specific information */
678         if (of_device_is_compatible(np, "fsl,etsec2")) {
679                 priv->mode = MQ_MG_MODE;
680                 for_each_child_of_node(np, child) {
681                         err = gfar_parse_group(child, priv, model);
682                         if (err)
683                                 goto err_grp_init;
684                 }
685         } else {
686                 priv->mode = SQ_SG_MODE;
687                 err = gfar_parse_group(np, priv, model);
688                 if (err)
689                         goto err_grp_init;
690         }
691
692         for (i = 0; i < priv->num_tx_queues; i++)
693                 priv->tx_queue[i] = NULL;
694         for (i = 0; i < priv->num_rx_queues; i++)
695                 priv->rx_queue[i] = NULL;
696
697         for (i = 0; i < priv->num_tx_queues; i++) {
698                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
699                                             GFP_KERNEL);
700                 if (!priv->tx_queue[i]) {
701                         err = -ENOMEM;
702                         goto tx_alloc_failed;
703                 }
704                 priv->tx_queue[i]->tx_skbuff = NULL;
705                 priv->tx_queue[i]->qindex = i;
706                 priv->tx_queue[i]->dev = dev;
707                 spin_lock_init(&(priv->tx_queue[i]->txlock));
708         }
709
710         for (i = 0; i < priv->num_rx_queues; i++) {
711                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
712                                             GFP_KERNEL);
713                 if (!priv->rx_queue[i]) {
714                         err = -ENOMEM;
715                         goto rx_alloc_failed;
716                 }
717                 priv->rx_queue[i]->rx_skbuff = NULL;
718                 priv->rx_queue[i]->qindex = i;
719                 priv->rx_queue[i]->dev = dev;
720                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
721         }
722
723
724         stash = of_get_property(np, "bd-stash", NULL);
725
726         if (stash) {
727                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
728                 priv->bd_stash_en = 1;
729         }
730
731         stash_len = of_get_property(np, "rx-stash-len", NULL);
732
733         if (stash_len)
734                 priv->rx_stash_size = *stash_len;
735
736         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
737
738         if (stash_idx)
739                 priv->rx_stash_index = *stash_idx;
740
741         if (stash_len || stash_idx)
742                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
743
744         mac_addr = of_get_mac_address(np);
745
746         if (mac_addr)
747                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
748
749         if (model && !strcasecmp(model, "TSEC"))
750                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
751                                      FSL_GIANFAR_DEV_HAS_COALESCE |
752                                      FSL_GIANFAR_DEV_HAS_RMON |
753                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
754
755         if (model && !strcasecmp(model, "eTSEC"))
756                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
757                                      FSL_GIANFAR_DEV_HAS_COALESCE |
758                                      FSL_GIANFAR_DEV_HAS_RMON |
759                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
760                                      FSL_GIANFAR_DEV_HAS_PADDING |
761                                      FSL_GIANFAR_DEV_HAS_CSUM |
762                                      FSL_GIANFAR_DEV_HAS_VLAN |
763                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
764                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
765                                      FSL_GIANFAR_DEV_HAS_TIMER;
766
767         ctype = of_get_property(np, "phy-connection-type", NULL);
768
769         /* We only care about rgmii-id.  The rest are autodetected */
770         if (ctype && !strcmp(ctype, "rgmii-id"))
771                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
772         else
773                 priv->interface = PHY_INTERFACE_MODE_MII;
774
775         if (of_get_property(np, "fsl,magic-packet", NULL))
776                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
777
778         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
779
780         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
781         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
782
783         return 0;
784
785 rx_alloc_failed:
786         free_rx_pointers(priv);
787 tx_alloc_failed:
788         free_tx_pointers(priv);
789 err_grp_init:
790         unmap_group_regs(priv);
791         free_gfar_dev(priv);
792         return err;
793 }
794
795 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
796                                struct ifreq *ifr, int cmd)
797 {
798         struct hwtstamp_config config;
799         struct gfar_private *priv = netdev_priv(netdev);
800
801         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
802                 return -EFAULT;
803
804         /* reserved for future extensions */
805         if (config.flags)
806                 return -EINVAL;
807
808         switch (config.tx_type) {
809         case HWTSTAMP_TX_OFF:
810                 priv->hwts_tx_en = 0;
811                 break;
812         case HWTSTAMP_TX_ON:
813                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
814                         return -ERANGE;
815                 priv->hwts_tx_en = 1;
816                 break;
817         default:
818                 return -ERANGE;
819         }
820
821         switch (config.rx_filter) {
822         case HWTSTAMP_FILTER_NONE:
823                 if (priv->hwts_rx_en) {
824                         stop_gfar(netdev);
825                         priv->hwts_rx_en = 0;
826                         startup_gfar(netdev);
827                 }
828                 break;
829         default:
830                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
831                         return -ERANGE;
832                 if (!priv->hwts_rx_en) {
833                         stop_gfar(netdev);
834                         priv->hwts_rx_en = 1;
835                         startup_gfar(netdev);
836                 }
837                 config.rx_filter = HWTSTAMP_FILTER_ALL;
838                 break;
839         }
840
841         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
842                 -EFAULT : 0;
843 }
844
845 /* Ioctl MII Interface */
846 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
847 {
848         struct gfar_private *priv = netdev_priv(dev);
849
850         if (!netif_running(dev))
851                 return -EINVAL;
852
853         if (cmd == SIOCSHWTSTAMP)
854                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
855
856         if (!priv->phydev)
857                 return -ENODEV;
858
859         return phy_mii_ioctl(priv->phydev, rq, cmd);
860 }
861
862 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
863 {
864         unsigned int new_bit_map = 0x0;
865         int mask = 0x1 << (max_qs - 1), i;
866
867         for (i = 0; i < max_qs; i++) {
868                 if (bit_map & mask)
869                         new_bit_map = new_bit_map + (1 << i);
870                 mask = mask >> 0x1;
871         }
872         return new_bit_map;
873 }
874
875 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
876                                    u32 class)
877 {
878         u32 rqfpr = FPR_FILER_MASK;
879         u32 rqfcr = 0x0;
880
881         rqfar--;
882         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
883         priv->ftp_rqfpr[rqfar] = rqfpr;
884         priv->ftp_rqfcr[rqfar] = rqfcr;
885         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886
887         rqfar--;
888         rqfcr = RQFCR_CMP_NOMATCH;
889         priv->ftp_rqfpr[rqfar] = rqfpr;
890         priv->ftp_rqfcr[rqfar] = rqfcr;
891         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892
893         rqfar--;
894         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
895         rqfpr = class;
896         priv->ftp_rqfcr[rqfar] = rqfcr;
897         priv->ftp_rqfpr[rqfar] = rqfpr;
898         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899
900         rqfar--;
901         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
902         rqfpr = class;
903         priv->ftp_rqfcr[rqfar] = rqfcr;
904         priv->ftp_rqfpr[rqfar] = rqfpr;
905         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
906
907         return rqfar;
908 }
909
910 static void gfar_init_filer_table(struct gfar_private *priv)
911 {
912         int i = 0x0;
913         u32 rqfar = MAX_FILER_IDX;
914         u32 rqfcr = 0x0;
915         u32 rqfpr = FPR_FILER_MASK;
916
917         /* Default rule */
918         rqfcr = RQFCR_CMP_MATCH;
919         priv->ftp_rqfcr[rqfar] = rqfcr;
920         priv->ftp_rqfpr[rqfar] = rqfpr;
921         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
922
923         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
924         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
925         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
926         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
927         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
928         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
929
930         /* cur_filer_idx indicated the first non-masked rule */
931         priv->cur_filer_idx = rqfar;
932
933         /* Rest are masked rules */
934         rqfcr = RQFCR_CMP_NOMATCH;
935         for (i = 0; i < rqfar; i++) {
936                 priv->ftp_rqfcr[i] = rqfcr;
937                 priv->ftp_rqfpr[i] = rqfpr;
938                 gfar_write_filer(priv, i, rqfcr, rqfpr);
939         }
940 }
941
942 static void gfar_detect_errata(struct gfar_private *priv)
943 {
944         struct device *dev = &priv->ofdev->dev;
945         unsigned int pvr = mfspr(SPRN_PVR);
946         unsigned int svr = mfspr(SPRN_SVR);
947         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
948         unsigned int rev = svr & 0xffff;
949
950         /* MPC8313 Rev 2.0 and higher; All MPC837x */
951         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
952             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953                 priv->errata |= GFAR_ERRATA_74;
954
955         /* MPC8313 and MPC837x all rev */
956         if ((pvr == 0x80850010 && mod == 0x80b0) ||
957             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
958                 priv->errata |= GFAR_ERRATA_76;
959
960         /* MPC8313 and MPC837x all rev */
961         if ((pvr == 0x80850010 && mod == 0x80b0) ||
962             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
963                 priv->errata |= GFAR_ERRATA_A002;
964
965         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
966         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
967             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
968                 priv->errata |= GFAR_ERRATA_12;
969
970         if (priv->errata)
971                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
972                          priv->errata);
973 }
974
975 /* Set up the ethernet device structure, private data,
976  * and anything else we need before we start
977  */
978 static int gfar_probe(struct platform_device *ofdev)
979 {
980         u32 tempval;
981         struct net_device *dev = NULL;
982         struct gfar_private *priv = NULL;
983         struct gfar __iomem *regs = NULL;
984         int err = 0, i, grp_idx = 0;
985         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
986         u32 isrg = 0;
987         u32 __iomem *baddr;
988
989         err = gfar_of_init(ofdev, &dev);
990
991         if (err)
992                 return err;
993
994         priv = netdev_priv(dev);
995         priv->ndev = dev;
996         priv->ofdev = ofdev;
997         priv->dev = &ofdev->dev;
998         SET_NETDEV_DEV(dev, &ofdev->dev);
999
1000         spin_lock_init(&priv->bflock);
1001         INIT_WORK(&priv->reset_task, gfar_reset_task);
1002
1003         dev_set_drvdata(&ofdev->dev, priv);
1004         regs = priv->gfargrp[0].regs;
1005
1006         gfar_detect_errata(priv);
1007
1008         /* Stop the DMA engine now, in case it was running before
1009          * (The firmware could have used it, and left it running).
1010          */
1011         gfar_halt(dev);
1012
1013         /* Reset MAC layer */
1014         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1015
1016         /* We need to delay at least 3 TX clocks */
1017         udelay(2);
1018
1019         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1020         gfar_write(&regs->maccfg1, tempval);
1021
1022         /* Initialize MACCFG2. */
1023         tempval = MACCFG2_INIT_SETTINGS;
1024         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1025                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1026         gfar_write(&regs->maccfg2, tempval);
1027
1028         /* Initialize ECNTRL */
1029         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1030
1031         /* Set the dev->base_addr to the gfar reg region */
1032         dev->base_addr = (unsigned long) regs;
1033
1034         /* Fill in the dev structure */
1035         dev->watchdog_timeo = TX_TIMEOUT;
1036         dev->mtu = 1500;
1037         dev->netdev_ops = &gfar_netdev_ops;
1038         dev->ethtool_ops = &gfar_ethtool_ops;
1039
1040         /* Register for napi ...We are registering NAPI for each grp */
1041         for (i = 0; i < priv->num_grps; i++)
1042                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1043                                GFAR_DEV_WEIGHT);
1044
1045         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1046                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1047                                    NETIF_F_RXCSUM;
1048                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1049                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1050         }
1051
1052         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1053                 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1054                 dev->features |= NETIF_F_HW_VLAN_RX;
1055         }
1056
1057         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1058                 priv->extended_hash = 1;
1059                 priv->hash_width = 9;
1060
1061                 priv->hash_regs[0] = &regs->igaddr0;
1062                 priv->hash_regs[1] = &regs->igaddr1;
1063                 priv->hash_regs[2] = &regs->igaddr2;
1064                 priv->hash_regs[3] = &regs->igaddr3;
1065                 priv->hash_regs[4] = &regs->igaddr4;
1066                 priv->hash_regs[5] = &regs->igaddr5;
1067                 priv->hash_regs[6] = &regs->igaddr6;
1068                 priv->hash_regs[7] = &regs->igaddr7;
1069                 priv->hash_regs[8] = &regs->gaddr0;
1070                 priv->hash_regs[9] = &regs->gaddr1;
1071                 priv->hash_regs[10] = &regs->gaddr2;
1072                 priv->hash_regs[11] = &regs->gaddr3;
1073                 priv->hash_regs[12] = &regs->gaddr4;
1074                 priv->hash_regs[13] = &regs->gaddr5;
1075                 priv->hash_regs[14] = &regs->gaddr6;
1076                 priv->hash_regs[15] = &regs->gaddr7;
1077
1078         } else {
1079                 priv->extended_hash = 0;
1080                 priv->hash_width = 8;
1081
1082                 priv->hash_regs[0] = &regs->gaddr0;
1083                 priv->hash_regs[1] = &regs->gaddr1;
1084                 priv->hash_regs[2] = &regs->gaddr2;
1085                 priv->hash_regs[3] = &regs->gaddr3;
1086                 priv->hash_regs[4] = &regs->gaddr4;
1087                 priv->hash_regs[5] = &regs->gaddr5;
1088                 priv->hash_regs[6] = &regs->gaddr6;
1089                 priv->hash_regs[7] = &regs->gaddr7;
1090         }
1091
1092         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1093                 priv->padding = DEFAULT_PADDING;
1094         else
1095                 priv->padding = 0;
1096
1097         if (dev->features & NETIF_F_IP_CSUM ||
1098             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1099                 dev->needed_headroom = GMAC_FCB_LEN;
1100
1101         /* Program the isrg regs only if number of grps > 1 */
1102         if (priv->num_grps > 1) {
1103                 baddr = &regs->isrg0;
1104                 for (i = 0; i < priv->num_grps; i++) {
1105                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1106                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1107                         gfar_write(baddr, isrg);
1108                         baddr++;
1109                         isrg = 0x0;
1110                 }
1111         }
1112
1113         /* Need to reverse the bit maps as  bit_map's MSB is q0
1114          * but, for_each_set_bit parses from right to left, which
1115          * basically reverses the queue numbers
1116          */
1117         for (i = 0; i< priv->num_grps; i++) {
1118                 priv->gfargrp[i].tx_bit_map =
1119                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1120                 priv->gfargrp[i].rx_bit_map =
1121                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1122         }
1123
1124         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1125          * also assign queues to groups
1126          */
1127         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1128                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1129
1130                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1131                                  priv->num_rx_queues) {
1132                         priv->gfargrp[grp_idx].num_rx_queues++;
1133                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1134                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1135                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1136                 }
1137                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1138
1139                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1140                                  priv->num_tx_queues) {
1141                         priv->gfargrp[grp_idx].num_tx_queues++;
1142                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1143                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1144                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1145                 }
1146                 priv->gfargrp[grp_idx].rstat = rstat;
1147                 priv->gfargrp[grp_idx].tstat = tstat;
1148                 rstat = tstat =0;
1149         }
1150
1151         gfar_write(&regs->rqueue, rqueue);
1152         gfar_write(&regs->tqueue, tqueue);
1153
1154         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1155
1156         /* Initializing some of the rx/tx queue level parameters */
1157         for (i = 0; i < priv->num_tx_queues; i++) {
1158                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1159                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1160                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1161                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1162         }
1163
1164         for (i = 0; i < priv->num_rx_queues; i++) {
1165                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1166                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1167                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1168         }
1169
1170         /* always enable rx filer */
1171         priv->rx_filer_enable = 1;
1172         /* Enable most messages by default */
1173         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1174         /* use pritority h/w tx queue scheduling for single queue devices */
1175         if (priv->num_tx_queues == 1)
1176                 priv->prio_sched_en = 1;
1177
1178         /* Carrier starts down, phylib will bring it up */
1179         netif_carrier_off(dev);
1180
1181         err = register_netdev(dev);
1182
1183         if (err) {
1184                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1185                 goto register_fail;
1186         }
1187
1188         device_init_wakeup(&dev->dev,
1189                            priv->device_flags &
1190                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1191
1192         /* fill out IRQ number and name fields */
1193         for (i = 0; i < priv->num_grps; i++) {
1194                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1195                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1196                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1197                                 dev->name, "_g", '0' + i, "_tx");
1198                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1199                                 dev->name, "_g", '0' + i, "_rx");
1200                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1201                                 dev->name, "_g", '0' + i, "_er");
1202                 } else
1203                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1204         }
1205
1206         /* Initialize the filer table */
1207         gfar_init_filer_table(priv);
1208
1209         /* Create all the sysfs files */
1210         gfar_init_sysfs(dev);
1211
1212         /* Print out the device info */
1213         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1214
1215         /* Even more device info helps when determining which kernel
1216          * provided which set of benchmarks.
1217          */
1218         netdev_info(dev, "Running with NAPI enabled\n");
1219         for (i = 0; i < priv->num_rx_queues; i++)
1220                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1221                             i, priv->rx_queue[i]->rx_ring_size);
1222         for (i = 0; i < priv->num_tx_queues; i++)
1223                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1224                             i, priv->tx_queue[i]->tx_ring_size);
1225
1226         return 0;
1227
1228 register_fail:
1229         unmap_group_regs(priv);
1230         free_tx_pointers(priv);
1231         free_rx_pointers(priv);
1232         if (priv->phy_node)
1233                 of_node_put(priv->phy_node);
1234         if (priv->tbi_node)
1235                 of_node_put(priv->tbi_node);
1236         free_gfar_dev(priv);
1237         return err;
1238 }
1239
1240 static int gfar_remove(struct platform_device *ofdev)
1241 {
1242         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1243
1244         if (priv->phy_node)
1245                 of_node_put(priv->phy_node);
1246         if (priv->tbi_node)
1247                 of_node_put(priv->tbi_node);
1248
1249         dev_set_drvdata(&ofdev->dev, NULL);
1250
1251         unregister_netdev(priv->ndev);
1252         unmap_group_regs(priv);
1253         free_gfar_dev(priv);
1254
1255         return 0;
1256 }
1257
1258 #ifdef CONFIG_PM
1259
1260 static int gfar_suspend(struct device *dev)
1261 {
1262         struct gfar_private *priv = dev_get_drvdata(dev);
1263         struct net_device *ndev = priv->ndev;
1264         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1265         unsigned long flags;
1266         u32 tempval;
1267
1268         int magic_packet = priv->wol_en &&
1269                            (priv->device_flags &
1270                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1271
1272         netif_device_detach(ndev);
1273
1274         if (netif_running(ndev)) {
1275
1276                 local_irq_save(flags);
1277                 lock_tx_qs(priv);
1278                 lock_rx_qs(priv);
1279
1280                 gfar_halt_nodisable(ndev);
1281
1282                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1283                 tempval = gfar_read(&regs->maccfg1);
1284
1285                 tempval &= ~MACCFG1_TX_EN;
1286
1287                 if (!magic_packet)
1288                         tempval &= ~MACCFG1_RX_EN;
1289
1290                 gfar_write(&regs->maccfg1, tempval);
1291
1292                 unlock_rx_qs(priv);
1293                 unlock_tx_qs(priv);
1294                 local_irq_restore(flags);
1295
1296                 disable_napi(priv);
1297
1298                 if (magic_packet) {
1299                         /* Enable interrupt on Magic Packet */
1300                         gfar_write(&regs->imask, IMASK_MAG);
1301
1302                         /* Enable Magic Packet mode */
1303                         tempval = gfar_read(&regs->maccfg2);
1304                         tempval |= MACCFG2_MPEN;
1305                         gfar_write(&regs->maccfg2, tempval);
1306                 } else {
1307                         phy_stop(priv->phydev);
1308                 }
1309         }
1310
1311         return 0;
1312 }
1313
1314 static int gfar_resume(struct device *dev)
1315 {
1316         struct gfar_private *priv = dev_get_drvdata(dev);
1317         struct net_device *ndev = priv->ndev;
1318         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1319         unsigned long flags;
1320         u32 tempval;
1321         int magic_packet = priv->wol_en &&
1322                            (priv->device_flags &
1323                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1324
1325         if (!netif_running(ndev)) {
1326                 netif_device_attach(ndev);
1327                 return 0;
1328         }
1329
1330         if (!magic_packet && priv->phydev)
1331                 phy_start(priv->phydev);
1332
1333         /* Disable Magic Packet mode, in case something
1334          * else woke us up.
1335          */
1336         local_irq_save(flags);
1337         lock_tx_qs(priv);
1338         lock_rx_qs(priv);
1339
1340         tempval = gfar_read(&regs->maccfg2);
1341         tempval &= ~MACCFG2_MPEN;
1342         gfar_write(&regs->maccfg2, tempval);
1343
1344         gfar_start(ndev);
1345
1346         unlock_rx_qs(priv);
1347         unlock_tx_qs(priv);
1348         local_irq_restore(flags);
1349
1350         netif_device_attach(ndev);
1351
1352         enable_napi(priv);
1353
1354         return 0;
1355 }
1356
1357 static int gfar_restore(struct device *dev)
1358 {
1359         struct gfar_private *priv = dev_get_drvdata(dev);
1360         struct net_device *ndev = priv->ndev;
1361
1362         if (!netif_running(ndev)) {
1363                 netif_device_attach(ndev);
1364
1365                 return 0;
1366         }
1367
1368         if (gfar_init_bds(ndev)) {
1369                 free_skb_resources(priv);
1370                 return -ENOMEM;
1371         }
1372
1373         init_registers(ndev);
1374         gfar_set_mac_address(ndev);
1375         gfar_init_mac(ndev);
1376         gfar_start(ndev);
1377
1378         priv->oldlink = 0;
1379         priv->oldspeed = 0;
1380         priv->oldduplex = -1;
1381
1382         if (priv->phydev)
1383                 phy_start(priv->phydev);
1384
1385         netif_device_attach(ndev);
1386         enable_napi(priv);
1387
1388         return 0;
1389 }
1390
1391 static struct dev_pm_ops gfar_pm_ops = {
1392         .suspend = gfar_suspend,
1393         .resume = gfar_resume,
1394         .freeze = gfar_suspend,
1395         .thaw = gfar_resume,
1396         .restore = gfar_restore,
1397 };
1398
1399 #define GFAR_PM_OPS (&gfar_pm_ops)
1400
1401 #else
1402
1403 #define GFAR_PM_OPS NULL
1404
1405 #endif
1406
1407 /* Reads the controller's registers to determine what interface
1408  * connects it to the PHY.
1409  */
1410 static phy_interface_t gfar_get_interface(struct net_device *dev)
1411 {
1412         struct gfar_private *priv = netdev_priv(dev);
1413         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1414         u32 ecntrl;
1415
1416         ecntrl = gfar_read(&regs->ecntrl);
1417
1418         if (ecntrl & ECNTRL_SGMII_MODE)
1419                 return PHY_INTERFACE_MODE_SGMII;
1420
1421         if (ecntrl & ECNTRL_TBI_MODE) {
1422                 if (ecntrl & ECNTRL_REDUCED_MODE)
1423                         return PHY_INTERFACE_MODE_RTBI;
1424                 else
1425                         return PHY_INTERFACE_MODE_TBI;
1426         }
1427
1428         if (ecntrl & ECNTRL_REDUCED_MODE) {
1429                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1430                         return PHY_INTERFACE_MODE_RMII;
1431                 }
1432                 else {
1433                         phy_interface_t interface = priv->interface;
1434
1435                         /* This isn't autodetected right now, so it must
1436                          * be set by the device tree or platform code.
1437                          */
1438                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1439                                 return PHY_INTERFACE_MODE_RGMII_ID;
1440
1441                         return PHY_INTERFACE_MODE_RGMII;
1442                 }
1443         }
1444
1445         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1446                 return PHY_INTERFACE_MODE_GMII;
1447
1448         return PHY_INTERFACE_MODE_MII;
1449 }
1450
1451
1452 /* Initializes driver's PHY state, and attaches to the PHY.
1453  * Returns 0 on success.
1454  */
1455 static int init_phy(struct net_device *dev)
1456 {
1457         struct gfar_private *priv = netdev_priv(dev);
1458         uint gigabit_support =
1459                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1460                 SUPPORTED_1000baseT_Full : 0;
1461         phy_interface_t interface;
1462
1463         priv->oldlink = 0;
1464         priv->oldspeed = 0;
1465         priv->oldduplex = -1;
1466
1467         interface = gfar_get_interface(dev);
1468
1469         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1470                                       interface);
1471         if (!priv->phydev)
1472                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1473                                                          interface);
1474         if (!priv->phydev) {
1475                 dev_err(&dev->dev, "could not attach to PHY\n");
1476                 return -ENODEV;
1477         }
1478
1479         if (interface == PHY_INTERFACE_MODE_SGMII)
1480                 gfar_configure_serdes(dev);
1481
1482         /* Remove any features not supported by the controller */
1483         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1484         priv->phydev->advertising = priv->phydev->supported;
1485
1486         return 0;
1487 }
1488
1489 /* Initialize TBI PHY interface for communicating with the
1490  * SERDES lynx PHY on the chip.  We communicate with this PHY
1491  * through the MDIO bus on each controller, treating it as a
1492  * "normal" PHY at the address found in the TBIPA register.  We assume
1493  * that the TBIPA register is valid.  Either the MDIO bus code will set
1494  * it to a value that doesn't conflict with other PHYs on the bus, or the
1495  * value doesn't matter, as there are no other PHYs on the bus.
1496  */
1497 static void gfar_configure_serdes(struct net_device *dev)
1498 {
1499         struct gfar_private *priv = netdev_priv(dev);
1500         struct phy_device *tbiphy;
1501
1502         if (!priv->tbi_node) {
1503                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1504                                     "device tree specify a tbi-handle\n");
1505                 return;
1506         }
1507
1508         tbiphy = of_phy_find_device(priv->tbi_node);
1509         if (!tbiphy) {
1510                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1511                 return;
1512         }
1513
1514         /* If the link is already up, we must already be ok, and don't need to
1515          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1516          * everything for us?  Resetting it takes the link down and requires
1517          * several seconds for it to come back.
1518          */
1519         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1520                 return;
1521
1522         /* Single clk mode, mii mode off(for serdes communication) */
1523         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1524
1525         phy_write(tbiphy, MII_ADVERTISE,
1526                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1527                   ADVERTISE_1000XPSE_ASYM);
1528
1529         phy_write(tbiphy, MII_BMCR,
1530                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1531                   BMCR_SPEED1000);
1532 }
1533
1534 static void init_registers(struct net_device *dev)
1535 {
1536         struct gfar_private *priv = netdev_priv(dev);
1537         struct gfar __iomem *regs = NULL;
1538         int i;
1539
1540         for (i = 0; i < priv->num_grps; i++) {
1541                 regs = priv->gfargrp[i].regs;
1542                 /* Clear IEVENT */
1543                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1544
1545                 /* Initialize IMASK */
1546                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1547         }
1548
1549         regs = priv->gfargrp[0].regs;
1550         /* Init hash registers to zero */
1551         gfar_write(&regs->igaddr0, 0);
1552         gfar_write(&regs->igaddr1, 0);
1553         gfar_write(&regs->igaddr2, 0);
1554         gfar_write(&regs->igaddr3, 0);
1555         gfar_write(&regs->igaddr4, 0);
1556         gfar_write(&regs->igaddr5, 0);
1557         gfar_write(&regs->igaddr6, 0);
1558         gfar_write(&regs->igaddr7, 0);
1559
1560         gfar_write(&regs->gaddr0, 0);
1561         gfar_write(&regs->gaddr1, 0);
1562         gfar_write(&regs->gaddr2, 0);
1563         gfar_write(&regs->gaddr3, 0);
1564         gfar_write(&regs->gaddr4, 0);
1565         gfar_write(&regs->gaddr5, 0);
1566         gfar_write(&regs->gaddr6, 0);
1567         gfar_write(&regs->gaddr7, 0);
1568
1569         /* Zero out the rmon mib registers if it has them */
1570         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1571                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1572
1573                 /* Mask off the CAM interrupts */
1574                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1575                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1576         }
1577
1578         /* Initialize the max receive buffer length */
1579         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1580
1581         /* Initialize the Minimum Frame Length Register */
1582         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1583 }
1584
1585 static int __gfar_is_rx_idle(struct gfar_private *priv)
1586 {
1587         u32 res;
1588
1589         /* Normaly TSEC should not hang on GRS commands, so we should
1590          * actually wait for IEVENT_GRSC flag.
1591          */
1592         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1593                 return 0;
1594
1595         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1596          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1597          * and the Rx can be safely reset.
1598          */
1599         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1600         res &= 0x7f807f80;
1601         if ((res & 0xffff) == (res >> 16))
1602                 return 1;
1603
1604         return 0;
1605 }
1606
1607 /* Halt the receive and transmit queues */
1608 static void gfar_halt_nodisable(struct net_device *dev)
1609 {
1610         struct gfar_private *priv = netdev_priv(dev);
1611         struct gfar __iomem *regs = NULL;
1612         u32 tempval;
1613         int i;
1614
1615         for (i = 0; i < priv->num_grps; i++) {
1616                 regs = priv->gfargrp[i].regs;
1617                 /* Mask all interrupts */
1618                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1619
1620                 /* Clear all interrupts */
1621                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1622         }
1623
1624         regs = priv->gfargrp[0].regs;
1625         /* Stop the DMA, and wait for it to stop */
1626         tempval = gfar_read(&regs->dmactrl);
1627         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1628             (DMACTRL_GRS | DMACTRL_GTS)) {
1629                 int ret;
1630
1631                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1632                 gfar_write(&regs->dmactrl, tempval);
1633
1634                 do {
1635                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1636                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1637                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1638                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1639                                 ret = __gfar_is_rx_idle(priv);
1640                 } while (!ret);
1641         }
1642 }
1643
1644 /* Halt the receive and transmit queues */
1645 void gfar_halt(struct net_device *dev)
1646 {
1647         struct gfar_private *priv = netdev_priv(dev);
1648         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1649         u32 tempval;
1650
1651         gfar_halt_nodisable(dev);
1652
1653         /* Disable Rx and Tx */
1654         tempval = gfar_read(&regs->maccfg1);
1655         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1656         gfar_write(&regs->maccfg1, tempval);
1657 }
1658
1659 static void free_grp_irqs(struct gfar_priv_grp *grp)
1660 {
1661         free_irq(gfar_irq(grp, TX)->irq, grp);
1662         free_irq(gfar_irq(grp, RX)->irq, grp);
1663         free_irq(gfar_irq(grp, ER)->irq, grp);
1664 }
1665
1666 void stop_gfar(struct net_device *dev)
1667 {
1668         struct gfar_private *priv = netdev_priv(dev);
1669         unsigned long flags;
1670         int i;
1671
1672         phy_stop(priv->phydev);
1673
1674
1675         /* Lock it down */
1676         local_irq_save(flags);
1677         lock_tx_qs(priv);
1678         lock_rx_qs(priv);
1679
1680         gfar_halt(dev);
1681
1682         unlock_rx_qs(priv);
1683         unlock_tx_qs(priv);
1684         local_irq_restore(flags);
1685
1686         /* Free the IRQs */
1687         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1688                 for (i = 0; i < priv->num_grps; i++)
1689                         free_grp_irqs(&priv->gfargrp[i]);
1690         } else {
1691                 for (i = 0; i < priv->num_grps; i++)
1692                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1693                                  &priv->gfargrp[i]);
1694         }
1695
1696         free_skb_resources(priv);
1697 }
1698
1699 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1700 {
1701         struct txbd8 *txbdp;
1702         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1703         int i, j;
1704
1705         txbdp = tx_queue->tx_bd_base;
1706
1707         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1708                 if (!tx_queue->tx_skbuff[i])
1709                         continue;
1710
1711                 dma_unmap_single(priv->dev, txbdp->bufPtr,
1712                                  txbdp->length, DMA_TO_DEVICE);
1713                 txbdp->lstatus = 0;
1714                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1715                      j++) {
1716                         txbdp++;
1717                         dma_unmap_page(priv->dev, txbdp->bufPtr,
1718                                        txbdp->length, DMA_TO_DEVICE);
1719                 }
1720                 txbdp++;
1721                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1722                 tx_queue->tx_skbuff[i] = NULL;
1723         }
1724         kfree(tx_queue->tx_skbuff);
1725         tx_queue->tx_skbuff = NULL;
1726 }
1727
1728 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1729 {
1730         struct rxbd8 *rxbdp;
1731         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1732         int i;
1733
1734         rxbdp = rx_queue->rx_bd_base;
1735
1736         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1737                 if (rx_queue->rx_skbuff[i]) {
1738                         dma_unmap_single(priv->dev, rxbdp->bufPtr,
1739                                          priv->rx_buffer_size,
1740                                          DMA_FROM_DEVICE);
1741                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1742                         rx_queue->rx_skbuff[i] = NULL;
1743                 }
1744                 rxbdp->lstatus = 0;
1745                 rxbdp->bufPtr = 0;
1746                 rxbdp++;
1747         }
1748         kfree(rx_queue->rx_skbuff);
1749         rx_queue->rx_skbuff = NULL;
1750 }
1751
1752 /* If there are any tx skbs or rx skbs still around, free them.
1753  * Then free tx_skbuff and rx_skbuff
1754  */
1755 static void free_skb_resources(struct gfar_private *priv)
1756 {
1757         struct gfar_priv_tx_q *tx_queue = NULL;
1758         struct gfar_priv_rx_q *rx_queue = NULL;
1759         int i;
1760
1761         /* Go through all the buffer descriptors and free their data buffers */
1762         for (i = 0; i < priv->num_tx_queues; i++) {
1763                 struct netdev_queue *txq;
1764
1765                 tx_queue = priv->tx_queue[i];
1766                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1767                 if (tx_queue->tx_skbuff)
1768                         free_skb_tx_queue(tx_queue);
1769                 netdev_tx_reset_queue(txq);
1770         }
1771
1772         for (i = 0; i < priv->num_rx_queues; i++) {
1773                 rx_queue = priv->rx_queue[i];
1774                 if (rx_queue->rx_skbuff)
1775                         free_skb_rx_queue(rx_queue);
1776         }
1777
1778         dma_free_coherent(priv->dev,
1779                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1780                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1781                           priv->tx_queue[0]->tx_bd_base,
1782                           priv->tx_queue[0]->tx_bd_dma_base);
1783 }
1784
1785 void gfar_start(struct net_device *dev)
1786 {
1787         struct gfar_private *priv = netdev_priv(dev);
1788         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1789         u32 tempval;
1790         int i = 0;
1791
1792         /* Enable Rx and Tx in MACCFG1 */
1793         tempval = gfar_read(&regs->maccfg1);
1794         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1795         gfar_write(&regs->maccfg1, tempval);
1796
1797         /* Initialize DMACTRL to have WWR and WOP */
1798         tempval = gfar_read(&regs->dmactrl);
1799         tempval |= DMACTRL_INIT_SETTINGS;
1800         gfar_write(&regs->dmactrl, tempval);
1801
1802         /* Make sure we aren't stopped */
1803         tempval = gfar_read(&regs->dmactrl);
1804         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1805         gfar_write(&regs->dmactrl, tempval);
1806
1807         for (i = 0; i < priv->num_grps; i++) {
1808                 regs = priv->gfargrp[i].regs;
1809                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1810                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1811                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1812                 /* Unmask the interrupts we look for */
1813                 gfar_write(&regs->imask, IMASK_DEFAULT);
1814         }
1815
1816         dev->trans_start = jiffies; /* prevent tx timeout */
1817 }
1818
1819 static void gfar_configure_coalescing(struct gfar_private *priv,
1820                                unsigned long tx_mask, unsigned long rx_mask)
1821 {
1822         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1823         u32 __iomem *baddr;
1824
1825         if (priv->mode == MQ_MG_MODE) {
1826                 int i = 0;
1827
1828                 baddr = &regs->txic0;
1829                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1830                         gfar_write(baddr + i, 0);
1831                         if (likely(priv->tx_queue[i]->txcoalescing))
1832                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1833                 }
1834
1835                 baddr = &regs->rxic0;
1836                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1837                         gfar_write(baddr + i, 0);
1838                         if (likely(priv->rx_queue[i]->rxcoalescing))
1839                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1840                 }
1841         } else {
1842                 /* Backward compatible case -- even if we enable
1843                  * multiple queues, there's only single reg to program
1844                  */
1845                 gfar_write(&regs->txic, 0);
1846                 if (likely(priv->tx_queue[0]->txcoalescing))
1847                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1848
1849                 gfar_write(&regs->rxic, 0);
1850                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1851                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1852         }
1853 }
1854
1855 void gfar_configure_coalescing_all(struct gfar_private *priv)
1856 {
1857         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1858 }
1859
1860 static int register_grp_irqs(struct gfar_priv_grp *grp)
1861 {
1862         struct gfar_private *priv = grp->priv;
1863         struct net_device *dev = priv->ndev;
1864         int err;
1865
1866         /* If the device has multiple interrupts, register for
1867          * them.  Otherwise, only register for the one
1868          */
1869         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1870                 /* Install our interrupt handlers for Error,
1871                  * Transmit, and Receive
1872                  */
1873                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1874                                   gfar_irq(grp, ER)->name, grp);
1875                 if (err < 0) {
1876                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1877                                   gfar_irq(grp, ER)->irq);
1878
1879                         goto err_irq_fail;
1880                 }
1881                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1882                                   gfar_irq(grp, TX)->name, grp);
1883                 if (err < 0) {
1884                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1885                                   gfar_irq(grp, TX)->irq);
1886                         goto tx_irq_fail;
1887                 }
1888                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1889                                   gfar_irq(grp, RX)->name, grp);
1890                 if (err < 0) {
1891                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1892                                   gfar_irq(grp, RX)->irq);
1893                         goto rx_irq_fail;
1894                 }
1895         } else {
1896                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1897                                   gfar_irq(grp, TX)->name, grp);
1898                 if (err < 0) {
1899                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1900                                   gfar_irq(grp, TX)->irq);
1901                         goto err_irq_fail;
1902                 }
1903         }
1904
1905         return 0;
1906
1907 rx_irq_fail:
1908         free_irq(gfar_irq(grp, TX)->irq, grp);
1909 tx_irq_fail:
1910         free_irq(gfar_irq(grp, ER)->irq, grp);
1911 err_irq_fail:
1912         return err;
1913
1914 }
1915
1916 /* Bring the controller up and running */
1917 int startup_gfar(struct net_device *ndev)
1918 {
1919         struct gfar_private *priv = netdev_priv(ndev);
1920         struct gfar __iomem *regs = NULL;
1921         int err, i, j;
1922
1923         for (i = 0; i < priv->num_grps; i++) {
1924                 regs= priv->gfargrp[i].regs;
1925                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1926         }
1927
1928         regs= priv->gfargrp[0].regs;
1929         err = gfar_alloc_skb_resources(ndev);
1930         if (err)
1931                 return err;
1932
1933         gfar_init_mac(ndev);
1934
1935         for (i = 0; i < priv->num_grps; i++) {
1936                 err = register_grp_irqs(&priv->gfargrp[i]);
1937                 if (err) {
1938                         for (j = 0; j < i; j++)
1939                                 free_grp_irqs(&priv->gfargrp[j]);
1940                         goto irq_fail;
1941                 }
1942         }
1943
1944         /* Start the controller */
1945         gfar_start(ndev);
1946
1947         phy_start(priv->phydev);
1948
1949         gfar_configure_coalescing_all(priv);
1950
1951         return 0;
1952
1953 irq_fail:
1954         free_skb_resources(priv);
1955         return err;
1956 }
1957
1958 /* Called when something needs to use the ethernet device
1959  * Returns 0 for success.
1960  */
1961 static int gfar_enet_open(struct net_device *dev)
1962 {
1963         struct gfar_private *priv = netdev_priv(dev);
1964         int err;
1965
1966         enable_napi(priv);
1967
1968         /* Initialize a bunch of registers */
1969         init_registers(dev);
1970
1971         gfar_set_mac_address(dev);
1972
1973         err = init_phy(dev);
1974
1975         if (err) {
1976                 disable_napi(priv);
1977                 return err;
1978         }
1979
1980         err = startup_gfar(dev);
1981         if (err) {
1982                 disable_napi(priv);
1983                 return err;
1984         }
1985
1986         netif_tx_start_all_queues(dev);
1987
1988         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1989
1990         return err;
1991 }
1992
1993 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1994 {
1995         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1996
1997         memset(fcb, 0, GMAC_FCB_LEN);
1998
1999         return fcb;
2000 }
2001
2002 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2003                                     int fcb_length)
2004 {
2005         /* If we're here, it's a IP packet with a TCP or UDP
2006          * payload.  We set it to checksum, using a pseudo-header
2007          * we provide
2008          */
2009         u8 flags = TXFCB_DEFAULT;
2010
2011         /* Tell the controller what the protocol is
2012          * And provide the already calculated phcs
2013          */
2014         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2015                 flags |= TXFCB_UDP;
2016                 fcb->phcs = udp_hdr(skb)->check;
2017         } else
2018                 fcb->phcs = tcp_hdr(skb)->check;
2019
2020         /* l3os is the distance between the start of the
2021          * frame (skb->data) and the start of the IP hdr.
2022          * l4os is the distance between the start of the
2023          * l3 hdr and the l4 hdr
2024          */
2025         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2026         fcb->l4os = skb_network_header_len(skb);
2027
2028         fcb->flags = flags;
2029 }
2030
2031 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2032 {
2033         fcb->flags |= TXFCB_VLN;
2034         fcb->vlctl = vlan_tx_tag_get(skb);
2035 }
2036
2037 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2038                                       struct txbd8 *base, int ring_size)
2039 {
2040         struct txbd8 *new_bd = bdp + stride;
2041
2042         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2043 }
2044
2045 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2046                                       int ring_size)
2047 {
2048         return skip_txbd(bdp, 1, base, ring_size);
2049 }
2050
2051 /* This is called by the kernel when a frame is ready for transmission.
2052  * It is pointed to by the dev->hard_start_xmit function pointer
2053  */
2054 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2055 {
2056         struct gfar_private *priv = netdev_priv(dev);
2057         struct gfar_priv_tx_q *tx_queue = NULL;
2058         struct netdev_queue *txq;
2059         struct gfar __iomem *regs = NULL;
2060         struct txfcb *fcb = NULL;
2061         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2062         u32 lstatus;
2063         int i, rq = 0, do_tstamp = 0;
2064         u32 bufaddr;
2065         unsigned long flags;
2066         unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2067
2068         /* TOE=1 frames larger than 2500 bytes may see excess delays
2069          * before start of transmission.
2070          */
2071         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2072                      skb->ip_summed == CHECKSUM_PARTIAL &&
2073                      skb->len > 2500)) {
2074                 int ret;
2075
2076                 ret = skb_checksum_help(skb);
2077                 if (ret)
2078                         return ret;
2079         }
2080
2081         rq = skb->queue_mapping;
2082         tx_queue = priv->tx_queue[rq];
2083         txq = netdev_get_tx_queue(dev, rq);
2084         base = tx_queue->tx_bd_base;
2085         regs = tx_queue->grp->regs;
2086
2087         /* check if time stamp should be generated */
2088         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2089                      priv->hwts_tx_en)) {
2090                 do_tstamp = 1;
2091                 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2092         }
2093
2094         /* make space for additional header when fcb is needed */
2095         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2096              vlan_tx_tag_present(skb) ||
2097              unlikely(do_tstamp)) &&
2098             (skb_headroom(skb) < fcb_length)) {
2099                 struct sk_buff *skb_new;
2100
2101                 skb_new = skb_realloc_headroom(skb, fcb_length);
2102                 if (!skb_new) {
2103                         dev->stats.tx_errors++;
2104                         kfree_skb(skb);
2105                         return NETDEV_TX_OK;
2106                 }
2107
2108                 if (skb->sk)
2109                         skb_set_owner_w(skb_new, skb->sk);
2110                 consume_skb(skb);
2111                 skb = skb_new;
2112         }
2113
2114         /* total number of fragments in the SKB */
2115         nr_frags = skb_shinfo(skb)->nr_frags;
2116
2117         /* calculate the required number of TxBDs for this skb */
2118         if (unlikely(do_tstamp))
2119                 nr_txbds = nr_frags + 2;
2120         else
2121                 nr_txbds = nr_frags + 1;
2122
2123         /* check if there is space to queue this packet */
2124         if (nr_txbds > tx_queue->num_txbdfree) {
2125                 /* no space, stop the queue */
2126                 netif_tx_stop_queue(txq);
2127                 dev->stats.tx_fifo_errors++;
2128                 return NETDEV_TX_BUSY;
2129         }
2130
2131         /* Update transmit stats */
2132         tx_queue->stats.tx_bytes += skb->len;
2133         tx_queue->stats.tx_packets++;
2134
2135         txbdp = txbdp_start = tx_queue->cur_tx;
2136         lstatus = txbdp->lstatus;
2137
2138         /* Time stamp insertion requires one additional TxBD */
2139         if (unlikely(do_tstamp))
2140                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2141                                                  tx_queue->tx_ring_size);
2142
2143         if (nr_frags == 0) {
2144                 if (unlikely(do_tstamp))
2145                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2146                                                           TXBD_INTERRUPT);
2147                 else
2148                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2149         } else {
2150                 /* Place the fragment addresses and lengths into the TxBDs */
2151                 for (i = 0; i < nr_frags; i++) {
2152                         /* Point at the next BD, wrapping as needed */
2153                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2154
2155                         length = skb_shinfo(skb)->frags[i].size;
2156
2157                         lstatus = txbdp->lstatus | length |
2158                                   BD_LFLAG(TXBD_READY);
2159
2160                         /* Handle the last BD specially */
2161                         if (i == nr_frags - 1)
2162                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2163
2164                         bufaddr = skb_frag_dma_map(priv->dev,
2165                                                    &skb_shinfo(skb)->frags[i],
2166                                                    0,
2167                                                    length,
2168                                                    DMA_TO_DEVICE);
2169
2170                         /* set the TxBD length and buffer pointer */
2171                         txbdp->bufPtr = bufaddr;
2172                         txbdp->lstatus = lstatus;
2173                 }
2174
2175                 lstatus = txbdp_start->lstatus;
2176         }
2177
2178         /* Add TxPAL between FCB and frame if required */
2179         if (unlikely(do_tstamp)) {
2180                 skb_push(skb, GMAC_TXPAL_LEN);
2181                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2182         }
2183
2184         /* Set up checksumming */
2185         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2186                 fcb = gfar_add_fcb(skb);
2187                 /* as specified by errata */
2188                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2189                              ((unsigned long)fcb % 0x20) > 0x18)) {
2190                         __skb_pull(skb, GMAC_FCB_LEN);
2191                         skb_checksum_help(skb);
2192                 } else {
2193                         lstatus |= BD_LFLAG(TXBD_TOE);
2194                         gfar_tx_checksum(skb, fcb, fcb_length);
2195                 }
2196         }
2197
2198         if (vlan_tx_tag_present(skb)) {
2199                 if (unlikely(NULL == fcb)) {
2200                         fcb = gfar_add_fcb(skb);
2201                         lstatus |= BD_LFLAG(TXBD_TOE);
2202                 }
2203
2204                 gfar_tx_vlan(skb, fcb);
2205         }
2206
2207         /* Setup tx hardware time stamping if requested */
2208         if (unlikely(do_tstamp)) {
2209                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2210                 if (fcb == NULL)
2211                         fcb = gfar_add_fcb(skb);
2212                 fcb->ptp = 1;
2213                 lstatus |= BD_LFLAG(TXBD_TOE);
2214         }
2215
2216         txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2217                                              skb_headlen(skb), DMA_TO_DEVICE);
2218
2219         /* If time stamping is requested one additional TxBD must be set up. The
2220          * first TxBD points to the FCB and must have a data length of
2221          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2222          * the full frame length.
2223          */
2224         if (unlikely(do_tstamp)) {
2225                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2226                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2227                                          (skb_headlen(skb) - fcb_length);
2228                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2229         } else {
2230                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2231         }
2232
2233         netdev_tx_sent_queue(txq, skb->len);
2234
2235         /* We can work in parallel with gfar_clean_tx_ring(), except
2236          * when modifying num_txbdfree. Note that we didn't grab the lock
2237          * when we were reading the num_txbdfree and checking for available
2238          * space, that's because outside of this function it can only grow,
2239          * and once we've got needed space, it cannot suddenly disappear.
2240          *
2241          * The lock also protects us from gfar_error(), which can modify
2242          * regs->tstat and thus retrigger the transfers, which is why we
2243          * also must grab the lock before setting ready bit for the first
2244          * to be transmitted BD.
2245          */
2246         spin_lock_irqsave(&tx_queue->txlock, flags);
2247
2248         /* The powerpc-specific eieio() is used, as wmb() has too strong
2249          * semantics (it requires synchronization between cacheable and
2250          * uncacheable mappings, which eieio doesn't provide and which we
2251          * don't need), thus requiring a more expensive sync instruction.  At
2252          * some point, the set of architecture-independent barrier functions
2253          * should be expanded to include weaker barriers.
2254          */
2255         eieio();
2256
2257         txbdp_start->lstatus = lstatus;
2258
2259         eieio(); /* force lstatus write before tx_skbuff */
2260
2261         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2262
2263         /* Update the current skb pointer to the next entry we will use
2264          * (wrapping if necessary)
2265          */
2266         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2267                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2268
2269         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2270
2271         /* reduce TxBD free count */
2272         tx_queue->num_txbdfree -= (nr_txbds);
2273
2274         /* If the next BD still needs to be cleaned up, then the bds
2275          * are full.  We need to tell the kernel to stop sending us stuff.
2276          */
2277         if (!tx_queue->num_txbdfree) {
2278                 netif_tx_stop_queue(txq);
2279
2280                 dev->stats.tx_fifo_errors++;
2281         }
2282
2283         /* Tell the DMA to go go go */
2284         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2285
2286         /* Unlock priv */
2287         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2288
2289         return NETDEV_TX_OK;
2290 }
2291
2292 /* Stops the kernel queue, and halts the controller */
2293 static int gfar_close(struct net_device *dev)
2294 {
2295         struct gfar_private *priv = netdev_priv(dev);
2296
2297         disable_napi(priv);
2298
2299         cancel_work_sync(&priv->reset_task);
2300         stop_gfar(dev);
2301
2302         /* Disconnect from the PHY */
2303         phy_disconnect(priv->phydev);
2304         priv->phydev = NULL;
2305
2306         netif_tx_stop_all_queues(dev);
2307
2308         return 0;
2309 }
2310
2311 /* Changes the mac address if the controller is not running. */
2312 static int gfar_set_mac_address(struct net_device *dev)
2313 {
2314         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2315
2316         return 0;
2317 }
2318
2319 /* Check if rx parser should be activated */
2320 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2321 {
2322         struct gfar __iomem *regs;
2323         u32 tempval;
2324
2325         regs = priv->gfargrp[0].regs;
2326
2327         tempval = gfar_read(&regs->rctrl);
2328         /* If parse is no longer required, then disable parser */
2329         if (tempval & RCTRL_REQ_PARSER) {
2330                 tempval |= RCTRL_PRSDEP_INIT;
2331                 priv->uses_rxfcb = 1;
2332         } else {
2333                 tempval &= ~RCTRL_PRSDEP_INIT;
2334                 priv->uses_rxfcb = 0;
2335         }
2336         gfar_write(&regs->rctrl, tempval);
2337 }
2338
2339 /* Enables and disables VLAN insertion/extraction */
2340 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2341 {
2342         struct gfar_private *priv = netdev_priv(dev);
2343         struct gfar __iomem *regs = NULL;
2344         unsigned long flags;
2345         u32 tempval;
2346
2347         regs = priv->gfargrp[0].regs;
2348         local_irq_save(flags);
2349         lock_rx_qs(priv);
2350
2351         if (features & NETIF_F_HW_VLAN_TX) {
2352                 /* Enable VLAN tag insertion */
2353                 tempval = gfar_read(&regs->tctrl);
2354                 tempval |= TCTRL_VLINS;
2355                 gfar_write(&regs->tctrl, tempval);
2356         } else {
2357                 /* Disable VLAN tag insertion */
2358                 tempval = gfar_read(&regs->tctrl);
2359                 tempval &= ~TCTRL_VLINS;
2360                 gfar_write(&regs->tctrl, tempval);
2361         }
2362
2363         if (features & NETIF_F_HW_VLAN_RX) {
2364                 /* Enable VLAN tag extraction */
2365                 tempval = gfar_read(&regs->rctrl);
2366                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2367                 gfar_write(&regs->rctrl, tempval);
2368                 priv->uses_rxfcb = 1;
2369         } else {
2370                 /* Disable VLAN tag extraction */
2371                 tempval = gfar_read(&regs->rctrl);
2372                 tempval &= ~RCTRL_VLEX;
2373                 gfar_write(&regs->rctrl, tempval);
2374
2375                 gfar_check_rx_parser_mode(priv);
2376         }
2377
2378         gfar_change_mtu(dev, dev->mtu);
2379
2380         unlock_rx_qs(priv);
2381         local_irq_restore(flags);
2382 }
2383
2384 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2385 {
2386         int tempsize, tempval;
2387         struct gfar_private *priv = netdev_priv(dev);
2388         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2389         int oldsize = priv->rx_buffer_size;
2390         int frame_size = new_mtu + ETH_HLEN;
2391
2392         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2393                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2394                 return -EINVAL;
2395         }
2396
2397         if (priv->uses_rxfcb)
2398                 frame_size += GMAC_FCB_LEN;
2399
2400         frame_size += priv->padding;
2401
2402         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2403                    INCREMENTAL_BUFFER_SIZE;
2404
2405         /* Only stop and start the controller if it isn't already
2406          * stopped, and we changed something
2407          */
2408         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2409                 stop_gfar(dev);
2410
2411         priv->rx_buffer_size = tempsize;
2412
2413         dev->mtu = new_mtu;
2414
2415         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2416         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2417
2418         /* If the mtu is larger than the max size for standard
2419          * ethernet frames (ie, a jumbo frame), then set maccfg2
2420          * to allow huge frames, and to check the length
2421          */
2422         tempval = gfar_read(&regs->maccfg2);
2423
2424         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2425             gfar_has_errata(priv, GFAR_ERRATA_74))
2426                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2427         else
2428                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2429
2430         gfar_write(&regs->maccfg2, tempval);
2431
2432         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2433                 startup_gfar(dev);
2434
2435         return 0;
2436 }
2437
2438 /* gfar_reset_task gets scheduled when a packet has not been
2439  * transmitted after a set amount of time.
2440  * For now, assume that clearing out all the structures, and
2441  * starting over will fix the problem.
2442  */
2443 static void gfar_reset_task(struct work_struct *work)
2444 {
2445         struct gfar_private *priv = container_of(work, struct gfar_private,
2446                                                  reset_task);
2447         struct net_device *dev = priv->ndev;
2448
2449         if (dev->flags & IFF_UP) {
2450                 netif_tx_stop_all_queues(dev);
2451                 stop_gfar(dev);
2452                 startup_gfar(dev);
2453                 netif_tx_start_all_queues(dev);
2454         }
2455
2456         netif_tx_schedule_all(dev);
2457 }
2458
2459 static void gfar_timeout(struct net_device *dev)
2460 {
2461         struct gfar_private *priv = netdev_priv(dev);
2462
2463         dev->stats.tx_errors++;
2464         schedule_work(&priv->reset_task);
2465 }
2466
2467 static void gfar_align_skb(struct sk_buff *skb)
2468 {
2469         /* We need the data buffer to be aligned properly.  We will reserve
2470          * as many bytes as needed to align the data properly
2471          */
2472         skb_reserve(skb, RXBUF_ALIGNMENT -
2473                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2474 }
2475
2476 /* Interrupt Handler for Transmit complete */
2477 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2478 {
2479         struct net_device *dev = tx_queue->dev;
2480         struct netdev_queue *txq;
2481         struct gfar_private *priv = netdev_priv(dev);
2482         struct txbd8 *bdp, *next = NULL;
2483         struct txbd8 *lbdp = NULL;
2484         struct txbd8 *base = tx_queue->tx_bd_base;
2485         struct sk_buff *skb;
2486         int skb_dirtytx;
2487         int tx_ring_size = tx_queue->tx_ring_size;
2488         int frags = 0, nr_txbds = 0;
2489         int i;
2490         int howmany = 0;
2491         int tqi = tx_queue->qindex;
2492         unsigned int bytes_sent = 0;
2493         u32 lstatus;
2494         size_t buflen;
2495
2496         txq = netdev_get_tx_queue(dev, tqi);
2497         bdp = tx_queue->dirty_tx;
2498         skb_dirtytx = tx_queue->skb_dirtytx;
2499
2500         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2501                 unsigned long flags;
2502
2503                 frags = skb_shinfo(skb)->nr_frags;
2504
2505                 /* When time stamping, one additional TxBD must be freed.
2506                  * Also, we need to dma_unmap_single() the TxPAL.
2507                  */
2508                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2509                         nr_txbds = frags + 2;
2510                 else
2511                         nr_txbds = frags + 1;
2512
2513                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2514
2515                 lstatus = lbdp->lstatus;
2516
2517                 /* Only clean completed frames */
2518                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2519                     (lstatus & BD_LENGTH_MASK))
2520                         break;
2521
2522                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2523                         next = next_txbd(bdp, base, tx_ring_size);
2524                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2525                 } else
2526                         buflen = bdp->length;
2527
2528                 dma_unmap_single(priv->dev, bdp->bufPtr,
2529                                  buflen, DMA_TO_DEVICE);
2530
2531                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2532                         struct skb_shared_hwtstamps shhwtstamps;
2533                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2534
2535                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2536                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2537                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2538                         skb_tstamp_tx(skb, &shhwtstamps);
2539                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2540                         bdp = next;
2541                 }
2542
2543                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2544                 bdp = next_txbd(bdp, base, tx_ring_size);
2545
2546                 for (i = 0; i < frags; i++) {
2547                         dma_unmap_page(priv->dev, bdp->bufPtr,
2548                                        bdp->length, DMA_TO_DEVICE);
2549                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2550                         bdp = next_txbd(bdp, base, tx_ring_size);
2551                 }
2552
2553                 bytes_sent += skb->len;
2554
2555                 dev_kfree_skb_any(skb);
2556
2557                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2558
2559                 skb_dirtytx = (skb_dirtytx + 1) &
2560                               TX_RING_MOD_MASK(tx_ring_size);
2561
2562                 howmany++;
2563                 spin_lock_irqsave(&tx_queue->txlock, flags);
2564                 tx_queue->num_txbdfree += nr_txbds;
2565                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2566         }
2567
2568         /* If we freed a buffer, we can restart transmission, if necessary */
2569         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2570                 netif_wake_subqueue(dev, tqi);
2571
2572         /* Update dirty indicators */
2573         tx_queue->skb_dirtytx = skb_dirtytx;
2574         tx_queue->dirty_tx = bdp;
2575
2576         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2577 }
2578
2579 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2580 {
2581         unsigned long flags;
2582
2583         spin_lock_irqsave(&gfargrp->grplock, flags);
2584         if (napi_schedule_prep(&gfargrp->napi)) {
2585                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2586                 __napi_schedule(&gfargrp->napi);
2587         } else {
2588                 /* Clear IEVENT, so interrupts aren't called again
2589                  * because of the packets that have already arrived.
2590                  */
2591                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2592         }
2593         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2594
2595 }
2596
2597 /* Interrupt Handler for Transmit complete */
2598 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2599 {
2600         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2601         return IRQ_HANDLED;
2602 }
2603
2604 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2605                            struct sk_buff *skb)
2606 {
2607         struct net_device *dev = rx_queue->dev;
2608         struct gfar_private *priv = netdev_priv(dev);
2609         dma_addr_t buf;
2610
2611         buf = dma_map_single(priv->dev, skb->data,
2612                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2613         gfar_init_rxbdp(rx_queue, bdp, buf);
2614 }
2615
2616 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2617 {
2618         struct gfar_private *priv = netdev_priv(dev);
2619         struct sk_buff *skb;
2620
2621         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2622         if (!skb)
2623                 return NULL;
2624
2625         gfar_align_skb(skb);
2626
2627         return skb;
2628 }
2629
2630 struct sk_buff *gfar_new_skb(struct net_device *dev)
2631 {
2632         return gfar_alloc_skb(dev);
2633 }
2634
2635 static inline void count_errors(unsigned short status, struct net_device *dev)
2636 {
2637         struct gfar_private *priv = netdev_priv(dev);
2638         struct net_device_stats *stats = &dev->stats;
2639         struct gfar_extra_stats *estats = &priv->extra_stats;
2640
2641         /* If the packet was truncated, none of the other errors matter */
2642         if (status & RXBD_TRUNCATED) {
2643                 stats->rx_length_errors++;
2644
2645                 atomic64_inc(&estats->rx_trunc);
2646
2647                 return;
2648         }
2649         /* Count the errors, if there were any */
2650         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2651                 stats->rx_length_errors++;
2652
2653                 if (status & RXBD_LARGE)
2654                         atomic64_inc(&estats->rx_large);
2655                 else
2656                         atomic64_inc(&estats->rx_short);
2657         }
2658         if (status & RXBD_NONOCTET) {
2659                 stats->rx_frame_errors++;
2660                 atomic64_inc(&estats->rx_nonoctet);
2661         }
2662         if (status & RXBD_CRCERR) {
2663                 atomic64_inc(&estats->rx_crcerr);
2664                 stats->rx_crc_errors++;
2665         }
2666         if (status & RXBD_OVERRUN) {
2667                 atomic64_inc(&estats->rx_overrun);
2668                 stats->rx_crc_errors++;
2669         }
2670 }
2671
2672 irqreturn_t gfar_receive(int irq, void *grp_id)
2673 {
2674         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2675         return IRQ_HANDLED;
2676 }
2677
2678 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2679 {
2680         /* If valid headers were found, and valid sums
2681          * were verified, then we tell the kernel that no
2682          * checksumming is necessary.  Otherwise, it is [FIXME]
2683          */
2684         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2685                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2686         else
2687                 skb_checksum_none_assert(skb);
2688 }
2689
2690
2691 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2692 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2693                                int amount_pull, struct napi_struct *napi)
2694 {
2695         struct gfar_private *priv = netdev_priv(dev);
2696         struct rxfcb *fcb = NULL;
2697
2698         gro_result_t ret;
2699
2700         /* fcb is at the beginning if exists */
2701         fcb = (struct rxfcb *)skb->data;
2702
2703         /* Remove the FCB from the skb
2704          * Remove the padded bytes, if there are any
2705          */
2706         if (amount_pull) {
2707                 skb_record_rx_queue(skb, fcb->rq);
2708                 skb_pull(skb, amount_pull);
2709         }
2710
2711         /* Get receive timestamp from the skb */
2712         if (priv->hwts_rx_en) {
2713                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2714                 u64 *ns = (u64 *) skb->data;
2715
2716                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2717                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2718         }
2719
2720         if (priv->padding)
2721                 skb_pull(skb, priv->padding);
2722
2723         if (dev->features & NETIF_F_RXCSUM)
2724                 gfar_rx_checksum(skb, fcb);
2725
2726         /* Tell the skb what kind of packet this is */
2727         skb->protocol = eth_type_trans(skb, dev);
2728
2729         /* There's need to check for NETIF_F_HW_VLAN_RX here.
2730          * Even if vlan rx accel is disabled, on some chips
2731          * RXFCB_VLN is pseudo randomly set.
2732          */
2733         if (dev->features & NETIF_F_HW_VLAN_RX &&
2734             fcb->flags & RXFCB_VLN)
2735                 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2736
2737         /* Send the packet up the stack */
2738         ret = napi_gro_receive(napi, skb);
2739
2740         if (unlikely(GRO_DROP == ret))
2741                 atomic64_inc(&priv->extra_stats.kernel_dropped);
2742 }
2743
2744 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2745  * until the budget/quota has been reached. Returns the number
2746  * of frames handled
2747  */
2748 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2749 {
2750         struct net_device *dev = rx_queue->dev;
2751         struct rxbd8 *bdp, *base;
2752         struct sk_buff *skb;
2753         int pkt_len;
2754         int amount_pull;
2755         int howmany = 0;
2756         struct gfar_private *priv = netdev_priv(dev);
2757
2758         /* Get the first full descriptor */
2759         bdp = rx_queue->cur_rx;
2760         base = rx_queue->rx_bd_base;
2761
2762         amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2763
2764         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2765                 struct sk_buff *newskb;
2766
2767                 rmb();
2768
2769                 /* Add another skb for the future */
2770                 newskb = gfar_new_skb(dev);
2771
2772                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2773
2774                 dma_unmap_single(priv->dev, bdp->bufPtr,
2775                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2776
2777                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2778                              bdp->length > priv->rx_buffer_size))
2779                         bdp->status = RXBD_LARGE;
2780
2781                 /* We drop the frame if we failed to allocate a new buffer */
2782                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2783                              bdp->status & RXBD_ERR)) {
2784                         count_errors(bdp->status, dev);
2785
2786                         if (unlikely(!newskb))
2787                                 newskb = skb;
2788                         else if (skb)
2789                                 dev_kfree_skb(skb);
2790                 } else {
2791                         /* Increment the number of packets */
2792                         rx_queue->stats.rx_packets++;
2793                         howmany++;
2794
2795                         if (likely(skb)) {
2796                                 pkt_len = bdp->length - ETH_FCS_LEN;
2797                                 /* Remove the FCS from the packet length */
2798                                 skb_put(skb, pkt_len);
2799                                 rx_queue->stats.rx_bytes += pkt_len;
2800                                 skb_record_rx_queue(skb, rx_queue->qindex);
2801                                 gfar_process_frame(dev, skb, amount_pull,
2802                                                    &rx_queue->grp->napi);
2803
2804                         } else {
2805                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2806                                 rx_queue->stats.rx_dropped++;
2807                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2808                         }
2809
2810                 }
2811
2812                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2813
2814                 /* Setup the new bdp */
2815                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2816
2817                 /* Update to the next pointer */
2818                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2819
2820                 /* update to point at the next skb */
2821                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2822                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2823         }
2824
2825         /* Update the current rxbd pointer to be the next one */
2826         rx_queue->cur_rx = bdp;
2827
2828         return howmany;
2829 }
2830
2831 static int gfar_poll(struct napi_struct *napi, int budget)
2832 {
2833         struct gfar_priv_grp *gfargrp =
2834                 container_of(napi, struct gfar_priv_grp, napi);
2835         struct gfar_private *priv = gfargrp->priv;
2836         struct gfar __iomem *regs = gfargrp->regs;
2837         struct gfar_priv_tx_q *tx_queue = NULL;
2838         struct gfar_priv_rx_q *rx_queue = NULL;
2839         int work_done = 0, work_done_per_q = 0;
2840         int i, budget_per_q = 0;
2841         int has_tx_work;
2842         unsigned long rstat_rxf;
2843         int num_act_queues;
2844
2845         /* Clear IEVENT, so interrupts aren't called again
2846          * because of the packets that have already arrived
2847          */
2848         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2849
2850         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2851
2852         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2853         if (num_act_queues)
2854                 budget_per_q = budget/num_act_queues;
2855
2856         while (1) {
2857                 has_tx_work = 0;
2858                 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2859                         tx_queue = priv->tx_queue[i];
2860                         /* run Tx cleanup to completion */
2861                         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2862                                 gfar_clean_tx_ring(tx_queue);
2863                                 has_tx_work = 1;
2864                         }
2865                 }
2866
2867                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2868                         /* skip queue if not active */
2869                         if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2870                                 continue;
2871
2872                         rx_queue = priv->rx_queue[i];
2873                         work_done_per_q =
2874                                 gfar_clean_rx_ring(rx_queue, budget_per_q);
2875                         work_done += work_done_per_q;
2876
2877                         /* finished processing this queue */
2878                         if (work_done_per_q < budget_per_q) {
2879                                 /* clear active queue hw indication */
2880                                 gfar_write(&regs->rstat,
2881                                            RSTAT_CLEAR_RXF0 >> i);
2882                                 rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2883                                 num_act_queues--;
2884
2885                                 if (!num_act_queues)
2886                                         break;
2887                                 /* recompute budget per Rx queue */
2888                                 budget_per_q =
2889                                         (budget - work_done) / num_act_queues;
2890                         }
2891                 }
2892
2893                 if (work_done >= budget)
2894                         break;
2895
2896                 if (!num_act_queues && !has_tx_work) {
2897
2898                         napi_complete(napi);
2899
2900                         /* Clear the halt bit in RSTAT */
2901                         gfar_write(&regs->rstat, gfargrp->rstat);
2902
2903                         gfar_write(&regs->imask, IMASK_DEFAULT);
2904
2905                         /* If we are coalescing interrupts, update the timer
2906                          * Otherwise, clear it
2907                          */
2908                         gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2909                                                   gfargrp->tx_bit_map);
2910                         break;
2911                 }
2912         }
2913
2914         return work_done;
2915 }
2916
2917 #ifdef CONFIG_NET_POLL_CONTROLLER
2918 /* Polling 'interrupt' - used by things like netconsole to send skbs
2919  * without having to re-enable interrupts. It's not called while
2920  * the interrupt routine is executing.
2921  */
2922 static void gfar_netpoll(struct net_device *dev)
2923 {
2924         struct gfar_private *priv = netdev_priv(dev);
2925         int i;
2926
2927         /* If the device has multiple interrupts, run tx/rx */
2928         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2929                 for (i = 0; i < priv->num_grps; i++) {
2930                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2931
2932                         disable_irq(gfar_irq(grp, TX)->irq);
2933                         disable_irq(gfar_irq(grp, RX)->irq);
2934                         disable_irq(gfar_irq(grp, ER)->irq);
2935                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2936                         enable_irq(gfar_irq(grp, ER)->irq);
2937                         enable_irq(gfar_irq(grp, RX)->irq);
2938                         enable_irq(gfar_irq(grp, TX)->irq);
2939                 }
2940         } else {
2941                 for (i = 0; i < priv->num_grps; i++) {
2942                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2943
2944                         disable_irq(gfar_irq(grp, TX)->irq);
2945                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2946                         enable_irq(gfar_irq(grp, TX)->irq);
2947                 }
2948         }
2949 }
2950 #endif
2951
2952 /* The interrupt handler for devices with one interrupt */
2953 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2954 {
2955         struct gfar_priv_grp *gfargrp = grp_id;
2956
2957         /* Save ievent for future reference */
2958         u32 events = gfar_read(&gfargrp->regs->ievent);
2959
2960         /* Check for reception */
2961         if (events & IEVENT_RX_MASK)
2962                 gfar_receive(irq, grp_id);
2963
2964         /* Check for transmit completion */
2965         if (events & IEVENT_TX_MASK)
2966                 gfar_transmit(irq, grp_id);
2967
2968         /* Check for errors */
2969         if (events & IEVENT_ERR_MASK)
2970                 gfar_error(irq, grp_id);
2971
2972         return IRQ_HANDLED;
2973 }
2974
2975 /* Called every time the controller might need to be made
2976  * aware of new link state.  The PHY code conveys this
2977  * information through variables in the phydev structure, and this
2978  * function converts those variables into the appropriate
2979  * register values, and can bring down the device if needed.
2980  */
2981 static void adjust_link(struct net_device *dev)
2982 {
2983         struct gfar_private *priv = netdev_priv(dev);
2984         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2985         unsigned long flags;
2986         struct phy_device *phydev = priv->phydev;
2987         int new_state = 0;
2988
2989         local_irq_save(flags);
2990         lock_tx_qs(priv);
2991
2992         if (phydev->link) {
2993                 u32 tempval = gfar_read(&regs->maccfg2);
2994                 u32 ecntrl = gfar_read(&regs->ecntrl);
2995
2996                 /* Now we make sure that we can be in full duplex mode.
2997                  * If not, we operate in half-duplex mode.
2998                  */
2999                 if (phydev->duplex != priv->oldduplex) {
3000                         new_state = 1;
3001                         if (!(phydev->duplex))
3002                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3003                         else
3004                                 tempval |= MACCFG2_FULL_DUPLEX;
3005
3006                         priv->oldduplex = phydev->duplex;
3007                 }
3008
3009                 if (phydev->speed != priv->oldspeed) {
3010                         new_state = 1;
3011                         switch (phydev->speed) {
3012                         case 1000:
3013                                 tempval =
3014                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3015
3016                                 ecntrl &= ~(ECNTRL_R100);
3017                                 break;
3018                         case 100:
3019                         case 10:
3020                                 tempval =
3021                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3022
3023                                 /* Reduced mode distinguishes
3024                                  * between 10 and 100
3025                                  */
3026                                 if (phydev->speed == SPEED_100)
3027                                         ecntrl |= ECNTRL_R100;
3028                                 else
3029                                         ecntrl &= ~(ECNTRL_R100);
3030                                 break;
3031                         default:
3032                                 netif_warn(priv, link, dev,
3033                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3034                                            phydev->speed);
3035                                 break;
3036                         }
3037
3038                         priv->oldspeed = phydev->speed;
3039                 }
3040
3041                 gfar_write(&regs->maccfg2, tempval);
3042                 gfar_write(&regs->ecntrl, ecntrl);
3043
3044                 if (!priv->oldlink) {
3045                         new_state = 1;
3046                         priv->oldlink = 1;
3047                 }
3048         } else if (priv->oldlink) {
3049                 new_state = 1;
3050                 priv->oldlink = 0;
3051                 priv->oldspeed = 0;
3052                 priv->oldduplex = -1;
3053         }
3054
3055         if (new_state && netif_msg_link(priv))
3056                 phy_print_status(phydev);
3057         unlock_tx_qs(priv);
3058         local_irq_restore(flags);
3059 }
3060
3061 /* Update the hash table based on the current list of multicast
3062  * addresses we subscribe to.  Also, change the promiscuity of
3063  * the device based on the flags (this function is called
3064  * whenever dev->flags is changed
3065  */
3066 static void gfar_set_multi(struct net_device *dev)
3067 {
3068         struct netdev_hw_addr *ha;
3069         struct gfar_private *priv = netdev_priv(dev);
3070         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3071         u32 tempval;
3072
3073         if (dev->flags & IFF_PROMISC) {
3074                 /* Set RCTRL to PROM */
3075                 tempval = gfar_read(&regs->rctrl);
3076                 tempval |= RCTRL_PROM;
3077                 gfar_write(&regs->rctrl, tempval);
3078         } else {
3079                 /* Set RCTRL to not PROM */
3080                 tempval = gfar_read(&regs->rctrl);
3081                 tempval &= ~(RCTRL_PROM);
3082                 gfar_write(&regs->rctrl, tempval);
3083         }
3084
3085         if (dev->flags & IFF_ALLMULTI) {
3086                 /* Set the hash to rx all multicast frames */
3087                 gfar_write(&regs->igaddr0, 0xffffffff);
3088                 gfar_write(&regs->igaddr1, 0xffffffff);
3089                 gfar_write(&regs->igaddr2, 0xffffffff);
3090                 gfar_write(&regs->igaddr3, 0xffffffff);
3091                 gfar_write(&regs->igaddr4, 0xffffffff);
3092                 gfar_write(&regs->igaddr5, 0xffffffff);
3093                 gfar_write(&regs->igaddr6, 0xffffffff);
3094                 gfar_write(&regs->igaddr7, 0xffffffff);
3095                 gfar_write(&regs->gaddr0, 0xffffffff);
3096                 gfar_write(&regs->gaddr1, 0xffffffff);
3097                 gfar_write(&regs->gaddr2, 0xffffffff);
3098                 gfar_write(&regs->gaddr3, 0xffffffff);
3099                 gfar_write(&regs->gaddr4, 0xffffffff);
3100                 gfar_write(&regs->gaddr5, 0xffffffff);
3101                 gfar_write(&regs->gaddr6, 0xffffffff);
3102                 gfar_write(&regs->gaddr7, 0xffffffff);
3103         } else {
3104                 int em_num;
3105                 int idx;
3106
3107                 /* zero out the hash */
3108                 gfar_write(&regs->igaddr0, 0x0);
3109                 gfar_write(&regs->igaddr1, 0x0);
3110                 gfar_write(&regs->igaddr2, 0x0);
3111                 gfar_write(&regs->igaddr3, 0x0);
3112                 gfar_write(&regs->igaddr4, 0x0);
3113                 gfar_write(&regs->igaddr5, 0x0);
3114                 gfar_write(&regs->igaddr6, 0x0);
3115                 gfar_write(&regs->igaddr7, 0x0);
3116                 gfar_write(&regs->gaddr0, 0x0);
3117                 gfar_write(&regs->gaddr1, 0x0);
3118                 gfar_write(&regs->gaddr2, 0x0);
3119                 gfar_write(&regs->gaddr3, 0x0);
3120                 gfar_write(&regs->gaddr4, 0x0);
3121                 gfar_write(&regs->gaddr5, 0x0);
3122                 gfar_write(&regs->gaddr6, 0x0);
3123                 gfar_write(&regs->gaddr7, 0x0);
3124
3125                 /* If we have extended hash tables, we need to
3126                  * clear the exact match registers to prepare for
3127                  * setting them
3128                  */
3129                 if (priv->extended_hash) {
3130                         em_num = GFAR_EM_NUM + 1;
3131                         gfar_clear_exact_match(dev);
3132                         idx = 1;
3133                 } else {
3134                         idx = 0;
3135                         em_num = 0;
3136                 }
3137
3138                 if (netdev_mc_empty(dev))
3139                         return;
3140
3141                 /* Parse the list, and set the appropriate bits */
3142                 netdev_for_each_mc_addr(ha, dev) {
3143                         if (idx < em_num) {
3144                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3145                                 idx++;
3146                         } else
3147                                 gfar_set_hash_for_addr(dev, ha->addr);
3148                 }
3149         }
3150 }
3151
3152
3153 /* Clears each of the exact match registers to zero, so they
3154  * don't interfere with normal reception
3155  */
3156 static void gfar_clear_exact_match(struct net_device *dev)
3157 {
3158         int idx;
3159         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3160
3161         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3162                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3163 }
3164
3165 /* Set the appropriate hash bit for the given addr */
3166 /* The algorithm works like so:
3167  * 1) Take the Destination Address (ie the multicast address), and
3168  * do a CRC on it (little endian), and reverse the bits of the
3169  * result.
3170  * 2) Use the 8 most significant bits as a hash into a 256-entry
3171  * table.  The table is controlled through 8 32-bit registers:
3172  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3173  * gaddr7.  This means that the 3 most significant bits in the
3174  * hash index which gaddr register to use, and the 5 other bits
3175  * indicate which bit (assuming an IBM numbering scheme, which
3176  * for PowerPC (tm) is usually the case) in the register holds
3177  * the entry.
3178  */
3179 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3180 {
3181         u32 tempval;
3182         struct gfar_private *priv = netdev_priv(dev);
3183         u32 result = ether_crc(ETH_ALEN, addr);
3184         int width = priv->hash_width;
3185         u8 whichbit = (result >> (32 - width)) & 0x1f;
3186         u8 whichreg = result >> (32 - width + 5);
3187         u32 value = (1 << (31-whichbit));
3188
3189         tempval = gfar_read(priv->hash_regs[whichreg]);
3190         tempval |= value;
3191         gfar_write(priv->hash_regs[whichreg], tempval);
3192 }
3193
3194
3195 /* There are multiple MAC Address register pairs on some controllers
3196  * This function sets the numth pair to a given address
3197  */
3198 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3199                                   const u8 *addr)
3200 {
3201         struct gfar_private *priv = netdev_priv(dev);
3202         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3203         int idx;
3204         char tmpbuf[ETH_ALEN];
3205         u32 tempval;
3206         u32 __iomem *macptr = &regs->macstnaddr1;
3207
3208         macptr += num*2;
3209
3210         /* Now copy it into the mac registers backwards, cuz
3211          * little endian is silly
3212          */
3213         for (idx = 0; idx < ETH_ALEN; idx++)
3214                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3215
3216         gfar_write(macptr, *((u32 *) (tmpbuf)));
3217
3218         tempval = *((u32 *) (tmpbuf + 4));
3219
3220         gfar_write(macptr+1, tempval);
3221 }
3222
3223 /* GFAR error interrupt handler */
3224 static irqreturn_t gfar_error(int irq, void *grp_id)
3225 {
3226         struct gfar_priv_grp *gfargrp = grp_id;
3227         struct gfar __iomem *regs = gfargrp->regs;
3228         struct gfar_private *priv= gfargrp->priv;
3229         struct net_device *dev = priv->ndev;
3230
3231         /* Save ievent for future reference */
3232         u32 events = gfar_read(&regs->ievent);
3233
3234         /* Clear IEVENT */
3235         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3236
3237         /* Magic Packet is not an error. */
3238         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3239             (events & IEVENT_MAG))
3240                 events &= ~IEVENT_MAG;
3241
3242         /* Hmm... */
3243         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3244                 netdev_dbg(dev,
3245                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3246                            events, gfar_read(&regs->imask));
3247
3248         /* Update the error counters */
3249         if (events & IEVENT_TXE) {
3250                 dev->stats.tx_errors++;
3251
3252                 if (events & IEVENT_LC)
3253                         dev->stats.tx_window_errors++;
3254                 if (events & IEVENT_CRL)
3255                         dev->stats.tx_aborted_errors++;
3256                 if (events & IEVENT_XFUN) {
3257                         unsigned long flags;
3258
3259                         netif_dbg(priv, tx_err, dev,
3260                                   "TX FIFO underrun, packet dropped\n");
3261                         dev->stats.tx_dropped++;
3262                         atomic64_inc(&priv->extra_stats.tx_underrun);
3263
3264                         local_irq_save(flags);
3265                         lock_tx_qs(priv);
3266
3267                         /* Reactivate the Tx Queues */
3268                         gfar_write(&regs->tstat, gfargrp->tstat);
3269
3270                         unlock_tx_qs(priv);
3271                         local_irq_restore(flags);
3272                 }
3273                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3274         }
3275         if (events & IEVENT_BSY) {
3276                 dev->stats.rx_errors++;
3277                 atomic64_inc(&priv->extra_stats.rx_bsy);
3278
3279                 gfar_receive(irq, grp_id);
3280
3281                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3282                           gfar_read(&regs->rstat));
3283         }
3284         if (events & IEVENT_BABR) {
3285                 dev->stats.rx_errors++;
3286                 atomic64_inc(&priv->extra_stats.rx_babr);
3287
3288                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3289         }
3290         if (events & IEVENT_EBERR) {
3291                 atomic64_inc(&priv->extra_stats.eberr);
3292                 netif_dbg(priv, rx_err, dev, "bus error\n");
3293         }
3294         if (events & IEVENT_RXC)
3295                 netif_dbg(priv, rx_status, dev, "control frame\n");
3296
3297         if (events & IEVENT_BABT) {
3298                 atomic64_inc(&priv->extra_stats.tx_babt);
3299                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3300         }
3301         return IRQ_HANDLED;
3302 }
3303
3304 static struct of_device_id gfar_match[] =
3305 {
3306         {
3307                 .type = "network",
3308                 .compatible = "gianfar",
3309         },
3310         {
3311                 .compatible = "fsl,etsec2",
3312         },
3313         {},
3314 };
3315 MODULE_DEVICE_TABLE(of, gfar_match);
3316
3317 /* Structure for a device driver */
3318 static struct platform_driver gfar_driver = {
3319         .driver = {
3320                 .name = "fsl-gianfar",
3321                 .owner = THIS_MODULE,
3322                 .pm = GFAR_PM_OPS,
3323                 .of_match_table = gfar_match,
3324         },
3325         .probe = gfar_probe,
3326         .remove = gfar_remove,
3327 };
3328
3329 module_platform_driver(gfar_driver);