Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                            struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 static int gfar_poll_sq(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138                                int amount_pull, struct napi_struct *napi);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
144                                   const u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
150
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152                             dma_addr_t buf)
153 {
154         u32 lstatus;
155
156         bdp->bufPtr = buf;
157
158         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160                 lstatus |= BD_LFLAG(RXBD_WRAP);
161
162         eieio();
163
164         bdp->lstatus = lstatus;
165 }
166
167 static int gfar_init_bds(struct net_device *ndev)
168 {
169         struct gfar_private *priv = netdev_priv(ndev);
170         struct gfar_priv_tx_q *tx_queue = NULL;
171         struct gfar_priv_rx_q *rx_queue = NULL;
172         struct txbd8 *txbdp;
173         struct rxbd8 *rxbdp;
174         int i, j;
175
176         for (i = 0; i < priv->num_tx_queues; i++) {
177                 tx_queue = priv->tx_queue[i];
178                 /* Initialize some variables in our dev structure */
179                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
181                 tx_queue->cur_tx = tx_queue->tx_bd_base;
182                 tx_queue->skb_curtx = 0;
183                 tx_queue->skb_dirtytx = 0;
184
185                 /* Initialize Transmit Descriptor Ring */
186                 txbdp = tx_queue->tx_bd_base;
187                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
188                         txbdp->lstatus = 0;
189                         txbdp->bufPtr = 0;
190                         txbdp++;
191                 }
192
193                 /* Set the last descriptor in the ring to indicate wrap */
194                 txbdp--;
195                 txbdp->status |= TXBD_WRAP;
196         }
197
198         for (i = 0; i < priv->num_rx_queues; i++) {
199                 rx_queue = priv->rx_queue[i];
200                 rx_queue->cur_rx = rx_queue->rx_bd_base;
201                 rx_queue->skb_currx = 0;
202                 rxbdp = rx_queue->rx_bd_base;
203
204                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
205                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
206
207                         if (skb) {
208                                 gfar_init_rxbdp(rx_queue, rxbdp,
209                                                 rxbdp->bufPtr);
210                         } else {
211                                 skb = gfar_new_skb(ndev);
212                                 if (!skb) {
213                                         netdev_err(ndev, "Can't allocate RX buffers\n");
214                                         return -ENOMEM;
215                                 }
216                                 rx_queue->rx_skbuff[j] = skb;
217
218                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
219                         }
220
221                         rxbdp++;
222                 }
223
224         }
225
226         return 0;
227 }
228
229 static int gfar_alloc_skb_resources(struct net_device *ndev)
230 {
231         void *vaddr;
232         dma_addr_t addr;
233         int i, j, k;
234         struct gfar_private *priv = netdev_priv(ndev);
235         struct device *dev = priv->dev;
236         struct gfar_priv_tx_q *tx_queue = NULL;
237         struct gfar_priv_rx_q *rx_queue = NULL;
238
239         priv->total_tx_ring_size = 0;
240         for (i = 0; i < priv->num_tx_queues; i++)
241                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
242
243         priv->total_rx_ring_size = 0;
244         for (i = 0; i < priv->num_rx_queues; i++)
245                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
246
247         /* Allocate memory for the buffer descriptors */
248         vaddr = dma_alloc_coherent(dev,
249                                    (priv->total_tx_ring_size *
250                                     sizeof(struct txbd8)) +
251                                    (priv->total_rx_ring_size *
252                                     sizeof(struct rxbd8)),
253                                    &addr, GFP_KERNEL);
254         if (!vaddr)
255                 return -ENOMEM;
256
257         for (i = 0; i < priv->num_tx_queues; i++) {
258                 tx_queue = priv->tx_queue[i];
259                 tx_queue->tx_bd_base = vaddr;
260                 tx_queue->tx_bd_dma_base = addr;
261                 tx_queue->dev = ndev;
262                 /* enet DMA only understands physical addresses */
263                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265         }
266
267         /* Start the rx descriptor ring where the tx ring leaves off */
268         for (i = 0; i < priv->num_rx_queues; i++) {
269                 rx_queue = priv->rx_queue[i];
270                 rx_queue->rx_bd_base = vaddr;
271                 rx_queue->rx_bd_dma_base = addr;
272                 rx_queue->dev = ndev;
273                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275         }
276
277         /* Setup the skbuff rings */
278         for (i = 0; i < priv->num_tx_queues; i++) {
279                 tx_queue = priv->tx_queue[i];
280                 tx_queue->tx_skbuff =
281                         kmalloc_array(tx_queue->tx_ring_size,
282                                       sizeof(*tx_queue->tx_skbuff),
283                                       GFP_KERNEL);
284                 if (!tx_queue->tx_skbuff)
285                         goto cleanup;
286
287                 for (k = 0; k < tx_queue->tx_ring_size; k++)
288                         tx_queue->tx_skbuff[k] = NULL;
289         }
290
291         for (i = 0; i < priv->num_rx_queues; i++) {
292                 rx_queue = priv->rx_queue[i];
293                 rx_queue->rx_skbuff =
294                         kmalloc_array(rx_queue->rx_ring_size,
295                                       sizeof(*rx_queue->rx_skbuff),
296                                       GFP_KERNEL);
297                 if (!rx_queue->rx_skbuff)
298                         goto cleanup;
299
300                 for (j = 0; j < rx_queue->rx_ring_size; j++)
301                         rx_queue->rx_skbuff[j] = NULL;
302         }
303
304         if (gfar_init_bds(ndev))
305                 goto cleanup;
306
307         return 0;
308
309 cleanup:
310         free_skb_resources(priv);
311         return -ENOMEM;
312 }
313
314 static void gfar_init_tx_rx_base(struct gfar_private *priv)
315 {
316         struct gfar __iomem *regs = priv->gfargrp[0].regs;
317         u32 __iomem *baddr;
318         int i;
319
320         baddr = &regs->tbase0;
321         for (i = 0; i < priv->num_tx_queues; i++) {
322                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
323                 baddr += 2;
324         }
325
326         baddr = &regs->rbase0;
327         for (i = 0; i < priv->num_rx_queues; i++) {
328                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
329                 baddr += 2;
330         }
331 }
332
333 static void gfar_init_mac(struct net_device *ndev)
334 {
335         struct gfar_private *priv = netdev_priv(ndev);
336         struct gfar __iomem *regs = priv->gfargrp[0].regs;
337         u32 rctrl = 0;
338         u32 tctrl = 0;
339         u32 attrs = 0;
340
341         /* write the tx/rx base registers */
342         gfar_init_tx_rx_base(priv);
343
344         /* Configure the coalescing support */
345         gfar_configure_coalescing_all(priv);
346
347         /* set this when rx hw offload (TOE) functions are being used */
348         priv->uses_rxfcb = 0;
349
350         if (priv->rx_filer_enable) {
351                 rctrl |= RCTRL_FILREN;
352                 /* Program the RIR0 reg with the required distribution */
353                 gfar_write(&regs->rir0, DEFAULT_RIR0);
354         }
355
356         /* Restore PROMISC mode */
357         if (ndev->flags & IFF_PROMISC)
358                 rctrl |= RCTRL_PROM;
359
360         if (ndev->features & NETIF_F_RXCSUM) {
361                 rctrl |= RCTRL_CHECKSUMMING;
362                 priv->uses_rxfcb = 1;
363         }
364
365         if (priv->extended_hash) {
366                 rctrl |= RCTRL_EXTHASH;
367
368                 gfar_clear_exact_match(ndev);
369                 rctrl |= RCTRL_EMEN;
370         }
371
372         if (priv->padding) {
373                 rctrl &= ~RCTRL_PAL_MASK;
374                 rctrl |= RCTRL_PADDING(priv->padding);
375         }
376
377         /* Insert receive time stamps into padding alignment bytes */
378         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
379                 rctrl &= ~RCTRL_PAL_MASK;
380                 rctrl |= RCTRL_PADDING(8);
381                 priv->padding = 8;
382         }
383
384         /* Enable HW time stamping if requested from user space */
385         if (priv->hwts_rx_en) {
386                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
387                 priv->uses_rxfcb = 1;
388         }
389
390         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
391                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
392                 priv->uses_rxfcb = 1;
393         }
394
395         /* Init rctrl based on our settings */
396         gfar_write(&regs->rctrl, rctrl);
397
398         if (ndev->features & NETIF_F_IP_CSUM)
399                 tctrl |= TCTRL_INIT_CSUM;
400
401         if (priv->prio_sched_en)
402                 tctrl |= TCTRL_TXSCHED_PRIO;
403         else {
404                 tctrl |= TCTRL_TXSCHED_WRRS;
405                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
406                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
407         }
408
409         gfar_write(&regs->tctrl, tctrl);
410
411         /* Set the extraction length and index */
412         attrs = ATTRELI_EL(priv->rx_stash_size) |
413                 ATTRELI_EI(priv->rx_stash_index);
414
415         gfar_write(&regs->attreli, attrs);
416
417         /* Start with defaults, and add stashing or locking
418          * depending on the approprate variables
419          */
420         attrs = ATTR_INIT_SETTINGS;
421
422         if (priv->bd_stash_en)
423                 attrs |= ATTR_BDSTASH;
424
425         if (priv->rx_stash_size != 0)
426                 attrs |= ATTR_BUFSTASH;
427
428         gfar_write(&regs->attr, attrs);
429
430         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
431         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
432         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
433 }
434
435 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
436 {
437         struct gfar_private *priv = netdev_priv(dev);
438         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
439         unsigned long tx_packets = 0, tx_bytes = 0;
440         int i;
441
442         for (i = 0; i < priv->num_rx_queues; i++) {
443                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
444                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
445                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
446         }
447
448         dev->stats.rx_packets = rx_packets;
449         dev->stats.rx_bytes   = rx_bytes;
450         dev->stats.rx_dropped = rx_dropped;
451
452         for (i = 0; i < priv->num_tx_queues; i++) {
453                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
454                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
455         }
456
457         dev->stats.tx_bytes   = tx_bytes;
458         dev->stats.tx_packets = tx_packets;
459
460         return &dev->stats;
461 }
462
463 static const struct net_device_ops gfar_netdev_ops = {
464         .ndo_open = gfar_enet_open,
465         .ndo_start_xmit = gfar_start_xmit,
466         .ndo_stop = gfar_close,
467         .ndo_change_mtu = gfar_change_mtu,
468         .ndo_set_features = gfar_set_features,
469         .ndo_set_rx_mode = gfar_set_multi,
470         .ndo_tx_timeout = gfar_timeout,
471         .ndo_do_ioctl = gfar_ioctl,
472         .ndo_get_stats = gfar_get_stats,
473         .ndo_set_mac_address = eth_mac_addr,
474         .ndo_validate_addr = eth_validate_addr,
475 #ifdef CONFIG_NET_POLL_CONTROLLER
476         .ndo_poll_controller = gfar_netpoll,
477 #endif
478 };
479
480 void lock_rx_qs(struct gfar_private *priv)
481 {
482         int i;
483
484         for (i = 0; i < priv->num_rx_queues; i++)
485                 spin_lock(&priv->rx_queue[i]->rxlock);
486 }
487
488 void lock_tx_qs(struct gfar_private *priv)
489 {
490         int i;
491
492         for (i = 0; i < priv->num_tx_queues; i++)
493                 spin_lock(&priv->tx_queue[i]->txlock);
494 }
495
496 void unlock_rx_qs(struct gfar_private *priv)
497 {
498         int i;
499
500         for (i = 0; i < priv->num_rx_queues; i++)
501                 spin_unlock(&priv->rx_queue[i]->rxlock);
502 }
503
504 void unlock_tx_qs(struct gfar_private *priv)
505 {
506         int i;
507
508         for (i = 0; i < priv->num_tx_queues; i++)
509                 spin_unlock(&priv->tx_queue[i]->txlock);
510 }
511
512 static void free_tx_pointers(struct gfar_private *priv)
513 {
514         int i;
515
516         for (i = 0; i < priv->num_tx_queues; i++)
517                 kfree(priv->tx_queue[i]);
518 }
519
520 static void free_rx_pointers(struct gfar_private *priv)
521 {
522         int i;
523
524         for (i = 0; i < priv->num_rx_queues; i++)
525                 kfree(priv->rx_queue[i]);
526 }
527
528 static void unmap_group_regs(struct gfar_private *priv)
529 {
530         int i;
531
532         for (i = 0; i < MAXGROUPS; i++)
533                 if (priv->gfargrp[i].regs)
534                         iounmap(priv->gfargrp[i].regs);
535 }
536
537 static void free_gfar_dev(struct gfar_private *priv)
538 {
539         int i, j;
540
541         for (i = 0; i < priv->num_grps; i++)
542                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
543                         kfree(priv->gfargrp[i].irqinfo[j]);
544                         priv->gfargrp[i].irqinfo[j] = NULL;
545                 }
546
547         free_netdev(priv->ndev);
548 }
549
550 static void disable_napi(struct gfar_private *priv)
551 {
552         int i;
553
554         for (i = 0; i < priv->num_grps; i++)
555                 napi_disable(&priv->gfargrp[i].napi);
556 }
557
558 static void enable_napi(struct gfar_private *priv)
559 {
560         int i;
561
562         for (i = 0; i < priv->num_grps; i++)
563                 napi_enable(&priv->gfargrp[i].napi);
564 }
565
566 static int gfar_parse_group(struct device_node *np,
567                             struct gfar_private *priv, const char *model)
568 {
569         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
570         u32 *queue_mask;
571         int i;
572
573         for (i = 0; i < GFAR_NUM_IRQS; i++) {
574                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
575                                           GFP_KERNEL);
576                 if (!grp->irqinfo[i])
577                         return -ENOMEM;
578         }
579
580         grp->regs = of_iomap(np, 0);
581         if (!grp->regs)
582                 return -ENOMEM;
583
584         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
585
586         /* If we aren't the FEC we have multiple interrupts */
587         if (model && strcasecmp(model, "FEC")) {
588                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
589                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
590                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
591                     gfar_irq(grp, RX)->irq == NO_IRQ ||
592                     gfar_irq(grp, ER)->irq == NO_IRQ)
593                         return -EINVAL;
594         }
595
596         grp->priv = priv;
597         spin_lock_init(&grp->grplock);
598         if (priv->mode == MQ_MG_MODE) {
599                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
600                 grp->rx_bit_map = queue_mask ?
601                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
602                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
603                 grp->tx_bit_map = queue_mask ?
604                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
605         } else {
606                 grp->rx_bit_map = 0xFF;
607                 grp->tx_bit_map = 0xFF;
608         }
609         priv->num_grps++;
610
611         return 0;
612 }
613
614 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
615 {
616         const char *model;
617         const char *ctype;
618         const void *mac_addr;
619         int err = 0, i;
620         struct net_device *dev = NULL;
621         struct gfar_private *priv = NULL;
622         struct device_node *np = ofdev->dev.of_node;
623         struct device_node *child = NULL;
624         const u32 *stash;
625         const u32 *stash_len;
626         const u32 *stash_idx;
627         unsigned int num_tx_qs, num_rx_qs;
628         u32 *tx_queues, *rx_queues;
629
630         if (!np || !of_device_is_available(np))
631                 return -ENODEV;
632
633         /* parse the num of tx and rx queues */
634         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
635         num_tx_qs = tx_queues ? *tx_queues : 1;
636
637         if (num_tx_qs > MAX_TX_QS) {
638                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
639                        num_tx_qs, MAX_TX_QS);
640                 pr_err("Cannot do alloc_etherdev, aborting\n");
641                 return -EINVAL;
642         }
643
644         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
645         num_rx_qs = rx_queues ? *rx_queues : 1;
646
647         if (num_rx_qs > MAX_RX_QS) {
648                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
649                        num_rx_qs, MAX_RX_QS);
650                 pr_err("Cannot do alloc_etherdev, aborting\n");
651                 return -EINVAL;
652         }
653
654         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
655         dev = *pdev;
656         if (NULL == dev)
657                 return -ENOMEM;
658
659         priv = netdev_priv(dev);
660         priv->ndev = dev;
661
662         priv->num_tx_queues = num_tx_qs;
663         netif_set_real_num_rx_queues(dev, num_rx_qs);
664         priv->num_rx_queues = num_rx_qs;
665         priv->num_grps = 0x0;
666
667         /* Init Rx queue filer rule set linked list */
668         INIT_LIST_HEAD(&priv->rx_list.list);
669         priv->rx_list.count = 0;
670         mutex_init(&priv->rx_queue_access);
671
672         model = of_get_property(np, "model", NULL);
673
674         for (i = 0; i < MAXGROUPS; i++)
675                 priv->gfargrp[i].regs = NULL;
676
677         /* Parse and initialize group specific information */
678         if (of_device_is_compatible(np, "fsl,etsec2")) {
679                 priv->mode = MQ_MG_MODE;
680                 for_each_child_of_node(np, child) {
681                         err = gfar_parse_group(child, priv, model);
682                         if (err)
683                                 goto err_grp_init;
684                 }
685         } else {
686                 priv->mode = SQ_SG_MODE;
687                 err = gfar_parse_group(np, priv, model);
688                 if (err)
689                         goto err_grp_init;
690         }
691
692         for (i = 0; i < priv->num_tx_queues; i++)
693                 priv->tx_queue[i] = NULL;
694         for (i = 0; i < priv->num_rx_queues; i++)
695                 priv->rx_queue[i] = NULL;
696
697         for (i = 0; i < priv->num_tx_queues; i++) {
698                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
699                                             GFP_KERNEL);
700                 if (!priv->tx_queue[i]) {
701                         err = -ENOMEM;
702                         goto tx_alloc_failed;
703                 }
704                 priv->tx_queue[i]->tx_skbuff = NULL;
705                 priv->tx_queue[i]->qindex = i;
706                 priv->tx_queue[i]->dev = dev;
707                 spin_lock_init(&(priv->tx_queue[i]->txlock));
708         }
709
710         for (i = 0; i < priv->num_rx_queues; i++) {
711                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
712                                             GFP_KERNEL);
713                 if (!priv->rx_queue[i]) {
714                         err = -ENOMEM;
715                         goto rx_alloc_failed;
716                 }
717                 priv->rx_queue[i]->rx_skbuff = NULL;
718                 priv->rx_queue[i]->qindex = i;
719                 priv->rx_queue[i]->dev = dev;
720                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
721         }
722
723
724         stash = of_get_property(np, "bd-stash", NULL);
725
726         if (stash) {
727                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
728                 priv->bd_stash_en = 1;
729         }
730
731         stash_len = of_get_property(np, "rx-stash-len", NULL);
732
733         if (stash_len)
734                 priv->rx_stash_size = *stash_len;
735
736         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
737
738         if (stash_idx)
739                 priv->rx_stash_index = *stash_idx;
740
741         if (stash_len || stash_idx)
742                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
743
744         mac_addr = of_get_mac_address(np);
745
746         if (mac_addr)
747                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
748
749         if (model && !strcasecmp(model, "TSEC"))
750                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
751                                      FSL_GIANFAR_DEV_HAS_COALESCE |
752                                      FSL_GIANFAR_DEV_HAS_RMON |
753                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
754
755         if (model && !strcasecmp(model, "eTSEC"))
756                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
757                                      FSL_GIANFAR_DEV_HAS_COALESCE |
758                                      FSL_GIANFAR_DEV_HAS_RMON |
759                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
760                                      FSL_GIANFAR_DEV_HAS_PADDING |
761                                      FSL_GIANFAR_DEV_HAS_CSUM |
762                                      FSL_GIANFAR_DEV_HAS_VLAN |
763                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
764                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
765                                      FSL_GIANFAR_DEV_HAS_TIMER;
766
767         ctype = of_get_property(np, "phy-connection-type", NULL);
768
769         /* We only care about rgmii-id.  The rest are autodetected */
770         if (ctype && !strcmp(ctype, "rgmii-id"))
771                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
772         else
773                 priv->interface = PHY_INTERFACE_MODE_MII;
774
775         if (of_get_property(np, "fsl,magic-packet", NULL))
776                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
777
778         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
779
780         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
781         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
782
783         return 0;
784
785 rx_alloc_failed:
786         free_rx_pointers(priv);
787 tx_alloc_failed:
788         free_tx_pointers(priv);
789 err_grp_init:
790         unmap_group_regs(priv);
791         free_gfar_dev(priv);
792         return err;
793 }
794
795 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
796                                struct ifreq *ifr, int cmd)
797 {
798         struct hwtstamp_config config;
799         struct gfar_private *priv = netdev_priv(netdev);
800
801         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
802                 return -EFAULT;
803
804         /* reserved for future extensions */
805         if (config.flags)
806                 return -EINVAL;
807
808         switch (config.tx_type) {
809         case HWTSTAMP_TX_OFF:
810                 priv->hwts_tx_en = 0;
811                 break;
812         case HWTSTAMP_TX_ON:
813                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
814                         return -ERANGE;
815                 priv->hwts_tx_en = 1;
816                 break;
817         default:
818                 return -ERANGE;
819         }
820
821         switch (config.rx_filter) {
822         case HWTSTAMP_FILTER_NONE:
823                 if (priv->hwts_rx_en) {
824                         stop_gfar(netdev);
825                         priv->hwts_rx_en = 0;
826                         startup_gfar(netdev);
827                 }
828                 break;
829         default:
830                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
831                         return -ERANGE;
832                 if (!priv->hwts_rx_en) {
833                         stop_gfar(netdev);
834                         priv->hwts_rx_en = 1;
835                         startup_gfar(netdev);
836                 }
837                 config.rx_filter = HWTSTAMP_FILTER_ALL;
838                 break;
839         }
840
841         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
842                 -EFAULT : 0;
843 }
844
845 /* Ioctl MII Interface */
846 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
847 {
848         struct gfar_private *priv = netdev_priv(dev);
849
850         if (!netif_running(dev))
851                 return -EINVAL;
852
853         if (cmd == SIOCSHWTSTAMP)
854                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
855
856         if (!priv->phydev)
857                 return -ENODEV;
858
859         return phy_mii_ioctl(priv->phydev, rq, cmd);
860 }
861
862 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
863 {
864         unsigned int new_bit_map = 0x0;
865         int mask = 0x1 << (max_qs - 1), i;
866
867         for (i = 0; i < max_qs; i++) {
868                 if (bit_map & mask)
869                         new_bit_map = new_bit_map + (1 << i);
870                 mask = mask >> 0x1;
871         }
872         return new_bit_map;
873 }
874
875 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
876                                    u32 class)
877 {
878         u32 rqfpr = FPR_FILER_MASK;
879         u32 rqfcr = 0x0;
880
881         rqfar--;
882         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
883         priv->ftp_rqfpr[rqfar] = rqfpr;
884         priv->ftp_rqfcr[rqfar] = rqfcr;
885         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886
887         rqfar--;
888         rqfcr = RQFCR_CMP_NOMATCH;
889         priv->ftp_rqfpr[rqfar] = rqfpr;
890         priv->ftp_rqfcr[rqfar] = rqfcr;
891         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892
893         rqfar--;
894         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
895         rqfpr = class;
896         priv->ftp_rqfcr[rqfar] = rqfcr;
897         priv->ftp_rqfpr[rqfar] = rqfpr;
898         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899
900         rqfar--;
901         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
902         rqfpr = class;
903         priv->ftp_rqfcr[rqfar] = rqfcr;
904         priv->ftp_rqfpr[rqfar] = rqfpr;
905         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
906
907         return rqfar;
908 }
909
910 static void gfar_init_filer_table(struct gfar_private *priv)
911 {
912         int i = 0x0;
913         u32 rqfar = MAX_FILER_IDX;
914         u32 rqfcr = 0x0;
915         u32 rqfpr = FPR_FILER_MASK;
916
917         /* Default rule */
918         rqfcr = RQFCR_CMP_MATCH;
919         priv->ftp_rqfcr[rqfar] = rqfcr;
920         priv->ftp_rqfpr[rqfar] = rqfpr;
921         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
922
923         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
924         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
925         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
926         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
927         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
928         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
929
930         /* cur_filer_idx indicated the first non-masked rule */
931         priv->cur_filer_idx = rqfar;
932
933         /* Rest are masked rules */
934         rqfcr = RQFCR_CMP_NOMATCH;
935         for (i = 0; i < rqfar; i++) {
936                 priv->ftp_rqfcr[i] = rqfcr;
937                 priv->ftp_rqfpr[i] = rqfpr;
938                 gfar_write_filer(priv, i, rqfcr, rqfpr);
939         }
940 }
941
942 static void gfar_detect_errata(struct gfar_private *priv)
943 {
944         struct device *dev = &priv->ofdev->dev;
945         unsigned int pvr = mfspr(SPRN_PVR);
946         unsigned int svr = mfspr(SPRN_SVR);
947         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
948         unsigned int rev = svr & 0xffff;
949
950         /* MPC8313 Rev 2.0 and higher; All MPC837x */
951         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
952             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953                 priv->errata |= GFAR_ERRATA_74;
954
955         /* MPC8313 and MPC837x all rev */
956         if ((pvr == 0x80850010 && mod == 0x80b0) ||
957             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
958                 priv->errata |= GFAR_ERRATA_76;
959
960         /* MPC8313 and MPC837x all rev */
961         if ((pvr == 0x80850010 && mod == 0x80b0) ||
962             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
963                 priv->errata |= GFAR_ERRATA_A002;
964
965         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
966         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
967             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
968                 priv->errata |= GFAR_ERRATA_12;
969
970         if (priv->errata)
971                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
972                          priv->errata);
973 }
974
975 /* Set up the ethernet device structure, private data,
976  * and anything else we need before we start
977  */
978 static int gfar_probe(struct platform_device *ofdev)
979 {
980         u32 tempval;
981         struct net_device *dev = NULL;
982         struct gfar_private *priv = NULL;
983         struct gfar __iomem *regs = NULL;
984         int err = 0, i, grp_idx = 0;
985         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
986         u32 isrg = 0;
987         u32 __iomem *baddr;
988
989         err = gfar_of_init(ofdev, &dev);
990
991         if (err)
992                 return err;
993
994         priv = netdev_priv(dev);
995         priv->ndev = dev;
996         priv->ofdev = ofdev;
997         priv->dev = &ofdev->dev;
998         SET_NETDEV_DEV(dev, &ofdev->dev);
999
1000         spin_lock_init(&priv->bflock);
1001         INIT_WORK(&priv->reset_task, gfar_reset_task);
1002
1003         platform_set_drvdata(ofdev, priv);
1004         regs = priv->gfargrp[0].regs;
1005
1006         gfar_detect_errata(priv);
1007
1008         /* Stop the DMA engine now, in case it was running before
1009          * (The firmware could have used it, and left it running).
1010          */
1011         gfar_halt(dev);
1012
1013         /* Reset MAC layer */
1014         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1015
1016         /* We need to delay at least 3 TX clocks */
1017         udelay(2);
1018
1019         tempval = 0;
1020         if (!priv->pause_aneg_en && priv->tx_pause_en)
1021                 tempval |= MACCFG1_TX_FLOW;
1022         if (!priv->pause_aneg_en && priv->rx_pause_en)
1023                 tempval |= MACCFG1_RX_FLOW;
1024         /* the soft reset bit is not self-resetting, so we need to
1025          * clear it before resuming normal operation
1026          */
1027         gfar_write(&regs->maccfg1, tempval);
1028
1029         /* Initialize MACCFG2. */
1030         tempval = MACCFG2_INIT_SETTINGS;
1031         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1032                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1033         gfar_write(&regs->maccfg2, tempval);
1034
1035         /* Initialize ECNTRL */
1036         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1037
1038         /* Set the dev->base_addr to the gfar reg region */
1039         dev->base_addr = (unsigned long) regs;
1040
1041         /* Fill in the dev structure */
1042         dev->watchdog_timeo = TX_TIMEOUT;
1043         dev->mtu = 1500;
1044         dev->netdev_ops = &gfar_netdev_ops;
1045         dev->ethtool_ops = &gfar_ethtool_ops;
1046
1047         /* Register for napi ...We are registering NAPI for each grp */
1048         if (priv->mode == SQ_SG_MODE)
1049                 netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1050                                GFAR_DEV_WEIGHT);
1051         else
1052                 for (i = 0; i < priv->num_grps; i++)
1053                         netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1054                                        GFAR_DEV_WEIGHT);
1055
1056         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1057                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1058                                    NETIF_F_RXCSUM;
1059                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1060                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1061         }
1062
1063         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1064                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1065                                     NETIF_F_HW_VLAN_CTAG_RX;
1066                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1067         }
1068
1069         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1070                 priv->extended_hash = 1;
1071                 priv->hash_width = 9;
1072
1073                 priv->hash_regs[0] = &regs->igaddr0;
1074                 priv->hash_regs[1] = &regs->igaddr1;
1075                 priv->hash_regs[2] = &regs->igaddr2;
1076                 priv->hash_regs[3] = &regs->igaddr3;
1077                 priv->hash_regs[4] = &regs->igaddr4;
1078                 priv->hash_regs[5] = &regs->igaddr5;
1079                 priv->hash_regs[6] = &regs->igaddr6;
1080                 priv->hash_regs[7] = &regs->igaddr7;
1081                 priv->hash_regs[8] = &regs->gaddr0;
1082                 priv->hash_regs[9] = &regs->gaddr1;
1083                 priv->hash_regs[10] = &regs->gaddr2;
1084                 priv->hash_regs[11] = &regs->gaddr3;
1085                 priv->hash_regs[12] = &regs->gaddr4;
1086                 priv->hash_regs[13] = &regs->gaddr5;
1087                 priv->hash_regs[14] = &regs->gaddr6;
1088                 priv->hash_regs[15] = &regs->gaddr7;
1089
1090         } else {
1091                 priv->extended_hash = 0;
1092                 priv->hash_width = 8;
1093
1094                 priv->hash_regs[0] = &regs->gaddr0;
1095                 priv->hash_regs[1] = &regs->gaddr1;
1096                 priv->hash_regs[2] = &regs->gaddr2;
1097                 priv->hash_regs[3] = &regs->gaddr3;
1098                 priv->hash_regs[4] = &regs->gaddr4;
1099                 priv->hash_regs[5] = &regs->gaddr5;
1100                 priv->hash_regs[6] = &regs->gaddr6;
1101                 priv->hash_regs[7] = &regs->gaddr7;
1102         }
1103
1104         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1105                 priv->padding = DEFAULT_PADDING;
1106         else
1107                 priv->padding = 0;
1108
1109         if (dev->features & NETIF_F_IP_CSUM ||
1110             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1111                 dev->needed_headroom = GMAC_FCB_LEN;
1112
1113         /* Program the isrg regs only if number of grps > 1 */
1114         if (priv->num_grps > 1) {
1115                 baddr = &regs->isrg0;
1116                 for (i = 0; i < priv->num_grps; i++) {
1117                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1118                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1119                         gfar_write(baddr, isrg);
1120                         baddr++;
1121                         isrg = 0x0;
1122                 }
1123         }
1124
1125         /* Need to reverse the bit maps as  bit_map's MSB is q0
1126          * but, for_each_set_bit parses from right to left, which
1127          * basically reverses the queue numbers
1128          */
1129         for (i = 0; i< priv->num_grps; i++) {
1130                 priv->gfargrp[i].tx_bit_map =
1131                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1132                 priv->gfargrp[i].rx_bit_map =
1133                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1134         }
1135
1136         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1137          * also assign queues to groups
1138          */
1139         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1140                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1141
1142                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1143                                  priv->num_rx_queues) {
1144                         priv->gfargrp[grp_idx].num_rx_queues++;
1145                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1146                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1147                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1148                 }
1149                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1150
1151                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1152                                  priv->num_tx_queues) {
1153                         priv->gfargrp[grp_idx].num_tx_queues++;
1154                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1155                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1156                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1157                 }
1158                 priv->gfargrp[grp_idx].rstat = rstat;
1159                 priv->gfargrp[grp_idx].tstat = tstat;
1160                 rstat = tstat =0;
1161         }
1162
1163         gfar_write(&regs->rqueue, rqueue);
1164         gfar_write(&regs->tqueue, tqueue);
1165
1166         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1167
1168         /* Initializing some of the rx/tx queue level parameters */
1169         for (i = 0; i < priv->num_tx_queues; i++) {
1170                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1171                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1172                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1173                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1174         }
1175
1176         for (i = 0; i < priv->num_rx_queues; i++) {
1177                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1178                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1179                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1180         }
1181
1182         /* always enable rx filer */
1183         priv->rx_filer_enable = 1;
1184         /* Enable most messages by default */
1185         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1186         /* use pritority h/w tx queue scheduling for single queue devices */
1187         if (priv->num_tx_queues == 1)
1188                 priv->prio_sched_en = 1;
1189
1190         /* Carrier starts down, phylib will bring it up */
1191         netif_carrier_off(dev);
1192
1193         err = register_netdev(dev);
1194
1195         if (err) {
1196                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1197                 goto register_fail;
1198         }
1199
1200         device_init_wakeup(&dev->dev,
1201                            priv->device_flags &
1202                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1203
1204         /* fill out IRQ number and name fields */
1205         for (i = 0; i < priv->num_grps; i++) {
1206                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1207                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1208                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1209                                 dev->name, "_g", '0' + i, "_tx");
1210                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1211                                 dev->name, "_g", '0' + i, "_rx");
1212                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1213                                 dev->name, "_g", '0' + i, "_er");
1214                 } else
1215                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1216         }
1217
1218         /* Initialize the filer table */
1219         gfar_init_filer_table(priv);
1220
1221         /* Create all the sysfs files */
1222         gfar_init_sysfs(dev);
1223
1224         /* Print out the device info */
1225         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1226
1227         /* Even more device info helps when determining which kernel
1228          * provided which set of benchmarks.
1229          */
1230         netdev_info(dev, "Running with NAPI enabled\n");
1231         for (i = 0; i < priv->num_rx_queues; i++)
1232                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1233                             i, priv->rx_queue[i]->rx_ring_size);
1234         for (i = 0; i < priv->num_tx_queues; i++)
1235                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1236                             i, priv->tx_queue[i]->tx_ring_size);
1237
1238         return 0;
1239
1240 register_fail:
1241         unmap_group_regs(priv);
1242         free_tx_pointers(priv);
1243         free_rx_pointers(priv);
1244         if (priv->phy_node)
1245                 of_node_put(priv->phy_node);
1246         if (priv->tbi_node)
1247                 of_node_put(priv->tbi_node);
1248         free_gfar_dev(priv);
1249         return err;
1250 }
1251
1252 static int gfar_remove(struct platform_device *ofdev)
1253 {
1254         struct gfar_private *priv = platform_get_drvdata(ofdev);
1255
1256         if (priv->phy_node)
1257                 of_node_put(priv->phy_node);
1258         if (priv->tbi_node)
1259                 of_node_put(priv->tbi_node);
1260
1261         unregister_netdev(priv->ndev);
1262         unmap_group_regs(priv);
1263         free_gfar_dev(priv);
1264
1265         return 0;
1266 }
1267
1268 #ifdef CONFIG_PM
1269
1270 static int gfar_suspend(struct device *dev)
1271 {
1272         struct gfar_private *priv = dev_get_drvdata(dev);
1273         struct net_device *ndev = priv->ndev;
1274         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1275         unsigned long flags;
1276         u32 tempval;
1277
1278         int magic_packet = priv->wol_en &&
1279                            (priv->device_flags &
1280                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1281
1282         netif_device_detach(ndev);
1283
1284         if (netif_running(ndev)) {
1285
1286                 local_irq_save(flags);
1287                 lock_tx_qs(priv);
1288                 lock_rx_qs(priv);
1289
1290                 gfar_halt_nodisable(ndev);
1291
1292                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1293                 tempval = gfar_read(&regs->maccfg1);
1294
1295                 tempval &= ~MACCFG1_TX_EN;
1296
1297                 if (!magic_packet)
1298                         tempval &= ~MACCFG1_RX_EN;
1299
1300                 gfar_write(&regs->maccfg1, tempval);
1301
1302                 unlock_rx_qs(priv);
1303                 unlock_tx_qs(priv);
1304                 local_irq_restore(flags);
1305
1306                 disable_napi(priv);
1307
1308                 if (magic_packet) {
1309                         /* Enable interrupt on Magic Packet */
1310                         gfar_write(&regs->imask, IMASK_MAG);
1311
1312                         /* Enable Magic Packet mode */
1313                         tempval = gfar_read(&regs->maccfg2);
1314                         tempval |= MACCFG2_MPEN;
1315                         gfar_write(&regs->maccfg2, tempval);
1316                 } else {
1317                         phy_stop(priv->phydev);
1318                 }
1319         }
1320
1321         return 0;
1322 }
1323
1324 static int gfar_resume(struct device *dev)
1325 {
1326         struct gfar_private *priv = dev_get_drvdata(dev);
1327         struct net_device *ndev = priv->ndev;
1328         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1329         unsigned long flags;
1330         u32 tempval;
1331         int magic_packet = priv->wol_en &&
1332                            (priv->device_flags &
1333                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1334
1335         if (!netif_running(ndev)) {
1336                 netif_device_attach(ndev);
1337                 return 0;
1338         }
1339
1340         if (!magic_packet && priv->phydev)
1341                 phy_start(priv->phydev);
1342
1343         /* Disable Magic Packet mode, in case something
1344          * else woke us up.
1345          */
1346         local_irq_save(flags);
1347         lock_tx_qs(priv);
1348         lock_rx_qs(priv);
1349
1350         tempval = gfar_read(&regs->maccfg2);
1351         tempval &= ~MACCFG2_MPEN;
1352         gfar_write(&regs->maccfg2, tempval);
1353
1354         gfar_start(ndev);
1355
1356         unlock_rx_qs(priv);
1357         unlock_tx_qs(priv);
1358         local_irq_restore(flags);
1359
1360         netif_device_attach(ndev);
1361
1362         enable_napi(priv);
1363
1364         return 0;
1365 }
1366
1367 static int gfar_restore(struct device *dev)
1368 {
1369         struct gfar_private *priv = dev_get_drvdata(dev);
1370         struct net_device *ndev = priv->ndev;
1371
1372         if (!netif_running(ndev)) {
1373                 netif_device_attach(ndev);
1374
1375                 return 0;
1376         }
1377
1378         if (gfar_init_bds(ndev)) {
1379                 free_skb_resources(priv);
1380                 return -ENOMEM;
1381         }
1382
1383         init_registers(ndev);
1384         gfar_set_mac_address(ndev);
1385         gfar_init_mac(ndev);
1386         gfar_start(ndev);
1387
1388         priv->oldlink = 0;
1389         priv->oldspeed = 0;
1390         priv->oldduplex = -1;
1391
1392         if (priv->phydev)
1393                 phy_start(priv->phydev);
1394
1395         netif_device_attach(ndev);
1396         enable_napi(priv);
1397
1398         return 0;
1399 }
1400
1401 static struct dev_pm_ops gfar_pm_ops = {
1402         .suspend = gfar_suspend,
1403         .resume = gfar_resume,
1404         .freeze = gfar_suspend,
1405         .thaw = gfar_resume,
1406         .restore = gfar_restore,
1407 };
1408
1409 #define GFAR_PM_OPS (&gfar_pm_ops)
1410
1411 #else
1412
1413 #define GFAR_PM_OPS NULL
1414
1415 #endif
1416
1417 /* Reads the controller's registers to determine what interface
1418  * connects it to the PHY.
1419  */
1420 static phy_interface_t gfar_get_interface(struct net_device *dev)
1421 {
1422         struct gfar_private *priv = netdev_priv(dev);
1423         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1424         u32 ecntrl;
1425
1426         ecntrl = gfar_read(&regs->ecntrl);
1427
1428         if (ecntrl & ECNTRL_SGMII_MODE)
1429                 return PHY_INTERFACE_MODE_SGMII;
1430
1431         if (ecntrl & ECNTRL_TBI_MODE) {
1432                 if (ecntrl & ECNTRL_REDUCED_MODE)
1433                         return PHY_INTERFACE_MODE_RTBI;
1434                 else
1435                         return PHY_INTERFACE_MODE_TBI;
1436         }
1437
1438         if (ecntrl & ECNTRL_REDUCED_MODE) {
1439                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1440                         return PHY_INTERFACE_MODE_RMII;
1441                 }
1442                 else {
1443                         phy_interface_t interface = priv->interface;
1444
1445                         /* This isn't autodetected right now, so it must
1446                          * be set by the device tree or platform code.
1447                          */
1448                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1449                                 return PHY_INTERFACE_MODE_RGMII_ID;
1450
1451                         return PHY_INTERFACE_MODE_RGMII;
1452                 }
1453         }
1454
1455         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1456                 return PHY_INTERFACE_MODE_GMII;
1457
1458         return PHY_INTERFACE_MODE_MII;
1459 }
1460
1461
1462 /* Initializes driver's PHY state, and attaches to the PHY.
1463  * Returns 0 on success.
1464  */
1465 static int init_phy(struct net_device *dev)
1466 {
1467         struct gfar_private *priv = netdev_priv(dev);
1468         uint gigabit_support =
1469                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1470                 GFAR_SUPPORTED_GBIT : 0;
1471         phy_interface_t interface;
1472
1473         priv->oldlink = 0;
1474         priv->oldspeed = 0;
1475         priv->oldduplex = -1;
1476
1477         interface = gfar_get_interface(dev);
1478
1479         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1480                                       interface);
1481         if (!priv->phydev)
1482                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1483                                                          interface);
1484         if (!priv->phydev) {
1485                 dev_err(&dev->dev, "could not attach to PHY\n");
1486                 return -ENODEV;
1487         }
1488
1489         if (interface == PHY_INTERFACE_MODE_SGMII)
1490                 gfar_configure_serdes(dev);
1491
1492         /* Remove any features not supported by the controller */
1493         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1494         priv->phydev->advertising = priv->phydev->supported;
1495
1496         return 0;
1497 }
1498
1499 /* Initialize TBI PHY interface for communicating with the
1500  * SERDES lynx PHY on the chip.  We communicate with this PHY
1501  * through the MDIO bus on each controller, treating it as a
1502  * "normal" PHY at the address found in the TBIPA register.  We assume
1503  * that the TBIPA register is valid.  Either the MDIO bus code will set
1504  * it to a value that doesn't conflict with other PHYs on the bus, or the
1505  * value doesn't matter, as there are no other PHYs on the bus.
1506  */
1507 static void gfar_configure_serdes(struct net_device *dev)
1508 {
1509         struct gfar_private *priv = netdev_priv(dev);
1510         struct phy_device *tbiphy;
1511
1512         if (!priv->tbi_node) {
1513                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1514                                     "device tree specify a tbi-handle\n");
1515                 return;
1516         }
1517
1518         tbiphy = of_phy_find_device(priv->tbi_node);
1519         if (!tbiphy) {
1520                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1521                 return;
1522         }
1523
1524         /* If the link is already up, we must already be ok, and don't need to
1525          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1526          * everything for us?  Resetting it takes the link down and requires
1527          * several seconds for it to come back.
1528          */
1529         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1530                 return;
1531
1532         /* Single clk mode, mii mode off(for serdes communication) */
1533         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1534
1535         phy_write(tbiphy, MII_ADVERTISE,
1536                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1537                   ADVERTISE_1000XPSE_ASYM);
1538
1539         phy_write(tbiphy, MII_BMCR,
1540                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1541                   BMCR_SPEED1000);
1542 }
1543
1544 static void init_registers(struct net_device *dev)
1545 {
1546         struct gfar_private *priv = netdev_priv(dev);
1547         struct gfar __iomem *regs = NULL;
1548         int i;
1549
1550         for (i = 0; i < priv->num_grps; i++) {
1551                 regs = priv->gfargrp[i].regs;
1552                 /* Clear IEVENT */
1553                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1554
1555                 /* Initialize IMASK */
1556                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1557         }
1558
1559         regs = priv->gfargrp[0].regs;
1560         /* Init hash registers to zero */
1561         gfar_write(&regs->igaddr0, 0);
1562         gfar_write(&regs->igaddr1, 0);
1563         gfar_write(&regs->igaddr2, 0);
1564         gfar_write(&regs->igaddr3, 0);
1565         gfar_write(&regs->igaddr4, 0);
1566         gfar_write(&regs->igaddr5, 0);
1567         gfar_write(&regs->igaddr6, 0);
1568         gfar_write(&regs->igaddr7, 0);
1569
1570         gfar_write(&regs->gaddr0, 0);
1571         gfar_write(&regs->gaddr1, 0);
1572         gfar_write(&regs->gaddr2, 0);
1573         gfar_write(&regs->gaddr3, 0);
1574         gfar_write(&regs->gaddr4, 0);
1575         gfar_write(&regs->gaddr5, 0);
1576         gfar_write(&regs->gaddr6, 0);
1577         gfar_write(&regs->gaddr7, 0);
1578
1579         /* Zero out the rmon mib registers if it has them */
1580         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1581                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1582
1583                 /* Mask off the CAM interrupts */
1584                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1585                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1586         }
1587
1588         /* Initialize the max receive buffer length */
1589         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1590
1591         /* Initialize the Minimum Frame Length Register */
1592         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1593 }
1594
1595 static int __gfar_is_rx_idle(struct gfar_private *priv)
1596 {
1597         u32 res;
1598
1599         /* Normaly TSEC should not hang on GRS commands, so we should
1600          * actually wait for IEVENT_GRSC flag.
1601          */
1602         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1603                 return 0;
1604
1605         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1606          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1607          * and the Rx can be safely reset.
1608          */
1609         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1610         res &= 0x7f807f80;
1611         if ((res & 0xffff) == (res >> 16))
1612                 return 1;
1613
1614         return 0;
1615 }
1616
1617 /* Halt the receive and transmit queues */
1618 static void gfar_halt_nodisable(struct net_device *dev)
1619 {
1620         struct gfar_private *priv = netdev_priv(dev);
1621         struct gfar __iomem *regs = NULL;
1622         u32 tempval;
1623         int i;
1624
1625         for (i = 0; i < priv->num_grps; i++) {
1626                 regs = priv->gfargrp[i].regs;
1627                 /* Mask all interrupts */
1628                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1629
1630                 /* Clear all interrupts */
1631                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1632         }
1633
1634         regs = priv->gfargrp[0].regs;
1635         /* Stop the DMA, and wait for it to stop */
1636         tempval = gfar_read(&regs->dmactrl);
1637         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1638             (DMACTRL_GRS | DMACTRL_GTS)) {
1639                 int ret;
1640
1641                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1642                 gfar_write(&regs->dmactrl, tempval);
1643
1644                 do {
1645                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1646                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1647                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1648                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1649                                 ret = __gfar_is_rx_idle(priv);
1650                 } while (!ret);
1651         }
1652 }
1653
1654 /* Halt the receive and transmit queues */
1655 void gfar_halt(struct net_device *dev)
1656 {
1657         struct gfar_private *priv = netdev_priv(dev);
1658         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1659         u32 tempval;
1660
1661         gfar_halt_nodisable(dev);
1662
1663         /* Disable Rx and Tx */
1664         tempval = gfar_read(&regs->maccfg1);
1665         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1666         gfar_write(&regs->maccfg1, tempval);
1667 }
1668
1669 static void free_grp_irqs(struct gfar_priv_grp *grp)
1670 {
1671         free_irq(gfar_irq(grp, TX)->irq, grp);
1672         free_irq(gfar_irq(grp, RX)->irq, grp);
1673         free_irq(gfar_irq(grp, ER)->irq, grp);
1674 }
1675
1676 void stop_gfar(struct net_device *dev)
1677 {
1678         struct gfar_private *priv = netdev_priv(dev);
1679         unsigned long flags;
1680         int i;
1681
1682         phy_stop(priv->phydev);
1683
1684
1685         /* Lock it down */
1686         local_irq_save(flags);
1687         lock_tx_qs(priv);
1688         lock_rx_qs(priv);
1689
1690         gfar_halt(dev);
1691
1692         unlock_rx_qs(priv);
1693         unlock_tx_qs(priv);
1694         local_irq_restore(flags);
1695
1696         /* Free the IRQs */
1697         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1698                 for (i = 0; i < priv->num_grps; i++)
1699                         free_grp_irqs(&priv->gfargrp[i]);
1700         } else {
1701                 for (i = 0; i < priv->num_grps; i++)
1702                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1703                                  &priv->gfargrp[i]);
1704         }
1705
1706         free_skb_resources(priv);
1707 }
1708
1709 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1710 {
1711         struct txbd8 *txbdp;
1712         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1713         int i, j;
1714
1715         txbdp = tx_queue->tx_bd_base;
1716
1717         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1718                 if (!tx_queue->tx_skbuff[i])
1719                         continue;
1720
1721                 dma_unmap_single(priv->dev, txbdp->bufPtr,
1722                                  txbdp->length, DMA_TO_DEVICE);
1723                 txbdp->lstatus = 0;
1724                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1725                      j++) {
1726                         txbdp++;
1727                         dma_unmap_page(priv->dev, txbdp->bufPtr,
1728                                        txbdp->length, DMA_TO_DEVICE);
1729                 }
1730                 txbdp++;
1731                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1732                 tx_queue->tx_skbuff[i] = NULL;
1733         }
1734         kfree(tx_queue->tx_skbuff);
1735         tx_queue->tx_skbuff = NULL;
1736 }
1737
1738 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1739 {
1740         struct rxbd8 *rxbdp;
1741         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1742         int i;
1743
1744         rxbdp = rx_queue->rx_bd_base;
1745
1746         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1747                 if (rx_queue->rx_skbuff[i]) {
1748                         dma_unmap_single(priv->dev, rxbdp->bufPtr,
1749                                          priv->rx_buffer_size,
1750                                          DMA_FROM_DEVICE);
1751                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1752                         rx_queue->rx_skbuff[i] = NULL;
1753                 }
1754                 rxbdp->lstatus = 0;
1755                 rxbdp->bufPtr = 0;
1756                 rxbdp++;
1757         }
1758         kfree(rx_queue->rx_skbuff);
1759         rx_queue->rx_skbuff = NULL;
1760 }
1761
1762 /* If there are any tx skbs or rx skbs still around, free them.
1763  * Then free tx_skbuff and rx_skbuff
1764  */
1765 static void free_skb_resources(struct gfar_private *priv)
1766 {
1767         struct gfar_priv_tx_q *tx_queue = NULL;
1768         struct gfar_priv_rx_q *rx_queue = NULL;
1769         int i;
1770
1771         /* Go through all the buffer descriptors and free their data buffers */
1772         for (i = 0; i < priv->num_tx_queues; i++) {
1773                 struct netdev_queue *txq;
1774
1775                 tx_queue = priv->tx_queue[i];
1776                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1777                 if (tx_queue->tx_skbuff)
1778                         free_skb_tx_queue(tx_queue);
1779                 netdev_tx_reset_queue(txq);
1780         }
1781
1782         for (i = 0; i < priv->num_rx_queues; i++) {
1783                 rx_queue = priv->rx_queue[i];
1784                 if (rx_queue->rx_skbuff)
1785                         free_skb_rx_queue(rx_queue);
1786         }
1787
1788         dma_free_coherent(priv->dev,
1789                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1790                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1791                           priv->tx_queue[0]->tx_bd_base,
1792                           priv->tx_queue[0]->tx_bd_dma_base);
1793 }
1794
1795 void gfar_start(struct net_device *dev)
1796 {
1797         struct gfar_private *priv = netdev_priv(dev);
1798         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1799         u32 tempval;
1800         int i = 0;
1801
1802         /* Enable Rx and Tx in MACCFG1 */
1803         tempval = gfar_read(&regs->maccfg1);
1804         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1805         gfar_write(&regs->maccfg1, tempval);
1806
1807         /* Initialize DMACTRL to have WWR and WOP */
1808         tempval = gfar_read(&regs->dmactrl);
1809         tempval |= DMACTRL_INIT_SETTINGS;
1810         gfar_write(&regs->dmactrl, tempval);
1811
1812         /* Make sure we aren't stopped */
1813         tempval = gfar_read(&regs->dmactrl);
1814         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1815         gfar_write(&regs->dmactrl, tempval);
1816
1817         for (i = 0; i < priv->num_grps; i++) {
1818                 regs = priv->gfargrp[i].regs;
1819                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1820                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1821                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1822                 /* Unmask the interrupts we look for */
1823                 gfar_write(&regs->imask, IMASK_DEFAULT);
1824         }
1825
1826         dev->trans_start = jiffies; /* prevent tx timeout */
1827 }
1828
1829 static void gfar_configure_coalescing(struct gfar_private *priv,
1830                                unsigned long tx_mask, unsigned long rx_mask)
1831 {
1832         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1833         u32 __iomem *baddr;
1834
1835         if (priv->mode == MQ_MG_MODE) {
1836                 int i = 0;
1837
1838                 baddr = &regs->txic0;
1839                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1840                         gfar_write(baddr + i, 0);
1841                         if (likely(priv->tx_queue[i]->txcoalescing))
1842                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1843                 }
1844
1845                 baddr = &regs->rxic0;
1846                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1847                         gfar_write(baddr + i, 0);
1848                         if (likely(priv->rx_queue[i]->rxcoalescing))
1849                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1850                 }
1851         } else {
1852                 /* Backward compatible case -- even if we enable
1853                  * multiple queues, there's only single reg to program
1854                  */
1855                 gfar_write(&regs->txic, 0);
1856                 if (likely(priv->tx_queue[0]->txcoalescing))
1857                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1858
1859                 gfar_write(&regs->rxic, 0);
1860                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1861                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1862         }
1863 }
1864
1865 void gfar_configure_coalescing_all(struct gfar_private *priv)
1866 {
1867         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1868 }
1869
1870 static int register_grp_irqs(struct gfar_priv_grp *grp)
1871 {
1872         struct gfar_private *priv = grp->priv;
1873         struct net_device *dev = priv->ndev;
1874         int err;
1875
1876         /* If the device has multiple interrupts, register for
1877          * them.  Otherwise, only register for the one
1878          */
1879         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1880                 /* Install our interrupt handlers for Error,
1881                  * Transmit, and Receive
1882                  */
1883                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1884                                   gfar_irq(grp, ER)->name, grp);
1885                 if (err < 0) {
1886                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1887                                   gfar_irq(grp, ER)->irq);
1888
1889                         goto err_irq_fail;
1890                 }
1891                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1892                                   gfar_irq(grp, TX)->name, grp);
1893                 if (err < 0) {
1894                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1895                                   gfar_irq(grp, TX)->irq);
1896                         goto tx_irq_fail;
1897                 }
1898                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1899                                   gfar_irq(grp, RX)->name, grp);
1900                 if (err < 0) {
1901                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1902                                   gfar_irq(grp, RX)->irq);
1903                         goto rx_irq_fail;
1904                 }
1905         } else {
1906                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1907                                   gfar_irq(grp, TX)->name, grp);
1908                 if (err < 0) {
1909                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1910                                   gfar_irq(grp, TX)->irq);
1911                         goto err_irq_fail;
1912                 }
1913         }
1914
1915         return 0;
1916
1917 rx_irq_fail:
1918         free_irq(gfar_irq(grp, TX)->irq, grp);
1919 tx_irq_fail:
1920         free_irq(gfar_irq(grp, ER)->irq, grp);
1921 err_irq_fail:
1922         return err;
1923
1924 }
1925
1926 /* Bring the controller up and running */
1927 int startup_gfar(struct net_device *ndev)
1928 {
1929         struct gfar_private *priv = netdev_priv(ndev);
1930         struct gfar __iomem *regs = NULL;
1931         int err, i, j;
1932
1933         for (i = 0; i < priv->num_grps; i++) {
1934                 regs= priv->gfargrp[i].regs;
1935                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1936         }
1937
1938         regs= priv->gfargrp[0].regs;
1939         err = gfar_alloc_skb_resources(ndev);
1940         if (err)
1941                 return err;
1942
1943         gfar_init_mac(ndev);
1944
1945         for (i = 0; i < priv->num_grps; i++) {
1946                 err = register_grp_irqs(&priv->gfargrp[i]);
1947                 if (err) {
1948                         for (j = 0; j < i; j++)
1949                                 free_grp_irqs(&priv->gfargrp[j]);
1950                         goto irq_fail;
1951                 }
1952         }
1953
1954         /* Start the controller */
1955         gfar_start(ndev);
1956
1957         phy_start(priv->phydev);
1958
1959         gfar_configure_coalescing_all(priv);
1960
1961         return 0;
1962
1963 irq_fail:
1964         free_skb_resources(priv);
1965         return err;
1966 }
1967
1968 /* Called when something needs to use the ethernet device
1969  * Returns 0 for success.
1970  */
1971 static int gfar_enet_open(struct net_device *dev)
1972 {
1973         struct gfar_private *priv = netdev_priv(dev);
1974         int err;
1975
1976         enable_napi(priv);
1977
1978         /* Initialize a bunch of registers */
1979         init_registers(dev);
1980
1981         gfar_set_mac_address(dev);
1982
1983         err = init_phy(dev);
1984
1985         if (err) {
1986                 disable_napi(priv);
1987                 return err;
1988         }
1989
1990         err = startup_gfar(dev);
1991         if (err) {
1992                 disable_napi(priv);
1993                 return err;
1994         }
1995
1996         netif_tx_start_all_queues(dev);
1997
1998         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1999
2000         return err;
2001 }
2002
2003 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2004 {
2005         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2006
2007         memset(fcb, 0, GMAC_FCB_LEN);
2008
2009         return fcb;
2010 }
2011
2012 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2013                                     int fcb_length)
2014 {
2015         /* If we're here, it's a IP packet with a TCP or UDP
2016          * payload.  We set it to checksum, using a pseudo-header
2017          * we provide
2018          */
2019         u8 flags = TXFCB_DEFAULT;
2020
2021         /* Tell the controller what the protocol is
2022          * And provide the already calculated phcs
2023          */
2024         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2025                 flags |= TXFCB_UDP;
2026                 fcb->phcs = udp_hdr(skb)->check;
2027         } else
2028                 fcb->phcs = tcp_hdr(skb)->check;
2029
2030         /* l3os is the distance between the start of the
2031          * frame (skb->data) and the start of the IP hdr.
2032          * l4os is the distance between the start of the
2033          * l3 hdr and the l4 hdr
2034          */
2035         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2036         fcb->l4os = skb_network_header_len(skb);
2037
2038         fcb->flags = flags;
2039 }
2040
2041 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2042 {
2043         fcb->flags |= TXFCB_VLN;
2044         fcb->vlctl = vlan_tx_tag_get(skb);
2045 }
2046
2047 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2048                                       struct txbd8 *base, int ring_size)
2049 {
2050         struct txbd8 *new_bd = bdp + stride;
2051
2052         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2053 }
2054
2055 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2056                                       int ring_size)
2057 {
2058         return skip_txbd(bdp, 1, base, ring_size);
2059 }
2060
2061 /* eTSEC12: csum generation not supported for some fcb offsets */
2062 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2063                                        unsigned long fcb_addr)
2064 {
2065         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2066                (fcb_addr % 0x20) > 0x18);
2067 }
2068
2069 /* eTSEC76: csum generation for frames larger than 2500 may
2070  * cause excess delays before start of transmission
2071  */
2072 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2073                                        unsigned int len)
2074 {
2075         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2076                (len > 2500));
2077 }
2078
2079 /* This is called by the kernel when a frame is ready for transmission.
2080  * It is pointed to by the dev->hard_start_xmit function pointer
2081  */
2082 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2083 {
2084         struct gfar_private *priv = netdev_priv(dev);
2085         struct gfar_priv_tx_q *tx_queue = NULL;
2086         struct netdev_queue *txq;
2087         struct gfar __iomem *regs = NULL;
2088         struct txfcb *fcb = NULL;
2089         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2090         u32 lstatus;
2091         int i, rq = 0;
2092         int do_tstamp, do_csum, do_vlan;
2093         u32 bufaddr;
2094         unsigned long flags;
2095         unsigned int nr_frags, nr_txbds, length, fcb_len = 0;
2096
2097         rq = skb->queue_mapping;
2098         tx_queue = priv->tx_queue[rq];
2099         txq = netdev_get_tx_queue(dev, rq);
2100         base = tx_queue->tx_bd_base;
2101         regs = tx_queue->grp->regs;
2102
2103         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2104         do_vlan = vlan_tx_tag_present(skb);
2105         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2106                     priv->hwts_tx_en;
2107
2108         if (do_csum || do_vlan)
2109                 fcb_len = GMAC_FCB_LEN;
2110
2111         /* check if time stamp should be generated */
2112         if (unlikely(do_tstamp))
2113                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2114
2115         /* make space for additional header when fcb is needed */
2116         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2117                 struct sk_buff *skb_new;
2118
2119                 skb_new = skb_realloc_headroom(skb, fcb_len);
2120                 if (!skb_new) {
2121                         dev->stats.tx_errors++;
2122                         kfree_skb(skb);
2123                         return NETDEV_TX_OK;
2124                 }
2125
2126                 if (skb->sk)
2127                         skb_set_owner_w(skb_new, skb->sk);
2128                 consume_skb(skb);
2129                 skb = skb_new;
2130         }
2131
2132         /* total number of fragments in the SKB */
2133         nr_frags = skb_shinfo(skb)->nr_frags;
2134
2135         /* calculate the required number of TxBDs for this skb */
2136         if (unlikely(do_tstamp))
2137                 nr_txbds = nr_frags + 2;
2138         else
2139                 nr_txbds = nr_frags + 1;
2140
2141         /* check if there is space to queue this packet */
2142         if (nr_txbds > tx_queue->num_txbdfree) {
2143                 /* no space, stop the queue */
2144                 netif_tx_stop_queue(txq);
2145                 dev->stats.tx_fifo_errors++;
2146                 return NETDEV_TX_BUSY;
2147         }
2148
2149         /* Update transmit stats */
2150         tx_queue->stats.tx_bytes += skb->len;
2151         tx_queue->stats.tx_packets++;
2152
2153         txbdp = txbdp_start = tx_queue->cur_tx;
2154         lstatus = txbdp->lstatus;
2155
2156         /* Time stamp insertion requires one additional TxBD */
2157         if (unlikely(do_tstamp))
2158                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2159                                                  tx_queue->tx_ring_size);
2160
2161         if (nr_frags == 0) {
2162                 if (unlikely(do_tstamp))
2163                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2164                                                           TXBD_INTERRUPT);
2165                 else
2166                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2167         } else {
2168                 /* Place the fragment addresses and lengths into the TxBDs */
2169                 for (i = 0; i < nr_frags; i++) {
2170                         /* Point at the next BD, wrapping as needed */
2171                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2172
2173                         length = skb_shinfo(skb)->frags[i].size;
2174
2175                         lstatus = txbdp->lstatus | length |
2176                                   BD_LFLAG(TXBD_READY);
2177
2178                         /* Handle the last BD specially */
2179                         if (i == nr_frags - 1)
2180                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2181
2182                         bufaddr = skb_frag_dma_map(priv->dev,
2183                                                    &skb_shinfo(skb)->frags[i],
2184                                                    0,
2185                                                    length,
2186                                                    DMA_TO_DEVICE);
2187
2188                         /* set the TxBD length and buffer pointer */
2189                         txbdp->bufPtr = bufaddr;
2190                         txbdp->lstatus = lstatus;
2191                 }
2192
2193                 lstatus = txbdp_start->lstatus;
2194         }
2195
2196         /* Add TxPAL between FCB and frame if required */
2197         if (unlikely(do_tstamp)) {
2198                 skb_push(skb, GMAC_TXPAL_LEN);
2199                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2200         }
2201
2202         /* Add TxFCB if required */
2203         if (fcb_len) {
2204                 fcb = gfar_add_fcb(skb);
2205                 lstatus |= BD_LFLAG(TXBD_TOE);
2206         }
2207
2208         /* Set up checksumming */
2209         if (do_csum) {
2210                 gfar_tx_checksum(skb, fcb, fcb_len);
2211
2212                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2213                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2214                         __skb_pull(skb, GMAC_FCB_LEN);
2215                         skb_checksum_help(skb);
2216                         if (do_vlan || do_tstamp) {
2217                                 /* put back a new fcb for vlan/tstamp TOE */
2218                                 fcb = gfar_add_fcb(skb);
2219                         } else {
2220                                 /* Tx TOE not used */
2221                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2222                                 fcb = NULL;
2223                         }
2224                 }
2225         }
2226
2227         if (do_vlan)
2228                 gfar_tx_vlan(skb, fcb);
2229
2230         /* Setup tx hardware time stamping if requested */
2231         if (unlikely(do_tstamp)) {
2232                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2233                 fcb->ptp = 1;
2234         }
2235
2236         txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2237                                              skb_headlen(skb), DMA_TO_DEVICE);
2238
2239         /* If time stamping is requested one additional TxBD must be set up. The
2240          * first TxBD points to the FCB and must have a data length of
2241          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2242          * the full frame length.
2243          */
2244         if (unlikely(do_tstamp)) {
2245                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2246                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2247                                          (skb_headlen(skb) - fcb_len);
2248                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2249         } else {
2250                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2251         }
2252
2253         netdev_tx_sent_queue(txq, skb->len);
2254
2255         /* We can work in parallel with gfar_clean_tx_ring(), except
2256          * when modifying num_txbdfree. Note that we didn't grab the lock
2257          * when we were reading the num_txbdfree and checking for available
2258          * space, that's because outside of this function it can only grow,
2259          * and once we've got needed space, it cannot suddenly disappear.
2260          *
2261          * The lock also protects us from gfar_error(), which can modify
2262          * regs->tstat and thus retrigger the transfers, which is why we
2263          * also must grab the lock before setting ready bit for the first
2264          * to be transmitted BD.
2265          */
2266         spin_lock_irqsave(&tx_queue->txlock, flags);
2267
2268         /* The powerpc-specific eieio() is used, as wmb() has too strong
2269          * semantics (it requires synchronization between cacheable and
2270          * uncacheable mappings, which eieio doesn't provide and which we
2271          * don't need), thus requiring a more expensive sync instruction.  At
2272          * some point, the set of architecture-independent barrier functions
2273          * should be expanded to include weaker barriers.
2274          */
2275         eieio();
2276
2277         txbdp_start->lstatus = lstatus;
2278
2279         eieio(); /* force lstatus write before tx_skbuff */
2280
2281         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2282
2283         /* Update the current skb pointer to the next entry we will use
2284          * (wrapping if necessary)
2285          */
2286         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2287                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2288
2289         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2290
2291         /* reduce TxBD free count */
2292         tx_queue->num_txbdfree -= (nr_txbds);
2293
2294         /* If the next BD still needs to be cleaned up, then the bds
2295          * are full.  We need to tell the kernel to stop sending us stuff.
2296          */
2297         if (!tx_queue->num_txbdfree) {
2298                 netif_tx_stop_queue(txq);
2299
2300                 dev->stats.tx_fifo_errors++;
2301         }
2302
2303         /* Tell the DMA to go go go */
2304         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2305
2306         /* Unlock priv */
2307         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2308
2309         return NETDEV_TX_OK;
2310 }
2311
2312 /* Stops the kernel queue, and halts the controller */
2313 static int gfar_close(struct net_device *dev)
2314 {
2315         struct gfar_private *priv = netdev_priv(dev);
2316
2317         disable_napi(priv);
2318
2319         cancel_work_sync(&priv->reset_task);
2320         stop_gfar(dev);
2321
2322         /* Disconnect from the PHY */
2323         phy_disconnect(priv->phydev);
2324         priv->phydev = NULL;
2325
2326         netif_tx_stop_all_queues(dev);
2327
2328         return 0;
2329 }
2330
2331 /* Changes the mac address if the controller is not running. */
2332 static int gfar_set_mac_address(struct net_device *dev)
2333 {
2334         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2335
2336         return 0;
2337 }
2338
2339 /* Check if rx parser should be activated */
2340 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2341 {
2342         struct gfar __iomem *regs;
2343         u32 tempval;
2344
2345         regs = priv->gfargrp[0].regs;
2346
2347         tempval = gfar_read(&regs->rctrl);
2348         /* If parse is no longer required, then disable parser */
2349         if (tempval & RCTRL_REQ_PARSER) {
2350                 tempval |= RCTRL_PRSDEP_INIT;
2351                 priv->uses_rxfcb = 1;
2352         } else {
2353                 tempval &= ~RCTRL_PRSDEP_INIT;
2354                 priv->uses_rxfcb = 0;
2355         }
2356         gfar_write(&regs->rctrl, tempval);
2357 }
2358
2359 /* Enables and disables VLAN insertion/extraction */
2360 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2361 {
2362         struct gfar_private *priv = netdev_priv(dev);
2363         struct gfar __iomem *regs = NULL;
2364         unsigned long flags;
2365         u32 tempval;
2366
2367         regs = priv->gfargrp[0].regs;
2368         local_irq_save(flags);
2369         lock_rx_qs(priv);
2370
2371         if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2372                 /* Enable VLAN tag insertion */
2373                 tempval = gfar_read(&regs->tctrl);
2374                 tempval |= TCTRL_VLINS;
2375                 gfar_write(&regs->tctrl, tempval);
2376         } else {
2377                 /* Disable VLAN tag insertion */
2378                 tempval = gfar_read(&regs->tctrl);
2379                 tempval &= ~TCTRL_VLINS;
2380                 gfar_write(&regs->tctrl, tempval);
2381         }
2382
2383         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2384                 /* Enable VLAN tag extraction */
2385                 tempval = gfar_read(&regs->rctrl);
2386                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2387                 gfar_write(&regs->rctrl, tempval);
2388                 priv->uses_rxfcb = 1;
2389         } else {
2390                 /* Disable VLAN tag extraction */
2391                 tempval = gfar_read(&regs->rctrl);
2392                 tempval &= ~RCTRL_VLEX;
2393                 gfar_write(&regs->rctrl, tempval);
2394
2395                 gfar_check_rx_parser_mode(priv);
2396         }
2397
2398         gfar_change_mtu(dev, dev->mtu);
2399
2400         unlock_rx_qs(priv);
2401         local_irq_restore(flags);
2402 }
2403
2404 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2405 {
2406         int tempsize, tempval;
2407         struct gfar_private *priv = netdev_priv(dev);
2408         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2409         int oldsize = priv->rx_buffer_size;
2410         int frame_size = new_mtu + ETH_HLEN;
2411
2412         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2413                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2414                 return -EINVAL;
2415         }
2416
2417         if (priv->uses_rxfcb)
2418                 frame_size += GMAC_FCB_LEN;
2419
2420         frame_size += priv->padding;
2421
2422         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2423                    INCREMENTAL_BUFFER_SIZE;
2424
2425         /* Only stop and start the controller if it isn't already
2426          * stopped, and we changed something
2427          */
2428         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2429                 stop_gfar(dev);
2430
2431         priv->rx_buffer_size = tempsize;
2432
2433         dev->mtu = new_mtu;
2434
2435         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2436         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2437
2438         /* If the mtu is larger than the max size for standard
2439          * ethernet frames (ie, a jumbo frame), then set maccfg2
2440          * to allow huge frames, and to check the length
2441          */
2442         tempval = gfar_read(&regs->maccfg2);
2443
2444         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2445             gfar_has_errata(priv, GFAR_ERRATA_74))
2446                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2447         else
2448                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2449
2450         gfar_write(&regs->maccfg2, tempval);
2451
2452         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2453                 startup_gfar(dev);
2454
2455         return 0;
2456 }
2457
2458 /* gfar_reset_task gets scheduled when a packet has not been
2459  * transmitted after a set amount of time.
2460  * For now, assume that clearing out all the structures, and
2461  * starting over will fix the problem.
2462  */
2463 static void gfar_reset_task(struct work_struct *work)
2464 {
2465         struct gfar_private *priv = container_of(work, struct gfar_private,
2466                                                  reset_task);
2467         struct net_device *dev = priv->ndev;
2468
2469         if (dev->flags & IFF_UP) {
2470                 netif_tx_stop_all_queues(dev);
2471                 stop_gfar(dev);
2472                 startup_gfar(dev);
2473                 netif_tx_start_all_queues(dev);
2474         }
2475
2476         netif_tx_schedule_all(dev);
2477 }
2478
2479 static void gfar_timeout(struct net_device *dev)
2480 {
2481         struct gfar_private *priv = netdev_priv(dev);
2482
2483         dev->stats.tx_errors++;
2484         schedule_work(&priv->reset_task);
2485 }
2486
2487 static void gfar_align_skb(struct sk_buff *skb)
2488 {
2489         /* We need the data buffer to be aligned properly.  We will reserve
2490          * as many bytes as needed to align the data properly
2491          */
2492         skb_reserve(skb, RXBUF_ALIGNMENT -
2493                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2494 }
2495
2496 /* Interrupt Handler for Transmit complete */
2497 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2498 {
2499         struct net_device *dev = tx_queue->dev;
2500         struct netdev_queue *txq;
2501         struct gfar_private *priv = netdev_priv(dev);
2502         struct txbd8 *bdp, *next = NULL;
2503         struct txbd8 *lbdp = NULL;
2504         struct txbd8 *base = tx_queue->tx_bd_base;
2505         struct sk_buff *skb;
2506         int skb_dirtytx;
2507         int tx_ring_size = tx_queue->tx_ring_size;
2508         int frags = 0, nr_txbds = 0;
2509         int i;
2510         int howmany = 0;
2511         int tqi = tx_queue->qindex;
2512         unsigned int bytes_sent = 0;
2513         u32 lstatus;
2514         size_t buflen;
2515
2516         txq = netdev_get_tx_queue(dev, tqi);
2517         bdp = tx_queue->dirty_tx;
2518         skb_dirtytx = tx_queue->skb_dirtytx;
2519
2520         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2521                 unsigned long flags;
2522
2523                 frags = skb_shinfo(skb)->nr_frags;
2524
2525                 /* When time stamping, one additional TxBD must be freed.
2526                  * Also, we need to dma_unmap_single() the TxPAL.
2527                  */
2528                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2529                         nr_txbds = frags + 2;
2530                 else
2531                         nr_txbds = frags + 1;
2532
2533                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2534
2535                 lstatus = lbdp->lstatus;
2536
2537                 /* Only clean completed frames */
2538                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2539                     (lstatus & BD_LENGTH_MASK))
2540                         break;
2541
2542                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2543                         next = next_txbd(bdp, base, tx_ring_size);
2544                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2545                 } else
2546                         buflen = bdp->length;
2547
2548                 dma_unmap_single(priv->dev, bdp->bufPtr,
2549                                  buflen, DMA_TO_DEVICE);
2550
2551                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2552                         struct skb_shared_hwtstamps shhwtstamps;
2553                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2554
2555                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2556                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2557                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2558                         skb_tstamp_tx(skb, &shhwtstamps);
2559                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2560                         bdp = next;
2561                 }
2562
2563                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2564                 bdp = next_txbd(bdp, base, tx_ring_size);
2565
2566                 for (i = 0; i < frags; i++) {
2567                         dma_unmap_page(priv->dev, bdp->bufPtr,
2568                                        bdp->length, DMA_TO_DEVICE);
2569                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2570                         bdp = next_txbd(bdp, base, tx_ring_size);
2571                 }
2572
2573                 bytes_sent += skb->len;
2574
2575                 dev_kfree_skb_any(skb);
2576
2577                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2578
2579                 skb_dirtytx = (skb_dirtytx + 1) &
2580                               TX_RING_MOD_MASK(tx_ring_size);
2581
2582                 howmany++;
2583                 spin_lock_irqsave(&tx_queue->txlock, flags);
2584                 tx_queue->num_txbdfree += nr_txbds;
2585                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2586         }
2587
2588         /* If we freed a buffer, we can restart transmission, if necessary */
2589         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2590                 netif_wake_subqueue(dev, tqi);
2591
2592         /* Update dirty indicators */
2593         tx_queue->skb_dirtytx = skb_dirtytx;
2594         tx_queue->dirty_tx = bdp;
2595
2596         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2597 }
2598
2599 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2600 {
2601         unsigned long flags;
2602
2603         spin_lock_irqsave(&gfargrp->grplock, flags);
2604         if (napi_schedule_prep(&gfargrp->napi)) {
2605                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2606                 __napi_schedule(&gfargrp->napi);
2607         } else {
2608                 /* Clear IEVENT, so interrupts aren't called again
2609                  * because of the packets that have already arrived.
2610                  */
2611                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2612         }
2613         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2614
2615 }
2616
2617 /* Interrupt Handler for Transmit complete */
2618 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2619 {
2620         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2621         return IRQ_HANDLED;
2622 }
2623
2624 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2625                            struct sk_buff *skb)
2626 {
2627         struct net_device *dev = rx_queue->dev;
2628         struct gfar_private *priv = netdev_priv(dev);
2629         dma_addr_t buf;
2630
2631         buf = dma_map_single(priv->dev, skb->data,
2632                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2633         gfar_init_rxbdp(rx_queue, bdp, buf);
2634 }
2635
2636 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2637 {
2638         struct gfar_private *priv = netdev_priv(dev);
2639         struct sk_buff *skb;
2640
2641         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2642         if (!skb)
2643                 return NULL;
2644
2645         gfar_align_skb(skb);
2646
2647         return skb;
2648 }
2649
2650 struct sk_buff *gfar_new_skb(struct net_device *dev)
2651 {
2652         return gfar_alloc_skb(dev);
2653 }
2654
2655 static inline void count_errors(unsigned short status, struct net_device *dev)
2656 {
2657         struct gfar_private *priv = netdev_priv(dev);
2658         struct net_device_stats *stats = &dev->stats;
2659         struct gfar_extra_stats *estats = &priv->extra_stats;
2660
2661         /* If the packet was truncated, none of the other errors matter */
2662         if (status & RXBD_TRUNCATED) {
2663                 stats->rx_length_errors++;
2664
2665                 atomic64_inc(&estats->rx_trunc);
2666
2667                 return;
2668         }
2669         /* Count the errors, if there were any */
2670         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2671                 stats->rx_length_errors++;
2672
2673                 if (status & RXBD_LARGE)
2674                         atomic64_inc(&estats->rx_large);
2675                 else
2676                         atomic64_inc(&estats->rx_short);
2677         }
2678         if (status & RXBD_NONOCTET) {
2679                 stats->rx_frame_errors++;
2680                 atomic64_inc(&estats->rx_nonoctet);
2681         }
2682         if (status & RXBD_CRCERR) {
2683                 atomic64_inc(&estats->rx_crcerr);
2684                 stats->rx_crc_errors++;
2685         }
2686         if (status & RXBD_OVERRUN) {
2687                 atomic64_inc(&estats->rx_overrun);
2688                 stats->rx_crc_errors++;
2689         }
2690 }
2691
2692 irqreturn_t gfar_receive(int irq, void *grp_id)
2693 {
2694         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2695         return IRQ_HANDLED;
2696 }
2697
2698 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2699 {
2700         /* If valid headers were found, and valid sums
2701          * were verified, then we tell the kernel that no
2702          * checksumming is necessary.  Otherwise, it is [FIXME]
2703          */
2704         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2705                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2706         else
2707                 skb_checksum_none_assert(skb);
2708 }
2709
2710
2711 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2712 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2713                                int amount_pull, struct napi_struct *napi)
2714 {
2715         struct gfar_private *priv = netdev_priv(dev);
2716         struct rxfcb *fcb = NULL;
2717
2718         /* fcb is at the beginning if exists */
2719         fcb = (struct rxfcb *)skb->data;
2720
2721         /* Remove the FCB from the skb
2722          * Remove the padded bytes, if there are any
2723          */
2724         if (amount_pull) {
2725                 skb_record_rx_queue(skb, fcb->rq);
2726                 skb_pull(skb, amount_pull);
2727         }
2728
2729         /* Get receive timestamp from the skb */
2730         if (priv->hwts_rx_en) {
2731                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2732                 u64 *ns = (u64 *) skb->data;
2733
2734                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2735                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2736         }
2737
2738         if (priv->padding)
2739                 skb_pull(skb, priv->padding);
2740
2741         if (dev->features & NETIF_F_RXCSUM)
2742                 gfar_rx_checksum(skb, fcb);
2743
2744         /* Tell the skb what kind of packet this is */
2745         skb->protocol = eth_type_trans(skb, dev);
2746
2747         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2748          * Even if vlan rx accel is disabled, on some chips
2749          * RXFCB_VLN is pseudo randomly set.
2750          */
2751         if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2752             fcb->flags & RXFCB_VLN)
2753                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2754
2755         /* Send the packet up the stack */
2756         napi_gro_receive(napi, skb);
2757
2758 }
2759
2760 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2761  * until the budget/quota has been reached. Returns the number
2762  * of frames handled
2763  */
2764 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2765 {
2766         struct net_device *dev = rx_queue->dev;
2767         struct rxbd8 *bdp, *base;
2768         struct sk_buff *skb;
2769         int pkt_len;
2770         int amount_pull;
2771         int howmany = 0;
2772         struct gfar_private *priv = netdev_priv(dev);
2773
2774         /* Get the first full descriptor */
2775         bdp = rx_queue->cur_rx;
2776         base = rx_queue->rx_bd_base;
2777
2778         amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2779
2780         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2781                 struct sk_buff *newskb;
2782
2783                 rmb();
2784
2785                 /* Add another skb for the future */
2786                 newskb = gfar_new_skb(dev);
2787
2788                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2789
2790                 dma_unmap_single(priv->dev, bdp->bufPtr,
2791                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2792
2793                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2794                              bdp->length > priv->rx_buffer_size))
2795                         bdp->status = RXBD_LARGE;
2796
2797                 /* We drop the frame if we failed to allocate a new buffer */
2798                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2799                              bdp->status & RXBD_ERR)) {
2800                         count_errors(bdp->status, dev);
2801
2802                         if (unlikely(!newskb))
2803                                 newskb = skb;
2804                         else if (skb)
2805                                 dev_kfree_skb(skb);
2806                 } else {
2807                         /* Increment the number of packets */
2808                         rx_queue->stats.rx_packets++;
2809                         howmany++;
2810
2811                         if (likely(skb)) {
2812                                 pkt_len = bdp->length - ETH_FCS_LEN;
2813                                 /* Remove the FCS from the packet length */
2814                                 skb_put(skb, pkt_len);
2815                                 rx_queue->stats.rx_bytes += pkt_len;
2816                                 skb_record_rx_queue(skb, rx_queue->qindex);
2817                                 gfar_process_frame(dev, skb, amount_pull,
2818                                                    &rx_queue->grp->napi);
2819
2820                         } else {
2821                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2822                                 rx_queue->stats.rx_dropped++;
2823                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2824                         }
2825
2826                 }
2827
2828                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2829
2830                 /* Setup the new bdp */
2831                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2832
2833                 /* Update to the next pointer */
2834                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2835
2836                 /* update to point at the next skb */
2837                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2838                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2839         }
2840
2841         /* Update the current rxbd pointer to be the next one */
2842         rx_queue->cur_rx = bdp;
2843
2844         return howmany;
2845 }
2846
2847 static int gfar_poll_sq(struct napi_struct *napi, int budget)
2848 {
2849         struct gfar_priv_grp *gfargrp =
2850                 container_of(napi, struct gfar_priv_grp, napi);
2851         struct gfar __iomem *regs = gfargrp->regs;
2852         struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2853         struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2854         int work_done = 0;
2855
2856         /* Clear IEVENT, so interrupts aren't called again
2857          * because of the packets that have already arrived
2858          */
2859         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2860
2861         /* run Tx cleanup to completion */
2862         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2863                 gfar_clean_tx_ring(tx_queue);
2864
2865         work_done = gfar_clean_rx_ring(rx_queue, budget);
2866
2867         if (work_done < budget) {
2868                 napi_complete(napi);
2869                 /* Clear the halt bit in RSTAT */
2870                 gfar_write(&regs->rstat, gfargrp->rstat);
2871
2872                 gfar_write(&regs->imask, IMASK_DEFAULT);
2873
2874                 /* If we are coalescing interrupts, update the timer
2875                  * Otherwise, clear it
2876                  */
2877                 gfar_write(&regs->txic, 0);
2878                 if (likely(tx_queue->txcoalescing))
2879                         gfar_write(&regs->txic, tx_queue->txic);
2880
2881                 gfar_write(&regs->rxic, 0);
2882                 if (unlikely(rx_queue->rxcoalescing))
2883                         gfar_write(&regs->rxic, rx_queue->rxic);
2884         }
2885
2886         return work_done;
2887 }
2888
2889 static int gfar_poll(struct napi_struct *napi, int budget)
2890 {
2891         struct gfar_priv_grp *gfargrp =
2892                 container_of(napi, struct gfar_priv_grp, napi);
2893         struct gfar_private *priv = gfargrp->priv;
2894         struct gfar __iomem *regs = gfargrp->regs;
2895         struct gfar_priv_tx_q *tx_queue = NULL;
2896         struct gfar_priv_rx_q *rx_queue = NULL;
2897         int work_done = 0, work_done_per_q = 0;
2898         int i, budget_per_q = 0;
2899         int has_tx_work;
2900         unsigned long rstat_rxf;
2901         int num_act_queues;
2902
2903         /* Clear IEVENT, so interrupts aren't called again
2904          * because of the packets that have already arrived
2905          */
2906         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2907
2908         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2909
2910         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2911         if (num_act_queues)
2912                 budget_per_q = budget/num_act_queues;
2913
2914         while (1) {
2915                 has_tx_work = 0;
2916                 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2917                         tx_queue = priv->tx_queue[i];
2918                         /* run Tx cleanup to completion */
2919                         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2920                                 gfar_clean_tx_ring(tx_queue);
2921                                 has_tx_work = 1;
2922                         }
2923                 }
2924
2925                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2926                         /* skip queue if not active */
2927                         if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2928                                 continue;
2929
2930                         rx_queue = priv->rx_queue[i];
2931                         work_done_per_q =
2932                                 gfar_clean_rx_ring(rx_queue, budget_per_q);
2933                         work_done += work_done_per_q;
2934
2935                         /* finished processing this queue */
2936                         if (work_done_per_q < budget_per_q) {
2937                                 /* clear active queue hw indication */
2938                                 gfar_write(&regs->rstat,
2939                                            RSTAT_CLEAR_RXF0 >> i);
2940                                 rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2941                                 num_act_queues--;
2942
2943                                 if (!num_act_queues)
2944                                         break;
2945                                 /* recompute budget per Rx queue */
2946                                 budget_per_q =
2947                                         (budget - work_done) / num_act_queues;
2948                         }
2949                 }
2950
2951                 if (work_done >= budget)
2952                         break;
2953
2954                 if (!num_act_queues && !has_tx_work) {
2955
2956                         napi_complete(napi);
2957
2958                         /* Clear the halt bit in RSTAT */
2959                         gfar_write(&regs->rstat, gfargrp->rstat);
2960
2961                         gfar_write(&regs->imask, IMASK_DEFAULT);
2962
2963                         /* If we are coalescing interrupts, update the timer
2964                          * Otherwise, clear it
2965                          */
2966                         gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2967                                                   gfargrp->tx_bit_map);
2968                         break;
2969                 }
2970         }
2971
2972         return work_done;
2973 }
2974
2975 #ifdef CONFIG_NET_POLL_CONTROLLER
2976 /* Polling 'interrupt' - used by things like netconsole to send skbs
2977  * without having to re-enable interrupts. It's not called while
2978  * the interrupt routine is executing.
2979  */
2980 static void gfar_netpoll(struct net_device *dev)
2981 {
2982         struct gfar_private *priv = netdev_priv(dev);
2983         int i;
2984
2985         /* If the device has multiple interrupts, run tx/rx */
2986         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2987                 for (i = 0; i < priv->num_grps; i++) {
2988                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2989
2990                         disable_irq(gfar_irq(grp, TX)->irq);
2991                         disable_irq(gfar_irq(grp, RX)->irq);
2992                         disable_irq(gfar_irq(grp, ER)->irq);
2993                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2994                         enable_irq(gfar_irq(grp, ER)->irq);
2995                         enable_irq(gfar_irq(grp, RX)->irq);
2996                         enable_irq(gfar_irq(grp, TX)->irq);
2997                 }
2998         } else {
2999                 for (i = 0; i < priv->num_grps; i++) {
3000                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3001
3002                         disable_irq(gfar_irq(grp, TX)->irq);
3003                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3004                         enable_irq(gfar_irq(grp, TX)->irq);
3005                 }
3006         }
3007 }
3008 #endif
3009
3010 /* The interrupt handler for devices with one interrupt */
3011 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3012 {
3013         struct gfar_priv_grp *gfargrp = grp_id;
3014
3015         /* Save ievent for future reference */
3016         u32 events = gfar_read(&gfargrp->regs->ievent);
3017
3018         /* Check for reception */
3019         if (events & IEVENT_RX_MASK)
3020                 gfar_receive(irq, grp_id);
3021
3022         /* Check for transmit completion */
3023         if (events & IEVENT_TX_MASK)
3024                 gfar_transmit(irq, grp_id);
3025
3026         /* Check for errors */
3027         if (events & IEVENT_ERR_MASK)
3028                 gfar_error(irq, grp_id);
3029
3030         return IRQ_HANDLED;
3031 }
3032
3033 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3034 {
3035         struct phy_device *phydev = priv->phydev;
3036         u32 val = 0;
3037
3038         if (!phydev->duplex)
3039                 return val;
3040
3041         if (!priv->pause_aneg_en) {
3042                 if (priv->tx_pause_en)
3043                         val |= MACCFG1_TX_FLOW;
3044                 if (priv->rx_pause_en)
3045                         val |= MACCFG1_RX_FLOW;
3046         } else {
3047                 u16 lcl_adv, rmt_adv;
3048                 u8 flowctrl;
3049                 /* get link partner capabilities */
3050                 rmt_adv = 0;
3051                 if (phydev->pause)
3052                         rmt_adv = LPA_PAUSE_CAP;
3053                 if (phydev->asym_pause)
3054                         rmt_adv |= LPA_PAUSE_ASYM;
3055
3056                 lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3057
3058                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3059                 if (flowctrl & FLOW_CTRL_TX)
3060                         val |= MACCFG1_TX_FLOW;
3061                 if (flowctrl & FLOW_CTRL_RX)
3062                         val |= MACCFG1_RX_FLOW;
3063         }
3064
3065         return val;
3066 }
3067
3068 /* Called every time the controller might need to be made
3069  * aware of new link state.  The PHY code conveys this
3070  * information through variables in the phydev structure, and this
3071  * function converts those variables into the appropriate
3072  * register values, and can bring down the device if needed.
3073  */
3074 static void adjust_link(struct net_device *dev)
3075 {
3076         struct gfar_private *priv = netdev_priv(dev);
3077         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3078         unsigned long flags;
3079         struct phy_device *phydev = priv->phydev;
3080         int new_state = 0;
3081
3082         local_irq_save(flags);
3083         lock_tx_qs(priv);
3084
3085         if (phydev->link) {
3086                 u32 tempval1 = gfar_read(&regs->maccfg1);
3087                 u32 tempval = gfar_read(&regs->maccfg2);
3088                 u32 ecntrl = gfar_read(&regs->ecntrl);
3089
3090                 /* Now we make sure that we can be in full duplex mode.
3091                  * If not, we operate in half-duplex mode.
3092                  */
3093                 if (phydev->duplex != priv->oldduplex) {
3094                         new_state = 1;
3095                         if (!(phydev->duplex))
3096                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3097                         else
3098                                 tempval |= MACCFG2_FULL_DUPLEX;
3099
3100                         priv->oldduplex = phydev->duplex;
3101                 }
3102
3103                 if (phydev->speed != priv->oldspeed) {
3104                         new_state = 1;
3105                         switch (phydev->speed) {
3106                         case 1000:
3107                                 tempval =
3108                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3109
3110                                 ecntrl &= ~(ECNTRL_R100);
3111                                 break;
3112                         case 100:
3113                         case 10:
3114                                 tempval =
3115                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3116
3117                                 /* Reduced mode distinguishes
3118                                  * between 10 and 100
3119                                  */
3120                                 if (phydev->speed == SPEED_100)
3121                                         ecntrl |= ECNTRL_R100;
3122                                 else
3123                                         ecntrl &= ~(ECNTRL_R100);
3124                                 break;
3125                         default:
3126                                 netif_warn(priv, link, dev,
3127                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3128                                            phydev->speed);
3129                                 break;
3130                         }
3131
3132                         priv->oldspeed = phydev->speed;
3133                 }
3134
3135                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3136                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3137
3138                 gfar_write(&regs->maccfg1, tempval1);
3139                 gfar_write(&regs->maccfg2, tempval);
3140                 gfar_write(&regs->ecntrl, ecntrl);
3141
3142                 if (!priv->oldlink) {
3143                         new_state = 1;
3144                         priv->oldlink = 1;
3145                 }
3146         } else if (priv->oldlink) {
3147                 new_state = 1;
3148                 priv->oldlink = 0;
3149                 priv->oldspeed = 0;
3150                 priv->oldduplex = -1;
3151         }
3152
3153         if (new_state && netif_msg_link(priv))
3154                 phy_print_status(phydev);
3155         unlock_tx_qs(priv);
3156         local_irq_restore(flags);
3157 }
3158
3159 /* Update the hash table based on the current list of multicast
3160  * addresses we subscribe to.  Also, change the promiscuity of
3161  * the device based on the flags (this function is called
3162  * whenever dev->flags is changed
3163  */
3164 static void gfar_set_multi(struct net_device *dev)
3165 {
3166         struct netdev_hw_addr *ha;
3167         struct gfar_private *priv = netdev_priv(dev);
3168         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3169         u32 tempval;
3170
3171         if (dev->flags & IFF_PROMISC) {
3172                 /* Set RCTRL to PROM */
3173                 tempval = gfar_read(&regs->rctrl);
3174                 tempval |= RCTRL_PROM;
3175                 gfar_write(&regs->rctrl, tempval);
3176         } else {
3177                 /* Set RCTRL to not PROM */
3178                 tempval = gfar_read(&regs->rctrl);
3179                 tempval &= ~(RCTRL_PROM);
3180                 gfar_write(&regs->rctrl, tempval);
3181         }
3182
3183         if (dev->flags & IFF_ALLMULTI) {
3184                 /* Set the hash to rx all multicast frames */
3185                 gfar_write(&regs->igaddr0, 0xffffffff);
3186                 gfar_write(&regs->igaddr1, 0xffffffff);
3187                 gfar_write(&regs->igaddr2, 0xffffffff);
3188                 gfar_write(&regs->igaddr3, 0xffffffff);
3189                 gfar_write(&regs->igaddr4, 0xffffffff);
3190                 gfar_write(&regs->igaddr5, 0xffffffff);
3191                 gfar_write(&regs->igaddr6, 0xffffffff);
3192                 gfar_write(&regs->igaddr7, 0xffffffff);
3193                 gfar_write(&regs->gaddr0, 0xffffffff);
3194                 gfar_write(&regs->gaddr1, 0xffffffff);
3195                 gfar_write(&regs->gaddr2, 0xffffffff);
3196                 gfar_write(&regs->gaddr3, 0xffffffff);
3197                 gfar_write(&regs->gaddr4, 0xffffffff);
3198                 gfar_write(&regs->gaddr5, 0xffffffff);
3199                 gfar_write(&regs->gaddr6, 0xffffffff);
3200                 gfar_write(&regs->gaddr7, 0xffffffff);
3201         } else {
3202                 int em_num;
3203                 int idx;
3204
3205                 /* zero out the hash */
3206                 gfar_write(&regs->igaddr0, 0x0);
3207                 gfar_write(&regs->igaddr1, 0x0);
3208                 gfar_write(&regs->igaddr2, 0x0);
3209                 gfar_write(&regs->igaddr3, 0x0);
3210                 gfar_write(&regs->igaddr4, 0x0);
3211                 gfar_write(&regs->igaddr5, 0x0);
3212                 gfar_write(&regs->igaddr6, 0x0);
3213                 gfar_write(&regs->igaddr7, 0x0);
3214                 gfar_write(&regs->gaddr0, 0x0);
3215                 gfar_write(&regs->gaddr1, 0x0);
3216                 gfar_write(&regs->gaddr2, 0x0);
3217                 gfar_write(&regs->gaddr3, 0x0);
3218                 gfar_write(&regs->gaddr4, 0x0);
3219                 gfar_write(&regs->gaddr5, 0x0);
3220                 gfar_write(&regs->gaddr6, 0x0);
3221                 gfar_write(&regs->gaddr7, 0x0);
3222
3223                 /* If we have extended hash tables, we need to
3224                  * clear the exact match registers to prepare for
3225                  * setting them
3226                  */
3227                 if (priv->extended_hash) {
3228                         em_num = GFAR_EM_NUM + 1;
3229                         gfar_clear_exact_match(dev);
3230                         idx = 1;
3231                 } else {
3232                         idx = 0;
3233                         em_num = 0;
3234                 }
3235
3236                 if (netdev_mc_empty(dev))
3237                         return;
3238
3239                 /* Parse the list, and set the appropriate bits */
3240                 netdev_for_each_mc_addr(ha, dev) {
3241                         if (idx < em_num) {
3242                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3243                                 idx++;
3244                         } else
3245                                 gfar_set_hash_for_addr(dev, ha->addr);
3246                 }
3247         }
3248 }
3249
3250
3251 /* Clears each of the exact match registers to zero, so they
3252  * don't interfere with normal reception
3253  */
3254 static void gfar_clear_exact_match(struct net_device *dev)
3255 {
3256         int idx;
3257         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3258
3259         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3260                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3261 }
3262
3263 /* Set the appropriate hash bit for the given addr */
3264 /* The algorithm works like so:
3265  * 1) Take the Destination Address (ie the multicast address), and
3266  * do a CRC on it (little endian), and reverse the bits of the
3267  * result.
3268  * 2) Use the 8 most significant bits as a hash into a 256-entry
3269  * table.  The table is controlled through 8 32-bit registers:
3270  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3271  * gaddr7.  This means that the 3 most significant bits in the
3272  * hash index which gaddr register to use, and the 5 other bits
3273  * indicate which bit (assuming an IBM numbering scheme, which
3274  * for PowerPC (tm) is usually the case) in the register holds
3275  * the entry.
3276  */
3277 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3278 {
3279         u32 tempval;
3280         struct gfar_private *priv = netdev_priv(dev);
3281         u32 result = ether_crc(ETH_ALEN, addr);
3282         int width = priv->hash_width;
3283         u8 whichbit = (result >> (32 - width)) & 0x1f;
3284         u8 whichreg = result >> (32 - width + 5);
3285         u32 value = (1 << (31-whichbit));
3286
3287         tempval = gfar_read(priv->hash_regs[whichreg]);
3288         tempval |= value;
3289         gfar_write(priv->hash_regs[whichreg], tempval);
3290 }
3291
3292
3293 /* There are multiple MAC Address register pairs on some controllers
3294  * This function sets the numth pair to a given address
3295  */
3296 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3297                                   const u8 *addr)
3298 {
3299         struct gfar_private *priv = netdev_priv(dev);
3300         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3301         int idx;
3302         char tmpbuf[ETH_ALEN];
3303         u32 tempval;
3304         u32 __iomem *macptr = &regs->macstnaddr1;
3305
3306         macptr += num*2;
3307
3308         /* Now copy it into the mac registers backwards, cuz
3309          * little endian is silly
3310          */
3311         for (idx = 0; idx < ETH_ALEN; idx++)
3312                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3313
3314         gfar_write(macptr, *((u32 *) (tmpbuf)));
3315
3316         tempval = *((u32 *) (tmpbuf + 4));
3317
3318         gfar_write(macptr+1, tempval);
3319 }
3320
3321 /* GFAR error interrupt handler */
3322 static irqreturn_t gfar_error(int irq, void *grp_id)
3323 {
3324         struct gfar_priv_grp *gfargrp = grp_id;
3325         struct gfar __iomem *regs = gfargrp->regs;
3326         struct gfar_private *priv= gfargrp->priv;
3327         struct net_device *dev = priv->ndev;
3328
3329         /* Save ievent for future reference */
3330         u32 events = gfar_read(&regs->ievent);
3331
3332         /* Clear IEVENT */
3333         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3334
3335         /* Magic Packet is not an error. */
3336         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3337             (events & IEVENT_MAG))
3338                 events &= ~IEVENT_MAG;
3339
3340         /* Hmm... */
3341         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3342                 netdev_dbg(dev,
3343                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3344                            events, gfar_read(&regs->imask));
3345
3346         /* Update the error counters */
3347         if (events & IEVENT_TXE) {
3348                 dev->stats.tx_errors++;
3349
3350                 if (events & IEVENT_LC)
3351                         dev->stats.tx_window_errors++;
3352                 if (events & IEVENT_CRL)
3353                         dev->stats.tx_aborted_errors++;
3354                 if (events & IEVENT_XFUN) {
3355                         unsigned long flags;
3356
3357                         netif_dbg(priv, tx_err, dev,
3358                                   "TX FIFO underrun, packet dropped\n");
3359                         dev->stats.tx_dropped++;
3360                         atomic64_inc(&priv->extra_stats.tx_underrun);
3361
3362                         local_irq_save(flags);
3363                         lock_tx_qs(priv);
3364
3365                         /* Reactivate the Tx Queues */
3366                         gfar_write(&regs->tstat, gfargrp->tstat);
3367
3368                         unlock_tx_qs(priv);
3369                         local_irq_restore(flags);
3370                 }
3371                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3372         }
3373         if (events & IEVENT_BSY) {
3374                 dev->stats.rx_errors++;
3375                 atomic64_inc(&priv->extra_stats.rx_bsy);
3376
3377                 gfar_receive(irq, grp_id);
3378
3379                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3380                           gfar_read(&regs->rstat));
3381         }
3382         if (events & IEVENT_BABR) {
3383                 dev->stats.rx_errors++;
3384                 atomic64_inc(&priv->extra_stats.rx_babr);
3385
3386                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3387         }
3388         if (events & IEVENT_EBERR) {
3389                 atomic64_inc(&priv->extra_stats.eberr);
3390                 netif_dbg(priv, rx_err, dev, "bus error\n");
3391         }
3392         if (events & IEVENT_RXC)
3393                 netif_dbg(priv, rx_status, dev, "control frame\n");
3394
3395         if (events & IEVENT_BABT) {
3396                 atomic64_inc(&priv->extra_stats.tx_babt);
3397                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3398         }
3399         return IRQ_HANDLED;
3400 }
3401
3402 static struct of_device_id gfar_match[] =
3403 {
3404         {
3405                 .type = "network",
3406                 .compatible = "gianfar",
3407         },
3408         {
3409                 .compatible = "fsl,etsec2",
3410         },
3411         {},
3412 };
3413 MODULE_DEVICE_TABLE(of, gfar_match);
3414
3415 /* Structure for a device driver */
3416 static struct platform_driver gfar_driver = {
3417         .driver = {
3418                 .name = "fsl-gianfar",
3419                 .owner = THIS_MODULE,
3420                 .pm = GFAR_PM_OPS,
3421                 .of_match_table = gfar_match,
3422         },
3423         .probe = gfar_probe,
3424         .remove = gfar_remove,
3425 };
3426
3427 module_platform_driver(gfar_driver);