drivers: net: Remove remaining alloc/OOM messages
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                            struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137                               int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143                                   const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151                             dma_addr_t buf)
152 {
153         u32 lstatus;
154
155         bdp->bufPtr = buf;
156
157         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159                 lstatus |= BD_LFLAG(RXBD_WRAP);
160
161         eieio();
162
163         bdp->lstatus = lstatus;
164 }
165
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168         struct gfar_private *priv = netdev_priv(ndev);
169         struct gfar_priv_tx_q *tx_queue = NULL;
170         struct gfar_priv_rx_q *rx_queue = NULL;
171         struct txbd8 *txbdp;
172         struct rxbd8 *rxbdp;
173         int i, j;
174
175         for (i = 0; i < priv->num_tx_queues; i++) {
176                 tx_queue = priv->tx_queue[i];
177                 /* Initialize some variables in our dev structure */
178                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180                 tx_queue->cur_tx = tx_queue->tx_bd_base;
181                 tx_queue->skb_curtx = 0;
182                 tx_queue->skb_dirtytx = 0;
183
184                 /* Initialize Transmit Descriptor Ring */
185                 txbdp = tx_queue->tx_bd_base;
186                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187                         txbdp->lstatus = 0;
188                         txbdp->bufPtr = 0;
189                         txbdp++;
190                 }
191
192                 /* Set the last descriptor in the ring to indicate wrap */
193                 txbdp--;
194                 txbdp->status |= TXBD_WRAP;
195         }
196
197         for (i = 0; i < priv->num_rx_queues; i++) {
198                 rx_queue = priv->rx_queue[i];
199                 rx_queue->cur_rx = rx_queue->rx_bd_base;
200                 rx_queue->skb_currx = 0;
201                 rxbdp = rx_queue->rx_bd_base;
202
203                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
204                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
205
206                         if (skb) {
207                                 gfar_init_rxbdp(rx_queue, rxbdp,
208                                                 rxbdp->bufPtr);
209                         } else {
210                                 skb = gfar_new_skb(ndev);
211                                 if (!skb) {
212                                         netdev_err(ndev, "Can't allocate RX buffers\n");
213                                         return -ENOMEM;
214                                 }
215                                 rx_queue->rx_skbuff[j] = skb;
216
217                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
218                         }
219
220                         rxbdp++;
221                 }
222
223         }
224
225         return 0;
226 }
227
228 static int gfar_alloc_skb_resources(struct net_device *ndev)
229 {
230         void *vaddr;
231         dma_addr_t addr;
232         int i, j, k;
233         struct gfar_private *priv = netdev_priv(ndev);
234         struct device *dev = &priv->ofdev->dev;
235         struct gfar_priv_tx_q *tx_queue = NULL;
236         struct gfar_priv_rx_q *rx_queue = NULL;
237
238         priv->total_tx_ring_size = 0;
239         for (i = 0; i < priv->num_tx_queues; i++)
240                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
241
242         priv->total_rx_ring_size = 0;
243         for (i = 0; i < priv->num_rx_queues; i++)
244                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
245
246         /* Allocate memory for the buffer descriptors */
247         vaddr = dma_alloc_coherent(dev,
248                         sizeof(struct txbd8) * priv->total_tx_ring_size +
249                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
250                         &addr, GFP_KERNEL);
251         if (!vaddr) {
252                 netif_err(priv, ifup, ndev,
253                           "Could not allocate buffer descriptors!\n");
254                 return -ENOMEM;
255         }
256
257         for (i = 0; i < priv->num_tx_queues; i++) {
258                 tx_queue = priv->tx_queue[i];
259                 tx_queue->tx_bd_base = vaddr;
260                 tx_queue->tx_bd_dma_base = addr;
261                 tx_queue->dev = ndev;
262                 /* enet DMA only understands physical addresses */
263                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265         }
266
267         /* Start the rx descriptor ring where the tx ring leaves off */
268         for (i = 0; i < priv->num_rx_queues; i++) {
269                 rx_queue = priv->rx_queue[i];
270                 rx_queue->rx_bd_base = vaddr;
271                 rx_queue->rx_bd_dma_base = addr;
272                 rx_queue->dev = ndev;
273                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275         }
276
277         /* Setup the skbuff rings */
278         for (i = 0; i < priv->num_tx_queues; i++) {
279                 tx_queue = priv->tx_queue[i];
280                 tx_queue->tx_skbuff =
281                         kmalloc_array(tx_queue->tx_ring_size,
282                                       sizeof(*tx_queue->tx_skbuff),
283                                       GFP_KERNEL);
284                 if (!tx_queue->tx_skbuff)
285                         goto cleanup;
286
287                 for (k = 0; k < tx_queue->tx_ring_size; k++)
288                         tx_queue->tx_skbuff[k] = NULL;
289         }
290
291         for (i = 0; i < priv->num_rx_queues; i++) {
292                 rx_queue = priv->rx_queue[i];
293                 rx_queue->rx_skbuff =
294                         kmalloc_array(rx_queue->rx_ring_size,
295                                       sizeof(*rx_queue->rx_skbuff),
296                                       GFP_KERNEL);
297                 if (!rx_queue->rx_skbuff)
298                         goto cleanup;
299
300                 for (j = 0; j < rx_queue->rx_ring_size; j++)
301                         rx_queue->rx_skbuff[j] = NULL;
302         }
303
304         if (gfar_init_bds(ndev))
305                 goto cleanup;
306
307         return 0;
308
309 cleanup:
310         free_skb_resources(priv);
311         return -ENOMEM;
312 }
313
314 static void gfar_init_tx_rx_base(struct gfar_private *priv)
315 {
316         struct gfar __iomem *regs = priv->gfargrp[0].regs;
317         u32 __iomem *baddr;
318         int i;
319
320         baddr = &regs->tbase0;
321         for (i = 0; i < priv->num_tx_queues; i++) {
322                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
323                 baddr += 2;
324         }
325
326         baddr = &regs->rbase0;
327         for (i = 0; i < priv->num_rx_queues; i++) {
328                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
329                 baddr += 2;
330         }
331 }
332
333 static void gfar_init_mac(struct net_device *ndev)
334 {
335         struct gfar_private *priv = netdev_priv(ndev);
336         struct gfar __iomem *regs = priv->gfargrp[0].regs;
337         u32 rctrl = 0;
338         u32 tctrl = 0;
339         u32 attrs = 0;
340
341         /* write the tx/rx base registers */
342         gfar_init_tx_rx_base(priv);
343
344         /* Configure the coalescing support */
345         gfar_configure_coalescing(priv, 0xFF, 0xFF);
346
347         if (priv->rx_filer_enable) {
348                 rctrl |= RCTRL_FILREN;
349                 /* Program the RIR0 reg with the required distribution */
350                 gfar_write(&regs->rir0, DEFAULT_RIR0);
351         }
352
353         /* Restore PROMISC mode */
354         if (ndev->flags & IFF_PROMISC)
355                 rctrl |= RCTRL_PROM;
356
357         if (ndev->features & NETIF_F_RXCSUM)
358                 rctrl |= RCTRL_CHECKSUMMING;
359
360         if (priv->extended_hash) {
361                 rctrl |= RCTRL_EXTHASH;
362
363                 gfar_clear_exact_match(ndev);
364                 rctrl |= RCTRL_EMEN;
365         }
366
367         if (priv->padding) {
368                 rctrl &= ~RCTRL_PAL_MASK;
369                 rctrl |= RCTRL_PADDING(priv->padding);
370         }
371
372         /* Insert receive time stamps into padding alignment bytes */
373         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
374                 rctrl &= ~RCTRL_PAL_MASK;
375                 rctrl |= RCTRL_PADDING(8);
376                 priv->padding = 8;
377         }
378
379         /* Enable HW time stamping if requested from user space */
380         if (priv->hwts_rx_en)
381                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
382
383         if (ndev->features & NETIF_F_HW_VLAN_RX)
384                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
385
386         /* Init rctrl based on our settings */
387         gfar_write(&regs->rctrl, rctrl);
388
389         if (ndev->features & NETIF_F_IP_CSUM)
390                 tctrl |= TCTRL_INIT_CSUM;
391
392         if (priv->prio_sched_en)
393                 tctrl |= TCTRL_TXSCHED_PRIO;
394         else {
395                 tctrl |= TCTRL_TXSCHED_WRRS;
396                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
397                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
398         }
399
400         gfar_write(&regs->tctrl, tctrl);
401
402         /* Set the extraction length and index */
403         attrs = ATTRELI_EL(priv->rx_stash_size) |
404                 ATTRELI_EI(priv->rx_stash_index);
405
406         gfar_write(&regs->attreli, attrs);
407
408         /* Start with defaults, and add stashing or locking
409          * depending on the approprate variables
410          */
411         attrs = ATTR_INIT_SETTINGS;
412
413         if (priv->bd_stash_en)
414                 attrs |= ATTR_BDSTASH;
415
416         if (priv->rx_stash_size != 0)
417                 attrs |= ATTR_BUFSTASH;
418
419         gfar_write(&regs->attr, attrs);
420
421         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
422         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
423         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
424 }
425
426 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
427 {
428         struct gfar_private *priv = netdev_priv(dev);
429         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
430         unsigned long tx_packets = 0, tx_bytes = 0;
431         int i;
432
433         for (i = 0; i < priv->num_rx_queues; i++) {
434                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
435                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
436                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
437         }
438
439         dev->stats.rx_packets = rx_packets;
440         dev->stats.rx_bytes   = rx_bytes;
441         dev->stats.rx_dropped = rx_dropped;
442
443         for (i = 0; i < priv->num_tx_queues; i++) {
444                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
445                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
446         }
447
448         dev->stats.tx_bytes   = tx_bytes;
449         dev->stats.tx_packets = tx_packets;
450
451         return &dev->stats;
452 }
453
454 static const struct net_device_ops gfar_netdev_ops = {
455         .ndo_open = gfar_enet_open,
456         .ndo_start_xmit = gfar_start_xmit,
457         .ndo_stop = gfar_close,
458         .ndo_change_mtu = gfar_change_mtu,
459         .ndo_set_features = gfar_set_features,
460         .ndo_set_rx_mode = gfar_set_multi,
461         .ndo_tx_timeout = gfar_timeout,
462         .ndo_do_ioctl = gfar_ioctl,
463         .ndo_get_stats = gfar_get_stats,
464         .ndo_set_mac_address = eth_mac_addr,
465         .ndo_validate_addr = eth_validate_addr,
466 #ifdef CONFIG_NET_POLL_CONTROLLER
467         .ndo_poll_controller = gfar_netpoll,
468 #endif
469 };
470
471 void lock_rx_qs(struct gfar_private *priv)
472 {
473         int i;
474
475         for (i = 0; i < priv->num_rx_queues; i++)
476                 spin_lock(&priv->rx_queue[i]->rxlock);
477 }
478
479 void lock_tx_qs(struct gfar_private *priv)
480 {
481         int i;
482
483         for (i = 0; i < priv->num_tx_queues; i++)
484                 spin_lock(&priv->tx_queue[i]->txlock);
485 }
486
487 void unlock_rx_qs(struct gfar_private *priv)
488 {
489         int i;
490
491         for (i = 0; i < priv->num_rx_queues; i++)
492                 spin_unlock(&priv->rx_queue[i]->rxlock);
493 }
494
495 void unlock_tx_qs(struct gfar_private *priv)
496 {
497         int i;
498
499         for (i = 0; i < priv->num_tx_queues; i++)
500                 spin_unlock(&priv->tx_queue[i]->txlock);
501 }
502
503 static bool gfar_is_vlan_on(struct gfar_private *priv)
504 {
505         return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
506                (priv->ndev->features & NETIF_F_HW_VLAN_TX);
507 }
508
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private *priv)
511 {
512         return gfar_is_vlan_on(priv) ||
513                (priv->ndev->features & NETIF_F_RXCSUM) ||
514                (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
515 }
516
517 static void free_tx_pointers(struct gfar_private *priv)
518 {
519         int i;
520
521         for (i = 0; i < priv->num_tx_queues; i++)
522                 kfree(priv->tx_queue[i]);
523 }
524
525 static void free_rx_pointers(struct gfar_private *priv)
526 {
527         int i;
528
529         for (i = 0; i < priv->num_rx_queues; i++)
530                 kfree(priv->rx_queue[i]);
531 }
532
533 static void unmap_group_regs(struct gfar_private *priv)
534 {
535         int i;
536
537         for (i = 0; i < MAXGROUPS; i++)
538                 if (priv->gfargrp[i].regs)
539                         iounmap(priv->gfargrp[i].regs);
540 }
541
542 static void free_gfar_dev(struct gfar_private *priv)
543 {
544         int i, j;
545
546         for (i = 0; i < priv->num_grps; i++)
547                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
548                         kfree(priv->gfargrp[i].irqinfo[j]);
549                         priv->gfargrp[i].irqinfo[j] = NULL;
550                 }
551
552         free_netdev(priv->ndev);
553 }
554
555 static void disable_napi(struct gfar_private *priv)
556 {
557         int i;
558
559         for (i = 0; i < priv->num_grps; i++)
560                 napi_disable(&priv->gfargrp[i].napi);
561 }
562
563 static void enable_napi(struct gfar_private *priv)
564 {
565         int i;
566
567         for (i = 0; i < priv->num_grps; i++)
568                 napi_enable(&priv->gfargrp[i].napi);
569 }
570
571 static int gfar_parse_group(struct device_node *np,
572                             struct gfar_private *priv, const char *model)
573 {
574         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
575         u32 *queue_mask;
576         int i;
577
578         for (i = 0; i < GFAR_NUM_IRQS; i++) {
579                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
580                                           GFP_KERNEL);
581                 if (!grp->irqinfo[i])
582                         return -ENOMEM;
583         }
584
585         grp->regs = of_iomap(np, 0);
586         if (!grp->regs)
587                 return -ENOMEM;
588
589         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
590
591         /* If we aren't the FEC we have multiple interrupts */
592         if (model && strcasecmp(model, "FEC")) {
593                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
594                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
595                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
596                     gfar_irq(grp, RX)->irq == NO_IRQ ||
597                     gfar_irq(grp, ER)->irq == NO_IRQ)
598                         return -EINVAL;
599         }
600
601         grp->grp_id = priv->num_grps;
602         grp->priv = priv;
603         spin_lock_init(&grp->grplock);
604         if (priv->mode == MQ_MG_MODE) {
605                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
606                 grp->rx_bit_map = queue_mask ?
607                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
608                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
609                 grp->tx_bit_map = queue_mask ?
610                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
611         } else {
612                 grp->rx_bit_map = 0xFF;
613                 grp->tx_bit_map = 0xFF;
614         }
615         priv->num_grps++;
616
617         return 0;
618 }
619
620 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
621 {
622         const char *model;
623         const char *ctype;
624         const void *mac_addr;
625         int err = 0, i;
626         struct net_device *dev = NULL;
627         struct gfar_private *priv = NULL;
628         struct device_node *np = ofdev->dev.of_node;
629         struct device_node *child = NULL;
630         const u32 *stash;
631         const u32 *stash_len;
632         const u32 *stash_idx;
633         unsigned int num_tx_qs, num_rx_qs;
634         u32 *tx_queues, *rx_queues;
635
636         if (!np || !of_device_is_available(np))
637                 return -ENODEV;
638
639         /* parse the num of tx and rx queues */
640         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
641         num_tx_qs = tx_queues ? *tx_queues : 1;
642
643         if (num_tx_qs > MAX_TX_QS) {
644                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
645                        num_tx_qs, MAX_TX_QS);
646                 pr_err("Cannot do alloc_etherdev, aborting\n");
647                 return -EINVAL;
648         }
649
650         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
651         num_rx_qs = rx_queues ? *rx_queues : 1;
652
653         if (num_rx_qs > MAX_RX_QS) {
654                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
655                        num_rx_qs, MAX_RX_QS);
656                 pr_err("Cannot do alloc_etherdev, aborting\n");
657                 return -EINVAL;
658         }
659
660         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
661         dev = *pdev;
662         if (NULL == dev)
663                 return -ENOMEM;
664
665         priv = netdev_priv(dev);
666         priv->node = ofdev->dev.of_node;
667         priv->ndev = dev;
668
669         priv->num_tx_queues = num_tx_qs;
670         netif_set_real_num_rx_queues(dev, num_rx_qs);
671         priv->num_rx_queues = num_rx_qs;
672         priv->num_grps = 0x0;
673
674         /* Init Rx queue filer rule set linked list */
675         INIT_LIST_HEAD(&priv->rx_list.list);
676         priv->rx_list.count = 0;
677         mutex_init(&priv->rx_queue_access);
678
679         model = of_get_property(np, "model", NULL);
680
681         for (i = 0; i < MAXGROUPS; i++)
682                 priv->gfargrp[i].regs = NULL;
683
684         /* Parse and initialize group specific information */
685         if (of_device_is_compatible(np, "fsl,etsec2")) {
686                 priv->mode = MQ_MG_MODE;
687                 for_each_child_of_node(np, child) {
688                         err = gfar_parse_group(child, priv, model);
689                         if (err)
690                                 goto err_grp_init;
691                 }
692         } else {
693                 priv->mode = SQ_SG_MODE;
694                 err = gfar_parse_group(np, priv, model);
695                 if (err)
696                         goto err_grp_init;
697         }
698
699         for (i = 0; i < priv->num_tx_queues; i++)
700                priv->tx_queue[i] = NULL;
701         for (i = 0; i < priv->num_rx_queues; i++)
702                 priv->rx_queue[i] = NULL;
703
704         for (i = 0; i < priv->num_tx_queues; i++) {
705                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
706                                             GFP_KERNEL);
707                 if (!priv->tx_queue[i]) {
708                         err = -ENOMEM;
709                         goto tx_alloc_failed;
710                 }
711                 priv->tx_queue[i]->tx_skbuff = NULL;
712                 priv->tx_queue[i]->qindex = i;
713                 priv->tx_queue[i]->dev = dev;
714                 spin_lock_init(&(priv->tx_queue[i]->txlock));
715         }
716
717         for (i = 0; i < priv->num_rx_queues; i++) {
718                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
719                                             GFP_KERNEL);
720                 if (!priv->rx_queue[i]) {
721                         err = -ENOMEM;
722                         goto rx_alloc_failed;
723                 }
724                 priv->rx_queue[i]->rx_skbuff = NULL;
725                 priv->rx_queue[i]->qindex = i;
726                 priv->rx_queue[i]->dev = dev;
727                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
728         }
729
730
731         stash = of_get_property(np, "bd-stash", NULL);
732
733         if (stash) {
734                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
735                 priv->bd_stash_en = 1;
736         }
737
738         stash_len = of_get_property(np, "rx-stash-len", NULL);
739
740         if (stash_len)
741                 priv->rx_stash_size = *stash_len;
742
743         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
744
745         if (stash_idx)
746                 priv->rx_stash_index = *stash_idx;
747
748         if (stash_len || stash_idx)
749                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
750
751         mac_addr = of_get_mac_address(np);
752
753         if (mac_addr)
754                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
755
756         if (model && !strcasecmp(model, "TSEC"))
757                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
758                                      FSL_GIANFAR_DEV_HAS_COALESCE |
759                                      FSL_GIANFAR_DEV_HAS_RMON |
760                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
761
762         if (model && !strcasecmp(model, "eTSEC"))
763                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
764                                      FSL_GIANFAR_DEV_HAS_COALESCE |
765                                      FSL_GIANFAR_DEV_HAS_RMON |
766                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
767                                      FSL_GIANFAR_DEV_HAS_PADDING |
768                                      FSL_GIANFAR_DEV_HAS_CSUM |
769                                      FSL_GIANFAR_DEV_HAS_VLAN |
770                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
771                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
772                                      FSL_GIANFAR_DEV_HAS_TIMER;
773
774         ctype = of_get_property(np, "phy-connection-type", NULL);
775
776         /* We only care about rgmii-id.  The rest are autodetected */
777         if (ctype && !strcmp(ctype, "rgmii-id"))
778                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
779         else
780                 priv->interface = PHY_INTERFACE_MODE_MII;
781
782         if (of_get_property(np, "fsl,magic-packet", NULL))
783                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
784
785         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
786
787         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
788         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
789
790         return 0;
791
792 rx_alloc_failed:
793         free_rx_pointers(priv);
794 tx_alloc_failed:
795         free_tx_pointers(priv);
796 err_grp_init:
797         unmap_group_regs(priv);
798         free_gfar_dev(priv);
799         return err;
800 }
801
802 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
803                                struct ifreq *ifr, int cmd)
804 {
805         struct hwtstamp_config config;
806         struct gfar_private *priv = netdev_priv(netdev);
807
808         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
809                 return -EFAULT;
810
811         /* reserved for future extensions */
812         if (config.flags)
813                 return -EINVAL;
814
815         switch (config.tx_type) {
816         case HWTSTAMP_TX_OFF:
817                 priv->hwts_tx_en = 0;
818                 break;
819         case HWTSTAMP_TX_ON:
820                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
821                         return -ERANGE;
822                 priv->hwts_tx_en = 1;
823                 break;
824         default:
825                 return -ERANGE;
826         }
827
828         switch (config.rx_filter) {
829         case HWTSTAMP_FILTER_NONE:
830                 if (priv->hwts_rx_en) {
831                         stop_gfar(netdev);
832                         priv->hwts_rx_en = 0;
833                         startup_gfar(netdev);
834                 }
835                 break;
836         default:
837                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
838                         return -ERANGE;
839                 if (!priv->hwts_rx_en) {
840                         stop_gfar(netdev);
841                         priv->hwts_rx_en = 1;
842                         startup_gfar(netdev);
843                 }
844                 config.rx_filter = HWTSTAMP_FILTER_ALL;
845                 break;
846         }
847
848         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
849                 -EFAULT : 0;
850 }
851
852 /* Ioctl MII Interface */
853 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
854 {
855         struct gfar_private *priv = netdev_priv(dev);
856
857         if (!netif_running(dev))
858                 return -EINVAL;
859
860         if (cmd == SIOCSHWTSTAMP)
861                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
862
863         if (!priv->phydev)
864                 return -ENODEV;
865
866         return phy_mii_ioctl(priv->phydev, rq, cmd);
867 }
868
869 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
870 {
871         unsigned int new_bit_map = 0x0;
872         int mask = 0x1 << (max_qs - 1), i;
873
874         for (i = 0; i < max_qs; i++) {
875                 if (bit_map & mask)
876                         new_bit_map = new_bit_map + (1 << i);
877                 mask = mask >> 0x1;
878         }
879         return new_bit_map;
880 }
881
882 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
883                                    u32 class)
884 {
885         u32 rqfpr = FPR_FILER_MASK;
886         u32 rqfcr = 0x0;
887
888         rqfar--;
889         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
890         priv->ftp_rqfpr[rqfar] = rqfpr;
891         priv->ftp_rqfcr[rqfar] = rqfcr;
892         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
893
894         rqfar--;
895         rqfcr = RQFCR_CMP_NOMATCH;
896         priv->ftp_rqfpr[rqfar] = rqfpr;
897         priv->ftp_rqfcr[rqfar] = rqfcr;
898         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899
900         rqfar--;
901         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
902         rqfpr = class;
903         priv->ftp_rqfcr[rqfar] = rqfcr;
904         priv->ftp_rqfpr[rqfar] = rqfpr;
905         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
906
907         rqfar--;
908         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
909         rqfpr = class;
910         priv->ftp_rqfcr[rqfar] = rqfcr;
911         priv->ftp_rqfpr[rqfar] = rqfpr;
912         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
913
914         return rqfar;
915 }
916
917 static void gfar_init_filer_table(struct gfar_private *priv)
918 {
919         int i = 0x0;
920         u32 rqfar = MAX_FILER_IDX;
921         u32 rqfcr = 0x0;
922         u32 rqfpr = FPR_FILER_MASK;
923
924         /* Default rule */
925         rqfcr = RQFCR_CMP_MATCH;
926         priv->ftp_rqfcr[rqfar] = rqfcr;
927         priv->ftp_rqfpr[rqfar] = rqfpr;
928         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
929
930         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
931         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
932         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
933         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
934         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
935         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
936
937         /* cur_filer_idx indicated the first non-masked rule */
938         priv->cur_filer_idx = rqfar;
939
940         /* Rest are masked rules */
941         rqfcr = RQFCR_CMP_NOMATCH;
942         for (i = 0; i < rqfar; i++) {
943                 priv->ftp_rqfcr[i] = rqfcr;
944                 priv->ftp_rqfpr[i] = rqfpr;
945                 gfar_write_filer(priv, i, rqfcr, rqfpr);
946         }
947 }
948
949 static void gfar_detect_errata(struct gfar_private *priv)
950 {
951         struct device *dev = &priv->ofdev->dev;
952         unsigned int pvr = mfspr(SPRN_PVR);
953         unsigned int svr = mfspr(SPRN_SVR);
954         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
955         unsigned int rev = svr & 0xffff;
956
957         /* MPC8313 Rev 2.0 and higher; All MPC837x */
958         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
959             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
960                 priv->errata |= GFAR_ERRATA_74;
961
962         /* MPC8313 and MPC837x all rev */
963         if ((pvr == 0x80850010 && mod == 0x80b0) ||
964             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
965                 priv->errata |= GFAR_ERRATA_76;
966
967         /* MPC8313 and MPC837x all rev */
968         if ((pvr == 0x80850010 && mod == 0x80b0) ||
969             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
970                 priv->errata |= GFAR_ERRATA_A002;
971
972         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
973         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
974             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
975                 priv->errata |= GFAR_ERRATA_12;
976
977         if (priv->errata)
978                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
979                          priv->errata);
980 }
981
982 /* Set up the ethernet device structure, private data,
983  * and anything else we need before we start
984  */
985 static int gfar_probe(struct platform_device *ofdev)
986 {
987         u32 tempval;
988         struct net_device *dev = NULL;
989         struct gfar_private *priv = NULL;
990         struct gfar __iomem *regs = NULL;
991         int err = 0, i, grp_idx = 0;
992         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
993         u32 isrg = 0;
994         u32 __iomem *baddr;
995
996         err = gfar_of_init(ofdev, &dev);
997
998         if (err)
999                 return err;
1000
1001         priv = netdev_priv(dev);
1002         priv->ndev = dev;
1003         priv->ofdev = ofdev;
1004         priv->node = ofdev->dev.of_node;
1005         SET_NETDEV_DEV(dev, &ofdev->dev);
1006
1007         spin_lock_init(&priv->bflock);
1008         INIT_WORK(&priv->reset_task, gfar_reset_task);
1009
1010         dev_set_drvdata(&ofdev->dev, priv);
1011         regs = priv->gfargrp[0].regs;
1012
1013         gfar_detect_errata(priv);
1014
1015         /* Stop the DMA engine now, in case it was running before
1016          * (The firmware could have used it, and left it running).
1017          */
1018         gfar_halt(dev);
1019
1020         /* Reset MAC layer */
1021         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1022
1023         /* We need to delay at least 3 TX clocks */
1024         udelay(2);
1025
1026         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1027         gfar_write(&regs->maccfg1, tempval);
1028
1029         /* Initialize MACCFG2. */
1030         tempval = MACCFG2_INIT_SETTINGS;
1031         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1032                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1033         gfar_write(&regs->maccfg2, tempval);
1034
1035         /* Initialize ECNTRL */
1036         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1037
1038         /* Set the dev->base_addr to the gfar reg region */
1039         dev->base_addr = (unsigned long) regs;
1040
1041         SET_NETDEV_DEV(dev, &ofdev->dev);
1042
1043         /* Fill in the dev structure */
1044         dev->watchdog_timeo = TX_TIMEOUT;
1045         dev->mtu = 1500;
1046         dev->netdev_ops = &gfar_netdev_ops;
1047         dev->ethtool_ops = &gfar_ethtool_ops;
1048
1049         /* Register for napi ...We are registering NAPI for each grp */
1050         for (i = 0; i < priv->num_grps; i++)
1051                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1052                                GFAR_DEV_WEIGHT);
1053
1054         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1055                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1056                                    NETIF_F_RXCSUM;
1057                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1058                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1059         }
1060
1061         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1062                 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1063                 dev->features |= NETIF_F_HW_VLAN_RX;
1064         }
1065
1066         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1067                 priv->extended_hash = 1;
1068                 priv->hash_width = 9;
1069
1070                 priv->hash_regs[0] = &regs->igaddr0;
1071                 priv->hash_regs[1] = &regs->igaddr1;
1072                 priv->hash_regs[2] = &regs->igaddr2;
1073                 priv->hash_regs[3] = &regs->igaddr3;
1074                 priv->hash_regs[4] = &regs->igaddr4;
1075                 priv->hash_regs[5] = &regs->igaddr5;
1076                 priv->hash_regs[6] = &regs->igaddr6;
1077                 priv->hash_regs[7] = &regs->igaddr7;
1078                 priv->hash_regs[8] = &regs->gaddr0;
1079                 priv->hash_regs[9] = &regs->gaddr1;
1080                 priv->hash_regs[10] = &regs->gaddr2;
1081                 priv->hash_regs[11] = &regs->gaddr3;
1082                 priv->hash_regs[12] = &regs->gaddr4;
1083                 priv->hash_regs[13] = &regs->gaddr5;
1084                 priv->hash_regs[14] = &regs->gaddr6;
1085                 priv->hash_regs[15] = &regs->gaddr7;
1086
1087         } else {
1088                 priv->extended_hash = 0;
1089                 priv->hash_width = 8;
1090
1091                 priv->hash_regs[0] = &regs->gaddr0;
1092                 priv->hash_regs[1] = &regs->gaddr1;
1093                 priv->hash_regs[2] = &regs->gaddr2;
1094                 priv->hash_regs[3] = &regs->gaddr3;
1095                 priv->hash_regs[4] = &regs->gaddr4;
1096                 priv->hash_regs[5] = &regs->gaddr5;
1097                 priv->hash_regs[6] = &regs->gaddr6;
1098                 priv->hash_regs[7] = &regs->gaddr7;
1099         }
1100
1101         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1102                 priv->padding = DEFAULT_PADDING;
1103         else
1104                 priv->padding = 0;
1105
1106         if (dev->features & NETIF_F_IP_CSUM ||
1107             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1108                 dev->needed_headroom = GMAC_FCB_LEN;
1109
1110         /* Program the isrg regs only if number of grps > 1 */
1111         if (priv->num_grps > 1) {
1112                 baddr = &regs->isrg0;
1113                 for (i = 0; i < priv->num_grps; i++) {
1114                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1115                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1116                         gfar_write(baddr, isrg);
1117                         baddr++;
1118                         isrg = 0x0;
1119                 }
1120         }
1121
1122         /* Need to reverse the bit maps as  bit_map's MSB is q0
1123          * but, for_each_set_bit parses from right to left, which
1124          * basically reverses the queue numbers
1125          */
1126         for (i = 0; i< priv->num_grps; i++) {
1127                 priv->gfargrp[i].tx_bit_map =
1128                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1129                 priv->gfargrp[i].rx_bit_map =
1130                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1131         }
1132
1133         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1134          * also assign queues to groups
1135          */
1136         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1137                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1138
1139                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1140                                  priv->num_rx_queues) {
1141                         priv->gfargrp[grp_idx].num_rx_queues++;
1142                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1143                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1144                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1145                 }
1146                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1147
1148                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1149                                  priv->num_tx_queues) {
1150                         priv->gfargrp[grp_idx].num_tx_queues++;
1151                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1152                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1153                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1154                 }
1155                 priv->gfargrp[grp_idx].rstat = rstat;
1156                 priv->gfargrp[grp_idx].tstat = tstat;
1157                 rstat = tstat =0;
1158         }
1159
1160         gfar_write(&regs->rqueue, rqueue);
1161         gfar_write(&regs->tqueue, tqueue);
1162
1163         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1164
1165         /* Initializing some of the rx/tx queue level parameters */
1166         for (i = 0; i < priv->num_tx_queues; i++) {
1167                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1168                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1169                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1170                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1171         }
1172
1173         for (i = 0; i < priv->num_rx_queues; i++) {
1174                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1175                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1176                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1177         }
1178
1179         /* always enable rx filer */
1180         priv->rx_filer_enable = 1;
1181         /* Enable most messages by default */
1182         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1183         /* use pritority h/w tx queue scheduling for single queue devices */
1184         if (priv->num_tx_queues == 1)
1185                 priv->prio_sched_en = 1;
1186
1187         /* Carrier starts down, phylib will bring it up */
1188         netif_carrier_off(dev);
1189
1190         err = register_netdev(dev);
1191
1192         if (err) {
1193                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1194                 goto register_fail;
1195         }
1196
1197         device_init_wakeup(&dev->dev,
1198                            priv->device_flags &
1199                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1200
1201         /* fill out IRQ number and name fields */
1202         for (i = 0; i < priv->num_grps; i++) {
1203                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1204                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1205                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1206                                 dev->name, "_g", '0' + i, "_tx");
1207                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1208                                 dev->name, "_g", '0' + i, "_rx");
1209                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1210                                 dev->name, "_g", '0' + i, "_er");
1211                 } else
1212                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1213         }
1214
1215         /* Initialize the filer table */
1216         gfar_init_filer_table(priv);
1217
1218         /* Create all the sysfs files */
1219         gfar_init_sysfs(dev);
1220
1221         /* Print out the device info */
1222         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1223
1224         /* Even more device info helps when determining which kernel
1225          * provided which set of benchmarks.
1226          */
1227         netdev_info(dev, "Running with NAPI enabled\n");
1228         for (i = 0; i < priv->num_rx_queues; i++)
1229                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1230                             i, priv->rx_queue[i]->rx_ring_size);
1231         for (i = 0; i < priv->num_tx_queues; i++)
1232                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1233                             i, priv->tx_queue[i]->tx_ring_size);
1234
1235         return 0;
1236
1237 register_fail:
1238         unmap_group_regs(priv);
1239         free_tx_pointers(priv);
1240         free_rx_pointers(priv);
1241         if (priv->phy_node)
1242                 of_node_put(priv->phy_node);
1243         if (priv->tbi_node)
1244                 of_node_put(priv->tbi_node);
1245         free_gfar_dev(priv);
1246         return err;
1247 }
1248
1249 static int gfar_remove(struct platform_device *ofdev)
1250 {
1251         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1252
1253         if (priv->phy_node)
1254                 of_node_put(priv->phy_node);
1255         if (priv->tbi_node)
1256                 of_node_put(priv->tbi_node);
1257
1258         dev_set_drvdata(&ofdev->dev, NULL);
1259
1260         unregister_netdev(priv->ndev);
1261         unmap_group_regs(priv);
1262         free_gfar_dev(priv);
1263
1264         return 0;
1265 }
1266
1267 #ifdef CONFIG_PM
1268
1269 static int gfar_suspend(struct device *dev)
1270 {
1271         struct gfar_private *priv = dev_get_drvdata(dev);
1272         struct net_device *ndev = priv->ndev;
1273         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1274         unsigned long flags;
1275         u32 tempval;
1276
1277         int magic_packet = priv->wol_en &&
1278                            (priv->device_flags &
1279                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1280
1281         netif_device_detach(ndev);
1282
1283         if (netif_running(ndev)) {
1284
1285                 local_irq_save(flags);
1286                 lock_tx_qs(priv);
1287                 lock_rx_qs(priv);
1288
1289                 gfar_halt_nodisable(ndev);
1290
1291                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1292                 tempval = gfar_read(&regs->maccfg1);
1293
1294                 tempval &= ~MACCFG1_TX_EN;
1295
1296                 if (!magic_packet)
1297                         tempval &= ~MACCFG1_RX_EN;
1298
1299                 gfar_write(&regs->maccfg1, tempval);
1300
1301                 unlock_rx_qs(priv);
1302                 unlock_tx_qs(priv);
1303                 local_irq_restore(flags);
1304
1305                 disable_napi(priv);
1306
1307                 if (magic_packet) {
1308                         /* Enable interrupt on Magic Packet */
1309                         gfar_write(&regs->imask, IMASK_MAG);
1310
1311                         /* Enable Magic Packet mode */
1312                         tempval = gfar_read(&regs->maccfg2);
1313                         tempval |= MACCFG2_MPEN;
1314                         gfar_write(&regs->maccfg2, tempval);
1315                 } else {
1316                         phy_stop(priv->phydev);
1317                 }
1318         }
1319
1320         return 0;
1321 }
1322
1323 static int gfar_resume(struct device *dev)
1324 {
1325         struct gfar_private *priv = dev_get_drvdata(dev);
1326         struct net_device *ndev = priv->ndev;
1327         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1328         unsigned long flags;
1329         u32 tempval;
1330         int magic_packet = priv->wol_en &&
1331                            (priv->device_flags &
1332                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1333
1334         if (!netif_running(ndev)) {
1335                 netif_device_attach(ndev);
1336                 return 0;
1337         }
1338
1339         if (!magic_packet && priv->phydev)
1340                 phy_start(priv->phydev);
1341
1342         /* Disable Magic Packet mode, in case something
1343          * else woke us up.
1344          */
1345         local_irq_save(flags);
1346         lock_tx_qs(priv);
1347         lock_rx_qs(priv);
1348
1349         tempval = gfar_read(&regs->maccfg2);
1350         tempval &= ~MACCFG2_MPEN;
1351         gfar_write(&regs->maccfg2, tempval);
1352
1353         gfar_start(ndev);
1354
1355         unlock_rx_qs(priv);
1356         unlock_tx_qs(priv);
1357         local_irq_restore(flags);
1358
1359         netif_device_attach(ndev);
1360
1361         enable_napi(priv);
1362
1363         return 0;
1364 }
1365
1366 static int gfar_restore(struct device *dev)
1367 {
1368         struct gfar_private *priv = dev_get_drvdata(dev);
1369         struct net_device *ndev = priv->ndev;
1370
1371         if (!netif_running(ndev)) {
1372                 netif_device_attach(ndev);
1373
1374                 return 0;
1375         }
1376
1377         if (gfar_init_bds(ndev)) {
1378                 free_skb_resources(priv);
1379                 return -ENOMEM;
1380         }
1381
1382         init_registers(ndev);
1383         gfar_set_mac_address(ndev);
1384         gfar_init_mac(ndev);
1385         gfar_start(ndev);
1386
1387         priv->oldlink = 0;
1388         priv->oldspeed = 0;
1389         priv->oldduplex = -1;
1390
1391         if (priv->phydev)
1392                 phy_start(priv->phydev);
1393
1394         netif_device_attach(ndev);
1395         enable_napi(priv);
1396
1397         return 0;
1398 }
1399
1400 static struct dev_pm_ops gfar_pm_ops = {
1401         .suspend = gfar_suspend,
1402         .resume = gfar_resume,
1403         .freeze = gfar_suspend,
1404         .thaw = gfar_resume,
1405         .restore = gfar_restore,
1406 };
1407
1408 #define GFAR_PM_OPS (&gfar_pm_ops)
1409
1410 #else
1411
1412 #define GFAR_PM_OPS NULL
1413
1414 #endif
1415
1416 /* Reads the controller's registers to determine what interface
1417  * connects it to the PHY.
1418  */
1419 static phy_interface_t gfar_get_interface(struct net_device *dev)
1420 {
1421         struct gfar_private *priv = netdev_priv(dev);
1422         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1423         u32 ecntrl;
1424
1425         ecntrl = gfar_read(&regs->ecntrl);
1426
1427         if (ecntrl & ECNTRL_SGMII_MODE)
1428                 return PHY_INTERFACE_MODE_SGMII;
1429
1430         if (ecntrl & ECNTRL_TBI_MODE) {
1431                 if (ecntrl & ECNTRL_REDUCED_MODE)
1432                         return PHY_INTERFACE_MODE_RTBI;
1433                 else
1434                         return PHY_INTERFACE_MODE_TBI;
1435         }
1436
1437         if (ecntrl & ECNTRL_REDUCED_MODE) {
1438                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1439                         return PHY_INTERFACE_MODE_RMII;
1440                 }
1441                 else {
1442                         phy_interface_t interface = priv->interface;
1443
1444                         /* This isn't autodetected right now, so it must
1445                          * be set by the device tree or platform code.
1446                          */
1447                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1448                                 return PHY_INTERFACE_MODE_RGMII_ID;
1449
1450                         return PHY_INTERFACE_MODE_RGMII;
1451                 }
1452         }
1453
1454         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1455                 return PHY_INTERFACE_MODE_GMII;
1456
1457         return PHY_INTERFACE_MODE_MII;
1458 }
1459
1460
1461 /* Initializes driver's PHY state, and attaches to the PHY.
1462  * Returns 0 on success.
1463  */
1464 static int init_phy(struct net_device *dev)
1465 {
1466         struct gfar_private *priv = netdev_priv(dev);
1467         uint gigabit_support =
1468                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1469                 SUPPORTED_1000baseT_Full : 0;
1470         phy_interface_t interface;
1471
1472         priv->oldlink = 0;
1473         priv->oldspeed = 0;
1474         priv->oldduplex = -1;
1475
1476         interface = gfar_get_interface(dev);
1477
1478         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1479                                       interface);
1480         if (!priv->phydev)
1481                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1482                                                          interface);
1483         if (!priv->phydev) {
1484                 dev_err(&dev->dev, "could not attach to PHY\n");
1485                 return -ENODEV;
1486         }
1487
1488         if (interface == PHY_INTERFACE_MODE_SGMII)
1489                 gfar_configure_serdes(dev);
1490
1491         /* Remove any features not supported by the controller */
1492         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1493         priv->phydev->advertising = priv->phydev->supported;
1494
1495         return 0;
1496 }
1497
1498 /* Initialize TBI PHY interface for communicating with the
1499  * SERDES lynx PHY on the chip.  We communicate with this PHY
1500  * through the MDIO bus on each controller, treating it as a
1501  * "normal" PHY at the address found in the TBIPA register.  We assume
1502  * that the TBIPA register is valid.  Either the MDIO bus code will set
1503  * it to a value that doesn't conflict with other PHYs on the bus, or the
1504  * value doesn't matter, as there are no other PHYs on the bus.
1505  */
1506 static void gfar_configure_serdes(struct net_device *dev)
1507 {
1508         struct gfar_private *priv = netdev_priv(dev);
1509         struct phy_device *tbiphy;
1510
1511         if (!priv->tbi_node) {
1512                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1513                                     "device tree specify a tbi-handle\n");
1514                 return;
1515         }
1516
1517         tbiphy = of_phy_find_device(priv->tbi_node);
1518         if (!tbiphy) {
1519                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1520                 return;
1521         }
1522
1523         /* If the link is already up, we must already be ok, and don't need to
1524          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1525          * everything for us?  Resetting it takes the link down and requires
1526          * several seconds for it to come back.
1527          */
1528         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1529                 return;
1530
1531         /* Single clk mode, mii mode off(for serdes communication) */
1532         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1533
1534         phy_write(tbiphy, MII_ADVERTISE,
1535                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1536                   ADVERTISE_1000XPSE_ASYM);
1537
1538         phy_write(tbiphy, MII_BMCR,
1539                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1540                   BMCR_SPEED1000);
1541 }
1542
1543 static void init_registers(struct net_device *dev)
1544 {
1545         struct gfar_private *priv = netdev_priv(dev);
1546         struct gfar __iomem *regs = NULL;
1547         int i;
1548
1549         for (i = 0; i < priv->num_grps; i++) {
1550                 regs = priv->gfargrp[i].regs;
1551                 /* Clear IEVENT */
1552                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1553
1554                 /* Initialize IMASK */
1555                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1556         }
1557
1558         regs = priv->gfargrp[0].regs;
1559         /* Init hash registers to zero */
1560         gfar_write(&regs->igaddr0, 0);
1561         gfar_write(&regs->igaddr1, 0);
1562         gfar_write(&regs->igaddr2, 0);
1563         gfar_write(&regs->igaddr3, 0);
1564         gfar_write(&regs->igaddr4, 0);
1565         gfar_write(&regs->igaddr5, 0);
1566         gfar_write(&regs->igaddr6, 0);
1567         gfar_write(&regs->igaddr7, 0);
1568
1569         gfar_write(&regs->gaddr0, 0);
1570         gfar_write(&regs->gaddr1, 0);
1571         gfar_write(&regs->gaddr2, 0);
1572         gfar_write(&regs->gaddr3, 0);
1573         gfar_write(&regs->gaddr4, 0);
1574         gfar_write(&regs->gaddr5, 0);
1575         gfar_write(&regs->gaddr6, 0);
1576         gfar_write(&regs->gaddr7, 0);
1577
1578         /* Zero out the rmon mib registers if it has them */
1579         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1580                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1581
1582                 /* Mask off the CAM interrupts */
1583                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1584                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1585         }
1586
1587         /* Initialize the max receive buffer length */
1588         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1589
1590         /* Initialize the Minimum Frame Length Register */
1591         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1592 }
1593
1594 static int __gfar_is_rx_idle(struct gfar_private *priv)
1595 {
1596         u32 res;
1597
1598         /* Normaly TSEC should not hang on GRS commands, so we should
1599          * actually wait for IEVENT_GRSC flag.
1600          */
1601         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1602                 return 0;
1603
1604         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1605          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1606          * and the Rx can be safely reset.
1607          */
1608         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1609         res &= 0x7f807f80;
1610         if ((res & 0xffff) == (res >> 16))
1611                 return 1;
1612
1613         return 0;
1614 }
1615
1616 /* Halt the receive and transmit queues */
1617 static void gfar_halt_nodisable(struct net_device *dev)
1618 {
1619         struct gfar_private *priv = netdev_priv(dev);
1620         struct gfar __iomem *regs = NULL;
1621         u32 tempval;
1622         int i;
1623
1624         for (i = 0; i < priv->num_grps; i++) {
1625                 regs = priv->gfargrp[i].regs;
1626                 /* Mask all interrupts */
1627                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1628
1629                 /* Clear all interrupts */
1630                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1631         }
1632
1633         regs = priv->gfargrp[0].regs;
1634         /* Stop the DMA, and wait for it to stop */
1635         tempval = gfar_read(&regs->dmactrl);
1636         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1637             (DMACTRL_GRS | DMACTRL_GTS)) {
1638                 int ret;
1639
1640                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1641                 gfar_write(&regs->dmactrl, tempval);
1642
1643                 do {
1644                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1645                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1646                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1647                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1648                                 ret = __gfar_is_rx_idle(priv);
1649                 } while (!ret);
1650         }
1651 }
1652
1653 /* Halt the receive and transmit queues */
1654 void gfar_halt(struct net_device *dev)
1655 {
1656         struct gfar_private *priv = netdev_priv(dev);
1657         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1658         u32 tempval;
1659
1660         gfar_halt_nodisable(dev);
1661
1662         /* Disable Rx and Tx */
1663         tempval = gfar_read(&regs->maccfg1);
1664         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1665         gfar_write(&regs->maccfg1, tempval);
1666 }
1667
1668 static void free_grp_irqs(struct gfar_priv_grp *grp)
1669 {
1670         free_irq(gfar_irq(grp, TX)->irq, grp);
1671         free_irq(gfar_irq(grp, RX)->irq, grp);
1672         free_irq(gfar_irq(grp, ER)->irq, grp);
1673 }
1674
1675 void stop_gfar(struct net_device *dev)
1676 {
1677         struct gfar_private *priv = netdev_priv(dev);
1678         unsigned long flags;
1679         int i;
1680
1681         phy_stop(priv->phydev);
1682
1683
1684         /* Lock it down */
1685         local_irq_save(flags);
1686         lock_tx_qs(priv);
1687         lock_rx_qs(priv);
1688
1689         gfar_halt(dev);
1690
1691         unlock_rx_qs(priv);
1692         unlock_tx_qs(priv);
1693         local_irq_restore(flags);
1694
1695         /* Free the IRQs */
1696         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1697                 for (i = 0; i < priv->num_grps; i++)
1698                         free_grp_irqs(&priv->gfargrp[i]);
1699         } else {
1700                 for (i = 0; i < priv->num_grps; i++)
1701                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1702                                  &priv->gfargrp[i]);
1703         }
1704
1705         free_skb_resources(priv);
1706 }
1707
1708 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1709 {
1710         struct txbd8 *txbdp;
1711         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1712         int i, j;
1713
1714         txbdp = tx_queue->tx_bd_base;
1715
1716         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1717                 if (!tx_queue->tx_skbuff[i])
1718                         continue;
1719
1720                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1721                                  txbdp->length, DMA_TO_DEVICE);
1722                 txbdp->lstatus = 0;
1723                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1724                      j++) {
1725                         txbdp++;
1726                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1727                                        txbdp->length, DMA_TO_DEVICE);
1728                 }
1729                 txbdp++;
1730                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1731                 tx_queue->tx_skbuff[i] = NULL;
1732         }
1733         kfree(tx_queue->tx_skbuff);
1734         tx_queue->tx_skbuff = NULL;
1735 }
1736
1737 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1738 {
1739         struct rxbd8 *rxbdp;
1740         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1741         int i;
1742
1743         rxbdp = rx_queue->rx_bd_base;
1744
1745         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1746                 if (rx_queue->rx_skbuff[i]) {
1747                         dma_unmap_single(&priv->ofdev->dev,
1748                                          rxbdp->bufPtr, priv->rx_buffer_size,
1749                                          DMA_FROM_DEVICE);
1750                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1751                         rx_queue->rx_skbuff[i] = NULL;
1752                 }
1753                 rxbdp->lstatus = 0;
1754                 rxbdp->bufPtr = 0;
1755                 rxbdp++;
1756         }
1757         kfree(rx_queue->rx_skbuff);
1758         rx_queue->rx_skbuff = NULL;
1759 }
1760
1761 /* If there are any tx skbs or rx skbs still around, free them.
1762  * Then free tx_skbuff and rx_skbuff
1763  */
1764 static void free_skb_resources(struct gfar_private *priv)
1765 {
1766         struct gfar_priv_tx_q *tx_queue = NULL;
1767         struct gfar_priv_rx_q *rx_queue = NULL;
1768         int i;
1769
1770         /* Go through all the buffer descriptors and free their data buffers */
1771         for (i = 0; i < priv->num_tx_queues; i++) {
1772                 struct netdev_queue *txq;
1773
1774                 tx_queue = priv->tx_queue[i];
1775                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1776                 if (tx_queue->tx_skbuff)
1777                         free_skb_tx_queue(tx_queue);
1778                 netdev_tx_reset_queue(txq);
1779         }
1780
1781         for (i = 0; i < priv->num_rx_queues; i++) {
1782                 rx_queue = priv->rx_queue[i];
1783                 if (rx_queue->rx_skbuff)
1784                         free_skb_rx_queue(rx_queue);
1785         }
1786
1787         dma_free_coherent(&priv->ofdev->dev,
1788                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1789                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1790                           priv->tx_queue[0]->tx_bd_base,
1791                           priv->tx_queue[0]->tx_bd_dma_base);
1792 }
1793
1794 void gfar_start(struct net_device *dev)
1795 {
1796         struct gfar_private *priv = netdev_priv(dev);
1797         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1798         u32 tempval;
1799         int i = 0;
1800
1801         /* Enable Rx and Tx in MACCFG1 */
1802         tempval = gfar_read(&regs->maccfg1);
1803         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1804         gfar_write(&regs->maccfg1, tempval);
1805
1806         /* Initialize DMACTRL to have WWR and WOP */
1807         tempval = gfar_read(&regs->dmactrl);
1808         tempval |= DMACTRL_INIT_SETTINGS;
1809         gfar_write(&regs->dmactrl, tempval);
1810
1811         /* Make sure we aren't stopped */
1812         tempval = gfar_read(&regs->dmactrl);
1813         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1814         gfar_write(&regs->dmactrl, tempval);
1815
1816         for (i = 0; i < priv->num_grps; i++) {
1817                 regs = priv->gfargrp[i].regs;
1818                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1819                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1820                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1821                 /* Unmask the interrupts we look for */
1822                 gfar_write(&regs->imask, IMASK_DEFAULT);
1823         }
1824
1825         dev->trans_start = jiffies; /* prevent tx timeout */
1826 }
1827
1828 void gfar_configure_coalescing(struct gfar_private *priv,
1829                                unsigned long tx_mask, unsigned long rx_mask)
1830 {
1831         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1832         u32 __iomem *baddr;
1833         int i = 0;
1834
1835         /* Backward compatible case ---- even if we enable
1836          * multiple queues, there's only single reg to program
1837          */
1838         gfar_write(&regs->txic, 0);
1839         if (likely(priv->tx_queue[0]->txcoalescing))
1840                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1841
1842         gfar_write(&regs->rxic, 0);
1843         if (unlikely(priv->rx_queue[0]->rxcoalescing))
1844                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1845
1846         if (priv->mode == MQ_MG_MODE) {
1847                 baddr = &regs->txic0;
1848                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1849                         gfar_write(baddr + i, 0);
1850                         if (likely(priv->tx_queue[i]->txcoalescing))
1851                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1852                 }
1853
1854                 baddr = &regs->rxic0;
1855                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1856                         gfar_write(baddr + i, 0);
1857                         if (likely(priv->rx_queue[i]->rxcoalescing))
1858                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1859                 }
1860         }
1861 }
1862
1863 static int register_grp_irqs(struct gfar_priv_grp *grp)
1864 {
1865         struct gfar_private *priv = grp->priv;
1866         struct net_device *dev = priv->ndev;
1867         int err;
1868
1869         /* If the device has multiple interrupts, register for
1870          * them.  Otherwise, only register for the one
1871          */
1872         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1873                 /* Install our interrupt handlers for Error,
1874                  * Transmit, and Receive
1875                  */
1876                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1877                                   gfar_irq(grp, ER)->name, grp);
1878                 if (err < 0) {
1879                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1880                                   gfar_irq(grp, ER)->irq);
1881
1882                         goto err_irq_fail;
1883                 }
1884                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1885                                   gfar_irq(grp, TX)->name, grp);
1886                 if (err < 0) {
1887                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1888                                   gfar_irq(grp, TX)->irq);
1889                         goto tx_irq_fail;
1890                 }
1891                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1892                                   gfar_irq(grp, RX)->name, grp);
1893                 if (err < 0) {
1894                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1895                                   gfar_irq(grp, RX)->irq);
1896                         goto rx_irq_fail;
1897                 }
1898         } else {
1899                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1900                                   gfar_irq(grp, TX)->name, grp);
1901                 if (err < 0) {
1902                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1903                                   gfar_irq(grp, TX)->irq);
1904                         goto err_irq_fail;
1905                 }
1906         }
1907
1908         return 0;
1909
1910 rx_irq_fail:
1911         free_irq(gfar_irq(grp, TX)->irq, grp);
1912 tx_irq_fail:
1913         free_irq(gfar_irq(grp, ER)->irq, grp);
1914 err_irq_fail:
1915         return err;
1916
1917 }
1918
1919 /* Bring the controller up and running */
1920 int startup_gfar(struct net_device *ndev)
1921 {
1922         struct gfar_private *priv = netdev_priv(ndev);
1923         struct gfar __iomem *regs = NULL;
1924         int err, i, j;
1925
1926         for (i = 0; i < priv->num_grps; i++) {
1927                 regs= priv->gfargrp[i].regs;
1928                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1929         }
1930
1931         regs= priv->gfargrp[0].regs;
1932         err = gfar_alloc_skb_resources(ndev);
1933         if (err)
1934                 return err;
1935
1936         gfar_init_mac(ndev);
1937
1938         for (i = 0; i < priv->num_grps; i++) {
1939                 err = register_grp_irqs(&priv->gfargrp[i]);
1940                 if (err) {
1941                         for (j = 0; j < i; j++)
1942                                 free_grp_irqs(&priv->gfargrp[j]);
1943                         goto irq_fail;
1944                 }
1945         }
1946
1947         /* Start the controller */
1948         gfar_start(ndev);
1949
1950         phy_start(priv->phydev);
1951
1952         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1953
1954         return 0;
1955
1956 irq_fail:
1957         free_skb_resources(priv);
1958         return err;
1959 }
1960
1961 /* Called when something needs to use the ethernet device
1962  * Returns 0 for success.
1963  */
1964 static int gfar_enet_open(struct net_device *dev)
1965 {
1966         struct gfar_private *priv = netdev_priv(dev);
1967         int err;
1968
1969         enable_napi(priv);
1970
1971         /* Initialize a bunch of registers */
1972         init_registers(dev);
1973
1974         gfar_set_mac_address(dev);
1975
1976         err = init_phy(dev);
1977
1978         if (err) {
1979                 disable_napi(priv);
1980                 return err;
1981         }
1982
1983         err = startup_gfar(dev);
1984         if (err) {
1985                 disable_napi(priv);
1986                 return err;
1987         }
1988
1989         netif_tx_start_all_queues(dev);
1990
1991         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1992
1993         return err;
1994 }
1995
1996 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1997 {
1998         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1999
2000         memset(fcb, 0, GMAC_FCB_LEN);
2001
2002         return fcb;
2003 }
2004
2005 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2006                                     int fcb_length)
2007 {
2008         /* If we're here, it's a IP packet with a TCP or UDP
2009          * payload.  We set it to checksum, using a pseudo-header
2010          * we provide
2011          */
2012         u8 flags = TXFCB_DEFAULT;
2013
2014         /* Tell the controller what the protocol is
2015          * And provide the already calculated phcs
2016          */
2017         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2018                 flags |= TXFCB_UDP;
2019                 fcb->phcs = udp_hdr(skb)->check;
2020         } else
2021                 fcb->phcs = tcp_hdr(skb)->check;
2022
2023         /* l3os is the distance between the start of the
2024          * frame (skb->data) and the start of the IP hdr.
2025          * l4os is the distance between the start of the
2026          * l3 hdr and the l4 hdr
2027          */
2028         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2029         fcb->l4os = skb_network_header_len(skb);
2030
2031         fcb->flags = flags;
2032 }
2033
2034 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2035 {
2036         fcb->flags |= TXFCB_VLN;
2037         fcb->vlctl = vlan_tx_tag_get(skb);
2038 }
2039
2040 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2041                                       struct txbd8 *base, int ring_size)
2042 {
2043         struct txbd8 *new_bd = bdp + stride;
2044
2045         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2046 }
2047
2048 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2049                                       int ring_size)
2050 {
2051         return skip_txbd(bdp, 1, base, ring_size);
2052 }
2053
2054 /* This is called by the kernel when a frame is ready for transmission.
2055  * It is pointed to by the dev->hard_start_xmit function pointer
2056  */
2057 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2058 {
2059         struct gfar_private *priv = netdev_priv(dev);
2060         struct gfar_priv_tx_q *tx_queue = NULL;
2061         struct netdev_queue *txq;
2062         struct gfar __iomem *regs = NULL;
2063         struct txfcb *fcb = NULL;
2064         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2065         u32 lstatus;
2066         int i, rq = 0, do_tstamp = 0;
2067         u32 bufaddr;
2068         unsigned long flags;
2069         unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2070
2071         /* TOE=1 frames larger than 2500 bytes may see excess delays
2072          * before start of transmission.
2073          */
2074         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2075                      skb->ip_summed == CHECKSUM_PARTIAL &&
2076                      skb->len > 2500)) {
2077                 int ret;
2078
2079                 ret = skb_checksum_help(skb);
2080                 if (ret)
2081                         return ret;
2082         }
2083
2084         rq = skb->queue_mapping;
2085         tx_queue = priv->tx_queue[rq];
2086         txq = netdev_get_tx_queue(dev, rq);
2087         base = tx_queue->tx_bd_base;
2088         regs = tx_queue->grp->regs;
2089
2090         /* check if time stamp should be generated */
2091         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2092                      priv->hwts_tx_en)) {
2093                 do_tstamp = 1;
2094                 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2095         }
2096
2097         /* make space for additional header when fcb is needed */
2098         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2099              vlan_tx_tag_present(skb) ||
2100              unlikely(do_tstamp)) &&
2101             (skb_headroom(skb) < fcb_length)) {
2102                 struct sk_buff *skb_new;
2103
2104                 skb_new = skb_realloc_headroom(skb, fcb_length);
2105                 if (!skb_new) {
2106                         dev->stats.tx_errors++;
2107                         kfree_skb(skb);
2108                         return NETDEV_TX_OK;
2109                 }
2110
2111                 if (skb->sk)
2112                         skb_set_owner_w(skb_new, skb->sk);
2113                 consume_skb(skb);
2114                 skb = skb_new;
2115         }
2116
2117         /* total number of fragments in the SKB */
2118         nr_frags = skb_shinfo(skb)->nr_frags;
2119
2120         /* calculate the required number of TxBDs for this skb */
2121         if (unlikely(do_tstamp))
2122                 nr_txbds = nr_frags + 2;
2123         else
2124                 nr_txbds = nr_frags + 1;
2125
2126         /* check if there is space to queue this packet */
2127         if (nr_txbds > tx_queue->num_txbdfree) {
2128                 /* no space, stop the queue */
2129                 netif_tx_stop_queue(txq);
2130                 dev->stats.tx_fifo_errors++;
2131                 return NETDEV_TX_BUSY;
2132         }
2133
2134         /* Update transmit stats */
2135         tx_queue->stats.tx_bytes += skb->len;
2136         tx_queue->stats.tx_packets++;
2137
2138         txbdp = txbdp_start = tx_queue->cur_tx;
2139         lstatus = txbdp->lstatus;
2140
2141         /* Time stamp insertion requires one additional TxBD */
2142         if (unlikely(do_tstamp))
2143                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2144                                                  tx_queue->tx_ring_size);
2145
2146         if (nr_frags == 0) {
2147                 if (unlikely(do_tstamp))
2148                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2149                                                           TXBD_INTERRUPT);
2150                 else
2151                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2152         } else {
2153                 /* Place the fragment addresses and lengths into the TxBDs */
2154                 for (i = 0; i < nr_frags; i++) {
2155                         /* Point at the next BD, wrapping as needed */
2156                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2157
2158                         length = skb_shinfo(skb)->frags[i].size;
2159
2160                         lstatus = txbdp->lstatus | length |
2161                                   BD_LFLAG(TXBD_READY);
2162
2163                         /* Handle the last BD specially */
2164                         if (i == nr_frags - 1)
2165                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2166
2167                         bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2168                                                    &skb_shinfo(skb)->frags[i],
2169                                                    0,
2170                                                    length,
2171                                                    DMA_TO_DEVICE);
2172
2173                         /* set the TxBD length and buffer pointer */
2174                         txbdp->bufPtr = bufaddr;
2175                         txbdp->lstatus = lstatus;
2176                 }
2177
2178                 lstatus = txbdp_start->lstatus;
2179         }
2180
2181         /* Add TxPAL between FCB and frame if required */
2182         if (unlikely(do_tstamp)) {
2183                 skb_push(skb, GMAC_TXPAL_LEN);
2184                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2185         }
2186
2187         /* Set up checksumming */
2188         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2189                 fcb = gfar_add_fcb(skb);
2190                 /* as specified by errata */
2191                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2192                              ((unsigned long)fcb % 0x20) > 0x18)) {
2193                         __skb_pull(skb, GMAC_FCB_LEN);
2194                         skb_checksum_help(skb);
2195                 } else {
2196                         lstatus |= BD_LFLAG(TXBD_TOE);
2197                         gfar_tx_checksum(skb, fcb, fcb_length);
2198                 }
2199         }
2200
2201         if (vlan_tx_tag_present(skb)) {
2202                 if (unlikely(NULL == fcb)) {
2203                         fcb = gfar_add_fcb(skb);
2204                         lstatus |= BD_LFLAG(TXBD_TOE);
2205                 }
2206
2207                 gfar_tx_vlan(skb, fcb);
2208         }
2209
2210         /* Setup tx hardware time stamping if requested */
2211         if (unlikely(do_tstamp)) {
2212                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2213                 if (fcb == NULL)
2214                         fcb = gfar_add_fcb(skb);
2215                 fcb->ptp = 1;
2216                 lstatus |= BD_LFLAG(TXBD_TOE);
2217         }
2218
2219         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2220                                              skb_headlen(skb), DMA_TO_DEVICE);
2221
2222         /* If time stamping is requested one additional TxBD must be set up. The
2223          * first TxBD points to the FCB and must have a data length of
2224          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2225          * the full frame length.
2226          */
2227         if (unlikely(do_tstamp)) {
2228                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2229                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2230                                          (skb_headlen(skb) - fcb_length);
2231                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2232         } else {
2233                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2234         }
2235
2236         netdev_tx_sent_queue(txq, skb->len);
2237
2238         /* We can work in parallel with gfar_clean_tx_ring(), except
2239          * when modifying num_txbdfree. Note that we didn't grab the lock
2240          * when we were reading the num_txbdfree and checking for available
2241          * space, that's because outside of this function it can only grow,
2242          * and once we've got needed space, it cannot suddenly disappear.
2243          *
2244          * The lock also protects us from gfar_error(), which can modify
2245          * regs->tstat and thus retrigger the transfers, which is why we
2246          * also must grab the lock before setting ready bit for the first
2247          * to be transmitted BD.
2248          */
2249         spin_lock_irqsave(&tx_queue->txlock, flags);
2250
2251         /* The powerpc-specific eieio() is used, as wmb() has too strong
2252          * semantics (it requires synchronization between cacheable and
2253          * uncacheable mappings, which eieio doesn't provide and which we
2254          * don't need), thus requiring a more expensive sync instruction.  At
2255          * some point, the set of architecture-independent barrier functions
2256          * should be expanded to include weaker barriers.
2257          */
2258         eieio();
2259
2260         txbdp_start->lstatus = lstatus;
2261
2262         eieio(); /* force lstatus write before tx_skbuff */
2263
2264         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2265
2266         /* Update the current skb pointer to the next entry we will use
2267          * (wrapping if necessary)
2268          */
2269         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2270                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2271
2272         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2273
2274         /* reduce TxBD free count */
2275         tx_queue->num_txbdfree -= (nr_txbds);
2276
2277         /* If the next BD still needs to be cleaned up, then the bds
2278          * are full.  We need to tell the kernel to stop sending us stuff.
2279          */
2280         if (!tx_queue->num_txbdfree) {
2281                 netif_tx_stop_queue(txq);
2282
2283                 dev->stats.tx_fifo_errors++;
2284         }
2285
2286         /* Tell the DMA to go go go */
2287         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2288
2289         /* Unlock priv */
2290         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2291
2292         return NETDEV_TX_OK;
2293 }
2294
2295 /* Stops the kernel queue, and halts the controller */
2296 static int gfar_close(struct net_device *dev)
2297 {
2298         struct gfar_private *priv = netdev_priv(dev);
2299
2300         disable_napi(priv);
2301
2302         cancel_work_sync(&priv->reset_task);
2303         stop_gfar(dev);
2304
2305         /* Disconnect from the PHY */
2306         phy_disconnect(priv->phydev);
2307         priv->phydev = NULL;
2308
2309         netif_tx_stop_all_queues(dev);
2310
2311         return 0;
2312 }
2313
2314 /* Changes the mac address if the controller is not running. */
2315 static int gfar_set_mac_address(struct net_device *dev)
2316 {
2317         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2318
2319         return 0;
2320 }
2321
2322 /* Check if rx parser should be activated */
2323 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2324 {
2325         struct gfar __iomem *regs;
2326         u32 tempval;
2327
2328         regs = priv->gfargrp[0].regs;
2329
2330         tempval = gfar_read(&regs->rctrl);
2331         /* If parse is no longer required, then disable parser */
2332         if (tempval & RCTRL_REQ_PARSER)
2333                 tempval |= RCTRL_PRSDEP_INIT;
2334         else
2335                 tempval &= ~RCTRL_PRSDEP_INIT;
2336         gfar_write(&regs->rctrl, tempval);
2337 }
2338
2339 /* Enables and disables VLAN insertion/extraction */
2340 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2341 {
2342         struct gfar_private *priv = netdev_priv(dev);
2343         struct gfar __iomem *regs = NULL;
2344         unsigned long flags;
2345         u32 tempval;
2346
2347         regs = priv->gfargrp[0].regs;
2348         local_irq_save(flags);
2349         lock_rx_qs(priv);
2350
2351         if (features & NETIF_F_HW_VLAN_TX) {
2352                 /* Enable VLAN tag insertion */
2353                 tempval = gfar_read(&regs->tctrl);
2354                 tempval |= TCTRL_VLINS;
2355                 gfar_write(&regs->tctrl, tempval);
2356         } else {
2357                 /* Disable VLAN tag insertion */
2358                 tempval = gfar_read(&regs->tctrl);
2359                 tempval &= ~TCTRL_VLINS;
2360                 gfar_write(&regs->tctrl, tempval);
2361         }
2362
2363         if (features & NETIF_F_HW_VLAN_RX) {
2364                 /* Enable VLAN tag extraction */
2365                 tempval = gfar_read(&regs->rctrl);
2366                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2367                 gfar_write(&regs->rctrl, tempval);
2368         } else {
2369                 /* Disable VLAN tag extraction */
2370                 tempval = gfar_read(&regs->rctrl);
2371                 tempval &= ~RCTRL_VLEX;
2372                 gfar_write(&regs->rctrl, tempval);
2373
2374                 gfar_check_rx_parser_mode(priv);
2375         }
2376
2377         gfar_change_mtu(dev, dev->mtu);
2378
2379         unlock_rx_qs(priv);
2380         local_irq_restore(flags);
2381 }
2382
2383 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2384 {
2385         int tempsize, tempval;
2386         struct gfar_private *priv = netdev_priv(dev);
2387         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2388         int oldsize = priv->rx_buffer_size;
2389         int frame_size = new_mtu + ETH_HLEN;
2390
2391         if (gfar_is_vlan_on(priv))
2392                 frame_size += VLAN_HLEN;
2393
2394         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2395                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2396                 return -EINVAL;
2397         }
2398
2399         if (gfar_uses_fcb(priv))
2400                 frame_size += GMAC_FCB_LEN;
2401
2402         frame_size += priv->padding;
2403
2404         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2405                    INCREMENTAL_BUFFER_SIZE;
2406
2407         /* Only stop and start the controller if it isn't already
2408          * stopped, and we changed something
2409          */
2410         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2411                 stop_gfar(dev);
2412
2413         priv->rx_buffer_size = tempsize;
2414
2415         dev->mtu = new_mtu;
2416
2417         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2418         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2419
2420         /* If the mtu is larger than the max size for standard
2421          * ethernet frames (ie, a jumbo frame), then set maccfg2
2422          * to allow huge frames, and to check the length
2423          */
2424         tempval = gfar_read(&regs->maccfg2);
2425
2426         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2427             gfar_has_errata(priv, GFAR_ERRATA_74))
2428                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2429         else
2430                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2431
2432         gfar_write(&regs->maccfg2, tempval);
2433
2434         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2435                 startup_gfar(dev);
2436
2437         return 0;
2438 }
2439
2440 /* gfar_reset_task gets scheduled when a packet has not been
2441  * transmitted after a set amount of time.
2442  * For now, assume that clearing out all the structures, and
2443  * starting over will fix the problem.
2444  */
2445 static void gfar_reset_task(struct work_struct *work)
2446 {
2447         struct gfar_private *priv = container_of(work, struct gfar_private,
2448                                                  reset_task);
2449         struct net_device *dev = priv->ndev;
2450
2451         if (dev->flags & IFF_UP) {
2452                 netif_tx_stop_all_queues(dev);
2453                 stop_gfar(dev);
2454                 startup_gfar(dev);
2455                 netif_tx_start_all_queues(dev);
2456         }
2457
2458         netif_tx_schedule_all(dev);
2459 }
2460
2461 static void gfar_timeout(struct net_device *dev)
2462 {
2463         struct gfar_private *priv = netdev_priv(dev);
2464
2465         dev->stats.tx_errors++;
2466         schedule_work(&priv->reset_task);
2467 }
2468
2469 static void gfar_align_skb(struct sk_buff *skb)
2470 {
2471         /* We need the data buffer to be aligned properly.  We will reserve
2472          * as many bytes as needed to align the data properly
2473          */
2474         skb_reserve(skb, RXBUF_ALIGNMENT -
2475                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2476 }
2477
2478 /* Interrupt Handler for Transmit complete */
2479 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2480 {
2481         struct net_device *dev = tx_queue->dev;
2482         struct netdev_queue *txq;
2483         struct gfar_private *priv = netdev_priv(dev);
2484         struct gfar_priv_rx_q *rx_queue = NULL;
2485         struct txbd8 *bdp, *next = NULL;
2486         struct txbd8 *lbdp = NULL;
2487         struct txbd8 *base = tx_queue->tx_bd_base;
2488         struct sk_buff *skb;
2489         int skb_dirtytx;
2490         int tx_ring_size = tx_queue->tx_ring_size;
2491         int frags = 0, nr_txbds = 0;
2492         int i;
2493         int howmany = 0;
2494         int tqi = tx_queue->qindex;
2495         unsigned int bytes_sent = 0;
2496         u32 lstatus;
2497         size_t buflen;
2498
2499         rx_queue = priv->rx_queue[tqi];
2500         txq = netdev_get_tx_queue(dev, tqi);
2501         bdp = tx_queue->dirty_tx;
2502         skb_dirtytx = tx_queue->skb_dirtytx;
2503
2504         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2505                 unsigned long flags;
2506
2507                 frags = skb_shinfo(skb)->nr_frags;
2508
2509                 /* When time stamping, one additional TxBD must be freed.
2510                  * Also, we need to dma_unmap_single() the TxPAL.
2511                  */
2512                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2513                         nr_txbds = frags + 2;
2514                 else
2515                         nr_txbds = frags + 1;
2516
2517                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2518
2519                 lstatus = lbdp->lstatus;
2520
2521                 /* Only clean completed frames */
2522                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2523                     (lstatus & BD_LENGTH_MASK))
2524                         break;
2525
2526                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2527                         next = next_txbd(bdp, base, tx_ring_size);
2528                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2529                 } else
2530                         buflen = bdp->length;
2531
2532                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2533                                  buflen, DMA_TO_DEVICE);
2534
2535                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2536                         struct skb_shared_hwtstamps shhwtstamps;
2537                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2538
2539                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2540                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2541                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2542                         skb_tstamp_tx(skb, &shhwtstamps);
2543                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2544                         bdp = next;
2545                 }
2546
2547                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2548                 bdp = next_txbd(bdp, base, tx_ring_size);
2549
2550                 for (i = 0; i < frags; i++) {
2551                         dma_unmap_page(&priv->ofdev->dev, bdp->bufPtr,
2552                                        bdp->length, DMA_TO_DEVICE);
2553                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2554                         bdp = next_txbd(bdp, base, tx_ring_size);
2555                 }
2556
2557                 bytes_sent += skb->len;
2558
2559                 dev_kfree_skb_any(skb);
2560
2561                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2562
2563                 skb_dirtytx = (skb_dirtytx + 1) &
2564                               TX_RING_MOD_MASK(tx_ring_size);
2565
2566                 howmany++;
2567                 spin_lock_irqsave(&tx_queue->txlock, flags);
2568                 tx_queue->num_txbdfree += nr_txbds;
2569                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2570         }
2571
2572         /* If we freed a buffer, we can restart transmission, if necessary */
2573         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2574                 netif_wake_subqueue(dev, tqi);
2575
2576         /* Update dirty indicators */
2577         tx_queue->skb_dirtytx = skb_dirtytx;
2578         tx_queue->dirty_tx = bdp;
2579
2580         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2581
2582         return howmany;
2583 }
2584
2585 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2586 {
2587         unsigned long flags;
2588
2589         spin_lock_irqsave(&gfargrp->grplock, flags);
2590         if (napi_schedule_prep(&gfargrp->napi)) {
2591                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2592                 __napi_schedule(&gfargrp->napi);
2593         } else {
2594                 /* Clear IEVENT, so interrupts aren't called again
2595                  * because of the packets that have already arrived.
2596                  */
2597                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2598         }
2599         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2600
2601 }
2602
2603 /* Interrupt Handler for Transmit complete */
2604 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2605 {
2606         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2607         return IRQ_HANDLED;
2608 }
2609
2610 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2611                            struct sk_buff *skb)
2612 {
2613         struct net_device *dev = rx_queue->dev;
2614         struct gfar_private *priv = netdev_priv(dev);
2615         dma_addr_t buf;
2616
2617         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2618                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2619         gfar_init_rxbdp(rx_queue, bdp, buf);
2620 }
2621
2622 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2623 {
2624         struct gfar_private *priv = netdev_priv(dev);
2625         struct sk_buff *skb;
2626
2627         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2628         if (!skb)
2629                 return NULL;
2630
2631         gfar_align_skb(skb);
2632
2633         return skb;
2634 }
2635
2636 struct sk_buff *gfar_new_skb(struct net_device *dev)
2637 {
2638         return gfar_alloc_skb(dev);
2639 }
2640
2641 static inline void count_errors(unsigned short status, struct net_device *dev)
2642 {
2643         struct gfar_private *priv = netdev_priv(dev);
2644         struct net_device_stats *stats = &dev->stats;
2645         struct gfar_extra_stats *estats = &priv->extra_stats;
2646
2647         /* If the packet was truncated, none of the other errors matter */
2648         if (status & RXBD_TRUNCATED) {
2649                 stats->rx_length_errors++;
2650
2651                 estats->rx_trunc++;
2652
2653                 return;
2654         }
2655         /* Count the errors, if there were any */
2656         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2657                 stats->rx_length_errors++;
2658
2659                 if (status & RXBD_LARGE)
2660                         estats->rx_large++;
2661                 else
2662                         estats->rx_short++;
2663         }
2664         if (status & RXBD_NONOCTET) {
2665                 stats->rx_frame_errors++;
2666                 estats->rx_nonoctet++;
2667         }
2668         if (status & RXBD_CRCERR) {
2669                 estats->rx_crcerr++;
2670                 stats->rx_crc_errors++;
2671         }
2672         if (status & RXBD_OVERRUN) {
2673                 estats->rx_overrun++;
2674                 stats->rx_crc_errors++;
2675         }
2676 }
2677
2678 irqreturn_t gfar_receive(int irq, void *grp_id)
2679 {
2680         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2681         return IRQ_HANDLED;
2682 }
2683
2684 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2685 {
2686         /* If valid headers were found, and valid sums
2687          * were verified, then we tell the kernel that no
2688          * checksumming is necessary.  Otherwise, it is [FIXME]
2689          */
2690         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2691                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2692         else
2693                 skb_checksum_none_assert(skb);
2694 }
2695
2696
2697 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2698 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2699                               int amount_pull, struct napi_struct *napi)
2700 {
2701         struct gfar_private *priv = netdev_priv(dev);
2702         struct rxfcb *fcb = NULL;
2703
2704         gro_result_t ret;
2705
2706         /* fcb is at the beginning if exists */
2707         fcb = (struct rxfcb *)skb->data;
2708
2709         /* Remove the FCB from the skb
2710          * Remove the padded bytes, if there are any
2711          */
2712         if (amount_pull) {
2713                 skb_record_rx_queue(skb, fcb->rq);
2714                 skb_pull(skb, amount_pull);
2715         }
2716
2717         /* Get receive timestamp from the skb */
2718         if (priv->hwts_rx_en) {
2719                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2720                 u64 *ns = (u64 *) skb->data;
2721
2722                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2723                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2724         }
2725
2726         if (priv->padding)
2727                 skb_pull(skb, priv->padding);
2728
2729         if (dev->features & NETIF_F_RXCSUM)
2730                 gfar_rx_checksum(skb, fcb);
2731
2732         /* Tell the skb what kind of packet this is */
2733         skb->protocol = eth_type_trans(skb, dev);
2734
2735         /* There's need to check for NETIF_F_HW_VLAN_RX here.
2736          * Even if vlan rx accel is disabled, on some chips
2737          * RXFCB_VLN is pseudo randomly set.
2738          */
2739         if (dev->features & NETIF_F_HW_VLAN_RX &&
2740             fcb->flags & RXFCB_VLN)
2741                 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2742
2743         /* Send the packet up the stack */
2744         ret = napi_gro_receive(napi, skb);
2745
2746         if (GRO_DROP == ret)
2747                 priv->extra_stats.kernel_dropped++;
2748
2749         return 0;
2750 }
2751
2752 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2753  * until the budget/quota has been reached. Returns the number
2754  * of frames handled
2755  */
2756 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2757 {
2758         struct net_device *dev = rx_queue->dev;
2759         struct rxbd8 *bdp, *base;
2760         struct sk_buff *skb;
2761         int pkt_len;
2762         int amount_pull;
2763         int howmany = 0;
2764         struct gfar_private *priv = netdev_priv(dev);
2765
2766         /* Get the first full descriptor */
2767         bdp = rx_queue->cur_rx;
2768         base = rx_queue->rx_bd_base;
2769
2770         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2771
2772         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2773                 struct sk_buff *newskb;
2774
2775                 rmb();
2776
2777                 /* Add another skb for the future */
2778                 newskb = gfar_new_skb(dev);
2779
2780                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2781
2782                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2783                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2784
2785                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2786                              bdp->length > priv->rx_buffer_size))
2787                         bdp->status = RXBD_LARGE;
2788
2789                 /* We drop the frame if we failed to allocate a new buffer */
2790                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2791                              bdp->status & RXBD_ERR)) {
2792                         count_errors(bdp->status, dev);
2793
2794                         if (unlikely(!newskb))
2795                                 newskb = skb;
2796                         else if (skb)
2797                                 dev_kfree_skb(skb);
2798                 } else {
2799                         /* Increment the number of packets */
2800                         rx_queue->stats.rx_packets++;
2801                         howmany++;
2802
2803                         if (likely(skb)) {
2804                                 pkt_len = bdp->length - ETH_FCS_LEN;
2805                                 /* Remove the FCS from the packet length */
2806                                 skb_put(skb, pkt_len);
2807                                 rx_queue->stats.rx_bytes += pkt_len;
2808                                 skb_record_rx_queue(skb, rx_queue->qindex);
2809                                 gfar_process_frame(dev, skb, amount_pull,
2810                                                    &rx_queue->grp->napi);
2811
2812                         } else {
2813                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2814                                 rx_queue->stats.rx_dropped++;
2815                                 priv->extra_stats.rx_skbmissing++;
2816                         }
2817
2818                 }
2819
2820                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2821
2822                 /* Setup the new bdp */
2823                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2824
2825                 /* Update to the next pointer */
2826                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2827
2828                 /* update to point at the next skb */
2829                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2830                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2831         }
2832
2833         /* Update the current rxbd pointer to be the next one */
2834         rx_queue->cur_rx = bdp;
2835
2836         return howmany;
2837 }
2838
2839 static int gfar_poll(struct napi_struct *napi, int budget)
2840 {
2841         struct gfar_priv_grp *gfargrp =
2842                 container_of(napi, struct gfar_priv_grp, napi);
2843         struct gfar_private *priv = gfargrp->priv;
2844         struct gfar __iomem *regs = gfargrp->regs;
2845         struct gfar_priv_tx_q *tx_queue = NULL;
2846         struct gfar_priv_rx_q *rx_queue = NULL;
2847         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2848         int tx_cleaned = 0, i, left_over_budget = budget;
2849         unsigned long serviced_queues = 0;
2850         int num_queues = 0;
2851
2852         num_queues = gfargrp->num_rx_queues;
2853         budget_per_queue = budget/num_queues;
2854
2855         /* Clear IEVENT, so interrupts aren't called again
2856          * because of the packets that have already arrived
2857          */
2858         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2859
2860         while (num_queues && left_over_budget) {
2861                 budget_per_queue = left_over_budget/num_queues;
2862                 left_over_budget = 0;
2863
2864                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2865                         if (test_bit(i, &serviced_queues))
2866                                 continue;
2867                         rx_queue = priv->rx_queue[i];
2868                         tx_queue = priv->tx_queue[rx_queue->qindex];
2869
2870                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2871                         rx_cleaned_per_queue =
2872                                 gfar_clean_rx_ring(rx_queue, budget_per_queue);
2873                         rx_cleaned += rx_cleaned_per_queue;
2874                         if (rx_cleaned_per_queue < budget_per_queue) {
2875                                 left_over_budget = left_over_budget +
2876                                         (budget_per_queue -
2877                                          rx_cleaned_per_queue);
2878                                 set_bit(i, &serviced_queues);
2879                                 num_queues--;
2880                         }
2881                 }
2882         }
2883
2884         if (tx_cleaned)
2885                 return budget;
2886
2887         if (rx_cleaned < budget) {
2888                 napi_complete(napi);
2889
2890                 /* Clear the halt bit in RSTAT */
2891                 gfar_write(&regs->rstat, gfargrp->rstat);
2892
2893                 gfar_write(&regs->imask, IMASK_DEFAULT);
2894
2895                 /* If we are coalescing interrupts, update the timer
2896                  * Otherwise, clear it
2897                  */
2898                 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2899                                           gfargrp->tx_bit_map);
2900         }
2901
2902         return rx_cleaned;
2903 }
2904
2905 #ifdef CONFIG_NET_POLL_CONTROLLER
2906 /* Polling 'interrupt' - used by things like netconsole to send skbs
2907  * without having to re-enable interrupts. It's not called while
2908  * the interrupt routine is executing.
2909  */
2910 static void gfar_netpoll(struct net_device *dev)
2911 {
2912         struct gfar_private *priv = netdev_priv(dev);
2913         int i;
2914
2915         /* If the device has multiple interrupts, run tx/rx */
2916         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2917                 for (i = 0; i < priv->num_grps; i++) {
2918                         disable_irq(priv->gfargrp[i].interruptTransmit);
2919                         disable_irq(priv->gfargrp[i].interruptReceive);
2920                         disable_irq(priv->gfargrp[i].interruptError);
2921                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2922                                        &priv->gfargrp[i]);
2923                         enable_irq(priv->gfargrp[i].interruptError);
2924                         enable_irq(priv->gfargrp[i].interruptReceive);
2925                         enable_irq(priv->gfargrp[i].interruptTransmit);
2926                 }
2927         } else {
2928                 for (i = 0; i < priv->num_grps; i++) {
2929                         disable_irq(priv->gfargrp[i].interruptTransmit);
2930                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2931                                        &priv->gfargrp[i]);
2932                         enable_irq(priv->gfargrp[i].interruptTransmit);
2933                 }
2934         }
2935 }
2936 #endif
2937
2938 /* The interrupt handler for devices with one interrupt */
2939 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2940 {
2941         struct gfar_priv_grp *gfargrp = grp_id;
2942
2943         /* Save ievent for future reference */
2944         u32 events = gfar_read(&gfargrp->regs->ievent);
2945
2946         /* Check for reception */
2947         if (events & IEVENT_RX_MASK)
2948                 gfar_receive(irq, grp_id);
2949
2950         /* Check for transmit completion */
2951         if (events & IEVENT_TX_MASK)
2952                 gfar_transmit(irq, grp_id);
2953
2954         /* Check for errors */
2955         if (events & IEVENT_ERR_MASK)
2956                 gfar_error(irq, grp_id);
2957
2958         return IRQ_HANDLED;
2959 }
2960
2961 /* Called every time the controller might need to be made
2962  * aware of new link state.  The PHY code conveys this
2963  * information through variables in the phydev structure, and this
2964  * function converts those variables into the appropriate
2965  * register values, and can bring down the device if needed.
2966  */
2967 static void adjust_link(struct net_device *dev)
2968 {
2969         struct gfar_private *priv = netdev_priv(dev);
2970         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2971         unsigned long flags;
2972         struct phy_device *phydev = priv->phydev;
2973         int new_state = 0;
2974
2975         local_irq_save(flags);
2976         lock_tx_qs(priv);
2977
2978         if (phydev->link) {
2979                 u32 tempval = gfar_read(&regs->maccfg2);
2980                 u32 ecntrl = gfar_read(&regs->ecntrl);
2981
2982                 /* Now we make sure that we can be in full duplex mode.
2983                  * If not, we operate in half-duplex mode.
2984                  */
2985                 if (phydev->duplex != priv->oldduplex) {
2986                         new_state = 1;
2987                         if (!(phydev->duplex))
2988                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2989                         else
2990                                 tempval |= MACCFG2_FULL_DUPLEX;
2991
2992                         priv->oldduplex = phydev->duplex;
2993                 }
2994
2995                 if (phydev->speed != priv->oldspeed) {
2996                         new_state = 1;
2997                         switch (phydev->speed) {
2998                         case 1000:
2999                                 tempval =
3000                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3001
3002                                 ecntrl &= ~(ECNTRL_R100);
3003                                 break;
3004                         case 100:
3005                         case 10:
3006                                 tempval =
3007                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3008
3009                                 /* Reduced mode distinguishes
3010                                  * between 10 and 100
3011                                  */
3012                                 if (phydev->speed == SPEED_100)
3013                                         ecntrl |= ECNTRL_R100;
3014                                 else
3015                                         ecntrl &= ~(ECNTRL_R100);
3016                                 break;
3017                         default:
3018                                 netif_warn(priv, link, dev,
3019                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3020                                            phydev->speed);
3021                                 break;
3022                         }
3023
3024                         priv->oldspeed = phydev->speed;
3025                 }
3026
3027                 gfar_write(&regs->maccfg2, tempval);
3028                 gfar_write(&regs->ecntrl, ecntrl);
3029
3030                 if (!priv->oldlink) {
3031                         new_state = 1;
3032                         priv->oldlink = 1;
3033                 }
3034         } else if (priv->oldlink) {
3035                 new_state = 1;
3036                 priv->oldlink = 0;
3037                 priv->oldspeed = 0;
3038                 priv->oldduplex = -1;
3039         }
3040
3041         if (new_state && netif_msg_link(priv))
3042                 phy_print_status(phydev);
3043         unlock_tx_qs(priv);
3044         local_irq_restore(flags);
3045 }
3046
3047 /* Update the hash table based on the current list of multicast
3048  * addresses we subscribe to.  Also, change the promiscuity of
3049  * the device based on the flags (this function is called
3050  * whenever dev->flags is changed
3051  */
3052 static void gfar_set_multi(struct net_device *dev)
3053 {
3054         struct netdev_hw_addr *ha;
3055         struct gfar_private *priv = netdev_priv(dev);
3056         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3057         u32 tempval;
3058
3059         if (dev->flags & IFF_PROMISC) {
3060                 /* Set RCTRL to PROM */
3061                 tempval = gfar_read(&regs->rctrl);
3062                 tempval |= RCTRL_PROM;
3063                 gfar_write(&regs->rctrl, tempval);
3064         } else {
3065                 /* Set RCTRL to not PROM */
3066                 tempval = gfar_read(&regs->rctrl);
3067                 tempval &= ~(RCTRL_PROM);
3068                 gfar_write(&regs->rctrl, tempval);
3069         }
3070
3071         if (dev->flags & IFF_ALLMULTI) {
3072                 /* Set the hash to rx all multicast frames */
3073                 gfar_write(&regs->igaddr0, 0xffffffff);
3074                 gfar_write(&regs->igaddr1, 0xffffffff);
3075                 gfar_write(&regs->igaddr2, 0xffffffff);
3076                 gfar_write(&regs->igaddr3, 0xffffffff);
3077                 gfar_write(&regs->igaddr4, 0xffffffff);
3078                 gfar_write(&regs->igaddr5, 0xffffffff);
3079                 gfar_write(&regs->igaddr6, 0xffffffff);
3080                 gfar_write(&regs->igaddr7, 0xffffffff);
3081                 gfar_write(&regs->gaddr0, 0xffffffff);
3082                 gfar_write(&regs->gaddr1, 0xffffffff);
3083                 gfar_write(&regs->gaddr2, 0xffffffff);
3084                 gfar_write(&regs->gaddr3, 0xffffffff);
3085                 gfar_write(&regs->gaddr4, 0xffffffff);
3086                 gfar_write(&regs->gaddr5, 0xffffffff);
3087                 gfar_write(&regs->gaddr6, 0xffffffff);
3088                 gfar_write(&regs->gaddr7, 0xffffffff);
3089         } else {
3090                 int em_num;
3091                 int idx;
3092
3093                 /* zero out the hash */
3094                 gfar_write(&regs->igaddr0, 0x0);
3095                 gfar_write(&regs->igaddr1, 0x0);
3096                 gfar_write(&regs->igaddr2, 0x0);
3097                 gfar_write(&regs->igaddr3, 0x0);
3098                 gfar_write(&regs->igaddr4, 0x0);
3099                 gfar_write(&regs->igaddr5, 0x0);
3100                 gfar_write(&regs->igaddr6, 0x0);
3101                 gfar_write(&regs->igaddr7, 0x0);
3102                 gfar_write(&regs->gaddr0, 0x0);
3103                 gfar_write(&regs->gaddr1, 0x0);
3104                 gfar_write(&regs->gaddr2, 0x0);
3105                 gfar_write(&regs->gaddr3, 0x0);
3106                 gfar_write(&regs->gaddr4, 0x0);
3107                 gfar_write(&regs->gaddr5, 0x0);
3108                 gfar_write(&regs->gaddr6, 0x0);
3109                 gfar_write(&regs->gaddr7, 0x0);
3110
3111                 /* If we have extended hash tables, we need to
3112                  * clear the exact match registers to prepare for
3113                  * setting them
3114                  */
3115                 if (priv->extended_hash) {
3116                         em_num = GFAR_EM_NUM + 1;
3117                         gfar_clear_exact_match(dev);
3118                         idx = 1;
3119                 } else {
3120                         idx = 0;
3121                         em_num = 0;
3122                 }
3123
3124                 if (netdev_mc_empty(dev))
3125                         return;
3126
3127                 /* Parse the list, and set the appropriate bits */
3128                 netdev_for_each_mc_addr(ha, dev) {
3129                         if (idx < em_num) {
3130                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3131                                 idx++;
3132                         } else
3133                                 gfar_set_hash_for_addr(dev, ha->addr);
3134                 }
3135         }
3136 }
3137
3138
3139 /* Clears each of the exact match registers to zero, so they
3140  * don't interfere with normal reception
3141  */
3142 static void gfar_clear_exact_match(struct net_device *dev)
3143 {
3144         int idx;
3145         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3146
3147         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3148                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3149 }
3150
3151 /* Set the appropriate hash bit for the given addr */
3152 /* The algorithm works like so:
3153  * 1) Take the Destination Address (ie the multicast address), and
3154  * do a CRC on it (little endian), and reverse the bits of the
3155  * result.
3156  * 2) Use the 8 most significant bits as a hash into a 256-entry
3157  * table.  The table is controlled through 8 32-bit registers:
3158  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3159  * gaddr7.  This means that the 3 most significant bits in the
3160  * hash index which gaddr register to use, and the 5 other bits
3161  * indicate which bit (assuming an IBM numbering scheme, which
3162  * for PowerPC (tm) is usually the case) in the register holds
3163  * the entry.
3164  */
3165 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3166 {
3167         u32 tempval;
3168         struct gfar_private *priv = netdev_priv(dev);
3169         u32 result = ether_crc(ETH_ALEN, addr);
3170         int width = priv->hash_width;
3171         u8 whichbit = (result >> (32 - width)) & 0x1f;
3172         u8 whichreg = result >> (32 - width + 5);
3173         u32 value = (1 << (31-whichbit));
3174
3175         tempval = gfar_read(priv->hash_regs[whichreg]);
3176         tempval |= value;
3177         gfar_write(priv->hash_regs[whichreg], tempval);
3178 }
3179
3180
3181 /* There are multiple MAC Address register pairs on some controllers
3182  * This function sets the numth pair to a given address
3183  */
3184 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3185                                   const u8 *addr)
3186 {
3187         struct gfar_private *priv = netdev_priv(dev);
3188         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3189         int idx;
3190         char tmpbuf[ETH_ALEN];
3191         u32 tempval;
3192         u32 __iomem *macptr = &regs->macstnaddr1;
3193
3194         macptr += num*2;
3195
3196         /* Now copy it into the mac registers backwards, cuz
3197          * little endian is silly
3198          */
3199         for (idx = 0; idx < ETH_ALEN; idx++)
3200                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3201
3202         gfar_write(macptr, *((u32 *) (tmpbuf)));
3203
3204         tempval = *((u32 *) (tmpbuf + 4));
3205
3206         gfar_write(macptr+1, tempval);
3207 }
3208
3209 /* GFAR error interrupt handler */
3210 static irqreturn_t gfar_error(int irq, void *grp_id)
3211 {
3212         struct gfar_priv_grp *gfargrp = grp_id;
3213         struct gfar __iomem *regs = gfargrp->regs;
3214         struct gfar_private *priv= gfargrp->priv;
3215         struct net_device *dev = priv->ndev;
3216
3217         /* Save ievent for future reference */
3218         u32 events = gfar_read(&regs->ievent);
3219
3220         /* Clear IEVENT */
3221         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3222
3223         /* Magic Packet is not an error. */
3224         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3225             (events & IEVENT_MAG))
3226                 events &= ~IEVENT_MAG;
3227
3228         /* Hmm... */
3229         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3230                 netdev_dbg(dev,
3231                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3232                            events, gfar_read(&regs->imask));
3233
3234         /* Update the error counters */
3235         if (events & IEVENT_TXE) {
3236                 dev->stats.tx_errors++;
3237
3238                 if (events & IEVENT_LC)
3239                         dev->stats.tx_window_errors++;
3240                 if (events & IEVENT_CRL)
3241                         dev->stats.tx_aborted_errors++;
3242                 if (events & IEVENT_XFUN) {
3243                         unsigned long flags;
3244
3245                         netif_dbg(priv, tx_err, dev,
3246                                   "TX FIFO underrun, packet dropped\n");
3247                         dev->stats.tx_dropped++;
3248                         priv->extra_stats.tx_underrun++;
3249
3250                         local_irq_save(flags);
3251                         lock_tx_qs(priv);
3252
3253                         /* Reactivate the Tx Queues */
3254                         gfar_write(&regs->tstat, gfargrp->tstat);
3255
3256                         unlock_tx_qs(priv);
3257                         local_irq_restore(flags);
3258                 }
3259                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3260         }
3261         if (events & IEVENT_BSY) {
3262                 dev->stats.rx_errors++;
3263                 priv->extra_stats.rx_bsy++;
3264
3265                 gfar_receive(irq, grp_id);
3266
3267                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3268                           gfar_read(&regs->rstat));
3269         }
3270         if (events & IEVENT_BABR) {
3271                 dev->stats.rx_errors++;
3272                 priv->extra_stats.rx_babr++;
3273
3274                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3275         }
3276         if (events & IEVENT_EBERR) {
3277                 priv->extra_stats.eberr++;
3278                 netif_dbg(priv, rx_err, dev, "bus error\n");
3279         }
3280         if (events & IEVENT_RXC)
3281                 netif_dbg(priv, rx_status, dev, "control frame\n");
3282
3283         if (events & IEVENT_BABT) {
3284                 priv->extra_stats.tx_babt++;
3285                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3286         }
3287         return IRQ_HANDLED;
3288 }
3289
3290 static struct of_device_id gfar_match[] =
3291 {
3292         {
3293                 .type = "network",
3294                 .compatible = "gianfar",
3295         },
3296         {
3297                 .compatible = "fsl,etsec2",
3298         },
3299         {},
3300 };
3301 MODULE_DEVICE_TABLE(of, gfar_match);
3302
3303 /* Structure for a device driver */
3304 static struct platform_driver gfar_driver = {
3305         .driver = {
3306                 .name = "fsl-gianfar",
3307                 .owner = THIS_MODULE,
3308                 .pm = GFAR_PM_OPS,
3309                 .of_match_table = gfar_match,
3310         },
3311         .probe = gfar_probe,
3312         .remove = gfar_remove,
3313 };
3314
3315 module_platform_driver(gfar_driver);