gianfar: gfar_process_frame returns void
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                            struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137                                int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143                                   const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151                             dma_addr_t buf)
152 {
153         u32 lstatus;
154
155         bdp->bufPtr = buf;
156
157         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159                 lstatus |= BD_LFLAG(RXBD_WRAP);
160
161         eieio();
162
163         bdp->lstatus = lstatus;
164 }
165
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168         struct gfar_private *priv = netdev_priv(ndev);
169         struct gfar_priv_tx_q *tx_queue = NULL;
170         struct gfar_priv_rx_q *rx_queue = NULL;
171         struct txbd8 *txbdp;
172         struct rxbd8 *rxbdp;
173         int i, j;
174
175         for (i = 0; i < priv->num_tx_queues; i++) {
176                 tx_queue = priv->tx_queue[i];
177                 /* Initialize some variables in our dev structure */
178                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180                 tx_queue->cur_tx = tx_queue->tx_bd_base;
181                 tx_queue->skb_curtx = 0;
182                 tx_queue->skb_dirtytx = 0;
183
184                 /* Initialize Transmit Descriptor Ring */
185                 txbdp = tx_queue->tx_bd_base;
186                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187                         txbdp->lstatus = 0;
188                         txbdp->bufPtr = 0;
189                         txbdp++;
190                 }
191
192                 /* Set the last descriptor in the ring to indicate wrap */
193                 txbdp--;
194                 txbdp->status |= TXBD_WRAP;
195         }
196
197         for (i = 0; i < priv->num_rx_queues; i++) {
198                 rx_queue = priv->rx_queue[i];
199                 rx_queue->cur_rx = rx_queue->rx_bd_base;
200                 rx_queue->skb_currx = 0;
201                 rxbdp = rx_queue->rx_bd_base;
202
203                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
204                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
205
206                         if (skb) {
207                                 gfar_init_rxbdp(rx_queue, rxbdp,
208                                                 rxbdp->bufPtr);
209                         } else {
210                                 skb = gfar_new_skb(ndev);
211                                 if (!skb) {
212                                         netdev_err(ndev, "Can't allocate RX buffers\n");
213                                         return -ENOMEM;
214                                 }
215                                 rx_queue->rx_skbuff[j] = skb;
216
217                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
218                         }
219
220                         rxbdp++;
221                 }
222
223         }
224
225         return 0;
226 }
227
228 static int gfar_alloc_skb_resources(struct net_device *ndev)
229 {
230         void *vaddr;
231         dma_addr_t addr;
232         int i, j, k;
233         struct gfar_private *priv = netdev_priv(ndev);
234         struct device *dev = priv->dev;
235         struct gfar_priv_tx_q *tx_queue = NULL;
236         struct gfar_priv_rx_q *rx_queue = NULL;
237
238         priv->total_tx_ring_size = 0;
239         for (i = 0; i < priv->num_tx_queues; i++)
240                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
241
242         priv->total_rx_ring_size = 0;
243         for (i = 0; i < priv->num_rx_queues; i++)
244                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
245
246         /* Allocate memory for the buffer descriptors */
247         vaddr = dma_alloc_coherent(dev,
248                         sizeof(struct txbd8) * priv->total_tx_ring_size +
249                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
250                         &addr, GFP_KERNEL);
251         if (!vaddr) {
252                 netif_err(priv, ifup, ndev,
253                           "Could not allocate buffer descriptors!\n");
254                 return -ENOMEM;
255         }
256
257         for (i = 0; i < priv->num_tx_queues; i++) {
258                 tx_queue = priv->tx_queue[i];
259                 tx_queue->tx_bd_base = vaddr;
260                 tx_queue->tx_bd_dma_base = addr;
261                 tx_queue->dev = ndev;
262                 /* enet DMA only understands physical addresses */
263                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265         }
266
267         /* Start the rx descriptor ring where the tx ring leaves off */
268         for (i = 0; i < priv->num_rx_queues; i++) {
269                 rx_queue = priv->rx_queue[i];
270                 rx_queue->rx_bd_base = vaddr;
271                 rx_queue->rx_bd_dma_base = addr;
272                 rx_queue->dev = ndev;
273                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275         }
276
277         /* Setup the skbuff rings */
278         for (i = 0; i < priv->num_tx_queues; i++) {
279                 tx_queue = priv->tx_queue[i];
280                 tx_queue->tx_skbuff =
281                         kmalloc_array(tx_queue->tx_ring_size,
282                                       sizeof(*tx_queue->tx_skbuff),
283                                       GFP_KERNEL);
284                 if (!tx_queue->tx_skbuff)
285                         goto cleanup;
286
287                 for (k = 0; k < tx_queue->tx_ring_size; k++)
288                         tx_queue->tx_skbuff[k] = NULL;
289         }
290
291         for (i = 0; i < priv->num_rx_queues; i++) {
292                 rx_queue = priv->rx_queue[i];
293                 rx_queue->rx_skbuff =
294                         kmalloc_array(rx_queue->rx_ring_size,
295                                       sizeof(*rx_queue->rx_skbuff),
296                                       GFP_KERNEL);
297                 if (!rx_queue->rx_skbuff)
298                         goto cleanup;
299
300                 for (j = 0; j < rx_queue->rx_ring_size; j++)
301                         rx_queue->rx_skbuff[j] = NULL;
302         }
303
304         if (gfar_init_bds(ndev))
305                 goto cleanup;
306
307         return 0;
308
309 cleanup:
310         free_skb_resources(priv);
311         return -ENOMEM;
312 }
313
314 static void gfar_init_tx_rx_base(struct gfar_private *priv)
315 {
316         struct gfar __iomem *regs = priv->gfargrp[0].regs;
317         u32 __iomem *baddr;
318         int i;
319
320         baddr = &regs->tbase0;
321         for (i = 0; i < priv->num_tx_queues; i++) {
322                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
323                 baddr += 2;
324         }
325
326         baddr = &regs->rbase0;
327         for (i = 0; i < priv->num_rx_queues; i++) {
328                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
329                 baddr += 2;
330         }
331 }
332
333 static void gfar_init_mac(struct net_device *ndev)
334 {
335         struct gfar_private *priv = netdev_priv(ndev);
336         struct gfar __iomem *regs = priv->gfargrp[0].regs;
337         u32 rctrl = 0;
338         u32 tctrl = 0;
339         u32 attrs = 0;
340
341         /* write the tx/rx base registers */
342         gfar_init_tx_rx_base(priv);
343
344         /* Configure the coalescing support */
345         gfar_configure_coalescing(priv, 0xFF, 0xFF);
346
347         if (priv->rx_filer_enable) {
348                 rctrl |= RCTRL_FILREN;
349                 /* Program the RIR0 reg with the required distribution */
350                 gfar_write(&regs->rir0, DEFAULT_RIR0);
351         }
352
353         /* Restore PROMISC mode */
354         if (ndev->flags & IFF_PROMISC)
355                 rctrl |= RCTRL_PROM;
356
357         if (ndev->features & NETIF_F_RXCSUM)
358                 rctrl |= RCTRL_CHECKSUMMING;
359
360         if (priv->extended_hash) {
361                 rctrl |= RCTRL_EXTHASH;
362
363                 gfar_clear_exact_match(ndev);
364                 rctrl |= RCTRL_EMEN;
365         }
366
367         if (priv->padding) {
368                 rctrl &= ~RCTRL_PAL_MASK;
369                 rctrl |= RCTRL_PADDING(priv->padding);
370         }
371
372         /* Insert receive time stamps into padding alignment bytes */
373         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
374                 rctrl &= ~RCTRL_PAL_MASK;
375                 rctrl |= RCTRL_PADDING(8);
376                 priv->padding = 8;
377         }
378
379         /* Enable HW time stamping if requested from user space */
380         if (priv->hwts_rx_en)
381                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
382
383         if (ndev->features & NETIF_F_HW_VLAN_RX)
384                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
385
386         /* Init rctrl based on our settings */
387         gfar_write(&regs->rctrl, rctrl);
388
389         if (ndev->features & NETIF_F_IP_CSUM)
390                 tctrl |= TCTRL_INIT_CSUM;
391
392         if (priv->prio_sched_en)
393                 tctrl |= TCTRL_TXSCHED_PRIO;
394         else {
395                 tctrl |= TCTRL_TXSCHED_WRRS;
396                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
397                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
398         }
399
400         gfar_write(&regs->tctrl, tctrl);
401
402         /* Set the extraction length and index */
403         attrs = ATTRELI_EL(priv->rx_stash_size) |
404                 ATTRELI_EI(priv->rx_stash_index);
405
406         gfar_write(&regs->attreli, attrs);
407
408         /* Start with defaults, and add stashing or locking
409          * depending on the approprate variables
410          */
411         attrs = ATTR_INIT_SETTINGS;
412
413         if (priv->bd_stash_en)
414                 attrs |= ATTR_BDSTASH;
415
416         if (priv->rx_stash_size != 0)
417                 attrs |= ATTR_BUFSTASH;
418
419         gfar_write(&regs->attr, attrs);
420
421         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
422         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
423         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
424 }
425
426 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
427 {
428         struct gfar_private *priv = netdev_priv(dev);
429         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
430         unsigned long tx_packets = 0, tx_bytes = 0;
431         int i;
432
433         for (i = 0; i < priv->num_rx_queues; i++) {
434                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
435                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
436                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
437         }
438
439         dev->stats.rx_packets = rx_packets;
440         dev->stats.rx_bytes   = rx_bytes;
441         dev->stats.rx_dropped = rx_dropped;
442
443         for (i = 0; i < priv->num_tx_queues; i++) {
444                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
445                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
446         }
447
448         dev->stats.tx_bytes   = tx_bytes;
449         dev->stats.tx_packets = tx_packets;
450
451         return &dev->stats;
452 }
453
454 static const struct net_device_ops gfar_netdev_ops = {
455         .ndo_open = gfar_enet_open,
456         .ndo_start_xmit = gfar_start_xmit,
457         .ndo_stop = gfar_close,
458         .ndo_change_mtu = gfar_change_mtu,
459         .ndo_set_features = gfar_set_features,
460         .ndo_set_rx_mode = gfar_set_multi,
461         .ndo_tx_timeout = gfar_timeout,
462         .ndo_do_ioctl = gfar_ioctl,
463         .ndo_get_stats = gfar_get_stats,
464         .ndo_set_mac_address = eth_mac_addr,
465         .ndo_validate_addr = eth_validate_addr,
466 #ifdef CONFIG_NET_POLL_CONTROLLER
467         .ndo_poll_controller = gfar_netpoll,
468 #endif
469 };
470
471 void lock_rx_qs(struct gfar_private *priv)
472 {
473         int i;
474
475         for (i = 0; i < priv->num_rx_queues; i++)
476                 spin_lock(&priv->rx_queue[i]->rxlock);
477 }
478
479 void lock_tx_qs(struct gfar_private *priv)
480 {
481         int i;
482
483         for (i = 0; i < priv->num_tx_queues; i++)
484                 spin_lock(&priv->tx_queue[i]->txlock);
485 }
486
487 void unlock_rx_qs(struct gfar_private *priv)
488 {
489         int i;
490
491         for (i = 0; i < priv->num_rx_queues; i++)
492                 spin_unlock(&priv->rx_queue[i]->rxlock);
493 }
494
495 void unlock_tx_qs(struct gfar_private *priv)
496 {
497         int i;
498
499         for (i = 0; i < priv->num_tx_queues; i++)
500                 spin_unlock(&priv->tx_queue[i]->txlock);
501 }
502
503 static bool gfar_is_vlan_on(struct gfar_private *priv)
504 {
505         return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
506                (priv->ndev->features & NETIF_F_HW_VLAN_TX);
507 }
508
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private *priv)
511 {
512         return gfar_is_vlan_on(priv) ||
513                (priv->ndev->features & NETIF_F_RXCSUM) ||
514                (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
515 }
516
517 static void free_tx_pointers(struct gfar_private *priv)
518 {
519         int i;
520
521         for (i = 0; i < priv->num_tx_queues; i++)
522                 kfree(priv->tx_queue[i]);
523 }
524
525 static void free_rx_pointers(struct gfar_private *priv)
526 {
527         int i;
528
529         for (i = 0; i < priv->num_rx_queues; i++)
530                 kfree(priv->rx_queue[i]);
531 }
532
533 static void unmap_group_regs(struct gfar_private *priv)
534 {
535         int i;
536
537         for (i = 0; i < MAXGROUPS; i++)
538                 if (priv->gfargrp[i].regs)
539                         iounmap(priv->gfargrp[i].regs);
540 }
541
542 static void free_gfar_dev(struct gfar_private *priv)
543 {
544         int i, j;
545
546         for (i = 0; i < priv->num_grps; i++)
547                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
548                         kfree(priv->gfargrp[i].irqinfo[j]);
549                         priv->gfargrp[i].irqinfo[j] = NULL;
550                 }
551
552         free_netdev(priv->ndev);
553 }
554
555 static void disable_napi(struct gfar_private *priv)
556 {
557         int i;
558
559         for (i = 0; i < priv->num_grps; i++)
560                 napi_disable(&priv->gfargrp[i].napi);
561 }
562
563 static void enable_napi(struct gfar_private *priv)
564 {
565         int i;
566
567         for (i = 0; i < priv->num_grps; i++)
568                 napi_enable(&priv->gfargrp[i].napi);
569 }
570
571 static int gfar_parse_group(struct device_node *np,
572                             struct gfar_private *priv, const char *model)
573 {
574         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
575         u32 *queue_mask;
576         int i;
577
578         for (i = 0; i < GFAR_NUM_IRQS; i++) {
579                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
580                                           GFP_KERNEL);
581                 if (!grp->irqinfo[i])
582                         return -ENOMEM;
583         }
584
585         grp->regs = of_iomap(np, 0);
586         if (!grp->regs)
587                 return -ENOMEM;
588
589         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
590
591         /* If we aren't the FEC we have multiple interrupts */
592         if (model && strcasecmp(model, "FEC")) {
593                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
594                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
595                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
596                     gfar_irq(grp, RX)->irq == NO_IRQ ||
597                     gfar_irq(grp, ER)->irq == NO_IRQ)
598                         return -EINVAL;
599         }
600
601         grp->grp_id = priv->num_grps;
602         grp->priv = priv;
603         spin_lock_init(&grp->grplock);
604         if (priv->mode == MQ_MG_MODE) {
605                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
606                 grp->rx_bit_map = queue_mask ?
607                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
608                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
609                 grp->tx_bit_map = queue_mask ?
610                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
611         } else {
612                 grp->rx_bit_map = 0xFF;
613                 grp->tx_bit_map = 0xFF;
614         }
615         priv->num_grps++;
616
617         return 0;
618 }
619
620 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
621 {
622         const char *model;
623         const char *ctype;
624         const void *mac_addr;
625         int err = 0, i;
626         struct net_device *dev = NULL;
627         struct gfar_private *priv = NULL;
628         struct device_node *np = ofdev->dev.of_node;
629         struct device_node *child = NULL;
630         const u32 *stash;
631         const u32 *stash_len;
632         const u32 *stash_idx;
633         unsigned int num_tx_qs, num_rx_qs;
634         u32 *tx_queues, *rx_queues;
635
636         if (!np || !of_device_is_available(np))
637                 return -ENODEV;
638
639         /* parse the num of tx and rx queues */
640         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
641         num_tx_qs = tx_queues ? *tx_queues : 1;
642
643         if (num_tx_qs > MAX_TX_QS) {
644                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
645                        num_tx_qs, MAX_TX_QS);
646                 pr_err("Cannot do alloc_etherdev, aborting\n");
647                 return -EINVAL;
648         }
649
650         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
651         num_rx_qs = rx_queues ? *rx_queues : 1;
652
653         if (num_rx_qs > MAX_RX_QS) {
654                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
655                        num_rx_qs, MAX_RX_QS);
656                 pr_err("Cannot do alloc_etherdev, aborting\n");
657                 return -EINVAL;
658         }
659
660         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
661         dev = *pdev;
662         if (NULL == dev)
663                 return -ENOMEM;
664
665         priv = netdev_priv(dev);
666         priv->ndev = dev;
667
668         priv->num_tx_queues = num_tx_qs;
669         netif_set_real_num_rx_queues(dev, num_rx_qs);
670         priv->num_rx_queues = num_rx_qs;
671         priv->num_grps = 0x0;
672
673         /* Init Rx queue filer rule set linked list */
674         INIT_LIST_HEAD(&priv->rx_list.list);
675         priv->rx_list.count = 0;
676         mutex_init(&priv->rx_queue_access);
677
678         model = of_get_property(np, "model", NULL);
679
680         for (i = 0; i < MAXGROUPS; i++)
681                 priv->gfargrp[i].regs = NULL;
682
683         /* Parse and initialize group specific information */
684         if (of_device_is_compatible(np, "fsl,etsec2")) {
685                 priv->mode = MQ_MG_MODE;
686                 for_each_child_of_node(np, child) {
687                         err = gfar_parse_group(child, priv, model);
688                         if (err)
689                                 goto err_grp_init;
690                 }
691         } else {
692                 priv->mode = SQ_SG_MODE;
693                 err = gfar_parse_group(np, priv, model);
694                 if (err)
695                         goto err_grp_init;
696         }
697
698         for (i = 0; i < priv->num_tx_queues; i++)
699                priv->tx_queue[i] = NULL;
700         for (i = 0; i < priv->num_rx_queues; i++)
701                 priv->rx_queue[i] = NULL;
702
703         for (i = 0; i < priv->num_tx_queues; i++) {
704                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
705                                             GFP_KERNEL);
706                 if (!priv->tx_queue[i]) {
707                         err = -ENOMEM;
708                         goto tx_alloc_failed;
709                 }
710                 priv->tx_queue[i]->tx_skbuff = NULL;
711                 priv->tx_queue[i]->qindex = i;
712                 priv->tx_queue[i]->dev = dev;
713                 spin_lock_init(&(priv->tx_queue[i]->txlock));
714         }
715
716         for (i = 0; i < priv->num_rx_queues; i++) {
717                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
718                                             GFP_KERNEL);
719                 if (!priv->rx_queue[i]) {
720                         err = -ENOMEM;
721                         goto rx_alloc_failed;
722                 }
723                 priv->rx_queue[i]->rx_skbuff = NULL;
724                 priv->rx_queue[i]->qindex = i;
725                 priv->rx_queue[i]->dev = dev;
726                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
727         }
728
729
730         stash = of_get_property(np, "bd-stash", NULL);
731
732         if (stash) {
733                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
734                 priv->bd_stash_en = 1;
735         }
736
737         stash_len = of_get_property(np, "rx-stash-len", NULL);
738
739         if (stash_len)
740                 priv->rx_stash_size = *stash_len;
741
742         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
743
744         if (stash_idx)
745                 priv->rx_stash_index = *stash_idx;
746
747         if (stash_len || stash_idx)
748                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
749
750         mac_addr = of_get_mac_address(np);
751
752         if (mac_addr)
753                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
754
755         if (model && !strcasecmp(model, "TSEC"))
756                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
757                                      FSL_GIANFAR_DEV_HAS_COALESCE |
758                                      FSL_GIANFAR_DEV_HAS_RMON |
759                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
760
761         if (model && !strcasecmp(model, "eTSEC"))
762                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
763                                      FSL_GIANFAR_DEV_HAS_COALESCE |
764                                      FSL_GIANFAR_DEV_HAS_RMON |
765                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
766                                      FSL_GIANFAR_DEV_HAS_PADDING |
767                                      FSL_GIANFAR_DEV_HAS_CSUM |
768                                      FSL_GIANFAR_DEV_HAS_VLAN |
769                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
770                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
771                                      FSL_GIANFAR_DEV_HAS_TIMER;
772
773         ctype = of_get_property(np, "phy-connection-type", NULL);
774
775         /* We only care about rgmii-id.  The rest are autodetected */
776         if (ctype && !strcmp(ctype, "rgmii-id"))
777                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
778         else
779                 priv->interface = PHY_INTERFACE_MODE_MII;
780
781         if (of_get_property(np, "fsl,magic-packet", NULL))
782                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
783
784         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
785
786         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
787         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
788
789         return 0;
790
791 rx_alloc_failed:
792         free_rx_pointers(priv);
793 tx_alloc_failed:
794         free_tx_pointers(priv);
795 err_grp_init:
796         unmap_group_regs(priv);
797         free_gfar_dev(priv);
798         return err;
799 }
800
801 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
802                                struct ifreq *ifr, int cmd)
803 {
804         struct hwtstamp_config config;
805         struct gfar_private *priv = netdev_priv(netdev);
806
807         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
808                 return -EFAULT;
809
810         /* reserved for future extensions */
811         if (config.flags)
812                 return -EINVAL;
813
814         switch (config.tx_type) {
815         case HWTSTAMP_TX_OFF:
816                 priv->hwts_tx_en = 0;
817                 break;
818         case HWTSTAMP_TX_ON:
819                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
820                         return -ERANGE;
821                 priv->hwts_tx_en = 1;
822                 break;
823         default:
824                 return -ERANGE;
825         }
826
827         switch (config.rx_filter) {
828         case HWTSTAMP_FILTER_NONE:
829                 if (priv->hwts_rx_en) {
830                         stop_gfar(netdev);
831                         priv->hwts_rx_en = 0;
832                         startup_gfar(netdev);
833                 }
834                 break;
835         default:
836                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
837                         return -ERANGE;
838                 if (!priv->hwts_rx_en) {
839                         stop_gfar(netdev);
840                         priv->hwts_rx_en = 1;
841                         startup_gfar(netdev);
842                 }
843                 config.rx_filter = HWTSTAMP_FILTER_ALL;
844                 break;
845         }
846
847         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
848                 -EFAULT : 0;
849 }
850
851 /* Ioctl MII Interface */
852 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
853 {
854         struct gfar_private *priv = netdev_priv(dev);
855
856         if (!netif_running(dev))
857                 return -EINVAL;
858
859         if (cmd == SIOCSHWTSTAMP)
860                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
861
862         if (!priv->phydev)
863                 return -ENODEV;
864
865         return phy_mii_ioctl(priv->phydev, rq, cmd);
866 }
867
868 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
869 {
870         unsigned int new_bit_map = 0x0;
871         int mask = 0x1 << (max_qs - 1), i;
872
873         for (i = 0; i < max_qs; i++) {
874                 if (bit_map & mask)
875                         new_bit_map = new_bit_map + (1 << i);
876                 mask = mask >> 0x1;
877         }
878         return new_bit_map;
879 }
880
881 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
882                                    u32 class)
883 {
884         u32 rqfpr = FPR_FILER_MASK;
885         u32 rqfcr = 0x0;
886
887         rqfar--;
888         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
889         priv->ftp_rqfpr[rqfar] = rqfpr;
890         priv->ftp_rqfcr[rqfar] = rqfcr;
891         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892
893         rqfar--;
894         rqfcr = RQFCR_CMP_NOMATCH;
895         priv->ftp_rqfpr[rqfar] = rqfpr;
896         priv->ftp_rqfcr[rqfar] = rqfcr;
897         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
898
899         rqfar--;
900         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
901         rqfpr = class;
902         priv->ftp_rqfcr[rqfar] = rqfcr;
903         priv->ftp_rqfpr[rqfar] = rqfpr;
904         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
905
906         rqfar--;
907         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
908         rqfpr = class;
909         priv->ftp_rqfcr[rqfar] = rqfcr;
910         priv->ftp_rqfpr[rqfar] = rqfpr;
911         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
912
913         return rqfar;
914 }
915
916 static void gfar_init_filer_table(struct gfar_private *priv)
917 {
918         int i = 0x0;
919         u32 rqfar = MAX_FILER_IDX;
920         u32 rqfcr = 0x0;
921         u32 rqfpr = FPR_FILER_MASK;
922
923         /* Default rule */
924         rqfcr = RQFCR_CMP_MATCH;
925         priv->ftp_rqfcr[rqfar] = rqfcr;
926         priv->ftp_rqfpr[rqfar] = rqfpr;
927         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
928
929         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
930         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
931         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
932         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
933         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
934         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
935
936         /* cur_filer_idx indicated the first non-masked rule */
937         priv->cur_filer_idx = rqfar;
938
939         /* Rest are masked rules */
940         rqfcr = RQFCR_CMP_NOMATCH;
941         for (i = 0; i < rqfar; i++) {
942                 priv->ftp_rqfcr[i] = rqfcr;
943                 priv->ftp_rqfpr[i] = rqfpr;
944                 gfar_write_filer(priv, i, rqfcr, rqfpr);
945         }
946 }
947
948 static void gfar_detect_errata(struct gfar_private *priv)
949 {
950         struct device *dev = &priv->ofdev->dev;
951         unsigned int pvr = mfspr(SPRN_PVR);
952         unsigned int svr = mfspr(SPRN_SVR);
953         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
954         unsigned int rev = svr & 0xffff;
955
956         /* MPC8313 Rev 2.0 and higher; All MPC837x */
957         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
958             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
959                 priv->errata |= GFAR_ERRATA_74;
960
961         /* MPC8313 and MPC837x all rev */
962         if ((pvr == 0x80850010 && mod == 0x80b0) ||
963             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
964                 priv->errata |= GFAR_ERRATA_76;
965
966         /* MPC8313 and MPC837x all rev */
967         if ((pvr == 0x80850010 && mod == 0x80b0) ||
968             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
969                 priv->errata |= GFAR_ERRATA_A002;
970
971         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
972         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
973             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
974                 priv->errata |= GFAR_ERRATA_12;
975
976         if (priv->errata)
977                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
978                          priv->errata);
979 }
980
981 /* Set up the ethernet device structure, private data,
982  * and anything else we need before we start
983  */
984 static int gfar_probe(struct platform_device *ofdev)
985 {
986         u32 tempval;
987         struct net_device *dev = NULL;
988         struct gfar_private *priv = NULL;
989         struct gfar __iomem *regs = NULL;
990         int err = 0, i, grp_idx = 0;
991         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
992         u32 isrg = 0;
993         u32 __iomem *baddr;
994
995         err = gfar_of_init(ofdev, &dev);
996
997         if (err)
998                 return err;
999
1000         priv = netdev_priv(dev);
1001         priv->ndev = dev;
1002         priv->ofdev = ofdev;
1003         priv->dev = &ofdev->dev;
1004         SET_NETDEV_DEV(dev, &ofdev->dev);
1005
1006         spin_lock_init(&priv->bflock);
1007         INIT_WORK(&priv->reset_task, gfar_reset_task);
1008
1009         dev_set_drvdata(&ofdev->dev, priv);
1010         regs = priv->gfargrp[0].regs;
1011
1012         gfar_detect_errata(priv);
1013
1014         /* Stop the DMA engine now, in case it was running before
1015          * (The firmware could have used it, and left it running).
1016          */
1017         gfar_halt(dev);
1018
1019         /* Reset MAC layer */
1020         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1021
1022         /* We need to delay at least 3 TX clocks */
1023         udelay(2);
1024
1025         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1026         gfar_write(&regs->maccfg1, tempval);
1027
1028         /* Initialize MACCFG2. */
1029         tempval = MACCFG2_INIT_SETTINGS;
1030         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1031                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1032         gfar_write(&regs->maccfg2, tempval);
1033
1034         /* Initialize ECNTRL */
1035         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1036
1037         /* Set the dev->base_addr to the gfar reg region */
1038         dev->base_addr = (unsigned long) regs;
1039
1040         /* Fill in the dev structure */
1041         dev->watchdog_timeo = TX_TIMEOUT;
1042         dev->mtu = 1500;
1043         dev->netdev_ops = &gfar_netdev_ops;
1044         dev->ethtool_ops = &gfar_ethtool_ops;
1045
1046         /* Register for napi ...We are registering NAPI for each grp */
1047         for (i = 0; i < priv->num_grps; i++)
1048                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1049                                GFAR_DEV_WEIGHT);
1050
1051         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1052                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1053                                    NETIF_F_RXCSUM;
1054                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1055                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1056         }
1057
1058         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1059                 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1060                 dev->features |= NETIF_F_HW_VLAN_RX;
1061         }
1062
1063         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1064                 priv->extended_hash = 1;
1065                 priv->hash_width = 9;
1066
1067                 priv->hash_regs[0] = &regs->igaddr0;
1068                 priv->hash_regs[1] = &regs->igaddr1;
1069                 priv->hash_regs[2] = &regs->igaddr2;
1070                 priv->hash_regs[3] = &regs->igaddr3;
1071                 priv->hash_regs[4] = &regs->igaddr4;
1072                 priv->hash_regs[5] = &regs->igaddr5;
1073                 priv->hash_regs[6] = &regs->igaddr6;
1074                 priv->hash_regs[7] = &regs->igaddr7;
1075                 priv->hash_regs[8] = &regs->gaddr0;
1076                 priv->hash_regs[9] = &regs->gaddr1;
1077                 priv->hash_regs[10] = &regs->gaddr2;
1078                 priv->hash_regs[11] = &regs->gaddr3;
1079                 priv->hash_regs[12] = &regs->gaddr4;
1080                 priv->hash_regs[13] = &regs->gaddr5;
1081                 priv->hash_regs[14] = &regs->gaddr6;
1082                 priv->hash_regs[15] = &regs->gaddr7;
1083
1084         } else {
1085                 priv->extended_hash = 0;
1086                 priv->hash_width = 8;
1087
1088                 priv->hash_regs[0] = &regs->gaddr0;
1089                 priv->hash_regs[1] = &regs->gaddr1;
1090                 priv->hash_regs[2] = &regs->gaddr2;
1091                 priv->hash_regs[3] = &regs->gaddr3;
1092                 priv->hash_regs[4] = &regs->gaddr4;
1093                 priv->hash_regs[5] = &regs->gaddr5;
1094                 priv->hash_regs[6] = &regs->gaddr6;
1095                 priv->hash_regs[7] = &regs->gaddr7;
1096         }
1097
1098         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1099                 priv->padding = DEFAULT_PADDING;
1100         else
1101                 priv->padding = 0;
1102
1103         if (dev->features & NETIF_F_IP_CSUM ||
1104             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1105                 dev->needed_headroom = GMAC_FCB_LEN;
1106
1107         /* Program the isrg regs only if number of grps > 1 */
1108         if (priv->num_grps > 1) {
1109                 baddr = &regs->isrg0;
1110                 for (i = 0; i < priv->num_grps; i++) {
1111                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1112                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1113                         gfar_write(baddr, isrg);
1114                         baddr++;
1115                         isrg = 0x0;
1116                 }
1117         }
1118
1119         /* Need to reverse the bit maps as  bit_map's MSB is q0
1120          * but, for_each_set_bit parses from right to left, which
1121          * basically reverses the queue numbers
1122          */
1123         for (i = 0; i< priv->num_grps; i++) {
1124                 priv->gfargrp[i].tx_bit_map =
1125                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1126                 priv->gfargrp[i].rx_bit_map =
1127                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1128         }
1129
1130         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1131          * also assign queues to groups
1132          */
1133         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1134                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1135
1136                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1137                                  priv->num_rx_queues) {
1138                         priv->gfargrp[grp_idx].num_rx_queues++;
1139                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1140                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1141                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1142                 }
1143                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1144
1145                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1146                                  priv->num_tx_queues) {
1147                         priv->gfargrp[grp_idx].num_tx_queues++;
1148                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1149                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1150                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1151                 }
1152                 priv->gfargrp[grp_idx].rstat = rstat;
1153                 priv->gfargrp[grp_idx].tstat = tstat;
1154                 rstat = tstat =0;
1155         }
1156
1157         gfar_write(&regs->rqueue, rqueue);
1158         gfar_write(&regs->tqueue, tqueue);
1159
1160         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1161
1162         /* Initializing some of the rx/tx queue level parameters */
1163         for (i = 0; i < priv->num_tx_queues; i++) {
1164                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1165                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1166                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1167                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1168         }
1169
1170         for (i = 0; i < priv->num_rx_queues; i++) {
1171                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1172                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1173                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1174         }
1175
1176         /* always enable rx filer */
1177         priv->rx_filer_enable = 1;
1178         /* Enable most messages by default */
1179         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1180         /* use pritority h/w tx queue scheduling for single queue devices */
1181         if (priv->num_tx_queues == 1)
1182                 priv->prio_sched_en = 1;
1183
1184         /* Carrier starts down, phylib will bring it up */
1185         netif_carrier_off(dev);
1186
1187         err = register_netdev(dev);
1188
1189         if (err) {
1190                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1191                 goto register_fail;
1192         }
1193
1194         device_init_wakeup(&dev->dev,
1195                            priv->device_flags &
1196                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1197
1198         /* fill out IRQ number and name fields */
1199         for (i = 0; i < priv->num_grps; i++) {
1200                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1201                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1202                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1203                                 dev->name, "_g", '0' + i, "_tx");
1204                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1205                                 dev->name, "_g", '0' + i, "_rx");
1206                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1207                                 dev->name, "_g", '0' + i, "_er");
1208                 } else
1209                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1210         }
1211
1212         /* Initialize the filer table */
1213         gfar_init_filer_table(priv);
1214
1215         /* Create all the sysfs files */
1216         gfar_init_sysfs(dev);
1217
1218         /* Print out the device info */
1219         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1220
1221         /* Even more device info helps when determining which kernel
1222          * provided which set of benchmarks.
1223          */
1224         netdev_info(dev, "Running with NAPI enabled\n");
1225         for (i = 0; i < priv->num_rx_queues; i++)
1226                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1227                             i, priv->rx_queue[i]->rx_ring_size);
1228         for (i = 0; i < priv->num_tx_queues; i++)
1229                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1230                             i, priv->tx_queue[i]->tx_ring_size);
1231
1232         return 0;
1233
1234 register_fail:
1235         unmap_group_regs(priv);
1236         free_tx_pointers(priv);
1237         free_rx_pointers(priv);
1238         if (priv->phy_node)
1239                 of_node_put(priv->phy_node);
1240         if (priv->tbi_node)
1241                 of_node_put(priv->tbi_node);
1242         free_gfar_dev(priv);
1243         return err;
1244 }
1245
1246 static int gfar_remove(struct platform_device *ofdev)
1247 {
1248         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1249
1250         if (priv->phy_node)
1251                 of_node_put(priv->phy_node);
1252         if (priv->tbi_node)
1253                 of_node_put(priv->tbi_node);
1254
1255         dev_set_drvdata(&ofdev->dev, NULL);
1256
1257         unregister_netdev(priv->ndev);
1258         unmap_group_regs(priv);
1259         free_gfar_dev(priv);
1260
1261         return 0;
1262 }
1263
1264 #ifdef CONFIG_PM
1265
1266 static int gfar_suspend(struct device *dev)
1267 {
1268         struct gfar_private *priv = dev_get_drvdata(dev);
1269         struct net_device *ndev = priv->ndev;
1270         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1271         unsigned long flags;
1272         u32 tempval;
1273
1274         int magic_packet = priv->wol_en &&
1275                            (priv->device_flags &
1276                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1277
1278         netif_device_detach(ndev);
1279
1280         if (netif_running(ndev)) {
1281
1282                 local_irq_save(flags);
1283                 lock_tx_qs(priv);
1284                 lock_rx_qs(priv);
1285
1286                 gfar_halt_nodisable(ndev);
1287
1288                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1289                 tempval = gfar_read(&regs->maccfg1);
1290
1291                 tempval &= ~MACCFG1_TX_EN;
1292
1293                 if (!magic_packet)
1294                         tempval &= ~MACCFG1_RX_EN;
1295
1296                 gfar_write(&regs->maccfg1, tempval);
1297
1298                 unlock_rx_qs(priv);
1299                 unlock_tx_qs(priv);
1300                 local_irq_restore(flags);
1301
1302                 disable_napi(priv);
1303
1304                 if (magic_packet) {
1305                         /* Enable interrupt on Magic Packet */
1306                         gfar_write(&regs->imask, IMASK_MAG);
1307
1308                         /* Enable Magic Packet mode */
1309                         tempval = gfar_read(&regs->maccfg2);
1310                         tempval |= MACCFG2_MPEN;
1311                         gfar_write(&regs->maccfg2, tempval);
1312                 } else {
1313                         phy_stop(priv->phydev);
1314                 }
1315         }
1316
1317         return 0;
1318 }
1319
1320 static int gfar_resume(struct device *dev)
1321 {
1322         struct gfar_private *priv = dev_get_drvdata(dev);
1323         struct net_device *ndev = priv->ndev;
1324         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1325         unsigned long flags;
1326         u32 tempval;
1327         int magic_packet = priv->wol_en &&
1328                            (priv->device_flags &
1329                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1330
1331         if (!netif_running(ndev)) {
1332                 netif_device_attach(ndev);
1333                 return 0;
1334         }
1335
1336         if (!magic_packet && priv->phydev)
1337                 phy_start(priv->phydev);
1338
1339         /* Disable Magic Packet mode, in case something
1340          * else woke us up.
1341          */
1342         local_irq_save(flags);
1343         lock_tx_qs(priv);
1344         lock_rx_qs(priv);
1345
1346         tempval = gfar_read(&regs->maccfg2);
1347         tempval &= ~MACCFG2_MPEN;
1348         gfar_write(&regs->maccfg2, tempval);
1349
1350         gfar_start(ndev);
1351
1352         unlock_rx_qs(priv);
1353         unlock_tx_qs(priv);
1354         local_irq_restore(flags);
1355
1356         netif_device_attach(ndev);
1357
1358         enable_napi(priv);
1359
1360         return 0;
1361 }
1362
1363 static int gfar_restore(struct device *dev)
1364 {
1365         struct gfar_private *priv = dev_get_drvdata(dev);
1366         struct net_device *ndev = priv->ndev;
1367
1368         if (!netif_running(ndev)) {
1369                 netif_device_attach(ndev);
1370
1371                 return 0;
1372         }
1373
1374         if (gfar_init_bds(ndev)) {
1375                 free_skb_resources(priv);
1376                 return -ENOMEM;
1377         }
1378
1379         init_registers(ndev);
1380         gfar_set_mac_address(ndev);
1381         gfar_init_mac(ndev);
1382         gfar_start(ndev);
1383
1384         priv->oldlink = 0;
1385         priv->oldspeed = 0;
1386         priv->oldduplex = -1;
1387
1388         if (priv->phydev)
1389                 phy_start(priv->phydev);
1390
1391         netif_device_attach(ndev);
1392         enable_napi(priv);
1393
1394         return 0;
1395 }
1396
1397 static struct dev_pm_ops gfar_pm_ops = {
1398         .suspend = gfar_suspend,
1399         .resume = gfar_resume,
1400         .freeze = gfar_suspend,
1401         .thaw = gfar_resume,
1402         .restore = gfar_restore,
1403 };
1404
1405 #define GFAR_PM_OPS (&gfar_pm_ops)
1406
1407 #else
1408
1409 #define GFAR_PM_OPS NULL
1410
1411 #endif
1412
1413 /* Reads the controller's registers to determine what interface
1414  * connects it to the PHY.
1415  */
1416 static phy_interface_t gfar_get_interface(struct net_device *dev)
1417 {
1418         struct gfar_private *priv = netdev_priv(dev);
1419         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1420         u32 ecntrl;
1421
1422         ecntrl = gfar_read(&regs->ecntrl);
1423
1424         if (ecntrl & ECNTRL_SGMII_MODE)
1425                 return PHY_INTERFACE_MODE_SGMII;
1426
1427         if (ecntrl & ECNTRL_TBI_MODE) {
1428                 if (ecntrl & ECNTRL_REDUCED_MODE)
1429                         return PHY_INTERFACE_MODE_RTBI;
1430                 else
1431                         return PHY_INTERFACE_MODE_TBI;
1432         }
1433
1434         if (ecntrl & ECNTRL_REDUCED_MODE) {
1435                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1436                         return PHY_INTERFACE_MODE_RMII;
1437                 }
1438                 else {
1439                         phy_interface_t interface = priv->interface;
1440
1441                         /* This isn't autodetected right now, so it must
1442                          * be set by the device tree or platform code.
1443                          */
1444                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1445                                 return PHY_INTERFACE_MODE_RGMII_ID;
1446
1447                         return PHY_INTERFACE_MODE_RGMII;
1448                 }
1449         }
1450
1451         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1452                 return PHY_INTERFACE_MODE_GMII;
1453
1454         return PHY_INTERFACE_MODE_MII;
1455 }
1456
1457
1458 /* Initializes driver's PHY state, and attaches to the PHY.
1459  * Returns 0 on success.
1460  */
1461 static int init_phy(struct net_device *dev)
1462 {
1463         struct gfar_private *priv = netdev_priv(dev);
1464         uint gigabit_support =
1465                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1466                 SUPPORTED_1000baseT_Full : 0;
1467         phy_interface_t interface;
1468
1469         priv->oldlink = 0;
1470         priv->oldspeed = 0;
1471         priv->oldduplex = -1;
1472
1473         interface = gfar_get_interface(dev);
1474
1475         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1476                                       interface);
1477         if (!priv->phydev)
1478                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1479                                                          interface);
1480         if (!priv->phydev) {
1481                 dev_err(&dev->dev, "could not attach to PHY\n");
1482                 return -ENODEV;
1483         }
1484
1485         if (interface == PHY_INTERFACE_MODE_SGMII)
1486                 gfar_configure_serdes(dev);
1487
1488         /* Remove any features not supported by the controller */
1489         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1490         priv->phydev->advertising = priv->phydev->supported;
1491
1492         return 0;
1493 }
1494
1495 /* Initialize TBI PHY interface for communicating with the
1496  * SERDES lynx PHY on the chip.  We communicate with this PHY
1497  * through the MDIO bus on each controller, treating it as a
1498  * "normal" PHY at the address found in the TBIPA register.  We assume
1499  * that the TBIPA register is valid.  Either the MDIO bus code will set
1500  * it to a value that doesn't conflict with other PHYs on the bus, or the
1501  * value doesn't matter, as there are no other PHYs on the bus.
1502  */
1503 static void gfar_configure_serdes(struct net_device *dev)
1504 {
1505         struct gfar_private *priv = netdev_priv(dev);
1506         struct phy_device *tbiphy;
1507
1508         if (!priv->tbi_node) {
1509                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1510                                     "device tree specify a tbi-handle\n");
1511                 return;
1512         }
1513
1514         tbiphy = of_phy_find_device(priv->tbi_node);
1515         if (!tbiphy) {
1516                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1517                 return;
1518         }
1519
1520         /* If the link is already up, we must already be ok, and don't need to
1521          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1522          * everything for us?  Resetting it takes the link down and requires
1523          * several seconds for it to come back.
1524          */
1525         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1526                 return;
1527
1528         /* Single clk mode, mii mode off(for serdes communication) */
1529         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1530
1531         phy_write(tbiphy, MII_ADVERTISE,
1532                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1533                   ADVERTISE_1000XPSE_ASYM);
1534
1535         phy_write(tbiphy, MII_BMCR,
1536                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1537                   BMCR_SPEED1000);
1538 }
1539
1540 static void init_registers(struct net_device *dev)
1541 {
1542         struct gfar_private *priv = netdev_priv(dev);
1543         struct gfar __iomem *regs = NULL;
1544         int i;
1545
1546         for (i = 0; i < priv->num_grps; i++) {
1547                 regs = priv->gfargrp[i].regs;
1548                 /* Clear IEVENT */
1549                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1550
1551                 /* Initialize IMASK */
1552                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1553         }
1554
1555         regs = priv->gfargrp[0].regs;
1556         /* Init hash registers to zero */
1557         gfar_write(&regs->igaddr0, 0);
1558         gfar_write(&regs->igaddr1, 0);
1559         gfar_write(&regs->igaddr2, 0);
1560         gfar_write(&regs->igaddr3, 0);
1561         gfar_write(&regs->igaddr4, 0);
1562         gfar_write(&regs->igaddr5, 0);
1563         gfar_write(&regs->igaddr6, 0);
1564         gfar_write(&regs->igaddr7, 0);
1565
1566         gfar_write(&regs->gaddr0, 0);
1567         gfar_write(&regs->gaddr1, 0);
1568         gfar_write(&regs->gaddr2, 0);
1569         gfar_write(&regs->gaddr3, 0);
1570         gfar_write(&regs->gaddr4, 0);
1571         gfar_write(&regs->gaddr5, 0);
1572         gfar_write(&regs->gaddr6, 0);
1573         gfar_write(&regs->gaddr7, 0);
1574
1575         /* Zero out the rmon mib registers if it has them */
1576         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1577                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1578
1579                 /* Mask off the CAM interrupts */
1580                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1581                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1582         }
1583
1584         /* Initialize the max receive buffer length */
1585         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1586
1587         /* Initialize the Minimum Frame Length Register */
1588         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1589 }
1590
1591 static int __gfar_is_rx_idle(struct gfar_private *priv)
1592 {
1593         u32 res;
1594
1595         /* Normaly TSEC should not hang on GRS commands, so we should
1596          * actually wait for IEVENT_GRSC flag.
1597          */
1598         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1599                 return 0;
1600
1601         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1602          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1603          * and the Rx can be safely reset.
1604          */
1605         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1606         res &= 0x7f807f80;
1607         if ((res & 0xffff) == (res >> 16))
1608                 return 1;
1609
1610         return 0;
1611 }
1612
1613 /* Halt the receive and transmit queues */
1614 static void gfar_halt_nodisable(struct net_device *dev)
1615 {
1616         struct gfar_private *priv = netdev_priv(dev);
1617         struct gfar __iomem *regs = NULL;
1618         u32 tempval;
1619         int i;
1620
1621         for (i = 0; i < priv->num_grps; i++) {
1622                 regs = priv->gfargrp[i].regs;
1623                 /* Mask all interrupts */
1624                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1625
1626                 /* Clear all interrupts */
1627                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1628         }
1629
1630         regs = priv->gfargrp[0].regs;
1631         /* Stop the DMA, and wait for it to stop */
1632         tempval = gfar_read(&regs->dmactrl);
1633         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1634             (DMACTRL_GRS | DMACTRL_GTS)) {
1635                 int ret;
1636
1637                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1638                 gfar_write(&regs->dmactrl, tempval);
1639
1640                 do {
1641                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1642                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1643                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1644                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1645                                 ret = __gfar_is_rx_idle(priv);
1646                 } while (!ret);
1647         }
1648 }
1649
1650 /* Halt the receive and transmit queues */
1651 void gfar_halt(struct net_device *dev)
1652 {
1653         struct gfar_private *priv = netdev_priv(dev);
1654         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1655         u32 tempval;
1656
1657         gfar_halt_nodisable(dev);
1658
1659         /* Disable Rx and Tx */
1660         tempval = gfar_read(&regs->maccfg1);
1661         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1662         gfar_write(&regs->maccfg1, tempval);
1663 }
1664
1665 static void free_grp_irqs(struct gfar_priv_grp *grp)
1666 {
1667         free_irq(gfar_irq(grp, TX)->irq, grp);
1668         free_irq(gfar_irq(grp, RX)->irq, grp);
1669         free_irq(gfar_irq(grp, ER)->irq, grp);
1670 }
1671
1672 void stop_gfar(struct net_device *dev)
1673 {
1674         struct gfar_private *priv = netdev_priv(dev);
1675         unsigned long flags;
1676         int i;
1677
1678         phy_stop(priv->phydev);
1679
1680
1681         /* Lock it down */
1682         local_irq_save(flags);
1683         lock_tx_qs(priv);
1684         lock_rx_qs(priv);
1685
1686         gfar_halt(dev);
1687
1688         unlock_rx_qs(priv);
1689         unlock_tx_qs(priv);
1690         local_irq_restore(flags);
1691
1692         /* Free the IRQs */
1693         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1694                 for (i = 0; i < priv->num_grps; i++)
1695                         free_grp_irqs(&priv->gfargrp[i]);
1696         } else {
1697                 for (i = 0; i < priv->num_grps; i++)
1698                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1699                                  &priv->gfargrp[i]);
1700         }
1701
1702         free_skb_resources(priv);
1703 }
1704
1705 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1706 {
1707         struct txbd8 *txbdp;
1708         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1709         int i, j;
1710
1711         txbdp = tx_queue->tx_bd_base;
1712
1713         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1714                 if (!tx_queue->tx_skbuff[i])
1715                         continue;
1716
1717                 dma_unmap_single(priv->dev, txbdp->bufPtr,
1718                                  txbdp->length, DMA_TO_DEVICE);
1719                 txbdp->lstatus = 0;
1720                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1721                      j++) {
1722                         txbdp++;
1723                         dma_unmap_page(priv->dev, txbdp->bufPtr,
1724                                        txbdp->length, DMA_TO_DEVICE);
1725                 }
1726                 txbdp++;
1727                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1728                 tx_queue->tx_skbuff[i] = NULL;
1729         }
1730         kfree(tx_queue->tx_skbuff);
1731         tx_queue->tx_skbuff = NULL;
1732 }
1733
1734 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1735 {
1736         struct rxbd8 *rxbdp;
1737         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1738         int i;
1739
1740         rxbdp = rx_queue->rx_bd_base;
1741
1742         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1743                 if (rx_queue->rx_skbuff[i]) {
1744                         dma_unmap_single(priv->dev, rxbdp->bufPtr,
1745                                          priv->rx_buffer_size,
1746                                          DMA_FROM_DEVICE);
1747                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1748                         rx_queue->rx_skbuff[i] = NULL;
1749                 }
1750                 rxbdp->lstatus = 0;
1751                 rxbdp->bufPtr = 0;
1752                 rxbdp++;
1753         }
1754         kfree(rx_queue->rx_skbuff);
1755         rx_queue->rx_skbuff = NULL;
1756 }
1757
1758 /* If there are any tx skbs or rx skbs still around, free them.
1759  * Then free tx_skbuff and rx_skbuff
1760  */
1761 static void free_skb_resources(struct gfar_private *priv)
1762 {
1763         struct gfar_priv_tx_q *tx_queue = NULL;
1764         struct gfar_priv_rx_q *rx_queue = NULL;
1765         int i;
1766
1767         /* Go through all the buffer descriptors and free their data buffers */
1768         for (i = 0; i < priv->num_tx_queues; i++) {
1769                 struct netdev_queue *txq;
1770
1771                 tx_queue = priv->tx_queue[i];
1772                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1773                 if (tx_queue->tx_skbuff)
1774                         free_skb_tx_queue(tx_queue);
1775                 netdev_tx_reset_queue(txq);
1776         }
1777
1778         for (i = 0; i < priv->num_rx_queues; i++) {
1779                 rx_queue = priv->rx_queue[i];
1780                 if (rx_queue->rx_skbuff)
1781                         free_skb_rx_queue(rx_queue);
1782         }
1783
1784         dma_free_coherent(priv->dev,
1785                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1786                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1787                           priv->tx_queue[0]->tx_bd_base,
1788                           priv->tx_queue[0]->tx_bd_dma_base);
1789 }
1790
1791 void gfar_start(struct net_device *dev)
1792 {
1793         struct gfar_private *priv = netdev_priv(dev);
1794         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1795         u32 tempval;
1796         int i = 0;
1797
1798         /* Enable Rx and Tx in MACCFG1 */
1799         tempval = gfar_read(&regs->maccfg1);
1800         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1801         gfar_write(&regs->maccfg1, tempval);
1802
1803         /* Initialize DMACTRL to have WWR and WOP */
1804         tempval = gfar_read(&regs->dmactrl);
1805         tempval |= DMACTRL_INIT_SETTINGS;
1806         gfar_write(&regs->dmactrl, tempval);
1807
1808         /* Make sure we aren't stopped */
1809         tempval = gfar_read(&regs->dmactrl);
1810         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1811         gfar_write(&regs->dmactrl, tempval);
1812
1813         for (i = 0; i < priv->num_grps; i++) {
1814                 regs = priv->gfargrp[i].regs;
1815                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1816                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1817                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1818                 /* Unmask the interrupts we look for */
1819                 gfar_write(&regs->imask, IMASK_DEFAULT);
1820         }
1821
1822         dev->trans_start = jiffies; /* prevent tx timeout */
1823 }
1824
1825 void gfar_configure_coalescing(struct gfar_private *priv,
1826                                unsigned long tx_mask, unsigned long rx_mask)
1827 {
1828         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1829         u32 __iomem *baddr;
1830         int i = 0;
1831
1832         /* Backward compatible case ---- even if we enable
1833          * multiple queues, there's only single reg to program
1834          */
1835         gfar_write(&regs->txic, 0);
1836         if (likely(priv->tx_queue[0]->txcoalescing))
1837                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1838
1839         gfar_write(&regs->rxic, 0);
1840         if (unlikely(priv->rx_queue[0]->rxcoalescing))
1841                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1842
1843         if (priv->mode == MQ_MG_MODE) {
1844                 baddr = &regs->txic0;
1845                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1846                         gfar_write(baddr + i, 0);
1847                         if (likely(priv->tx_queue[i]->txcoalescing))
1848                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1849                 }
1850
1851                 baddr = &regs->rxic0;
1852                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1853                         gfar_write(baddr + i, 0);
1854                         if (likely(priv->rx_queue[i]->rxcoalescing))
1855                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1856                 }
1857         }
1858 }
1859
1860 static int register_grp_irqs(struct gfar_priv_grp *grp)
1861 {
1862         struct gfar_private *priv = grp->priv;
1863         struct net_device *dev = priv->ndev;
1864         int err;
1865
1866         /* If the device has multiple interrupts, register for
1867          * them.  Otherwise, only register for the one
1868          */
1869         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1870                 /* Install our interrupt handlers for Error,
1871                  * Transmit, and Receive
1872                  */
1873                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1874                                   gfar_irq(grp, ER)->name, grp);
1875                 if (err < 0) {
1876                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1877                                   gfar_irq(grp, ER)->irq);
1878
1879                         goto err_irq_fail;
1880                 }
1881                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1882                                   gfar_irq(grp, TX)->name, grp);
1883                 if (err < 0) {
1884                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1885                                   gfar_irq(grp, TX)->irq);
1886                         goto tx_irq_fail;
1887                 }
1888                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1889                                   gfar_irq(grp, RX)->name, grp);
1890                 if (err < 0) {
1891                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1892                                   gfar_irq(grp, RX)->irq);
1893                         goto rx_irq_fail;
1894                 }
1895         } else {
1896                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1897                                   gfar_irq(grp, TX)->name, grp);
1898                 if (err < 0) {
1899                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1900                                   gfar_irq(grp, TX)->irq);
1901                         goto err_irq_fail;
1902                 }
1903         }
1904
1905         return 0;
1906
1907 rx_irq_fail:
1908         free_irq(gfar_irq(grp, TX)->irq, grp);
1909 tx_irq_fail:
1910         free_irq(gfar_irq(grp, ER)->irq, grp);
1911 err_irq_fail:
1912         return err;
1913
1914 }
1915
1916 /* Bring the controller up and running */
1917 int startup_gfar(struct net_device *ndev)
1918 {
1919         struct gfar_private *priv = netdev_priv(ndev);
1920         struct gfar __iomem *regs = NULL;
1921         int err, i, j;
1922
1923         for (i = 0; i < priv->num_grps; i++) {
1924                 regs= priv->gfargrp[i].regs;
1925                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1926         }
1927
1928         regs= priv->gfargrp[0].regs;
1929         err = gfar_alloc_skb_resources(ndev);
1930         if (err)
1931                 return err;
1932
1933         gfar_init_mac(ndev);
1934
1935         for (i = 0; i < priv->num_grps; i++) {
1936                 err = register_grp_irqs(&priv->gfargrp[i]);
1937                 if (err) {
1938                         for (j = 0; j < i; j++)
1939                                 free_grp_irqs(&priv->gfargrp[j]);
1940                         goto irq_fail;
1941                 }
1942         }
1943
1944         /* Start the controller */
1945         gfar_start(ndev);
1946
1947         phy_start(priv->phydev);
1948
1949         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1950
1951         return 0;
1952
1953 irq_fail:
1954         free_skb_resources(priv);
1955         return err;
1956 }
1957
1958 /* Called when something needs to use the ethernet device
1959  * Returns 0 for success.
1960  */
1961 static int gfar_enet_open(struct net_device *dev)
1962 {
1963         struct gfar_private *priv = netdev_priv(dev);
1964         int err;
1965
1966         enable_napi(priv);
1967
1968         /* Initialize a bunch of registers */
1969         init_registers(dev);
1970
1971         gfar_set_mac_address(dev);
1972
1973         err = init_phy(dev);
1974
1975         if (err) {
1976                 disable_napi(priv);
1977                 return err;
1978         }
1979
1980         err = startup_gfar(dev);
1981         if (err) {
1982                 disable_napi(priv);
1983                 return err;
1984         }
1985
1986         netif_tx_start_all_queues(dev);
1987
1988         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1989
1990         return err;
1991 }
1992
1993 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1994 {
1995         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1996
1997         memset(fcb, 0, GMAC_FCB_LEN);
1998
1999         return fcb;
2000 }
2001
2002 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2003                                     int fcb_length)
2004 {
2005         /* If we're here, it's a IP packet with a TCP or UDP
2006          * payload.  We set it to checksum, using a pseudo-header
2007          * we provide
2008          */
2009         u8 flags = TXFCB_DEFAULT;
2010
2011         /* Tell the controller what the protocol is
2012          * And provide the already calculated phcs
2013          */
2014         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2015                 flags |= TXFCB_UDP;
2016                 fcb->phcs = udp_hdr(skb)->check;
2017         } else
2018                 fcb->phcs = tcp_hdr(skb)->check;
2019
2020         /* l3os is the distance between the start of the
2021          * frame (skb->data) and the start of the IP hdr.
2022          * l4os is the distance between the start of the
2023          * l3 hdr and the l4 hdr
2024          */
2025         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2026         fcb->l4os = skb_network_header_len(skb);
2027
2028         fcb->flags = flags;
2029 }
2030
2031 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2032 {
2033         fcb->flags |= TXFCB_VLN;
2034         fcb->vlctl = vlan_tx_tag_get(skb);
2035 }
2036
2037 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2038                                       struct txbd8 *base, int ring_size)
2039 {
2040         struct txbd8 *new_bd = bdp + stride;
2041
2042         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2043 }
2044
2045 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2046                                       int ring_size)
2047 {
2048         return skip_txbd(bdp, 1, base, ring_size);
2049 }
2050
2051 /* This is called by the kernel when a frame is ready for transmission.
2052  * It is pointed to by the dev->hard_start_xmit function pointer
2053  */
2054 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2055 {
2056         struct gfar_private *priv = netdev_priv(dev);
2057         struct gfar_priv_tx_q *tx_queue = NULL;
2058         struct netdev_queue *txq;
2059         struct gfar __iomem *regs = NULL;
2060         struct txfcb *fcb = NULL;
2061         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2062         u32 lstatus;
2063         int i, rq = 0, do_tstamp = 0;
2064         u32 bufaddr;
2065         unsigned long flags;
2066         unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2067
2068         /* TOE=1 frames larger than 2500 bytes may see excess delays
2069          * before start of transmission.
2070          */
2071         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2072                      skb->ip_summed == CHECKSUM_PARTIAL &&
2073                      skb->len > 2500)) {
2074                 int ret;
2075
2076                 ret = skb_checksum_help(skb);
2077                 if (ret)
2078                         return ret;
2079         }
2080
2081         rq = skb->queue_mapping;
2082         tx_queue = priv->tx_queue[rq];
2083         txq = netdev_get_tx_queue(dev, rq);
2084         base = tx_queue->tx_bd_base;
2085         regs = tx_queue->grp->regs;
2086
2087         /* check if time stamp should be generated */
2088         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2089                      priv->hwts_tx_en)) {
2090                 do_tstamp = 1;
2091                 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2092         }
2093
2094         /* make space for additional header when fcb is needed */
2095         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2096              vlan_tx_tag_present(skb) ||
2097              unlikely(do_tstamp)) &&
2098             (skb_headroom(skb) < fcb_length)) {
2099                 struct sk_buff *skb_new;
2100
2101                 skb_new = skb_realloc_headroom(skb, fcb_length);
2102                 if (!skb_new) {
2103                         dev->stats.tx_errors++;
2104                         kfree_skb(skb);
2105                         return NETDEV_TX_OK;
2106                 }
2107
2108                 if (skb->sk)
2109                         skb_set_owner_w(skb_new, skb->sk);
2110                 consume_skb(skb);
2111                 skb = skb_new;
2112         }
2113
2114         /* total number of fragments in the SKB */
2115         nr_frags = skb_shinfo(skb)->nr_frags;
2116
2117         /* calculate the required number of TxBDs for this skb */
2118         if (unlikely(do_tstamp))
2119                 nr_txbds = nr_frags + 2;
2120         else
2121                 nr_txbds = nr_frags + 1;
2122
2123         /* check if there is space to queue this packet */
2124         if (nr_txbds > tx_queue->num_txbdfree) {
2125                 /* no space, stop the queue */
2126                 netif_tx_stop_queue(txq);
2127                 dev->stats.tx_fifo_errors++;
2128                 return NETDEV_TX_BUSY;
2129         }
2130
2131         /* Update transmit stats */
2132         tx_queue->stats.tx_bytes += skb->len;
2133         tx_queue->stats.tx_packets++;
2134
2135         txbdp = txbdp_start = tx_queue->cur_tx;
2136         lstatus = txbdp->lstatus;
2137
2138         /* Time stamp insertion requires one additional TxBD */
2139         if (unlikely(do_tstamp))
2140                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2141                                                  tx_queue->tx_ring_size);
2142
2143         if (nr_frags == 0) {
2144                 if (unlikely(do_tstamp))
2145                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2146                                                           TXBD_INTERRUPT);
2147                 else
2148                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2149         } else {
2150                 /* Place the fragment addresses and lengths into the TxBDs */
2151                 for (i = 0; i < nr_frags; i++) {
2152                         /* Point at the next BD, wrapping as needed */
2153                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2154
2155                         length = skb_shinfo(skb)->frags[i].size;
2156
2157                         lstatus = txbdp->lstatus | length |
2158                                   BD_LFLAG(TXBD_READY);
2159
2160                         /* Handle the last BD specially */
2161                         if (i == nr_frags - 1)
2162                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2163
2164                         bufaddr = skb_frag_dma_map(priv->dev,
2165                                                    &skb_shinfo(skb)->frags[i],
2166                                                    0,
2167                                                    length,
2168                                                    DMA_TO_DEVICE);
2169
2170                         /* set the TxBD length and buffer pointer */
2171                         txbdp->bufPtr = bufaddr;
2172                         txbdp->lstatus = lstatus;
2173                 }
2174
2175                 lstatus = txbdp_start->lstatus;
2176         }
2177
2178         /* Add TxPAL between FCB and frame if required */
2179         if (unlikely(do_tstamp)) {
2180                 skb_push(skb, GMAC_TXPAL_LEN);
2181                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2182         }
2183
2184         /* Set up checksumming */
2185         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2186                 fcb = gfar_add_fcb(skb);
2187                 /* as specified by errata */
2188                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2189                              ((unsigned long)fcb % 0x20) > 0x18)) {
2190                         __skb_pull(skb, GMAC_FCB_LEN);
2191                         skb_checksum_help(skb);
2192                 } else {
2193                         lstatus |= BD_LFLAG(TXBD_TOE);
2194                         gfar_tx_checksum(skb, fcb, fcb_length);
2195                 }
2196         }
2197
2198         if (vlan_tx_tag_present(skb)) {
2199                 if (unlikely(NULL == fcb)) {
2200                         fcb = gfar_add_fcb(skb);
2201                         lstatus |= BD_LFLAG(TXBD_TOE);
2202                 }
2203
2204                 gfar_tx_vlan(skb, fcb);
2205         }
2206
2207         /* Setup tx hardware time stamping if requested */
2208         if (unlikely(do_tstamp)) {
2209                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2210                 if (fcb == NULL)
2211                         fcb = gfar_add_fcb(skb);
2212                 fcb->ptp = 1;
2213                 lstatus |= BD_LFLAG(TXBD_TOE);
2214         }
2215
2216         txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2217                                              skb_headlen(skb), DMA_TO_DEVICE);
2218
2219         /* If time stamping is requested one additional TxBD must be set up. The
2220          * first TxBD points to the FCB and must have a data length of
2221          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2222          * the full frame length.
2223          */
2224         if (unlikely(do_tstamp)) {
2225                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2226                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2227                                          (skb_headlen(skb) - fcb_length);
2228                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2229         } else {
2230                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2231         }
2232
2233         netdev_tx_sent_queue(txq, skb->len);
2234
2235         /* We can work in parallel with gfar_clean_tx_ring(), except
2236          * when modifying num_txbdfree. Note that we didn't grab the lock
2237          * when we were reading the num_txbdfree and checking for available
2238          * space, that's because outside of this function it can only grow,
2239          * and once we've got needed space, it cannot suddenly disappear.
2240          *
2241          * The lock also protects us from gfar_error(), which can modify
2242          * regs->tstat and thus retrigger the transfers, which is why we
2243          * also must grab the lock before setting ready bit for the first
2244          * to be transmitted BD.
2245          */
2246         spin_lock_irqsave(&tx_queue->txlock, flags);
2247
2248         /* The powerpc-specific eieio() is used, as wmb() has too strong
2249          * semantics (it requires synchronization between cacheable and
2250          * uncacheable mappings, which eieio doesn't provide and which we
2251          * don't need), thus requiring a more expensive sync instruction.  At
2252          * some point, the set of architecture-independent barrier functions
2253          * should be expanded to include weaker barriers.
2254          */
2255         eieio();
2256
2257         txbdp_start->lstatus = lstatus;
2258
2259         eieio(); /* force lstatus write before tx_skbuff */
2260
2261         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2262
2263         /* Update the current skb pointer to the next entry we will use
2264          * (wrapping if necessary)
2265          */
2266         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2267                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2268
2269         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2270
2271         /* reduce TxBD free count */
2272         tx_queue->num_txbdfree -= (nr_txbds);
2273
2274         /* If the next BD still needs to be cleaned up, then the bds
2275          * are full.  We need to tell the kernel to stop sending us stuff.
2276          */
2277         if (!tx_queue->num_txbdfree) {
2278                 netif_tx_stop_queue(txq);
2279
2280                 dev->stats.tx_fifo_errors++;
2281         }
2282
2283         /* Tell the DMA to go go go */
2284         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2285
2286         /* Unlock priv */
2287         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2288
2289         return NETDEV_TX_OK;
2290 }
2291
2292 /* Stops the kernel queue, and halts the controller */
2293 static int gfar_close(struct net_device *dev)
2294 {
2295         struct gfar_private *priv = netdev_priv(dev);
2296
2297         disable_napi(priv);
2298
2299         cancel_work_sync(&priv->reset_task);
2300         stop_gfar(dev);
2301
2302         /* Disconnect from the PHY */
2303         phy_disconnect(priv->phydev);
2304         priv->phydev = NULL;
2305
2306         netif_tx_stop_all_queues(dev);
2307
2308         return 0;
2309 }
2310
2311 /* Changes the mac address if the controller is not running. */
2312 static int gfar_set_mac_address(struct net_device *dev)
2313 {
2314         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2315
2316         return 0;
2317 }
2318
2319 /* Check if rx parser should be activated */
2320 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2321 {
2322         struct gfar __iomem *regs;
2323         u32 tempval;
2324
2325         regs = priv->gfargrp[0].regs;
2326
2327         tempval = gfar_read(&regs->rctrl);
2328         /* If parse is no longer required, then disable parser */
2329         if (tempval & RCTRL_REQ_PARSER)
2330                 tempval |= RCTRL_PRSDEP_INIT;
2331         else
2332                 tempval &= ~RCTRL_PRSDEP_INIT;
2333         gfar_write(&regs->rctrl, tempval);
2334 }
2335
2336 /* Enables and disables VLAN insertion/extraction */
2337 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2338 {
2339         struct gfar_private *priv = netdev_priv(dev);
2340         struct gfar __iomem *regs = NULL;
2341         unsigned long flags;
2342         u32 tempval;
2343
2344         regs = priv->gfargrp[0].regs;
2345         local_irq_save(flags);
2346         lock_rx_qs(priv);
2347
2348         if (features & NETIF_F_HW_VLAN_TX) {
2349                 /* Enable VLAN tag insertion */
2350                 tempval = gfar_read(&regs->tctrl);
2351                 tempval |= TCTRL_VLINS;
2352                 gfar_write(&regs->tctrl, tempval);
2353         } else {
2354                 /* Disable VLAN tag insertion */
2355                 tempval = gfar_read(&regs->tctrl);
2356                 tempval &= ~TCTRL_VLINS;
2357                 gfar_write(&regs->tctrl, tempval);
2358         }
2359
2360         if (features & NETIF_F_HW_VLAN_RX) {
2361                 /* Enable VLAN tag extraction */
2362                 tempval = gfar_read(&regs->rctrl);
2363                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2364                 gfar_write(&regs->rctrl, tempval);
2365         } else {
2366                 /* Disable VLAN tag extraction */
2367                 tempval = gfar_read(&regs->rctrl);
2368                 tempval &= ~RCTRL_VLEX;
2369                 gfar_write(&regs->rctrl, tempval);
2370
2371                 gfar_check_rx_parser_mode(priv);
2372         }
2373
2374         gfar_change_mtu(dev, dev->mtu);
2375
2376         unlock_rx_qs(priv);
2377         local_irq_restore(flags);
2378 }
2379
2380 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2381 {
2382         int tempsize, tempval;
2383         struct gfar_private *priv = netdev_priv(dev);
2384         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2385         int oldsize = priv->rx_buffer_size;
2386         int frame_size = new_mtu + ETH_HLEN;
2387
2388         if (gfar_is_vlan_on(priv))
2389                 frame_size += VLAN_HLEN;
2390
2391         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2392                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2393                 return -EINVAL;
2394         }
2395
2396         if (gfar_uses_fcb(priv))
2397                 frame_size += GMAC_FCB_LEN;
2398
2399         frame_size += priv->padding;
2400
2401         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2402                    INCREMENTAL_BUFFER_SIZE;
2403
2404         /* Only stop and start the controller if it isn't already
2405          * stopped, and we changed something
2406          */
2407         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2408                 stop_gfar(dev);
2409
2410         priv->rx_buffer_size = tempsize;
2411
2412         dev->mtu = new_mtu;
2413
2414         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2415         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2416
2417         /* If the mtu is larger than the max size for standard
2418          * ethernet frames (ie, a jumbo frame), then set maccfg2
2419          * to allow huge frames, and to check the length
2420          */
2421         tempval = gfar_read(&regs->maccfg2);
2422
2423         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2424             gfar_has_errata(priv, GFAR_ERRATA_74))
2425                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2426         else
2427                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2428
2429         gfar_write(&regs->maccfg2, tempval);
2430
2431         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2432                 startup_gfar(dev);
2433
2434         return 0;
2435 }
2436
2437 /* gfar_reset_task gets scheduled when a packet has not been
2438  * transmitted after a set amount of time.
2439  * For now, assume that clearing out all the structures, and
2440  * starting over will fix the problem.
2441  */
2442 static void gfar_reset_task(struct work_struct *work)
2443 {
2444         struct gfar_private *priv = container_of(work, struct gfar_private,
2445                                                  reset_task);
2446         struct net_device *dev = priv->ndev;
2447
2448         if (dev->flags & IFF_UP) {
2449                 netif_tx_stop_all_queues(dev);
2450                 stop_gfar(dev);
2451                 startup_gfar(dev);
2452                 netif_tx_start_all_queues(dev);
2453         }
2454
2455         netif_tx_schedule_all(dev);
2456 }
2457
2458 static void gfar_timeout(struct net_device *dev)
2459 {
2460         struct gfar_private *priv = netdev_priv(dev);
2461
2462         dev->stats.tx_errors++;
2463         schedule_work(&priv->reset_task);
2464 }
2465
2466 static void gfar_align_skb(struct sk_buff *skb)
2467 {
2468         /* We need the data buffer to be aligned properly.  We will reserve
2469          * as many bytes as needed to align the data properly
2470          */
2471         skb_reserve(skb, RXBUF_ALIGNMENT -
2472                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2473 }
2474
2475 /* Interrupt Handler for Transmit complete */
2476 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2477 {
2478         struct net_device *dev = tx_queue->dev;
2479         struct netdev_queue *txq;
2480         struct gfar_private *priv = netdev_priv(dev);
2481         struct gfar_priv_rx_q *rx_queue = NULL;
2482         struct txbd8 *bdp, *next = NULL;
2483         struct txbd8 *lbdp = NULL;
2484         struct txbd8 *base = tx_queue->tx_bd_base;
2485         struct sk_buff *skb;
2486         int skb_dirtytx;
2487         int tx_ring_size = tx_queue->tx_ring_size;
2488         int frags = 0, nr_txbds = 0;
2489         int i;
2490         int howmany = 0;
2491         int tqi = tx_queue->qindex;
2492         unsigned int bytes_sent = 0;
2493         u32 lstatus;
2494         size_t buflen;
2495
2496         rx_queue = priv->rx_queue[tqi];
2497         txq = netdev_get_tx_queue(dev, tqi);
2498         bdp = tx_queue->dirty_tx;
2499         skb_dirtytx = tx_queue->skb_dirtytx;
2500
2501         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2502                 unsigned long flags;
2503
2504                 frags = skb_shinfo(skb)->nr_frags;
2505
2506                 /* When time stamping, one additional TxBD must be freed.
2507                  * Also, we need to dma_unmap_single() the TxPAL.
2508                  */
2509                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2510                         nr_txbds = frags + 2;
2511                 else
2512                         nr_txbds = frags + 1;
2513
2514                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2515
2516                 lstatus = lbdp->lstatus;
2517
2518                 /* Only clean completed frames */
2519                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2520                     (lstatus & BD_LENGTH_MASK))
2521                         break;
2522
2523                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2524                         next = next_txbd(bdp, base, tx_ring_size);
2525                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2526                 } else
2527                         buflen = bdp->length;
2528
2529                 dma_unmap_single(priv->dev, bdp->bufPtr,
2530                                  buflen, DMA_TO_DEVICE);
2531
2532                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2533                         struct skb_shared_hwtstamps shhwtstamps;
2534                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2535
2536                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2537                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2538                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2539                         skb_tstamp_tx(skb, &shhwtstamps);
2540                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2541                         bdp = next;
2542                 }
2543
2544                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2545                 bdp = next_txbd(bdp, base, tx_ring_size);
2546
2547                 for (i = 0; i < frags; i++) {
2548                         dma_unmap_page(priv->dev, bdp->bufPtr,
2549                                        bdp->length, DMA_TO_DEVICE);
2550                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2551                         bdp = next_txbd(bdp, base, tx_ring_size);
2552                 }
2553
2554                 bytes_sent += skb->len;
2555
2556                 dev_kfree_skb_any(skb);
2557
2558                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2559
2560                 skb_dirtytx = (skb_dirtytx + 1) &
2561                               TX_RING_MOD_MASK(tx_ring_size);
2562
2563                 howmany++;
2564                 spin_lock_irqsave(&tx_queue->txlock, flags);
2565                 tx_queue->num_txbdfree += nr_txbds;
2566                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2567         }
2568
2569         /* If we freed a buffer, we can restart transmission, if necessary */
2570         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2571                 netif_wake_subqueue(dev, tqi);
2572
2573         /* Update dirty indicators */
2574         tx_queue->skb_dirtytx = skb_dirtytx;
2575         tx_queue->dirty_tx = bdp;
2576
2577         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2578
2579         return howmany;
2580 }
2581
2582 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2583 {
2584         unsigned long flags;
2585
2586         spin_lock_irqsave(&gfargrp->grplock, flags);
2587         if (napi_schedule_prep(&gfargrp->napi)) {
2588                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2589                 __napi_schedule(&gfargrp->napi);
2590         } else {
2591                 /* Clear IEVENT, so interrupts aren't called again
2592                  * because of the packets that have already arrived.
2593                  */
2594                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2595         }
2596         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2597
2598 }
2599
2600 /* Interrupt Handler for Transmit complete */
2601 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2602 {
2603         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2604         return IRQ_HANDLED;
2605 }
2606
2607 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2608                            struct sk_buff *skb)
2609 {
2610         struct net_device *dev = rx_queue->dev;
2611         struct gfar_private *priv = netdev_priv(dev);
2612         dma_addr_t buf;
2613
2614         buf = dma_map_single(priv->dev, skb->data,
2615                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2616         gfar_init_rxbdp(rx_queue, bdp, buf);
2617 }
2618
2619 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2620 {
2621         struct gfar_private *priv = netdev_priv(dev);
2622         struct sk_buff *skb;
2623
2624         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2625         if (!skb)
2626                 return NULL;
2627
2628         gfar_align_skb(skb);
2629
2630         return skb;
2631 }
2632
2633 struct sk_buff *gfar_new_skb(struct net_device *dev)
2634 {
2635         return gfar_alloc_skb(dev);
2636 }
2637
2638 static inline void count_errors(unsigned short status, struct net_device *dev)
2639 {
2640         struct gfar_private *priv = netdev_priv(dev);
2641         struct net_device_stats *stats = &dev->stats;
2642         struct gfar_extra_stats *estats = &priv->extra_stats;
2643
2644         /* If the packet was truncated, none of the other errors matter */
2645         if (status & RXBD_TRUNCATED) {
2646                 stats->rx_length_errors++;
2647
2648                 atomic64_inc(&estats->rx_trunc);
2649
2650                 return;
2651         }
2652         /* Count the errors, if there were any */
2653         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2654                 stats->rx_length_errors++;
2655
2656                 if (status & RXBD_LARGE)
2657                         atomic64_inc(&estats->rx_large);
2658                 else
2659                         atomic64_inc(&estats->rx_short);
2660         }
2661         if (status & RXBD_NONOCTET) {
2662                 stats->rx_frame_errors++;
2663                 atomic64_inc(&estats->rx_nonoctet);
2664         }
2665         if (status & RXBD_CRCERR) {
2666                 atomic64_inc(&estats->rx_crcerr);
2667                 stats->rx_crc_errors++;
2668         }
2669         if (status & RXBD_OVERRUN) {
2670                 atomic64_inc(&estats->rx_overrun);
2671                 stats->rx_crc_errors++;
2672         }
2673 }
2674
2675 irqreturn_t gfar_receive(int irq, void *grp_id)
2676 {
2677         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2678         return IRQ_HANDLED;
2679 }
2680
2681 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2682 {
2683         /* If valid headers were found, and valid sums
2684          * were verified, then we tell the kernel that no
2685          * checksumming is necessary.  Otherwise, it is [FIXME]
2686          */
2687         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2688                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2689         else
2690                 skb_checksum_none_assert(skb);
2691 }
2692
2693
2694 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2695 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2696                                int amount_pull, struct napi_struct *napi)
2697 {
2698         struct gfar_private *priv = netdev_priv(dev);
2699         struct rxfcb *fcb = NULL;
2700
2701         gro_result_t ret;
2702
2703         /* fcb is at the beginning if exists */
2704         fcb = (struct rxfcb *)skb->data;
2705
2706         /* Remove the FCB from the skb
2707          * Remove the padded bytes, if there are any
2708          */
2709         if (amount_pull) {
2710                 skb_record_rx_queue(skb, fcb->rq);
2711                 skb_pull(skb, amount_pull);
2712         }
2713
2714         /* Get receive timestamp from the skb */
2715         if (priv->hwts_rx_en) {
2716                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2717                 u64 *ns = (u64 *) skb->data;
2718
2719                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2720                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2721         }
2722
2723         if (priv->padding)
2724                 skb_pull(skb, priv->padding);
2725
2726         if (dev->features & NETIF_F_RXCSUM)
2727                 gfar_rx_checksum(skb, fcb);
2728
2729         /* Tell the skb what kind of packet this is */
2730         skb->protocol = eth_type_trans(skb, dev);
2731
2732         /* There's need to check for NETIF_F_HW_VLAN_RX here.
2733          * Even if vlan rx accel is disabled, on some chips
2734          * RXFCB_VLN is pseudo randomly set.
2735          */
2736         if (dev->features & NETIF_F_HW_VLAN_RX &&
2737             fcb->flags & RXFCB_VLN)
2738                 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2739
2740         /* Send the packet up the stack */
2741         ret = napi_gro_receive(napi, skb);
2742
2743         if (unlikely(GRO_DROP == ret))
2744                 atomic64_inc(&priv->extra_stats.kernel_dropped);
2745 }
2746
2747 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2748  * until the budget/quota has been reached. Returns the number
2749  * of frames handled
2750  */
2751 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2752 {
2753         struct net_device *dev = rx_queue->dev;
2754         struct rxbd8 *bdp, *base;
2755         struct sk_buff *skb;
2756         int pkt_len;
2757         int amount_pull;
2758         int howmany = 0;
2759         struct gfar_private *priv = netdev_priv(dev);
2760
2761         /* Get the first full descriptor */
2762         bdp = rx_queue->cur_rx;
2763         base = rx_queue->rx_bd_base;
2764
2765         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2766
2767         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2768                 struct sk_buff *newskb;
2769
2770                 rmb();
2771
2772                 /* Add another skb for the future */
2773                 newskb = gfar_new_skb(dev);
2774
2775                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2776
2777                 dma_unmap_single(priv->dev, bdp->bufPtr,
2778                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2779
2780                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2781                              bdp->length > priv->rx_buffer_size))
2782                         bdp->status = RXBD_LARGE;
2783
2784                 /* We drop the frame if we failed to allocate a new buffer */
2785                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2786                              bdp->status & RXBD_ERR)) {
2787                         count_errors(bdp->status, dev);
2788
2789                         if (unlikely(!newskb))
2790                                 newskb = skb;
2791                         else if (skb)
2792                                 dev_kfree_skb(skb);
2793                 } else {
2794                         /* Increment the number of packets */
2795                         rx_queue->stats.rx_packets++;
2796                         howmany++;
2797
2798                         if (likely(skb)) {
2799                                 pkt_len = bdp->length - ETH_FCS_LEN;
2800                                 /* Remove the FCS from the packet length */
2801                                 skb_put(skb, pkt_len);
2802                                 rx_queue->stats.rx_bytes += pkt_len;
2803                                 skb_record_rx_queue(skb, rx_queue->qindex);
2804                                 gfar_process_frame(dev, skb, amount_pull,
2805                                                    &rx_queue->grp->napi);
2806
2807                         } else {
2808                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2809                                 rx_queue->stats.rx_dropped++;
2810                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2811                         }
2812
2813                 }
2814
2815                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2816
2817                 /* Setup the new bdp */
2818                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2819
2820                 /* Update to the next pointer */
2821                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2822
2823                 /* update to point at the next skb */
2824                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2825                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2826         }
2827
2828         /* Update the current rxbd pointer to be the next one */
2829         rx_queue->cur_rx = bdp;
2830
2831         return howmany;
2832 }
2833
2834 static int gfar_poll(struct napi_struct *napi, int budget)
2835 {
2836         struct gfar_priv_grp *gfargrp =
2837                 container_of(napi, struct gfar_priv_grp, napi);
2838         struct gfar_private *priv = gfargrp->priv;
2839         struct gfar __iomem *regs = gfargrp->regs;
2840         struct gfar_priv_tx_q *tx_queue = NULL;
2841         struct gfar_priv_rx_q *rx_queue = NULL;
2842         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2843         int tx_cleaned = 0, i, left_over_budget = budget;
2844         unsigned long serviced_queues = 0;
2845         int num_queues = 0;
2846
2847         num_queues = gfargrp->num_rx_queues;
2848         budget_per_queue = budget/num_queues;
2849
2850         /* Clear IEVENT, so interrupts aren't called again
2851          * because of the packets that have already arrived
2852          */
2853         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2854
2855         while (num_queues && left_over_budget) {
2856                 budget_per_queue = left_over_budget/num_queues;
2857                 left_over_budget = 0;
2858
2859                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2860                         if (test_bit(i, &serviced_queues))
2861                                 continue;
2862                         rx_queue = priv->rx_queue[i];
2863                         tx_queue = priv->tx_queue[rx_queue->qindex];
2864
2865                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2866                         rx_cleaned_per_queue =
2867                                 gfar_clean_rx_ring(rx_queue, budget_per_queue);
2868                         rx_cleaned += rx_cleaned_per_queue;
2869                         if (rx_cleaned_per_queue < budget_per_queue) {
2870                                 left_over_budget = left_over_budget +
2871                                         (budget_per_queue -
2872                                          rx_cleaned_per_queue);
2873                                 set_bit(i, &serviced_queues);
2874                                 num_queues--;
2875                         }
2876                 }
2877         }
2878
2879         if (tx_cleaned)
2880                 return budget;
2881
2882         if (rx_cleaned < budget) {
2883                 napi_complete(napi);
2884
2885                 /* Clear the halt bit in RSTAT */
2886                 gfar_write(&regs->rstat, gfargrp->rstat);
2887
2888                 gfar_write(&regs->imask, IMASK_DEFAULT);
2889
2890                 /* If we are coalescing interrupts, update the timer
2891                  * Otherwise, clear it
2892                  */
2893                 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2894                                           gfargrp->tx_bit_map);
2895         }
2896
2897         return rx_cleaned;
2898 }
2899
2900 #ifdef CONFIG_NET_POLL_CONTROLLER
2901 /* Polling 'interrupt' - used by things like netconsole to send skbs
2902  * without having to re-enable interrupts. It's not called while
2903  * the interrupt routine is executing.
2904  */
2905 static void gfar_netpoll(struct net_device *dev)
2906 {
2907         struct gfar_private *priv = netdev_priv(dev);
2908         int i;
2909
2910         /* If the device has multiple interrupts, run tx/rx */
2911         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2912                 for (i = 0; i < priv->num_grps; i++) {
2913                         disable_irq(priv->gfargrp[i].interruptTransmit);
2914                         disable_irq(priv->gfargrp[i].interruptReceive);
2915                         disable_irq(priv->gfargrp[i].interruptError);
2916                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2917                                        &priv->gfargrp[i]);
2918                         enable_irq(priv->gfargrp[i].interruptError);
2919                         enable_irq(priv->gfargrp[i].interruptReceive);
2920                         enable_irq(priv->gfargrp[i].interruptTransmit);
2921                 }
2922         } else {
2923                 for (i = 0; i < priv->num_grps; i++) {
2924                         disable_irq(priv->gfargrp[i].interruptTransmit);
2925                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2926                                        &priv->gfargrp[i]);
2927                         enable_irq(priv->gfargrp[i].interruptTransmit);
2928                 }
2929         }
2930 }
2931 #endif
2932
2933 /* The interrupt handler for devices with one interrupt */
2934 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2935 {
2936         struct gfar_priv_grp *gfargrp = grp_id;
2937
2938         /* Save ievent for future reference */
2939         u32 events = gfar_read(&gfargrp->regs->ievent);
2940
2941         /* Check for reception */
2942         if (events & IEVENT_RX_MASK)
2943                 gfar_receive(irq, grp_id);
2944
2945         /* Check for transmit completion */
2946         if (events & IEVENT_TX_MASK)
2947                 gfar_transmit(irq, grp_id);
2948
2949         /* Check for errors */
2950         if (events & IEVENT_ERR_MASK)
2951                 gfar_error(irq, grp_id);
2952
2953         return IRQ_HANDLED;
2954 }
2955
2956 /* Called every time the controller might need to be made
2957  * aware of new link state.  The PHY code conveys this
2958  * information through variables in the phydev structure, and this
2959  * function converts those variables into the appropriate
2960  * register values, and can bring down the device if needed.
2961  */
2962 static void adjust_link(struct net_device *dev)
2963 {
2964         struct gfar_private *priv = netdev_priv(dev);
2965         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2966         unsigned long flags;
2967         struct phy_device *phydev = priv->phydev;
2968         int new_state = 0;
2969
2970         local_irq_save(flags);
2971         lock_tx_qs(priv);
2972
2973         if (phydev->link) {
2974                 u32 tempval = gfar_read(&regs->maccfg2);
2975                 u32 ecntrl = gfar_read(&regs->ecntrl);
2976
2977                 /* Now we make sure that we can be in full duplex mode.
2978                  * If not, we operate in half-duplex mode.
2979                  */
2980                 if (phydev->duplex != priv->oldduplex) {
2981                         new_state = 1;
2982                         if (!(phydev->duplex))
2983                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2984                         else
2985                                 tempval |= MACCFG2_FULL_DUPLEX;
2986
2987                         priv->oldduplex = phydev->duplex;
2988                 }
2989
2990                 if (phydev->speed != priv->oldspeed) {
2991                         new_state = 1;
2992                         switch (phydev->speed) {
2993                         case 1000:
2994                                 tempval =
2995                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2996
2997                                 ecntrl &= ~(ECNTRL_R100);
2998                                 break;
2999                         case 100:
3000                         case 10:
3001                                 tempval =
3002                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3003
3004                                 /* Reduced mode distinguishes
3005                                  * between 10 and 100
3006                                  */
3007                                 if (phydev->speed == SPEED_100)
3008                                         ecntrl |= ECNTRL_R100;
3009                                 else
3010                                         ecntrl &= ~(ECNTRL_R100);
3011                                 break;
3012                         default:
3013                                 netif_warn(priv, link, dev,
3014                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3015                                            phydev->speed);
3016                                 break;
3017                         }
3018
3019                         priv->oldspeed = phydev->speed;
3020                 }
3021
3022                 gfar_write(&regs->maccfg2, tempval);
3023                 gfar_write(&regs->ecntrl, ecntrl);
3024
3025                 if (!priv->oldlink) {
3026                         new_state = 1;
3027                         priv->oldlink = 1;
3028                 }
3029         } else if (priv->oldlink) {
3030                 new_state = 1;
3031                 priv->oldlink = 0;
3032                 priv->oldspeed = 0;
3033                 priv->oldduplex = -1;
3034         }
3035
3036         if (new_state && netif_msg_link(priv))
3037                 phy_print_status(phydev);
3038         unlock_tx_qs(priv);
3039         local_irq_restore(flags);
3040 }
3041
3042 /* Update the hash table based on the current list of multicast
3043  * addresses we subscribe to.  Also, change the promiscuity of
3044  * the device based on the flags (this function is called
3045  * whenever dev->flags is changed
3046  */
3047 static void gfar_set_multi(struct net_device *dev)
3048 {
3049         struct netdev_hw_addr *ha;
3050         struct gfar_private *priv = netdev_priv(dev);
3051         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3052         u32 tempval;
3053
3054         if (dev->flags & IFF_PROMISC) {
3055                 /* Set RCTRL to PROM */
3056                 tempval = gfar_read(&regs->rctrl);
3057                 tempval |= RCTRL_PROM;
3058                 gfar_write(&regs->rctrl, tempval);
3059         } else {
3060                 /* Set RCTRL to not PROM */
3061                 tempval = gfar_read(&regs->rctrl);
3062                 tempval &= ~(RCTRL_PROM);
3063                 gfar_write(&regs->rctrl, tempval);
3064         }
3065
3066         if (dev->flags & IFF_ALLMULTI) {
3067                 /* Set the hash to rx all multicast frames */
3068                 gfar_write(&regs->igaddr0, 0xffffffff);
3069                 gfar_write(&regs->igaddr1, 0xffffffff);
3070                 gfar_write(&regs->igaddr2, 0xffffffff);
3071                 gfar_write(&regs->igaddr3, 0xffffffff);
3072                 gfar_write(&regs->igaddr4, 0xffffffff);
3073                 gfar_write(&regs->igaddr5, 0xffffffff);
3074                 gfar_write(&regs->igaddr6, 0xffffffff);
3075                 gfar_write(&regs->igaddr7, 0xffffffff);
3076                 gfar_write(&regs->gaddr0, 0xffffffff);
3077                 gfar_write(&regs->gaddr1, 0xffffffff);
3078                 gfar_write(&regs->gaddr2, 0xffffffff);
3079                 gfar_write(&regs->gaddr3, 0xffffffff);
3080                 gfar_write(&regs->gaddr4, 0xffffffff);
3081                 gfar_write(&regs->gaddr5, 0xffffffff);
3082                 gfar_write(&regs->gaddr6, 0xffffffff);
3083                 gfar_write(&regs->gaddr7, 0xffffffff);
3084         } else {
3085                 int em_num;
3086                 int idx;
3087
3088                 /* zero out the hash */
3089                 gfar_write(&regs->igaddr0, 0x0);
3090                 gfar_write(&regs->igaddr1, 0x0);
3091                 gfar_write(&regs->igaddr2, 0x0);
3092                 gfar_write(&regs->igaddr3, 0x0);
3093                 gfar_write(&regs->igaddr4, 0x0);
3094                 gfar_write(&regs->igaddr5, 0x0);
3095                 gfar_write(&regs->igaddr6, 0x0);
3096                 gfar_write(&regs->igaddr7, 0x0);
3097                 gfar_write(&regs->gaddr0, 0x0);
3098                 gfar_write(&regs->gaddr1, 0x0);
3099                 gfar_write(&regs->gaddr2, 0x0);
3100                 gfar_write(&regs->gaddr3, 0x0);
3101                 gfar_write(&regs->gaddr4, 0x0);
3102                 gfar_write(&regs->gaddr5, 0x0);
3103                 gfar_write(&regs->gaddr6, 0x0);
3104                 gfar_write(&regs->gaddr7, 0x0);
3105
3106                 /* If we have extended hash tables, we need to
3107                  * clear the exact match registers to prepare for
3108                  * setting them
3109                  */
3110                 if (priv->extended_hash) {
3111                         em_num = GFAR_EM_NUM + 1;
3112                         gfar_clear_exact_match(dev);
3113                         idx = 1;
3114                 } else {
3115                         idx = 0;
3116                         em_num = 0;
3117                 }
3118
3119                 if (netdev_mc_empty(dev))
3120                         return;
3121
3122                 /* Parse the list, and set the appropriate bits */
3123                 netdev_for_each_mc_addr(ha, dev) {
3124                         if (idx < em_num) {
3125                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3126                                 idx++;
3127                         } else
3128                                 gfar_set_hash_for_addr(dev, ha->addr);
3129                 }
3130         }
3131 }
3132
3133
3134 /* Clears each of the exact match registers to zero, so they
3135  * don't interfere with normal reception
3136  */
3137 static void gfar_clear_exact_match(struct net_device *dev)
3138 {
3139         int idx;
3140         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3141
3142         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3143                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3144 }
3145
3146 /* Set the appropriate hash bit for the given addr */
3147 /* The algorithm works like so:
3148  * 1) Take the Destination Address (ie the multicast address), and
3149  * do a CRC on it (little endian), and reverse the bits of the
3150  * result.
3151  * 2) Use the 8 most significant bits as a hash into a 256-entry
3152  * table.  The table is controlled through 8 32-bit registers:
3153  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3154  * gaddr7.  This means that the 3 most significant bits in the
3155  * hash index which gaddr register to use, and the 5 other bits
3156  * indicate which bit (assuming an IBM numbering scheme, which
3157  * for PowerPC (tm) is usually the case) in the register holds
3158  * the entry.
3159  */
3160 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3161 {
3162         u32 tempval;
3163         struct gfar_private *priv = netdev_priv(dev);
3164         u32 result = ether_crc(ETH_ALEN, addr);
3165         int width = priv->hash_width;
3166         u8 whichbit = (result >> (32 - width)) & 0x1f;
3167         u8 whichreg = result >> (32 - width + 5);
3168         u32 value = (1 << (31-whichbit));
3169
3170         tempval = gfar_read(priv->hash_regs[whichreg]);
3171         tempval |= value;
3172         gfar_write(priv->hash_regs[whichreg], tempval);
3173 }
3174
3175
3176 /* There are multiple MAC Address register pairs on some controllers
3177  * This function sets the numth pair to a given address
3178  */
3179 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3180                                   const u8 *addr)
3181 {
3182         struct gfar_private *priv = netdev_priv(dev);
3183         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3184         int idx;
3185         char tmpbuf[ETH_ALEN];
3186         u32 tempval;
3187         u32 __iomem *macptr = &regs->macstnaddr1;
3188
3189         macptr += num*2;
3190
3191         /* Now copy it into the mac registers backwards, cuz
3192          * little endian is silly
3193          */
3194         for (idx = 0; idx < ETH_ALEN; idx++)
3195                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3196
3197         gfar_write(macptr, *((u32 *) (tmpbuf)));
3198
3199         tempval = *((u32 *) (tmpbuf + 4));
3200
3201         gfar_write(macptr+1, tempval);
3202 }
3203
3204 /* GFAR error interrupt handler */
3205 static irqreturn_t gfar_error(int irq, void *grp_id)
3206 {
3207         struct gfar_priv_grp *gfargrp = grp_id;
3208         struct gfar __iomem *regs = gfargrp->regs;
3209         struct gfar_private *priv= gfargrp->priv;
3210         struct net_device *dev = priv->ndev;
3211
3212         /* Save ievent for future reference */
3213         u32 events = gfar_read(&regs->ievent);
3214
3215         /* Clear IEVENT */
3216         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3217
3218         /* Magic Packet is not an error. */
3219         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3220             (events & IEVENT_MAG))
3221                 events &= ~IEVENT_MAG;
3222
3223         /* Hmm... */
3224         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3225                 netdev_dbg(dev,
3226                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3227                            events, gfar_read(&regs->imask));
3228
3229         /* Update the error counters */
3230         if (events & IEVENT_TXE) {
3231                 dev->stats.tx_errors++;
3232
3233                 if (events & IEVENT_LC)
3234                         dev->stats.tx_window_errors++;
3235                 if (events & IEVENT_CRL)
3236                         dev->stats.tx_aborted_errors++;
3237                 if (events & IEVENT_XFUN) {
3238                         unsigned long flags;
3239
3240                         netif_dbg(priv, tx_err, dev,
3241                                   "TX FIFO underrun, packet dropped\n");
3242                         dev->stats.tx_dropped++;
3243                         atomic64_inc(&priv->extra_stats.tx_underrun);
3244
3245                         local_irq_save(flags);
3246                         lock_tx_qs(priv);
3247
3248                         /* Reactivate the Tx Queues */
3249                         gfar_write(&regs->tstat, gfargrp->tstat);
3250
3251                         unlock_tx_qs(priv);
3252                         local_irq_restore(flags);
3253                 }
3254                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3255         }
3256         if (events & IEVENT_BSY) {
3257                 dev->stats.rx_errors++;
3258                 atomic64_inc(&priv->extra_stats.rx_bsy);
3259
3260                 gfar_receive(irq, grp_id);
3261
3262                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3263                           gfar_read(&regs->rstat));
3264         }
3265         if (events & IEVENT_BABR) {
3266                 dev->stats.rx_errors++;
3267                 atomic64_inc(&priv->extra_stats.rx_babr);
3268
3269                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3270         }
3271         if (events & IEVENT_EBERR) {
3272                 atomic64_inc(&priv->extra_stats.eberr);
3273                 netif_dbg(priv, rx_err, dev, "bus error\n");
3274         }
3275         if (events & IEVENT_RXC)
3276                 netif_dbg(priv, rx_status, dev, "control frame\n");
3277
3278         if (events & IEVENT_BABT) {
3279                 atomic64_inc(&priv->extra_stats.tx_babt);
3280                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3281         }
3282         return IRQ_HANDLED;
3283 }
3284
3285 static struct of_device_id gfar_match[] =
3286 {
3287         {
3288                 .type = "network",
3289                 .compatible = "gianfar",
3290         },
3291         {
3292                 .compatible = "fsl,etsec2",
3293         },
3294         {},
3295 };
3296 MODULE_DEVICE_TABLE(of, gfar_match);
3297
3298 /* Structure for a device driver */
3299 static struct platform_driver gfar_driver = {
3300         .driver = {
3301                 .name = "fsl-gianfar",
3302                 .owner = THIS_MODULE,
3303                 .pm = GFAR_PM_OPS,
3304                 .of_match_table = gfar_match,
3305         },
3306         .probe = gfar_probe,
3307         .remove = gfar_remove,
3308 };
3309
3310 module_platform_driver(gfar_driver);