gianfar: Refactor config coalescing calls for all queues
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                            struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137                                int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143                                   const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151                             dma_addr_t buf)
152 {
153         u32 lstatus;
154
155         bdp->bufPtr = buf;
156
157         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159                 lstatus |= BD_LFLAG(RXBD_WRAP);
160
161         eieio();
162
163         bdp->lstatus = lstatus;
164 }
165
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168         struct gfar_private *priv = netdev_priv(ndev);
169         struct gfar_priv_tx_q *tx_queue = NULL;
170         struct gfar_priv_rx_q *rx_queue = NULL;
171         struct txbd8 *txbdp;
172         struct rxbd8 *rxbdp;
173         int i, j;
174
175         for (i = 0; i < priv->num_tx_queues; i++) {
176                 tx_queue = priv->tx_queue[i];
177                 /* Initialize some variables in our dev structure */
178                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180                 tx_queue->cur_tx = tx_queue->tx_bd_base;
181                 tx_queue->skb_curtx = 0;
182                 tx_queue->skb_dirtytx = 0;
183
184                 /* Initialize Transmit Descriptor Ring */
185                 txbdp = tx_queue->tx_bd_base;
186                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187                         txbdp->lstatus = 0;
188                         txbdp->bufPtr = 0;
189                         txbdp++;
190                 }
191
192                 /* Set the last descriptor in the ring to indicate wrap */
193                 txbdp--;
194                 txbdp->status |= TXBD_WRAP;
195         }
196
197         for (i = 0; i < priv->num_rx_queues; i++) {
198                 rx_queue = priv->rx_queue[i];
199                 rx_queue->cur_rx = rx_queue->rx_bd_base;
200                 rx_queue->skb_currx = 0;
201                 rxbdp = rx_queue->rx_bd_base;
202
203                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
204                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
205
206                         if (skb) {
207                                 gfar_init_rxbdp(rx_queue, rxbdp,
208                                                 rxbdp->bufPtr);
209                         } else {
210                                 skb = gfar_new_skb(ndev);
211                                 if (!skb) {
212                                         netdev_err(ndev, "Can't allocate RX buffers\n");
213                                         return -ENOMEM;
214                                 }
215                                 rx_queue->rx_skbuff[j] = skb;
216
217                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
218                         }
219
220                         rxbdp++;
221                 }
222
223         }
224
225         return 0;
226 }
227
228 static int gfar_alloc_skb_resources(struct net_device *ndev)
229 {
230         void *vaddr;
231         dma_addr_t addr;
232         int i, j, k;
233         struct gfar_private *priv = netdev_priv(ndev);
234         struct device *dev = priv->dev;
235         struct gfar_priv_tx_q *tx_queue = NULL;
236         struct gfar_priv_rx_q *rx_queue = NULL;
237
238         priv->total_tx_ring_size = 0;
239         for (i = 0; i < priv->num_tx_queues; i++)
240                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
241
242         priv->total_rx_ring_size = 0;
243         for (i = 0; i < priv->num_rx_queues; i++)
244                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
245
246         /* Allocate memory for the buffer descriptors */
247         vaddr = dma_alloc_coherent(dev,
248                                    (priv->total_tx_ring_size *
249                                     sizeof(struct txbd8)) +
250                                    (priv->total_rx_ring_size *
251                                     sizeof(struct rxbd8)),
252                                    &addr, GFP_KERNEL);
253         if (!vaddr)
254                 return -ENOMEM;
255
256         for (i = 0; i < priv->num_tx_queues; i++) {
257                 tx_queue = priv->tx_queue[i];
258                 tx_queue->tx_bd_base = vaddr;
259                 tx_queue->tx_bd_dma_base = addr;
260                 tx_queue->dev = ndev;
261                 /* enet DMA only understands physical addresses */
262                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
263                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264         }
265
266         /* Start the rx descriptor ring where the tx ring leaves off */
267         for (i = 0; i < priv->num_rx_queues; i++) {
268                 rx_queue = priv->rx_queue[i];
269                 rx_queue->rx_bd_base = vaddr;
270                 rx_queue->rx_bd_dma_base = addr;
271                 rx_queue->dev = ndev;
272                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
273                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274         }
275
276         /* Setup the skbuff rings */
277         for (i = 0; i < priv->num_tx_queues; i++) {
278                 tx_queue = priv->tx_queue[i];
279                 tx_queue->tx_skbuff =
280                         kmalloc_array(tx_queue->tx_ring_size,
281                                       sizeof(*tx_queue->tx_skbuff),
282                                       GFP_KERNEL);
283                 if (!tx_queue->tx_skbuff)
284                         goto cleanup;
285
286                 for (k = 0; k < tx_queue->tx_ring_size; k++)
287                         tx_queue->tx_skbuff[k] = NULL;
288         }
289
290         for (i = 0; i < priv->num_rx_queues; i++) {
291                 rx_queue = priv->rx_queue[i];
292                 rx_queue->rx_skbuff =
293                         kmalloc_array(rx_queue->rx_ring_size,
294                                       sizeof(*rx_queue->rx_skbuff),
295                                       GFP_KERNEL);
296                 if (!rx_queue->rx_skbuff)
297                         goto cleanup;
298
299                 for (j = 0; j < rx_queue->rx_ring_size; j++)
300                         rx_queue->rx_skbuff[j] = NULL;
301         }
302
303         if (gfar_init_bds(ndev))
304                 goto cleanup;
305
306         return 0;
307
308 cleanup:
309         free_skb_resources(priv);
310         return -ENOMEM;
311 }
312
313 static void gfar_init_tx_rx_base(struct gfar_private *priv)
314 {
315         struct gfar __iomem *regs = priv->gfargrp[0].regs;
316         u32 __iomem *baddr;
317         int i;
318
319         baddr = &regs->tbase0;
320         for (i = 0; i < priv->num_tx_queues; i++) {
321                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
322                 baddr += 2;
323         }
324
325         baddr = &regs->rbase0;
326         for (i = 0; i < priv->num_rx_queues; i++) {
327                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
328                 baddr += 2;
329         }
330 }
331
332 static void gfar_init_mac(struct net_device *ndev)
333 {
334         struct gfar_private *priv = netdev_priv(ndev);
335         struct gfar __iomem *regs = priv->gfargrp[0].regs;
336         u32 rctrl = 0;
337         u32 tctrl = 0;
338         u32 attrs = 0;
339
340         /* write the tx/rx base registers */
341         gfar_init_tx_rx_base(priv);
342
343         /* Configure the coalescing support */
344         gfar_configure_coalescing_all(priv);
345
346         /* set this when rx hw offload (TOE) functions are being used */
347         priv->uses_rxfcb = 0;
348
349         if (priv->rx_filer_enable) {
350                 rctrl |= RCTRL_FILREN;
351                 /* Program the RIR0 reg with the required distribution */
352                 gfar_write(&regs->rir0, DEFAULT_RIR0);
353         }
354
355         /* Restore PROMISC mode */
356         if (ndev->flags & IFF_PROMISC)
357                 rctrl |= RCTRL_PROM;
358
359         if (ndev->features & NETIF_F_RXCSUM) {
360                 rctrl |= RCTRL_CHECKSUMMING;
361                 priv->uses_rxfcb = 1;
362         }
363
364         if (priv->extended_hash) {
365                 rctrl |= RCTRL_EXTHASH;
366
367                 gfar_clear_exact_match(ndev);
368                 rctrl |= RCTRL_EMEN;
369         }
370
371         if (priv->padding) {
372                 rctrl &= ~RCTRL_PAL_MASK;
373                 rctrl |= RCTRL_PADDING(priv->padding);
374         }
375
376         /* Insert receive time stamps into padding alignment bytes */
377         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
378                 rctrl &= ~RCTRL_PAL_MASK;
379                 rctrl |= RCTRL_PADDING(8);
380                 priv->padding = 8;
381         }
382
383         /* Enable HW time stamping if requested from user space */
384         if (priv->hwts_rx_en) {
385                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
386                 priv->uses_rxfcb = 1;
387         }
388
389         if (ndev->features & NETIF_F_HW_VLAN_RX) {
390                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391                 priv->uses_rxfcb = 1;
392         }
393
394         /* Init rctrl based on our settings */
395         gfar_write(&regs->rctrl, rctrl);
396
397         if (ndev->features & NETIF_F_IP_CSUM)
398                 tctrl |= TCTRL_INIT_CSUM;
399
400         if (priv->prio_sched_en)
401                 tctrl |= TCTRL_TXSCHED_PRIO;
402         else {
403                 tctrl |= TCTRL_TXSCHED_WRRS;
404                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
405                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
406         }
407
408         gfar_write(&regs->tctrl, tctrl);
409
410         /* Set the extraction length and index */
411         attrs = ATTRELI_EL(priv->rx_stash_size) |
412                 ATTRELI_EI(priv->rx_stash_index);
413
414         gfar_write(&regs->attreli, attrs);
415
416         /* Start with defaults, and add stashing or locking
417          * depending on the approprate variables
418          */
419         attrs = ATTR_INIT_SETTINGS;
420
421         if (priv->bd_stash_en)
422                 attrs |= ATTR_BDSTASH;
423
424         if (priv->rx_stash_size != 0)
425                 attrs |= ATTR_BUFSTASH;
426
427         gfar_write(&regs->attr, attrs);
428
429         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
430         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
431         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
432 }
433
434 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
435 {
436         struct gfar_private *priv = netdev_priv(dev);
437         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
438         unsigned long tx_packets = 0, tx_bytes = 0;
439         int i;
440
441         for (i = 0; i < priv->num_rx_queues; i++) {
442                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
443                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
444                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
445         }
446
447         dev->stats.rx_packets = rx_packets;
448         dev->stats.rx_bytes   = rx_bytes;
449         dev->stats.rx_dropped = rx_dropped;
450
451         for (i = 0; i < priv->num_tx_queues; i++) {
452                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
453                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
454         }
455
456         dev->stats.tx_bytes   = tx_bytes;
457         dev->stats.tx_packets = tx_packets;
458
459         return &dev->stats;
460 }
461
462 static const struct net_device_ops gfar_netdev_ops = {
463         .ndo_open = gfar_enet_open,
464         .ndo_start_xmit = gfar_start_xmit,
465         .ndo_stop = gfar_close,
466         .ndo_change_mtu = gfar_change_mtu,
467         .ndo_set_features = gfar_set_features,
468         .ndo_set_rx_mode = gfar_set_multi,
469         .ndo_tx_timeout = gfar_timeout,
470         .ndo_do_ioctl = gfar_ioctl,
471         .ndo_get_stats = gfar_get_stats,
472         .ndo_set_mac_address = eth_mac_addr,
473         .ndo_validate_addr = eth_validate_addr,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475         .ndo_poll_controller = gfar_netpoll,
476 #endif
477 };
478
479 void lock_rx_qs(struct gfar_private *priv)
480 {
481         int i;
482
483         for (i = 0; i < priv->num_rx_queues; i++)
484                 spin_lock(&priv->rx_queue[i]->rxlock);
485 }
486
487 void lock_tx_qs(struct gfar_private *priv)
488 {
489         int i;
490
491         for (i = 0; i < priv->num_tx_queues; i++)
492                 spin_lock(&priv->tx_queue[i]->txlock);
493 }
494
495 void unlock_rx_qs(struct gfar_private *priv)
496 {
497         int i;
498
499         for (i = 0; i < priv->num_rx_queues; i++)
500                 spin_unlock(&priv->rx_queue[i]->rxlock);
501 }
502
503 void unlock_tx_qs(struct gfar_private *priv)
504 {
505         int i;
506
507         for (i = 0; i < priv->num_tx_queues; i++)
508                 spin_unlock(&priv->tx_queue[i]->txlock);
509 }
510
511 static void free_tx_pointers(struct gfar_private *priv)
512 {
513         int i;
514
515         for (i = 0; i < priv->num_tx_queues; i++)
516                 kfree(priv->tx_queue[i]);
517 }
518
519 static void free_rx_pointers(struct gfar_private *priv)
520 {
521         int i;
522
523         for (i = 0; i < priv->num_rx_queues; i++)
524                 kfree(priv->rx_queue[i]);
525 }
526
527 static void unmap_group_regs(struct gfar_private *priv)
528 {
529         int i;
530
531         for (i = 0; i < MAXGROUPS; i++)
532                 if (priv->gfargrp[i].regs)
533                         iounmap(priv->gfargrp[i].regs);
534 }
535
536 static void free_gfar_dev(struct gfar_private *priv)
537 {
538         int i, j;
539
540         for (i = 0; i < priv->num_grps; i++)
541                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
542                         kfree(priv->gfargrp[i].irqinfo[j]);
543                         priv->gfargrp[i].irqinfo[j] = NULL;
544                 }
545
546         free_netdev(priv->ndev);
547 }
548
549 static void disable_napi(struct gfar_private *priv)
550 {
551         int i;
552
553         for (i = 0; i < priv->num_grps; i++)
554                 napi_disable(&priv->gfargrp[i].napi);
555 }
556
557 static void enable_napi(struct gfar_private *priv)
558 {
559         int i;
560
561         for (i = 0; i < priv->num_grps; i++)
562                 napi_enable(&priv->gfargrp[i].napi);
563 }
564
565 static int gfar_parse_group(struct device_node *np,
566                             struct gfar_private *priv, const char *model)
567 {
568         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
569         u32 *queue_mask;
570         int i;
571
572         for (i = 0; i < GFAR_NUM_IRQS; i++) {
573                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
574                                           GFP_KERNEL);
575                 if (!grp->irqinfo[i])
576                         return -ENOMEM;
577         }
578
579         grp->regs = of_iomap(np, 0);
580         if (!grp->regs)
581                 return -ENOMEM;
582
583         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
584
585         /* If we aren't the FEC we have multiple interrupts */
586         if (model && strcasecmp(model, "FEC")) {
587                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
588                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
589                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
590                     gfar_irq(grp, RX)->irq == NO_IRQ ||
591                     gfar_irq(grp, ER)->irq == NO_IRQ)
592                         return -EINVAL;
593         }
594
595         grp->grp_id = priv->num_grps;
596         grp->priv = priv;
597         spin_lock_init(&grp->grplock);
598         if (priv->mode == MQ_MG_MODE) {
599                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
600                 grp->rx_bit_map = queue_mask ?
601                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
602                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
603                 grp->tx_bit_map = queue_mask ?
604                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
605         } else {
606                 grp->rx_bit_map = 0xFF;
607                 grp->tx_bit_map = 0xFF;
608         }
609         priv->num_grps++;
610
611         return 0;
612 }
613
614 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
615 {
616         const char *model;
617         const char *ctype;
618         const void *mac_addr;
619         int err = 0, i;
620         struct net_device *dev = NULL;
621         struct gfar_private *priv = NULL;
622         struct device_node *np = ofdev->dev.of_node;
623         struct device_node *child = NULL;
624         const u32 *stash;
625         const u32 *stash_len;
626         const u32 *stash_idx;
627         unsigned int num_tx_qs, num_rx_qs;
628         u32 *tx_queues, *rx_queues;
629
630         if (!np || !of_device_is_available(np))
631                 return -ENODEV;
632
633         /* parse the num of tx and rx queues */
634         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
635         num_tx_qs = tx_queues ? *tx_queues : 1;
636
637         if (num_tx_qs > MAX_TX_QS) {
638                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
639                        num_tx_qs, MAX_TX_QS);
640                 pr_err("Cannot do alloc_etherdev, aborting\n");
641                 return -EINVAL;
642         }
643
644         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
645         num_rx_qs = rx_queues ? *rx_queues : 1;
646
647         if (num_rx_qs > MAX_RX_QS) {
648                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
649                        num_rx_qs, MAX_RX_QS);
650                 pr_err("Cannot do alloc_etherdev, aborting\n");
651                 return -EINVAL;
652         }
653
654         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
655         dev = *pdev;
656         if (NULL == dev)
657                 return -ENOMEM;
658
659         priv = netdev_priv(dev);
660         priv->ndev = dev;
661
662         priv->num_tx_queues = num_tx_qs;
663         netif_set_real_num_rx_queues(dev, num_rx_qs);
664         priv->num_rx_queues = num_rx_qs;
665         priv->num_grps = 0x0;
666
667         /* Init Rx queue filer rule set linked list */
668         INIT_LIST_HEAD(&priv->rx_list.list);
669         priv->rx_list.count = 0;
670         mutex_init(&priv->rx_queue_access);
671
672         model = of_get_property(np, "model", NULL);
673
674         for (i = 0; i < MAXGROUPS; i++)
675                 priv->gfargrp[i].regs = NULL;
676
677         /* Parse and initialize group specific information */
678         if (of_device_is_compatible(np, "fsl,etsec2")) {
679                 priv->mode = MQ_MG_MODE;
680                 for_each_child_of_node(np, child) {
681                         err = gfar_parse_group(child, priv, model);
682                         if (err)
683                                 goto err_grp_init;
684                 }
685         } else {
686                 priv->mode = SQ_SG_MODE;
687                 err = gfar_parse_group(np, priv, model);
688                 if (err)
689                         goto err_grp_init;
690         }
691
692         for (i = 0; i < priv->num_tx_queues; i++)
693                priv->tx_queue[i] = NULL;
694         for (i = 0; i < priv->num_rx_queues; i++)
695                 priv->rx_queue[i] = NULL;
696
697         for (i = 0; i < priv->num_tx_queues; i++) {
698                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
699                                             GFP_KERNEL);
700                 if (!priv->tx_queue[i]) {
701                         err = -ENOMEM;
702                         goto tx_alloc_failed;
703                 }
704                 priv->tx_queue[i]->tx_skbuff = NULL;
705                 priv->tx_queue[i]->qindex = i;
706                 priv->tx_queue[i]->dev = dev;
707                 spin_lock_init(&(priv->tx_queue[i]->txlock));
708         }
709
710         for (i = 0; i < priv->num_rx_queues; i++) {
711                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
712                                             GFP_KERNEL);
713                 if (!priv->rx_queue[i]) {
714                         err = -ENOMEM;
715                         goto rx_alloc_failed;
716                 }
717                 priv->rx_queue[i]->rx_skbuff = NULL;
718                 priv->rx_queue[i]->qindex = i;
719                 priv->rx_queue[i]->dev = dev;
720                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
721         }
722
723
724         stash = of_get_property(np, "bd-stash", NULL);
725
726         if (stash) {
727                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
728                 priv->bd_stash_en = 1;
729         }
730
731         stash_len = of_get_property(np, "rx-stash-len", NULL);
732
733         if (stash_len)
734                 priv->rx_stash_size = *stash_len;
735
736         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
737
738         if (stash_idx)
739                 priv->rx_stash_index = *stash_idx;
740
741         if (stash_len || stash_idx)
742                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
743
744         mac_addr = of_get_mac_address(np);
745
746         if (mac_addr)
747                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
748
749         if (model && !strcasecmp(model, "TSEC"))
750                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
751                                      FSL_GIANFAR_DEV_HAS_COALESCE |
752                                      FSL_GIANFAR_DEV_HAS_RMON |
753                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
754
755         if (model && !strcasecmp(model, "eTSEC"))
756                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
757                                      FSL_GIANFAR_DEV_HAS_COALESCE |
758                                      FSL_GIANFAR_DEV_HAS_RMON |
759                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
760                                      FSL_GIANFAR_DEV_HAS_PADDING |
761                                      FSL_GIANFAR_DEV_HAS_CSUM |
762                                      FSL_GIANFAR_DEV_HAS_VLAN |
763                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
764                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
765                                      FSL_GIANFAR_DEV_HAS_TIMER;
766
767         ctype = of_get_property(np, "phy-connection-type", NULL);
768
769         /* We only care about rgmii-id.  The rest are autodetected */
770         if (ctype && !strcmp(ctype, "rgmii-id"))
771                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
772         else
773                 priv->interface = PHY_INTERFACE_MODE_MII;
774
775         if (of_get_property(np, "fsl,magic-packet", NULL))
776                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
777
778         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
779
780         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
781         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
782
783         return 0;
784
785 rx_alloc_failed:
786         free_rx_pointers(priv);
787 tx_alloc_failed:
788         free_tx_pointers(priv);
789 err_grp_init:
790         unmap_group_regs(priv);
791         free_gfar_dev(priv);
792         return err;
793 }
794
795 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
796                                struct ifreq *ifr, int cmd)
797 {
798         struct hwtstamp_config config;
799         struct gfar_private *priv = netdev_priv(netdev);
800
801         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
802                 return -EFAULT;
803
804         /* reserved for future extensions */
805         if (config.flags)
806                 return -EINVAL;
807
808         switch (config.tx_type) {
809         case HWTSTAMP_TX_OFF:
810                 priv->hwts_tx_en = 0;
811                 break;
812         case HWTSTAMP_TX_ON:
813                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
814                         return -ERANGE;
815                 priv->hwts_tx_en = 1;
816                 break;
817         default:
818                 return -ERANGE;
819         }
820
821         switch (config.rx_filter) {
822         case HWTSTAMP_FILTER_NONE:
823                 if (priv->hwts_rx_en) {
824                         stop_gfar(netdev);
825                         priv->hwts_rx_en = 0;
826                         startup_gfar(netdev);
827                 }
828                 break;
829         default:
830                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
831                         return -ERANGE;
832                 if (!priv->hwts_rx_en) {
833                         stop_gfar(netdev);
834                         priv->hwts_rx_en = 1;
835                         startup_gfar(netdev);
836                 }
837                 config.rx_filter = HWTSTAMP_FILTER_ALL;
838                 break;
839         }
840
841         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
842                 -EFAULT : 0;
843 }
844
845 /* Ioctl MII Interface */
846 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
847 {
848         struct gfar_private *priv = netdev_priv(dev);
849
850         if (!netif_running(dev))
851                 return -EINVAL;
852
853         if (cmd == SIOCSHWTSTAMP)
854                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
855
856         if (!priv->phydev)
857                 return -ENODEV;
858
859         return phy_mii_ioctl(priv->phydev, rq, cmd);
860 }
861
862 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
863 {
864         unsigned int new_bit_map = 0x0;
865         int mask = 0x1 << (max_qs - 1), i;
866
867         for (i = 0; i < max_qs; i++) {
868                 if (bit_map & mask)
869                         new_bit_map = new_bit_map + (1 << i);
870                 mask = mask >> 0x1;
871         }
872         return new_bit_map;
873 }
874
875 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
876                                    u32 class)
877 {
878         u32 rqfpr = FPR_FILER_MASK;
879         u32 rqfcr = 0x0;
880
881         rqfar--;
882         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
883         priv->ftp_rqfpr[rqfar] = rqfpr;
884         priv->ftp_rqfcr[rqfar] = rqfcr;
885         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886
887         rqfar--;
888         rqfcr = RQFCR_CMP_NOMATCH;
889         priv->ftp_rqfpr[rqfar] = rqfpr;
890         priv->ftp_rqfcr[rqfar] = rqfcr;
891         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892
893         rqfar--;
894         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
895         rqfpr = class;
896         priv->ftp_rqfcr[rqfar] = rqfcr;
897         priv->ftp_rqfpr[rqfar] = rqfpr;
898         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899
900         rqfar--;
901         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
902         rqfpr = class;
903         priv->ftp_rqfcr[rqfar] = rqfcr;
904         priv->ftp_rqfpr[rqfar] = rqfpr;
905         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
906
907         return rqfar;
908 }
909
910 static void gfar_init_filer_table(struct gfar_private *priv)
911 {
912         int i = 0x0;
913         u32 rqfar = MAX_FILER_IDX;
914         u32 rqfcr = 0x0;
915         u32 rqfpr = FPR_FILER_MASK;
916
917         /* Default rule */
918         rqfcr = RQFCR_CMP_MATCH;
919         priv->ftp_rqfcr[rqfar] = rqfcr;
920         priv->ftp_rqfpr[rqfar] = rqfpr;
921         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
922
923         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
924         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
925         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
926         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
927         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
928         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
929
930         /* cur_filer_idx indicated the first non-masked rule */
931         priv->cur_filer_idx = rqfar;
932
933         /* Rest are masked rules */
934         rqfcr = RQFCR_CMP_NOMATCH;
935         for (i = 0; i < rqfar; i++) {
936                 priv->ftp_rqfcr[i] = rqfcr;
937                 priv->ftp_rqfpr[i] = rqfpr;
938                 gfar_write_filer(priv, i, rqfcr, rqfpr);
939         }
940 }
941
942 static void gfar_detect_errata(struct gfar_private *priv)
943 {
944         struct device *dev = &priv->ofdev->dev;
945         unsigned int pvr = mfspr(SPRN_PVR);
946         unsigned int svr = mfspr(SPRN_SVR);
947         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
948         unsigned int rev = svr & 0xffff;
949
950         /* MPC8313 Rev 2.0 and higher; All MPC837x */
951         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
952             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953                 priv->errata |= GFAR_ERRATA_74;
954
955         /* MPC8313 and MPC837x all rev */
956         if ((pvr == 0x80850010 && mod == 0x80b0) ||
957             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
958                 priv->errata |= GFAR_ERRATA_76;
959
960         /* MPC8313 and MPC837x all rev */
961         if ((pvr == 0x80850010 && mod == 0x80b0) ||
962             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
963                 priv->errata |= GFAR_ERRATA_A002;
964
965         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
966         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
967             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
968                 priv->errata |= GFAR_ERRATA_12;
969
970         if (priv->errata)
971                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
972                          priv->errata);
973 }
974
975 /* Set up the ethernet device structure, private data,
976  * and anything else we need before we start
977  */
978 static int gfar_probe(struct platform_device *ofdev)
979 {
980         u32 tempval;
981         struct net_device *dev = NULL;
982         struct gfar_private *priv = NULL;
983         struct gfar __iomem *regs = NULL;
984         int err = 0, i, grp_idx = 0;
985         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
986         u32 isrg = 0;
987         u32 __iomem *baddr;
988
989         err = gfar_of_init(ofdev, &dev);
990
991         if (err)
992                 return err;
993
994         priv = netdev_priv(dev);
995         priv->ndev = dev;
996         priv->ofdev = ofdev;
997         priv->dev = &ofdev->dev;
998         SET_NETDEV_DEV(dev, &ofdev->dev);
999
1000         spin_lock_init(&priv->bflock);
1001         INIT_WORK(&priv->reset_task, gfar_reset_task);
1002
1003         dev_set_drvdata(&ofdev->dev, priv);
1004         regs = priv->gfargrp[0].regs;
1005
1006         gfar_detect_errata(priv);
1007
1008         /* Stop the DMA engine now, in case it was running before
1009          * (The firmware could have used it, and left it running).
1010          */
1011         gfar_halt(dev);
1012
1013         /* Reset MAC layer */
1014         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1015
1016         /* We need to delay at least 3 TX clocks */
1017         udelay(2);
1018
1019         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1020         gfar_write(&regs->maccfg1, tempval);
1021
1022         /* Initialize MACCFG2. */
1023         tempval = MACCFG2_INIT_SETTINGS;
1024         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1025                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1026         gfar_write(&regs->maccfg2, tempval);
1027
1028         /* Initialize ECNTRL */
1029         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1030
1031         /* Set the dev->base_addr to the gfar reg region */
1032         dev->base_addr = (unsigned long) regs;
1033
1034         /* Fill in the dev structure */
1035         dev->watchdog_timeo = TX_TIMEOUT;
1036         dev->mtu = 1500;
1037         dev->netdev_ops = &gfar_netdev_ops;
1038         dev->ethtool_ops = &gfar_ethtool_ops;
1039
1040         /* Register for napi ...We are registering NAPI for each grp */
1041         for (i = 0; i < priv->num_grps; i++)
1042                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1043                                GFAR_DEV_WEIGHT);
1044
1045         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1046                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1047                                    NETIF_F_RXCSUM;
1048                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1049                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1050         }
1051
1052         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1053                 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1054                 dev->features |= NETIF_F_HW_VLAN_RX;
1055         }
1056
1057         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1058                 priv->extended_hash = 1;
1059                 priv->hash_width = 9;
1060
1061                 priv->hash_regs[0] = &regs->igaddr0;
1062                 priv->hash_regs[1] = &regs->igaddr1;
1063                 priv->hash_regs[2] = &regs->igaddr2;
1064                 priv->hash_regs[3] = &regs->igaddr3;
1065                 priv->hash_regs[4] = &regs->igaddr4;
1066                 priv->hash_regs[5] = &regs->igaddr5;
1067                 priv->hash_regs[6] = &regs->igaddr6;
1068                 priv->hash_regs[7] = &regs->igaddr7;
1069                 priv->hash_regs[8] = &regs->gaddr0;
1070                 priv->hash_regs[9] = &regs->gaddr1;
1071                 priv->hash_regs[10] = &regs->gaddr2;
1072                 priv->hash_regs[11] = &regs->gaddr3;
1073                 priv->hash_regs[12] = &regs->gaddr4;
1074                 priv->hash_regs[13] = &regs->gaddr5;
1075                 priv->hash_regs[14] = &regs->gaddr6;
1076                 priv->hash_regs[15] = &regs->gaddr7;
1077
1078         } else {
1079                 priv->extended_hash = 0;
1080                 priv->hash_width = 8;
1081
1082                 priv->hash_regs[0] = &regs->gaddr0;
1083                 priv->hash_regs[1] = &regs->gaddr1;
1084                 priv->hash_regs[2] = &regs->gaddr2;
1085                 priv->hash_regs[3] = &regs->gaddr3;
1086                 priv->hash_regs[4] = &regs->gaddr4;
1087                 priv->hash_regs[5] = &regs->gaddr5;
1088                 priv->hash_regs[6] = &regs->gaddr6;
1089                 priv->hash_regs[7] = &regs->gaddr7;
1090         }
1091
1092         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1093                 priv->padding = DEFAULT_PADDING;
1094         else
1095                 priv->padding = 0;
1096
1097         if (dev->features & NETIF_F_IP_CSUM ||
1098             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1099                 dev->needed_headroom = GMAC_FCB_LEN;
1100
1101         /* Program the isrg regs only if number of grps > 1 */
1102         if (priv->num_grps > 1) {
1103                 baddr = &regs->isrg0;
1104                 for (i = 0; i < priv->num_grps; i++) {
1105                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1106                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1107                         gfar_write(baddr, isrg);
1108                         baddr++;
1109                         isrg = 0x0;
1110                 }
1111         }
1112
1113         /* Need to reverse the bit maps as  bit_map's MSB is q0
1114          * but, for_each_set_bit parses from right to left, which
1115          * basically reverses the queue numbers
1116          */
1117         for (i = 0; i< priv->num_grps; i++) {
1118                 priv->gfargrp[i].tx_bit_map =
1119                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1120                 priv->gfargrp[i].rx_bit_map =
1121                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1122         }
1123
1124         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1125          * also assign queues to groups
1126          */
1127         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1128                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1129
1130                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1131                                  priv->num_rx_queues) {
1132                         priv->gfargrp[grp_idx].num_rx_queues++;
1133                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1134                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1135                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1136                 }
1137                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1138
1139                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1140                                  priv->num_tx_queues) {
1141                         priv->gfargrp[grp_idx].num_tx_queues++;
1142                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1143                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1144                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1145                 }
1146                 priv->gfargrp[grp_idx].rstat = rstat;
1147                 priv->gfargrp[grp_idx].tstat = tstat;
1148                 rstat = tstat =0;
1149         }
1150
1151         gfar_write(&regs->rqueue, rqueue);
1152         gfar_write(&regs->tqueue, tqueue);
1153
1154         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1155
1156         /* Initializing some of the rx/tx queue level parameters */
1157         for (i = 0; i < priv->num_tx_queues; i++) {
1158                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1159                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1160                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1161                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1162         }
1163
1164         for (i = 0; i < priv->num_rx_queues; i++) {
1165                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1166                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1167                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1168         }
1169
1170         /* always enable rx filer */
1171         priv->rx_filer_enable = 1;
1172         /* Enable most messages by default */
1173         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1174         /* use pritority h/w tx queue scheduling for single queue devices */
1175         if (priv->num_tx_queues == 1)
1176                 priv->prio_sched_en = 1;
1177
1178         /* Carrier starts down, phylib will bring it up */
1179         netif_carrier_off(dev);
1180
1181         err = register_netdev(dev);
1182
1183         if (err) {
1184                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1185                 goto register_fail;
1186         }
1187
1188         device_init_wakeup(&dev->dev,
1189                            priv->device_flags &
1190                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1191
1192         /* fill out IRQ number and name fields */
1193         for (i = 0; i < priv->num_grps; i++) {
1194                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1195                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1196                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1197                                 dev->name, "_g", '0' + i, "_tx");
1198                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1199                                 dev->name, "_g", '0' + i, "_rx");
1200                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1201                                 dev->name, "_g", '0' + i, "_er");
1202                 } else
1203                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1204         }
1205
1206         /* Initialize the filer table */
1207         gfar_init_filer_table(priv);
1208
1209         /* Create all the sysfs files */
1210         gfar_init_sysfs(dev);
1211
1212         /* Print out the device info */
1213         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1214
1215         /* Even more device info helps when determining which kernel
1216          * provided which set of benchmarks.
1217          */
1218         netdev_info(dev, "Running with NAPI enabled\n");
1219         for (i = 0; i < priv->num_rx_queues; i++)
1220                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1221                             i, priv->rx_queue[i]->rx_ring_size);
1222         for (i = 0; i < priv->num_tx_queues; i++)
1223                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1224                             i, priv->tx_queue[i]->tx_ring_size);
1225
1226         return 0;
1227
1228 register_fail:
1229         unmap_group_regs(priv);
1230         free_tx_pointers(priv);
1231         free_rx_pointers(priv);
1232         if (priv->phy_node)
1233                 of_node_put(priv->phy_node);
1234         if (priv->tbi_node)
1235                 of_node_put(priv->tbi_node);
1236         free_gfar_dev(priv);
1237         return err;
1238 }
1239
1240 static int gfar_remove(struct platform_device *ofdev)
1241 {
1242         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1243
1244         if (priv->phy_node)
1245                 of_node_put(priv->phy_node);
1246         if (priv->tbi_node)
1247                 of_node_put(priv->tbi_node);
1248
1249         dev_set_drvdata(&ofdev->dev, NULL);
1250
1251         unregister_netdev(priv->ndev);
1252         unmap_group_regs(priv);
1253         free_gfar_dev(priv);
1254
1255         return 0;
1256 }
1257
1258 #ifdef CONFIG_PM
1259
1260 static int gfar_suspend(struct device *dev)
1261 {
1262         struct gfar_private *priv = dev_get_drvdata(dev);
1263         struct net_device *ndev = priv->ndev;
1264         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1265         unsigned long flags;
1266         u32 tempval;
1267
1268         int magic_packet = priv->wol_en &&
1269                            (priv->device_flags &
1270                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1271
1272         netif_device_detach(ndev);
1273
1274         if (netif_running(ndev)) {
1275
1276                 local_irq_save(flags);
1277                 lock_tx_qs(priv);
1278                 lock_rx_qs(priv);
1279
1280                 gfar_halt_nodisable(ndev);
1281
1282                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1283                 tempval = gfar_read(&regs->maccfg1);
1284
1285                 tempval &= ~MACCFG1_TX_EN;
1286
1287                 if (!magic_packet)
1288                         tempval &= ~MACCFG1_RX_EN;
1289
1290                 gfar_write(&regs->maccfg1, tempval);
1291
1292                 unlock_rx_qs(priv);
1293                 unlock_tx_qs(priv);
1294                 local_irq_restore(flags);
1295
1296                 disable_napi(priv);
1297
1298                 if (magic_packet) {
1299                         /* Enable interrupt on Magic Packet */
1300                         gfar_write(&regs->imask, IMASK_MAG);
1301
1302                         /* Enable Magic Packet mode */
1303                         tempval = gfar_read(&regs->maccfg2);
1304                         tempval |= MACCFG2_MPEN;
1305                         gfar_write(&regs->maccfg2, tempval);
1306                 } else {
1307                         phy_stop(priv->phydev);
1308                 }
1309         }
1310
1311         return 0;
1312 }
1313
1314 static int gfar_resume(struct device *dev)
1315 {
1316         struct gfar_private *priv = dev_get_drvdata(dev);
1317         struct net_device *ndev = priv->ndev;
1318         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1319         unsigned long flags;
1320         u32 tempval;
1321         int magic_packet = priv->wol_en &&
1322                            (priv->device_flags &
1323                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1324
1325         if (!netif_running(ndev)) {
1326                 netif_device_attach(ndev);
1327                 return 0;
1328         }
1329
1330         if (!magic_packet && priv->phydev)
1331                 phy_start(priv->phydev);
1332
1333         /* Disable Magic Packet mode, in case something
1334          * else woke us up.
1335          */
1336         local_irq_save(flags);
1337         lock_tx_qs(priv);
1338         lock_rx_qs(priv);
1339
1340         tempval = gfar_read(&regs->maccfg2);
1341         tempval &= ~MACCFG2_MPEN;
1342         gfar_write(&regs->maccfg2, tempval);
1343
1344         gfar_start(ndev);
1345
1346         unlock_rx_qs(priv);
1347         unlock_tx_qs(priv);
1348         local_irq_restore(flags);
1349
1350         netif_device_attach(ndev);
1351
1352         enable_napi(priv);
1353
1354         return 0;
1355 }
1356
1357 static int gfar_restore(struct device *dev)
1358 {
1359         struct gfar_private *priv = dev_get_drvdata(dev);
1360         struct net_device *ndev = priv->ndev;
1361
1362         if (!netif_running(ndev)) {
1363                 netif_device_attach(ndev);
1364
1365                 return 0;
1366         }
1367
1368         if (gfar_init_bds(ndev)) {
1369                 free_skb_resources(priv);
1370                 return -ENOMEM;
1371         }
1372
1373         init_registers(ndev);
1374         gfar_set_mac_address(ndev);
1375         gfar_init_mac(ndev);
1376         gfar_start(ndev);
1377
1378         priv->oldlink = 0;
1379         priv->oldspeed = 0;
1380         priv->oldduplex = -1;
1381
1382         if (priv->phydev)
1383                 phy_start(priv->phydev);
1384
1385         netif_device_attach(ndev);
1386         enable_napi(priv);
1387
1388         return 0;
1389 }
1390
1391 static struct dev_pm_ops gfar_pm_ops = {
1392         .suspend = gfar_suspend,
1393         .resume = gfar_resume,
1394         .freeze = gfar_suspend,
1395         .thaw = gfar_resume,
1396         .restore = gfar_restore,
1397 };
1398
1399 #define GFAR_PM_OPS (&gfar_pm_ops)
1400
1401 #else
1402
1403 #define GFAR_PM_OPS NULL
1404
1405 #endif
1406
1407 /* Reads the controller's registers to determine what interface
1408  * connects it to the PHY.
1409  */
1410 static phy_interface_t gfar_get_interface(struct net_device *dev)
1411 {
1412         struct gfar_private *priv = netdev_priv(dev);
1413         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1414         u32 ecntrl;
1415
1416         ecntrl = gfar_read(&regs->ecntrl);
1417
1418         if (ecntrl & ECNTRL_SGMII_MODE)
1419                 return PHY_INTERFACE_MODE_SGMII;
1420
1421         if (ecntrl & ECNTRL_TBI_MODE) {
1422                 if (ecntrl & ECNTRL_REDUCED_MODE)
1423                         return PHY_INTERFACE_MODE_RTBI;
1424                 else
1425                         return PHY_INTERFACE_MODE_TBI;
1426         }
1427
1428         if (ecntrl & ECNTRL_REDUCED_MODE) {
1429                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1430                         return PHY_INTERFACE_MODE_RMII;
1431                 }
1432                 else {
1433                         phy_interface_t interface = priv->interface;
1434
1435                         /* This isn't autodetected right now, so it must
1436                          * be set by the device tree or platform code.
1437                          */
1438                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1439                                 return PHY_INTERFACE_MODE_RGMII_ID;
1440
1441                         return PHY_INTERFACE_MODE_RGMII;
1442                 }
1443         }
1444
1445         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1446                 return PHY_INTERFACE_MODE_GMII;
1447
1448         return PHY_INTERFACE_MODE_MII;
1449 }
1450
1451
1452 /* Initializes driver's PHY state, and attaches to the PHY.
1453  * Returns 0 on success.
1454  */
1455 static int init_phy(struct net_device *dev)
1456 {
1457         struct gfar_private *priv = netdev_priv(dev);
1458         uint gigabit_support =
1459                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1460                 SUPPORTED_1000baseT_Full : 0;
1461         phy_interface_t interface;
1462
1463         priv->oldlink = 0;
1464         priv->oldspeed = 0;
1465         priv->oldduplex = -1;
1466
1467         interface = gfar_get_interface(dev);
1468
1469         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1470                                       interface);
1471         if (!priv->phydev)
1472                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1473                                                          interface);
1474         if (!priv->phydev) {
1475                 dev_err(&dev->dev, "could not attach to PHY\n");
1476                 return -ENODEV;
1477         }
1478
1479         if (interface == PHY_INTERFACE_MODE_SGMII)
1480                 gfar_configure_serdes(dev);
1481
1482         /* Remove any features not supported by the controller */
1483         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1484         priv->phydev->advertising = priv->phydev->supported;
1485
1486         return 0;
1487 }
1488
1489 /* Initialize TBI PHY interface for communicating with the
1490  * SERDES lynx PHY on the chip.  We communicate with this PHY
1491  * through the MDIO bus on each controller, treating it as a
1492  * "normal" PHY at the address found in the TBIPA register.  We assume
1493  * that the TBIPA register is valid.  Either the MDIO bus code will set
1494  * it to a value that doesn't conflict with other PHYs on the bus, or the
1495  * value doesn't matter, as there are no other PHYs on the bus.
1496  */
1497 static void gfar_configure_serdes(struct net_device *dev)
1498 {
1499         struct gfar_private *priv = netdev_priv(dev);
1500         struct phy_device *tbiphy;
1501
1502         if (!priv->tbi_node) {
1503                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1504                                     "device tree specify a tbi-handle\n");
1505                 return;
1506         }
1507
1508         tbiphy = of_phy_find_device(priv->tbi_node);
1509         if (!tbiphy) {
1510                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1511                 return;
1512         }
1513
1514         /* If the link is already up, we must already be ok, and don't need to
1515          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1516          * everything for us?  Resetting it takes the link down and requires
1517          * several seconds for it to come back.
1518          */
1519         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1520                 return;
1521
1522         /* Single clk mode, mii mode off(for serdes communication) */
1523         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1524
1525         phy_write(tbiphy, MII_ADVERTISE,
1526                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1527                   ADVERTISE_1000XPSE_ASYM);
1528
1529         phy_write(tbiphy, MII_BMCR,
1530                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1531                   BMCR_SPEED1000);
1532 }
1533
1534 static void init_registers(struct net_device *dev)
1535 {
1536         struct gfar_private *priv = netdev_priv(dev);
1537         struct gfar __iomem *regs = NULL;
1538         int i;
1539
1540         for (i = 0; i < priv->num_grps; i++) {
1541                 regs = priv->gfargrp[i].regs;
1542                 /* Clear IEVENT */
1543                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1544
1545                 /* Initialize IMASK */
1546                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1547         }
1548
1549         regs = priv->gfargrp[0].regs;
1550         /* Init hash registers to zero */
1551         gfar_write(&regs->igaddr0, 0);
1552         gfar_write(&regs->igaddr1, 0);
1553         gfar_write(&regs->igaddr2, 0);
1554         gfar_write(&regs->igaddr3, 0);
1555         gfar_write(&regs->igaddr4, 0);
1556         gfar_write(&regs->igaddr5, 0);
1557         gfar_write(&regs->igaddr6, 0);
1558         gfar_write(&regs->igaddr7, 0);
1559
1560         gfar_write(&regs->gaddr0, 0);
1561         gfar_write(&regs->gaddr1, 0);
1562         gfar_write(&regs->gaddr2, 0);
1563         gfar_write(&regs->gaddr3, 0);
1564         gfar_write(&regs->gaddr4, 0);
1565         gfar_write(&regs->gaddr5, 0);
1566         gfar_write(&regs->gaddr6, 0);
1567         gfar_write(&regs->gaddr7, 0);
1568
1569         /* Zero out the rmon mib registers if it has them */
1570         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1571                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1572
1573                 /* Mask off the CAM interrupts */
1574                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1575                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1576         }
1577
1578         /* Initialize the max receive buffer length */
1579         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1580
1581         /* Initialize the Minimum Frame Length Register */
1582         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1583 }
1584
1585 static int __gfar_is_rx_idle(struct gfar_private *priv)
1586 {
1587         u32 res;
1588
1589         /* Normaly TSEC should not hang on GRS commands, so we should
1590          * actually wait for IEVENT_GRSC flag.
1591          */
1592         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1593                 return 0;
1594
1595         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1596          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1597          * and the Rx can be safely reset.
1598          */
1599         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1600         res &= 0x7f807f80;
1601         if ((res & 0xffff) == (res >> 16))
1602                 return 1;
1603
1604         return 0;
1605 }
1606
1607 /* Halt the receive and transmit queues */
1608 static void gfar_halt_nodisable(struct net_device *dev)
1609 {
1610         struct gfar_private *priv = netdev_priv(dev);
1611         struct gfar __iomem *regs = NULL;
1612         u32 tempval;
1613         int i;
1614
1615         for (i = 0; i < priv->num_grps; i++) {
1616                 regs = priv->gfargrp[i].regs;
1617                 /* Mask all interrupts */
1618                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1619
1620                 /* Clear all interrupts */
1621                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1622         }
1623
1624         regs = priv->gfargrp[0].regs;
1625         /* Stop the DMA, and wait for it to stop */
1626         tempval = gfar_read(&regs->dmactrl);
1627         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1628             (DMACTRL_GRS | DMACTRL_GTS)) {
1629                 int ret;
1630
1631                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1632                 gfar_write(&regs->dmactrl, tempval);
1633
1634                 do {
1635                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1636                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1637                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1638                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1639                                 ret = __gfar_is_rx_idle(priv);
1640                 } while (!ret);
1641         }
1642 }
1643
1644 /* Halt the receive and transmit queues */
1645 void gfar_halt(struct net_device *dev)
1646 {
1647         struct gfar_private *priv = netdev_priv(dev);
1648         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1649         u32 tempval;
1650
1651         gfar_halt_nodisable(dev);
1652
1653         /* Disable Rx and Tx */
1654         tempval = gfar_read(&regs->maccfg1);
1655         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1656         gfar_write(&regs->maccfg1, tempval);
1657 }
1658
1659 static void free_grp_irqs(struct gfar_priv_grp *grp)
1660 {
1661         free_irq(gfar_irq(grp, TX)->irq, grp);
1662         free_irq(gfar_irq(grp, RX)->irq, grp);
1663         free_irq(gfar_irq(grp, ER)->irq, grp);
1664 }
1665
1666 void stop_gfar(struct net_device *dev)
1667 {
1668         struct gfar_private *priv = netdev_priv(dev);
1669         unsigned long flags;
1670         int i;
1671
1672         phy_stop(priv->phydev);
1673
1674
1675         /* Lock it down */
1676         local_irq_save(flags);
1677         lock_tx_qs(priv);
1678         lock_rx_qs(priv);
1679
1680         gfar_halt(dev);
1681
1682         unlock_rx_qs(priv);
1683         unlock_tx_qs(priv);
1684         local_irq_restore(flags);
1685
1686         /* Free the IRQs */
1687         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1688                 for (i = 0; i < priv->num_grps; i++)
1689                         free_grp_irqs(&priv->gfargrp[i]);
1690         } else {
1691                 for (i = 0; i < priv->num_grps; i++)
1692                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1693                                  &priv->gfargrp[i]);
1694         }
1695
1696         free_skb_resources(priv);
1697 }
1698
1699 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1700 {
1701         struct txbd8 *txbdp;
1702         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1703         int i, j;
1704
1705         txbdp = tx_queue->tx_bd_base;
1706
1707         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1708                 if (!tx_queue->tx_skbuff[i])
1709                         continue;
1710
1711                 dma_unmap_single(priv->dev, txbdp->bufPtr,
1712                                  txbdp->length, DMA_TO_DEVICE);
1713                 txbdp->lstatus = 0;
1714                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1715                      j++) {
1716                         txbdp++;
1717                         dma_unmap_page(priv->dev, txbdp->bufPtr,
1718                                        txbdp->length, DMA_TO_DEVICE);
1719                 }
1720                 txbdp++;
1721                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1722                 tx_queue->tx_skbuff[i] = NULL;
1723         }
1724         kfree(tx_queue->tx_skbuff);
1725         tx_queue->tx_skbuff = NULL;
1726 }
1727
1728 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1729 {
1730         struct rxbd8 *rxbdp;
1731         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1732         int i;
1733
1734         rxbdp = rx_queue->rx_bd_base;
1735
1736         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1737                 if (rx_queue->rx_skbuff[i]) {
1738                         dma_unmap_single(priv->dev, rxbdp->bufPtr,
1739                                          priv->rx_buffer_size,
1740                                          DMA_FROM_DEVICE);
1741                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1742                         rx_queue->rx_skbuff[i] = NULL;
1743                 }
1744                 rxbdp->lstatus = 0;
1745                 rxbdp->bufPtr = 0;
1746                 rxbdp++;
1747         }
1748         kfree(rx_queue->rx_skbuff);
1749         rx_queue->rx_skbuff = NULL;
1750 }
1751
1752 /* If there are any tx skbs or rx skbs still around, free them.
1753  * Then free tx_skbuff and rx_skbuff
1754  */
1755 static void free_skb_resources(struct gfar_private *priv)
1756 {
1757         struct gfar_priv_tx_q *tx_queue = NULL;
1758         struct gfar_priv_rx_q *rx_queue = NULL;
1759         int i;
1760
1761         /* Go through all the buffer descriptors and free their data buffers */
1762         for (i = 0; i < priv->num_tx_queues; i++) {
1763                 struct netdev_queue *txq;
1764
1765                 tx_queue = priv->tx_queue[i];
1766                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1767                 if (tx_queue->tx_skbuff)
1768                         free_skb_tx_queue(tx_queue);
1769                 netdev_tx_reset_queue(txq);
1770         }
1771
1772         for (i = 0; i < priv->num_rx_queues; i++) {
1773                 rx_queue = priv->rx_queue[i];
1774                 if (rx_queue->rx_skbuff)
1775                         free_skb_rx_queue(rx_queue);
1776         }
1777
1778         dma_free_coherent(priv->dev,
1779                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1780                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1781                           priv->tx_queue[0]->tx_bd_base,
1782                           priv->tx_queue[0]->tx_bd_dma_base);
1783 }
1784
1785 void gfar_start(struct net_device *dev)
1786 {
1787         struct gfar_private *priv = netdev_priv(dev);
1788         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1789         u32 tempval;
1790         int i = 0;
1791
1792         /* Enable Rx and Tx in MACCFG1 */
1793         tempval = gfar_read(&regs->maccfg1);
1794         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1795         gfar_write(&regs->maccfg1, tempval);
1796
1797         /* Initialize DMACTRL to have WWR and WOP */
1798         tempval = gfar_read(&regs->dmactrl);
1799         tempval |= DMACTRL_INIT_SETTINGS;
1800         gfar_write(&regs->dmactrl, tempval);
1801
1802         /* Make sure we aren't stopped */
1803         tempval = gfar_read(&regs->dmactrl);
1804         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1805         gfar_write(&regs->dmactrl, tempval);
1806
1807         for (i = 0; i < priv->num_grps; i++) {
1808                 regs = priv->gfargrp[i].regs;
1809                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1810                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1811                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1812                 /* Unmask the interrupts we look for */
1813                 gfar_write(&regs->imask, IMASK_DEFAULT);
1814         }
1815
1816         dev->trans_start = jiffies; /* prevent tx timeout */
1817 }
1818
1819 static void gfar_configure_coalescing(struct gfar_private *priv,
1820                                unsigned long tx_mask, unsigned long rx_mask)
1821 {
1822         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1823         u32 __iomem *baddr;
1824
1825         if (priv->mode == MQ_MG_MODE) {
1826                 int i = 0;
1827                 baddr = &regs->txic0;
1828                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1829                         gfar_write(baddr + i, 0);
1830                         if (likely(priv->tx_queue[i]->txcoalescing))
1831                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1832                 }
1833
1834                 baddr = &regs->rxic0;
1835                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1836                         gfar_write(baddr + i, 0);
1837                         if (likely(priv->rx_queue[i]->rxcoalescing))
1838                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1839                 }
1840         } else {
1841                 /* Backward compatible case ---- even if we enable
1842                  * multiple queues, there's only single reg to program
1843                  */
1844                 gfar_write(&regs->txic, 0);
1845                 if (likely(priv->tx_queue[0]->txcoalescing))
1846                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1847
1848                 gfar_write(&regs->rxic, 0);
1849                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1850                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1851         }
1852 }
1853
1854 void gfar_configure_coalescing_all(struct gfar_private *priv)
1855 {
1856         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1857 }
1858
1859 static int register_grp_irqs(struct gfar_priv_grp *grp)
1860 {
1861         struct gfar_private *priv = grp->priv;
1862         struct net_device *dev = priv->ndev;
1863         int err;
1864
1865         /* If the device has multiple interrupts, register for
1866          * them.  Otherwise, only register for the one
1867          */
1868         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1869                 /* Install our interrupt handlers for Error,
1870                  * Transmit, and Receive
1871                  */
1872                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1873                                   gfar_irq(grp, ER)->name, grp);
1874                 if (err < 0) {
1875                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1876                                   gfar_irq(grp, ER)->irq);
1877
1878                         goto err_irq_fail;
1879                 }
1880                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1881                                   gfar_irq(grp, TX)->name, grp);
1882                 if (err < 0) {
1883                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1884                                   gfar_irq(grp, TX)->irq);
1885                         goto tx_irq_fail;
1886                 }
1887                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1888                                   gfar_irq(grp, RX)->name, grp);
1889                 if (err < 0) {
1890                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1891                                   gfar_irq(grp, RX)->irq);
1892                         goto rx_irq_fail;
1893                 }
1894         } else {
1895                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1896                                   gfar_irq(grp, TX)->name, grp);
1897                 if (err < 0) {
1898                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1899                                   gfar_irq(grp, TX)->irq);
1900                         goto err_irq_fail;
1901                 }
1902         }
1903
1904         return 0;
1905
1906 rx_irq_fail:
1907         free_irq(gfar_irq(grp, TX)->irq, grp);
1908 tx_irq_fail:
1909         free_irq(gfar_irq(grp, ER)->irq, grp);
1910 err_irq_fail:
1911         return err;
1912
1913 }
1914
1915 /* Bring the controller up and running */
1916 int startup_gfar(struct net_device *ndev)
1917 {
1918         struct gfar_private *priv = netdev_priv(ndev);
1919         struct gfar __iomem *regs = NULL;
1920         int err, i, j;
1921
1922         for (i = 0; i < priv->num_grps; i++) {
1923                 regs= priv->gfargrp[i].regs;
1924                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1925         }
1926
1927         regs= priv->gfargrp[0].regs;
1928         err = gfar_alloc_skb_resources(ndev);
1929         if (err)
1930                 return err;
1931
1932         gfar_init_mac(ndev);
1933
1934         for (i = 0; i < priv->num_grps; i++) {
1935                 err = register_grp_irqs(&priv->gfargrp[i]);
1936                 if (err) {
1937                         for (j = 0; j < i; j++)
1938                                 free_grp_irqs(&priv->gfargrp[j]);
1939                         goto irq_fail;
1940                 }
1941         }
1942
1943         /* Start the controller */
1944         gfar_start(ndev);
1945
1946         phy_start(priv->phydev);
1947
1948         gfar_configure_coalescing_all(priv);
1949
1950         return 0;
1951
1952 irq_fail:
1953         free_skb_resources(priv);
1954         return err;
1955 }
1956
1957 /* Called when something needs to use the ethernet device
1958  * Returns 0 for success.
1959  */
1960 static int gfar_enet_open(struct net_device *dev)
1961 {
1962         struct gfar_private *priv = netdev_priv(dev);
1963         int err;
1964
1965         enable_napi(priv);
1966
1967         /* Initialize a bunch of registers */
1968         init_registers(dev);
1969
1970         gfar_set_mac_address(dev);
1971
1972         err = init_phy(dev);
1973
1974         if (err) {
1975                 disable_napi(priv);
1976                 return err;
1977         }
1978
1979         err = startup_gfar(dev);
1980         if (err) {
1981                 disable_napi(priv);
1982                 return err;
1983         }
1984
1985         netif_tx_start_all_queues(dev);
1986
1987         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1988
1989         return err;
1990 }
1991
1992 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1993 {
1994         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1995
1996         memset(fcb, 0, GMAC_FCB_LEN);
1997
1998         return fcb;
1999 }
2000
2001 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2002                                     int fcb_length)
2003 {
2004         /* If we're here, it's a IP packet with a TCP or UDP
2005          * payload.  We set it to checksum, using a pseudo-header
2006          * we provide
2007          */
2008         u8 flags = TXFCB_DEFAULT;
2009
2010         /* Tell the controller what the protocol is
2011          * And provide the already calculated phcs
2012          */
2013         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2014                 flags |= TXFCB_UDP;
2015                 fcb->phcs = udp_hdr(skb)->check;
2016         } else
2017                 fcb->phcs = tcp_hdr(skb)->check;
2018
2019         /* l3os is the distance between the start of the
2020          * frame (skb->data) and the start of the IP hdr.
2021          * l4os is the distance between the start of the
2022          * l3 hdr and the l4 hdr
2023          */
2024         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2025         fcb->l4os = skb_network_header_len(skb);
2026
2027         fcb->flags = flags;
2028 }
2029
2030 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2031 {
2032         fcb->flags |= TXFCB_VLN;
2033         fcb->vlctl = vlan_tx_tag_get(skb);
2034 }
2035
2036 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2037                                       struct txbd8 *base, int ring_size)
2038 {
2039         struct txbd8 *new_bd = bdp + stride;
2040
2041         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2042 }
2043
2044 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2045                                       int ring_size)
2046 {
2047         return skip_txbd(bdp, 1, base, ring_size);
2048 }
2049
2050 /* This is called by the kernel when a frame is ready for transmission.
2051  * It is pointed to by the dev->hard_start_xmit function pointer
2052  */
2053 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2054 {
2055         struct gfar_private *priv = netdev_priv(dev);
2056         struct gfar_priv_tx_q *tx_queue = NULL;
2057         struct netdev_queue *txq;
2058         struct gfar __iomem *regs = NULL;
2059         struct txfcb *fcb = NULL;
2060         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2061         u32 lstatus;
2062         int i, rq = 0, do_tstamp = 0;
2063         u32 bufaddr;
2064         unsigned long flags;
2065         unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2066
2067         /* TOE=1 frames larger than 2500 bytes may see excess delays
2068          * before start of transmission.
2069          */
2070         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2071                      skb->ip_summed == CHECKSUM_PARTIAL &&
2072                      skb->len > 2500)) {
2073                 int ret;
2074
2075                 ret = skb_checksum_help(skb);
2076                 if (ret)
2077                         return ret;
2078         }
2079
2080         rq = skb->queue_mapping;
2081         tx_queue = priv->tx_queue[rq];
2082         txq = netdev_get_tx_queue(dev, rq);
2083         base = tx_queue->tx_bd_base;
2084         regs = tx_queue->grp->regs;
2085
2086         /* check if time stamp should be generated */
2087         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2088                      priv->hwts_tx_en)) {
2089                 do_tstamp = 1;
2090                 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2091         }
2092
2093         /* make space for additional header when fcb is needed */
2094         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2095              vlan_tx_tag_present(skb) ||
2096              unlikely(do_tstamp)) &&
2097             (skb_headroom(skb) < fcb_length)) {
2098                 struct sk_buff *skb_new;
2099
2100                 skb_new = skb_realloc_headroom(skb, fcb_length);
2101                 if (!skb_new) {
2102                         dev->stats.tx_errors++;
2103                         kfree_skb(skb);
2104                         return NETDEV_TX_OK;
2105                 }
2106
2107                 if (skb->sk)
2108                         skb_set_owner_w(skb_new, skb->sk);
2109                 consume_skb(skb);
2110                 skb = skb_new;
2111         }
2112
2113         /* total number of fragments in the SKB */
2114         nr_frags = skb_shinfo(skb)->nr_frags;
2115
2116         /* calculate the required number of TxBDs for this skb */
2117         if (unlikely(do_tstamp))
2118                 nr_txbds = nr_frags + 2;
2119         else
2120                 nr_txbds = nr_frags + 1;
2121
2122         /* check if there is space to queue this packet */
2123         if (nr_txbds > tx_queue->num_txbdfree) {
2124                 /* no space, stop the queue */
2125                 netif_tx_stop_queue(txq);
2126                 dev->stats.tx_fifo_errors++;
2127                 return NETDEV_TX_BUSY;
2128         }
2129
2130         /* Update transmit stats */
2131         tx_queue->stats.tx_bytes += skb->len;
2132         tx_queue->stats.tx_packets++;
2133
2134         txbdp = txbdp_start = tx_queue->cur_tx;
2135         lstatus = txbdp->lstatus;
2136
2137         /* Time stamp insertion requires one additional TxBD */
2138         if (unlikely(do_tstamp))
2139                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2140                                                  tx_queue->tx_ring_size);
2141
2142         if (nr_frags == 0) {
2143                 if (unlikely(do_tstamp))
2144                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2145                                                           TXBD_INTERRUPT);
2146                 else
2147                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2148         } else {
2149                 /* Place the fragment addresses and lengths into the TxBDs */
2150                 for (i = 0; i < nr_frags; i++) {
2151                         /* Point at the next BD, wrapping as needed */
2152                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2153
2154                         length = skb_shinfo(skb)->frags[i].size;
2155
2156                         lstatus = txbdp->lstatus | length |
2157                                   BD_LFLAG(TXBD_READY);
2158
2159                         /* Handle the last BD specially */
2160                         if (i == nr_frags - 1)
2161                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2162
2163                         bufaddr = skb_frag_dma_map(priv->dev,
2164                                                    &skb_shinfo(skb)->frags[i],
2165                                                    0,
2166                                                    length,
2167                                                    DMA_TO_DEVICE);
2168
2169                         /* set the TxBD length and buffer pointer */
2170                         txbdp->bufPtr = bufaddr;
2171                         txbdp->lstatus = lstatus;
2172                 }
2173
2174                 lstatus = txbdp_start->lstatus;
2175         }
2176
2177         /* Add TxPAL between FCB and frame if required */
2178         if (unlikely(do_tstamp)) {
2179                 skb_push(skb, GMAC_TXPAL_LEN);
2180                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2181         }
2182
2183         /* Set up checksumming */
2184         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2185                 fcb = gfar_add_fcb(skb);
2186                 /* as specified by errata */
2187                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2188                              ((unsigned long)fcb % 0x20) > 0x18)) {
2189                         __skb_pull(skb, GMAC_FCB_LEN);
2190                         skb_checksum_help(skb);
2191                 } else {
2192                         lstatus |= BD_LFLAG(TXBD_TOE);
2193                         gfar_tx_checksum(skb, fcb, fcb_length);
2194                 }
2195         }
2196
2197         if (vlan_tx_tag_present(skb)) {
2198                 if (unlikely(NULL == fcb)) {
2199                         fcb = gfar_add_fcb(skb);
2200                         lstatus |= BD_LFLAG(TXBD_TOE);
2201                 }
2202
2203                 gfar_tx_vlan(skb, fcb);
2204         }
2205
2206         /* Setup tx hardware time stamping if requested */
2207         if (unlikely(do_tstamp)) {
2208                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2209                 if (fcb == NULL)
2210                         fcb = gfar_add_fcb(skb);
2211                 fcb->ptp = 1;
2212                 lstatus |= BD_LFLAG(TXBD_TOE);
2213         }
2214
2215         txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2216                                              skb_headlen(skb), DMA_TO_DEVICE);
2217
2218         /* If time stamping is requested one additional TxBD must be set up. The
2219          * first TxBD points to the FCB and must have a data length of
2220          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2221          * the full frame length.
2222          */
2223         if (unlikely(do_tstamp)) {
2224                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2225                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2226                                          (skb_headlen(skb) - fcb_length);
2227                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2228         } else {
2229                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2230         }
2231
2232         netdev_tx_sent_queue(txq, skb->len);
2233
2234         /* We can work in parallel with gfar_clean_tx_ring(), except
2235          * when modifying num_txbdfree. Note that we didn't grab the lock
2236          * when we were reading the num_txbdfree and checking for available
2237          * space, that's because outside of this function it can only grow,
2238          * and once we've got needed space, it cannot suddenly disappear.
2239          *
2240          * The lock also protects us from gfar_error(), which can modify
2241          * regs->tstat and thus retrigger the transfers, which is why we
2242          * also must grab the lock before setting ready bit for the first
2243          * to be transmitted BD.
2244          */
2245         spin_lock_irqsave(&tx_queue->txlock, flags);
2246
2247         /* The powerpc-specific eieio() is used, as wmb() has too strong
2248          * semantics (it requires synchronization between cacheable and
2249          * uncacheable mappings, which eieio doesn't provide and which we
2250          * don't need), thus requiring a more expensive sync instruction.  At
2251          * some point, the set of architecture-independent barrier functions
2252          * should be expanded to include weaker barriers.
2253          */
2254         eieio();
2255
2256         txbdp_start->lstatus = lstatus;
2257
2258         eieio(); /* force lstatus write before tx_skbuff */
2259
2260         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2261
2262         /* Update the current skb pointer to the next entry we will use
2263          * (wrapping if necessary)
2264          */
2265         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2266                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2267
2268         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2269
2270         /* reduce TxBD free count */
2271         tx_queue->num_txbdfree -= (nr_txbds);
2272
2273         /* If the next BD still needs to be cleaned up, then the bds
2274          * are full.  We need to tell the kernel to stop sending us stuff.
2275          */
2276         if (!tx_queue->num_txbdfree) {
2277                 netif_tx_stop_queue(txq);
2278
2279                 dev->stats.tx_fifo_errors++;
2280         }
2281
2282         /* Tell the DMA to go go go */
2283         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2284
2285         /* Unlock priv */
2286         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2287
2288         return NETDEV_TX_OK;
2289 }
2290
2291 /* Stops the kernel queue, and halts the controller */
2292 static int gfar_close(struct net_device *dev)
2293 {
2294         struct gfar_private *priv = netdev_priv(dev);
2295
2296         disable_napi(priv);
2297
2298         cancel_work_sync(&priv->reset_task);
2299         stop_gfar(dev);
2300
2301         /* Disconnect from the PHY */
2302         phy_disconnect(priv->phydev);
2303         priv->phydev = NULL;
2304
2305         netif_tx_stop_all_queues(dev);
2306
2307         return 0;
2308 }
2309
2310 /* Changes the mac address if the controller is not running. */
2311 static int gfar_set_mac_address(struct net_device *dev)
2312 {
2313         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2314
2315         return 0;
2316 }
2317
2318 /* Check if rx parser should be activated */
2319 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2320 {
2321         struct gfar __iomem *regs;
2322         u32 tempval;
2323
2324         regs = priv->gfargrp[0].regs;
2325
2326         tempval = gfar_read(&regs->rctrl);
2327         /* If parse is no longer required, then disable parser */
2328         if (tempval & RCTRL_REQ_PARSER) {
2329                 tempval |= RCTRL_PRSDEP_INIT;
2330                 priv->uses_rxfcb = 1;
2331         } else {
2332                 tempval &= ~RCTRL_PRSDEP_INIT;
2333                 priv->uses_rxfcb = 0;
2334         }
2335         gfar_write(&regs->rctrl, tempval);
2336 }
2337
2338 /* Enables and disables VLAN insertion/extraction */
2339 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2340 {
2341         struct gfar_private *priv = netdev_priv(dev);
2342         struct gfar __iomem *regs = NULL;
2343         unsigned long flags;
2344         u32 tempval;
2345
2346         regs = priv->gfargrp[0].regs;
2347         local_irq_save(flags);
2348         lock_rx_qs(priv);
2349
2350         if (features & NETIF_F_HW_VLAN_TX) {
2351                 /* Enable VLAN tag insertion */
2352                 tempval = gfar_read(&regs->tctrl);
2353                 tempval |= TCTRL_VLINS;
2354                 gfar_write(&regs->tctrl, tempval);
2355         } else {
2356                 /* Disable VLAN tag insertion */
2357                 tempval = gfar_read(&regs->tctrl);
2358                 tempval &= ~TCTRL_VLINS;
2359                 gfar_write(&regs->tctrl, tempval);
2360         }
2361
2362         if (features & NETIF_F_HW_VLAN_RX) {
2363                 /* Enable VLAN tag extraction */
2364                 tempval = gfar_read(&regs->rctrl);
2365                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2366                 gfar_write(&regs->rctrl, tempval);
2367                 priv->uses_rxfcb = 1;
2368         } else {
2369                 /* Disable VLAN tag extraction */
2370                 tempval = gfar_read(&regs->rctrl);
2371                 tempval &= ~RCTRL_VLEX;
2372                 gfar_write(&regs->rctrl, tempval);
2373
2374                 gfar_check_rx_parser_mode(priv);
2375         }
2376
2377         gfar_change_mtu(dev, dev->mtu);
2378
2379         unlock_rx_qs(priv);
2380         local_irq_restore(flags);
2381 }
2382
2383 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2384 {
2385         int tempsize, tempval;
2386         struct gfar_private *priv = netdev_priv(dev);
2387         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2388         int oldsize = priv->rx_buffer_size;
2389         int frame_size = new_mtu + ETH_HLEN;
2390
2391         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2392                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2393                 return -EINVAL;
2394         }
2395
2396         if (priv->uses_rxfcb)
2397                 frame_size += GMAC_FCB_LEN;
2398
2399         frame_size += priv->padding;
2400
2401         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2402                    INCREMENTAL_BUFFER_SIZE;
2403
2404         /* Only stop and start the controller if it isn't already
2405          * stopped, and we changed something
2406          */
2407         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2408                 stop_gfar(dev);
2409
2410         priv->rx_buffer_size = tempsize;
2411
2412         dev->mtu = new_mtu;
2413
2414         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2415         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2416
2417         /* If the mtu is larger than the max size for standard
2418          * ethernet frames (ie, a jumbo frame), then set maccfg2
2419          * to allow huge frames, and to check the length
2420          */
2421         tempval = gfar_read(&regs->maccfg2);
2422
2423         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2424             gfar_has_errata(priv, GFAR_ERRATA_74))
2425                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2426         else
2427                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2428
2429         gfar_write(&regs->maccfg2, tempval);
2430
2431         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2432                 startup_gfar(dev);
2433
2434         return 0;
2435 }
2436
2437 /* gfar_reset_task gets scheduled when a packet has not been
2438  * transmitted after a set amount of time.
2439  * For now, assume that clearing out all the structures, and
2440  * starting over will fix the problem.
2441  */
2442 static void gfar_reset_task(struct work_struct *work)
2443 {
2444         struct gfar_private *priv = container_of(work, struct gfar_private,
2445                                                  reset_task);
2446         struct net_device *dev = priv->ndev;
2447
2448         if (dev->flags & IFF_UP) {
2449                 netif_tx_stop_all_queues(dev);
2450                 stop_gfar(dev);
2451                 startup_gfar(dev);
2452                 netif_tx_start_all_queues(dev);
2453         }
2454
2455         netif_tx_schedule_all(dev);
2456 }
2457
2458 static void gfar_timeout(struct net_device *dev)
2459 {
2460         struct gfar_private *priv = netdev_priv(dev);
2461
2462         dev->stats.tx_errors++;
2463         schedule_work(&priv->reset_task);
2464 }
2465
2466 static void gfar_align_skb(struct sk_buff *skb)
2467 {
2468         /* We need the data buffer to be aligned properly.  We will reserve
2469          * as many bytes as needed to align the data properly
2470          */
2471         skb_reserve(skb, RXBUF_ALIGNMENT -
2472                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2473 }
2474
2475 /* Interrupt Handler for Transmit complete */
2476 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2477 {
2478         struct net_device *dev = tx_queue->dev;
2479         struct netdev_queue *txq;
2480         struct gfar_private *priv = netdev_priv(dev);
2481         struct gfar_priv_rx_q *rx_queue = NULL;
2482         struct txbd8 *bdp, *next = NULL;
2483         struct txbd8 *lbdp = NULL;
2484         struct txbd8 *base = tx_queue->tx_bd_base;
2485         struct sk_buff *skb;
2486         int skb_dirtytx;
2487         int tx_ring_size = tx_queue->tx_ring_size;
2488         int frags = 0, nr_txbds = 0;
2489         int i;
2490         int howmany = 0;
2491         int tqi = tx_queue->qindex;
2492         unsigned int bytes_sent = 0;
2493         u32 lstatus;
2494         size_t buflen;
2495
2496         rx_queue = priv->rx_queue[tqi];
2497         txq = netdev_get_tx_queue(dev, tqi);
2498         bdp = tx_queue->dirty_tx;
2499         skb_dirtytx = tx_queue->skb_dirtytx;
2500
2501         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2502                 unsigned long flags;
2503
2504                 frags = skb_shinfo(skb)->nr_frags;
2505
2506                 /* When time stamping, one additional TxBD must be freed.
2507                  * Also, we need to dma_unmap_single() the TxPAL.
2508                  */
2509                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2510                         nr_txbds = frags + 2;
2511                 else
2512                         nr_txbds = frags + 1;
2513
2514                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2515
2516                 lstatus = lbdp->lstatus;
2517
2518                 /* Only clean completed frames */
2519                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2520                     (lstatus & BD_LENGTH_MASK))
2521                         break;
2522
2523                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2524                         next = next_txbd(bdp, base, tx_ring_size);
2525                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2526                 } else
2527                         buflen = bdp->length;
2528
2529                 dma_unmap_single(priv->dev, bdp->bufPtr,
2530                                  buflen, DMA_TO_DEVICE);
2531
2532                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2533                         struct skb_shared_hwtstamps shhwtstamps;
2534                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2535
2536                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2537                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2538                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2539                         skb_tstamp_tx(skb, &shhwtstamps);
2540                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2541                         bdp = next;
2542                 }
2543
2544                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2545                 bdp = next_txbd(bdp, base, tx_ring_size);
2546
2547                 for (i = 0; i < frags; i++) {
2548                         dma_unmap_page(priv->dev, bdp->bufPtr,
2549                                        bdp->length, DMA_TO_DEVICE);
2550                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2551                         bdp = next_txbd(bdp, base, tx_ring_size);
2552                 }
2553
2554                 bytes_sent += skb->len;
2555
2556                 dev_kfree_skb_any(skb);
2557
2558                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2559
2560                 skb_dirtytx = (skb_dirtytx + 1) &
2561                               TX_RING_MOD_MASK(tx_ring_size);
2562
2563                 howmany++;
2564                 spin_lock_irqsave(&tx_queue->txlock, flags);
2565                 tx_queue->num_txbdfree += nr_txbds;
2566                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2567         }
2568
2569         /* If we freed a buffer, we can restart transmission, if necessary */
2570         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2571                 netif_wake_subqueue(dev, tqi);
2572
2573         /* Update dirty indicators */
2574         tx_queue->skb_dirtytx = skb_dirtytx;
2575         tx_queue->dirty_tx = bdp;
2576
2577         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2578 }
2579
2580 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2581 {
2582         unsigned long flags;
2583
2584         spin_lock_irqsave(&gfargrp->grplock, flags);
2585         if (napi_schedule_prep(&gfargrp->napi)) {
2586                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2587                 __napi_schedule(&gfargrp->napi);
2588         } else {
2589                 /* Clear IEVENT, so interrupts aren't called again
2590                  * because of the packets that have already arrived.
2591                  */
2592                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2593         }
2594         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2595
2596 }
2597
2598 /* Interrupt Handler for Transmit complete */
2599 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2600 {
2601         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2602         return IRQ_HANDLED;
2603 }
2604
2605 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2606                            struct sk_buff *skb)
2607 {
2608         struct net_device *dev = rx_queue->dev;
2609         struct gfar_private *priv = netdev_priv(dev);
2610         dma_addr_t buf;
2611
2612         buf = dma_map_single(priv->dev, skb->data,
2613                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2614         gfar_init_rxbdp(rx_queue, bdp, buf);
2615 }
2616
2617 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2618 {
2619         struct gfar_private *priv = netdev_priv(dev);
2620         struct sk_buff *skb;
2621
2622         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2623         if (!skb)
2624                 return NULL;
2625
2626         gfar_align_skb(skb);
2627
2628         return skb;
2629 }
2630
2631 struct sk_buff *gfar_new_skb(struct net_device *dev)
2632 {
2633         return gfar_alloc_skb(dev);
2634 }
2635
2636 static inline void count_errors(unsigned short status, struct net_device *dev)
2637 {
2638         struct gfar_private *priv = netdev_priv(dev);
2639         struct net_device_stats *stats = &dev->stats;
2640         struct gfar_extra_stats *estats = &priv->extra_stats;
2641
2642         /* If the packet was truncated, none of the other errors matter */
2643         if (status & RXBD_TRUNCATED) {
2644                 stats->rx_length_errors++;
2645
2646                 atomic64_inc(&estats->rx_trunc);
2647
2648                 return;
2649         }
2650         /* Count the errors, if there were any */
2651         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2652                 stats->rx_length_errors++;
2653
2654                 if (status & RXBD_LARGE)
2655                         atomic64_inc(&estats->rx_large);
2656                 else
2657                         atomic64_inc(&estats->rx_short);
2658         }
2659         if (status & RXBD_NONOCTET) {
2660                 stats->rx_frame_errors++;
2661                 atomic64_inc(&estats->rx_nonoctet);
2662         }
2663         if (status & RXBD_CRCERR) {
2664                 atomic64_inc(&estats->rx_crcerr);
2665                 stats->rx_crc_errors++;
2666         }
2667         if (status & RXBD_OVERRUN) {
2668                 atomic64_inc(&estats->rx_overrun);
2669                 stats->rx_crc_errors++;
2670         }
2671 }
2672
2673 irqreturn_t gfar_receive(int irq, void *grp_id)
2674 {
2675         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2676         return IRQ_HANDLED;
2677 }
2678
2679 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2680 {
2681         /* If valid headers were found, and valid sums
2682          * were verified, then we tell the kernel that no
2683          * checksumming is necessary.  Otherwise, it is [FIXME]
2684          */
2685         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2686                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2687         else
2688                 skb_checksum_none_assert(skb);
2689 }
2690
2691
2692 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2693 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2694                                int amount_pull, struct napi_struct *napi)
2695 {
2696         struct gfar_private *priv = netdev_priv(dev);
2697         struct rxfcb *fcb = NULL;
2698
2699         gro_result_t ret;
2700
2701         /* fcb is at the beginning if exists */
2702         fcb = (struct rxfcb *)skb->data;
2703
2704         /* Remove the FCB from the skb
2705          * Remove the padded bytes, if there are any
2706          */
2707         if (amount_pull) {
2708                 skb_record_rx_queue(skb, fcb->rq);
2709                 skb_pull(skb, amount_pull);
2710         }
2711
2712         /* Get receive timestamp from the skb */
2713         if (priv->hwts_rx_en) {
2714                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2715                 u64 *ns = (u64 *) skb->data;
2716
2717                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2718                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2719         }
2720
2721         if (priv->padding)
2722                 skb_pull(skb, priv->padding);
2723
2724         if (dev->features & NETIF_F_RXCSUM)
2725                 gfar_rx_checksum(skb, fcb);
2726
2727         /* Tell the skb what kind of packet this is */
2728         skb->protocol = eth_type_trans(skb, dev);
2729
2730         /* There's need to check for NETIF_F_HW_VLAN_RX here.
2731          * Even if vlan rx accel is disabled, on some chips
2732          * RXFCB_VLN is pseudo randomly set.
2733          */
2734         if (dev->features & NETIF_F_HW_VLAN_RX &&
2735             fcb->flags & RXFCB_VLN)
2736                 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2737
2738         /* Send the packet up the stack */
2739         ret = napi_gro_receive(napi, skb);
2740
2741         if (unlikely(GRO_DROP == ret))
2742                 atomic64_inc(&priv->extra_stats.kernel_dropped);
2743 }
2744
2745 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2746  * until the budget/quota has been reached. Returns the number
2747  * of frames handled
2748  */
2749 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2750 {
2751         struct net_device *dev = rx_queue->dev;
2752         struct rxbd8 *bdp, *base;
2753         struct sk_buff *skb;
2754         int pkt_len;
2755         int amount_pull;
2756         int howmany = 0;
2757         struct gfar_private *priv = netdev_priv(dev);
2758
2759         /* Get the first full descriptor */
2760         bdp = rx_queue->cur_rx;
2761         base = rx_queue->rx_bd_base;
2762
2763         amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2764
2765         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2766                 struct sk_buff *newskb;
2767
2768                 rmb();
2769
2770                 /* Add another skb for the future */
2771                 newskb = gfar_new_skb(dev);
2772
2773                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2774
2775                 dma_unmap_single(priv->dev, bdp->bufPtr,
2776                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2777
2778                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2779                              bdp->length > priv->rx_buffer_size))
2780                         bdp->status = RXBD_LARGE;
2781
2782                 /* We drop the frame if we failed to allocate a new buffer */
2783                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2784                              bdp->status & RXBD_ERR)) {
2785                         count_errors(bdp->status, dev);
2786
2787                         if (unlikely(!newskb))
2788                                 newskb = skb;
2789                         else if (skb)
2790                                 dev_kfree_skb(skb);
2791                 } else {
2792                         /* Increment the number of packets */
2793                         rx_queue->stats.rx_packets++;
2794                         howmany++;
2795
2796                         if (likely(skb)) {
2797                                 pkt_len = bdp->length - ETH_FCS_LEN;
2798                                 /* Remove the FCS from the packet length */
2799                                 skb_put(skb, pkt_len);
2800                                 rx_queue->stats.rx_bytes += pkt_len;
2801                                 skb_record_rx_queue(skb, rx_queue->qindex);
2802                                 gfar_process_frame(dev, skb, amount_pull,
2803                                                    &rx_queue->grp->napi);
2804
2805                         } else {
2806                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2807                                 rx_queue->stats.rx_dropped++;
2808                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2809                         }
2810
2811                 }
2812
2813                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2814
2815                 /* Setup the new bdp */
2816                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2817
2818                 /* Update to the next pointer */
2819                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2820
2821                 /* update to point at the next skb */
2822                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2823                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2824         }
2825
2826         /* Update the current rxbd pointer to be the next one */
2827         rx_queue->cur_rx = bdp;
2828
2829         return howmany;
2830 }
2831
2832 static int gfar_poll(struct napi_struct *napi, int budget)
2833 {
2834         struct gfar_priv_grp *gfargrp =
2835                 container_of(napi, struct gfar_priv_grp, napi);
2836         struct gfar_private *priv = gfargrp->priv;
2837         struct gfar __iomem *regs = gfargrp->regs;
2838         struct gfar_priv_tx_q *tx_queue = NULL;
2839         struct gfar_priv_rx_q *rx_queue = NULL;
2840         int work_done = 0, work_done_per_q = 0;
2841         int i, budget_per_q;
2842         int has_tx_work;
2843         unsigned long rstat_rxf;
2844         int num_act_queues;
2845
2846         /* Clear IEVENT, so interrupts aren't called again
2847          * because of the packets that have already arrived
2848          */
2849         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2850
2851         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2852
2853         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2854         if (num_act_queues)
2855                 budget_per_q = budget/num_act_queues;
2856
2857         while (1) {
2858                 has_tx_work = 0;
2859                 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2860                         tx_queue = priv->tx_queue[i];
2861                         /* run Tx cleanup to completion */
2862                         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2863                                 gfar_clean_tx_ring(tx_queue);
2864                                 has_tx_work = 1;
2865                         }
2866                 }
2867
2868                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2869                         /* skip queue if not active */
2870                         if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2871                                 continue;
2872
2873                         rx_queue = priv->rx_queue[i];
2874                         work_done_per_q =
2875                                 gfar_clean_rx_ring(rx_queue, budget_per_q);
2876                         work_done += work_done_per_q;
2877
2878                         /* finished processing this queue */
2879                         if (work_done_per_q < budget_per_q) {
2880                                 /* clear active queue hw indication */
2881                                 gfar_write(&regs->rstat,
2882                                            RSTAT_CLEAR_RXF0 >> i);
2883                                 rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2884                                 num_act_queues--;
2885
2886                                 if (!num_act_queues)
2887                                         break;
2888                                 /* recompute budget per Rx queue */
2889                                 budget_per_q =
2890                                         (budget - work_done) / num_act_queues;
2891                         }
2892                 }
2893
2894                 if (work_done >= budget)
2895                         break;
2896
2897                 if (!num_act_queues && !has_tx_work) {
2898
2899                         napi_complete(napi);
2900
2901                         /* Clear the halt bit in RSTAT */
2902                         gfar_write(&regs->rstat, gfargrp->rstat);
2903
2904                         gfar_write(&regs->imask, IMASK_DEFAULT);
2905
2906                         /* If we are coalescing interrupts, update the timer
2907                          * Otherwise, clear it
2908                          */
2909                         gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2910                                                   gfargrp->tx_bit_map);
2911                         break;
2912                 }
2913         }
2914
2915         return work_done;
2916 }
2917
2918 #ifdef CONFIG_NET_POLL_CONTROLLER
2919 /* Polling 'interrupt' - used by things like netconsole to send skbs
2920  * without having to re-enable interrupts. It's not called while
2921  * the interrupt routine is executing.
2922  */
2923 static void gfar_netpoll(struct net_device *dev)
2924 {
2925         struct gfar_private *priv = netdev_priv(dev);
2926         int i;
2927
2928         /* If the device has multiple interrupts, run tx/rx */
2929         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2930                 for (i = 0; i < priv->num_grps; i++) {
2931                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2932
2933                         disable_irq(gfar_irq(grp, TX)->irq);
2934                         disable_irq(gfar_irq(grp, RX)->irq);
2935                         disable_irq(gfar_irq(grp, ER)->irq);
2936                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2937                         enable_irq(gfar_irq(grp, ER)->irq);
2938                         enable_irq(gfar_irq(grp, RX)->irq);
2939                         enable_irq(gfar_irq(grp, TX)->irq);
2940                 }
2941         } else {
2942                 for (i = 0; i < priv->num_grps; i++) {
2943                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2944
2945                         disable_irq(gfar_irq(grp, TX)->irq);
2946                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2947                         enable_irq(gfar_irq(grp, TX)->irq);
2948                 }
2949         }
2950 }
2951 #endif
2952
2953 /* The interrupt handler for devices with one interrupt */
2954 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2955 {
2956         struct gfar_priv_grp *gfargrp = grp_id;
2957
2958         /* Save ievent for future reference */
2959         u32 events = gfar_read(&gfargrp->regs->ievent);
2960
2961         /* Check for reception */
2962         if (events & IEVENT_RX_MASK)
2963                 gfar_receive(irq, grp_id);
2964
2965         /* Check for transmit completion */
2966         if (events & IEVENT_TX_MASK)
2967                 gfar_transmit(irq, grp_id);
2968
2969         /* Check for errors */
2970         if (events & IEVENT_ERR_MASK)
2971                 gfar_error(irq, grp_id);
2972
2973         return IRQ_HANDLED;
2974 }
2975
2976 /* Called every time the controller might need to be made
2977  * aware of new link state.  The PHY code conveys this
2978  * information through variables in the phydev structure, and this
2979  * function converts those variables into the appropriate
2980  * register values, and can bring down the device if needed.
2981  */
2982 static void adjust_link(struct net_device *dev)
2983 {
2984         struct gfar_private *priv = netdev_priv(dev);
2985         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2986         unsigned long flags;
2987         struct phy_device *phydev = priv->phydev;
2988         int new_state = 0;
2989
2990         local_irq_save(flags);
2991         lock_tx_qs(priv);
2992
2993         if (phydev->link) {
2994                 u32 tempval = gfar_read(&regs->maccfg2);
2995                 u32 ecntrl = gfar_read(&regs->ecntrl);
2996
2997                 /* Now we make sure that we can be in full duplex mode.
2998                  * If not, we operate in half-duplex mode.
2999                  */
3000                 if (phydev->duplex != priv->oldduplex) {
3001                         new_state = 1;
3002                         if (!(phydev->duplex))
3003                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3004                         else
3005                                 tempval |= MACCFG2_FULL_DUPLEX;
3006
3007                         priv->oldduplex = phydev->duplex;
3008                 }
3009
3010                 if (phydev->speed != priv->oldspeed) {
3011                         new_state = 1;
3012                         switch (phydev->speed) {
3013                         case 1000:
3014                                 tempval =
3015                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3016
3017                                 ecntrl &= ~(ECNTRL_R100);
3018                                 break;
3019                         case 100:
3020                         case 10:
3021                                 tempval =
3022                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3023
3024                                 /* Reduced mode distinguishes
3025                                  * between 10 and 100
3026                                  */
3027                                 if (phydev->speed == SPEED_100)
3028                                         ecntrl |= ECNTRL_R100;
3029                                 else
3030                                         ecntrl &= ~(ECNTRL_R100);
3031                                 break;
3032                         default:
3033                                 netif_warn(priv, link, dev,
3034                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3035                                            phydev->speed);
3036                                 break;
3037                         }
3038
3039                         priv->oldspeed = phydev->speed;
3040                 }
3041
3042                 gfar_write(&regs->maccfg2, tempval);
3043                 gfar_write(&regs->ecntrl, ecntrl);
3044
3045                 if (!priv->oldlink) {
3046                         new_state = 1;
3047                         priv->oldlink = 1;
3048                 }
3049         } else if (priv->oldlink) {
3050                 new_state = 1;
3051                 priv->oldlink = 0;
3052                 priv->oldspeed = 0;
3053                 priv->oldduplex = -1;
3054         }
3055
3056         if (new_state && netif_msg_link(priv))
3057                 phy_print_status(phydev);
3058         unlock_tx_qs(priv);
3059         local_irq_restore(flags);
3060 }
3061
3062 /* Update the hash table based on the current list of multicast
3063  * addresses we subscribe to.  Also, change the promiscuity of
3064  * the device based on the flags (this function is called
3065  * whenever dev->flags is changed
3066  */
3067 static void gfar_set_multi(struct net_device *dev)
3068 {
3069         struct netdev_hw_addr *ha;
3070         struct gfar_private *priv = netdev_priv(dev);
3071         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3072         u32 tempval;
3073
3074         if (dev->flags & IFF_PROMISC) {
3075                 /* Set RCTRL to PROM */
3076                 tempval = gfar_read(&regs->rctrl);
3077                 tempval |= RCTRL_PROM;
3078                 gfar_write(&regs->rctrl, tempval);
3079         } else {
3080                 /* Set RCTRL to not PROM */
3081                 tempval = gfar_read(&regs->rctrl);
3082                 tempval &= ~(RCTRL_PROM);
3083                 gfar_write(&regs->rctrl, tempval);
3084         }
3085
3086         if (dev->flags & IFF_ALLMULTI) {
3087                 /* Set the hash to rx all multicast frames */
3088                 gfar_write(&regs->igaddr0, 0xffffffff);
3089                 gfar_write(&regs->igaddr1, 0xffffffff);
3090                 gfar_write(&regs->igaddr2, 0xffffffff);
3091                 gfar_write(&regs->igaddr3, 0xffffffff);
3092                 gfar_write(&regs->igaddr4, 0xffffffff);
3093                 gfar_write(&regs->igaddr5, 0xffffffff);
3094                 gfar_write(&regs->igaddr6, 0xffffffff);
3095                 gfar_write(&regs->igaddr7, 0xffffffff);
3096                 gfar_write(&regs->gaddr0, 0xffffffff);
3097                 gfar_write(&regs->gaddr1, 0xffffffff);
3098                 gfar_write(&regs->gaddr2, 0xffffffff);
3099                 gfar_write(&regs->gaddr3, 0xffffffff);
3100                 gfar_write(&regs->gaddr4, 0xffffffff);
3101                 gfar_write(&regs->gaddr5, 0xffffffff);
3102                 gfar_write(&regs->gaddr6, 0xffffffff);
3103                 gfar_write(&regs->gaddr7, 0xffffffff);
3104         } else {
3105                 int em_num;
3106                 int idx;
3107
3108                 /* zero out the hash */
3109                 gfar_write(&regs->igaddr0, 0x0);
3110                 gfar_write(&regs->igaddr1, 0x0);
3111                 gfar_write(&regs->igaddr2, 0x0);
3112                 gfar_write(&regs->igaddr3, 0x0);
3113                 gfar_write(&regs->igaddr4, 0x0);
3114                 gfar_write(&regs->igaddr5, 0x0);
3115                 gfar_write(&regs->igaddr6, 0x0);
3116                 gfar_write(&regs->igaddr7, 0x0);
3117                 gfar_write(&regs->gaddr0, 0x0);
3118                 gfar_write(&regs->gaddr1, 0x0);
3119                 gfar_write(&regs->gaddr2, 0x0);
3120                 gfar_write(&regs->gaddr3, 0x0);
3121                 gfar_write(&regs->gaddr4, 0x0);
3122                 gfar_write(&regs->gaddr5, 0x0);
3123                 gfar_write(&regs->gaddr6, 0x0);
3124                 gfar_write(&regs->gaddr7, 0x0);
3125
3126                 /* If we have extended hash tables, we need to
3127                  * clear the exact match registers to prepare for
3128                  * setting them
3129                  */
3130                 if (priv->extended_hash) {
3131                         em_num = GFAR_EM_NUM + 1;
3132                         gfar_clear_exact_match(dev);
3133                         idx = 1;
3134                 } else {
3135                         idx = 0;
3136                         em_num = 0;
3137                 }
3138
3139                 if (netdev_mc_empty(dev))
3140                         return;
3141
3142                 /* Parse the list, and set the appropriate bits */
3143                 netdev_for_each_mc_addr(ha, dev) {
3144                         if (idx < em_num) {
3145                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3146                                 idx++;
3147                         } else
3148                                 gfar_set_hash_for_addr(dev, ha->addr);
3149                 }
3150         }
3151 }
3152
3153
3154 /* Clears each of the exact match registers to zero, so they
3155  * don't interfere with normal reception
3156  */
3157 static void gfar_clear_exact_match(struct net_device *dev)
3158 {
3159         int idx;
3160         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3161
3162         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3163                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3164 }
3165
3166 /* Set the appropriate hash bit for the given addr */
3167 /* The algorithm works like so:
3168  * 1) Take the Destination Address (ie the multicast address), and
3169  * do a CRC on it (little endian), and reverse the bits of the
3170  * result.
3171  * 2) Use the 8 most significant bits as a hash into a 256-entry
3172  * table.  The table is controlled through 8 32-bit registers:
3173  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3174  * gaddr7.  This means that the 3 most significant bits in the
3175  * hash index which gaddr register to use, and the 5 other bits
3176  * indicate which bit (assuming an IBM numbering scheme, which
3177  * for PowerPC (tm) is usually the case) in the register holds
3178  * the entry.
3179  */
3180 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3181 {
3182         u32 tempval;
3183         struct gfar_private *priv = netdev_priv(dev);
3184         u32 result = ether_crc(ETH_ALEN, addr);
3185         int width = priv->hash_width;
3186         u8 whichbit = (result >> (32 - width)) & 0x1f;
3187         u8 whichreg = result >> (32 - width + 5);
3188         u32 value = (1 << (31-whichbit));
3189
3190         tempval = gfar_read(priv->hash_regs[whichreg]);
3191         tempval |= value;
3192         gfar_write(priv->hash_regs[whichreg], tempval);
3193 }
3194
3195
3196 /* There are multiple MAC Address register pairs on some controllers
3197  * This function sets the numth pair to a given address
3198  */
3199 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3200                                   const u8 *addr)
3201 {
3202         struct gfar_private *priv = netdev_priv(dev);
3203         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3204         int idx;
3205         char tmpbuf[ETH_ALEN];
3206         u32 tempval;
3207         u32 __iomem *macptr = &regs->macstnaddr1;
3208
3209         macptr += num*2;
3210
3211         /* Now copy it into the mac registers backwards, cuz
3212          * little endian is silly
3213          */
3214         for (idx = 0; idx < ETH_ALEN; idx++)
3215                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3216
3217         gfar_write(macptr, *((u32 *) (tmpbuf)));
3218
3219         tempval = *((u32 *) (tmpbuf + 4));
3220
3221         gfar_write(macptr+1, tempval);
3222 }
3223
3224 /* GFAR error interrupt handler */
3225 static irqreturn_t gfar_error(int irq, void *grp_id)
3226 {
3227         struct gfar_priv_grp *gfargrp = grp_id;
3228         struct gfar __iomem *regs = gfargrp->regs;
3229         struct gfar_private *priv= gfargrp->priv;
3230         struct net_device *dev = priv->ndev;
3231
3232         /* Save ievent for future reference */
3233         u32 events = gfar_read(&regs->ievent);
3234
3235         /* Clear IEVENT */
3236         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3237
3238         /* Magic Packet is not an error. */
3239         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3240             (events & IEVENT_MAG))
3241                 events &= ~IEVENT_MAG;
3242
3243         /* Hmm... */
3244         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3245                 netdev_dbg(dev,
3246                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3247                            events, gfar_read(&regs->imask));
3248
3249         /* Update the error counters */
3250         if (events & IEVENT_TXE) {
3251                 dev->stats.tx_errors++;
3252
3253                 if (events & IEVENT_LC)
3254                         dev->stats.tx_window_errors++;
3255                 if (events & IEVENT_CRL)
3256                         dev->stats.tx_aborted_errors++;
3257                 if (events & IEVENT_XFUN) {
3258                         unsigned long flags;
3259
3260                         netif_dbg(priv, tx_err, dev,
3261                                   "TX FIFO underrun, packet dropped\n");
3262                         dev->stats.tx_dropped++;
3263                         atomic64_inc(&priv->extra_stats.tx_underrun);
3264
3265                         local_irq_save(flags);
3266                         lock_tx_qs(priv);
3267
3268                         /* Reactivate the Tx Queues */
3269                         gfar_write(&regs->tstat, gfargrp->tstat);
3270
3271                         unlock_tx_qs(priv);
3272                         local_irq_restore(flags);
3273                 }
3274                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3275         }
3276         if (events & IEVENT_BSY) {
3277                 dev->stats.rx_errors++;
3278                 atomic64_inc(&priv->extra_stats.rx_bsy);
3279
3280                 gfar_receive(irq, grp_id);
3281
3282                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3283                           gfar_read(&regs->rstat));
3284         }
3285         if (events & IEVENT_BABR) {
3286                 dev->stats.rx_errors++;
3287                 atomic64_inc(&priv->extra_stats.rx_babr);
3288
3289                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3290         }
3291         if (events & IEVENT_EBERR) {
3292                 atomic64_inc(&priv->extra_stats.eberr);
3293                 netif_dbg(priv, rx_err, dev, "bus error\n");
3294         }
3295         if (events & IEVENT_RXC)
3296                 netif_dbg(priv, rx_status, dev, "control frame\n");
3297
3298         if (events & IEVENT_BABT) {
3299                 atomic64_inc(&priv->extra_stats.tx_babt);
3300                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3301         }
3302         return IRQ_HANDLED;
3303 }
3304
3305 static struct of_device_id gfar_match[] =
3306 {
3307         {
3308                 .type = "network",
3309                 .compatible = "gianfar",
3310         },
3311         {
3312                 .compatible = "fsl,etsec2",
3313         },
3314         {},
3315 };
3316 MODULE_DEVICE_TABLE(of, gfar_match);
3317
3318 /* Structure for a device driver */
3319 static struct platform_driver gfar_driver = {
3320         .driver = {
3321                 .name = "fsl-gianfar",
3322                 .owner = THIS_MODULE,
3323                 .pm = GFAR_PM_OPS,
3324                 .of_match_table = gfar_match,
3325         },
3326         .probe = gfar_probe,
3327         .remove = gfar_remove,
3328 };
3329
3330 module_platform_driver(gfar_driver);