e1000: e1000_ethertool.c coding style fixes
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2  * Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2006 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  *
22  ******************************************************************************/
23
24 /* ethtool support for e1000 */
25
26 #include "e1000.h"
27 #include <linux/uaccess.h>
28
29 enum {NETDEV_STATS, E1000_STATS};
30
31 struct e1000_stats {
32         char stat_string[ETH_GSTRING_LEN];
33         int type;
34         int sizeof_stat;
35         int stat_offset;
36 };
37
38 #define E1000_STAT(m)           E1000_STATS, \
39                                 sizeof(((struct e1000_adapter *)0)->m), \
40                                 offsetof(struct e1000_adapter, m)
41 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
42                                 sizeof(((struct net_device *)0)->m), \
43                                 offsetof(struct net_device, m)
44
45 static const struct e1000_stats e1000_gstrings_stats[] = {
46         { "rx_packets", E1000_STAT(stats.gprc) },
47         { "tx_packets", E1000_STAT(stats.gptc) },
48         { "rx_bytes", E1000_STAT(stats.gorcl) },
49         { "tx_bytes", E1000_STAT(stats.gotcl) },
50         { "rx_broadcast", E1000_STAT(stats.bprc) },
51         { "tx_broadcast", E1000_STAT(stats.bptc) },
52         { "rx_multicast", E1000_STAT(stats.mprc) },
53         { "tx_multicast", E1000_STAT(stats.mptc) },
54         { "rx_errors", E1000_STAT(stats.rxerrc) },
55         { "tx_errors", E1000_STAT(stats.txerrc) },
56         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
57         { "multicast", E1000_STAT(stats.mprc) },
58         { "collisions", E1000_STAT(stats.colc) },
59         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
60         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
61         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
62         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
63         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
64         { "rx_missed_errors", E1000_STAT(stats.mpc) },
65         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
66         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
67         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
68         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
69         { "tx_window_errors", E1000_STAT(stats.latecol) },
70         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
71         { "tx_deferred_ok", E1000_STAT(stats.dc) },
72         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
73         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
74         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
75         { "tx_restart_queue", E1000_STAT(restart_queue) },
76         { "rx_long_length_errors", E1000_STAT(stats.roc) },
77         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
78         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
79         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
80         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
81         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
82         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
83         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
84         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
85         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
86         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
87         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
88         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
89         { "tx_smbus", E1000_STAT(stats.mgptc) },
90         { "rx_smbus", E1000_STAT(stats.mgprc) },
91         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
92 };
93
94 #define E1000_QUEUE_STATS_LEN 0
95 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
96 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
97 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
98         "Register test  (offline)", "Eeprom test    (offline)",
99         "Interrupt test (offline)", "Loopback test  (offline)",
100         "Link test   (on/offline)"
101 };
102
103 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
104
105 static int e1000_get_settings(struct net_device *netdev,
106                               struct ethtool_cmd *ecmd)
107 {
108         struct e1000_adapter *adapter = netdev_priv(netdev);
109         struct e1000_hw *hw = &adapter->hw;
110
111         if (hw->media_type == e1000_media_type_copper) {
112                 ecmd->supported = (SUPPORTED_10baseT_Half |
113                                    SUPPORTED_10baseT_Full |
114                                    SUPPORTED_100baseT_Half |
115                                    SUPPORTED_100baseT_Full |
116                                    SUPPORTED_1000baseT_Full|
117                                    SUPPORTED_Autoneg |
118                                    SUPPORTED_TP);
119                 ecmd->advertising = ADVERTISED_TP;
120
121                 if (hw->autoneg == 1) {
122                         ecmd->advertising |= ADVERTISED_Autoneg;
123                         /* the e1000 autoneg seems to match ethtool nicely */
124                         ecmd->advertising |= hw->autoneg_advertised;
125                 }
126
127                 ecmd->port = PORT_TP;
128                 ecmd->phy_address = hw->phy_addr;
129
130                 if (hw->mac_type == e1000_82543)
131                         ecmd->transceiver = XCVR_EXTERNAL;
132                 else
133                         ecmd->transceiver = XCVR_INTERNAL;
134
135         } else {
136                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
137                                      SUPPORTED_FIBRE |
138                                      SUPPORTED_Autoneg);
139
140                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
141                                      ADVERTISED_FIBRE |
142                                      ADVERTISED_Autoneg);
143
144                 ecmd->port = PORT_FIBRE;
145
146                 if (hw->mac_type >= e1000_82545)
147                         ecmd->transceiver = XCVR_INTERNAL;
148                 else
149                         ecmd->transceiver = XCVR_EXTERNAL;
150         }
151
152         if (er32(STATUS) & E1000_STATUS_LU) {
153                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
154                                            &adapter->link_duplex);
155                 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
156
157                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
158                  * and HALF_DUPLEX != DUPLEX_HALF
159                  */
160                 if (adapter->link_duplex == FULL_DUPLEX)
161                         ecmd->duplex = DUPLEX_FULL;
162                 else
163                         ecmd->duplex = DUPLEX_HALF;
164         } else {
165                 ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
166                 ecmd->duplex = DUPLEX_UNKNOWN;
167         }
168
169         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
170                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171
172         /* MDI-X => 1; MDI => 0 */
173         if ((hw->media_type == e1000_media_type_copper) &&
174             netif_carrier_ok(netdev))
175                 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
176                                      ETH_TP_MDI_X : ETH_TP_MDI);
177         else
178                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
179
180         if (hw->mdix == AUTO_ALL_MODES)
181                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
182         else
183                 ecmd->eth_tp_mdix_ctrl = hw->mdix;
184         return 0;
185 }
186
187 static int e1000_set_settings(struct net_device *netdev,
188                               struct ethtool_cmd *ecmd)
189 {
190         struct e1000_adapter *adapter = netdev_priv(netdev);
191         struct e1000_hw *hw = &adapter->hw;
192
193         /* MDI setting is only allowed when autoneg enabled because
194          * some hardware doesn't allow MDI setting when speed or
195          * duplex is forced.
196          */
197         if (ecmd->eth_tp_mdix_ctrl) {
198                 if (hw->media_type != e1000_media_type_copper)
199                         return -EOPNOTSUPP;
200
201                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
202                     (ecmd->autoneg != AUTONEG_ENABLE)) {
203                         e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
204                         return -EINVAL;
205                 }
206         }
207
208         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
209                 msleep(1);
210
211         if (ecmd->autoneg == AUTONEG_ENABLE) {
212                 hw->autoneg = 1;
213                 if (hw->media_type == e1000_media_type_fiber)
214                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
215                                      ADVERTISED_FIBRE |
216                                      ADVERTISED_Autoneg;
217                 else
218                         hw->autoneg_advertised = ecmd->advertising |
219                                                  ADVERTISED_TP |
220                                                  ADVERTISED_Autoneg;
221                 ecmd->advertising = hw->autoneg_advertised;
222         } else {
223                 u32 speed = ethtool_cmd_speed(ecmd);
224                 /* calling this overrides forced MDI setting */
225                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
226                         clear_bit(__E1000_RESETTING, &adapter->flags);
227                         return -EINVAL;
228                 }
229         }
230
231         /* MDI-X => 2; MDI => 1; Auto => 3 */
232         if (ecmd->eth_tp_mdix_ctrl) {
233                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
234                         hw->mdix = AUTO_ALL_MODES;
235                 else
236                         hw->mdix = ecmd->eth_tp_mdix_ctrl;
237         }
238
239         /* reset the link */
240
241         if (netif_running(adapter->netdev)) {
242                 e1000_down(adapter);
243                 e1000_up(adapter);
244         } else {
245                 e1000_reset(adapter);
246         }
247         clear_bit(__E1000_RESETTING, &adapter->flags);
248         return 0;
249 }
250
251 static u32 e1000_get_link(struct net_device *netdev)
252 {
253         struct e1000_adapter *adapter = netdev_priv(netdev);
254
255         /* If the link is not reported up to netdev, interrupts are disabled,
256          * and so the physical link state may have changed since we last
257          * looked. Set get_link_status to make sure that the true link
258          * state is interrogated, rather than pulling a cached and possibly
259          * stale link state from the driver.
260          */
261         if (!netif_carrier_ok(netdev))
262                 adapter->hw.get_link_status = 1;
263
264         return e1000_has_link(adapter);
265 }
266
267 static void e1000_get_pauseparam(struct net_device *netdev,
268                                  struct ethtool_pauseparam *pause)
269 {
270         struct e1000_adapter *adapter = netdev_priv(netdev);
271         struct e1000_hw *hw = &adapter->hw;
272
273         pause->autoneg =
274                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
275
276         if (hw->fc == E1000_FC_RX_PAUSE) {
277                 pause->rx_pause = 1;
278         } else if (hw->fc == E1000_FC_TX_PAUSE) {
279                 pause->tx_pause = 1;
280         } else if (hw->fc == E1000_FC_FULL) {
281                 pause->rx_pause = 1;
282                 pause->tx_pause = 1;
283         }
284 }
285
286 static int e1000_set_pauseparam(struct net_device *netdev,
287                                 struct ethtool_pauseparam *pause)
288 {
289         struct e1000_adapter *adapter = netdev_priv(netdev);
290         struct e1000_hw *hw = &adapter->hw;
291         int retval = 0;
292
293         adapter->fc_autoneg = pause->autoneg;
294
295         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
296                 msleep(1);
297
298         if (pause->rx_pause && pause->tx_pause)
299                 hw->fc = E1000_FC_FULL;
300         else if (pause->rx_pause && !pause->tx_pause)
301                 hw->fc = E1000_FC_RX_PAUSE;
302         else if (!pause->rx_pause && pause->tx_pause)
303                 hw->fc = E1000_FC_TX_PAUSE;
304         else if (!pause->rx_pause && !pause->tx_pause)
305                 hw->fc = E1000_FC_NONE;
306
307         hw->original_fc = hw->fc;
308
309         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
310                 if (netif_running(adapter->netdev)) {
311                         e1000_down(adapter);
312                         e1000_up(adapter);
313                 } else {
314                         e1000_reset(adapter);
315                 }
316         } else
317                 retval = ((hw->media_type == e1000_media_type_fiber) ?
318                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
319
320         clear_bit(__E1000_RESETTING, &adapter->flags);
321         return retval;
322 }
323
324 static u32 e1000_get_msglevel(struct net_device *netdev)
325 {
326         struct e1000_adapter *adapter = netdev_priv(netdev);
327
328         return adapter->msg_enable;
329 }
330
331 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
332 {
333         struct e1000_adapter *adapter = netdev_priv(netdev);
334
335         adapter->msg_enable = data;
336 }
337
338 static int e1000_get_regs_len(struct net_device *netdev)
339 {
340 #define E1000_REGS_LEN 32
341         return E1000_REGS_LEN * sizeof(u32);
342 }
343
344 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
345                            void *p)
346 {
347         struct e1000_adapter *adapter = netdev_priv(netdev);
348         struct e1000_hw *hw = &adapter->hw;
349         u32 *regs_buff = p;
350         u16 phy_data;
351
352         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
353
354         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
355
356         regs_buff[0]  = er32(CTRL);
357         regs_buff[1]  = er32(STATUS);
358
359         regs_buff[2]  = er32(RCTL);
360         regs_buff[3]  = er32(RDLEN);
361         regs_buff[4]  = er32(RDH);
362         regs_buff[5]  = er32(RDT);
363         regs_buff[6]  = er32(RDTR);
364
365         regs_buff[7]  = er32(TCTL);
366         regs_buff[8]  = er32(TDLEN);
367         regs_buff[9]  = er32(TDH);
368         regs_buff[10] = er32(TDT);
369         regs_buff[11] = er32(TIDV);
370
371         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
372         if (hw->phy_type == e1000_phy_igp) {
373                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
374                                     IGP01E1000_PHY_AGC_A);
375                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
376                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377                 regs_buff[13] = (u32)phy_data; /* cable length */
378                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379                                     IGP01E1000_PHY_AGC_B);
380                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
381                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382                 regs_buff[14] = (u32)phy_data; /* cable length */
383                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384                                     IGP01E1000_PHY_AGC_C);
385                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
386                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387                 regs_buff[15] = (u32)phy_data; /* cable length */
388                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
389                                     IGP01E1000_PHY_AGC_D);
390                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
391                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392                 regs_buff[16] = (u32)phy_data; /* cable length */
393                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
394                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
395                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
396                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397                 regs_buff[18] = (u32)phy_data; /* cable polarity */
398                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399                                     IGP01E1000_PHY_PCS_INIT_REG);
400                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
401                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402                 regs_buff[19] = (u32)phy_data; /* cable polarity */
403                 regs_buff[20] = 0; /* polarity correction enabled (always) */
404                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
405                 regs_buff[23] = regs_buff[18]; /* mdix mode */
406                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407         } else {
408                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
409                 regs_buff[13] = (u32)phy_data; /* cable length */
410                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
411                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
414                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
415                 regs_buff[18] = regs_buff[13]; /* cable polarity */
416                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
417                 regs_buff[20] = regs_buff[17]; /* polarity correction */
418                 /* phy receive errors */
419                 regs_buff[22] = adapter->phy_stats.receive_errors;
420                 regs_buff[23] = regs_buff[13]; /* mdix mode */
421         }
422         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
423         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
424         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
425         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
426         if (hw->mac_type >= e1000_82540 &&
427             hw->media_type == e1000_media_type_copper) {
428                 regs_buff[26] = er32(MANC);
429         }
430 }
431
432 static int e1000_get_eeprom_len(struct net_device *netdev)
433 {
434         struct e1000_adapter *adapter = netdev_priv(netdev);
435         struct e1000_hw *hw = &adapter->hw;
436
437         return hw->eeprom.word_size * 2;
438 }
439
440 static int e1000_get_eeprom(struct net_device *netdev,
441                             struct ethtool_eeprom *eeprom, u8 *bytes)
442 {
443         struct e1000_adapter *adapter = netdev_priv(netdev);
444         struct e1000_hw *hw = &adapter->hw;
445         u16 *eeprom_buff;
446         int first_word, last_word;
447         int ret_val = 0;
448         u16 i;
449
450         if (eeprom->len == 0)
451                 return -EINVAL;
452
453         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
454
455         first_word = eeprom->offset >> 1;
456         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
457
458         eeprom_buff = kmalloc(sizeof(u16) *
459                         (last_word - first_word + 1), GFP_KERNEL);
460         if (!eeprom_buff)
461                 return -ENOMEM;
462
463         if (hw->eeprom.type == e1000_eeprom_spi)
464                 ret_val = e1000_read_eeprom(hw, first_word,
465                                             last_word - first_word + 1,
466                                             eeprom_buff);
467         else {
468                 for (i = 0; i < last_word - first_word + 1; i++) {
469                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
470                                                     &eeprom_buff[i]);
471                         if (ret_val)
472                                 break;
473                 }
474         }
475
476         /* Device's eeprom is always little-endian, word addressable */
477         for (i = 0; i < last_word - first_word + 1; i++)
478                 le16_to_cpus(&eeprom_buff[i]);
479
480         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
481                eeprom->len);
482         kfree(eeprom_buff);
483
484         return ret_val;
485 }
486
487 static int e1000_set_eeprom(struct net_device *netdev,
488                             struct ethtool_eeprom *eeprom, u8 *bytes)
489 {
490         struct e1000_adapter *adapter = netdev_priv(netdev);
491         struct e1000_hw *hw = &adapter->hw;
492         u16 *eeprom_buff;
493         void *ptr;
494         int max_len, first_word, last_word, ret_val = 0;
495         u16 i;
496
497         if (eeprom->len == 0)
498                 return -EOPNOTSUPP;
499
500         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
501                 return -EFAULT;
502
503         max_len = hw->eeprom.word_size * 2;
504
505         first_word = eeprom->offset >> 1;
506         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
507         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
508         if (!eeprom_buff)
509                 return -ENOMEM;
510
511         ptr = (void *)eeprom_buff;
512
513         if (eeprom->offset & 1) {
514                 /* need read/modify/write of first changed EEPROM word
515                  * only the second byte of the word is being modified
516                  */
517                 ret_val = e1000_read_eeprom(hw, first_word, 1,
518                                             &eeprom_buff[0]);
519                 ptr++;
520         }
521         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
522                 /* need read/modify/write of last changed EEPROM word
523                  * only the first byte of the word is being modified
524                  */
525                 ret_val = e1000_read_eeprom(hw, last_word, 1,
526                                             &eeprom_buff[last_word - first_word]);
527         }
528
529         /* Device's eeprom is always little-endian, word addressable */
530         for (i = 0; i < last_word - first_word + 1; i++)
531                 le16_to_cpus(&eeprom_buff[i]);
532
533         memcpy(ptr, bytes, eeprom->len);
534
535         for (i = 0; i < last_word - first_word + 1; i++)
536                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
537
538         ret_val = e1000_write_eeprom(hw, first_word,
539                                      last_word - first_word + 1, eeprom_buff);
540
541         /* Update the checksum over the first part of the EEPROM if needed */
542         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
543                 e1000_update_eeprom_checksum(hw);
544
545         kfree(eeprom_buff);
546         return ret_val;
547 }
548
549 static void e1000_get_drvinfo(struct net_device *netdev,
550                               struct ethtool_drvinfo *drvinfo)
551 {
552         struct e1000_adapter *adapter = netdev_priv(netdev);
553
554         strlcpy(drvinfo->driver,  e1000_driver_name,
555                 sizeof(drvinfo->driver));
556         strlcpy(drvinfo->version, e1000_driver_version,
557                 sizeof(drvinfo->version));
558
559         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
560                 sizeof(drvinfo->bus_info));
561         drvinfo->regdump_len = e1000_get_regs_len(netdev);
562         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
563 }
564
565 static void e1000_get_ringparam(struct net_device *netdev,
566                                 struct ethtool_ringparam *ring)
567 {
568         struct e1000_adapter *adapter = netdev_priv(netdev);
569         struct e1000_hw *hw = &adapter->hw;
570         e1000_mac_type mac_type = hw->mac_type;
571         struct e1000_tx_ring *txdr = adapter->tx_ring;
572         struct e1000_rx_ring *rxdr = adapter->rx_ring;
573
574         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
575                 E1000_MAX_82544_RXD;
576         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
577                 E1000_MAX_82544_TXD;
578         ring->rx_pending = rxdr->count;
579         ring->tx_pending = txdr->count;
580 }
581
582 static int e1000_set_ringparam(struct net_device *netdev,
583                                struct ethtool_ringparam *ring)
584 {
585         struct e1000_adapter *adapter = netdev_priv(netdev);
586         struct e1000_hw *hw = &adapter->hw;
587         e1000_mac_type mac_type = hw->mac_type;
588         struct e1000_tx_ring *txdr, *tx_old;
589         struct e1000_rx_ring *rxdr, *rx_old;
590         int i, err;
591
592         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
593                 return -EINVAL;
594
595         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
596                 msleep(1);
597
598         if (netif_running(adapter->netdev))
599                 e1000_down(adapter);
600
601         tx_old = adapter->tx_ring;
602         rx_old = adapter->rx_ring;
603
604         err = -ENOMEM;
605         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
606                        GFP_KERNEL);
607         if (!txdr)
608                 goto err_alloc_tx;
609
610         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
611                        GFP_KERNEL);
612         if (!rxdr)
613                 goto err_alloc_rx;
614
615         adapter->tx_ring = txdr;
616         adapter->rx_ring = rxdr;
617
618         rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
619         rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
620                           E1000_MAX_RXD : E1000_MAX_82544_RXD));
621         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
622         txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
623         txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
624                           E1000_MAX_TXD : E1000_MAX_82544_TXD));
625         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
626
627         for (i = 0; i < adapter->num_tx_queues; i++)
628                 txdr[i].count = txdr->count;
629         for (i = 0; i < adapter->num_rx_queues; i++)
630                 rxdr[i].count = rxdr->count;
631
632         if (netif_running(adapter->netdev)) {
633                 /* Try to get new resources before deleting old */
634                 err = e1000_setup_all_rx_resources(adapter);
635                 if (err)
636                         goto err_setup_rx;
637                 err = e1000_setup_all_tx_resources(adapter);
638                 if (err)
639                         goto err_setup_tx;
640
641                 /* save the new, restore the old in order to free it,
642                  * then restore the new back again
643                  */
644
645                 adapter->rx_ring = rx_old;
646                 adapter->tx_ring = tx_old;
647                 e1000_free_all_rx_resources(adapter);
648                 e1000_free_all_tx_resources(adapter);
649                 kfree(tx_old);
650                 kfree(rx_old);
651                 adapter->rx_ring = rxdr;
652                 adapter->tx_ring = txdr;
653                 err = e1000_up(adapter);
654                 if (err)
655                         goto err_setup;
656         }
657
658         clear_bit(__E1000_RESETTING, &adapter->flags);
659         return 0;
660 err_setup_tx:
661         e1000_free_all_rx_resources(adapter);
662 err_setup_rx:
663         adapter->rx_ring = rx_old;
664         adapter->tx_ring = tx_old;
665         kfree(rxdr);
666 err_alloc_rx:
667         kfree(txdr);
668 err_alloc_tx:
669         e1000_up(adapter);
670 err_setup:
671         clear_bit(__E1000_RESETTING, &adapter->flags);
672         return err;
673 }
674
675 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
676                              u32 mask, u32 write)
677 {
678         struct e1000_hw *hw = &adapter->hw;
679         static const u32 test[] = {
680                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
681         };
682         u8 __iomem *address = hw->hw_addr + reg;
683         u32 read;
684         int i;
685
686         for (i = 0; i < ARRAY_SIZE(test); i++) {
687                 writel(write & test[i], address);
688                 read = readl(address);
689                 if (read != (write & test[i] & mask)) {
690                         e_err(drv, "pattern test reg %04X failed: "
691                               "got 0x%08X expected 0x%08X\n",
692                               reg, read, (write & test[i] & mask));
693                         *data = reg;
694                         return true;
695                 }
696         }
697         return false;
698 }
699
700 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
701                               u32 mask, u32 write)
702 {
703         struct e1000_hw *hw = &adapter->hw;
704         u8 __iomem *address = hw->hw_addr + reg;
705         u32 read;
706
707         writel(write & mask, address);
708         read = readl(address);
709         if ((read & mask) != (write & mask)) {
710                 e_err(drv, "set/check reg %04X test failed: "
711                       "got 0x%08X expected 0x%08X\n",
712                       reg, (read & mask), (write & mask));
713                 *data = reg;
714                 return true;
715         }
716         return false;
717 }
718
719 #define REG_PATTERN_TEST(reg, mask, write)                           \
720         do {                                                         \
721                 if (reg_pattern_test(adapter, data,                  \
722                              (hw->mac_type >= e1000_82543)   \
723                              ? E1000_##reg : E1000_82542_##reg,      \
724                              mask, write))                           \
725                         return 1;                                    \
726         } while (0)
727
728 #define REG_SET_AND_CHECK(reg, mask, write)                          \
729         do {                                                         \
730                 if (reg_set_and_check(adapter, data,                 \
731                               (hw->mac_type >= e1000_82543)  \
732                               ? E1000_##reg : E1000_82542_##reg,     \
733                               mask, write))                          \
734                         return 1;                                    \
735         } while (0)
736
737 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
738 {
739         u32 value, before, after;
740         u32 i, toggle;
741         struct e1000_hw *hw = &adapter->hw;
742
743         /* The status register is Read Only, so a write should fail.
744          * Some bits that get toggled are ignored.
745          */
746
747         /* there are several bits on newer hardware that are r/w */
748         toggle = 0xFFFFF833;
749
750         before = er32(STATUS);
751         value = (er32(STATUS) & toggle);
752         ew32(STATUS, toggle);
753         after = er32(STATUS) & toggle;
754         if (value != after) {
755                 e_err(drv, "failed STATUS register test got: "
756                       "0x%08X expected: 0x%08X\n", after, value);
757                 *data = 1;
758                 return 1;
759         }
760         /* restore previous status */
761         ew32(STATUS, before);
762
763         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
764         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
765         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
766         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
767
768         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
769         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
770         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
771         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
772         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
773         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
774         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
775         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
776         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
777         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
778
779         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
780
781         before = 0x06DFB3FE;
782         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
783         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
784
785         if (hw->mac_type >= e1000_82543) {
786                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
787                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
788                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
789                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
790                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
791                 value = E1000_RAR_ENTRIES;
792                 for (i = 0; i < value; i++) {
793                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
794                                          0x8003FFFF, 0xFFFFFFFF);
795                 }
796         } else {
797                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
798                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
799                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
800                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
801         }
802
803         value = E1000_MC_TBL_SIZE;
804         for (i = 0; i < value; i++)
805                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
806
807         *data = 0;
808         return 0;
809 }
810
811 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
812 {
813         struct e1000_hw *hw = &adapter->hw;
814         u16 temp;
815         u16 checksum = 0;
816         u16 i;
817
818         *data = 0;
819         /* Read and add up the contents of the EEPROM */
820         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
821                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
822                         *data = 1;
823                         break;
824                 }
825                 checksum += temp;
826         }
827
828         /* If Checksum is not Correct return error else test passed */
829         if ((checksum != (u16)EEPROM_SUM) && !(*data))
830                 *data = 2;
831
832         return *data;
833 }
834
835 static irqreturn_t e1000_test_intr(int irq, void *data)
836 {
837         struct net_device *netdev = (struct net_device *)data;
838         struct e1000_adapter *adapter = netdev_priv(netdev);
839         struct e1000_hw *hw = &adapter->hw;
840
841         adapter->test_icr |= er32(ICR);
842
843         return IRQ_HANDLED;
844 }
845
846 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
847 {
848         struct net_device *netdev = adapter->netdev;
849         u32 mask, i = 0;
850         bool shared_int = true;
851         u32 irq = adapter->pdev->irq;
852         struct e1000_hw *hw = &adapter->hw;
853
854         *data = 0;
855
856         /* NOTE: we don't test MSI interrupts here, yet
857          * Hook up test interrupt handler just for this test
858          */
859         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
860                          netdev))
861                 shared_int = false;
862         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
863                              netdev->name, netdev)) {
864                 *data = 1;
865                 return -1;
866         }
867         e_info(hw, "testing %s interrupt\n", (shared_int ?
868                "shared" : "unshared"));
869
870         /* Disable all the interrupts */
871         ew32(IMC, 0xFFFFFFFF);
872         E1000_WRITE_FLUSH();
873         msleep(10);
874
875         /* Test each interrupt */
876         for (; i < 10; i++) {
877                 /* Interrupt to test */
878                 mask = 1 << i;
879
880                 if (!shared_int) {
881                         /* Disable the interrupt to be reported in
882                          * the cause register and then force the same
883                          * interrupt and see if one gets posted.  If
884                          * an interrupt was posted to the bus, the
885                          * test failed.
886                          */
887                         adapter->test_icr = 0;
888                         ew32(IMC, mask);
889                         ew32(ICS, mask);
890                         E1000_WRITE_FLUSH();
891                         msleep(10);
892
893                         if (adapter->test_icr & mask) {
894                                 *data = 3;
895                                 break;
896                         }
897                 }
898
899                 /* Enable the interrupt to be reported in
900                  * the cause register and then force the same
901                  * interrupt and see if one gets posted.  If
902                  * an interrupt was not posted to the bus, the
903                  * test failed.
904                  */
905                 adapter->test_icr = 0;
906                 ew32(IMS, mask);
907                 ew32(ICS, mask);
908                 E1000_WRITE_FLUSH();
909                 msleep(10);
910
911                 if (!(adapter->test_icr & mask)) {
912                         *data = 4;
913                         break;
914                 }
915
916                 if (!shared_int) {
917                         /* Disable the other interrupts to be reported in
918                          * the cause register and then force the other
919                          * interrupts and see if any get posted.  If
920                          * an interrupt was posted to the bus, the
921                          * test failed.
922                          */
923                         adapter->test_icr = 0;
924                         ew32(IMC, ~mask & 0x00007FFF);
925                         ew32(ICS, ~mask & 0x00007FFF);
926                         E1000_WRITE_FLUSH();
927                         msleep(10);
928
929                         if (adapter->test_icr) {
930                                 *data = 5;
931                                 break;
932                         }
933                 }
934         }
935
936         /* Disable all the interrupts */
937         ew32(IMC, 0xFFFFFFFF);
938         E1000_WRITE_FLUSH();
939         msleep(10);
940
941         /* Unhook test interrupt handler */
942         free_irq(irq, netdev);
943
944         return *data;
945 }
946
947 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
948 {
949         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
950         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
951         struct pci_dev *pdev = adapter->pdev;
952         int i;
953
954         if (txdr->desc && txdr->buffer_info) {
955                 for (i = 0; i < txdr->count; i++) {
956                         if (txdr->buffer_info[i].dma)
957                                 dma_unmap_single(&pdev->dev,
958                                                  txdr->buffer_info[i].dma,
959                                                  txdr->buffer_info[i].length,
960                                                  DMA_TO_DEVICE);
961                         if (txdr->buffer_info[i].skb)
962                                 dev_kfree_skb(txdr->buffer_info[i].skb);
963                 }
964         }
965
966         if (rxdr->desc && rxdr->buffer_info) {
967                 for (i = 0; i < rxdr->count; i++) {
968                         if (rxdr->buffer_info[i].dma)
969                                 dma_unmap_single(&pdev->dev,
970                                                  rxdr->buffer_info[i].dma,
971                                                  rxdr->buffer_info[i].length,
972                                                  DMA_FROM_DEVICE);
973                         if (rxdr->buffer_info[i].skb)
974                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
975                 }
976         }
977
978         if (txdr->desc) {
979                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
980                                   txdr->dma);
981                 txdr->desc = NULL;
982         }
983         if (rxdr->desc) {
984                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
985                                   rxdr->dma);
986                 rxdr->desc = NULL;
987         }
988
989         kfree(txdr->buffer_info);
990         txdr->buffer_info = NULL;
991         kfree(rxdr->buffer_info);
992         rxdr->buffer_info = NULL;
993 }
994
995 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
996 {
997         struct e1000_hw *hw = &adapter->hw;
998         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
999         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1000         struct pci_dev *pdev = adapter->pdev;
1001         u32 rctl;
1002         int i, ret_val;
1003
1004         /* Setup Tx descriptor ring and Tx buffers */
1005
1006         if (!txdr->count)
1007                 txdr->count = E1000_DEFAULT_TXD;
1008
1009         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1010                                     GFP_KERNEL);
1011         if (!txdr->buffer_info) {
1012                 ret_val = 1;
1013                 goto err_nomem;
1014         }
1015
1016         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1017         txdr->size = ALIGN(txdr->size, 4096);
1018         txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1019                                          GFP_KERNEL);
1020         if (!txdr->desc) {
1021                 ret_val = 2;
1022                 goto err_nomem;
1023         }
1024         txdr->next_to_use = txdr->next_to_clean = 0;
1025
1026         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1027         ew32(TDBAH, ((u64)txdr->dma >> 32));
1028         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1029         ew32(TDH, 0);
1030         ew32(TDT, 0);
1031         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1032              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1033              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1034
1035         for (i = 0; i < txdr->count; i++) {
1036                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1037                 struct sk_buff *skb;
1038                 unsigned int size = 1024;
1039
1040                 skb = alloc_skb(size, GFP_KERNEL);
1041                 if (!skb) {
1042                         ret_val = 3;
1043                         goto err_nomem;
1044                 }
1045                 skb_put(skb, size);
1046                 txdr->buffer_info[i].skb = skb;
1047                 txdr->buffer_info[i].length = skb->len;
1048                 txdr->buffer_info[i].dma =
1049                         dma_map_single(&pdev->dev, skb->data, skb->len,
1050                                        DMA_TO_DEVICE);
1051                 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1052                         ret_val = 4;
1053                         goto err_nomem;
1054                 }
1055                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1056                 tx_desc->lower.data = cpu_to_le32(skb->len);
1057                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1058                                                    E1000_TXD_CMD_IFCS |
1059                                                    E1000_TXD_CMD_RPS);
1060                 tx_desc->upper.data = 0;
1061         }
1062
1063         /* Setup Rx descriptor ring and Rx buffers */
1064
1065         if (!rxdr->count)
1066                 rxdr->count = E1000_DEFAULT_RXD;
1067
1068         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1069                                     GFP_KERNEL);
1070         if (!rxdr->buffer_info) {
1071                 ret_val = 5;
1072                 goto err_nomem;
1073         }
1074
1075         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1076         rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1077                                          GFP_KERNEL);
1078         if (!rxdr->desc) {
1079                 ret_val = 6;
1080                 goto err_nomem;
1081         }
1082         rxdr->next_to_use = rxdr->next_to_clean = 0;
1083
1084         rctl = er32(RCTL);
1085         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1086         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1087         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1088         ew32(RDLEN, rxdr->size);
1089         ew32(RDH, 0);
1090         ew32(RDT, 0);
1091         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1092                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1093                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1094         ew32(RCTL, rctl);
1095
1096         for (i = 0; i < rxdr->count; i++) {
1097                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1098                 struct sk_buff *skb;
1099
1100                 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1101                 if (!skb) {
1102                         ret_val = 7;
1103                         goto err_nomem;
1104                 }
1105                 skb_reserve(skb, NET_IP_ALIGN);
1106                 rxdr->buffer_info[i].skb = skb;
1107                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1108                 rxdr->buffer_info[i].dma =
1109                         dma_map_single(&pdev->dev, skb->data,
1110                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1111                 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1112                         ret_val = 8;
1113                         goto err_nomem;
1114                 }
1115                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1116                 memset(skb->data, 0x00, skb->len);
1117         }
1118
1119         return 0;
1120
1121 err_nomem:
1122         e1000_free_desc_rings(adapter);
1123         return ret_val;
1124 }
1125
1126 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1127 {
1128         struct e1000_hw *hw = &adapter->hw;
1129
1130         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1131         e1000_write_phy_reg(hw, 29, 0x001F);
1132         e1000_write_phy_reg(hw, 30, 0x8FFC);
1133         e1000_write_phy_reg(hw, 29, 0x001A);
1134         e1000_write_phy_reg(hw, 30, 0x8FF0);
1135 }
1136
1137 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1138 {
1139         struct e1000_hw *hw = &adapter->hw;
1140         u16 phy_reg;
1141
1142         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1143          * Extended PHY Specific Control Register to 25MHz clock.  This
1144          * value defaults back to a 2.5MHz clock when the PHY is reset.
1145          */
1146         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1147         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1148         e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1149
1150         /* In addition, because of the s/w reset above, we need to enable
1151          * CRS on TX.  This must be set for both full and half duplex
1152          * operation.
1153          */
1154         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1155         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1156         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1157 }
1158
1159 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1160 {
1161         struct e1000_hw *hw = &adapter->hw;
1162         u32 ctrl_reg;
1163         u16 phy_reg;
1164
1165         /* Setup the Device Control Register for PHY loopback test. */
1166
1167         ctrl_reg = er32(CTRL);
1168         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1169                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1170                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1171                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1172                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1173
1174         ew32(CTRL, ctrl_reg);
1175
1176         /* Read the PHY Specific Control Register (0x10) */
1177         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1178
1179         /* Clear Auto-Crossover bits in PHY Specific Control Register
1180          * (bits 6:5).
1181          */
1182         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1183         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1184
1185         /* Perform software reset on the PHY */
1186         e1000_phy_reset(hw);
1187
1188         /* Have to setup TX_CLK and TX_CRS after software reset */
1189         e1000_phy_reset_clk_and_crs(adapter);
1190
1191         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1192
1193         /* Wait for reset to complete. */
1194         udelay(500);
1195
1196         /* Have to setup TX_CLK and TX_CRS after software reset */
1197         e1000_phy_reset_clk_and_crs(adapter);
1198
1199         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1200         e1000_phy_disable_receiver(adapter);
1201
1202         /* Set the loopback bit in the PHY control register. */
1203         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1204         phy_reg |= MII_CR_LOOPBACK;
1205         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1206
1207         /* Setup TX_CLK and TX_CRS one more time. */
1208         e1000_phy_reset_clk_and_crs(adapter);
1209
1210         /* Check Phy Configuration */
1211         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1212         if (phy_reg != 0x4100)
1213                 return 9;
1214
1215         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1216         if (phy_reg != 0x0070)
1217                 return 10;
1218
1219         e1000_read_phy_reg(hw, 29, &phy_reg);
1220         if (phy_reg != 0x001A)
1221                 return 11;
1222
1223         return 0;
1224 }
1225
1226 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1227 {
1228         struct e1000_hw *hw = &adapter->hw;
1229         u32 ctrl_reg = 0;
1230         u32 stat_reg = 0;
1231
1232         hw->autoneg = false;
1233
1234         if (hw->phy_type == e1000_phy_m88) {
1235                 /* Auto-MDI/MDIX Off */
1236                 e1000_write_phy_reg(hw,
1237                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1238                 /* reset to update Auto-MDI/MDIX */
1239                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1240                 /* autoneg off */
1241                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1242         }
1243
1244         ctrl_reg = er32(CTRL);
1245
1246         /* force 1000, set loopback */
1247         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1248
1249         /* Now set up the MAC to the same speed/duplex as the PHY. */
1250         ctrl_reg = er32(CTRL);
1251         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1252         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1253                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1254                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1255                         E1000_CTRL_FD); /* Force Duplex to FULL */
1256
1257         if (hw->media_type == e1000_media_type_copper &&
1258             hw->phy_type == e1000_phy_m88)
1259                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1260         else {
1261                 /* Set the ILOS bit on the fiber Nic is half
1262                  * duplex link is detected.
1263                  */
1264                 stat_reg = er32(STATUS);
1265                 if ((stat_reg & E1000_STATUS_FD) == 0)
1266                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1267         }
1268
1269         ew32(CTRL, ctrl_reg);
1270
1271         /* Disable the receiver on the PHY so when a cable is plugged in, the
1272          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1273          */
1274         if (hw->phy_type == e1000_phy_m88)
1275                 e1000_phy_disable_receiver(adapter);
1276
1277         udelay(500);
1278
1279         return 0;
1280 }
1281
1282 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1283 {
1284         struct e1000_hw *hw = &adapter->hw;
1285         u16 phy_reg = 0;
1286         u16 count = 0;
1287
1288         switch (hw->mac_type) {
1289         case e1000_82543:
1290                 if (hw->media_type == e1000_media_type_copper) {
1291                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1292                          * Some PHY registers get corrupted at random, so
1293                          * attempt this 10 times.
1294                          */
1295                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1296                                count++ < 10);
1297                         if (count < 11)
1298                                 return 0;
1299                 }
1300                 break;
1301
1302         case e1000_82544:
1303         case e1000_82540:
1304         case e1000_82545:
1305         case e1000_82545_rev_3:
1306         case e1000_82546:
1307         case e1000_82546_rev_3:
1308         case e1000_82541:
1309         case e1000_82541_rev_2:
1310         case e1000_82547:
1311         case e1000_82547_rev_2:
1312                 return e1000_integrated_phy_loopback(adapter);
1313         default:
1314                 /* Default PHY loopback work is to read the MII
1315                  * control register and assert bit 14 (loopback mode).
1316                  */
1317                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1318                 phy_reg |= MII_CR_LOOPBACK;
1319                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1320                 return 0;
1321         }
1322
1323         return 8;
1324 }
1325
1326 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1327 {
1328         struct e1000_hw *hw = &adapter->hw;
1329         u32 rctl;
1330
1331         if (hw->media_type == e1000_media_type_fiber ||
1332             hw->media_type == e1000_media_type_internal_serdes) {
1333                 switch (hw->mac_type) {
1334                 case e1000_82545:
1335                 case e1000_82546:
1336                 case e1000_82545_rev_3:
1337                 case e1000_82546_rev_3:
1338                         return e1000_set_phy_loopback(adapter);
1339                 default:
1340                         rctl = er32(RCTL);
1341                         rctl |= E1000_RCTL_LBM_TCVR;
1342                         ew32(RCTL, rctl);
1343                         return 0;
1344                 }
1345         } else if (hw->media_type == e1000_media_type_copper) {
1346                 return e1000_set_phy_loopback(adapter);
1347         }
1348
1349         return 7;
1350 }
1351
1352 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1353 {
1354         struct e1000_hw *hw = &adapter->hw;
1355         u32 rctl;
1356         u16 phy_reg;
1357
1358         rctl = er32(RCTL);
1359         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1360         ew32(RCTL, rctl);
1361
1362         switch (hw->mac_type) {
1363         case e1000_82545:
1364         case e1000_82546:
1365         case e1000_82545_rev_3:
1366         case e1000_82546_rev_3:
1367         default:
1368                 hw->autoneg = true;
1369                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1370                 if (phy_reg & MII_CR_LOOPBACK) {
1371                         phy_reg &= ~MII_CR_LOOPBACK;
1372                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1373                         e1000_phy_reset(hw);
1374                 }
1375                 break;
1376         }
1377 }
1378
1379 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1380                                       unsigned int frame_size)
1381 {
1382         memset(skb->data, 0xFF, frame_size);
1383         frame_size &= ~1;
1384         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1385         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1386         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1387 }
1388
1389 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1390                                     unsigned int frame_size)
1391 {
1392         frame_size &= ~1;
1393         if (skb->data[3] == 0xFF) {
1394                 if (skb->data[frame_size / 2 + 10] == 0xBE &&
1395                     skb->data[frame_size / 2 + 12] == 0xAF) {
1396                         return 0;
1397                 }
1398         }
1399         return 13;
1400 }
1401
1402 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1403 {
1404         struct e1000_hw *hw = &adapter->hw;
1405         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1406         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1407         struct pci_dev *pdev = adapter->pdev;
1408         int i, j, k, l, lc, good_cnt, ret_val = 0;
1409         unsigned long time;
1410
1411         ew32(RDT, rxdr->count - 1);
1412
1413         /* Calculate the loop count based on the largest descriptor ring
1414          * The idea is to wrap the largest ring a number of times using 64
1415          * send/receive pairs during each loop
1416          */
1417
1418         if (rxdr->count <= txdr->count)
1419                 lc = ((txdr->count / 64) * 2) + 1;
1420         else
1421                 lc = ((rxdr->count / 64) * 2) + 1;
1422
1423         k = l = 0;
1424         for (j = 0; j <= lc; j++) { /* loop count loop */
1425                 for (i = 0; i < 64; i++) { /* send the packets */
1426                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1427                                                   1024);
1428                         dma_sync_single_for_device(&pdev->dev,
1429                                                    txdr->buffer_info[k].dma,
1430                                                    txdr->buffer_info[k].length,
1431                                                    DMA_TO_DEVICE);
1432                         if (unlikely(++k == txdr->count))
1433                                 k = 0;
1434                 }
1435                 ew32(TDT, k);
1436                 E1000_WRITE_FLUSH();
1437                 msleep(200);
1438                 time = jiffies; /* set the start time for the receive */
1439                 good_cnt = 0;
1440                 do { /* receive the sent packets */
1441                         dma_sync_single_for_cpu(&pdev->dev,
1442                                                 rxdr->buffer_info[l].dma,
1443                                                 rxdr->buffer_info[l].length,
1444                                                 DMA_FROM_DEVICE);
1445
1446                         ret_val = e1000_check_lbtest_frame(
1447                                         rxdr->buffer_info[l].skb,
1448                                         1024);
1449                         if (!ret_val)
1450                                 good_cnt++;
1451                         if (unlikely(++l == rxdr->count))
1452                                 l = 0;
1453                         /* time + 20 msecs (200 msecs on 2.4) is more than
1454                          * enough time to complete the receives, if it's
1455                          * exceeded, break and error off
1456                          */
1457                 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1458
1459                 if (good_cnt != 64) {
1460                         ret_val = 13; /* ret_val is the same as mis-compare */
1461                         break;
1462                 }
1463                 if (jiffies >= (time + 2)) {
1464                         ret_val = 14; /* error code for time out error */
1465                         break;
1466                 }
1467         } /* end loop count loop */
1468         return ret_val;
1469 }
1470
1471 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1472 {
1473         *data = e1000_setup_desc_rings(adapter);
1474         if (*data)
1475                 goto out;
1476         *data = e1000_setup_loopback_test(adapter);
1477         if (*data)
1478                 goto err_loopback;
1479         *data = e1000_run_loopback_test(adapter);
1480         e1000_loopback_cleanup(adapter);
1481
1482 err_loopback:
1483         e1000_free_desc_rings(adapter);
1484 out:
1485         return *data;
1486 }
1487
1488 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1489 {
1490         struct e1000_hw *hw = &adapter->hw;
1491         *data = 0;
1492         if (hw->media_type == e1000_media_type_internal_serdes) {
1493                 int i = 0;
1494
1495                 hw->serdes_has_link = false;
1496
1497                 /* On some blade server designs, link establishment
1498                  * could take as long as 2-3 minutes
1499                  */
1500                 do {
1501                         e1000_check_for_link(hw);
1502                         if (hw->serdes_has_link)
1503                                 return *data;
1504                         msleep(20);
1505                 } while (i++ < 3750);
1506
1507                 *data = 1;
1508         } else {
1509                 e1000_check_for_link(hw);
1510                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1511                         msleep(4000);
1512
1513                 if (!(er32(STATUS) & E1000_STATUS_LU))
1514                         *data = 1;
1515         }
1516         return *data;
1517 }
1518
1519 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1520 {
1521         switch (sset) {
1522         case ETH_SS_TEST:
1523                 return E1000_TEST_LEN;
1524         case ETH_SS_STATS:
1525                 return E1000_STATS_LEN;
1526         default:
1527                 return -EOPNOTSUPP;
1528         }
1529 }
1530
1531 static void e1000_diag_test(struct net_device *netdev,
1532                             struct ethtool_test *eth_test, u64 *data)
1533 {
1534         struct e1000_adapter *adapter = netdev_priv(netdev);
1535         struct e1000_hw *hw = &adapter->hw;
1536         bool if_running = netif_running(netdev);
1537
1538         set_bit(__E1000_TESTING, &adapter->flags);
1539         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1540                 /* Offline tests */
1541
1542                 /* save speed, duplex, autoneg settings */
1543                 u16 autoneg_advertised = hw->autoneg_advertised;
1544                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1545                 u8 autoneg = hw->autoneg;
1546
1547                 e_info(hw, "offline testing starting\n");
1548
1549                 /* Link test performed before hardware reset so autoneg doesn't
1550                  * interfere with test result
1551                  */
1552                 if (e1000_link_test(adapter, &data[4]))
1553                         eth_test->flags |= ETH_TEST_FL_FAILED;
1554
1555                 if (if_running)
1556                         /* indicate we're in test mode */
1557                         dev_close(netdev);
1558                 else
1559                         e1000_reset(adapter);
1560
1561                 if (e1000_reg_test(adapter, &data[0]))
1562                         eth_test->flags |= ETH_TEST_FL_FAILED;
1563
1564                 e1000_reset(adapter);
1565                 if (e1000_eeprom_test(adapter, &data[1]))
1566                         eth_test->flags |= ETH_TEST_FL_FAILED;
1567
1568                 e1000_reset(adapter);
1569                 if (e1000_intr_test(adapter, &data[2]))
1570                         eth_test->flags |= ETH_TEST_FL_FAILED;
1571
1572                 e1000_reset(adapter);
1573                 /* make sure the phy is powered up */
1574                 e1000_power_up_phy(adapter);
1575                 if (e1000_loopback_test(adapter, &data[3]))
1576                         eth_test->flags |= ETH_TEST_FL_FAILED;
1577
1578                 /* restore speed, duplex, autoneg settings */
1579                 hw->autoneg_advertised = autoneg_advertised;
1580                 hw->forced_speed_duplex = forced_speed_duplex;
1581                 hw->autoneg = autoneg;
1582
1583                 e1000_reset(adapter);
1584                 clear_bit(__E1000_TESTING, &adapter->flags);
1585                 if (if_running)
1586                         dev_open(netdev);
1587         } else {
1588                 e_info(hw, "online testing starting\n");
1589                 /* Online tests */
1590                 if (e1000_link_test(adapter, &data[4]))
1591                         eth_test->flags |= ETH_TEST_FL_FAILED;
1592
1593                 /* Online tests aren't run; pass by default */
1594                 data[0] = 0;
1595                 data[1] = 0;
1596                 data[2] = 0;
1597                 data[3] = 0;
1598
1599                 clear_bit(__E1000_TESTING, &adapter->flags);
1600         }
1601         msleep_interruptible(4 * 1000);
1602 }
1603
1604 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1605                                struct ethtool_wolinfo *wol)
1606 {
1607         struct e1000_hw *hw = &adapter->hw;
1608         int retval = 1; /* fail by default */
1609
1610         switch (hw->device_id) {
1611         case E1000_DEV_ID_82542:
1612         case E1000_DEV_ID_82543GC_FIBER:
1613         case E1000_DEV_ID_82543GC_COPPER:
1614         case E1000_DEV_ID_82544EI_FIBER:
1615         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1616         case E1000_DEV_ID_82545EM_FIBER:
1617         case E1000_DEV_ID_82545EM_COPPER:
1618         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1619         case E1000_DEV_ID_82546GB_PCIE:
1620                 /* these don't support WoL at all */
1621                 wol->supported = 0;
1622                 break;
1623         case E1000_DEV_ID_82546EB_FIBER:
1624         case E1000_DEV_ID_82546GB_FIBER:
1625                 /* Wake events not supported on port B */
1626                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1627                         wol->supported = 0;
1628                         break;
1629                 }
1630                 /* return success for non excluded adapter ports */
1631                 retval = 0;
1632                 break;
1633         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1634                 /* quad port adapters only support WoL on port A */
1635                 if (!adapter->quad_port_a) {
1636                         wol->supported = 0;
1637                         break;
1638                 }
1639                 /* return success for non excluded adapter ports */
1640                 retval = 0;
1641                 break;
1642         default:
1643                 /* dual port cards only support WoL on port A from now on
1644                  * unless it was enabled in the eeprom for port B
1645                  * so exclude FUNC_1 ports from having WoL enabled
1646                  */
1647                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1648                     !adapter->eeprom_wol) {
1649                         wol->supported = 0;
1650                         break;
1651                 }
1652
1653                 retval = 0;
1654         }
1655
1656         return retval;
1657 }
1658
1659 static void e1000_get_wol(struct net_device *netdev,
1660                           struct ethtool_wolinfo *wol)
1661 {
1662         struct e1000_adapter *adapter = netdev_priv(netdev);
1663         struct e1000_hw *hw = &adapter->hw;
1664
1665         wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1666         wol->wolopts = 0;
1667
1668         /* this function will set ->supported = 0 and return 1 if wol is not
1669          * supported by this hardware
1670          */
1671         if (e1000_wol_exclusion(adapter, wol) ||
1672             !device_can_wakeup(&adapter->pdev->dev))
1673                 return;
1674
1675         /* apply any specific unsupported masks here */
1676         switch (hw->device_id) {
1677         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1678                 /* KSP3 does not support UCAST wake-ups */
1679                 wol->supported &= ~WAKE_UCAST;
1680
1681                 if (adapter->wol & E1000_WUFC_EX)
1682                         e_err(drv, "Interface does not support directed "
1683                               "(unicast) frame wake-up packets\n");
1684                 break;
1685         default:
1686                 break;
1687         }
1688
1689         if (adapter->wol & E1000_WUFC_EX)
1690                 wol->wolopts |= WAKE_UCAST;
1691         if (adapter->wol & E1000_WUFC_MC)
1692                 wol->wolopts |= WAKE_MCAST;
1693         if (adapter->wol & E1000_WUFC_BC)
1694                 wol->wolopts |= WAKE_BCAST;
1695         if (adapter->wol & E1000_WUFC_MAG)
1696                 wol->wolopts |= WAKE_MAGIC;
1697 }
1698
1699 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1700 {
1701         struct e1000_adapter *adapter = netdev_priv(netdev);
1702         struct e1000_hw *hw = &adapter->hw;
1703
1704         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1705                 return -EOPNOTSUPP;
1706
1707         if (e1000_wol_exclusion(adapter, wol) ||
1708             !device_can_wakeup(&adapter->pdev->dev))
1709                 return wol->wolopts ? -EOPNOTSUPP : 0;
1710
1711         switch (hw->device_id) {
1712         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1713                 if (wol->wolopts & WAKE_UCAST) {
1714                         e_err(drv, "Interface does not support directed "
1715                               "(unicast) frame wake-up packets\n");
1716                         return -EOPNOTSUPP;
1717                 }
1718                 break;
1719         default:
1720                 break;
1721         }
1722
1723         /* these settings will always override what we currently have */
1724         adapter->wol = 0;
1725
1726         if (wol->wolopts & WAKE_UCAST)
1727                 adapter->wol |= E1000_WUFC_EX;
1728         if (wol->wolopts & WAKE_MCAST)
1729                 adapter->wol |= E1000_WUFC_MC;
1730         if (wol->wolopts & WAKE_BCAST)
1731                 adapter->wol |= E1000_WUFC_BC;
1732         if (wol->wolopts & WAKE_MAGIC)
1733                 adapter->wol |= E1000_WUFC_MAG;
1734
1735         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1736
1737         return 0;
1738 }
1739
1740 static int e1000_set_phys_id(struct net_device *netdev,
1741                              enum ethtool_phys_id_state state)
1742 {
1743         struct e1000_adapter *adapter = netdev_priv(netdev);
1744         struct e1000_hw *hw = &adapter->hw;
1745
1746         switch (state) {
1747         case ETHTOOL_ID_ACTIVE:
1748                 e1000_setup_led(hw);
1749                 return 2;
1750
1751         case ETHTOOL_ID_ON:
1752                 e1000_led_on(hw);
1753                 break;
1754
1755         case ETHTOOL_ID_OFF:
1756                 e1000_led_off(hw);
1757                 break;
1758
1759         case ETHTOOL_ID_INACTIVE:
1760                 e1000_cleanup_led(hw);
1761         }
1762
1763         return 0;
1764 }
1765
1766 static int e1000_get_coalesce(struct net_device *netdev,
1767                               struct ethtool_coalesce *ec)
1768 {
1769         struct e1000_adapter *adapter = netdev_priv(netdev);
1770
1771         if (adapter->hw.mac_type < e1000_82545)
1772                 return -EOPNOTSUPP;
1773
1774         if (adapter->itr_setting <= 4)
1775                 ec->rx_coalesce_usecs = adapter->itr_setting;
1776         else
1777                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1778
1779         return 0;
1780 }
1781
1782 static int e1000_set_coalesce(struct net_device *netdev,
1783                               struct ethtool_coalesce *ec)
1784 {
1785         struct e1000_adapter *adapter = netdev_priv(netdev);
1786         struct e1000_hw *hw = &adapter->hw;
1787
1788         if (hw->mac_type < e1000_82545)
1789                 return -EOPNOTSUPP;
1790
1791         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1792             ((ec->rx_coalesce_usecs > 4) &&
1793              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1794             (ec->rx_coalesce_usecs == 2))
1795                 return -EINVAL;
1796
1797         if (ec->rx_coalesce_usecs == 4) {
1798                 adapter->itr = adapter->itr_setting = 4;
1799         } else if (ec->rx_coalesce_usecs <= 3) {
1800                 adapter->itr = 20000;
1801                 adapter->itr_setting = ec->rx_coalesce_usecs;
1802         } else {
1803                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1804                 adapter->itr_setting = adapter->itr & ~3;
1805         }
1806
1807         if (adapter->itr_setting != 0)
1808                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1809         else
1810                 ew32(ITR, 0);
1811
1812         return 0;
1813 }
1814
1815 static int e1000_nway_reset(struct net_device *netdev)
1816 {
1817         struct e1000_adapter *adapter = netdev_priv(netdev);
1818
1819         if (netif_running(netdev))
1820                 e1000_reinit_locked(adapter);
1821         return 0;
1822 }
1823
1824 static void e1000_get_ethtool_stats(struct net_device *netdev,
1825                                     struct ethtool_stats *stats, u64 *data)
1826 {
1827         struct e1000_adapter *adapter = netdev_priv(netdev);
1828         int i;
1829         char *p = NULL;
1830         const struct e1000_stats *stat = e1000_gstrings_stats;
1831
1832         e1000_update_stats(adapter);
1833         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1834                 switch (stat->type) {
1835                 case NETDEV_STATS:
1836                         p = (char *)netdev + stat->stat_offset;
1837                         break;
1838                 case E1000_STATS:
1839                         p = (char *)adapter + stat->stat_offset;
1840                         break;
1841                 default:
1842                         WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1843                                   stat->type, i);
1844                         break;
1845                 }
1846
1847                 if (stat->sizeof_stat == sizeof(u64))
1848                         data[i] = *(u64 *)p;
1849                 else
1850                         data[i] = *(u32 *)p;
1851
1852                 stat++;
1853         }
1854 /* BUG_ON(i != E1000_STATS_LEN); */
1855 }
1856
1857 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1858                               u8 *data)
1859 {
1860         u8 *p = data;
1861         int i;
1862
1863         switch (stringset) {
1864         case ETH_SS_TEST:
1865                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1866                 break;
1867         case ETH_SS_STATS:
1868                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1869                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1870                                ETH_GSTRING_LEN);
1871                         p += ETH_GSTRING_LEN;
1872                 }
1873                 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1874                 break;
1875         }
1876 }
1877
1878 static const struct ethtool_ops e1000_ethtool_ops = {
1879         .get_settings           = e1000_get_settings,
1880         .set_settings           = e1000_set_settings,
1881         .get_drvinfo            = e1000_get_drvinfo,
1882         .get_regs_len           = e1000_get_regs_len,
1883         .get_regs               = e1000_get_regs,
1884         .get_wol                = e1000_get_wol,
1885         .set_wol                = e1000_set_wol,
1886         .get_msglevel           = e1000_get_msglevel,
1887         .set_msglevel           = e1000_set_msglevel,
1888         .nway_reset             = e1000_nway_reset,
1889         .get_link               = e1000_get_link,
1890         .get_eeprom_len         = e1000_get_eeprom_len,
1891         .get_eeprom             = e1000_get_eeprom,
1892         .set_eeprom             = e1000_set_eeprom,
1893         .get_ringparam          = e1000_get_ringparam,
1894         .set_ringparam          = e1000_set_ringparam,
1895         .get_pauseparam         = e1000_get_pauseparam,
1896         .set_pauseparam         = e1000_set_pauseparam,
1897         .self_test              = e1000_diag_test,
1898         .get_strings            = e1000_get_strings,
1899         .set_phys_id            = e1000_set_phys_id,
1900         .get_ethtool_stats      = e1000_get_ethtool_stats,
1901         .get_sset_count         = e1000_get_sset_count,
1902         .get_coalesce           = e1000_get_coalesce,
1903         .set_coalesce           = e1000_set_coalesce,
1904         .get_ts_info            = ethtool_op_get_ts_info,
1905 };
1906
1907 void e1000_set_ethtool_ops(struct net_device *netdev)
1908 {
1909         netdev->ethtool_ops = &e1000_ethtool_ops;
1910 }