Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1075),
76         INTEL_E1000_ETHERNET_DEVICE(0x1076),
77         INTEL_E1000_ETHERNET_DEVICE(0x1077),
78         INTEL_E1000_ETHERNET_DEVICE(0x1078),
79         INTEL_E1000_ETHERNET_DEVICE(0x1079),
80         INTEL_E1000_ETHERNET_DEVICE(0x107A),
81         INTEL_E1000_ETHERNET_DEVICE(0x107B),
82         INTEL_E1000_ETHERNET_DEVICE(0x107C),
83         INTEL_E1000_ETHERNET_DEVICE(0x108A),
84         INTEL_E1000_ETHERNET_DEVICE(0x1099),
85         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133                                     struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139                                struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142                                struct e1000_rx_ring *rx_ring,
143                                int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145                                      struct e1000_rx_ring *rx_ring,
146                                      int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148                                    struct e1000_rx_ring *rx_ring,
149                                    int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151                                          struct e1000_rx_ring *rx_ring,
152                                          int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155                            int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166                             netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168                                      bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171 static void e1000_restore_vlan(struct e1000_adapter *adapter);
172
173 #ifdef CONFIG_PM
174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175 static int e1000_resume(struct pci_dev *pdev);
176 #endif
177 static void e1000_shutdown(struct pci_dev *pdev);
178
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void e1000_netpoll (struct net_device *netdev);
182 #endif
183
184 #define COPYBREAK_DEFAULT 256
185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186 module_param(copybreak, uint, 0644);
187 MODULE_PARM_DESC(copybreak,
188         "Maximum size of packet that is copied to a new buffer on receive");
189
190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191                      pci_channel_state_t state);
192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193 static void e1000_io_resume(struct pci_dev *pdev);
194
195 static const struct pci_error_handlers e1000_err_handler = {
196         .error_detected = e1000_io_error_detected,
197         .slot_reset = e1000_io_slot_reset,
198         .resume = e1000_io_resume,
199 };
200
201 static struct pci_driver e1000_driver = {
202         .name     = e1000_driver_name,
203         .id_table = e1000_pci_tbl,
204         .probe    = e1000_probe,
205         .remove   = e1000_remove,
206 #ifdef CONFIG_PM
207         /* Power Management Hooks */
208         .suspend  = e1000_suspend,
209         .resume   = e1000_resume,
210 #endif
211         .shutdown = e1000_shutdown,
212         .err_handler = &e1000_err_handler
213 };
214
215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217 MODULE_LICENSE("GPL");
218 MODULE_VERSION(DRV_VERSION);
219
220 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221 static int debug = -1;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225 /**
226  * e1000_get_hw_dev - return device
227  * used by hardware layer to print debugging information
228  *
229  **/
230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231 {
232         struct e1000_adapter *adapter = hw->back;
233         return adapter->netdev;
234 }
235
236 /**
237  * e1000_init_module - Driver Registration Routine
238  *
239  * e1000_init_module is the first routine called when the driver is
240  * loaded. All it does is register with the PCI subsystem.
241  **/
242 static int __init e1000_init_module(void)
243 {
244         int ret;
245         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
246
247         pr_info("%s\n", e1000_copyright);
248
249         ret = pci_register_driver(&e1000_driver);
250         if (copybreak != COPYBREAK_DEFAULT) {
251                 if (copybreak == 0)
252                         pr_info("copybreak disabled\n");
253                 else
254                         pr_info("copybreak enabled for "
255                                    "packets <= %u bytes\n", copybreak);
256         }
257         return ret;
258 }
259
260 module_init(e1000_init_module);
261
262 /**
263  * e1000_exit_module - Driver Exit Cleanup Routine
264  *
265  * e1000_exit_module is called just before the driver is removed
266  * from memory.
267  **/
268 static void __exit e1000_exit_module(void)
269 {
270         pci_unregister_driver(&e1000_driver);
271 }
272
273 module_exit(e1000_exit_module);
274
275 static int e1000_request_irq(struct e1000_adapter *adapter)
276 {
277         struct net_device *netdev = adapter->netdev;
278         irq_handler_t handler = e1000_intr;
279         int irq_flags = IRQF_SHARED;
280         int err;
281
282         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
283                           netdev);
284         if (err) {
285                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
286         }
287
288         return err;
289 }
290
291 static void e1000_free_irq(struct e1000_adapter *adapter)
292 {
293         struct net_device *netdev = adapter->netdev;
294
295         free_irq(adapter->pdev->irq, netdev);
296 }
297
298 /**
299  * e1000_irq_disable - Mask off interrupt generation on the NIC
300  * @adapter: board private structure
301  **/
302 static void e1000_irq_disable(struct e1000_adapter *adapter)
303 {
304         struct e1000_hw *hw = &adapter->hw;
305
306         ew32(IMC, ~0);
307         E1000_WRITE_FLUSH();
308         synchronize_irq(adapter->pdev->irq);
309 }
310
311 /**
312  * e1000_irq_enable - Enable default interrupt generation settings
313  * @adapter: board private structure
314  **/
315 static void e1000_irq_enable(struct e1000_adapter *adapter)
316 {
317         struct e1000_hw *hw = &adapter->hw;
318
319         ew32(IMS, IMS_ENABLE_MASK);
320         E1000_WRITE_FLUSH();
321 }
322
323 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
324 {
325         struct e1000_hw *hw = &adapter->hw;
326         struct net_device *netdev = adapter->netdev;
327         u16 vid = hw->mng_cookie.vlan_id;
328         u16 old_vid = adapter->mng_vlan_id;
329
330         if (!e1000_vlan_used(adapter))
331                 return;
332
333         if (!test_bit(vid, adapter->active_vlans)) {
334                 if (hw->mng_cookie.status &
335                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
336                         e1000_vlan_rx_add_vid(netdev, vid);
337                         adapter->mng_vlan_id = vid;
338                 } else {
339                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
340                 }
341                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
342                     (vid != old_vid) &&
343                     !test_bit(old_vid, adapter->active_vlans))
344                         e1000_vlan_rx_kill_vid(netdev, old_vid);
345         } else {
346                 adapter->mng_vlan_id = vid;
347         }
348 }
349
350 static void e1000_init_manageability(struct e1000_adapter *adapter)
351 {
352         struct e1000_hw *hw = &adapter->hw;
353
354         if (adapter->en_mng_pt) {
355                 u32 manc = er32(MANC);
356
357                 /* disable hardware interception of ARP */
358                 manc &= ~(E1000_MANC_ARP_EN);
359
360                 ew32(MANC, manc);
361         }
362 }
363
364 static void e1000_release_manageability(struct e1000_adapter *adapter)
365 {
366         struct e1000_hw *hw = &adapter->hw;
367
368         if (adapter->en_mng_pt) {
369                 u32 manc = er32(MANC);
370
371                 /* re-enable hardware interception of ARP */
372                 manc |= E1000_MANC_ARP_EN;
373
374                 ew32(MANC, manc);
375         }
376 }
377
378 /**
379  * e1000_configure - configure the hardware for RX and TX
380  * @adapter = private board structure
381  **/
382 static void e1000_configure(struct e1000_adapter *adapter)
383 {
384         struct net_device *netdev = adapter->netdev;
385         int i;
386
387         e1000_set_rx_mode(netdev);
388
389         e1000_restore_vlan(adapter);
390         e1000_init_manageability(adapter);
391
392         e1000_configure_tx(adapter);
393         e1000_setup_rctl(adapter);
394         e1000_configure_rx(adapter);
395         /* call E1000_DESC_UNUSED which always leaves
396          * at least 1 descriptor unused to make sure
397          * next_to_use != next_to_clean
398          */
399         for (i = 0; i < adapter->num_rx_queues; i++) {
400                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
401                 adapter->alloc_rx_buf(adapter, ring,
402                                       E1000_DESC_UNUSED(ring));
403         }
404 }
405
406 int e1000_up(struct e1000_adapter *adapter)
407 {
408         struct e1000_hw *hw = &adapter->hw;
409
410         /* hardware has been reset, we need to reload some things */
411         e1000_configure(adapter);
412
413         clear_bit(__E1000_DOWN, &adapter->flags);
414
415         napi_enable(&adapter->napi);
416
417         e1000_irq_enable(adapter);
418
419         netif_wake_queue(adapter->netdev);
420
421         /* fire a link change interrupt to start the watchdog */
422         ew32(ICS, E1000_ICS_LSC);
423         return 0;
424 }
425
426 /**
427  * e1000_power_up_phy - restore link in case the phy was powered down
428  * @adapter: address of board private structure
429  *
430  * The phy may be powered down to save power and turn off link when the
431  * driver is unloaded and wake on lan is not enabled (among others)
432  * *** this routine MUST be followed by a call to e1000_reset ***
433  **/
434 void e1000_power_up_phy(struct e1000_adapter *adapter)
435 {
436         struct e1000_hw *hw = &adapter->hw;
437         u16 mii_reg = 0;
438
439         /* Just clear the power down bit to wake the phy back up */
440         if (hw->media_type == e1000_media_type_copper) {
441                 /* according to the manual, the phy will retain its
442                  * settings across a power-down/up cycle
443                  */
444                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
445                 mii_reg &= ~MII_CR_POWER_DOWN;
446                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
447         }
448 }
449
450 static void e1000_power_down_phy(struct e1000_adapter *adapter)
451 {
452         struct e1000_hw *hw = &adapter->hw;
453
454         /* Power down the PHY so no link is implied when interface is down *
455          * The PHY cannot be powered down if any of the following is true *
456          * (a) WoL is enabled
457          * (b) AMT is active
458          * (c) SoL/IDER session is active
459          */
460         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
461            hw->media_type == e1000_media_type_copper) {
462                 u16 mii_reg = 0;
463
464                 switch (hw->mac_type) {
465                 case e1000_82540:
466                 case e1000_82545:
467                 case e1000_82545_rev_3:
468                 case e1000_82546:
469                 case e1000_ce4100:
470                 case e1000_82546_rev_3:
471                 case e1000_82541:
472                 case e1000_82541_rev_2:
473                 case e1000_82547:
474                 case e1000_82547_rev_2:
475                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
476                                 goto out;
477                         break;
478                 default:
479                         goto out;
480                 }
481                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
482                 mii_reg |= MII_CR_POWER_DOWN;
483                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
484                 msleep(1);
485         }
486 out:
487         return;
488 }
489
490 static void e1000_down_and_stop(struct e1000_adapter *adapter)
491 {
492         set_bit(__E1000_DOWN, &adapter->flags);
493
494         /* Only kill reset task if adapter is not resetting */
495         if (!test_bit(__E1000_RESETTING, &adapter->flags))
496                 cancel_work_sync(&adapter->reset_task);
497
498         cancel_delayed_work_sync(&adapter->watchdog_task);
499         cancel_delayed_work_sync(&adapter->phy_info_task);
500         cancel_delayed_work_sync(&adapter->fifo_stall_task);
501 }
502
503 void e1000_down(struct e1000_adapter *adapter)
504 {
505         struct e1000_hw *hw = &adapter->hw;
506         struct net_device *netdev = adapter->netdev;
507         u32 rctl, tctl;
508
509
510         /* disable receives in the hardware */
511         rctl = er32(RCTL);
512         ew32(RCTL, rctl & ~E1000_RCTL_EN);
513         /* flush and sleep below */
514
515         netif_tx_disable(netdev);
516
517         /* disable transmits in the hardware */
518         tctl = er32(TCTL);
519         tctl &= ~E1000_TCTL_EN;
520         ew32(TCTL, tctl);
521         /* flush both disables and wait for them to finish */
522         E1000_WRITE_FLUSH();
523         msleep(10);
524
525         napi_disable(&adapter->napi);
526
527         e1000_irq_disable(adapter);
528
529         /* Setting DOWN must be after irq_disable to prevent
530          * a screaming interrupt.  Setting DOWN also prevents
531          * tasks from rescheduling.
532          */
533         e1000_down_and_stop(adapter);
534
535         adapter->link_speed = 0;
536         adapter->link_duplex = 0;
537         netif_carrier_off(netdev);
538
539         e1000_reset(adapter);
540         e1000_clean_all_tx_rings(adapter);
541         e1000_clean_all_rx_rings(adapter);
542 }
543
544 static void e1000_reinit_safe(struct e1000_adapter *adapter)
545 {
546         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
547                 msleep(1);
548         mutex_lock(&adapter->mutex);
549         e1000_down(adapter);
550         e1000_up(adapter);
551         mutex_unlock(&adapter->mutex);
552         clear_bit(__E1000_RESETTING, &adapter->flags);
553 }
554
555 void e1000_reinit_locked(struct e1000_adapter *adapter)
556 {
557         /* if rtnl_lock is not held the call path is bogus */
558         ASSERT_RTNL();
559         WARN_ON(in_interrupt());
560         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
561                 msleep(1);
562         e1000_down(adapter);
563         e1000_up(adapter);
564         clear_bit(__E1000_RESETTING, &adapter->flags);
565 }
566
567 void e1000_reset(struct e1000_adapter *adapter)
568 {
569         struct e1000_hw *hw = &adapter->hw;
570         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
571         bool legacy_pba_adjust = false;
572         u16 hwm;
573
574         /* Repartition Pba for greater than 9k mtu
575          * To take effect CTRL.RST is required.
576          */
577
578         switch (hw->mac_type) {
579         case e1000_82542_rev2_0:
580         case e1000_82542_rev2_1:
581         case e1000_82543:
582         case e1000_82544:
583         case e1000_82540:
584         case e1000_82541:
585         case e1000_82541_rev_2:
586                 legacy_pba_adjust = true;
587                 pba = E1000_PBA_48K;
588                 break;
589         case e1000_82545:
590         case e1000_82545_rev_3:
591         case e1000_82546:
592         case e1000_ce4100:
593         case e1000_82546_rev_3:
594                 pba = E1000_PBA_48K;
595                 break;
596         case e1000_82547:
597         case e1000_82547_rev_2:
598                 legacy_pba_adjust = true;
599                 pba = E1000_PBA_30K;
600                 break;
601         case e1000_undefined:
602         case e1000_num_macs:
603                 break;
604         }
605
606         if (legacy_pba_adjust) {
607                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
608                         pba -= 8; /* allocate more FIFO for Tx */
609
610                 if (hw->mac_type == e1000_82547) {
611                         adapter->tx_fifo_head = 0;
612                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
613                         adapter->tx_fifo_size =
614                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
615                         atomic_set(&adapter->tx_fifo_stall, 0);
616                 }
617         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
618                 /* adjust PBA for jumbo frames */
619                 ew32(PBA, pba);
620
621                 /* To maintain wire speed transmits, the Tx FIFO should be
622                  * large enough to accommodate two full transmit packets,
623                  * rounded up to the next 1KB and expressed in KB.  Likewise,
624                  * the Rx FIFO should be large enough to accommodate at least
625                  * one full receive packet and is similarly rounded up and
626                  * expressed in KB.
627                  */
628                 pba = er32(PBA);
629                 /* upper 16 bits has Tx packet buffer allocation size in KB */
630                 tx_space = pba >> 16;
631                 /* lower 16 bits has Rx packet buffer allocation size in KB */
632                 pba &= 0xffff;
633                 /* the Tx fifo also stores 16 bytes of information about the Tx
634                  * but don't include ethernet FCS because hardware appends it
635                  */
636                 min_tx_space = (hw->max_frame_size +
637                                 sizeof(struct e1000_tx_desc) -
638                                 ETH_FCS_LEN) * 2;
639                 min_tx_space = ALIGN(min_tx_space, 1024);
640                 min_tx_space >>= 10;
641                 /* software strips receive CRC, so leave room for it */
642                 min_rx_space = hw->max_frame_size;
643                 min_rx_space = ALIGN(min_rx_space, 1024);
644                 min_rx_space >>= 10;
645
646                 /* If current Tx allocation is less than the min Tx FIFO size,
647                  * and the min Tx FIFO size is less than the current Rx FIFO
648                  * allocation, take space away from current Rx allocation
649                  */
650                 if (tx_space < min_tx_space &&
651                     ((min_tx_space - tx_space) < pba)) {
652                         pba = pba - (min_tx_space - tx_space);
653
654                         /* PCI/PCIx hardware has PBA alignment constraints */
655                         switch (hw->mac_type) {
656                         case e1000_82545 ... e1000_82546_rev_3:
657                                 pba &= ~(E1000_PBA_8K - 1);
658                                 break;
659                         default:
660                                 break;
661                         }
662
663                         /* if short on Rx space, Rx wins and must trump Tx
664                          * adjustment or use Early Receive if available
665                          */
666                         if (pba < min_rx_space)
667                                 pba = min_rx_space;
668                 }
669         }
670
671         ew32(PBA, pba);
672
673         /* flow control settings:
674          * The high water mark must be low enough to fit one full frame
675          * (or the size used for early receive) above it in the Rx FIFO.
676          * Set it to the lower of:
677          * - 90% of the Rx FIFO size, and
678          * - the full Rx FIFO size minus the early receive size (for parts
679          *   with ERT support assuming ERT set to E1000_ERT_2048), or
680          * - the full Rx FIFO size minus one full frame
681          */
682         hwm = min(((pba << 10) * 9 / 10),
683                   ((pba << 10) - hw->max_frame_size));
684
685         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
686         hw->fc_low_water = hw->fc_high_water - 8;
687         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
688         hw->fc_send_xon = 1;
689         hw->fc = hw->original_fc;
690
691         /* Allow time for pending master requests to run */
692         e1000_reset_hw(hw);
693         if (hw->mac_type >= e1000_82544)
694                 ew32(WUC, 0);
695
696         if (e1000_init_hw(hw))
697                 e_dev_err("Hardware Error\n");
698         e1000_update_mng_vlan(adapter);
699
700         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
701         if (hw->mac_type >= e1000_82544 &&
702             hw->autoneg == 1 &&
703             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
704                 u32 ctrl = er32(CTRL);
705                 /* clear phy power management bit if we are in gig only mode,
706                  * which if enabled will attempt negotiation to 100Mb, which
707                  * can cause a loss of link at power off or driver unload
708                  */
709                 ctrl &= ~E1000_CTRL_SWDPIN3;
710                 ew32(CTRL, ctrl);
711         }
712
713         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
714         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
715
716         e1000_reset_adaptive(hw);
717         e1000_phy_get_info(hw, &adapter->phy_info);
718
719         e1000_release_manageability(adapter);
720 }
721
722 /* Dump the eeprom for users having checksum issues */
723 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
724 {
725         struct net_device *netdev = adapter->netdev;
726         struct ethtool_eeprom eeprom;
727         const struct ethtool_ops *ops = netdev->ethtool_ops;
728         u8 *data;
729         int i;
730         u16 csum_old, csum_new = 0;
731
732         eeprom.len = ops->get_eeprom_len(netdev);
733         eeprom.offset = 0;
734
735         data = kmalloc(eeprom.len, GFP_KERNEL);
736         if (!data)
737                 return;
738
739         ops->get_eeprom(netdev, &eeprom, data);
740
741         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
742                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
743         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
744                 csum_new += data[i] + (data[i + 1] << 8);
745         csum_new = EEPROM_SUM - csum_new;
746
747         pr_err("/*********************/\n");
748         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
749         pr_err("Calculated              : 0x%04x\n", csum_new);
750
751         pr_err("Offset    Values\n");
752         pr_err("========  ======\n");
753         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
754
755         pr_err("Include this output when contacting your support provider.\n");
756         pr_err("This is not a software error! Something bad happened to\n");
757         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
758         pr_err("result in further problems, possibly loss of data,\n");
759         pr_err("corruption or system hangs!\n");
760         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
761         pr_err("which is invalid and requires you to set the proper MAC\n");
762         pr_err("address manually before continuing to enable this network\n");
763         pr_err("device. Please inspect the EEPROM dump and report the\n");
764         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
765         pr_err("/*********************/\n");
766
767         kfree(data);
768 }
769
770 /**
771  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
772  * @pdev: PCI device information struct
773  *
774  * Return true if an adapter needs ioport resources
775  **/
776 static int e1000_is_need_ioport(struct pci_dev *pdev)
777 {
778         switch (pdev->device) {
779         case E1000_DEV_ID_82540EM:
780         case E1000_DEV_ID_82540EM_LOM:
781         case E1000_DEV_ID_82540EP:
782         case E1000_DEV_ID_82540EP_LOM:
783         case E1000_DEV_ID_82540EP_LP:
784         case E1000_DEV_ID_82541EI:
785         case E1000_DEV_ID_82541EI_MOBILE:
786         case E1000_DEV_ID_82541ER:
787         case E1000_DEV_ID_82541ER_LOM:
788         case E1000_DEV_ID_82541GI:
789         case E1000_DEV_ID_82541GI_LF:
790         case E1000_DEV_ID_82541GI_MOBILE:
791         case E1000_DEV_ID_82544EI_COPPER:
792         case E1000_DEV_ID_82544EI_FIBER:
793         case E1000_DEV_ID_82544GC_COPPER:
794         case E1000_DEV_ID_82544GC_LOM:
795         case E1000_DEV_ID_82545EM_COPPER:
796         case E1000_DEV_ID_82545EM_FIBER:
797         case E1000_DEV_ID_82546EB_COPPER:
798         case E1000_DEV_ID_82546EB_FIBER:
799         case E1000_DEV_ID_82546EB_QUAD_COPPER:
800                 return true;
801         default:
802                 return false;
803         }
804 }
805
806 static netdev_features_t e1000_fix_features(struct net_device *netdev,
807         netdev_features_t features)
808 {
809         /* Since there is no support for separate Rx/Tx vlan accel
810          * enable/disable make sure Tx flag is always in same state as Rx.
811          */
812         if (features & NETIF_F_HW_VLAN_RX)
813                 features |= NETIF_F_HW_VLAN_TX;
814         else
815                 features &= ~NETIF_F_HW_VLAN_TX;
816
817         return features;
818 }
819
820 static int e1000_set_features(struct net_device *netdev,
821         netdev_features_t features)
822 {
823         struct e1000_adapter *adapter = netdev_priv(netdev);
824         netdev_features_t changed = features ^ netdev->features;
825
826         if (changed & NETIF_F_HW_VLAN_RX)
827                 e1000_vlan_mode(netdev, features);
828
829         if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
830                 return 0;
831
832         netdev->features = features;
833         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
834
835         if (netif_running(netdev))
836                 e1000_reinit_locked(adapter);
837         else
838                 e1000_reset(adapter);
839
840         return 0;
841 }
842
843 static const struct net_device_ops e1000_netdev_ops = {
844         .ndo_open               = e1000_open,
845         .ndo_stop               = e1000_close,
846         .ndo_start_xmit         = e1000_xmit_frame,
847         .ndo_get_stats          = e1000_get_stats,
848         .ndo_set_rx_mode        = e1000_set_rx_mode,
849         .ndo_set_mac_address    = e1000_set_mac,
850         .ndo_tx_timeout         = e1000_tx_timeout,
851         .ndo_change_mtu         = e1000_change_mtu,
852         .ndo_do_ioctl           = e1000_ioctl,
853         .ndo_validate_addr      = eth_validate_addr,
854         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
855         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
856 #ifdef CONFIG_NET_POLL_CONTROLLER
857         .ndo_poll_controller    = e1000_netpoll,
858 #endif
859         .ndo_fix_features       = e1000_fix_features,
860         .ndo_set_features       = e1000_set_features,
861 };
862
863 /**
864  * e1000_init_hw_struct - initialize members of hw struct
865  * @adapter: board private struct
866  * @hw: structure used by e1000_hw.c
867  *
868  * Factors out initialization of the e1000_hw struct to its own function
869  * that can be called very early at init (just after struct allocation).
870  * Fields are initialized based on PCI device information and
871  * OS network device settings (MTU size).
872  * Returns negative error codes if MAC type setup fails.
873  */
874 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
875                                 struct e1000_hw *hw)
876 {
877         struct pci_dev *pdev = adapter->pdev;
878
879         /* PCI config space info */
880         hw->vendor_id = pdev->vendor;
881         hw->device_id = pdev->device;
882         hw->subsystem_vendor_id = pdev->subsystem_vendor;
883         hw->subsystem_id = pdev->subsystem_device;
884         hw->revision_id = pdev->revision;
885
886         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
887
888         hw->max_frame_size = adapter->netdev->mtu +
889                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
890         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
891
892         /* identify the MAC */
893         if (e1000_set_mac_type(hw)) {
894                 e_err(probe, "Unknown MAC Type\n");
895                 return -EIO;
896         }
897
898         switch (hw->mac_type) {
899         default:
900                 break;
901         case e1000_82541:
902         case e1000_82547:
903         case e1000_82541_rev_2:
904         case e1000_82547_rev_2:
905                 hw->phy_init_script = 1;
906                 break;
907         }
908
909         e1000_set_media_type(hw);
910         e1000_get_bus_info(hw);
911
912         hw->wait_autoneg_complete = false;
913         hw->tbi_compatibility_en = true;
914         hw->adaptive_ifs = true;
915
916         /* Copper options */
917
918         if (hw->media_type == e1000_media_type_copper) {
919                 hw->mdix = AUTO_ALL_MODES;
920                 hw->disable_polarity_correction = false;
921                 hw->master_slave = E1000_MASTER_SLAVE;
922         }
923
924         return 0;
925 }
926
927 /**
928  * e1000_probe - Device Initialization Routine
929  * @pdev: PCI device information struct
930  * @ent: entry in e1000_pci_tbl
931  *
932  * Returns 0 on success, negative on failure
933  *
934  * e1000_probe initializes an adapter identified by a pci_dev structure.
935  * The OS initialization, configuring of the adapter private structure,
936  * and a hardware reset occur.
937  **/
938 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
939 {
940         struct net_device *netdev;
941         struct e1000_adapter *adapter;
942         struct e1000_hw *hw;
943
944         static int cards_found = 0;
945         static int global_quad_port_a = 0; /* global ksp3 port a indication */
946         int i, err, pci_using_dac;
947         u16 eeprom_data = 0;
948         u16 tmp = 0;
949         u16 eeprom_apme_mask = E1000_EEPROM_APME;
950         int bars, need_ioport;
951
952         /* do not allocate ioport bars when not needed */
953         need_ioport = e1000_is_need_ioport(pdev);
954         if (need_ioport) {
955                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
956                 err = pci_enable_device(pdev);
957         } else {
958                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
959                 err = pci_enable_device_mem(pdev);
960         }
961         if (err)
962                 return err;
963
964         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
965         if (err)
966                 goto err_pci_reg;
967
968         pci_set_master(pdev);
969         err = pci_save_state(pdev);
970         if (err)
971                 goto err_alloc_etherdev;
972
973         err = -ENOMEM;
974         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
975         if (!netdev)
976                 goto err_alloc_etherdev;
977
978         SET_NETDEV_DEV(netdev, &pdev->dev);
979
980         pci_set_drvdata(pdev, netdev);
981         adapter = netdev_priv(netdev);
982         adapter->netdev = netdev;
983         adapter->pdev = pdev;
984         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
985         adapter->bars = bars;
986         adapter->need_ioport = need_ioport;
987
988         hw = &adapter->hw;
989         hw->back = adapter;
990
991         err = -EIO;
992         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
993         if (!hw->hw_addr)
994                 goto err_ioremap;
995
996         if (adapter->need_ioport) {
997                 for (i = BAR_1; i <= BAR_5; i++) {
998                         if (pci_resource_len(pdev, i) == 0)
999                                 continue;
1000                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1001                                 hw->io_base = pci_resource_start(pdev, i);
1002                                 break;
1003                         }
1004                 }
1005         }
1006
1007         /* make ready for any if (hw->...) below */
1008         err = e1000_init_hw_struct(adapter, hw);
1009         if (err)
1010                 goto err_sw_init;
1011
1012         /* there is a workaround being applied below that limits
1013          * 64-bit DMA addresses to 64-bit hardware.  There are some
1014          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1015          */
1016         pci_using_dac = 0;
1017         if ((hw->bus_type == e1000_bus_type_pcix) &&
1018             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1019                 /* according to DMA-API-HOWTO, coherent calls will always
1020                  * succeed if the set call did
1021                  */
1022                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1023                 pci_using_dac = 1;
1024         } else {
1025                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1026                 if (err) {
1027                         pr_err("No usable DMA config, aborting\n");
1028                         goto err_dma;
1029                 }
1030                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1031         }
1032
1033         netdev->netdev_ops = &e1000_netdev_ops;
1034         e1000_set_ethtool_ops(netdev);
1035         netdev->watchdog_timeo = 5 * HZ;
1036         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1037
1038         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1039
1040         adapter->bd_number = cards_found;
1041
1042         /* setup the private structure */
1043
1044         err = e1000_sw_init(adapter);
1045         if (err)
1046                 goto err_sw_init;
1047
1048         err = -EIO;
1049         if (hw->mac_type == e1000_ce4100) {
1050                 hw->ce4100_gbe_mdio_base_virt =
1051                                         ioremap(pci_resource_start(pdev, BAR_1),
1052                                                 pci_resource_len(pdev, BAR_1));
1053
1054                 if (!hw->ce4100_gbe_mdio_base_virt)
1055                         goto err_mdio_ioremap;
1056         }
1057
1058         if (hw->mac_type >= e1000_82543) {
1059                 netdev->hw_features = NETIF_F_SG |
1060                                    NETIF_F_HW_CSUM |
1061                                    NETIF_F_HW_VLAN_RX;
1062                 netdev->features = NETIF_F_HW_VLAN_TX |
1063                                    NETIF_F_HW_VLAN_FILTER;
1064         }
1065
1066         if ((hw->mac_type >= e1000_82544) &&
1067            (hw->mac_type != e1000_82547))
1068                 netdev->hw_features |= NETIF_F_TSO;
1069
1070         netdev->priv_flags |= IFF_SUPP_NOFCS;
1071
1072         netdev->features |= netdev->hw_features;
1073         netdev->hw_features |= (NETIF_F_RXCSUM |
1074                                 NETIF_F_RXALL |
1075                                 NETIF_F_RXFCS);
1076
1077         if (pci_using_dac) {
1078                 netdev->features |= NETIF_F_HIGHDMA;
1079                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1080         }
1081
1082         netdev->vlan_features |= (NETIF_F_TSO |
1083                                   NETIF_F_HW_CSUM |
1084                                   NETIF_F_SG);
1085
1086         netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090         /* initialize eeprom parameters */
1091         if (e1000_init_eeprom_params(hw)) {
1092                 e_err(probe, "EEPROM initialization failed\n");
1093                 goto err_eeprom;
1094         }
1095
1096         /* before reading the EEPROM, reset the controller to
1097          * put the device in a known good starting state
1098          */
1099
1100         e1000_reset_hw(hw);
1101
1102         /* make sure the EEPROM is good */
1103         if (e1000_validate_eeprom_checksum(hw) < 0) {
1104                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105                 e1000_dump_eeprom(adapter);
1106                 /* set MAC address to all zeroes to invalidate and temporary
1107                  * disable this device for the user. This blocks regular
1108                  * traffic while still permitting ethtool ioctls from reaching
1109                  * the hardware as well as allowing the user to run the
1110                  * interface after manually setting a hw addr using
1111                  * `ip set address`
1112                  */
1113                 memset(hw->mac_addr, 0, netdev->addr_len);
1114         } else {
1115                 /* copy the MAC address out of the EEPROM */
1116                 if (e1000_read_mac_addr(hw))
1117                         e_err(probe, "EEPROM Read Error\n");
1118         }
1119         /* don't block initalization here due to bad MAC address */
1120         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122         if (!is_valid_ether_addr(netdev->dev_addr))
1123                 e_err(probe, "Invalid MAC Address\n");
1124
1125
1126         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128                           e1000_82547_tx_fifo_stall_task);
1129         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132         e1000_check_options(adapter);
1133
1134         /* Initial Wake on LAN setting
1135          * If APM wake is enabled in the EEPROM,
1136          * enable the ACPI Magic Packet filter
1137          */
1138
1139         switch (hw->mac_type) {
1140         case e1000_82542_rev2_0:
1141         case e1000_82542_rev2_1:
1142         case e1000_82543:
1143                 break;
1144         case e1000_82544:
1145                 e1000_read_eeprom(hw,
1146                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148                 break;
1149         case e1000_82546:
1150         case e1000_82546_rev_3:
1151                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1152                         e1000_read_eeprom(hw,
1153                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154                         break;
1155                 }
1156                 /* Fall Through */
1157         default:
1158                 e1000_read_eeprom(hw,
1159                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160                 break;
1161         }
1162         if (eeprom_data & eeprom_apme_mask)
1163                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165         /* now that we have the eeprom settings, apply the special cases
1166          * where the eeprom may be wrong or the board simply won't support
1167          * wake on lan on a particular port
1168          */
1169         switch (pdev->device) {
1170         case E1000_DEV_ID_82546GB_PCIE:
1171                 adapter->eeprom_wol = 0;
1172                 break;
1173         case E1000_DEV_ID_82546EB_FIBER:
1174         case E1000_DEV_ID_82546GB_FIBER:
1175                 /* Wake events only supported on port A for dual fiber
1176                  * regardless of eeprom setting
1177                  */
1178                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179                         adapter->eeprom_wol = 0;
1180                 break;
1181         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182                 /* if quad port adapter, disable WoL on all but port A */
1183                 if (global_quad_port_a != 0)
1184                         adapter->eeprom_wol = 0;
1185                 else
1186                         adapter->quad_port_a = true;
1187                 /* Reset for multiple quad port adapters */
1188                 if (++global_quad_port_a == 4)
1189                         global_quad_port_a = 0;
1190                 break;
1191         }
1192
1193         /* initialize the wol settings based on the eeprom settings */
1194         adapter->wol = adapter->eeprom_wol;
1195         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197         /* Auto detect PHY address */
1198         if (hw->mac_type == e1000_ce4100) {
1199                 for (i = 0; i < 32; i++) {
1200                         hw->phy_addr = i;
1201                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202                         if (tmp == 0 || tmp == 0xFF) {
1203                                 if (i == 31)
1204                                         goto err_eeprom;
1205                                 continue;
1206                         } else
1207                                 break;
1208                 }
1209         }
1210
1211         /* reset the hardware with the new settings */
1212         e1000_reset(adapter);
1213
1214         strcpy(netdev->name, "eth%d");
1215         err = register_netdev(netdev);
1216         if (err)
1217                 goto err_register;
1218
1219         e1000_vlan_filter_on_off(adapter, false);
1220
1221         /* print bus type/speed/width info */
1222         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229                netdev->dev_addr);
1230
1231         /* carrier off reporting is important to ethtool even BEFORE open */
1232         netif_carrier_off(netdev);
1233
1234         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236         cards_found++;
1237         return 0;
1238
1239 err_register:
1240 err_eeprom:
1241         e1000_phy_hw_reset(hw);
1242
1243         if (hw->flash_address)
1244                 iounmap(hw->flash_address);
1245         kfree(adapter->tx_ring);
1246         kfree(adapter->rx_ring);
1247 err_dma:
1248 err_sw_init:
1249 err_mdio_ioremap:
1250         iounmap(hw->ce4100_gbe_mdio_base_virt);
1251         iounmap(hw->hw_addr);
1252 err_ioremap:
1253         free_netdev(netdev);
1254 err_alloc_etherdev:
1255         pci_release_selected_regions(pdev, bars);
1256 err_pci_reg:
1257         pci_disable_device(pdev);
1258         return err;
1259 }
1260
1261 /**
1262  * e1000_remove - Device Removal Routine
1263  * @pdev: PCI device information struct
1264  *
1265  * e1000_remove is called by the PCI subsystem to alert the driver
1266  * that it should release a PCI device.  The could be caused by a
1267  * Hot-Plug event, or because the driver is going to be removed from
1268  * memory.
1269  **/
1270 static void e1000_remove(struct pci_dev *pdev)
1271 {
1272         struct net_device *netdev = pci_get_drvdata(pdev);
1273         struct e1000_adapter *adapter = netdev_priv(netdev);
1274         struct e1000_hw *hw = &adapter->hw;
1275
1276         e1000_down_and_stop(adapter);
1277         e1000_release_manageability(adapter);
1278
1279         unregister_netdev(netdev);
1280
1281         e1000_phy_hw_reset(hw);
1282
1283         kfree(adapter->tx_ring);
1284         kfree(adapter->rx_ring);
1285
1286         if (hw->mac_type == e1000_ce4100)
1287                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1288         iounmap(hw->hw_addr);
1289         if (hw->flash_address)
1290                 iounmap(hw->flash_address);
1291         pci_release_selected_regions(pdev, adapter->bars);
1292
1293         free_netdev(netdev);
1294
1295         pci_disable_device(pdev);
1296 }
1297
1298 /**
1299  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300  * @adapter: board private structure to initialize
1301  *
1302  * e1000_sw_init initializes the Adapter private data structure.
1303  * e1000_init_hw_struct MUST be called before this function
1304  **/
1305 static int e1000_sw_init(struct e1000_adapter *adapter)
1306 {
1307         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309         adapter->num_tx_queues = 1;
1310         adapter->num_rx_queues = 1;
1311
1312         if (e1000_alloc_queues(adapter)) {
1313                 e_err(probe, "Unable to allocate memory for queues\n");
1314                 return -ENOMEM;
1315         }
1316
1317         /* Explicitly disable IRQ since the NIC can be in any state. */
1318         e1000_irq_disable(adapter);
1319
1320         spin_lock_init(&adapter->stats_lock);
1321         mutex_init(&adapter->mutex);
1322
1323         set_bit(__E1000_DOWN, &adapter->flags);
1324
1325         return 0;
1326 }
1327
1328 /**
1329  * e1000_alloc_queues - Allocate memory for all rings
1330  * @adapter: board private structure to initialize
1331  *
1332  * We allocate one ring per queue at run-time since we don't know the
1333  * number of queues at compile-time.
1334  **/
1335 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1336 {
1337         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1338                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1339         if (!adapter->tx_ring)
1340                 return -ENOMEM;
1341
1342         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1343                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1344         if (!adapter->rx_ring) {
1345                 kfree(adapter->tx_ring);
1346                 return -ENOMEM;
1347         }
1348
1349         return E1000_SUCCESS;
1350 }
1351
1352 /**
1353  * e1000_open - Called when a network interface is made active
1354  * @netdev: network interface device structure
1355  *
1356  * Returns 0 on success, negative value on failure
1357  *
1358  * The open entry point is called when a network interface is made
1359  * active by the system (IFF_UP).  At this point all resources needed
1360  * for transmit and receive operations are allocated, the interrupt
1361  * handler is registered with the OS, the watchdog task is started,
1362  * and the stack is notified that the interface is ready.
1363  **/
1364 static int e1000_open(struct net_device *netdev)
1365 {
1366         struct e1000_adapter *adapter = netdev_priv(netdev);
1367         struct e1000_hw *hw = &adapter->hw;
1368         int err;
1369
1370         /* disallow open during test */
1371         if (test_bit(__E1000_TESTING, &adapter->flags))
1372                 return -EBUSY;
1373
1374         netif_carrier_off(netdev);
1375
1376         /* allocate transmit descriptors */
1377         err = e1000_setup_all_tx_resources(adapter);
1378         if (err)
1379                 goto err_setup_tx;
1380
1381         /* allocate receive descriptors */
1382         err = e1000_setup_all_rx_resources(adapter);
1383         if (err)
1384                 goto err_setup_rx;
1385
1386         e1000_power_up_phy(adapter);
1387
1388         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1389         if ((hw->mng_cookie.status &
1390                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1391                 e1000_update_mng_vlan(adapter);
1392         }
1393
1394         /* before we allocate an interrupt, we must be ready to handle it.
1395          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1396          * as soon as we call pci_request_irq, so we have to setup our
1397          * clean_rx handler before we do so.
1398          */
1399         e1000_configure(adapter);
1400
1401         err = e1000_request_irq(adapter);
1402         if (err)
1403                 goto err_req_irq;
1404
1405         /* From here on the code is the same as e1000_up() */
1406         clear_bit(__E1000_DOWN, &adapter->flags);
1407
1408         napi_enable(&adapter->napi);
1409
1410         e1000_irq_enable(adapter);
1411
1412         netif_start_queue(netdev);
1413
1414         /* fire a link status change interrupt to start the watchdog */
1415         ew32(ICS, E1000_ICS_LSC);
1416
1417         return E1000_SUCCESS;
1418
1419 err_req_irq:
1420         e1000_power_down_phy(adapter);
1421         e1000_free_all_rx_resources(adapter);
1422 err_setup_rx:
1423         e1000_free_all_tx_resources(adapter);
1424 err_setup_tx:
1425         e1000_reset(adapter);
1426
1427         return err;
1428 }
1429
1430 /**
1431  * e1000_close - Disables a network interface
1432  * @netdev: network interface device structure
1433  *
1434  * Returns 0, this is not allowed to fail
1435  *
1436  * The close entry point is called when an interface is de-activated
1437  * by the OS.  The hardware is still under the drivers control, but
1438  * needs to be disabled.  A global MAC reset is issued to stop the
1439  * hardware, and all transmit and receive resources are freed.
1440  **/
1441 static int e1000_close(struct net_device *netdev)
1442 {
1443         struct e1000_adapter *adapter = netdev_priv(netdev);
1444         struct e1000_hw *hw = &adapter->hw;
1445
1446         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1447         e1000_down(adapter);
1448         e1000_power_down_phy(adapter);
1449         e1000_free_irq(adapter);
1450
1451         e1000_free_all_tx_resources(adapter);
1452         e1000_free_all_rx_resources(adapter);
1453
1454         /* kill manageability vlan ID if supported, but not if a vlan with
1455          * the same ID is registered on the host OS (let 8021q kill it)
1456          */
1457         if ((hw->mng_cookie.status &
1458              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1459             !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1460                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1461         }
1462
1463         return 0;
1464 }
1465
1466 /**
1467  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468  * @adapter: address of board private structure
1469  * @start: address of beginning of memory
1470  * @len: length of memory
1471  **/
1472 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473                                   unsigned long len)
1474 {
1475         struct e1000_hw *hw = &adapter->hw;
1476         unsigned long begin = (unsigned long)start;
1477         unsigned long end = begin + len;
1478
1479         /* First rev 82545 and 82546 need to not allow any memory
1480          * write location to cross 64k boundary due to errata 23
1481          */
1482         if (hw->mac_type == e1000_82545 ||
1483             hw->mac_type == e1000_ce4100 ||
1484             hw->mac_type == e1000_82546) {
1485                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1486         }
1487
1488         return true;
1489 }
1490
1491 /**
1492  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493  * @adapter: board private structure
1494  * @txdr:    tx descriptor ring (for a specific queue) to setup
1495  *
1496  * Return 0 on success, negative on failure
1497  **/
1498 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499                                     struct e1000_tx_ring *txdr)
1500 {
1501         struct pci_dev *pdev = adapter->pdev;
1502         int size;
1503
1504         size = sizeof(struct e1000_buffer) * txdr->count;
1505         txdr->buffer_info = vzalloc(size);
1506         if (!txdr->buffer_info)
1507                 return -ENOMEM;
1508
1509         /* round up to nearest 4K */
1510
1511         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512         txdr->size = ALIGN(txdr->size, 4096);
1513
1514         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515                                         GFP_KERNEL);
1516         if (!txdr->desc) {
1517 setup_tx_desc_die:
1518                 vfree(txdr->buffer_info);
1519                 return -ENOMEM;
1520         }
1521
1522         /* Fix for errata 23, can't cross 64kB boundary */
1523         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524                 void *olddesc = txdr->desc;
1525                 dma_addr_t olddma = txdr->dma;
1526                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527                       txdr->size, txdr->desc);
1528                 /* Try again, without freeing the previous */
1529                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530                                                 &txdr->dma, GFP_KERNEL);
1531                 /* Failed allocation, critical failure */
1532                 if (!txdr->desc) {
1533                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534                                           olddma);
1535                         goto setup_tx_desc_die;
1536                 }
1537
1538                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539                         /* give up */
1540                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541                                           txdr->dma);
1542                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543                                           olddma);
1544                         e_err(probe, "Unable to allocate aligned memory "
1545                               "for the transmit descriptor ring\n");
1546                         vfree(txdr->buffer_info);
1547                         return -ENOMEM;
1548                 } else {
1549                         /* Free old allocation, new allocation was successful */
1550                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551                                           olddma);
1552                 }
1553         }
1554         memset(txdr->desc, 0, txdr->size);
1555
1556         txdr->next_to_use = 0;
1557         txdr->next_to_clean = 0;
1558
1559         return 0;
1560 }
1561
1562 /**
1563  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564  *                                (Descriptors) for all queues
1565  * @adapter: board private structure
1566  *
1567  * Return 0 on success, negative on failure
1568  **/
1569 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570 {
1571         int i, err = 0;
1572
1573         for (i = 0; i < adapter->num_tx_queues; i++) {
1574                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575                 if (err) {
1576                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577                         for (i-- ; i >= 0; i--)
1578                                 e1000_free_tx_resources(adapter,
1579                                                         &adapter->tx_ring[i]);
1580                         break;
1581                 }
1582         }
1583
1584         return err;
1585 }
1586
1587 /**
1588  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589  * @adapter: board private structure
1590  *
1591  * Configure the Tx unit of the MAC after a reset.
1592  **/
1593 static void e1000_configure_tx(struct e1000_adapter *adapter)
1594 {
1595         u64 tdba;
1596         struct e1000_hw *hw = &adapter->hw;
1597         u32 tdlen, tctl, tipg;
1598         u32 ipgr1, ipgr2;
1599
1600         /* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602         switch (adapter->num_tx_queues) {
1603         case 1:
1604         default:
1605                 tdba = adapter->tx_ring[0].dma;
1606                 tdlen = adapter->tx_ring[0].count *
1607                         sizeof(struct e1000_tx_desc);
1608                 ew32(TDLEN, tdlen);
1609                 ew32(TDBAH, (tdba >> 32));
1610                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611                 ew32(TDT, 0);
1612                 ew32(TDH, 0);
1613                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614                                            E1000_TDH : E1000_82542_TDH);
1615                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616                                            E1000_TDT : E1000_82542_TDT);
1617                 break;
1618         }
1619
1620         /* Set the default values for the Tx Inter Packet Gap timer */
1621         if ((hw->media_type == e1000_media_type_fiber ||
1622              hw->media_type == e1000_media_type_internal_serdes))
1623                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624         else
1625                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627         switch (hw->mac_type) {
1628         case e1000_82542_rev2_0:
1629         case e1000_82542_rev2_1:
1630                 tipg = DEFAULT_82542_TIPG_IPGT;
1631                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633                 break;
1634         default:
1635                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637                 break;
1638         }
1639         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641         ew32(TIPG, tipg);
1642
1643         /* Set the Tx Interrupt Delay register */
1644
1645         ew32(TIDV, adapter->tx_int_delay);
1646         if (hw->mac_type >= e1000_82540)
1647                 ew32(TADV, adapter->tx_abs_int_delay);
1648
1649         /* Program the Transmit Control Register */
1650
1651         tctl = er32(TCTL);
1652         tctl &= ~E1000_TCTL_CT;
1653         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656         e1000_config_collision_dist(hw);
1657
1658         /* Setup Transmit Descriptor Settings for eop descriptor */
1659         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661         /* only set IDE if we are delaying interrupts using the timers */
1662         if (adapter->tx_int_delay)
1663                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665         if (hw->mac_type < e1000_82543)
1666                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667         else
1668                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670         /* Cache if we're 82544 running in PCI-X because we'll
1671          * need this to apply a workaround later in the send path.
1672          */
1673         if (hw->mac_type == e1000_82544 &&
1674             hw->bus_type == e1000_bus_type_pcix)
1675                 adapter->pcix_82544 = true;
1676
1677         ew32(TCTL, tctl);
1678
1679 }
1680
1681 /**
1682  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683  * @adapter: board private structure
1684  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1685  *
1686  * Returns 0 on success, negative on failure
1687  **/
1688 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689                                     struct e1000_rx_ring *rxdr)
1690 {
1691         struct pci_dev *pdev = adapter->pdev;
1692         int size, desc_len;
1693
1694         size = sizeof(struct e1000_buffer) * rxdr->count;
1695         rxdr->buffer_info = vzalloc(size);
1696         if (!rxdr->buffer_info)
1697                 return -ENOMEM;
1698
1699         desc_len = sizeof(struct e1000_rx_desc);
1700
1701         /* Round up to nearest 4K */
1702
1703         rxdr->size = rxdr->count * desc_len;
1704         rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707                                         GFP_KERNEL);
1708         if (!rxdr->desc) {
1709 setup_rx_desc_die:
1710                 vfree(rxdr->buffer_info);
1711                 return -ENOMEM;
1712         }
1713
1714         /* Fix for errata 23, can't cross 64kB boundary */
1715         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716                 void *olddesc = rxdr->desc;
1717                 dma_addr_t olddma = rxdr->dma;
1718                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719                       rxdr->size, rxdr->desc);
1720                 /* Try again, without freeing the previous */
1721                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722                                                 &rxdr->dma, GFP_KERNEL);
1723                 /* Failed allocation, critical failure */
1724                 if (!rxdr->desc) {
1725                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726                                           olddma);
1727                         goto setup_rx_desc_die;
1728                 }
1729
1730                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731                         /* give up */
1732                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733                                           rxdr->dma);
1734                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735                                           olddma);
1736                         e_err(probe, "Unable to allocate aligned memory for "
1737                               "the Rx descriptor ring\n");
1738                         goto setup_rx_desc_die;
1739                 } else {
1740                         /* Free old allocation, new allocation was successful */
1741                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742                                           olddma);
1743                 }
1744         }
1745         memset(rxdr->desc, 0, rxdr->size);
1746
1747         rxdr->next_to_clean = 0;
1748         rxdr->next_to_use = 0;
1749         rxdr->rx_skb_top = NULL;
1750
1751         return 0;
1752 }
1753
1754 /**
1755  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756  *                                (Descriptors) for all queues
1757  * @adapter: board private structure
1758  *
1759  * Return 0 on success, negative on failure
1760  **/
1761 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762 {
1763         int i, err = 0;
1764
1765         for (i = 0; i < adapter->num_rx_queues; i++) {
1766                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767                 if (err) {
1768                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769                         for (i-- ; i >= 0; i--)
1770                                 e1000_free_rx_resources(adapter,
1771                                                         &adapter->rx_ring[i]);
1772                         break;
1773                 }
1774         }
1775
1776         return err;
1777 }
1778
1779 /**
1780  * e1000_setup_rctl - configure the receive control registers
1781  * @adapter: Board private structure
1782  **/
1783 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784 {
1785         struct e1000_hw *hw = &adapter->hw;
1786         u32 rctl;
1787
1788         rctl = er32(RCTL);
1789
1790         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793                 E1000_RCTL_RDMTS_HALF |
1794                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796         if (hw->tbi_compatibility_on == 1)
1797                 rctl |= E1000_RCTL_SBP;
1798         else
1799                 rctl &= ~E1000_RCTL_SBP;
1800
1801         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802                 rctl &= ~E1000_RCTL_LPE;
1803         else
1804                 rctl |= E1000_RCTL_LPE;
1805
1806         /* Setup buffer sizes */
1807         rctl &= ~E1000_RCTL_SZ_4096;
1808         rctl |= E1000_RCTL_BSEX;
1809         switch (adapter->rx_buffer_len) {
1810                 case E1000_RXBUFFER_2048:
1811                 default:
1812                         rctl |= E1000_RCTL_SZ_2048;
1813                         rctl &= ~E1000_RCTL_BSEX;
1814                         break;
1815                 case E1000_RXBUFFER_4096:
1816                         rctl |= E1000_RCTL_SZ_4096;
1817                         break;
1818                 case E1000_RXBUFFER_8192:
1819                         rctl |= E1000_RCTL_SZ_8192;
1820                         break;
1821                 case E1000_RXBUFFER_16384:
1822                         rctl |= E1000_RCTL_SZ_16384;
1823                         break;
1824         }
1825
1826         /* This is useful for sniffing bad packets. */
1827         if (adapter->netdev->features & NETIF_F_RXALL) {
1828                 /* UPE and MPE will be handled by normal PROMISC logic
1829                  * in e1000e_set_rx_mode
1830                  */
1831                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836                           E1000_RCTL_DPF | /* Allow filtered pause */
1837                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839                  * and that breaks VLANs.
1840                  */
1841         }
1842
1843         ew32(RCTL, rctl);
1844 }
1845
1846 /**
1847  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848  * @adapter: board private structure
1849  *
1850  * Configure the Rx unit of the MAC after a reset.
1851  **/
1852 static void e1000_configure_rx(struct e1000_adapter *adapter)
1853 {
1854         u64 rdba;
1855         struct e1000_hw *hw = &adapter->hw;
1856         u32 rdlen, rctl, rxcsum;
1857
1858         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859                 rdlen = adapter->rx_ring[0].count *
1860                         sizeof(struct e1000_rx_desc);
1861                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863         } else {
1864                 rdlen = adapter->rx_ring[0].count *
1865                         sizeof(struct e1000_rx_desc);
1866                 adapter->clean_rx = e1000_clean_rx_irq;
1867                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868         }
1869
1870         /* disable receives while setting up the descriptors */
1871         rctl = er32(RCTL);
1872         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874         /* set the Receive Delay Timer Register */
1875         ew32(RDTR, adapter->rx_int_delay);
1876
1877         if (hw->mac_type >= e1000_82540) {
1878                 ew32(RADV, adapter->rx_abs_int_delay);
1879                 if (adapter->itr_setting != 0)
1880                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1881         }
1882
1883         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1884          * the Base and Length of the Rx Descriptor Ring
1885          */
1886         switch (adapter->num_rx_queues) {
1887         case 1:
1888         default:
1889                 rdba = adapter->rx_ring[0].dma;
1890                 ew32(RDLEN, rdlen);
1891                 ew32(RDBAH, (rdba >> 32));
1892                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893                 ew32(RDT, 0);
1894                 ew32(RDH, 0);
1895                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896                                            E1000_RDH : E1000_82542_RDH);
1897                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898                                            E1000_RDT : E1000_82542_RDT);
1899                 break;
1900         }
1901
1902         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903         if (hw->mac_type >= e1000_82543) {
1904                 rxcsum = er32(RXCSUM);
1905                 if (adapter->rx_csum)
1906                         rxcsum |= E1000_RXCSUM_TUOFL;
1907                 else
1908                         /* don't need to clear IPPCSE as it defaults to 0 */
1909                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1910                 ew32(RXCSUM, rxcsum);
1911         }
1912
1913         /* Enable Receives */
1914         ew32(RCTL, rctl | E1000_RCTL_EN);
1915 }
1916
1917 /**
1918  * e1000_free_tx_resources - Free Tx Resources per Queue
1919  * @adapter: board private structure
1920  * @tx_ring: Tx descriptor ring for a specific queue
1921  *
1922  * Free all transmit software resources
1923  **/
1924 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925                                     struct e1000_tx_ring *tx_ring)
1926 {
1927         struct pci_dev *pdev = adapter->pdev;
1928
1929         e1000_clean_tx_ring(adapter, tx_ring);
1930
1931         vfree(tx_ring->buffer_info);
1932         tx_ring->buffer_info = NULL;
1933
1934         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935                           tx_ring->dma);
1936
1937         tx_ring->desc = NULL;
1938 }
1939
1940 /**
1941  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942  * @adapter: board private structure
1943  *
1944  * Free all transmit software resources
1945  **/
1946 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947 {
1948         int i;
1949
1950         for (i = 0; i < adapter->num_tx_queues; i++)
1951                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952 }
1953
1954 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1955                                              struct e1000_buffer *buffer_info)
1956 {
1957         if (buffer_info->dma) {
1958                 if (buffer_info->mapped_as_page)
1959                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1960                                        buffer_info->length, DMA_TO_DEVICE);
1961                 else
1962                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1963                                          buffer_info->length,
1964                                          DMA_TO_DEVICE);
1965                 buffer_info->dma = 0;
1966         }
1967         if (buffer_info->skb) {
1968                 dev_kfree_skb_any(buffer_info->skb);
1969                 buffer_info->skb = NULL;
1970         }
1971         buffer_info->time_stamp = 0;
1972         /* buffer_info must be completely set up in the transmit path */
1973 }
1974
1975 /**
1976  * e1000_clean_tx_ring - Free Tx Buffers
1977  * @adapter: board private structure
1978  * @tx_ring: ring to be cleaned
1979  **/
1980 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1981                                 struct e1000_tx_ring *tx_ring)
1982 {
1983         struct e1000_hw *hw = &adapter->hw;
1984         struct e1000_buffer *buffer_info;
1985         unsigned long size;
1986         unsigned int i;
1987
1988         /* Free all the Tx ring sk_buffs */
1989
1990         for (i = 0; i < tx_ring->count; i++) {
1991                 buffer_info = &tx_ring->buffer_info[i];
1992                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1993         }
1994
1995         netdev_reset_queue(adapter->netdev);
1996         size = sizeof(struct e1000_buffer) * tx_ring->count;
1997         memset(tx_ring->buffer_info, 0, size);
1998
1999         /* Zero out the descriptor ring */
2000
2001         memset(tx_ring->desc, 0, tx_ring->size);
2002
2003         tx_ring->next_to_use = 0;
2004         tx_ring->next_to_clean = 0;
2005         tx_ring->last_tx_tso = false;
2006
2007         writel(0, hw->hw_addr + tx_ring->tdh);
2008         writel(0, hw->hw_addr + tx_ring->tdt);
2009 }
2010
2011 /**
2012  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2013  * @adapter: board private structure
2014  **/
2015 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2016 {
2017         int i;
2018
2019         for (i = 0; i < adapter->num_tx_queues; i++)
2020                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2021 }
2022
2023 /**
2024  * e1000_free_rx_resources - Free Rx Resources
2025  * @adapter: board private structure
2026  * @rx_ring: ring to clean the resources from
2027  *
2028  * Free all receive software resources
2029  **/
2030 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2031                                     struct e1000_rx_ring *rx_ring)
2032 {
2033         struct pci_dev *pdev = adapter->pdev;
2034
2035         e1000_clean_rx_ring(adapter, rx_ring);
2036
2037         vfree(rx_ring->buffer_info);
2038         rx_ring->buffer_info = NULL;
2039
2040         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2041                           rx_ring->dma);
2042
2043         rx_ring->desc = NULL;
2044 }
2045
2046 /**
2047  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2048  * @adapter: board private structure
2049  *
2050  * Free all receive software resources
2051  **/
2052 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2053 {
2054         int i;
2055
2056         for (i = 0; i < adapter->num_rx_queues; i++)
2057                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2058 }
2059
2060 /**
2061  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2062  * @adapter: board private structure
2063  * @rx_ring: ring to free buffers from
2064  **/
2065 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2066                                 struct e1000_rx_ring *rx_ring)
2067 {
2068         struct e1000_hw *hw = &adapter->hw;
2069         struct e1000_buffer *buffer_info;
2070         struct pci_dev *pdev = adapter->pdev;
2071         unsigned long size;
2072         unsigned int i;
2073
2074         /* Free all the Rx ring sk_buffs */
2075         for (i = 0; i < rx_ring->count; i++) {
2076                 buffer_info = &rx_ring->buffer_info[i];
2077                 if (buffer_info->dma &&
2078                     adapter->clean_rx == e1000_clean_rx_irq) {
2079                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2080                                          buffer_info->length,
2081                                          DMA_FROM_DEVICE);
2082                 } else if (buffer_info->dma &&
2083                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2084                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2085                                        buffer_info->length,
2086                                        DMA_FROM_DEVICE);
2087                 }
2088
2089                 buffer_info->dma = 0;
2090                 if (buffer_info->page) {
2091                         put_page(buffer_info->page);
2092                         buffer_info->page = NULL;
2093                 }
2094                 if (buffer_info->skb) {
2095                         dev_kfree_skb(buffer_info->skb);
2096                         buffer_info->skb = NULL;
2097                 }
2098         }
2099
2100         /* there also may be some cached data from a chained receive */
2101         if (rx_ring->rx_skb_top) {
2102                 dev_kfree_skb(rx_ring->rx_skb_top);
2103                 rx_ring->rx_skb_top = NULL;
2104         }
2105
2106         size = sizeof(struct e1000_buffer) * rx_ring->count;
2107         memset(rx_ring->buffer_info, 0, size);
2108
2109         /* Zero out the descriptor ring */
2110         memset(rx_ring->desc, 0, rx_ring->size);
2111
2112         rx_ring->next_to_clean = 0;
2113         rx_ring->next_to_use = 0;
2114
2115         writel(0, hw->hw_addr + rx_ring->rdh);
2116         writel(0, hw->hw_addr + rx_ring->rdt);
2117 }
2118
2119 /**
2120  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2121  * @adapter: board private structure
2122  **/
2123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2124 {
2125         int i;
2126
2127         for (i = 0; i < adapter->num_rx_queues; i++)
2128                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2129 }
2130
2131 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2132  * and memory write and invalidate disabled for certain operations
2133  */
2134 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2135 {
2136         struct e1000_hw *hw = &adapter->hw;
2137         struct net_device *netdev = adapter->netdev;
2138         u32 rctl;
2139
2140         e1000_pci_clear_mwi(hw);
2141
2142         rctl = er32(RCTL);
2143         rctl |= E1000_RCTL_RST;
2144         ew32(RCTL, rctl);
2145         E1000_WRITE_FLUSH();
2146         mdelay(5);
2147
2148         if (netif_running(netdev))
2149                 e1000_clean_all_rx_rings(adapter);
2150 }
2151
2152 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2153 {
2154         struct e1000_hw *hw = &adapter->hw;
2155         struct net_device *netdev = adapter->netdev;
2156         u32 rctl;
2157
2158         rctl = er32(RCTL);
2159         rctl &= ~E1000_RCTL_RST;
2160         ew32(RCTL, rctl);
2161         E1000_WRITE_FLUSH();
2162         mdelay(5);
2163
2164         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2165                 e1000_pci_set_mwi(hw);
2166
2167         if (netif_running(netdev)) {
2168                 /* No need to loop, because 82542 supports only 1 queue */
2169                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2170                 e1000_configure_rx(adapter);
2171                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2172         }
2173 }
2174
2175 /**
2176  * e1000_set_mac - Change the Ethernet Address of the NIC
2177  * @netdev: network interface device structure
2178  * @p: pointer to an address structure
2179  *
2180  * Returns 0 on success, negative on failure
2181  **/
2182 static int e1000_set_mac(struct net_device *netdev, void *p)
2183 {
2184         struct e1000_adapter *adapter = netdev_priv(netdev);
2185         struct e1000_hw *hw = &adapter->hw;
2186         struct sockaddr *addr = p;
2187
2188         if (!is_valid_ether_addr(addr->sa_data))
2189                 return -EADDRNOTAVAIL;
2190
2191         /* 82542 2.0 needs to be in reset to write receive address registers */
2192
2193         if (hw->mac_type == e1000_82542_rev2_0)
2194                 e1000_enter_82542_rst(adapter);
2195
2196         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2197         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2198
2199         e1000_rar_set(hw, hw->mac_addr, 0);
2200
2201         if (hw->mac_type == e1000_82542_rev2_0)
2202                 e1000_leave_82542_rst(adapter);
2203
2204         return 0;
2205 }
2206
2207 /**
2208  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2209  * @netdev: network interface device structure
2210  *
2211  * The set_rx_mode entry point is called whenever the unicast or multicast
2212  * address lists or the network interface flags are updated. This routine is
2213  * responsible for configuring the hardware for proper unicast, multicast,
2214  * promiscuous mode, and all-multi behavior.
2215  **/
2216 static void e1000_set_rx_mode(struct net_device *netdev)
2217 {
2218         struct e1000_adapter *adapter = netdev_priv(netdev);
2219         struct e1000_hw *hw = &adapter->hw;
2220         struct netdev_hw_addr *ha;
2221         bool use_uc = false;
2222         u32 rctl;
2223         u32 hash_value;
2224         int i, rar_entries = E1000_RAR_ENTRIES;
2225         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2226         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2227
2228         if (!mcarray)
2229                 return;
2230
2231         /* Check for Promiscuous and All Multicast modes */
2232
2233         rctl = er32(RCTL);
2234
2235         if (netdev->flags & IFF_PROMISC) {
2236                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2237                 rctl &= ~E1000_RCTL_VFE;
2238         } else {
2239                 if (netdev->flags & IFF_ALLMULTI)
2240                         rctl |= E1000_RCTL_MPE;
2241                 else
2242                         rctl &= ~E1000_RCTL_MPE;
2243                 /* Enable VLAN filter if there is a VLAN */
2244                 if (e1000_vlan_used(adapter))
2245                         rctl |= E1000_RCTL_VFE;
2246         }
2247
2248         if (netdev_uc_count(netdev) > rar_entries - 1) {
2249                 rctl |= E1000_RCTL_UPE;
2250         } else if (!(netdev->flags & IFF_PROMISC)) {
2251                 rctl &= ~E1000_RCTL_UPE;
2252                 use_uc = true;
2253         }
2254
2255         ew32(RCTL, rctl);
2256
2257         /* 82542 2.0 needs to be in reset to write receive address registers */
2258
2259         if (hw->mac_type == e1000_82542_rev2_0)
2260                 e1000_enter_82542_rst(adapter);
2261
2262         /* load the first 14 addresses into the exact filters 1-14. Unicast
2263          * addresses take precedence to avoid disabling unicast filtering
2264          * when possible.
2265          *
2266          * RAR 0 is used for the station MAC address
2267          * if there are not 14 addresses, go ahead and clear the filters
2268          */
2269         i = 1;
2270         if (use_uc)
2271                 netdev_for_each_uc_addr(ha, netdev) {
2272                         if (i == rar_entries)
2273                                 break;
2274                         e1000_rar_set(hw, ha->addr, i++);
2275                 }
2276
2277         netdev_for_each_mc_addr(ha, netdev) {
2278                 if (i == rar_entries) {
2279                         /* load any remaining addresses into the hash table */
2280                         u32 hash_reg, hash_bit, mta;
2281                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2282                         hash_reg = (hash_value >> 5) & 0x7F;
2283                         hash_bit = hash_value & 0x1F;
2284                         mta = (1 << hash_bit);
2285                         mcarray[hash_reg] |= mta;
2286                 } else {
2287                         e1000_rar_set(hw, ha->addr, i++);
2288                 }
2289         }
2290
2291         for (; i < rar_entries; i++) {
2292                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2293                 E1000_WRITE_FLUSH();
2294                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2295                 E1000_WRITE_FLUSH();
2296         }
2297
2298         /* write the hash table completely, write from bottom to avoid
2299          * both stupid write combining chipsets, and flushing each write
2300          */
2301         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2302                 /* If we are on an 82544 has an errata where writing odd
2303                  * offsets overwrites the previous even offset, but writing
2304                  * backwards over the range solves the issue by always
2305                  * writing the odd offset first
2306                  */
2307                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2308         }
2309         E1000_WRITE_FLUSH();
2310
2311         if (hw->mac_type == e1000_82542_rev2_0)
2312                 e1000_leave_82542_rst(adapter);
2313
2314         kfree(mcarray);
2315 }
2316
2317 /**
2318  * e1000_update_phy_info_task - get phy info
2319  * @work: work struct contained inside adapter struct
2320  *
2321  * Need to wait a few seconds after link up to get diagnostic information from
2322  * the phy
2323  */
2324 static void e1000_update_phy_info_task(struct work_struct *work)
2325 {
2326         struct e1000_adapter *adapter = container_of(work,
2327                                                      struct e1000_adapter,
2328                                                      phy_info_task.work);
2329         if (test_bit(__E1000_DOWN, &adapter->flags))
2330                 return;
2331         mutex_lock(&adapter->mutex);
2332         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2333         mutex_unlock(&adapter->mutex);
2334 }
2335
2336 /**
2337  * e1000_82547_tx_fifo_stall_task - task to complete work
2338  * @work: work struct contained inside adapter struct
2339  **/
2340 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2341 {
2342         struct e1000_adapter *adapter = container_of(work,
2343                                                      struct e1000_adapter,
2344                                                      fifo_stall_task.work);
2345         struct e1000_hw *hw = &adapter->hw;
2346         struct net_device *netdev = adapter->netdev;
2347         u32 tctl;
2348
2349         if (test_bit(__E1000_DOWN, &adapter->flags))
2350                 return;
2351         mutex_lock(&adapter->mutex);
2352         if (atomic_read(&adapter->tx_fifo_stall)) {
2353                 if ((er32(TDT) == er32(TDH)) &&
2354                    (er32(TDFT) == er32(TDFH)) &&
2355                    (er32(TDFTS) == er32(TDFHS))) {
2356                         tctl = er32(TCTL);
2357                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2358                         ew32(TDFT, adapter->tx_head_addr);
2359                         ew32(TDFH, adapter->tx_head_addr);
2360                         ew32(TDFTS, adapter->tx_head_addr);
2361                         ew32(TDFHS, adapter->tx_head_addr);
2362                         ew32(TCTL, tctl);
2363                         E1000_WRITE_FLUSH();
2364
2365                         adapter->tx_fifo_head = 0;
2366                         atomic_set(&adapter->tx_fifo_stall, 0);
2367                         netif_wake_queue(netdev);
2368                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2369                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2370                 }
2371         }
2372         mutex_unlock(&adapter->mutex);
2373 }
2374
2375 bool e1000_has_link(struct e1000_adapter *adapter)
2376 {
2377         struct e1000_hw *hw = &adapter->hw;
2378         bool link_active = false;
2379
2380         /* get_link_status is set on LSC (link status) interrupt or rx
2381          * sequence error interrupt (except on intel ce4100).
2382          * get_link_status will stay false until the
2383          * e1000_check_for_link establishes link for copper adapters
2384          * ONLY
2385          */
2386         switch (hw->media_type) {
2387         case e1000_media_type_copper:
2388                 if (hw->mac_type == e1000_ce4100)
2389                         hw->get_link_status = 1;
2390                 if (hw->get_link_status) {
2391                         e1000_check_for_link(hw);
2392                         link_active = !hw->get_link_status;
2393                 } else {
2394                         link_active = true;
2395                 }
2396                 break;
2397         case e1000_media_type_fiber:
2398                 e1000_check_for_link(hw);
2399                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2400                 break;
2401         case e1000_media_type_internal_serdes:
2402                 e1000_check_for_link(hw);
2403                 link_active = hw->serdes_has_link;
2404                 break;
2405         default:
2406                 break;
2407         }
2408
2409         return link_active;
2410 }
2411
2412 /**
2413  * e1000_watchdog - work function
2414  * @work: work struct contained inside adapter struct
2415  **/
2416 static void e1000_watchdog(struct work_struct *work)
2417 {
2418         struct e1000_adapter *adapter = container_of(work,
2419                                                      struct e1000_adapter,
2420                                                      watchdog_task.work);
2421         struct e1000_hw *hw = &adapter->hw;
2422         struct net_device *netdev = adapter->netdev;
2423         struct e1000_tx_ring *txdr = adapter->tx_ring;
2424         u32 link, tctl;
2425
2426         if (test_bit(__E1000_DOWN, &adapter->flags))
2427                 return;
2428
2429         mutex_lock(&adapter->mutex);
2430         link = e1000_has_link(adapter);
2431         if ((netif_carrier_ok(netdev)) && link)
2432                 goto link_up;
2433
2434         if (link) {
2435                 if (!netif_carrier_ok(netdev)) {
2436                         u32 ctrl;
2437                         bool txb2b = true;
2438                         /* update snapshot of PHY registers on LSC */
2439                         e1000_get_speed_and_duplex(hw,
2440                                                    &adapter->link_speed,
2441                                                    &adapter->link_duplex);
2442
2443                         ctrl = er32(CTRL);
2444                         pr_info("%s NIC Link is Up %d Mbps %s, "
2445                                 "Flow Control: %s\n",
2446                                 netdev->name,
2447                                 adapter->link_speed,
2448                                 adapter->link_duplex == FULL_DUPLEX ?
2449                                 "Full Duplex" : "Half Duplex",
2450                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2451                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2452                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2453                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2454
2455                         /* adjust timeout factor according to speed/duplex */
2456                         adapter->tx_timeout_factor = 1;
2457                         switch (adapter->link_speed) {
2458                         case SPEED_10:
2459                                 txb2b = false;
2460                                 adapter->tx_timeout_factor = 16;
2461                                 break;
2462                         case SPEED_100:
2463                                 txb2b = false;
2464                                 /* maybe add some timeout factor ? */
2465                                 break;
2466                         }
2467
2468                         /* enable transmits in the hardware */
2469                         tctl = er32(TCTL);
2470                         tctl |= E1000_TCTL_EN;
2471                         ew32(TCTL, tctl);
2472
2473                         netif_carrier_on(netdev);
2474                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2475                                 schedule_delayed_work(&adapter->phy_info_task,
2476                                                       2 * HZ);
2477                         adapter->smartspeed = 0;
2478                 }
2479         } else {
2480                 if (netif_carrier_ok(netdev)) {
2481                         adapter->link_speed = 0;
2482                         adapter->link_duplex = 0;
2483                         pr_info("%s NIC Link is Down\n",
2484                                 netdev->name);
2485                         netif_carrier_off(netdev);
2486
2487                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2488                                 schedule_delayed_work(&adapter->phy_info_task,
2489                                                       2 * HZ);
2490                 }
2491
2492                 e1000_smartspeed(adapter);
2493         }
2494
2495 link_up:
2496         e1000_update_stats(adapter);
2497
2498         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2499         adapter->tpt_old = adapter->stats.tpt;
2500         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2501         adapter->colc_old = adapter->stats.colc;
2502
2503         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2504         adapter->gorcl_old = adapter->stats.gorcl;
2505         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2506         adapter->gotcl_old = adapter->stats.gotcl;
2507
2508         e1000_update_adaptive(hw);
2509
2510         if (!netif_carrier_ok(netdev)) {
2511                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2512                         /* We've lost link, so the controller stops DMA,
2513                          * but we've got queued Tx work that's never going
2514                          * to get done, so reset controller to flush Tx.
2515                          * (Do the reset outside of interrupt context).
2516                          */
2517                         adapter->tx_timeout_count++;
2518                         schedule_work(&adapter->reset_task);
2519                         /* exit immediately since reset is imminent */
2520                         goto unlock;
2521                 }
2522         }
2523
2524         /* Simple mode for Interrupt Throttle Rate (ITR) */
2525         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2526                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2527                  * Total asymmetrical Tx or Rx gets ITR=8000;
2528                  * everyone else is between 2000-8000.
2529                  */
2530                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2531                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2532                             adapter->gotcl - adapter->gorcl :
2533                             adapter->gorcl - adapter->gotcl) / 10000;
2534                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2535
2536                 ew32(ITR, 1000000000 / (itr * 256));
2537         }
2538
2539         /* Cause software interrupt to ensure rx ring is cleaned */
2540         ew32(ICS, E1000_ICS_RXDMT0);
2541
2542         /* Force detection of hung controller every watchdog period */
2543         adapter->detect_tx_hung = true;
2544
2545         /* Reschedule the task */
2546         if (!test_bit(__E1000_DOWN, &adapter->flags))
2547                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2548
2549 unlock:
2550         mutex_unlock(&adapter->mutex);
2551 }
2552
2553 enum latency_range {
2554         lowest_latency = 0,
2555         low_latency = 1,
2556         bulk_latency = 2,
2557         latency_invalid = 255
2558 };
2559
2560 /**
2561  * e1000_update_itr - update the dynamic ITR value based on statistics
2562  * @adapter: pointer to adapter
2563  * @itr_setting: current adapter->itr
2564  * @packets: the number of packets during this measurement interval
2565  * @bytes: the number of bytes during this measurement interval
2566  *
2567  *      Stores a new ITR value based on packets and byte
2568  *      counts during the last interrupt.  The advantage of per interrupt
2569  *      computation is faster updates and more accurate ITR for the current
2570  *      traffic pattern.  Constants in this function were computed
2571  *      based on theoretical maximum wire speed and thresholds were set based
2572  *      on testing data as well as attempting to minimize response time
2573  *      while increasing bulk throughput.
2574  *      this functionality is controlled by the InterruptThrottleRate module
2575  *      parameter (see e1000_param.c)
2576  **/
2577 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2578                                      u16 itr_setting, int packets, int bytes)
2579 {
2580         unsigned int retval = itr_setting;
2581         struct e1000_hw *hw = &adapter->hw;
2582
2583         if (unlikely(hw->mac_type < e1000_82540))
2584                 goto update_itr_done;
2585
2586         if (packets == 0)
2587                 goto update_itr_done;
2588
2589         switch (itr_setting) {
2590         case lowest_latency:
2591                 /* jumbo frames get bulk treatment*/
2592                 if (bytes/packets > 8000)
2593                         retval = bulk_latency;
2594                 else if ((packets < 5) && (bytes > 512))
2595                         retval = low_latency;
2596                 break;
2597         case low_latency:  /* 50 usec aka 20000 ints/s */
2598                 if (bytes > 10000) {
2599                         /* jumbo frames need bulk latency setting */
2600                         if (bytes/packets > 8000)
2601                                 retval = bulk_latency;
2602                         else if ((packets < 10) || ((bytes/packets) > 1200))
2603                                 retval = bulk_latency;
2604                         else if ((packets > 35))
2605                                 retval = lowest_latency;
2606                 } else if (bytes/packets > 2000)
2607                         retval = bulk_latency;
2608                 else if (packets <= 2 && bytes < 512)
2609                         retval = lowest_latency;
2610                 break;
2611         case bulk_latency: /* 250 usec aka 4000 ints/s */
2612                 if (bytes > 25000) {
2613                         if (packets > 35)
2614                                 retval = low_latency;
2615                 } else if (bytes < 6000) {
2616                         retval = low_latency;
2617                 }
2618                 break;
2619         }
2620
2621 update_itr_done:
2622         return retval;
2623 }
2624
2625 static void e1000_set_itr(struct e1000_adapter *adapter)
2626 {
2627         struct e1000_hw *hw = &adapter->hw;
2628         u16 current_itr;
2629         u32 new_itr = adapter->itr;
2630
2631         if (unlikely(hw->mac_type < e1000_82540))
2632                 return;
2633
2634         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2635         if (unlikely(adapter->link_speed != SPEED_1000)) {
2636                 current_itr = 0;
2637                 new_itr = 4000;
2638                 goto set_itr_now;
2639         }
2640
2641         adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2642                                            adapter->total_tx_packets,
2643                                            adapter->total_tx_bytes);
2644         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2645         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2646                 adapter->tx_itr = low_latency;
2647
2648         adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2649                                            adapter->total_rx_packets,
2650                                            adapter->total_rx_bytes);
2651         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2652         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2653                 adapter->rx_itr = low_latency;
2654
2655         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2656
2657         switch (current_itr) {
2658         /* counts and packets in update_itr are dependent on these numbers */
2659         case lowest_latency:
2660                 new_itr = 70000;
2661                 break;
2662         case low_latency:
2663                 new_itr = 20000; /* aka hwitr = ~200 */
2664                 break;
2665         case bulk_latency:
2666                 new_itr = 4000;
2667                 break;
2668         default:
2669                 break;
2670         }
2671
2672 set_itr_now:
2673         if (new_itr != adapter->itr) {
2674                 /* this attempts to bias the interrupt rate towards Bulk
2675                  * by adding intermediate steps when interrupt rate is
2676                  * increasing
2677                  */
2678                 new_itr = new_itr > adapter->itr ?
2679                           min(adapter->itr + (new_itr >> 2), new_itr) :
2680                           new_itr;
2681                 adapter->itr = new_itr;
2682                 ew32(ITR, 1000000000 / (new_itr * 256));
2683         }
2684 }
2685
2686 #define E1000_TX_FLAGS_CSUM             0x00000001
2687 #define E1000_TX_FLAGS_VLAN             0x00000002
2688 #define E1000_TX_FLAGS_TSO              0x00000004
2689 #define E1000_TX_FLAGS_IPV4             0x00000008
2690 #define E1000_TX_FLAGS_NO_FCS           0x00000010
2691 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2692 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2693
2694 static int e1000_tso(struct e1000_adapter *adapter,
2695                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2696 {
2697         struct e1000_context_desc *context_desc;
2698         struct e1000_buffer *buffer_info;
2699         unsigned int i;
2700         u32 cmd_length = 0;
2701         u16 ipcse = 0, tucse, mss;
2702         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703         int err;
2704
2705         if (skb_is_gso(skb)) {
2706                 if (skb_header_cloned(skb)) {
2707                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2708                         if (err)
2709                                 return err;
2710                 }
2711
2712                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2713                 mss = skb_shinfo(skb)->gso_size;
2714                 if (skb->protocol == htons(ETH_P_IP)) {
2715                         struct iphdr *iph = ip_hdr(skb);
2716                         iph->tot_len = 0;
2717                         iph->check = 0;
2718                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2719                                                                  iph->daddr, 0,
2720                                                                  IPPROTO_TCP,
2721                                                                  0);
2722                         cmd_length = E1000_TXD_CMD_IP;
2723                         ipcse = skb_transport_offset(skb) - 1;
2724                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2725                         ipv6_hdr(skb)->payload_len = 0;
2726                         tcp_hdr(skb)->check =
2727                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2728                                                  &ipv6_hdr(skb)->daddr,
2729                                                  0, IPPROTO_TCP, 0);
2730                         ipcse = 0;
2731                 }
2732                 ipcss = skb_network_offset(skb);
2733                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2734                 tucss = skb_transport_offset(skb);
2735                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2736                 tucse = 0;
2737
2738                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2739                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2740
2741                 i = tx_ring->next_to_use;
2742                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2743                 buffer_info = &tx_ring->buffer_info[i];
2744
2745                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2746                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2747                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2748                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2749                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2750                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2751                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2752                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2753                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2754
2755                 buffer_info->time_stamp = jiffies;
2756                 buffer_info->next_to_watch = i;
2757
2758                 if (++i == tx_ring->count) i = 0;
2759                 tx_ring->next_to_use = i;
2760
2761                 return true;
2762         }
2763         return false;
2764 }
2765
2766 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2767                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2768 {
2769         struct e1000_context_desc *context_desc;
2770         struct e1000_buffer *buffer_info;
2771         unsigned int i;
2772         u8 css;
2773         u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775         if (skb->ip_summed != CHECKSUM_PARTIAL)
2776                 return false;
2777
2778         switch (skb->protocol) {
2779         case cpu_to_be16(ETH_P_IP):
2780                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781                         cmd_len |= E1000_TXD_CMD_TCP;
2782                 break;
2783         case cpu_to_be16(ETH_P_IPV6):
2784                 /* XXX not handling all IPV6 headers */
2785                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786                         cmd_len |= E1000_TXD_CMD_TCP;
2787                 break;
2788         default:
2789                 if (unlikely(net_ratelimit()))
2790                         e_warn(drv, "checksum_partial proto=%x!\n",
2791                                skb->protocol);
2792                 break;
2793         }
2794
2795         css = skb_checksum_start_offset(skb);
2796
2797         i = tx_ring->next_to_use;
2798         buffer_info = &tx_ring->buffer_info[i];
2799         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801         context_desc->lower_setup.ip_config = 0;
2802         context_desc->upper_setup.tcp_fields.tucss = css;
2803         context_desc->upper_setup.tcp_fields.tucso =
2804                 css + skb->csum_offset;
2805         context_desc->upper_setup.tcp_fields.tucse = 0;
2806         context_desc->tcp_seg_setup.data = 0;
2807         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809         buffer_info->time_stamp = jiffies;
2810         buffer_info->next_to_watch = i;
2811
2812         if (unlikely(++i == tx_ring->count)) i = 0;
2813         tx_ring->next_to_use = i;
2814
2815         return true;
2816 }
2817
2818 #define E1000_MAX_TXD_PWR       12
2819 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2820
2821 static int e1000_tx_map(struct e1000_adapter *adapter,
2822                         struct e1000_tx_ring *tx_ring,
2823                         struct sk_buff *skb, unsigned int first,
2824                         unsigned int max_per_txd, unsigned int nr_frags,
2825                         unsigned int mss)
2826 {
2827         struct e1000_hw *hw = &adapter->hw;
2828         struct pci_dev *pdev = adapter->pdev;
2829         struct e1000_buffer *buffer_info;
2830         unsigned int len = skb_headlen(skb);
2831         unsigned int offset = 0, size, count = 0, i;
2832         unsigned int f, bytecount, segs;
2833
2834         i = tx_ring->next_to_use;
2835
2836         while (len) {
2837                 buffer_info = &tx_ring->buffer_info[i];
2838                 size = min(len, max_per_txd);
2839                 /* Workaround for Controller erratum --
2840                  * descriptor for non-tso packet in a linear SKB that follows a
2841                  * tso gets written back prematurely before the data is fully
2842                  * DMA'd to the controller
2843                  */
2844                 if (!skb->data_len && tx_ring->last_tx_tso &&
2845                     !skb_is_gso(skb)) {
2846                         tx_ring->last_tx_tso = false;
2847                         size -= 4;
2848                 }
2849
2850                 /* Workaround for premature desc write-backs
2851                  * in TSO mode.  Append 4-byte sentinel desc
2852                  */
2853                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2854                         size -= 4;
2855                 /* work-around for errata 10 and it applies
2856                  * to all controllers in PCI-X mode
2857                  * The fix is to make sure that the first descriptor of a
2858                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859                  */
2860                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2861                                 (size > 2015) && count == 0))
2862                         size = 2015;
2863
2864                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2865                  * terminating buffers within evenly-aligned dwords.
2866                  */
2867                 if (unlikely(adapter->pcix_82544 &&
2868                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2869                    size > 4))
2870                         size -= 4;
2871
2872                 buffer_info->length = size;
2873                 /* set time_stamp *before* dma to help avoid a possible race */
2874                 buffer_info->time_stamp = jiffies;
2875                 buffer_info->mapped_as_page = false;
2876                 buffer_info->dma = dma_map_single(&pdev->dev,
2877                                                   skb->data + offset,
2878                                                   size, DMA_TO_DEVICE);
2879                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2880                         goto dma_error;
2881                 buffer_info->next_to_watch = i;
2882
2883                 len -= size;
2884                 offset += size;
2885                 count++;
2886                 if (len) {
2887                         i++;
2888                         if (unlikely(i == tx_ring->count))
2889                                 i = 0;
2890                 }
2891         }
2892
2893         for (f = 0; f < nr_frags; f++) {
2894                 const struct skb_frag_struct *frag;
2895
2896                 frag = &skb_shinfo(skb)->frags[f];
2897                 len = skb_frag_size(frag);
2898                 offset = 0;
2899
2900                 while (len) {
2901                         unsigned long bufend;
2902                         i++;
2903                         if (unlikely(i == tx_ring->count))
2904                                 i = 0;
2905
2906                         buffer_info = &tx_ring->buffer_info[i];
2907                         size = min(len, max_per_txd);
2908                         /* Workaround for premature desc write-backs
2909                          * in TSO mode.  Append 4-byte sentinel desc
2910                          */
2911                         if (unlikely(mss && f == (nr_frags-1) &&
2912                             size == len && size > 8))
2913                                 size -= 4;
2914                         /* Workaround for potential 82544 hang in PCI-X.
2915                          * Avoid terminating buffers within evenly-aligned
2916                          * dwords.
2917                          */
2918                         bufend = (unsigned long)
2919                                 page_to_phys(skb_frag_page(frag));
2920                         bufend += offset + size - 1;
2921                         if (unlikely(adapter->pcix_82544 &&
2922                                      !(bufend & 4) &&
2923                                      size > 4))
2924                                 size -= 4;
2925
2926                         buffer_info->length = size;
2927                         buffer_info->time_stamp = jiffies;
2928                         buffer_info->mapped_as_page = true;
2929                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2930                                                 offset, size, DMA_TO_DEVICE);
2931                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2932                                 goto dma_error;
2933                         buffer_info->next_to_watch = i;
2934
2935                         len -= size;
2936                         offset += size;
2937                         count++;
2938                 }
2939         }
2940
2941         segs = skb_shinfo(skb)->gso_segs ?: 1;
2942         /* multiply data chunks by size of headers */
2943         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2944
2945         tx_ring->buffer_info[i].skb = skb;
2946         tx_ring->buffer_info[i].segs = segs;
2947         tx_ring->buffer_info[i].bytecount = bytecount;
2948         tx_ring->buffer_info[first].next_to_watch = i;
2949
2950         return count;
2951
2952 dma_error:
2953         dev_err(&pdev->dev, "TX DMA map failed\n");
2954         buffer_info->dma = 0;
2955         if (count)
2956                 count--;
2957
2958         while (count--) {
2959                 if (i==0)
2960                         i += tx_ring->count;
2961                 i--;
2962                 buffer_info = &tx_ring->buffer_info[i];
2963                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2964         }
2965
2966         return 0;
2967 }
2968
2969 static void e1000_tx_queue(struct e1000_adapter *adapter,
2970                            struct e1000_tx_ring *tx_ring, int tx_flags,
2971                            int count)
2972 {
2973         struct e1000_hw *hw = &adapter->hw;
2974         struct e1000_tx_desc *tx_desc = NULL;
2975         struct e1000_buffer *buffer_info;
2976         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977         unsigned int i;
2978
2979         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981                              E1000_TXD_CMD_TSE;
2982                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986         }
2987
2988         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991         }
2992
2993         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994                 txd_lower |= E1000_TXD_CMD_VLE;
2995                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996         }
2997
2998         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001         i = tx_ring->next_to_use;
3002
3003         while (count--) {
3004                 buffer_info = &tx_ring->buffer_info[i];
3005                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3006                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007                 tx_desc->lower.data =
3008                         cpu_to_le32(txd_lower | buffer_info->length);
3009                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3010                 if (unlikely(++i == tx_ring->count)) i = 0;
3011         }
3012
3013         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3014
3015         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3016         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3017                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3018
3019         /* Force memory writes to complete before letting h/w
3020          * know there are new descriptors to fetch.  (Only
3021          * applicable for weak-ordered memory model archs,
3022          * such as IA-64).
3023          */
3024         wmb();
3025
3026         tx_ring->next_to_use = i;
3027         writel(i, hw->hw_addr + tx_ring->tdt);
3028         /* we need this if more than one processor can write to our tail
3029          * at a time, it synchronizes IO on IA64/Altix systems
3030          */
3031         mmiowb();
3032 }
3033
3034 /* 82547 workaround to avoid controller hang in half-duplex environment.
3035  * The workaround is to avoid queuing a large packet that would span
3036  * the internal Tx FIFO ring boundary by notifying the stack to resend
3037  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3038  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3039  * to the beginning of the Tx FIFO.
3040  */
3041
3042 #define E1000_FIFO_HDR                  0x10
3043 #define E1000_82547_PAD_LEN             0x3E0
3044
3045 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3046                                        struct sk_buff *skb)
3047 {
3048         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3049         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3050
3051         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3052
3053         if (adapter->link_duplex != HALF_DUPLEX)
3054                 goto no_fifo_stall_required;
3055
3056         if (atomic_read(&adapter->tx_fifo_stall))
3057                 return 1;
3058
3059         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3060                 atomic_set(&adapter->tx_fifo_stall, 1);
3061                 return 1;
3062         }
3063
3064 no_fifo_stall_required:
3065         adapter->tx_fifo_head += skb_fifo_len;
3066         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3067                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3068         return 0;
3069 }
3070
3071 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3072 {
3073         struct e1000_adapter *adapter = netdev_priv(netdev);
3074         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3075
3076         netif_stop_queue(netdev);
3077         /* Herbert's original patch had:
3078          *  smp_mb__after_netif_stop_queue();
3079          * but since that doesn't exist yet, just open code it.
3080          */
3081         smp_mb();
3082
3083         /* We need to check again in a case another CPU has just
3084          * made room available.
3085          */
3086         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3087                 return -EBUSY;
3088
3089         /* A reprieve! */
3090         netif_start_queue(netdev);
3091         ++adapter->restart_queue;
3092         return 0;
3093 }
3094
3095 static int e1000_maybe_stop_tx(struct net_device *netdev,
3096                                struct e1000_tx_ring *tx_ring, int size)
3097 {
3098         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3099                 return 0;
3100         return __e1000_maybe_stop_tx(netdev, size);
3101 }
3102
3103 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3104 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3105                                     struct net_device *netdev)
3106 {
3107         struct e1000_adapter *adapter = netdev_priv(netdev);
3108         struct e1000_hw *hw = &adapter->hw;
3109         struct e1000_tx_ring *tx_ring;
3110         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3111         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3112         unsigned int tx_flags = 0;
3113         unsigned int len = skb_headlen(skb);
3114         unsigned int nr_frags;
3115         unsigned int mss;
3116         int count = 0;
3117         int tso;
3118         unsigned int f;
3119
3120         /* This goes back to the question of how to logically map a Tx queue
3121          * to a flow.  Right now, performance is impacted slightly negatively
3122          * if using multiple Tx queues.  If the stack breaks away from a
3123          * single qdisc implementation, we can look at this again.
3124          */
3125         tx_ring = adapter->tx_ring;
3126
3127         if (unlikely(skb->len <= 0)) {
3128                 dev_kfree_skb_any(skb);
3129                 return NETDEV_TX_OK;
3130         }
3131
3132         /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3133          * packets may get corrupted during padding by HW.
3134          * To WA this issue, pad all small packets manually.
3135          */
3136         if (skb->len < ETH_ZLEN) {
3137                 if (skb_pad(skb, ETH_ZLEN - skb->len))
3138                         return NETDEV_TX_OK;
3139                 skb->len = ETH_ZLEN;
3140                 skb_set_tail_pointer(skb, ETH_ZLEN);
3141         }
3142
3143         mss = skb_shinfo(skb)->gso_size;
3144         /* The controller does a simple calculation to
3145          * make sure there is enough room in the FIFO before
3146          * initiating the DMA for each buffer.  The calc is:
3147          * 4 = ceil(buffer len/mss).  To make sure we don't
3148          * overrun the FIFO, adjust the max buffer len if mss
3149          * drops.
3150          */
3151         if (mss) {
3152                 u8 hdr_len;
3153                 max_per_txd = min(mss << 2, max_per_txd);
3154                 max_txd_pwr = fls(max_per_txd) - 1;
3155
3156                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3157                 if (skb->data_len && hdr_len == len) {
3158                         switch (hw->mac_type) {
3159                                 unsigned int pull_size;
3160                         case e1000_82544:
3161                                 /* Make sure we have room to chop off 4 bytes,
3162                                  * and that the end alignment will work out to
3163                                  * this hardware's requirements
3164                                  * NOTE: this is a TSO only workaround
3165                                  * if end byte alignment not correct move us
3166                                  * into the next dword
3167                                  */
3168                                 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3169                                     & 4)
3170                                         break;
3171                                 /* fall through */
3172                                 pull_size = min((unsigned int)4, skb->data_len);
3173                                 if (!__pskb_pull_tail(skb, pull_size)) {
3174                                         e_err(drv, "__pskb_pull_tail "
3175                                               "failed.\n");
3176                                         dev_kfree_skb_any(skb);
3177                                         return NETDEV_TX_OK;
3178                                 }
3179                                 len = skb_headlen(skb);
3180                                 break;
3181                         default:
3182                                 /* do nothing */
3183                                 break;
3184                         }
3185                 }
3186         }
3187
3188         /* reserve a descriptor for the offload context */
3189         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3190                 count++;
3191         count++;
3192
3193         /* Controller Erratum workaround */
3194         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3195                 count++;
3196
3197         count += TXD_USE_COUNT(len, max_txd_pwr);
3198
3199         if (adapter->pcix_82544)
3200                 count++;
3201
3202         /* work-around for errata 10 and it applies to all controllers
3203          * in PCI-X mode, so add one more descriptor to the count
3204          */
3205         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3206                         (len > 2015)))
3207                 count++;
3208
3209         nr_frags = skb_shinfo(skb)->nr_frags;
3210         for (f = 0; f < nr_frags; f++)
3211                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3212                                        max_txd_pwr);
3213         if (adapter->pcix_82544)
3214                 count += nr_frags;
3215
3216         /* need: count + 2 desc gap to keep tail from touching
3217          * head, otherwise try next time
3218          */
3219         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3220                 return NETDEV_TX_BUSY;
3221
3222         if (unlikely((hw->mac_type == e1000_82547) &&
3223                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3224                 netif_stop_queue(netdev);
3225                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3226                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3227                 return NETDEV_TX_BUSY;
3228         }
3229
3230         if (vlan_tx_tag_present(skb)) {
3231                 tx_flags |= E1000_TX_FLAGS_VLAN;
3232                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3233         }
3234
3235         first = tx_ring->next_to_use;
3236
3237         tso = e1000_tso(adapter, tx_ring, skb);
3238         if (tso < 0) {
3239                 dev_kfree_skb_any(skb);
3240                 return NETDEV_TX_OK;
3241         }
3242
3243         if (likely(tso)) {
3244                 if (likely(hw->mac_type != e1000_82544))
3245                         tx_ring->last_tx_tso = true;
3246                 tx_flags |= E1000_TX_FLAGS_TSO;
3247         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3248                 tx_flags |= E1000_TX_FLAGS_CSUM;
3249
3250         if (likely(skb->protocol == htons(ETH_P_IP)))
3251                 tx_flags |= E1000_TX_FLAGS_IPV4;
3252
3253         if (unlikely(skb->no_fcs))
3254                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3255
3256         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3257                              nr_frags, mss);
3258
3259         if (count) {
3260                 netdev_sent_queue(netdev, skb->len);
3261                 skb_tx_timestamp(skb);
3262
3263                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3264                 /* Make sure there is space in the ring for the next send. */
3265                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3266
3267         } else {
3268                 dev_kfree_skb_any(skb);
3269                 tx_ring->buffer_info[first].time_stamp = 0;
3270                 tx_ring->next_to_use = first;
3271         }
3272
3273         return NETDEV_TX_OK;
3274 }
3275
3276 #define NUM_REGS 38 /* 1 based count */
3277 static void e1000_regdump(struct e1000_adapter *adapter)
3278 {
3279         struct e1000_hw *hw = &adapter->hw;
3280         u32 regs[NUM_REGS];
3281         u32 *regs_buff = regs;
3282         int i = 0;
3283
3284         static const char * const reg_name[] = {
3285                 "CTRL",  "STATUS",
3286                 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3287                 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3288                 "TIDV", "TXDCTL", "TADV", "TARC0",
3289                 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3290                 "TXDCTL1", "TARC1",
3291                 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3292                 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3293                 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3294         };
3295
3296         regs_buff[0]  = er32(CTRL);
3297         regs_buff[1]  = er32(STATUS);
3298
3299         regs_buff[2]  = er32(RCTL);
3300         regs_buff[3]  = er32(RDLEN);
3301         regs_buff[4]  = er32(RDH);
3302         regs_buff[5]  = er32(RDT);
3303         regs_buff[6]  = er32(RDTR);
3304
3305         regs_buff[7]  = er32(TCTL);
3306         regs_buff[8]  = er32(TDBAL);
3307         regs_buff[9]  = er32(TDBAH);
3308         regs_buff[10] = er32(TDLEN);
3309         regs_buff[11] = er32(TDH);
3310         regs_buff[12] = er32(TDT);
3311         regs_buff[13] = er32(TIDV);
3312         regs_buff[14] = er32(TXDCTL);
3313         regs_buff[15] = er32(TADV);
3314         regs_buff[16] = er32(TARC0);
3315
3316         regs_buff[17] = er32(TDBAL1);
3317         regs_buff[18] = er32(TDBAH1);
3318         regs_buff[19] = er32(TDLEN1);
3319         regs_buff[20] = er32(TDH1);
3320         regs_buff[21] = er32(TDT1);
3321         regs_buff[22] = er32(TXDCTL1);
3322         regs_buff[23] = er32(TARC1);
3323         regs_buff[24] = er32(CTRL_EXT);
3324         regs_buff[25] = er32(ERT);
3325         regs_buff[26] = er32(RDBAL0);
3326         regs_buff[27] = er32(RDBAH0);
3327         regs_buff[28] = er32(TDFH);
3328         regs_buff[29] = er32(TDFT);
3329         regs_buff[30] = er32(TDFHS);
3330         regs_buff[31] = er32(TDFTS);
3331         regs_buff[32] = er32(TDFPC);
3332         regs_buff[33] = er32(RDFH);
3333         regs_buff[34] = er32(RDFT);
3334         regs_buff[35] = er32(RDFHS);
3335         regs_buff[36] = er32(RDFTS);
3336         regs_buff[37] = er32(RDFPC);
3337
3338         pr_info("Register dump\n");
3339         for (i = 0; i < NUM_REGS; i++)
3340                 pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3341 }
3342
3343 /*
3344  * e1000_dump: Print registers, tx ring and rx ring
3345  */
3346 static void e1000_dump(struct e1000_adapter *adapter)
3347 {
3348         /* this code doesn't handle multiple rings */
3349         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3350         struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3351         int i;
3352
3353         if (!netif_msg_hw(adapter))
3354                 return;
3355
3356         /* Print Registers */
3357         e1000_regdump(adapter);
3358
3359         /* transmit dump */
3360         pr_info("TX Desc ring0 dump\n");
3361
3362         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3363          *
3364          * Legacy Transmit Descriptor
3365          *   +--------------------------------------------------------------+
3366          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3367          *   +--------------------------------------------------------------+
3368          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3369          *   +--------------------------------------------------------------+
3370          *   63       48 47        36 35    32 31     24 23    16 15        0
3371          *
3372          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3373          *   63      48 47    40 39       32 31             16 15    8 7      0
3374          *   +----------------------------------------------------------------+
3375          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3376          *   +----------------------------------------------------------------+
3377          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3378          *   +----------------------------------------------------------------+
3379          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3380          *
3381          * Extended Data Descriptor (DTYP=0x1)
3382          *   +----------------------------------------------------------------+
3383          * 0 |                     Buffer Address [63:0]                      |
3384          *   +----------------------------------------------------------------+
3385          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3386          *   +----------------------------------------------------------------+
3387          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3388          */
3389         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3390         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3391
3392         if (!netif_msg_tx_done(adapter))
3393                 goto rx_ring_summary;
3394
3395         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3396                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3397                 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3398                 struct my_u { __le64 a; __le64 b; };
3399                 struct my_u *u = (struct my_u *)tx_desc;
3400                 const char *type;
3401
3402                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3403                         type = "NTC/U";
3404                 else if (i == tx_ring->next_to_use)
3405                         type = "NTU";
3406                 else if (i == tx_ring->next_to_clean)
3407                         type = "NTC";
3408                 else
3409                         type = "";
3410
3411                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3412                         ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3413                         le64_to_cpu(u->a), le64_to_cpu(u->b),
3414                         (u64)buffer_info->dma, buffer_info->length,
3415                         buffer_info->next_to_watch,
3416                         (u64)buffer_info->time_stamp, buffer_info->skb, type);
3417         }
3418
3419 rx_ring_summary:
3420         /* receive dump */
3421         pr_info("\nRX Desc ring dump\n");
3422
3423         /* Legacy Receive Descriptor Format
3424          *
3425          * +-----------------------------------------------------+
3426          * |                Buffer Address [63:0]                |
3427          * +-----------------------------------------------------+
3428          * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3429          * +-----------------------------------------------------+
3430          * 63       48 47    40 39      32 31         16 15      0
3431          */
3432         pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3433
3434         if (!netif_msg_rx_status(adapter))
3435                 goto exit;
3436
3437         for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3438                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3439                 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3440                 struct my_u { __le64 a; __le64 b; };
3441                 struct my_u *u = (struct my_u *)rx_desc;
3442                 const char *type;
3443
3444                 if (i == rx_ring->next_to_use)
3445                         type = "NTU";
3446                 else if (i == rx_ring->next_to_clean)
3447                         type = "NTC";
3448                 else
3449                         type = "";
3450
3451                 pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3452                         i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3453                         (u64)buffer_info->dma, buffer_info->skb, type);
3454         } /* for */
3455
3456         /* dump the descriptor caches */
3457         /* rx */
3458         pr_info("Rx descriptor cache in 64bit format\n");
3459         for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3460                 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3461                         i,
3462                         readl(adapter->hw.hw_addr + i+4),
3463                         readl(adapter->hw.hw_addr + i),
3464                         readl(adapter->hw.hw_addr + i+12),
3465                         readl(adapter->hw.hw_addr + i+8));
3466         }
3467         /* tx */
3468         pr_info("Tx descriptor cache in 64bit format\n");
3469         for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3470                 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3471                         i,
3472                         readl(adapter->hw.hw_addr + i+4),
3473                         readl(adapter->hw.hw_addr + i),
3474                         readl(adapter->hw.hw_addr + i+12),
3475                         readl(adapter->hw.hw_addr + i+8));
3476         }
3477 exit:
3478         return;
3479 }
3480
3481 /**
3482  * e1000_tx_timeout - Respond to a Tx Hang
3483  * @netdev: network interface device structure
3484  **/
3485 static void e1000_tx_timeout(struct net_device *netdev)
3486 {
3487         struct e1000_adapter *adapter = netdev_priv(netdev);
3488
3489         /* Do the reset outside of interrupt context */
3490         adapter->tx_timeout_count++;
3491         schedule_work(&adapter->reset_task);
3492 }
3493
3494 static void e1000_reset_task(struct work_struct *work)
3495 {
3496         struct e1000_adapter *adapter =
3497                 container_of(work, struct e1000_adapter, reset_task);
3498
3499         if (test_bit(__E1000_DOWN, &adapter->flags))
3500                 return;
3501         e_err(drv, "Reset adapter\n");
3502         e1000_reinit_safe(adapter);
3503 }
3504
3505 /**
3506  * e1000_get_stats - Get System Network Statistics
3507  * @netdev: network interface device structure
3508  *
3509  * Returns the address of the device statistics structure.
3510  * The statistics are actually updated from the watchdog.
3511  **/
3512 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3513 {
3514         /* only return the current stats */
3515         return &netdev->stats;
3516 }
3517
3518 /**
3519  * e1000_change_mtu - Change the Maximum Transfer Unit
3520  * @netdev: network interface device structure
3521  * @new_mtu: new value for maximum frame size
3522  *
3523  * Returns 0 on success, negative on failure
3524  **/
3525 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3526 {
3527         struct e1000_adapter *adapter = netdev_priv(netdev);
3528         struct e1000_hw *hw = &adapter->hw;
3529         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3530
3531         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3532             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3533                 e_err(probe, "Invalid MTU setting\n");
3534                 return -EINVAL;
3535         }
3536
3537         /* Adapter-specific max frame size limits. */
3538         switch (hw->mac_type) {
3539         case e1000_undefined ... e1000_82542_rev2_1:
3540                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3541                         e_err(probe, "Jumbo Frames not supported.\n");
3542                         return -EINVAL;
3543                 }
3544                 break;
3545         default:
3546                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3547                 break;
3548         }
3549
3550         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3551                 msleep(1);
3552         /* e1000_down has a dependency on max_frame_size */
3553         hw->max_frame_size = max_frame;
3554         if (netif_running(netdev))
3555                 e1000_down(adapter);
3556
3557         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3558          * means we reserve 2 more, this pushes us to allocate from the next
3559          * larger slab size.
3560          * i.e. RXBUFFER_2048 --> size-4096 slab
3561          * however with the new *_jumbo_rx* routines, jumbo receives will use
3562          * fragmented skbs
3563          */
3564
3565         if (max_frame <= E1000_RXBUFFER_2048)
3566                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3567         else
3568 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3569                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3570 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3571                 adapter->rx_buffer_len = PAGE_SIZE;
3572 #endif
3573
3574         /* adjust allocation if LPE protects us, and we aren't using SBP */
3575         if (!hw->tbi_compatibility_on &&
3576             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3577              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3578                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3579
3580         pr_info("%s changing MTU from %d to %d\n",
3581                 netdev->name, netdev->mtu, new_mtu);
3582         netdev->mtu = new_mtu;
3583
3584         if (netif_running(netdev))
3585                 e1000_up(adapter);
3586         else
3587                 e1000_reset(adapter);
3588
3589         clear_bit(__E1000_RESETTING, &adapter->flags);
3590
3591         return 0;
3592 }
3593
3594 /**
3595  * e1000_update_stats - Update the board statistics counters
3596  * @adapter: board private structure
3597  **/
3598 void e1000_update_stats(struct e1000_adapter *adapter)
3599 {
3600         struct net_device *netdev = adapter->netdev;
3601         struct e1000_hw *hw = &adapter->hw;
3602         struct pci_dev *pdev = adapter->pdev;
3603         unsigned long flags;
3604         u16 phy_tmp;
3605
3606 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3607
3608         /* Prevent stats update while adapter is being reset, or if the pci
3609          * connection is down.
3610          */
3611         if (adapter->link_speed == 0)
3612                 return;
3613         if (pci_channel_offline(pdev))
3614                 return;
3615
3616         spin_lock_irqsave(&adapter->stats_lock, flags);
3617
3618         /* these counters are modified from e1000_tbi_adjust_stats,
3619          * called from the interrupt context, so they must only
3620          * be written while holding adapter->stats_lock
3621          */
3622
3623         adapter->stats.crcerrs += er32(CRCERRS);
3624         adapter->stats.gprc += er32(GPRC);
3625         adapter->stats.gorcl += er32(GORCL);
3626         adapter->stats.gorch += er32(GORCH);
3627         adapter->stats.bprc += er32(BPRC);
3628         adapter->stats.mprc += er32(MPRC);
3629         adapter->stats.roc += er32(ROC);
3630
3631         adapter->stats.prc64 += er32(PRC64);
3632         adapter->stats.prc127 += er32(PRC127);
3633         adapter->stats.prc255 += er32(PRC255);
3634         adapter->stats.prc511 += er32(PRC511);
3635         adapter->stats.prc1023 += er32(PRC1023);
3636         adapter->stats.prc1522 += er32(PRC1522);
3637
3638         adapter->stats.symerrs += er32(SYMERRS);
3639         adapter->stats.mpc += er32(MPC);
3640         adapter->stats.scc += er32(SCC);
3641         adapter->stats.ecol += er32(ECOL);
3642         adapter->stats.mcc += er32(MCC);
3643         adapter->stats.latecol += er32(LATECOL);
3644         adapter->stats.dc += er32(DC);
3645         adapter->stats.sec += er32(SEC);
3646         adapter->stats.rlec += er32(RLEC);
3647         adapter->stats.xonrxc += er32(XONRXC);
3648         adapter->stats.xontxc += er32(XONTXC);
3649         adapter->stats.xoffrxc += er32(XOFFRXC);
3650         adapter->stats.xofftxc += er32(XOFFTXC);
3651         adapter->stats.fcruc += er32(FCRUC);
3652         adapter->stats.gptc += er32(GPTC);
3653         adapter->stats.gotcl += er32(GOTCL);
3654         adapter->stats.gotch += er32(GOTCH);
3655         adapter->stats.rnbc += er32(RNBC);
3656         adapter->stats.ruc += er32(RUC);
3657         adapter->stats.rfc += er32(RFC);
3658         adapter->stats.rjc += er32(RJC);
3659         adapter->stats.torl += er32(TORL);
3660         adapter->stats.torh += er32(TORH);
3661         adapter->stats.totl += er32(TOTL);
3662         adapter->stats.toth += er32(TOTH);
3663         adapter->stats.tpr += er32(TPR);
3664
3665         adapter->stats.ptc64 += er32(PTC64);
3666         adapter->stats.ptc127 += er32(PTC127);
3667         adapter->stats.ptc255 += er32(PTC255);
3668         adapter->stats.ptc511 += er32(PTC511);
3669         adapter->stats.ptc1023 += er32(PTC1023);
3670         adapter->stats.ptc1522 += er32(PTC1522);
3671
3672         adapter->stats.mptc += er32(MPTC);
3673         adapter->stats.bptc += er32(BPTC);
3674
3675         /* used for adaptive IFS */
3676
3677         hw->tx_packet_delta = er32(TPT);
3678         adapter->stats.tpt += hw->tx_packet_delta;
3679         hw->collision_delta = er32(COLC);
3680         adapter->stats.colc += hw->collision_delta;
3681
3682         if (hw->mac_type >= e1000_82543) {
3683                 adapter->stats.algnerrc += er32(ALGNERRC);
3684                 adapter->stats.rxerrc += er32(RXERRC);
3685                 adapter->stats.tncrs += er32(TNCRS);
3686                 adapter->stats.cexterr += er32(CEXTERR);
3687                 adapter->stats.tsctc += er32(TSCTC);
3688                 adapter->stats.tsctfc += er32(TSCTFC);
3689         }
3690
3691         /* Fill out the OS statistics structure */
3692         netdev->stats.multicast = adapter->stats.mprc;
3693         netdev->stats.collisions = adapter->stats.colc;
3694
3695         /* Rx Errors */
3696
3697         /* RLEC on some newer hardware can be incorrect so build
3698          * our own version based on RUC and ROC
3699          */
3700         netdev->stats.rx_errors = adapter->stats.rxerrc +
3701                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3702                 adapter->stats.ruc + adapter->stats.roc +
3703                 adapter->stats.cexterr;
3704         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3705         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3706         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3707         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3708         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3709
3710         /* Tx Errors */
3711         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3712         netdev->stats.tx_errors = adapter->stats.txerrc;
3713         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3714         netdev->stats.tx_window_errors = adapter->stats.latecol;
3715         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3716         if (hw->bad_tx_carr_stats_fd &&
3717             adapter->link_duplex == FULL_DUPLEX) {
3718                 netdev->stats.tx_carrier_errors = 0;
3719                 adapter->stats.tncrs = 0;
3720         }
3721
3722         /* Tx Dropped needs to be maintained elsewhere */
3723
3724         /* Phy Stats */
3725         if (hw->media_type == e1000_media_type_copper) {
3726                 if ((adapter->link_speed == SPEED_1000) &&
3727                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3728                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3729                         adapter->phy_stats.idle_errors += phy_tmp;
3730                 }
3731
3732                 if ((hw->mac_type <= e1000_82546) &&
3733                    (hw->phy_type == e1000_phy_m88) &&
3734                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3735                         adapter->phy_stats.receive_errors += phy_tmp;
3736         }
3737
3738         /* Management Stats */
3739         if (hw->has_smbus) {
3740                 adapter->stats.mgptc += er32(MGTPTC);
3741                 adapter->stats.mgprc += er32(MGTPRC);
3742                 adapter->stats.mgpdc += er32(MGTPDC);
3743         }
3744
3745         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3746 }
3747
3748 /**
3749  * e1000_intr - Interrupt Handler
3750  * @irq: interrupt number
3751  * @data: pointer to a network interface device structure
3752  **/
3753 static irqreturn_t e1000_intr(int irq, void *data)
3754 {
3755         struct net_device *netdev = data;
3756         struct e1000_adapter *adapter = netdev_priv(netdev);
3757         struct e1000_hw *hw = &adapter->hw;
3758         u32 icr = er32(ICR);
3759
3760         if (unlikely((!icr)))
3761                 return IRQ_NONE;  /* Not our interrupt */
3762
3763         /* we might have caused the interrupt, but the above
3764          * read cleared it, and just in case the driver is
3765          * down there is nothing to do so return handled
3766          */
3767         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3768                 return IRQ_HANDLED;
3769
3770         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3771                 hw->get_link_status = 1;
3772                 /* guard against interrupt when we're going down */
3773                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3774                         schedule_delayed_work(&adapter->watchdog_task, 1);
3775         }
3776
3777         /* disable interrupts, without the synchronize_irq bit */
3778         ew32(IMC, ~0);
3779         E1000_WRITE_FLUSH();
3780
3781         if (likely(napi_schedule_prep(&adapter->napi))) {
3782                 adapter->total_tx_bytes = 0;
3783                 adapter->total_tx_packets = 0;
3784                 adapter->total_rx_bytes = 0;
3785                 adapter->total_rx_packets = 0;
3786                 __napi_schedule(&adapter->napi);
3787         } else {
3788                 /* this really should not happen! if it does it is basically a
3789                  * bug, but not a hard error, so enable ints and continue
3790                  */
3791                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3792                         e1000_irq_enable(adapter);
3793         }
3794
3795         return IRQ_HANDLED;
3796 }
3797
3798 /**
3799  * e1000_clean - NAPI Rx polling callback
3800  * @adapter: board private structure
3801  **/
3802 static int e1000_clean(struct napi_struct *napi, int budget)
3803 {
3804         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3805                                                      napi);
3806         int tx_clean_complete = 0, work_done = 0;
3807
3808         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3809
3810         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3811
3812         if (!tx_clean_complete)
3813                 work_done = budget;
3814
3815         /* If budget not fully consumed, exit the polling mode */
3816         if (work_done < budget) {
3817                 if (likely(adapter->itr_setting & 3))
3818                         e1000_set_itr(adapter);
3819                 napi_complete(napi);
3820                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3821                         e1000_irq_enable(adapter);
3822         }
3823
3824         return work_done;
3825 }
3826
3827 /**
3828  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3829  * @adapter: board private structure
3830  **/
3831 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3832                                struct e1000_tx_ring *tx_ring)
3833 {
3834         struct e1000_hw *hw = &adapter->hw;
3835         struct net_device *netdev = adapter->netdev;
3836         struct e1000_tx_desc *tx_desc, *eop_desc;
3837         struct e1000_buffer *buffer_info;
3838         unsigned int i, eop;
3839         unsigned int count = 0;
3840         unsigned int total_tx_bytes=0, total_tx_packets=0;
3841         unsigned int bytes_compl = 0, pkts_compl = 0;
3842
3843         i = tx_ring->next_to_clean;
3844         eop = tx_ring->buffer_info[i].next_to_watch;
3845         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3846
3847         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3848                (count < tx_ring->count)) {
3849                 bool cleaned = false;
3850                 rmb();  /* read buffer_info after eop_desc */
3851                 for ( ; !cleaned; count++) {
3852                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3853                         buffer_info = &tx_ring->buffer_info[i];
3854                         cleaned = (i == eop);
3855
3856                         if (cleaned) {
3857                                 total_tx_packets += buffer_info->segs;
3858                                 total_tx_bytes += buffer_info->bytecount;
3859                                 if (buffer_info->skb) {
3860                                         bytes_compl += buffer_info->skb->len;
3861                                         pkts_compl++;
3862                                 }
3863
3864                         }
3865                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3866                         tx_desc->upper.data = 0;
3867
3868                         if (unlikely(++i == tx_ring->count)) i = 0;
3869                 }
3870
3871                 eop = tx_ring->buffer_info[i].next_to_watch;
3872                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3873         }
3874
3875         tx_ring->next_to_clean = i;
3876
3877         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3878
3879 #define TX_WAKE_THRESHOLD 32
3880         if (unlikely(count && netif_carrier_ok(netdev) &&
3881                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3882                 /* Make sure that anybody stopping the queue after this
3883                  * sees the new next_to_clean.
3884                  */
3885                 smp_mb();
3886
3887                 if (netif_queue_stopped(netdev) &&
3888                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3889                         netif_wake_queue(netdev);
3890                         ++adapter->restart_queue;
3891                 }
3892         }
3893
3894         if (adapter->detect_tx_hung) {
3895                 /* Detect a transmit hang in hardware, this serializes the
3896                  * check with the clearing of time_stamp and movement of i
3897                  */
3898                 adapter->detect_tx_hung = false;
3899                 if (tx_ring->buffer_info[eop].time_stamp &&
3900                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3901                                (adapter->tx_timeout_factor * HZ)) &&
3902                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3903
3904                         /* detected Tx unit hang */
3905                         e_err(drv, "Detected Tx Unit Hang\n"
3906                               "  Tx Queue             <%lu>\n"
3907                               "  TDH                  <%x>\n"
3908                               "  TDT                  <%x>\n"
3909                               "  next_to_use          <%x>\n"
3910                               "  next_to_clean        <%x>\n"
3911                               "buffer_info[next_to_clean]\n"
3912                               "  time_stamp           <%lx>\n"
3913                               "  next_to_watch        <%x>\n"
3914                               "  jiffies              <%lx>\n"
3915                               "  next_to_watch.status <%x>\n",
3916                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3917                                         sizeof(struct e1000_tx_ring)),
3918                                 readl(hw->hw_addr + tx_ring->tdh),
3919                                 readl(hw->hw_addr + tx_ring->tdt),
3920                                 tx_ring->next_to_use,
3921                                 tx_ring->next_to_clean,
3922                                 tx_ring->buffer_info[eop].time_stamp,
3923                                 eop,
3924                                 jiffies,
3925                                 eop_desc->upper.fields.status);
3926                         e1000_dump(adapter);
3927                         netif_stop_queue(netdev);
3928                 }
3929         }
3930         adapter->total_tx_bytes += total_tx_bytes;
3931         adapter->total_tx_packets += total_tx_packets;
3932         netdev->stats.tx_bytes += total_tx_bytes;
3933         netdev->stats.tx_packets += total_tx_packets;
3934         return count < tx_ring->count;
3935 }
3936
3937 /**
3938  * e1000_rx_checksum - Receive Checksum Offload for 82543
3939  * @adapter:     board private structure
3940  * @status_err:  receive descriptor status and error fields
3941  * @csum:        receive descriptor csum field
3942  * @sk_buff:     socket buffer with received data
3943  **/
3944 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3945                               u32 csum, struct sk_buff *skb)
3946 {
3947         struct e1000_hw *hw = &adapter->hw;
3948         u16 status = (u16)status_err;
3949         u8 errors = (u8)(status_err >> 24);
3950
3951         skb_checksum_none_assert(skb);
3952
3953         /* 82543 or newer only */
3954         if (unlikely(hw->mac_type < e1000_82543)) return;
3955         /* Ignore Checksum bit is set */
3956         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3957         /* TCP/UDP checksum error bit is set */
3958         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3959                 /* let the stack verify checksum errors */
3960                 adapter->hw_csum_err++;
3961                 return;
3962         }
3963         /* TCP/UDP Checksum has not been calculated */
3964         if (!(status & E1000_RXD_STAT_TCPCS))
3965                 return;
3966
3967         /* It must be a TCP or UDP packet with a valid checksum */
3968         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3969                 /* TCP checksum is good */
3970                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3971         }
3972         adapter->hw_csum_good++;
3973 }
3974
3975 /**
3976  * e1000_consume_page - helper function
3977  **/
3978 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3979                                u16 length)
3980 {
3981         bi->page = NULL;
3982         skb->len += length;
3983         skb->data_len += length;
3984         skb->truesize += PAGE_SIZE;
3985 }
3986
3987 /**
3988  * e1000_receive_skb - helper function to handle rx indications
3989  * @adapter: board private structure
3990  * @status: descriptor status field as written by hardware
3991  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3992  * @skb: pointer to sk_buff to be indicated to stack
3993  */
3994 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3995                               __le16 vlan, struct sk_buff *skb)
3996 {
3997         skb->protocol = eth_type_trans(skb, adapter->netdev);
3998
3999         if (status & E1000_RXD_STAT_VP) {
4000                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4001
4002                 __vlan_hwaccel_put_tag(skb, vid);
4003         }
4004         napi_gro_receive(&adapter->napi, skb);
4005 }
4006
4007 /**
4008  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4009  * @adapter: board private structure
4010  * @rx_ring: ring to clean
4011  * @work_done: amount of napi work completed this call
4012  * @work_to_do: max amount of work allowed for this call to do
4013  *
4014  * the return value indicates whether actual cleaning was done, there
4015  * is no guarantee that everything was cleaned
4016  */
4017 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4018                                      struct e1000_rx_ring *rx_ring,
4019                                      int *work_done, int work_to_do)
4020 {
4021         struct e1000_hw *hw = &adapter->hw;
4022         struct net_device *netdev = adapter->netdev;
4023         struct pci_dev *pdev = adapter->pdev;
4024         struct e1000_rx_desc *rx_desc, *next_rxd;
4025         struct e1000_buffer *buffer_info, *next_buffer;
4026         unsigned long irq_flags;
4027         u32 length;
4028         unsigned int i;
4029         int cleaned_count = 0;
4030         bool cleaned = false;
4031         unsigned int total_rx_bytes=0, total_rx_packets=0;
4032
4033         i = rx_ring->next_to_clean;
4034         rx_desc = E1000_RX_DESC(*rx_ring, i);
4035         buffer_info = &rx_ring->buffer_info[i];
4036
4037         while (rx_desc->status & E1000_RXD_STAT_DD) {
4038                 struct sk_buff *skb;
4039                 u8 status;
4040
4041                 if (*work_done >= work_to_do)
4042                         break;
4043                 (*work_done)++;
4044                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4045
4046                 status = rx_desc->status;
4047                 skb = buffer_info->skb;
4048                 buffer_info->skb = NULL;
4049
4050                 if (++i == rx_ring->count) i = 0;
4051                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4052                 prefetch(next_rxd);
4053
4054                 next_buffer = &rx_ring->buffer_info[i];
4055
4056                 cleaned = true;
4057                 cleaned_count++;
4058                 dma_unmap_page(&pdev->dev, buffer_info->dma,
4059                                buffer_info->length, DMA_FROM_DEVICE);
4060                 buffer_info->dma = 0;
4061
4062                 length = le16_to_cpu(rx_desc->length);
4063
4064                 /* errors is only valid for DD + EOP descriptors */
4065                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4066                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4067                         u8 *mapped;
4068                         u8 last_byte;
4069
4070                         mapped = page_address(buffer_info->page);
4071                         last_byte = *(mapped + length - 1);
4072                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4073                                        last_byte)) {
4074                                 spin_lock_irqsave(&adapter->stats_lock,
4075                                                   irq_flags);
4076                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4077                                                        length, mapped);
4078                                 spin_unlock_irqrestore(&adapter->stats_lock,
4079                                                        irq_flags);
4080                                 length--;
4081                         } else {
4082                                 if (netdev->features & NETIF_F_RXALL)
4083                                         goto process_skb;
4084                                 /* recycle both page and skb */
4085                                 buffer_info->skb = skb;
4086                                 /* an error means any chain goes out the window
4087                                  * too
4088                                  */
4089                                 if (rx_ring->rx_skb_top)
4090                                         dev_kfree_skb(rx_ring->rx_skb_top);
4091                                 rx_ring->rx_skb_top = NULL;
4092                                 goto next_desc;
4093                         }
4094                 }
4095
4096 #define rxtop rx_ring->rx_skb_top
4097 process_skb:
4098                 if (!(status & E1000_RXD_STAT_EOP)) {
4099                         /* this descriptor is only the beginning (or middle) */
4100                         if (!rxtop) {
4101                                 /* this is the beginning of a chain */
4102                                 rxtop = skb;
4103                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4104                                                    0, length);
4105                         } else {
4106                                 /* this is the middle of a chain */
4107                                 skb_fill_page_desc(rxtop,
4108                                     skb_shinfo(rxtop)->nr_frags,
4109                                     buffer_info->page, 0, length);
4110                                 /* re-use the skb, only consumed the page */
4111                                 buffer_info->skb = skb;
4112                         }
4113                         e1000_consume_page(buffer_info, rxtop, length);
4114                         goto next_desc;
4115                 } else {
4116                         if (rxtop) {
4117                                 /* end of the chain */
4118                                 skb_fill_page_desc(rxtop,
4119                                     skb_shinfo(rxtop)->nr_frags,
4120                                     buffer_info->page, 0, length);
4121                                 /* re-use the current skb, we only consumed the
4122                                  * page
4123                                  */
4124                                 buffer_info->skb = skb;
4125                                 skb = rxtop;
4126                                 rxtop = NULL;
4127                                 e1000_consume_page(buffer_info, skb, length);
4128                         } else {
4129                                 /* no chain, got EOP, this buf is the packet
4130                                  * copybreak to save the put_page/alloc_page
4131                                  */
4132                                 if (length <= copybreak &&
4133                                     skb_tailroom(skb) >= length) {
4134                                         u8 *vaddr;
4135                                         vaddr = kmap_atomic(buffer_info->page);
4136                                         memcpy(skb_tail_pointer(skb), vaddr,
4137                                                length);
4138                                         kunmap_atomic(vaddr);
4139                                         /* re-use the page, so don't erase
4140                                          * buffer_info->page
4141                                          */
4142                                         skb_put(skb, length);
4143                                 } else {
4144                                         skb_fill_page_desc(skb, 0,
4145                                                            buffer_info->page, 0,
4146                                                            length);
4147                                         e1000_consume_page(buffer_info, skb,
4148                                                            length);
4149                                 }
4150                         }
4151                 }
4152
4153                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4154                 e1000_rx_checksum(adapter,
4155                                   (u32)(status) |
4156                                   ((u32)(rx_desc->errors) << 24),
4157                                   le16_to_cpu(rx_desc->csum), skb);
4158
4159                 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4160                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4161                         pskb_trim(skb, skb->len - 4);
4162                 total_rx_packets++;
4163
4164                 /* eth type trans needs skb->data to point to something */
4165                 if (!pskb_may_pull(skb, ETH_HLEN)) {
4166                         e_err(drv, "pskb_may_pull failed.\n");
4167                         dev_kfree_skb(skb);
4168                         goto next_desc;
4169                 }
4170
4171                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4172
4173 next_desc:
4174                 rx_desc->status = 0;
4175
4176                 /* return some buffers to hardware, one at a time is too slow */
4177                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4178                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4179                         cleaned_count = 0;
4180                 }
4181
4182                 /* use prefetched values */
4183                 rx_desc = next_rxd;
4184                 buffer_info = next_buffer;
4185         }
4186         rx_ring->next_to_clean = i;
4187
4188         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4189         if (cleaned_count)
4190                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4191
4192         adapter->total_rx_packets += total_rx_packets;
4193         adapter->total_rx_bytes += total_rx_bytes;
4194         netdev->stats.rx_bytes += total_rx_bytes;
4195         netdev->stats.rx_packets += total_rx_packets;
4196         return cleaned;
4197 }
4198
4199 /* this should improve performance for small packets with large amounts
4200  * of reassembly being done in the stack
4201  */
4202 static void e1000_check_copybreak(struct net_device *netdev,
4203                                  struct e1000_buffer *buffer_info,
4204                                  u32 length, struct sk_buff **skb)
4205 {
4206         struct sk_buff *new_skb;
4207
4208         if (length > copybreak)
4209                 return;
4210
4211         new_skb = netdev_alloc_skb_ip_align(netdev, length);
4212         if (!new_skb)
4213                 return;
4214
4215         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4216                                        (*skb)->data - NET_IP_ALIGN,
4217                                        length + NET_IP_ALIGN);
4218         /* save the skb in buffer_info as good */
4219         buffer_info->skb = *skb;
4220         *skb = new_skb;
4221 }
4222
4223 /**
4224  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4225  * @adapter: board private structure
4226  * @rx_ring: ring to clean
4227  * @work_done: amount of napi work completed this call
4228  * @work_to_do: max amount of work allowed for this call to do
4229  */
4230 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4231                                struct e1000_rx_ring *rx_ring,
4232                                int *work_done, int work_to_do)
4233 {
4234         struct e1000_hw *hw = &adapter->hw;
4235         struct net_device *netdev = adapter->netdev;
4236         struct pci_dev *pdev = adapter->pdev;
4237         struct e1000_rx_desc *rx_desc, *next_rxd;
4238         struct e1000_buffer *buffer_info, *next_buffer;
4239         unsigned long flags;
4240         u32 length;
4241         unsigned int i;
4242         int cleaned_count = 0;
4243         bool cleaned = false;
4244         unsigned int total_rx_bytes=0, total_rx_packets=0;
4245
4246         i = rx_ring->next_to_clean;
4247         rx_desc = E1000_RX_DESC(*rx_ring, i);
4248         buffer_info = &rx_ring->buffer_info[i];
4249
4250         while (rx_desc->status & E1000_RXD_STAT_DD) {
4251                 struct sk_buff *skb;
4252                 u8 status;
4253
4254                 if (*work_done >= work_to_do)
4255                         break;
4256                 (*work_done)++;
4257                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4258
4259                 status = rx_desc->status;
4260                 skb = buffer_info->skb;
4261                 buffer_info->skb = NULL;
4262
4263                 prefetch(skb->data - NET_IP_ALIGN);
4264
4265                 if (++i == rx_ring->count) i = 0;
4266                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4267                 prefetch(next_rxd);
4268
4269                 next_buffer = &rx_ring->buffer_info[i];
4270
4271                 cleaned = true;
4272                 cleaned_count++;
4273                 dma_unmap_single(&pdev->dev, buffer_info->dma,
4274                                  buffer_info->length, DMA_FROM_DEVICE);
4275                 buffer_info->dma = 0;
4276
4277                 length = le16_to_cpu(rx_desc->length);
4278                 /* !EOP means multiple descriptors were used to store a single
4279                  * packet, if thats the case we need to toss it.  In fact, we
4280                  * to toss every packet with the EOP bit clear and the next
4281                  * frame that _does_ have the EOP bit set, as it is by
4282                  * definition only a frame fragment
4283                  */
4284                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4285                         adapter->discarding = true;
4286
4287                 if (adapter->discarding) {
4288                         /* All receives must fit into a single buffer */
4289                         e_dbg("Receive packet consumed multiple buffers\n");
4290                         /* recycle */
4291                         buffer_info->skb = skb;
4292                         if (status & E1000_RXD_STAT_EOP)
4293                                 adapter->discarding = false;
4294                         goto next_desc;
4295                 }
4296
4297                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4298                         u8 last_byte = *(skb->data + length - 1);
4299                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4300                                        last_byte)) {
4301                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4302                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4303                                                        length, skb->data);
4304                                 spin_unlock_irqrestore(&adapter->stats_lock,
4305                                                        flags);
4306                                 length--;
4307                         } else {
4308                                 if (netdev->features & NETIF_F_RXALL)
4309                                         goto process_skb;
4310                                 /* recycle */
4311                                 buffer_info->skb = skb;
4312                                 goto next_desc;
4313                         }
4314                 }
4315
4316 process_skb:
4317                 total_rx_bytes += (length - 4); /* don't count FCS */
4318                 total_rx_packets++;
4319
4320                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4321                         /* adjust length to remove Ethernet CRC, this must be
4322                          * done after the TBI_ACCEPT workaround above
4323                          */
4324                         length -= 4;
4325
4326                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4327
4328                 skb_put(skb, length);
4329
4330                 /* Receive Checksum Offload */
4331                 e1000_rx_checksum(adapter,
4332                                   (u32)(status) |
4333                                   ((u32)(rx_desc->errors) << 24),
4334                                   le16_to_cpu(rx_desc->csum), skb);
4335
4336                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4337
4338 next_desc:
4339                 rx_desc->status = 0;
4340
4341                 /* return some buffers to hardware, one at a time is too slow */
4342                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4343                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4344                         cleaned_count = 0;
4345                 }
4346
4347                 /* use prefetched values */
4348                 rx_desc = next_rxd;
4349                 buffer_info = next_buffer;
4350         }
4351         rx_ring->next_to_clean = i;
4352
4353         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4354         if (cleaned_count)
4355                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4356
4357         adapter->total_rx_packets += total_rx_packets;
4358         adapter->total_rx_bytes += total_rx_bytes;
4359         netdev->stats.rx_bytes += total_rx_bytes;
4360         netdev->stats.rx_packets += total_rx_packets;
4361         return cleaned;
4362 }
4363
4364 /**
4365  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4366  * @adapter: address of board private structure
4367  * @rx_ring: pointer to receive ring structure
4368  * @cleaned_count: number of buffers to allocate this pass
4369  **/
4370 static void
4371 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4372                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4373 {
4374         struct net_device *netdev = adapter->netdev;
4375         struct pci_dev *pdev = adapter->pdev;
4376         struct e1000_rx_desc *rx_desc;
4377         struct e1000_buffer *buffer_info;
4378         struct sk_buff *skb;
4379         unsigned int i;
4380         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4381
4382         i = rx_ring->next_to_use;
4383         buffer_info = &rx_ring->buffer_info[i];
4384
4385         while (cleaned_count--) {
4386                 skb = buffer_info->skb;
4387                 if (skb) {
4388                         skb_trim(skb, 0);
4389                         goto check_page;
4390                 }
4391
4392                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4393                 if (unlikely(!skb)) {
4394                         /* Better luck next round */
4395                         adapter->alloc_rx_buff_failed++;
4396                         break;
4397                 }
4398
4399                 buffer_info->skb = skb;
4400                 buffer_info->length = adapter->rx_buffer_len;
4401 check_page:
4402                 /* allocate a new page if necessary */
4403                 if (!buffer_info->page) {
4404                         buffer_info->page = alloc_page(GFP_ATOMIC);
4405                         if (unlikely(!buffer_info->page)) {
4406                                 adapter->alloc_rx_buff_failed++;
4407                                 break;
4408                         }
4409                 }
4410
4411                 if (!buffer_info->dma) {
4412                         buffer_info->dma = dma_map_page(&pdev->dev,
4413                                                         buffer_info->page, 0,
4414                                                         buffer_info->length,
4415                                                         DMA_FROM_DEVICE);
4416                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4417                                 put_page(buffer_info->page);
4418                                 dev_kfree_skb(skb);
4419                                 buffer_info->page = NULL;
4420                                 buffer_info->skb = NULL;
4421                                 buffer_info->dma = 0;
4422                                 adapter->alloc_rx_buff_failed++;
4423                                 break; /* while !buffer_info->skb */
4424                         }
4425                 }
4426
4427                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4428                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4429
4430                 if (unlikely(++i == rx_ring->count))
4431                         i = 0;
4432                 buffer_info = &rx_ring->buffer_info[i];
4433         }
4434
4435         if (likely(rx_ring->next_to_use != i)) {
4436                 rx_ring->next_to_use = i;
4437                 if (unlikely(i-- == 0))
4438                         i = (rx_ring->count - 1);
4439
4440                 /* Force memory writes to complete before letting h/w
4441                  * know there are new descriptors to fetch.  (Only
4442                  * applicable for weak-ordered memory model archs,
4443                  * such as IA-64).
4444                  */
4445                 wmb();
4446                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4447         }
4448 }
4449
4450 /**
4451  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4452  * @adapter: address of board private structure
4453  **/
4454 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4455                                    struct e1000_rx_ring *rx_ring,
4456                                    int cleaned_count)
4457 {
4458         struct e1000_hw *hw = &adapter->hw;
4459         struct net_device *netdev = adapter->netdev;
4460         struct pci_dev *pdev = adapter->pdev;
4461         struct e1000_rx_desc *rx_desc;
4462         struct e1000_buffer *buffer_info;
4463         struct sk_buff *skb;
4464         unsigned int i;
4465         unsigned int bufsz = adapter->rx_buffer_len;
4466
4467         i = rx_ring->next_to_use;
4468         buffer_info = &rx_ring->buffer_info[i];
4469
4470         while (cleaned_count--) {
4471                 skb = buffer_info->skb;
4472                 if (skb) {
4473                         skb_trim(skb, 0);
4474                         goto map_skb;
4475                 }
4476
4477                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4478                 if (unlikely(!skb)) {
4479                         /* Better luck next round */
4480                         adapter->alloc_rx_buff_failed++;
4481                         break;
4482                 }
4483
4484                 /* Fix for errata 23, can't cross 64kB boundary */
4485                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4486                         struct sk_buff *oldskb = skb;
4487                         e_err(rx_err, "skb align check failed: %u bytes at "
4488                               "%p\n", bufsz, skb->data);
4489                         /* Try again, without freeing the previous */
4490                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4491                         /* Failed allocation, critical failure */
4492                         if (!skb) {
4493                                 dev_kfree_skb(oldskb);
4494                                 adapter->alloc_rx_buff_failed++;
4495                                 break;
4496                         }
4497
4498                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4499                                 /* give up */
4500                                 dev_kfree_skb(skb);
4501                                 dev_kfree_skb(oldskb);
4502                                 adapter->alloc_rx_buff_failed++;
4503                                 break; /* while !buffer_info->skb */
4504                         }
4505
4506                         /* Use new allocation */
4507                         dev_kfree_skb(oldskb);
4508                 }
4509                 buffer_info->skb = skb;
4510                 buffer_info->length = adapter->rx_buffer_len;
4511 map_skb:
4512                 buffer_info->dma = dma_map_single(&pdev->dev,
4513                                                   skb->data,
4514                                                   buffer_info->length,
4515                                                   DMA_FROM_DEVICE);
4516                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4517                         dev_kfree_skb(skb);
4518                         buffer_info->skb = NULL;
4519                         buffer_info->dma = 0;
4520                         adapter->alloc_rx_buff_failed++;
4521                         break; /* while !buffer_info->skb */
4522                 }
4523
4524                 /* XXX if it was allocated cleanly it will never map to a
4525                  * boundary crossing
4526                  */
4527
4528                 /* Fix for errata 23, can't cross 64kB boundary */
4529                 if (!e1000_check_64k_bound(adapter,
4530                                         (void *)(unsigned long)buffer_info->dma,
4531                                         adapter->rx_buffer_len)) {
4532                         e_err(rx_err, "dma align check failed: %u bytes at "
4533                               "%p\n", adapter->rx_buffer_len,
4534                               (void *)(unsigned long)buffer_info->dma);
4535                         dev_kfree_skb(skb);
4536                         buffer_info->skb = NULL;
4537
4538                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4539                                          adapter->rx_buffer_len,
4540                                          DMA_FROM_DEVICE);
4541                         buffer_info->dma = 0;
4542
4543                         adapter->alloc_rx_buff_failed++;
4544                         break; /* while !buffer_info->skb */
4545                 }
4546                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4547                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4548
4549                 if (unlikely(++i == rx_ring->count))
4550                         i = 0;
4551                 buffer_info = &rx_ring->buffer_info[i];
4552         }
4553
4554         if (likely(rx_ring->next_to_use != i)) {
4555                 rx_ring->next_to_use = i;
4556                 if (unlikely(i-- == 0))
4557                         i = (rx_ring->count - 1);
4558
4559                 /* Force memory writes to complete before letting h/w
4560                  * know there are new descriptors to fetch.  (Only
4561                  * applicable for weak-ordered memory model archs,
4562                  * such as IA-64).
4563                  */
4564                 wmb();
4565                 writel(i, hw->hw_addr + rx_ring->rdt);
4566         }
4567 }
4568
4569 /**
4570  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4571  * @adapter:
4572  **/
4573 static void e1000_smartspeed(struct e1000_adapter *adapter)
4574 {
4575         struct e1000_hw *hw = &adapter->hw;
4576         u16 phy_status;
4577         u16 phy_ctrl;
4578
4579         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4580            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4581                 return;
4582
4583         if (adapter->smartspeed == 0) {
4584                 /* If Master/Slave config fault is asserted twice,
4585                  * we assume back-to-back
4586                  */
4587                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4588                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4589                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4590                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4591                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4592                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4593                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4594                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4595                                             phy_ctrl);
4596                         adapter->smartspeed++;
4597                         if (!e1000_phy_setup_autoneg(hw) &&
4598                            !e1000_read_phy_reg(hw, PHY_CTRL,
4599                                                &phy_ctrl)) {
4600                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4601                                              MII_CR_RESTART_AUTO_NEG);
4602                                 e1000_write_phy_reg(hw, PHY_CTRL,
4603                                                     phy_ctrl);
4604                         }
4605                 }
4606                 return;
4607         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4608                 /* If still no link, perhaps using 2/3 pair cable */
4609                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4610                 phy_ctrl |= CR_1000T_MS_ENABLE;
4611                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4612                 if (!e1000_phy_setup_autoneg(hw) &&
4613                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4614                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4615                                      MII_CR_RESTART_AUTO_NEG);
4616                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4617                 }
4618         }
4619         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4620         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4621                 adapter->smartspeed = 0;
4622 }
4623
4624 /**
4625  * e1000_ioctl -
4626  * @netdev:
4627  * @ifreq:
4628  * @cmd:
4629  **/
4630 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4631 {
4632         switch (cmd) {
4633         case SIOCGMIIPHY:
4634         case SIOCGMIIREG:
4635         case SIOCSMIIREG:
4636                 return e1000_mii_ioctl(netdev, ifr, cmd);
4637         default:
4638                 return -EOPNOTSUPP;
4639         }
4640 }
4641
4642 /**
4643  * e1000_mii_ioctl -
4644  * @netdev:
4645  * @ifreq:
4646  * @cmd:
4647  **/
4648 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4649                            int cmd)
4650 {
4651         struct e1000_adapter *adapter = netdev_priv(netdev);
4652         struct e1000_hw *hw = &adapter->hw;
4653         struct mii_ioctl_data *data = if_mii(ifr);
4654         int retval;
4655         u16 mii_reg;
4656         unsigned long flags;
4657
4658         if (hw->media_type != e1000_media_type_copper)
4659                 return -EOPNOTSUPP;
4660
4661         switch (cmd) {
4662         case SIOCGMIIPHY:
4663                 data->phy_id = hw->phy_addr;
4664                 break;
4665         case SIOCGMIIREG:
4666                 spin_lock_irqsave(&adapter->stats_lock, flags);
4667                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4668                                    &data->val_out)) {
4669                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4670                         return -EIO;
4671                 }
4672                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4673                 break;
4674         case SIOCSMIIREG:
4675                 if (data->reg_num & ~(0x1F))
4676                         return -EFAULT;
4677                 mii_reg = data->val_in;
4678                 spin_lock_irqsave(&adapter->stats_lock, flags);
4679                 if (e1000_write_phy_reg(hw, data->reg_num,
4680                                         mii_reg)) {
4681                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4682                         return -EIO;
4683                 }
4684                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4685                 if (hw->media_type == e1000_media_type_copper) {
4686                         switch (data->reg_num) {
4687                         case PHY_CTRL:
4688                                 if (mii_reg & MII_CR_POWER_DOWN)
4689                                         break;
4690                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4691                                         hw->autoneg = 1;
4692                                         hw->autoneg_advertised = 0x2F;
4693                                 } else {
4694                                         u32 speed;
4695                                         if (mii_reg & 0x40)
4696                                                 speed = SPEED_1000;
4697                                         else if (mii_reg & 0x2000)
4698                                                 speed = SPEED_100;
4699                                         else
4700                                                 speed = SPEED_10;
4701                                         retval = e1000_set_spd_dplx(
4702                                                 adapter, speed,
4703                                                 ((mii_reg & 0x100)
4704                                                  ? DUPLEX_FULL :
4705                                                  DUPLEX_HALF));
4706                                         if (retval)
4707                                                 return retval;
4708                                 }
4709                                 if (netif_running(adapter->netdev))
4710                                         e1000_reinit_locked(adapter);
4711                                 else
4712                                         e1000_reset(adapter);
4713                                 break;
4714                         case M88E1000_PHY_SPEC_CTRL:
4715                         case M88E1000_EXT_PHY_SPEC_CTRL:
4716                                 if (e1000_phy_reset(hw))
4717                                         return -EIO;
4718                                 break;
4719                         }
4720                 } else {
4721                         switch (data->reg_num) {
4722                         case PHY_CTRL:
4723                                 if (mii_reg & MII_CR_POWER_DOWN)
4724                                         break;
4725                                 if (netif_running(adapter->netdev))
4726                                         e1000_reinit_locked(adapter);
4727                                 else
4728                                         e1000_reset(adapter);
4729                                 break;
4730                         }
4731                 }
4732                 break;
4733         default:
4734                 return -EOPNOTSUPP;
4735         }
4736         return E1000_SUCCESS;
4737 }
4738
4739 void e1000_pci_set_mwi(struct e1000_hw *hw)
4740 {
4741         struct e1000_adapter *adapter = hw->back;
4742         int ret_val = pci_set_mwi(adapter->pdev);
4743
4744         if (ret_val)
4745                 e_err(probe, "Error in setting MWI\n");
4746 }
4747
4748 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4749 {
4750         struct e1000_adapter *adapter = hw->back;
4751
4752         pci_clear_mwi(adapter->pdev);
4753 }
4754
4755 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4756 {
4757         struct e1000_adapter *adapter = hw->back;
4758         return pcix_get_mmrbc(adapter->pdev);
4759 }
4760
4761 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4762 {
4763         struct e1000_adapter *adapter = hw->back;
4764         pcix_set_mmrbc(adapter->pdev, mmrbc);
4765 }
4766
4767 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4768 {
4769         outl(value, port);
4770 }
4771
4772 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4773 {
4774         u16 vid;
4775
4776         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4777                 return true;
4778         return false;
4779 }
4780
4781 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4782                               netdev_features_t features)
4783 {
4784         struct e1000_hw *hw = &adapter->hw;
4785         u32 ctrl;
4786
4787         ctrl = er32(CTRL);
4788         if (features & NETIF_F_HW_VLAN_RX) {
4789                 /* enable VLAN tag insert/strip */
4790                 ctrl |= E1000_CTRL_VME;
4791         } else {
4792                 /* disable VLAN tag insert/strip */
4793                 ctrl &= ~E1000_CTRL_VME;
4794         }
4795         ew32(CTRL, ctrl);
4796 }
4797 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4798                                      bool filter_on)
4799 {
4800         struct e1000_hw *hw = &adapter->hw;
4801         u32 rctl;
4802
4803         if (!test_bit(__E1000_DOWN, &adapter->flags))
4804                 e1000_irq_disable(adapter);
4805
4806         __e1000_vlan_mode(adapter, adapter->netdev->features);
4807         if (filter_on) {
4808                 /* enable VLAN receive filtering */
4809                 rctl = er32(RCTL);
4810                 rctl &= ~E1000_RCTL_CFIEN;
4811                 if (!(adapter->netdev->flags & IFF_PROMISC))
4812                         rctl |= E1000_RCTL_VFE;
4813                 ew32(RCTL, rctl);
4814                 e1000_update_mng_vlan(adapter);
4815         } else {
4816                 /* disable VLAN receive filtering */
4817                 rctl = er32(RCTL);
4818                 rctl &= ~E1000_RCTL_VFE;
4819                 ew32(RCTL, rctl);
4820         }
4821
4822         if (!test_bit(__E1000_DOWN, &adapter->flags))
4823                 e1000_irq_enable(adapter);
4824 }
4825
4826 static void e1000_vlan_mode(struct net_device *netdev,
4827                             netdev_features_t features)
4828 {
4829         struct e1000_adapter *adapter = netdev_priv(netdev);
4830
4831         if (!test_bit(__E1000_DOWN, &adapter->flags))
4832                 e1000_irq_disable(adapter);
4833
4834         __e1000_vlan_mode(adapter, features);
4835
4836         if (!test_bit(__E1000_DOWN, &adapter->flags))
4837                 e1000_irq_enable(adapter);
4838 }
4839
4840 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4841 {
4842         struct e1000_adapter *adapter = netdev_priv(netdev);
4843         struct e1000_hw *hw = &adapter->hw;
4844         u32 vfta, index;
4845
4846         if ((hw->mng_cookie.status &
4847              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4848             (vid == adapter->mng_vlan_id))
4849                 return 0;
4850
4851         if (!e1000_vlan_used(adapter))
4852                 e1000_vlan_filter_on_off(adapter, true);
4853
4854         /* add VID to filter table */
4855         index = (vid >> 5) & 0x7F;
4856         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4857         vfta |= (1 << (vid & 0x1F));
4858         e1000_write_vfta(hw, index, vfta);
4859
4860         set_bit(vid, adapter->active_vlans);
4861
4862         return 0;
4863 }
4864
4865 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4866 {
4867         struct e1000_adapter *adapter = netdev_priv(netdev);
4868         struct e1000_hw *hw = &adapter->hw;
4869         u32 vfta, index;
4870
4871         if (!test_bit(__E1000_DOWN, &adapter->flags))
4872                 e1000_irq_disable(adapter);
4873         if (!test_bit(__E1000_DOWN, &adapter->flags))
4874                 e1000_irq_enable(adapter);
4875
4876         /* remove VID from filter table */
4877         index = (vid >> 5) & 0x7F;
4878         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4879         vfta &= ~(1 << (vid & 0x1F));
4880         e1000_write_vfta(hw, index, vfta);
4881
4882         clear_bit(vid, adapter->active_vlans);
4883
4884         if (!e1000_vlan_used(adapter))
4885                 e1000_vlan_filter_on_off(adapter, false);
4886
4887         return 0;
4888 }
4889
4890 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4891 {
4892         u16 vid;
4893
4894         if (!e1000_vlan_used(adapter))
4895                 return;
4896
4897         e1000_vlan_filter_on_off(adapter, true);
4898         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4899                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4900 }
4901
4902 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4903 {
4904         struct e1000_hw *hw = &adapter->hw;
4905
4906         hw->autoneg = 0;
4907
4908         /* Make sure dplx is at most 1 bit and lsb of speed is not set
4909          * for the switch() below to work
4910          */
4911         if ((spd & 1) || (dplx & ~1))
4912                 goto err_inval;
4913
4914         /* Fiber NICs only allow 1000 gbps Full duplex */
4915         if ((hw->media_type == e1000_media_type_fiber) &&
4916             spd != SPEED_1000 &&
4917             dplx != DUPLEX_FULL)
4918                 goto err_inval;
4919
4920         switch (spd + dplx) {
4921         case SPEED_10 + DUPLEX_HALF:
4922                 hw->forced_speed_duplex = e1000_10_half;
4923                 break;
4924         case SPEED_10 + DUPLEX_FULL:
4925                 hw->forced_speed_duplex = e1000_10_full;
4926                 break;
4927         case SPEED_100 + DUPLEX_HALF:
4928                 hw->forced_speed_duplex = e1000_100_half;
4929                 break;
4930         case SPEED_100 + DUPLEX_FULL:
4931                 hw->forced_speed_duplex = e1000_100_full;
4932                 break;
4933         case SPEED_1000 + DUPLEX_FULL:
4934                 hw->autoneg = 1;
4935                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4936                 break;
4937         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4938         default:
4939                 goto err_inval;
4940         }
4941
4942         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4943         hw->mdix = AUTO_ALL_MODES;
4944
4945         return 0;
4946
4947 err_inval:
4948         e_err(probe, "Unsupported Speed/Duplex configuration\n");
4949         return -EINVAL;
4950 }
4951
4952 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4953 {
4954         struct net_device *netdev = pci_get_drvdata(pdev);
4955         struct e1000_adapter *adapter = netdev_priv(netdev);
4956         struct e1000_hw *hw = &adapter->hw;
4957         u32 ctrl, ctrl_ext, rctl, status;
4958         u32 wufc = adapter->wol;
4959 #ifdef CONFIG_PM
4960         int retval = 0;
4961 #endif
4962
4963         netif_device_detach(netdev);
4964
4965         if (netif_running(netdev)) {
4966                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4967                 e1000_down(adapter);
4968         }
4969
4970 #ifdef CONFIG_PM
4971         retval = pci_save_state(pdev);
4972         if (retval)
4973                 return retval;
4974 #endif
4975
4976         status = er32(STATUS);
4977         if (status & E1000_STATUS_LU)
4978                 wufc &= ~E1000_WUFC_LNKC;
4979
4980         if (wufc) {
4981                 e1000_setup_rctl(adapter);
4982                 e1000_set_rx_mode(netdev);
4983
4984                 rctl = er32(RCTL);
4985
4986                 /* turn on all-multi mode if wake on multicast is enabled */
4987                 if (wufc & E1000_WUFC_MC)
4988                         rctl |= E1000_RCTL_MPE;
4989
4990                 /* enable receives in the hardware */
4991                 ew32(RCTL, rctl | E1000_RCTL_EN);
4992
4993                 if (hw->mac_type >= e1000_82540) {
4994                         ctrl = er32(CTRL);
4995                         /* advertise wake from D3Cold */
4996                         #define E1000_CTRL_ADVD3WUC 0x00100000
4997                         /* phy power management enable */
4998                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4999                         ctrl |= E1000_CTRL_ADVD3WUC |
5000                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5001                         ew32(CTRL, ctrl);
5002                 }
5003
5004                 if (hw->media_type == e1000_media_type_fiber ||
5005                     hw->media_type == e1000_media_type_internal_serdes) {
5006                         /* keep the laser running in D3 */
5007                         ctrl_ext = er32(CTRL_EXT);
5008                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5009                         ew32(CTRL_EXT, ctrl_ext);
5010                 }
5011
5012                 ew32(WUC, E1000_WUC_PME_EN);
5013                 ew32(WUFC, wufc);
5014         } else {
5015                 ew32(WUC, 0);
5016                 ew32(WUFC, 0);
5017         }
5018
5019         e1000_release_manageability(adapter);
5020
5021         *enable_wake = !!wufc;
5022
5023         /* make sure adapter isn't asleep if manageability is enabled */
5024         if (adapter->en_mng_pt)
5025                 *enable_wake = true;
5026
5027         if (netif_running(netdev))
5028                 e1000_free_irq(adapter);
5029
5030         pci_disable_device(pdev);
5031
5032         return 0;
5033 }
5034
5035 #ifdef CONFIG_PM
5036 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5037 {
5038         int retval;
5039         bool wake;
5040
5041         retval = __e1000_shutdown(pdev, &wake);
5042         if (retval)
5043                 return retval;
5044
5045         if (wake) {
5046                 pci_prepare_to_sleep(pdev);
5047         } else {
5048                 pci_wake_from_d3(pdev, false);
5049                 pci_set_power_state(pdev, PCI_D3hot);
5050         }
5051
5052         return 0;
5053 }
5054
5055 static int e1000_resume(struct pci_dev *pdev)
5056 {
5057         struct net_device *netdev = pci_get_drvdata(pdev);
5058         struct e1000_adapter *adapter = netdev_priv(netdev);
5059         struct e1000_hw *hw = &adapter->hw;
5060         u32 err;
5061
5062         pci_set_power_state(pdev, PCI_D0);
5063         pci_restore_state(pdev);
5064         pci_save_state(pdev);
5065
5066         if (adapter->need_ioport)
5067                 err = pci_enable_device(pdev);
5068         else
5069                 err = pci_enable_device_mem(pdev);
5070         if (err) {
5071                 pr_err("Cannot enable PCI device from suspend\n");
5072                 return err;
5073         }
5074         pci_set_master(pdev);
5075
5076         pci_enable_wake(pdev, PCI_D3hot, 0);
5077         pci_enable_wake(pdev, PCI_D3cold, 0);
5078
5079         if (netif_running(netdev)) {
5080                 err = e1000_request_irq(adapter);
5081                 if (err)
5082                         return err;
5083         }
5084
5085         e1000_power_up_phy(adapter);
5086         e1000_reset(adapter);
5087         ew32(WUS, ~0);
5088
5089         e1000_init_manageability(adapter);
5090
5091         if (netif_running(netdev))
5092                 e1000_up(adapter);
5093
5094         netif_device_attach(netdev);
5095
5096         return 0;
5097 }
5098 #endif
5099
5100 static void e1000_shutdown(struct pci_dev *pdev)
5101 {
5102         bool wake;
5103
5104         __e1000_shutdown(pdev, &wake);
5105
5106         if (system_state == SYSTEM_POWER_OFF) {
5107                 pci_wake_from_d3(pdev, wake);
5108                 pci_set_power_state(pdev, PCI_D3hot);
5109         }
5110 }
5111
5112 #ifdef CONFIG_NET_POLL_CONTROLLER
5113 /* Polling 'interrupt' - used by things like netconsole to send skbs
5114  * without having to re-enable interrupts. It's not called while
5115  * the interrupt routine is executing.
5116  */
5117 static void e1000_netpoll(struct net_device *netdev)
5118 {
5119         struct e1000_adapter *adapter = netdev_priv(netdev);
5120
5121         disable_irq(adapter->pdev->irq);
5122         e1000_intr(adapter->pdev->irq, netdev);
5123         enable_irq(adapter->pdev->irq);
5124 }
5125 #endif
5126
5127 /**
5128  * e1000_io_error_detected - called when PCI error is detected
5129  * @pdev: Pointer to PCI device
5130  * @state: The current pci connection state
5131  *
5132  * This function is called after a PCI bus error affecting
5133  * this device has been detected.
5134  */
5135 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5136                                                 pci_channel_state_t state)
5137 {
5138         struct net_device *netdev = pci_get_drvdata(pdev);
5139         struct e1000_adapter *adapter = netdev_priv(netdev);
5140
5141         netif_device_detach(netdev);
5142
5143         if (state == pci_channel_io_perm_failure)
5144                 return PCI_ERS_RESULT_DISCONNECT;
5145
5146         if (netif_running(netdev))
5147                 e1000_down(adapter);
5148         pci_disable_device(pdev);
5149
5150         /* Request a slot slot reset. */
5151         return PCI_ERS_RESULT_NEED_RESET;
5152 }
5153
5154 /**
5155  * e1000_io_slot_reset - called after the pci bus has been reset.
5156  * @pdev: Pointer to PCI device
5157  *
5158  * Restart the card from scratch, as if from a cold-boot. Implementation
5159  * resembles the first-half of the e1000_resume routine.
5160  */
5161 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5162 {
5163         struct net_device *netdev = pci_get_drvdata(pdev);
5164         struct e1000_adapter *adapter = netdev_priv(netdev);
5165         struct e1000_hw *hw = &adapter->hw;
5166         int err;
5167
5168         if (adapter->need_ioport)
5169                 err = pci_enable_device(pdev);
5170         else
5171                 err = pci_enable_device_mem(pdev);
5172         if (err) {
5173                 pr_err("Cannot re-enable PCI device after reset.\n");
5174                 return PCI_ERS_RESULT_DISCONNECT;
5175         }
5176         pci_set_master(pdev);
5177
5178         pci_enable_wake(pdev, PCI_D3hot, 0);
5179         pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181         e1000_reset(adapter);
5182         ew32(WUS, ~0);
5183
5184         return PCI_ERS_RESULT_RECOVERED;
5185 }
5186
5187 /**
5188  * e1000_io_resume - called when traffic can start flowing again.
5189  * @pdev: Pointer to PCI device
5190  *
5191  * This callback is called when the error recovery driver tells us that
5192  * its OK to resume normal operation. Implementation resembles the
5193  * second-half of the e1000_resume routine.
5194  */
5195 static void e1000_io_resume(struct pci_dev *pdev)
5196 {
5197         struct net_device *netdev = pci_get_drvdata(pdev);
5198         struct e1000_adapter *adapter = netdev_priv(netdev);
5199
5200         e1000_init_manageability(adapter);
5201
5202         if (netif_running(netdev)) {
5203                 if (e1000_up(adapter)) {
5204                         pr_info("can't bring device back up after reset\n");
5205                         return;
5206                 }
5207         }
5208
5209         netif_device_attach(netdev);
5210 }
5211
5212 /* e1000_main.c */