e1000e: cleanup PARENTHESIS_ALIGNMENT checkpatch checks
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / e1000e / 80003es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
30  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
31  */
32
33 #include "e1000.h"
34
35 /* A table for the GG82563 cable length where the range is defined
36  * with a lower bound at "index" and the upper bound at
37  * "index + 5".
38  */
39 static const u16 e1000_gg82563_cable_length_table[] = {
40          0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
41 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
42                 ARRAY_SIZE(e1000_gg82563_cable_length_table)
43
44 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
45 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
46 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
47 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
48 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
49 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
50 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
51 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
52                                            u16 *data);
53 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
54                                             u16 data);
55 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
56
57 /**
58  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
59  *  @hw: pointer to the HW structure
60  **/
61 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
62 {
63         struct e1000_phy_info *phy = &hw->phy;
64         s32 ret_val;
65
66         if (hw->phy.media_type != e1000_media_type_copper) {
67                 phy->type       = e1000_phy_none;
68                 return 0;
69         } else {
70                 phy->ops.power_up = e1000_power_up_phy_copper;
71                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
72         }
73
74         phy->addr               = 1;
75         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
76         phy->reset_delay_us      = 100;
77         phy->type               = e1000_phy_gg82563;
78
79         /* This can only be done after all function pointers are setup. */
80         ret_val = e1000e_get_phy_id(hw);
81
82         /* Verify phy id */
83         if (phy->id != GG82563_E_PHY_ID)
84                 return -E1000_ERR_PHY;
85
86         return ret_val;
87 }
88
89 /**
90  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
91  *  @hw: pointer to the HW structure
92  **/
93 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
94 {
95         struct e1000_nvm_info *nvm = &hw->nvm;
96         u32 eecd = er32(EECD);
97         u16 size;
98
99         nvm->opcode_bits        = 8;
100         nvm->delay_usec  = 1;
101         switch (nvm->override) {
102         case e1000_nvm_override_spi_large:
103                 nvm->page_size    = 32;
104                 nvm->address_bits = 16;
105                 break;
106         case e1000_nvm_override_spi_small:
107                 nvm->page_size    = 8;
108                 nvm->address_bits = 8;
109                 break;
110         default:
111                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
112                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
113                 break;
114         }
115
116         nvm->type = e1000_nvm_eeprom_spi;
117
118         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
119                      E1000_EECD_SIZE_EX_SHIFT);
120
121         /* Added to a constant, "size" becomes the left-shift value
122          * for setting word_size.
123          */
124         size += NVM_WORD_SIZE_BASE_SHIFT;
125
126         /* EEPROM access above 16k is unsupported */
127         if (size > 14)
128                 size = 14;
129         nvm->word_size  = 1 << size;
130
131         return 0;
132 }
133
134 /**
135  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
136  *  @hw: pointer to the HW structure
137  **/
138 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
139 {
140         struct e1000_mac_info *mac = &hw->mac;
141
142         /* Set media type and media-dependent function pointers */
143         switch (hw->adapter->pdev->device) {
144         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
145                 hw->phy.media_type = e1000_media_type_internal_serdes;
146                 mac->ops.check_for_link = e1000e_check_for_serdes_link;
147                 mac->ops.setup_physical_interface =
148                     e1000e_setup_fiber_serdes_link;
149                 break;
150         default:
151                 hw->phy.media_type = e1000_media_type_copper;
152                 mac->ops.check_for_link = e1000e_check_for_copper_link;
153                 mac->ops.setup_physical_interface =
154                     e1000_setup_copper_link_80003es2lan;
155                 break;
156         }
157
158         /* Set mta register count */
159         mac->mta_reg_count = 128;
160         /* Set rar entry count */
161         mac->rar_entry_count = E1000_RAR_ENTRIES;
162         /* FWSM register */
163         mac->has_fwsm = true;
164         /* ARC supported; valid only if manageability features are enabled. */
165         mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
166         /* Adaptive IFS not supported */
167         mac->adaptive_ifs = false;
168
169         /* set lan id for port to determine which phy lock to use */
170         hw->mac.ops.set_lan_id(hw);
171
172         return 0;
173 }
174
175 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
176 {
177         struct e1000_hw *hw = &adapter->hw;
178         s32 rc;
179
180         rc = e1000_init_mac_params_80003es2lan(hw);
181         if (rc)
182                 return rc;
183
184         rc = e1000_init_nvm_params_80003es2lan(hw);
185         if (rc)
186                 return rc;
187
188         rc = e1000_init_phy_params_80003es2lan(hw);
189         if (rc)
190                 return rc;
191
192         return 0;
193 }
194
195 /**
196  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
197  *  @hw: pointer to the HW structure
198  *
199  *  A wrapper to acquire access rights to the correct PHY.
200  **/
201 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
202 {
203         u16 mask;
204
205         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
206         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
207 }
208
209 /**
210  *  e1000_release_phy_80003es2lan - Release rights to access PHY
211  *  @hw: pointer to the HW structure
212  *
213  *  A wrapper to release access rights to the correct PHY.
214  **/
215 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
216 {
217         u16 mask;
218
219         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
220         e1000_release_swfw_sync_80003es2lan(hw, mask);
221 }
222
223 /**
224  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
225  *  @hw: pointer to the HW structure
226  *
227  *  Acquire the semaphore to access the Kumeran interface.
228  *
229  **/
230 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
231 {
232         u16 mask;
233
234         mask = E1000_SWFW_CSR_SM;
235
236         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
237 }
238
239 /**
240  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
241  *  @hw: pointer to the HW structure
242  *
243  *  Release the semaphore used to access the Kumeran interface
244  **/
245 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
246 {
247         u16 mask;
248
249         mask = E1000_SWFW_CSR_SM;
250
251         e1000_release_swfw_sync_80003es2lan(hw, mask);
252 }
253
254 /**
255  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
256  *  @hw: pointer to the HW structure
257  *
258  *  Acquire the semaphore to access the EEPROM.
259  **/
260 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
261 {
262         s32 ret_val;
263
264         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
265         if (ret_val)
266                 return ret_val;
267
268         ret_val = e1000e_acquire_nvm(hw);
269
270         if (ret_val)
271                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
272
273         return ret_val;
274 }
275
276 /**
277  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
278  *  @hw: pointer to the HW structure
279  *
280  *  Release the semaphore used to access the EEPROM.
281  **/
282 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
283 {
284         e1000e_release_nvm(hw);
285         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
286 }
287
288 /**
289  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
290  *  @hw: pointer to the HW structure
291  *  @mask: specifies which semaphore to acquire
292  *
293  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
294  *  will also specify which port we're acquiring the lock for.
295  **/
296 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
297 {
298         u32 swfw_sync;
299         u32 swmask = mask;
300         u32 fwmask = mask << 16;
301         s32 i = 0;
302         s32 timeout = 50;
303
304         while (i < timeout) {
305                 if (e1000e_get_hw_semaphore(hw))
306                         return -E1000_ERR_SWFW_SYNC;
307
308                 swfw_sync = er32(SW_FW_SYNC);
309                 if (!(swfw_sync & (fwmask | swmask)))
310                         break;
311
312                 /* Firmware currently using resource (fwmask)
313                  * or other software thread using resource (swmask)
314                  */
315                 e1000e_put_hw_semaphore(hw);
316                 mdelay(5);
317                 i++;
318         }
319
320         if (i == timeout) {
321                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
322                 return -E1000_ERR_SWFW_SYNC;
323         }
324
325         swfw_sync |= swmask;
326         ew32(SW_FW_SYNC, swfw_sync);
327
328         e1000e_put_hw_semaphore(hw);
329
330         return 0;
331 }
332
333 /**
334  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
335  *  @hw: pointer to the HW structure
336  *  @mask: specifies which semaphore to acquire
337  *
338  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
339  *  will also specify which port we're releasing the lock for.
340  **/
341 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
342 {
343         u32 swfw_sync;
344
345         while (e1000e_get_hw_semaphore(hw) != 0)
346                 ; /* Empty */
347
348         swfw_sync = er32(SW_FW_SYNC);
349         swfw_sync &= ~mask;
350         ew32(SW_FW_SYNC, swfw_sync);
351
352         e1000e_put_hw_semaphore(hw);
353 }
354
355 /**
356  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
357  *  @hw: pointer to the HW structure
358  *  @offset: offset of the register to read
359  *  @data: pointer to the data returned from the operation
360  *
361  *  Read the GG82563 PHY register.
362  **/
363 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
364                                                   u32 offset, u16 *data)
365 {
366         s32 ret_val;
367         u32 page_select;
368         u16 temp;
369
370         ret_val = e1000_acquire_phy_80003es2lan(hw);
371         if (ret_val)
372                 return ret_val;
373
374         /* Select Configuration Page */
375         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
376                 page_select = GG82563_PHY_PAGE_SELECT;
377         } else {
378                 /* Use Alternative Page Select register to access
379                  * registers 30 and 31
380                  */
381                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
382         }
383
384         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
385         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
386         if (ret_val) {
387                 e1000_release_phy_80003es2lan(hw);
388                 return ret_val;
389         }
390
391         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
392                 /* The "ready" bit in the MDIC register may be incorrectly set
393                  * before the device has completed the "Page Select" MDI
394                  * transaction.  So we wait 200us after each MDI command...
395                  */
396                 udelay(200);
397
398                 /* ...and verify the command was successful. */
399                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
400
401                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
402                         e1000_release_phy_80003es2lan(hw);
403                         return -E1000_ERR_PHY;
404                 }
405
406                 udelay(200);
407
408                 ret_val = e1000e_read_phy_reg_mdic(hw,
409                                                    MAX_PHY_REG_ADDRESS & offset,
410                                                    data);
411
412                 udelay(200);
413         } else {
414                 ret_val = e1000e_read_phy_reg_mdic(hw,
415                                                    MAX_PHY_REG_ADDRESS & offset,
416                                                    data);
417         }
418
419         e1000_release_phy_80003es2lan(hw);
420
421         return ret_val;
422 }
423
424 /**
425  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
426  *  @hw: pointer to the HW structure
427  *  @offset: offset of the register to read
428  *  @data: value to write to the register
429  *
430  *  Write to the GG82563 PHY register.
431  **/
432 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
433                                                    u32 offset, u16 data)
434 {
435         s32 ret_val;
436         u32 page_select;
437         u16 temp;
438
439         ret_val = e1000_acquire_phy_80003es2lan(hw);
440         if (ret_val)
441                 return ret_val;
442
443         /* Select Configuration Page */
444         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
445                 page_select = GG82563_PHY_PAGE_SELECT;
446         } else {
447                 /* Use Alternative Page Select register to access
448                  * registers 30 and 31
449                  */
450                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
451         }
452
453         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
454         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
455         if (ret_val) {
456                 e1000_release_phy_80003es2lan(hw);
457                 return ret_val;
458         }
459
460         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
461                 /* The "ready" bit in the MDIC register may be incorrectly set
462                  * before the device has completed the "Page Select" MDI
463                  * transaction.  So we wait 200us after each MDI command...
464                  */
465                 udelay(200);
466
467                 /* ...and verify the command was successful. */
468                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
469
470                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
471                         e1000_release_phy_80003es2lan(hw);
472                         return -E1000_ERR_PHY;
473                 }
474
475                 udelay(200);
476
477                 ret_val = e1000e_write_phy_reg_mdic(hw,
478                                                     MAX_PHY_REG_ADDRESS &
479                                                     offset, data);
480
481                 udelay(200);
482         } else {
483                 ret_val = e1000e_write_phy_reg_mdic(hw,
484                                                     MAX_PHY_REG_ADDRESS &
485                                                     offset, data);
486         }
487
488         e1000_release_phy_80003es2lan(hw);
489
490         return ret_val;
491 }
492
493 /**
494  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
495  *  @hw: pointer to the HW structure
496  *  @offset: offset of the register to read
497  *  @words: number of words to write
498  *  @data: buffer of data to write to the NVM
499  *
500  *  Write "words" of data to the ESB2 NVM.
501  **/
502 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
503                                        u16 words, u16 *data)
504 {
505         return e1000e_write_nvm_spi(hw, offset, words, data);
506 }
507
508 /**
509  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
510  *  @hw: pointer to the HW structure
511  *
512  *  Wait a specific amount of time for manageability processes to complete.
513  *  This is a function pointer entry point called by the phy module.
514  **/
515 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
516 {
517         s32 timeout = PHY_CFG_TIMEOUT;
518         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
519
520         if (hw->bus.func == 1)
521                 mask = E1000_NVM_CFG_DONE_PORT_1;
522
523         while (timeout) {
524                 if (er32(EEMNGCTL) & mask)
525                         break;
526                 usleep_range(1000, 2000);
527                 timeout--;
528         }
529         if (!timeout) {
530                 e_dbg("MNG configuration cycle has not completed.\n");
531                 return -E1000_ERR_RESET;
532         }
533
534         return 0;
535 }
536
537 /**
538  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
539  *  @hw: pointer to the HW structure
540  *
541  *  Force the speed and duplex settings onto the PHY.  This is a
542  *  function pointer entry point called by the phy module.
543  **/
544 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
545 {
546         s32 ret_val;
547         u16 phy_data;
548         bool link;
549
550         /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
551          * forced whenever speed and duplex are forced.
552          */
553         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
554         if (ret_val)
555                 return ret_val;
556
557         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
558         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
559         if (ret_val)
560                 return ret_val;
561
562         e_dbg("GG82563 PSCR: %X\n", phy_data);
563
564         ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
565         if (ret_val)
566                 return ret_val;
567
568         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
569
570         /* Reset the phy to commit changes. */
571         phy_data |= BMCR_RESET;
572
573         ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
574         if (ret_val)
575                 return ret_val;
576
577         udelay(1);
578
579         if (hw->phy.autoneg_wait_to_complete) {
580                 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
581
582                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
583                                                       100000, &link);
584                 if (ret_val)
585                         return ret_val;
586
587                 if (!link) {
588                         /* We didn't get link.
589                          * Reset the DSP and cross our fingers.
590                          */
591                         ret_val = e1000e_phy_reset_dsp(hw);
592                         if (ret_val)
593                                 return ret_val;
594                 }
595
596                 /* Try once more */
597                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
598                                                       100000, &link);
599                 if (ret_val)
600                         return ret_val;
601         }
602
603         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
604         if (ret_val)
605                 return ret_val;
606
607         /* Resetting the phy means we need to verify the TX_CLK corresponds
608          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
609          */
610         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
611         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
612                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
613         else
614                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
615
616         /* In addition, we must re-enable CRS on Tx for both half and full
617          * duplex.
618          */
619         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
620         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
621
622         return ret_val;
623 }
624
625 /**
626  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
627  *  @hw: pointer to the HW structure
628  *
629  *  Find the approximate cable length as measured by the GG82563 PHY.
630  *  This is a function pointer entry point called by the phy module.
631  **/
632 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
633 {
634         struct e1000_phy_info *phy = &hw->phy;
635         s32 ret_val;
636         u16 phy_data, index;
637
638         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
639         if (ret_val)
640                 return ret_val;
641
642         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
643
644         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
645                 return -E1000_ERR_PHY;
646
647         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
648         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
649
650         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
651
652         return 0;
653 }
654
655 /**
656  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
657  *  @hw: pointer to the HW structure
658  *  @speed: pointer to speed buffer
659  *  @duplex: pointer to duplex buffer
660  *
661  *  Retrieve the current speed and duplex configuration.
662  **/
663 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
664                                               u16 *duplex)
665 {
666         s32 ret_val;
667
668         if (hw->phy.media_type == e1000_media_type_copper) {
669                 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
670                 hw->phy.ops.cfg_on_link_up(hw);
671         } else {
672                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
673                                                                    speed,
674                                                                    duplex);
675         }
676
677         return ret_val;
678 }
679
680 /**
681  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
682  *  @hw: pointer to the HW structure
683  *
684  *  Perform a global reset to the ESB2 controller.
685  **/
686 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
687 {
688         u32 ctrl;
689         s32 ret_val;
690         u16 kum_reg_data;
691
692         /* Prevent the PCI-E bus from sticking if there is no TLP connection
693          * on the last TLP read/write transaction when MAC is reset.
694          */
695         ret_val = e1000e_disable_pcie_master(hw);
696         if (ret_val)
697                 e_dbg("PCI-E Master disable polling has failed.\n");
698
699         e_dbg("Masking off all interrupts\n");
700         ew32(IMC, 0xffffffff);
701
702         ew32(RCTL, 0);
703         ew32(TCTL, E1000_TCTL_PSP);
704         e1e_flush();
705
706         usleep_range(10000, 20000);
707
708         ctrl = er32(CTRL);
709
710         ret_val = e1000_acquire_phy_80003es2lan(hw);
711         if (ret_val)
712                 return ret_val;
713
714         e_dbg("Issuing a global reset to MAC\n");
715         ew32(CTRL, ctrl | E1000_CTRL_RST);
716         e1000_release_phy_80003es2lan(hw);
717
718         /* Disable IBIST slave mode (far-end loopback) */
719         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
720                                         &kum_reg_data);
721         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
722         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
723                                          kum_reg_data);
724
725         ret_val = e1000e_get_auto_rd_done(hw);
726         if (ret_val)
727                 /* We don't want to continue accessing MAC registers. */
728                 return ret_val;
729
730         /* Clear any pending interrupt events. */
731         ew32(IMC, 0xffffffff);
732         er32(ICR);
733
734         return e1000_check_alt_mac_addr_generic(hw);
735 }
736
737 /**
738  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
739  *  @hw: pointer to the HW structure
740  *
741  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
742  **/
743 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
744 {
745         struct e1000_mac_info *mac = &hw->mac;
746         u32 reg_data;
747         s32 ret_val;
748         u16 kum_reg_data;
749         u16 i;
750
751         e1000_initialize_hw_bits_80003es2lan(hw);
752
753         /* Initialize identification LED */
754         ret_val = mac->ops.id_led_init(hw);
755         if (ret_val)
756                 e_dbg("Error initializing identification LED\n");
757                 /* This is not fatal and we should not stop init due to this */
758
759         /* Disabling VLAN filtering */
760         e_dbg("Initializing the IEEE VLAN\n");
761         mac->ops.clear_vfta(hw);
762
763         /* Setup the receive address. */
764         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
765
766         /* Zero out the Multicast HASH table */
767         e_dbg("Zeroing the MTA\n");
768         for (i = 0; i < mac->mta_reg_count; i++)
769                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
770
771         /* Setup link and flow control */
772         ret_val = mac->ops.setup_link(hw);
773         if (ret_val)
774                 return ret_val;
775
776         /* Disable IBIST slave mode (far-end loopback) */
777         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
778                                         &kum_reg_data);
779         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
780         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
781                                          kum_reg_data);
782
783         /* Set the transmit descriptor write-back policy */
784         reg_data = er32(TXDCTL(0));
785         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
786                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
787         ew32(TXDCTL(0), reg_data);
788
789         /* ...for both queues. */
790         reg_data = er32(TXDCTL(1));
791         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
792                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
793         ew32(TXDCTL(1), reg_data);
794
795         /* Enable retransmit on late collisions */
796         reg_data = er32(TCTL);
797         reg_data |= E1000_TCTL_RTLC;
798         ew32(TCTL, reg_data);
799
800         /* Configure Gigabit Carry Extend Padding */
801         reg_data = er32(TCTL_EXT);
802         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
803         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
804         ew32(TCTL_EXT, reg_data);
805
806         /* Configure Transmit Inter-Packet Gap */
807         reg_data = er32(TIPG);
808         reg_data &= ~E1000_TIPG_IPGT_MASK;
809         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
810         ew32(TIPG, reg_data);
811
812         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
813         reg_data &= ~0x00100000;
814         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
815
816         /* default to true to enable the MDIC W/A */
817         hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
818
819         ret_val =
820             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
821                                             E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
822         if (!ret_val) {
823                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
824                     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
825                         hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
826         }
827
828         /* Clear all of the statistics registers (clear on read).  It is
829          * important that we do this after we have tried to establish link
830          * because the symbol error count will increment wildly if there
831          * is no link.
832          */
833         e1000_clear_hw_cntrs_80003es2lan(hw);
834
835         return ret_val;
836 }
837
838 /**
839  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
840  *  @hw: pointer to the HW structure
841  *
842  *  Initializes required hardware-dependent bits needed for normal operation.
843  **/
844 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
845 {
846         u32 reg;
847
848         /* Transmit Descriptor Control 0 */
849         reg = er32(TXDCTL(0));
850         reg |= (1 << 22);
851         ew32(TXDCTL(0), reg);
852
853         /* Transmit Descriptor Control 1 */
854         reg = er32(TXDCTL(1));
855         reg |= (1 << 22);
856         ew32(TXDCTL(1), reg);
857
858         /* Transmit Arbitration Control 0 */
859         reg = er32(TARC(0));
860         reg &= ~(0xF << 27); /* 30:27 */
861         if (hw->phy.media_type != e1000_media_type_copper)
862                 reg &= ~(1 << 20);
863         ew32(TARC(0), reg);
864
865         /* Transmit Arbitration Control 1 */
866         reg = er32(TARC(1));
867         if (er32(TCTL) & E1000_TCTL_MULR)
868                 reg &= ~(1 << 28);
869         else
870                 reg |= (1 << 28);
871         ew32(TARC(1), reg);
872
873         /* Disable IPv6 extension header parsing because some malformed
874          * IPv6 headers can hang the Rx.
875          */
876         reg = er32(RFCTL);
877         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
878         ew32(RFCTL, reg);
879 }
880
881 /**
882  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
883  *  @hw: pointer to the HW structure
884  *
885  *  Setup some GG82563 PHY registers for obtaining link
886  **/
887 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
888 {
889         struct e1000_phy_info *phy = &hw->phy;
890         s32 ret_val;
891         u32 reg;
892         u16 data;
893
894         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
895         if (ret_val)
896                 return ret_val;
897
898         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
899         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
900         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
901
902         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
903         if (ret_val)
904                 return ret_val;
905
906         /* Options:
907          *   MDI/MDI-X = 0 (default)
908          *   0 - Auto for all speeds
909          *   1 - MDI mode
910          *   2 - MDI-X mode
911          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
912          */
913         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
914         if (ret_val)
915                 return ret_val;
916
917         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
918
919         switch (phy->mdix) {
920         case 1:
921                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
922                 break;
923         case 2:
924                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
925                 break;
926         case 0:
927         default:
928                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
929                 break;
930         }
931
932         /* Options:
933          *   disable_polarity_correction = 0 (default)
934          *       Automatic Correction for Reversed Cable Polarity
935          *   0 - Disabled
936          *   1 - Enabled
937          */
938         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
939         if (phy->disable_polarity_correction)
940                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
941
942         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
943         if (ret_val)
944                 return ret_val;
945
946         /* SW Reset the PHY so all changes take effect */
947         ret_val = hw->phy.ops.commit(hw);
948         if (ret_val) {
949                 e_dbg("Error Resetting the PHY\n");
950                 return ret_val;
951         }
952
953         /* Bypass Rx and Tx FIFO's */
954         reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
955         data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
956                 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
957         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
958         if (ret_val)
959                 return ret_val;
960
961         reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
962         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
963         if (ret_val)
964                 return ret_val;
965         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
966         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
967         if (ret_val)
968                 return ret_val;
969
970         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
971         if (ret_val)
972                 return ret_val;
973
974         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
975         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
976         if (ret_val)
977                 return ret_val;
978
979         reg = er32(CTRL_EXT);
980         reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
981         ew32(CTRL_EXT, reg);
982
983         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
984         if (ret_val)
985                 return ret_val;
986
987         /* Do not init these registers when the HW is in IAMT mode, since the
988          * firmware will have already initialized them.  We only initialize
989          * them if the HW is not in IAMT mode.
990          */
991         if (!hw->mac.ops.check_mng_mode(hw)) {
992                 /* Enable Electrical Idle on the PHY */
993                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
994                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
995                 if (ret_val)
996                         return ret_val;
997
998                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
999                 if (ret_val)
1000                         return ret_val;
1001
1002                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1003                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1004                 if (ret_val)
1005                         return ret_val;
1006         }
1007
1008         /* Workaround: Disable padding in Kumeran interface in the MAC
1009          * and in the PHY to avoid CRC errors.
1010          */
1011         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1012         if (ret_val)
1013                 return ret_val;
1014
1015         data |= GG82563_ICR_DIS_PADDING;
1016         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1017         if (ret_val)
1018                 return ret_val;
1019
1020         return 0;
1021 }
1022
1023 /**
1024  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1025  *  @hw: pointer to the HW structure
1026  *
1027  *  Essentially a wrapper for setting up all things "copper" related.
1028  *  This is a function pointer entry point called by the mac module.
1029  **/
1030 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1031 {
1032         u32 ctrl;
1033         s32 ret_val;
1034         u16 reg_data;
1035
1036         ctrl = er32(CTRL);
1037         ctrl |= E1000_CTRL_SLU;
1038         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1039         ew32(CTRL, ctrl);
1040
1041         /* Set the mac to wait the maximum time between each
1042          * iteration and increase the max iterations when
1043          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1044          */
1045         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1046                                                    0xFFFF);
1047         if (ret_val)
1048                 return ret_val;
1049         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1050                                                   &reg_data);
1051         if (ret_val)
1052                 return ret_val;
1053         reg_data |= 0x3F;
1054         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1055                                                    reg_data);
1056         if (ret_val)
1057                 return ret_val;
1058         ret_val =
1059             e1000_read_kmrn_reg_80003es2lan(hw,
1060                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061                                             &reg_data);
1062         if (ret_val)
1063                 return ret_val;
1064         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1065         ret_val =
1066             e1000_write_kmrn_reg_80003es2lan(hw,
1067                                              E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1068                                              reg_data);
1069         if (ret_val)
1070                 return ret_val;
1071
1072         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1073         if (ret_val)
1074                 return ret_val;
1075
1076         return e1000e_setup_copper_link(hw);
1077 }
1078
1079 /**
1080  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1081  *  @hw: pointer to the HW structure
1082  *  @duplex: current duplex setting
1083  *
1084  *  Configure the KMRN interface by applying last minute quirks for
1085  *  10/100 operation.
1086  **/
1087 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1088 {
1089         s32 ret_val = 0;
1090         u16 speed;
1091         u16 duplex;
1092
1093         if (hw->phy.media_type == e1000_media_type_copper) {
1094                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1095                                                              &duplex);
1096                 if (ret_val)
1097                         return ret_val;
1098
1099                 if (speed == SPEED_1000)
1100                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1101                 else
1102                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1103         }
1104
1105         return ret_val;
1106 }
1107
1108 /**
1109  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1110  *  @hw: pointer to the HW structure
1111  *  @duplex: current duplex setting
1112  *
1113  *  Configure the KMRN interface by applying last minute quirks for
1114  *  10/100 operation.
1115  **/
1116 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1117 {
1118         s32 ret_val;
1119         u32 tipg;
1120         u32 i = 0;
1121         u16 reg_data, reg_data2;
1122
1123         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1124         ret_val =
1125             e1000_write_kmrn_reg_80003es2lan(hw,
1126                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1127                                              reg_data);
1128         if (ret_val)
1129                 return ret_val;
1130
1131         /* Configure Transmit Inter-Packet Gap */
1132         tipg = er32(TIPG);
1133         tipg &= ~E1000_TIPG_IPGT_MASK;
1134         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1135         ew32(TIPG, tipg);
1136
1137         do {
1138                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1139                 if (ret_val)
1140                         return ret_val;
1141
1142                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1143                 if (ret_val)
1144                         return ret_val;
1145                 i++;
1146         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1147
1148         if (duplex == HALF_DUPLEX)
1149                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1150         else
1151                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1152
1153         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1154 }
1155
1156 /**
1157  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1158  *  @hw: pointer to the HW structure
1159  *
1160  *  Configure the KMRN interface by applying last minute quirks for
1161  *  gigabit operation.
1162  **/
1163 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1164 {
1165         s32 ret_val;
1166         u16 reg_data, reg_data2;
1167         u32 tipg;
1168         u32 i = 0;
1169
1170         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1171         ret_val =
1172             e1000_write_kmrn_reg_80003es2lan(hw,
1173                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1174                                              reg_data);
1175         if (ret_val)
1176                 return ret_val;
1177
1178         /* Configure Transmit Inter-Packet Gap */
1179         tipg = er32(TIPG);
1180         tipg &= ~E1000_TIPG_IPGT_MASK;
1181         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1182         ew32(TIPG, tipg);
1183
1184         do {
1185                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1186                 if (ret_val)
1187                         return ret_val;
1188
1189                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1190                 if (ret_val)
1191                         return ret_val;
1192                 i++;
1193         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1194
1195         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1196
1197         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1198 }
1199
1200 /**
1201  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1202  *  @hw: pointer to the HW structure
1203  *  @offset: register offset to be read
1204  *  @data: pointer to the read data
1205  *
1206  *  Acquire semaphore, then read the PHY register at offset
1207  *  using the kumeran interface.  The information retrieved is stored in data.
1208  *  Release the semaphore before exiting.
1209  **/
1210 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1211                                            u16 *data)
1212 {
1213         u32 kmrnctrlsta;
1214         s32 ret_val;
1215
1216         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1217         if (ret_val)
1218                 return ret_val;
1219
1220         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1221                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1222         ew32(KMRNCTRLSTA, kmrnctrlsta);
1223         e1e_flush();
1224
1225         udelay(2);
1226
1227         kmrnctrlsta = er32(KMRNCTRLSTA);
1228         *data = (u16)kmrnctrlsta;
1229
1230         e1000_release_mac_csr_80003es2lan(hw);
1231
1232         return ret_val;
1233 }
1234
1235 /**
1236  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1237  *  @hw: pointer to the HW structure
1238  *  @offset: register offset to write to
1239  *  @data: data to write at register offset
1240  *
1241  *  Acquire semaphore, then write the data to PHY register
1242  *  at the offset using the kumeran interface.  Release semaphore
1243  *  before exiting.
1244  **/
1245 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1246                                             u16 data)
1247 {
1248         u32 kmrnctrlsta;
1249         s32 ret_val;
1250
1251         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1252         if (ret_val)
1253                 return ret_val;
1254
1255         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1256                        E1000_KMRNCTRLSTA_OFFSET) | data;
1257         ew32(KMRNCTRLSTA, kmrnctrlsta);
1258         e1e_flush();
1259
1260         udelay(2);
1261
1262         e1000_release_mac_csr_80003es2lan(hw);
1263
1264         return ret_val;
1265 }
1266
1267 /**
1268  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1269  *  @hw: pointer to the HW structure
1270  **/
1271 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1272 {
1273         s32 ret_val;
1274
1275         /* If there's an alternate MAC address place it in RAR0
1276          * so that it will override the Si installed default perm
1277          * address.
1278          */
1279         ret_val = e1000_check_alt_mac_addr_generic(hw);
1280         if (ret_val)
1281                 return ret_val;
1282
1283         return e1000_read_mac_addr_generic(hw);
1284 }
1285
1286 /**
1287  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1288  * @hw: pointer to the HW structure
1289  *
1290  * In the case of a PHY power down to save power, or to turn off link during a
1291  * driver unload, or wake on lan is not enabled, remove the link.
1292  **/
1293 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1294 {
1295         /* If the management interface is not enabled, then power down */
1296         if (!(hw->mac.ops.check_mng_mode(hw) ||
1297               hw->phy.ops.check_reset_block(hw)))
1298                 e1000_power_down_phy_copper(hw);
1299 }
1300
1301 /**
1302  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1303  *  @hw: pointer to the HW structure
1304  *
1305  *  Clears the hardware counters by reading the counter registers.
1306  **/
1307 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1308 {
1309         e1000e_clear_hw_cntrs_base(hw);
1310
1311         er32(PRC64);
1312         er32(PRC127);
1313         er32(PRC255);
1314         er32(PRC511);
1315         er32(PRC1023);
1316         er32(PRC1522);
1317         er32(PTC64);
1318         er32(PTC127);
1319         er32(PTC255);
1320         er32(PTC511);
1321         er32(PTC1023);
1322         er32(PTC1522);
1323
1324         er32(ALGNERRC);
1325         er32(RXERRC);
1326         er32(TNCRS);
1327         er32(CEXTERR);
1328         er32(TSCTC);
1329         er32(TSCTFC);
1330
1331         er32(MGTPRC);
1332         er32(MGTPDC);
1333         er32(MGTPTC);
1334
1335         er32(IAC);
1336         er32(ICRXOC);
1337
1338         er32(ICRXPTC);
1339         er32(ICRXATC);
1340         er32(ICTXPTC);
1341         er32(ICTXATC);
1342         er32(ICTXQEC);
1343         er32(ICTXQMTC);
1344         er32(ICRXDMTC);
1345 }
1346
1347 static const struct e1000_mac_operations es2_mac_ops = {
1348         .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1349         .id_led_init            = e1000e_id_led_init_generic,
1350         .blink_led              = e1000e_blink_led_generic,
1351         .check_mng_mode         = e1000e_check_mng_mode_generic,
1352         /* check_for_link dependent on media type */
1353         .cleanup_led            = e1000e_cleanup_led_generic,
1354         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1355         .get_bus_info           = e1000e_get_bus_info_pcie,
1356         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1357         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1358         .led_on                 = e1000e_led_on_generic,
1359         .led_off                = e1000e_led_off_generic,
1360         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1361         .write_vfta             = e1000_write_vfta_generic,
1362         .clear_vfta             = e1000_clear_vfta_generic,
1363         .reset_hw               = e1000_reset_hw_80003es2lan,
1364         .init_hw                = e1000_init_hw_80003es2lan,
1365         .setup_link             = e1000e_setup_link_generic,
1366         /* setup_physical_interface dependent on media type */
1367         .setup_led              = e1000e_setup_led_generic,
1368         .config_collision_dist  = e1000e_config_collision_dist_generic,
1369         .rar_set                = e1000e_rar_set_generic,
1370 };
1371
1372 static const struct e1000_phy_operations es2_phy_ops = {
1373         .acquire                = e1000_acquire_phy_80003es2lan,
1374         .check_polarity         = e1000_check_polarity_m88,
1375         .check_reset_block      = e1000e_check_reset_block_generic,
1376         .commit                 = e1000e_phy_sw_reset,
1377         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1378         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1379         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1380         .get_info               = e1000e_get_phy_info_m88,
1381         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1382         .release                = e1000_release_phy_80003es2lan,
1383         .reset                  = e1000e_phy_hw_reset_generic,
1384         .set_d0_lplu_state      = NULL,
1385         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1386         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1387         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1388 };
1389
1390 static const struct e1000_nvm_operations es2_nvm_ops = {
1391         .acquire                = e1000_acquire_nvm_80003es2lan,
1392         .read                   = e1000e_read_nvm_eerd,
1393         .release                = e1000_release_nvm_80003es2lan,
1394         .reload                 = e1000e_reload_nvm_generic,
1395         .update                 = e1000e_update_nvm_checksum_generic,
1396         .valid_led_default      = e1000e_valid_led_default,
1397         .validate               = e1000e_validate_nvm_checksum_generic,
1398         .write                  = e1000_write_nvm_80003es2lan,
1399 };
1400
1401 const struct e1000_info e1000_es2_info = {
1402         .mac                    = e1000_80003es2lan,
1403         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1404                                   | FLAG_HAS_JUMBO_FRAMES
1405                                   | FLAG_HAS_WOL
1406                                   | FLAG_APME_IN_CTRL3
1407                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1408                                   | FLAG_RX_NEEDS_RESTART /* errata */
1409                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1410                                   | FLAG_APME_CHECK_PORT_B
1411                                   | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1412         .flags2                 = FLAG2_DMA_BURST,
1413         .pba                    = 38,
1414         .max_hw_frame_size      = DEFAULT_JUMBO,
1415         .get_variants           = e1000_get_variants_80003es2lan,
1416         .mac_ops                = &es2_mac_ops,
1417         .phy_ops                = &es2_phy_ops,
1418         .nvm_ops                = &es2_nvm_ops,
1419 };
1420