Linux 3.9-rc8
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 82571EB Gigabit Ethernet Controller
30  * 82571EB Gigabit Ethernet Controller (Copper)
31  * 82571EB Gigabit Ethernet Controller (Fiber)
32  * 82571EB Dual Port Gigabit Mezzanine Adapter
33  * 82571EB Quad Port Gigabit Mezzanine Adapter
34  * 82571PT Gigabit PT Quad Port Server ExpressModule
35  * 82572EI Gigabit Ethernet Controller (Copper)
36  * 82572EI Gigabit Ethernet Controller (Fiber)
37  * 82572EI Gigabit Ethernet Controller
38  * 82573V Gigabit Ethernet Controller (Copper)
39  * 82573E Gigabit Ethernet Controller (Copper)
40  * 82573L Gigabit Ethernet Controller
41  * 82574L Gigabit Network Connection
42  * 82583V Gigabit Network Connection
43  */
44
45 #include "e1000.h"
46
47 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
48 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
49 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
50 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
51 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
52                                       u16 words, u16 *data);
53 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
54 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
55 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
56 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
57 static s32 e1000_led_on_82574(struct e1000_hw *hw);
58 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
59 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
60 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
61 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
62 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
63 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
64 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
65
66 /**
67  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
68  *  @hw: pointer to the HW structure
69  **/
70 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
71 {
72         struct e1000_phy_info *phy = &hw->phy;
73         s32 ret_val;
74
75         if (hw->phy.media_type != e1000_media_type_copper) {
76                 phy->type = e1000_phy_none;
77                 return 0;
78         }
79
80         phy->addr                        = 1;
81         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
82         phy->reset_delay_us              = 100;
83
84         phy->ops.power_up                = e1000_power_up_phy_copper;
85         phy->ops.power_down              = e1000_power_down_phy_copper_82571;
86
87         switch (hw->mac.type) {
88         case e1000_82571:
89         case e1000_82572:
90                 phy->type                = e1000_phy_igp_2;
91                 break;
92         case e1000_82573:
93                 phy->type                = e1000_phy_m88;
94                 break;
95         case e1000_82574:
96         case e1000_82583:
97                 phy->type                = e1000_phy_bm;
98                 phy->ops.acquire = e1000_get_hw_semaphore_82574;
99                 phy->ops.release = e1000_put_hw_semaphore_82574;
100                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
101                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
102                 break;
103         default:
104                 return -E1000_ERR_PHY;
105                 break;
106         }
107
108         /* This can only be done after all function pointers are setup. */
109         ret_val = e1000_get_phy_id_82571(hw);
110         if (ret_val) {
111                 e_dbg("Error getting PHY ID\n");
112                 return ret_val;
113         }
114
115         /* Verify phy id */
116         switch (hw->mac.type) {
117         case e1000_82571:
118         case e1000_82572:
119                 if (phy->id != IGP01E1000_I_PHY_ID)
120                         ret_val = -E1000_ERR_PHY;
121                 break;
122         case e1000_82573:
123                 if (phy->id != M88E1111_I_PHY_ID)
124                         ret_val = -E1000_ERR_PHY;
125                 break;
126         case e1000_82574:
127         case e1000_82583:
128                 if (phy->id != BME1000_E_PHY_ID_R2)
129                         ret_val = -E1000_ERR_PHY;
130                 break;
131         default:
132                 ret_val = -E1000_ERR_PHY;
133                 break;
134         }
135
136         if (ret_val)
137                 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
138
139         return ret_val;
140 }
141
142 /**
143  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
144  *  @hw: pointer to the HW structure
145  **/
146 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
147 {
148         struct e1000_nvm_info *nvm = &hw->nvm;
149         u32 eecd = er32(EECD);
150         u16 size;
151
152         nvm->opcode_bits = 8;
153         nvm->delay_usec = 1;
154         switch (nvm->override) {
155         case e1000_nvm_override_spi_large:
156                 nvm->page_size = 32;
157                 nvm->address_bits = 16;
158                 break;
159         case e1000_nvm_override_spi_small:
160                 nvm->page_size = 8;
161                 nvm->address_bits = 8;
162                 break;
163         default:
164                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
165                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
166                 break;
167         }
168
169         switch (hw->mac.type) {
170         case e1000_82573:
171         case e1000_82574:
172         case e1000_82583:
173                 if (((eecd >> 15) & 0x3) == 0x3) {
174                         nvm->type = e1000_nvm_flash_hw;
175                         nvm->word_size = 2048;
176                         /* Autonomous Flash update bit must be cleared due
177                          * to Flash update issue.
178                          */
179                         eecd &= ~E1000_EECD_AUPDEN;
180                         ew32(EECD, eecd);
181                         break;
182                 }
183                 /* Fall Through */
184         default:
185                 nvm->type = e1000_nvm_eeprom_spi;
186                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
187                                   E1000_EECD_SIZE_EX_SHIFT);
188                 /* Added to a constant, "size" becomes the left-shift value
189                  * for setting word_size.
190                  */
191                 size += NVM_WORD_SIZE_BASE_SHIFT;
192
193                 /* EEPROM access above 16k is unsupported */
194                 if (size > 14)
195                         size = 14;
196                 nvm->word_size  = 1 << size;
197                 break;
198         }
199
200         /* Function Pointers */
201         switch (hw->mac.type) {
202         case e1000_82574:
203         case e1000_82583:
204                 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
205                 nvm->ops.release = e1000_put_hw_semaphore_82574;
206                 break;
207         default:
208                 break;
209         }
210
211         return 0;
212 }
213
214 /**
215  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
216  *  @hw: pointer to the HW structure
217  **/
218 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
219 {
220         struct e1000_mac_info *mac = &hw->mac;
221         u32 swsm = 0;
222         u32 swsm2 = 0;
223         bool force_clear_smbi = false;
224
225         /* Set media type and media-dependent function pointers */
226         switch (hw->adapter->pdev->device) {
227         case E1000_DEV_ID_82571EB_FIBER:
228         case E1000_DEV_ID_82572EI_FIBER:
229         case E1000_DEV_ID_82571EB_QUAD_FIBER:
230                 hw->phy.media_type = e1000_media_type_fiber;
231                 mac->ops.setup_physical_interface =
232                     e1000_setup_fiber_serdes_link_82571;
233                 mac->ops.check_for_link = e1000e_check_for_fiber_link;
234                 mac->ops.get_link_up_info =
235                     e1000e_get_speed_and_duplex_fiber_serdes;
236                 break;
237         case E1000_DEV_ID_82571EB_SERDES:
238         case E1000_DEV_ID_82571EB_SERDES_DUAL:
239         case E1000_DEV_ID_82571EB_SERDES_QUAD:
240         case E1000_DEV_ID_82572EI_SERDES:
241                 hw->phy.media_type = e1000_media_type_internal_serdes;
242                 mac->ops.setup_physical_interface =
243                     e1000_setup_fiber_serdes_link_82571;
244                 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
245                 mac->ops.get_link_up_info =
246                     e1000e_get_speed_and_duplex_fiber_serdes;
247                 break;
248         default:
249                 hw->phy.media_type = e1000_media_type_copper;
250                 mac->ops.setup_physical_interface =
251                     e1000_setup_copper_link_82571;
252                 mac->ops.check_for_link = e1000e_check_for_copper_link;
253                 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
254                 break;
255         }
256
257         /* Set mta register count */
258         mac->mta_reg_count = 128;
259         /* Set rar entry count */
260         mac->rar_entry_count = E1000_RAR_ENTRIES;
261         /* Adaptive IFS supported */
262         mac->adaptive_ifs = true;
263
264         /* MAC-specific function pointers */
265         switch (hw->mac.type) {
266         case e1000_82573:
267                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
268                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
269                 mac->ops.led_on = e1000e_led_on_generic;
270                 mac->ops.blink_led = e1000e_blink_led_generic;
271
272                 /* FWSM register */
273                 mac->has_fwsm = true;
274                 /* ARC supported; valid only if manageability features are
275                  * enabled.
276                  */
277                 mac->arc_subsystem_valid = !!(er32(FWSM) &
278                                               E1000_FWSM_MODE_MASK);
279                 break;
280         case e1000_82574:
281         case e1000_82583:
282                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
283                 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
284                 mac->ops.led_on = e1000_led_on_82574;
285                 break;
286         default:
287                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
288                 mac->ops.led_on = e1000e_led_on_generic;
289                 mac->ops.blink_led = e1000e_blink_led_generic;
290
291                 /* FWSM register */
292                 mac->has_fwsm = true;
293                 break;
294         }
295
296         /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
297          * first NVM or PHY access. This should be done for single-port
298          * devices, and for one port only on dual-port devices so that
299          * for those devices we can still use the SMBI lock to synchronize
300          * inter-port accesses to the PHY & NVM.
301          */
302         switch (hw->mac.type) {
303         case e1000_82571:
304         case e1000_82572:
305                 swsm2 = er32(SWSM2);
306
307                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
308                         /* Only do this for the first interface on this card */
309                         ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
310                         force_clear_smbi = true;
311                 } else {
312                         force_clear_smbi = false;
313                 }
314                 break;
315         default:
316                 force_clear_smbi = true;
317                 break;
318         }
319
320         if (force_clear_smbi) {
321                 /* Make sure SWSM.SMBI is clear */
322                 swsm = er32(SWSM);
323                 if (swsm & E1000_SWSM_SMBI) {
324                         /* This bit should not be set on a first interface, and
325                          * indicates that the bootagent or EFI code has
326                          * improperly left this bit enabled
327                          */
328                         e_dbg("Please update your 82571 Bootagent\n");
329                 }
330                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
331         }
332
333         /* Initialize device specific counter of SMBI acquisition timeouts. */
334         hw->dev_spec.e82571.smb_counter = 0;
335
336         return 0;
337 }
338
339 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
340 {
341         struct e1000_hw *hw = &adapter->hw;
342         static int global_quad_port_a; /* global port a indication */
343         struct pci_dev *pdev = adapter->pdev;
344         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
345         s32 rc;
346
347         rc = e1000_init_mac_params_82571(hw);
348         if (rc)
349                 return rc;
350
351         rc = e1000_init_nvm_params_82571(hw);
352         if (rc)
353                 return rc;
354
355         rc = e1000_init_phy_params_82571(hw);
356         if (rc)
357                 return rc;
358
359         /* tag quad port adapters first, it's used below */
360         switch (pdev->device) {
361         case E1000_DEV_ID_82571EB_QUAD_COPPER:
362         case E1000_DEV_ID_82571EB_QUAD_FIBER:
363         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
364         case E1000_DEV_ID_82571PT_QUAD_COPPER:
365                 adapter->flags |= FLAG_IS_QUAD_PORT;
366                 /* mark the first port */
367                 if (global_quad_port_a == 0)
368                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
369                 /* Reset for multiple quad port adapters */
370                 global_quad_port_a++;
371                 if (global_quad_port_a == 4)
372                         global_quad_port_a = 0;
373                 break;
374         default:
375                 break;
376         }
377
378         switch (adapter->hw.mac.type) {
379         case e1000_82571:
380                 /* these dual ports don't have WoL on port B at all */
381                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
382                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
383                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
384                     (is_port_b))
385                         adapter->flags &= ~FLAG_HAS_WOL;
386                 /* quad ports only support WoL on port A */
387                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
388                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
389                         adapter->flags &= ~FLAG_HAS_WOL;
390                 /* Does not support WoL on any port */
391                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
392                         adapter->flags &= ~FLAG_HAS_WOL;
393                 break;
394         case e1000_82573:
395                 if (pdev->device == E1000_DEV_ID_82573L) {
396                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
397                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
398                 }
399                 break;
400         default:
401                 break;
402         }
403
404         return 0;
405 }
406
407 /**
408  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
409  *  @hw: pointer to the HW structure
410  *
411  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
412  *  revision in the hardware structure.
413  **/
414 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
415 {
416         struct e1000_phy_info *phy = &hw->phy;
417         s32 ret_val;
418         u16 phy_id = 0;
419
420         switch (hw->mac.type) {
421         case e1000_82571:
422         case e1000_82572:
423                 /* The 82571 firmware may still be configuring the PHY.
424                  * In this case, we cannot access the PHY until the
425                  * configuration is done.  So we explicitly set the
426                  * PHY ID.
427                  */
428                 phy->id = IGP01E1000_I_PHY_ID;
429                 break;
430         case e1000_82573:
431                 return e1000e_get_phy_id(hw);
432                 break;
433         case e1000_82574:
434         case e1000_82583:
435                 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
436                 if (ret_val)
437                         return ret_val;
438
439                 phy->id = (u32)(phy_id << 16);
440                 udelay(20);
441                 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
442                 if (ret_val)
443                         return ret_val;
444
445                 phy->id |= (u32)(phy_id);
446                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
447                 break;
448         default:
449                 return -E1000_ERR_PHY;
450                 break;
451         }
452
453         return 0;
454 }
455
456 /**
457  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
458  *  @hw: pointer to the HW structure
459  *
460  *  Acquire the HW semaphore to access the PHY or NVM
461  **/
462 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
463 {
464         u32 swsm;
465         s32 sw_timeout = hw->nvm.word_size + 1;
466         s32 fw_timeout = hw->nvm.word_size + 1;
467         s32 i = 0;
468
469         /* If we have timedout 3 times on trying to acquire
470          * the inter-port SMBI semaphore, there is old code
471          * operating on the other port, and it is not
472          * releasing SMBI. Modify the number of times that
473          * we try for the semaphore to interwork with this
474          * older code.
475          */
476         if (hw->dev_spec.e82571.smb_counter > 2)
477                 sw_timeout = 1;
478
479         /* Get the SW semaphore */
480         while (i < sw_timeout) {
481                 swsm = er32(SWSM);
482                 if (!(swsm & E1000_SWSM_SMBI))
483                         break;
484
485                 udelay(50);
486                 i++;
487         }
488
489         if (i == sw_timeout) {
490                 e_dbg("Driver can't access device - SMBI bit is set.\n");
491                 hw->dev_spec.e82571.smb_counter++;
492         }
493         /* Get the FW semaphore. */
494         for (i = 0; i < fw_timeout; i++) {
495                 swsm = er32(SWSM);
496                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
497
498                 /* Semaphore acquired if bit latched */
499                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
500                         break;
501
502                 udelay(50);
503         }
504
505         if (i == fw_timeout) {
506                 /* Release semaphores */
507                 e1000_put_hw_semaphore_82571(hw);
508                 e_dbg("Driver can't access the NVM\n");
509                 return -E1000_ERR_NVM;
510         }
511
512         return 0;
513 }
514
515 /**
516  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
517  *  @hw: pointer to the HW structure
518  *
519  *  Release hardware semaphore used to access the PHY or NVM
520  **/
521 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
522 {
523         u32 swsm;
524
525         swsm = er32(SWSM);
526         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
527         ew32(SWSM, swsm);
528 }
529 /**
530  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
531  *  @hw: pointer to the HW structure
532  *
533  *  Acquire the HW semaphore during reset.
534  *
535  **/
536 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
537 {
538         u32 extcnf_ctrl;
539         s32 i = 0;
540
541         extcnf_ctrl = er32(EXTCNF_CTRL);
542         do {
543                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
544                 ew32(EXTCNF_CTRL, extcnf_ctrl);
545                 extcnf_ctrl = er32(EXTCNF_CTRL);
546
547                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
548                         break;
549
550                 usleep_range(2000, 4000);
551                 i++;
552         } while (i < MDIO_OWNERSHIP_TIMEOUT);
553
554         if (i == MDIO_OWNERSHIP_TIMEOUT) {
555                 /* Release semaphores */
556                 e1000_put_hw_semaphore_82573(hw);
557                 e_dbg("Driver can't access the PHY\n");
558                 return -E1000_ERR_PHY;
559         }
560
561         return 0;
562 }
563
564 /**
565  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
566  *  @hw: pointer to the HW structure
567  *
568  *  Release hardware semaphore used during reset.
569  *
570  **/
571 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
572 {
573         u32 extcnf_ctrl;
574
575         extcnf_ctrl = er32(EXTCNF_CTRL);
576         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
577         ew32(EXTCNF_CTRL, extcnf_ctrl);
578 }
579
580 static DEFINE_MUTEX(swflag_mutex);
581
582 /**
583  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
584  *  @hw: pointer to the HW structure
585  *
586  *  Acquire the HW semaphore to access the PHY or NVM.
587  *
588  **/
589 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
590 {
591         s32 ret_val;
592
593         mutex_lock(&swflag_mutex);
594         ret_val = e1000_get_hw_semaphore_82573(hw);
595         if (ret_val)
596                 mutex_unlock(&swflag_mutex);
597         return ret_val;
598 }
599
600 /**
601  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
602  *  @hw: pointer to the HW structure
603  *
604  *  Release hardware semaphore used to access the PHY or NVM
605  *
606  **/
607 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
608 {
609         e1000_put_hw_semaphore_82573(hw);
610         mutex_unlock(&swflag_mutex);
611 }
612
613 /**
614  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
615  *  @hw: pointer to the HW structure
616  *  @active: true to enable LPLU, false to disable
617  *
618  *  Sets the LPLU D0 state according to the active flag.
619  *  LPLU will not be activated unless the
620  *  device autonegotiation advertisement meets standards of
621  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
622  *  This is a function pointer entry point only called by
623  *  PHY setup routines.
624  **/
625 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
626 {
627         u32 data = er32(POEMB);
628
629         if (active)
630                 data |= E1000_PHY_CTRL_D0A_LPLU;
631         else
632                 data &= ~E1000_PHY_CTRL_D0A_LPLU;
633
634         ew32(POEMB, data);
635         return 0;
636 }
637
638 /**
639  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
640  *  @hw: pointer to the HW structure
641  *  @active: boolean used to enable/disable lplu
642  *
643  *  The low power link up (lplu) state is set to the power management level D3
644  *  when active is true, else clear lplu for D3. LPLU
645  *  is used during Dx states where the power conservation is most important.
646  *  During driver activity, SmartSpeed should be enabled so performance is
647  *  maintained.
648  **/
649 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
650 {
651         u32 data = er32(POEMB);
652
653         if (!active) {
654                 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
655         } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
656                    (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
657                    (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
658                 data |= E1000_PHY_CTRL_NOND0A_LPLU;
659         }
660
661         ew32(POEMB, data);
662         return 0;
663 }
664
665 /**
666  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
667  *  @hw: pointer to the HW structure
668  *
669  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
670  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
671  *  for EEPROM access grant bit.  If the access grant bit is not set, release
672  *  hardware semaphore.
673  **/
674 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
675 {
676         s32 ret_val;
677
678         ret_val = e1000_get_hw_semaphore_82571(hw);
679         if (ret_val)
680                 return ret_val;
681
682         switch (hw->mac.type) {
683         case e1000_82573:
684                 break;
685         default:
686                 ret_val = e1000e_acquire_nvm(hw);
687                 break;
688         }
689
690         if (ret_val)
691                 e1000_put_hw_semaphore_82571(hw);
692
693         return ret_val;
694 }
695
696 /**
697  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
698  *  @hw: pointer to the HW structure
699  *
700  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
701  **/
702 static void e1000_release_nvm_82571(struct e1000_hw *hw)
703 {
704         e1000e_release_nvm(hw);
705         e1000_put_hw_semaphore_82571(hw);
706 }
707
708 /**
709  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
710  *  @hw: pointer to the HW structure
711  *  @offset: offset within the EEPROM to be written to
712  *  @words: number of words to write
713  *  @data: 16 bit word(s) to be written to the EEPROM
714  *
715  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
716  *
717  *  If e1000e_update_nvm_checksum is not called after this function, the
718  *  EEPROM will most likely contain an invalid checksum.
719  **/
720 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
721                                  u16 *data)
722 {
723         s32 ret_val;
724
725         switch (hw->mac.type) {
726         case e1000_82573:
727         case e1000_82574:
728         case e1000_82583:
729                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
730                 break;
731         case e1000_82571:
732         case e1000_82572:
733                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
734                 break;
735         default:
736                 ret_val = -E1000_ERR_NVM;
737                 break;
738         }
739
740         return ret_val;
741 }
742
743 /**
744  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
745  *  @hw: pointer to the HW structure
746  *
747  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
748  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
749  *  value to the EEPROM.
750  **/
751 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
752 {
753         u32 eecd;
754         s32 ret_val;
755         u16 i;
756
757         ret_val = e1000e_update_nvm_checksum_generic(hw);
758         if (ret_val)
759                 return ret_val;
760
761         /* If our nvm is an EEPROM, then we're done
762          * otherwise, commit the checksum to the flash NVM.
763          */
764         if (hw->nvm.type != e1000_nvm_flash_hw)
765                 return 0;
766
767         /* Check for pending operations. */
768         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
769                 usleep_range(1000, 2000);
770                 if (!(er32(EECD) & E1000_EECD_FLUPD))
771                         break;
772         }
773
774         if (i == E1000_FLASH_UPDATES)
775                 return -E1000_ERR_NVM;
776
777         /* Reset the firmware if using STM opcode. */
778         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
779                 /* The enabling of and the actual reset must be done
780                  * in two write cycles.
781                  */
782                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
783                 e1e_flush();
784                 ew32(HICR, E1000_HICR_FW_RESET);
785         }
786
787         /* Commit the write to flash */
788         eecd = er32(EECD) | E1000_EECD_FLUPD;
789         ew32(EECD, eecd);
790
791         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
792                 usleep_range(1000, 2000);
793                 if (!(er32(EECD) & E1000_EECD_FLUPD))
794                         break;
795         }
796
797         if (i == E1000_FLASH_UPDATES)
798                 return -E1000_ERR_NVM;
799
800         return 0;
801 }
802
803 /**
804  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
805  *  @hw: pointer to the HW structure
806  *
807  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
808  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
809  **/
810 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
811 {
812         if (hw->nvm.type == e1000_nvm_flash_hw)
813                 e1000_fix_nvm_checksum_82571(hw);
814
815         return e1000e_validate_nvm_checksum_generic(hw);
816 }
817
818 /**
819  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
820  *  @hw: pointer to the HW structure
821  *  @offset: offset within the EEPROM to be written to
822  *  @words: number of words to write
823  *  @data: 16 bit word(s) to be written to the EEPROM
824  *
825  *  After checking for invalid values, poll the EEPROM to ensure the previous
826  *  command has completed before trying to write the next word.  After write
827  *  poll for completion.
828  *
829  *  If e1000e_update_nvm_checksum is not called after this function, the
830  *  EEPROM will most likely contain an invalid checksum.
831  **/
832 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
833                                       u16 words, u16 *data)
834 {
835         struct e1000_nvm_info *nvm = &hw->nvm;
836         u32 i, eewr = 0;
837         s32 ret_val = 0;
838
839         /* A check for invalid values:  offset too large, too many words,
840          * and not enough words.
841          */
842         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
843             (words == 0)) {
844                 e_dbg("nvm parameter(s) out of bounds\n");
845                 return -E1000_ERR_NVM;
846         }
847
848         for (i = 0; i < words; i++) {
849                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
850                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
851                        E1000_NVM_RW_REG_START;
852
853                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
854                 if (ret_val)
855                         break;
856
857                 ew32(EEWR, eewr);
858
859                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
860                 if (ret_val)
861                         break;
862         }
863
864         return ret_val;
865 }
866
867 /**
868  *  e1000_get_cfg_done_82571 - Poll for configuration done
869  *  @hw: pointer to the HW structure
870  *
871  *  Reads the management control register for the config done bit to be set.
872  **/
873 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
874 {
875         s32 timeout = PHY_CFG_TIMEOUT;
876
877         while (timeout) {
878                 if (er32(EEMNGCTL) &
879                     E1000_NVM_CFG_DONE_PORT_0)
880                         break;
881                 usleep_range(1000, 2000);
882                 timeout--;
883         }
884         if (!timeout) {
885                 e_dbg("MNG configuration cycle has not completed.\n");
886                 return -E1000_ERR_RESET;
887         }
888
889         return 0;
890 }
891
892 /**
893  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
894  *  @hw: pointer to the HW structure
895  *  @active: true to enable LPLU, false to disable
896  *
897  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
898  *  this function also disables smart speed and vice versa.  LPLU will not be
899  *  activated unless the device autonegotiation advertisement meets standards
900  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
901  *  pointer entry point only called by PHY setup routines.
902  **/
903 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
904 {
905         struct e1000_phy_info *phy = &hw->phy;
906         s32 ret_val;
907         u16 data;
908
909         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
910         if (ret_val)
911                 return ret_val;
912
913         if (active) {
914                 data |= IGP02E1000_PM_D0_LPLU;
915                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
916                 if (ret_val)
917                         return ret_val;
918
919                 /* When LPLU is enabled, we should disable SmartSpeed */
920                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
921                 if (ret_val)
922                         return ret_val;
923                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
924                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
925                 if (ret_val)
926                         return ret_val;
927         } else {
928                 data &= ~IGP02E1000_PM_D0_LPLU;
929                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
930                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
931                  * during Dx states where the power conservation is most
932                  * important.  During driver activity we should enable
933                  * SmartSpeed, so performance is maintained.
934                  */
935                 if (phy->smart_speed == e1000_smart_speed_on) {
936                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
937                                            &data);
938                         if (ret_val)
939                                 return ret_val;
940
941                         data |= IGP01E1000_PSCFR_SMART_SPEED;
942                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
943                                            data);
944                         if (ret_val)
945                                 return ret_val;
946                 } else if (phy->smart_speed == e1000_smart_speed_off) {
947                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
948                                            &data);
949                         if (ret_val)
950                                 return ret_val;
951
952                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
953                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
954                                            data);
955                         if (ret_val)
956                                 return ret_val;
957                 }
958         }
959
960         return 0;
961 }
962
963 /**
964  *  e1000_reset_hw_82571 - Reset hardware
965  *  @hw: pointer to the HW structure
966  *
967  *  This resets the hardware into a known state.
968  **/
969 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
970 {
971         u32 ctrl, ctrl_ext, eecd, tctl;
972         s32 ret_val;
973
974         /* Prevent the PCI-E bus from sticking if there is no TLP connection
975          * on the last TLP read/write transaction when MAC is reset.
976          */
977         ret_val = e1000e_disable_pcie_master(hw);
978         if (ret_val)
979                 e_dbg("PCI-E Master disable polling has failed.\n");
980
981         e_dbg("Masking off all interrupts\n");
982         ew32(IMC, 0xffffffff);
983
984         ew32(RCTL, 0);
985         tctl = er32(TCTL);
986         tctl &= ~E1000_TCTL_EN;
987         ew32(TCTL, tctl);
988         e1e_flush();
989
990         usleep_range(10000, 20000);
991
992         /* Must acquire the MDIO ownership before MAC reset.
993          * Ownership defaults to firmware after a reset.
994          */
995         switch (hw->mac.type) {
996         case e1000_82573:
997                 ret_val = e1000_get_hw_semaphore_82573(hw);
998                 break;
999         case e1000_82574:
1000         case e1000_82583:
1001                 ret_val = e1000_get_hw_semaphore_82574(hw);
1002                 break;
1003         default:
1004                 break;
1005         }
1006         if (ret_val)
1007                 e_dbg("Cannot acquire MDIO ownership\n");
1008
1009         ctrl = er32(CTRL);
1010
1011         e_dbg("Issuing a global reset to MAC\n");
1012         ew32(CTRL, ctrl | E1000_CTRL_RST);
1013
1014         /* Must release MDIO ownership and mutex after MAC reset. */
1015         switch (hw->mac.type) {
1016         case e1000_82574:
1017         case e1000_82583:
1018                 e1000_put_hw_semaphore_82574(hw);
1019                 break;
1020         default:
1021                 break;
1022         }
1023
1024         if (hw->nvm.type == e1000_nvm_flash_hw) {
1025                 udelay(10);
1026                 ctrl_ext = er32(CTRL_EXT);
1027                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1028                 ew32(CTRL_EXT, ctrl_ext);
1029                 e1e_flush();
1030         }
1031
1032         ret_val = e1000e_get_auto_rd_done(hw);
1033         if (ret_val)
1034                 /* We don't want to continue accessing MAC registers. */
1035                 return ret_val;
1036
1037         /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1038          * Need to wait for Phy configuration completion before accessing
1039          * NVM and Phy.
1040          */
1041
1042         switch (hw->mac.type) {
1043         case e1000_82571:
1044         case e1000_82572:
1045                 /* REQ and GNT bits need to be cleared when using AUTO_RD
1046                  * to access the EEPROM.
1047                  */
1048                 eecd = er32(EECD);
1049                 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1050                 ew32(EECD, eecd);
1051                 break;
1052         case e1000_82573:
1053         case e1000_82574:
1054         case e1000_82583:
1055                 msleep(25);
1056                 break;
1057         default:
1058                 break;
1059         }
1060
1061         /* Clear any pending interrupt events. */
1062         ew32(IMC, 0xffffffff);
1063         er32(ICR);
1064
1065         if (hw->mac.type == e1000_82571) {
1066                 /* Install any alternate MAC address into RAR0 */
1067                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1068                 if (ret_val)
1069                         return ret_val;
1070
1071                 e1000e_set_laa_state_82571(hw, true);
1072         }
1073
1074         /* Reinitialize the 82571 serdes link state machine */
1075         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1076                 hw->mac.serdes_link_state = e1000_serdes_link_down;
1077
1078         return 0;
1079 }
1080
1081 /**
1082  *  e1000_init_hw_82571 - Initialize hardware
1083  *  @hw: pointer to the HW structure
1084  *
1085  *  This inits the hardware readying it for operation.
1086  **/
1087 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1088 {
1089         struct e1000_mac_info *mac = &hw->mac;
1090         u32 reg_data;
1091         s32 ret_val;
1092         u16 i, rar_count = mac->rar_entry_count;
1093
1094         e1000_initialize_hw_bits_82571(hw);
1095
1096         /* Initialize identification LED */
1097         ret_val = mac->ops.id_led_init(hw);
1098         if (ret_val)
1099                 e_dbg("Error initializing identification LED\n");
1100                 /* This is not fatal and we should not stop init due to this */
1101
1102         /* Disabling VLAN filtering */
1103         e_dbg("Initializing the IEEE VLAN\n");
1104         mac->ops.clear_vfta(hw);
1105
1106         /* Setup the receive address.
1107          * If, however, a locally administered address was assigned to the
1108          * 82571, we must reserve a RAR for it to work around an issue where
1109          * resetting one port will reload the MAC on the other port.
1110          */
1111         if (e1000e_get_laa_state_82571(hw))
1112                 rar_count--;
1113         e1000e_init_rx_addrs(hw, rar_count);
1114
1115         /* Zero out the Multicast HASH table */
1116         e_dbg("Zeroing the MTA\n");
1117         for (i = 0; i < mac->mta_reg_count; i++)
1118                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1119
1120         /* Setup link and flow control */
1121         ret_val = mac->ops.setup_link(hw);
1122
1123         /* Set the transmit descriptor write-back policy */
1124         reg_data = er32(TXDCTL(0));
1125         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1126                    E1000_TXDCTL_FULL_TX_DESC_WB |
1127                    E1000_TXDCTL_COUNT_DESC;
1128         ew32(TXDCTL(0), reg_data);
1129
1130         /* ...for both queues. */
1131         switch (mac->type) {
1132         case e1000_82573:
1133                 e1000e_enable_tx_pkt_filtering(hw);
1134                 /* fall through */
1135         case e1000_82574:
1136         case e1000_82583:
1137                 reg_data = er32(GCR);
1138                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1139                 ew32(GCR, reg_data);
1140                 break;
1141         default:
1142                 reg_data = er32(TXDCTL(1));
1143                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1144                            E1000_TXDCTL_FULL_TX_DESC_WB |
1145                            E1000_TXDCTL_COUNT_DESC;
1146                 ew32(TXDCTL(1), reg_data);
1147                 break;
1148         }
1149
1150         /* Clear all of the statistics registers (clear on read).  It is
1151          * important that we do this after we have tried to establish link
1152          * because the symbol error count will increment wildly if there
1153          * is no link.
1154          */
1155         e1000_clear_hw_cntrs_82571(hw);
1156
1157         return ret_val;
1158 }
1159
1160 /**
1161  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1162  *  @hw: pointer to the HW structure
1163  *
1164  *  Initializes required hardware-dependent bits needed for normal operation.
1165  **/
1166 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1167 {
1168         u32 reg;
1169
1170         /* Transmit Descriptor Control 0 */
1171         reg = er32(TXDCTL(0));
1172         reg |= (1 << 22);
1173         ew32(TXDCTL(0), reg);
1174
1175         /* Transmit Descriptor Control 1 */
1176         reg = er32(TXDCTL(1));
1177         reg |= (1 << 22);
1178         ew32(TXDCTL(1), reg);
1179
1180         /* Transmit Arbitration Control 0 */
1181         reg = er32(TARC(0));
1182         reg &= ~(0xF << 27); /* 30:27 */
1183         switch (hw->mac.type) {
1184         case e1000_82571:
1185         case e1000_82572:
1186                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1187                 break;
1188         case e1000_82574:
1189         case e1000_82583:
1190                 reg |= (1 << 26);
1191                 break;
1192         default:
1193                 break;
1194         }
1195         ew32(TARC(0), reg);
1196
1197         /* Transmit Arbitration Control 1 */
1198         reg = er32(TARC(1));
1199         switch (hw->mac.type) {
1200         case e1000_82571:
1201         case e1000_82572:
1202                 reg &= ~((1 << 29) | (1 << 30));
1203                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1204                 if (er32(TCTL) & E1000_TCTL_MULR)
1205                         reg &= ~(1 << 28);
1206                 else
1207                         reg |= (1 << 28);
1208                 ew32(TARC(1), reg);
1209                 break;
1210         default:
1211                 break;
1212         }
1213
1214         /* Device Control */
1215         switch (hw->mac.type) {
1216         case e1000_82573:
1217         case e1000_82574:
1218         case e1000_82583:
1219                 reg = er32(CTRL);
1220                 reg &= ~(1 << 29);
1221                 ew32(CTRL, reg);
1222                 break;
1223         default:
1224                 break;
1225         }
1226
1227         /* Extended Device Control */
1228         switch (hw->mac.type) {
1229         case e1000_82573:
1230         case e1000_82574:
1231         case e1000_82583:
1232                 reg = er32(CTRL_EXT);
1233                 reg &= ~(1 << 23);
1234                 reg |= (1 << 22);
1235                 ew32(CTRL_EXT, reg);
1236                 break;
1237         default:
1238                 break;
1239         }
1240
1241         if (hw->mac.type == e1000_82571) {
1242                 reg = er32(PBA_ECC);
1243                 reg |= E1000_PBA_ECC_CORR_EN;
1244                 ew32(PBA_ECC, reg);
1245         }
1246
1247         /* Workaround for hardware errata.
1248          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1249          */
1250         if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1251                 reg = er32(CTRL_EXT);
1252                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1253                 ew32(CTRL_EXT, reg);
1254         }
1255
1256         /* Disable IPv6 extension header parsing because some malformed
1257          * IPv6 headers can hang the Rx.
1258          */
1259         if (hw->mac.type <= e1000_82573) {
1260                 reg = er32(RFCTL);
1261                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1262                 ew32(RFCTL, reg);
1263         }
1264
1265         /* PCI-Ex Control Registers */
1266         switch (hw->mac.type) {
1267         case e1000_82574:
1268         case e1000_82583:
1269                 reg = er32(GCR);
1270                 reg |= (1 << 22);
1271                 ew32(GCR, reg);
1272
1273                 /* Workaround for hardware errata.
1274                  * apply workaround for hardware errata documented in errata
1275                  * docs Fixes issue where some error prone or unreliable PCIe
1276                  * completions are occurring, particularly with ASPM enabled.
1277                  * Without fix, issue can cause Tx timeouts.
1278                  */
1279                 reg = er32(GCR2);
1280                 reg |= 1;
1281                 ew32(GCR2, reg);
1282                 break;
1283         default:
1284                 break;
1285         }
1286 }
1287
1288 /**
1289  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1290  *  @hw: pointer to the HW structure
1291  *
1292  *  Clears the register array which contains the VLAN filter table by
1293  *  setting all the values to 0.
1294  **/
1295 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1296 {
1297         u32 offset;
1298         u32 vfta_value = 0;
1299         u32 vfta_offset = 0;
1300         u32 vfta_bit_in_reg = 0;
1301
1302         switch (hw->mac.type) {
1303         case e1000_82573:
1304         case e1000_82574:
1305         case e1000_82583:
1306                 if (hw->mng_cookie.vlan_id != 0) {
1307                         /* The VFTA is a 4096b bit-field, each identifying
1308                          * a single VLAN ID.  The following operations
1309                          * determine which 32b entry (i.e. offset) into the
1310                          * array we want to set the VLAN ID (i.e. bit) of
1311                          * the manageability unit.
1312                          */
1313                         vfta_offset = (hw->mng_cookie.vlan_id >>
1314                                        E1000_VFTA_ENTRY_SHIFT) &
1315                             E1000_VFTA_ENTRY_MASK;
1316                         vfta_bit_in_reg =
1317                             1 << (hw->mng_cookie.vlan_id &
1318                                   E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1319                 }
1320                 break;
1321         default:
1322                 break;
1323         }
1324         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1325                 /* If the offset we want to clear is the same offset of the
1326                  * manageability VLAN ID, then clear all bits except that of
1327                  * the manageability unit.
1328                  */
1329                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1330                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1331                 e1e_flush();
1332         }
1333 }
1334
1335 /**
1336  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1337  *  @hw: pointer to the HW structure
1338  *
1339  *  Reads the NVM Initialization Control Word 2 and returns true
1340  *  (>0) if any manageability is enabled, else false (0).
1341  **/
1342 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1343 {
1344         u16 data;
1345
1346         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1347         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1348 }
1349
1350 /**
1351  *  e1000_led_on_82574 - Turn LED on
1352  *  @hw: pointer to the HW structure
1353  *
1354  *  Turn LED on.
1355  **/
1356 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1357 {
1358         u32 ctrl;
1359         u32 i;
1360
1361         ctrl = hw->mac.ledctl_mode2;
1362         if (!(E1000_STATUS_LU & er32(STATUS))) {
1363                 /* If no link, then turn LED on by setting the invert bit
1364                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1365                  */
1366                 for (i = 0; i < 4; i++)
1367                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1368                             E1000_LEDCTL_MODE_LED_ON)
1369                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1370         }
1371         ew32(LEDCTL, ctrl);
1372
1373         return 0;
1374 }
1375
1376 /**
1377  *  e1000_check_phy_82574 - check 82574 phy hung state
1378  *  @hw: pointer to the HW structure
1379  *
1380  *  Returns whether phy is hung or not
1381  **/
1382 bool e1000_check_phy_82574(struct e1000_hw *hw)
1383 {
1384         u16 status_1kbt = 0;
1385         u16 receive_errors = 0;
1386         s32 ret_val;
1387
1388         /* Read PHY Receive Error counter first, if its is max - all F's then
1389          * read the Base1000T status register If both are max then PHY is hung.
1390          */
1391         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1392         if (ret_val)
1393                 return false;
1394         if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
1395                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1396                 if (ret_val)
1397                         return false;
1398                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1399                     E1000_IDLE_ERROR_COUNT_MASK)
1400                         return true;
1401         }
1402
1403         return false;
1404 }
1405
1406 /**
1407  *  e1000_setup_link_82571 - Setup flow control and link settings
1408  *  @hw: pointer to the HW structure
1409  *
1410  *  Determines which flow control settings to use, then configures flow
1411  *  control.  Calls the appropriate media-specific link configuration
1412  *  function.  Assuming the adapter has a valid link partner, a valid link
1413  *  should be established.  Assumes the hardware has previously been reset
1414  *  and the transmitter and receiver are not enabled.
1415  **/
1416 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1417 {
1418         /* 82573 does not have a word in the NVM to determine
1419          * the default flow control setting, so we explicitly
1420          * set it to full.
1421          */
1422         switch (hw->mac.type) {
1423         case e1000_82573:
1424         case e1000_82574:
1425         case e1000_82583:
1426                 if (hw->fc.requested_mode == e1000_fc_default)
1427                         hw->fc.requested_mode = e1000_fc_full;
1428                 break;
1429         default:
1430                 break;
1431         }
1432
1433         return e1000e_setup_link_generic(hw);
1434 }
1435
1436 /**
1437  *  e1000_setup_copper_link_82571 - Configure copper link settings
1438  *  @hw: pointer to the HW structure
1439  *
1440  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1441  *  for link, once link is established calls to configure collision distance
1442  *  and flow control are called.
1443  **/
1444 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1445 {
1446         u32 ctrl;
1447         s32 ret_val;
1448
1449         ctrl = er32(CTRL);
1450         ctrl |= E1000_CTRL_SLU;
1451         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1452         ew32(CTRL, ctrl);
1453
1454         switch (hw->phy.type) {
1455         case e1000_phy_m88:
1456         case e1000_phy_bm:
1457                 ret_val = e1000e_copper_link_setup_m88(hw);
1458                 break;
1459         case e1000_phy_igp_2:
1460                 ret_val = e1000e_copper_link_setup_igp(hw);
1461                 break;
1462         default:
1463                 return -E1000_ERR_PHY;
1464                 break;
1465         }
1466
1467         if (ret_val)
1468                 return ret_val;
1469
1470         return e1000e_setup_copper_link(hw);
1471 }
1472
1473 /**
1474  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1475  *  @hw: pointer to the HW structure
1476  *
1477  *  Configures collision distance and flow control for fiber and serdes links.
1478  *  Upon successful setup, poll for link.
1479  **/
1480 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1481 {
1482         switch (hw->mac.type) {
1483         case e1000_82571:
1484         case e1000_82572:
1485                 /* If SerDes loopback mode is entered, there is no form
1486                  * of reset to take the adapter out of that mode.  So we
1487                  * have to explicitly take the adapter out of loopback
1488                  * mode.  This prevents drivers from twiddling their thumbs
1489                  * if another tool failed to take it out of loopback mode.
1490                  */
1491                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1492                 break;
1493         default:
1494                 break;
1495         }
1496
1497         return e1000e_setup_fiber_serdes_link(hw);
1498 }
1499
1500 /**
1501  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1502  *  @hw: pointer to the HW structure
1503  *
1504  *  Reports the link state as up or down.
1505  *
1506  *  If autonegotiation is supported by the link partner, the link state is
1507  *  determined by the result of autonegotiation. This is the most likely case.
1508  *  If autonegotiation is not supported by the link partner, and the link
1509  *  has a valid signal, force the link up.
1510  *
1511  *  The link state is represented internally here by 4 states:
1512  *
1513  *  1) down
1514  *  2) autoneg_progress
1515  *  3) autoneg_complete (the link successfully autonegotiated)
1516  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1517  *
1518  **/
1519 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1520 {
1521         struct e1000_mac_info *mac = &hw->mac;
1522         u32 rxcw;
1523         u32 ctrl;
1524         u32 status;
1525         u32 txcw;
1526         u32 i;
1527         s32 ret_val = 0;
1528
1529         ctrl = er32(CTRL);
1530         status = er32(STATUS);
1531         er32(RXCW);
1532         /* SYNCH bit and IV bit are sticky */
1533         udelay(10);
1534         rxcw = er32(RXCW);
1535
1536         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1537                 /* Receiver is synchronized with no invalid bits.  */
1538                 switch (mac->serdes_link_state) {
1539                 case e1000_serdes_link_autoneg_complete:
1540                         if (!(status & E1000_STATUS_LU)) {
1541                                 /* We have lost link, retry autoneg before
1542                                  * reporting link failure
1543                                  */
1544                                 mac->serdes_link_state =
1545                                     e1000_serdes_link_autoneg_progress;
1546                                 mac->serdes_has_link = false;
1547                                 e_dbg("AN_UP     -> AN_PROG\n");
1548                         } else {
1549                                 mac->serdes_has_link = true;
1550                         }
1551                         break;
1552
1553                 case e1000_serdes_link_forced_up:
1554                         /* If we are receiving /C/ ordered sets, re-enable
1555                          * auto-negotiation in the TXCW register and disable
1556                          * forced link in the Device Control register in an
1557                          * attempt to auto-negotiate with our link partner.
1558                          */
1559                         if (rxcw & E1000_RXCW_C) {
1560                                 /* Enable autoneg, and unforce link up */
1561                                 ew32(TXCW, mac->txcw);
1562                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1563                                 mac->serdes_link_state =
1564                                     e1000_serdes_link_autoneg_progress;
1565                                 mac->serdes_has_link = false;
1566                                 e_dbg("FORCED_UP -> AN_PROG\n");
1567                         } else {
1568                                 mac->serdes_has_link = true;
1569                         }
1570                         break;
1571
1572                 case e1000_serdes_link_autoneg_progress:
1573                         if (rxcw & E1000_RXCW_C) {
1574                                 /* We received /C/ ordered sets, meaning the
1575                                  * link partner has autonegotiated, and we can
1576                                  * trust the Link Up (LU) status bit.
1577                                  */
1578                                 if (status & E1000_STATUS_LU) {
1579                                         mac->serdes_link_state =
1580                                             e1000_serdes_link_autoneg_complete;
1581                                         e_dbg("AN_PROG   -> AN_UP\n");
1582                                         mac->serdes_has_link = true;
1583                                 } else {
1584                                         /* Autoneg completed, but failed. */
1585                                         mac->serdes_link_state =
1586                                             e1000_serdes_link_down;
1587                                         e_dbg("AN_PROG   -> DOWN\n");
1588                                 }
1589                         } else {
1590                                 /* The link partner did not autoneg.
1591                                  * Force link up and full duplex, and change
1592                                  * state to forced.
1593                                  */
1594                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1595                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1596                                 ew32(CTRL, ctrl);
1597
1598                                 /* Configure Flow Control after link up. */
1599                                 ret_val = e1000e_config_fc_after_link_up(hw);
1600                                 if (ret_val) {
1601                                         e_dbg("Error config flow control\n");
1602                                         break;
1603                                 }
1604                                 mac->serdes_link_state =
1605                                     e1000_serdes_link_forced_up;
1606                                 mac->serdes_has_link = true;
1607                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1608                         }
1609                         break;
1610
1611                 case e1000_serdes_link_down:
1612                 default:
1613                         /* The link was down but the receiver has now gained
1614                          * valid sync, so lets see if we can bring the link
1615                          * up.
1616                          */
1617                         ew32(TXCW, mac->txcw);
1618                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1619                         mac->serdes_link_state =
1620                             e1000_serdes_link_autoneg_progress;
1621                         mac->serdes_has_link = false;
1622                         e_dbg("DOWN      -> AN_PROG\n");
1623                         break;
1624                 }
1625         } else {
1626                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1627                         mac->serdes_has_link = false;
1628                         mac->serdes_link_state = e1000_serdes_link_down;
1629                         e_dbg("ANYSTATE  -> DOWN\n");
1630                 } else {
1631                         /* Check several times, if SYNCH bit and CONFIG
1632                          * bit both are consistently 1 then simply ignore
1633                          * the IV bit and restart Autoneg
1634                          */
1635                         for (i = 0; i < AN_RETRY_COUNT; i++) {
1636                                 udelay(10);
1637                                 rxcw = er32(RXCW);
1638                                 if ((rxcw & E1000_RXCW_SYNCH) &&
1639                                     (rxcw & E1000_RXCW_C))
1640                                         continue;
1641
1642                                 if (rxcw & E1000_RXCW_IV) {
1643                                         mac->serdes_has_link = false;
1644                                         mac->serdes_link_state =
1645                                             e1000_serdes_link_down;
1646                                         e_dbg("ANYSTATE  -> DOWN\n");
1647                                         break;
1648                                 }
1649                         }
1650
1651                         if (i == AN_RETRY_COUNT) {
1652                                 txcw = er32(TXCW);
1653                                 txcw |= E1000_TXCW_ANE;
1654                                 ew32(TXCW, txcw);
1655                                 mac->serdes_link_state =
1656                                     e1000_serdes_link_autoneg_progress;
1657                                 mac->serdes_has_link = false;
1658                                 e_dbg("ANYSTATE  -> AN_PROG\n");
1659                         }
1660                 }
1661         }
1662
1663         return ret_val;
1664 }
1665
1666 /**
1667  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1668  *  @hw: pointer to the HW structure
1669  *  @data: pointer to the NVM (EEPROM)
1670  *
1671  *  Read the EEPROM for the current default LED configuration.  If the
1672  *  LED configuration is not valid, set to a valid LED configuration.
1673  **/
1674 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1675 {
1676         s32 ret_val;
1677
1678         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1679         if (ret_val) {
1680                 e_dbg("NVM Read Error\n");
1681                 return ret_val;
1682         }
1683
1684         switch (hw->mac.type) {
1685         case e1000_82573:
1686         case e1000_82574:
1687         case e1000_82583:
1688                 if (*data == ID_LED_RESERVED_F746)
1689                         *data = ID_LED_DEFAULT_82573;
1690                 break;
1691         default:
1692                 if (*data == ID_LED_RESERVED_0000 ||
1693                     *data == ID_LED_RESERVED_FFFF)
1694                         *data = ID_LED_DEFAULT;
1695                 break;
1696         }
1697
1698         return 0;
1699 }
1700
1701 /**
1702  *  e1000e_get_laa_state_82571 - Get locally administered address state
1703  *  @hw: pointer to the HW structure
1704  *
1705  *  Retrieve and return the current locally administered address state.
1706  **/
1707 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1708 {
1709         if (hw->mac.type != e1000_82571)
1710                 return false;
1711
1712         return hw->dev_spec.e82571.laa_is_present;
1713 }
1714
1715 /**
1716  *  e1000e_set_laa_state_82571 - Set locally administered address state
1717  *  @hw: pointer to the HW structure
1718  *  @state: enable/disable locally administered address
1719  *
1720  *  Enable/Disable the current locally administered address state.
1721  **/
1722 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1723 {
1724         if (hw->mac.type != e1000_82571)
1725                 return;
1726
1727         hw->dev_spec.e82571.laa_is_present = state;
1728
1729         /* If workaround is activated... */
1730         if (state)
1731                 /* Hold a copy of the LAA in RAR[14] This is done so that
1732                  * between the time RAR[0] gets clobbered and the time it
1733                  * gets fixed, the actual LAA is in one of the RARs and no
1734                  * incoming packets directed to this port are dropped.
1735                  * Eventually the LAA will be in RAR[0] and RAR[14].
1736                  */
1737                 hw->mac.ops.rar_set(hw, hw->mac.addr,
1738                                     hw->mac.rar_entry_count - 1);
1739 }
1740
1741 /**
1742  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1743  *  @hw: pointer to the HW structure
1744  *
1745  *  Verifies that the EEPROM has completed the update.  After updating the
1746  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1747  *  the checksum fix is not implemented, we need to set the bit and update
1748  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1749  *  we need to return bad checksum.
1750  **/
1751 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1752 {
1753         struct e1000_nvm_info *nvm = &hw->nvm;
1754         s32 ret_val;
1755         u16 data;
1756
1757         if (nvm->type != e1000_nvm_flash_hw)
1758                 return 0;
1759
1760         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1761          * 10h-12h.  Checksum may need to be fixed.
1762          */
1763         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1764         if (ret_val)
1765                 return ret_val;
1766
1767         if (!(data & 0x10)) {
1768                 /* Read 0x23 and check bit 15.  This bit is a 1
1769                  * when the checksum has already been fixed.  If
1770                  * the checksum is still wrong and this bit is a
1771                  * 1, we need to return bad checksum.  Otherwise,
1772                  * we need to set this bit to a 1 and update the
1773                  * checksum.
1774                  */
1775                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1776                 if (ret_val)
1777                         return ret_val;
1778
1779                 if (!(data & 0x8000)) {
1780                         data |= 0x8000;
1781                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1782                         if (ret_val)
1783                                 return ret_val;
1784                         ret_val = e1000e_update_nvm_checksum(hw);
1785                         if (ret_val)
1786                                 return ret_val;
1787                 }
1788         }
1789
1790         return 0;
1791 }
1792
1793 /**
1794  *  e1000_read_mac_addr_82571 - Read device MAC address
1795  *  @hw: pointer to the HW structure
1796  **/
1797 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1798 {
1799         if (hw->mac.type == e1000_82571) {
1800                 s32 ret_val;
1801
1802                 /* If there's an alternate MAC address place it in RAR0
1803                  * so that it will override the Si installed default perm
1804                  * address.
1805                  */
1806                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1807                 if (ret_val)
1808                         return ret_val;
1809         }
1810
1811         return e1000_read_mac_addr_generic(hw);
1812 }
1813
1814 /**
1815  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1816  * @hw: pointer to the HW structure
1817  *
1818  * In the case of a PHY power down to save power, or to turn off link during a
1819  * driver unload, or wake on lan is not enabled, remove the link.
1820  **/
1821 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1822 {
1823         struct e1000_phy_info *phy = &hw->phy;
1824         struct e1000_mac_info *mac = &hw->mac;
1825
1826         if (!phy->ops.check_reset_block)
1827                 return;
1828
1829         /* If the management interface is not enabled, then power down */
1830         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1831                 e1000_power_down_phy_copper(hw);
1832 }
1833
1834 /**
1835  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1836  *  @hw: pointer to the HW structure
1837  *
1838  *  Clears the hardware counters by reading the counter registers.
1839  **/
1840 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1841 {
1842         e1000e_clear_hw_cntrs_base(hw);
1843
1844         er32(PRC64);
1845         er32(PRC127);
1846         er32(PRC255);
1847         er32(PRC511);
1848         er32(PRC1023);
1849         er32(PRC1522);
1850         er32(PTC64);
1851         er32(PTC127);
1852         er32(PTC255);
1853         er32(PTC511);
1854         er32(PTC1023);
1855         er32(PTC1522);
1856
1857         er32(ALGNERRC);
1858         er32(RXERRC);
1859         er32(TNCRS);
1860         er32(CEXTERR);
1861         er32(TSCTC);
1862         er32(TSCTFC);
1863
1864         er32(MGTPRC);
1865         er32(MGTPDC);
1866         er32(MGTPTC);
1867
1868         er32(IAC);
1869         er32(ICRXOC);
1870
1871         er32(ICRXPTC);
1872         er32(ICRXATC);
1873         er32(ICTXPTC);
1874         er32(ICTXATC);
1875         er32(ICTXQEC);
1876         er32(ICTXQMTC);
1877         er32(ICRXDMTC);
1878 }
1879
1880 static const struct e1000_mac_operations e82571_mac_ops = {
1881         /* .check_mng_mode: mac type dependent */
1882         /* .check_for_link: media type dependent */
1883         .id_led_init            = e1000e_id_led_init_generic,
1884         .cleanup_led            = e1000e_cleanup_led_generic,
1885         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1886         .get_bus_info           = e1000e_get_bus_info_pcie,
1887         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1888         /* .get_link_up_info: media type dependent */
1889         /* .led_on: mac type dependent */
1890         .led_off                = e1000e_led_off_generic,
1891         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1892         .write_vfta             = e1000_write_vfta_generic,
1893         .clear_vfta             = e1000_clear_vfta_82571,
1894         .reset_hw               = e1000_reset_hw_82571,
1895         .init_hw                = e1000_init_hw_82571,
1896         .setup_link             = e1000_setup_link_82571,
1897         /* .setup_physical_interface: media type dependent */
1898         .setup_led              = e1000e_setup_led_generic,
1899         .config_collision_dist  = e1000e_config_collision_dist_generic,
1900         .read_mac_addr          = e1000_read_mac_addr_82571,
1901         .rar_set                = e1000e_rar_set_generic,
1902 };
1903
1904 static const struct e1000_phy_operations e82_phy_ops_igp = {
1905         .acquire                = e1000_get_hw_semaphore_82571,
1906         .check_polarity         = e1000_check_polarity_igp,
1907         .check_reset_block      = e1000e_check_reset_block_generic,
1908         .commit                 = NULL,
1909         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1910         .get_cfg_done           = e1000_get_cfg_done_82571,
1911         .get_cable_length       = e1000e_get_cable_length_igp_2,
1912         .get_info               = e1000e_get_phy_info_igp,
1913         .read_reg               = e1000e_read_phy_reg_igp,
1914         .release                = e1000_put_hw_semaphore_82571,
1915         .reset                  = e1000e_phy_hw_reset_generic,
1916         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1917         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1918         .write_reg              = e1000e_write_phy_reg_igp,
1919         .cfg_on_link_up         = NULL,
1920 };
1921
1922 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1923         .acquire                = e1000_get_hw_semaphore_82571,
1924         .check_polarity         = e1000_check_polarity_m88,
1925         .check_reset_block      = e1000e_check_reset_block_generic,
1926         .commit                 = e1000e_phy_sw_reset,
1927         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1928         .get_cfg_done           = e1000e_get_cfg_done_generic,
1929         .get_cable_length       = e1000e_get_cable_length_m88,
1930         .get_info               = e1000e_get_phy_info_m88,
1931         .read_reg               = e1000e_read_phy_reg_m88,
1932         .release                = e1000_put_hw_semaphore_82571,
1933         .reset                  = e1000e_phy_hw_reset_generic,
1934         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1935         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1936         .write_reg              = e1000e_write_phy_reg_m88,
1937         .cfg_on_link_up         = NULL,
1938 };
1939
1940 static const struct e1000_phy_operations e82_phy_ops_bm = {
1941         .acquire                = e1000_get_hw_semaphore_82571,
1942         .check_polarity         = e1000_check_polarity_m88,
1943         .check_reset_block      = e1000e_check_reset_block_generic,
1944         .commit                 = e1000e_phy_sw_reset,
1945         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1946         .get_cfg_done           = e1000e_get_cfg_done_generic,
1947         .get_cable_length       = e1000e_get_cable_length_m88,
1948         .get_info               = e1000e_get_phy_info_m88,
1949         .read_reg               = e1000e_read_phy_reg_bm2,
1950         .release                = e1000_put_hw_semaphore_82571,
1951         .reset                  = e1000e_phy_hw_reset_generic,
1952         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1953         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1954         .write_reg              = e1000e_write_phy_reg_bm2,
1955         .cfg_on_link_up         = NULL,
1956 };
1957
1958 static const struct e1000_nvm_operations e82571_nvm_ops = {
1959         .acquire                = e1000_acquire_nvm_82571,
1960         .read                   = e1000e_read_nvm_eerd,
1961         .release                = e1000_release_nvm_82571,
1962         .reload                 = e1000e_reload_nvm_generic,
1963         .update                 = e1000_update_nvm_checksum_82571,
1964         .valid_led_default      = e1000_valid_led_default_82571,
1965         .validate               = e1000_validate_nvm_checksum_82571,
1966         .write                  = e1000_write_nvm_82571,
1967 };
1968
1969 const struct e1000_info e1000_82571_info = {
1970         .mac                    = e1000_82571,
1971         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1972                                   | FLAG_HAS_JUMBO_FRAMES
1973                                   | FLAG_HAS_WOL
1974                                   | FLAG_APME_IN_CTRL3
1975                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1976                                   | FLAG_HAS_SMART_POWER_DOWN
1977                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1978                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1979                                   | FLAG_APME_CHECK_PORT_B,
1980         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1981                                   | FLAG2_DMA_BURST,
1982         .pba                    = 38,
1983         .max_hw_frame_size      = DEFAULT_JUMBO,
1984         .get_variants           = e1000_get_variants_82571,
1985         .mac_ops                = &e82571_mac_ops,
1986         .phy_ops                = &e82_phy_ops_igp,
1987         .nvm_ops                = &e82571_nvm_ops,
1988 };
1989
1990 const struct e1000_info e1000_82572_info = {
1991         .mac                    = e1000_82572,
1992         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1993                                   | FLAG_HAS_JUMBO_FRAMES
1994                                   | FLAG_HAS_WOL
1995                                   | FLAG_APME_IN_CTRL3
1996                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1997                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1998         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1999                                   | FLAG2_DMA_BURST,
2000         .pba                    = 38,
2001         .max_hw_frame_size      = DEFAULT_JUMBO,
2002         .get_variants           = e1000_get_variants_82571,
2003         .mac_ops                = &e82571_mac_ops,
2004         .phy_ops                = &e82_phy_ops_igp,
2005         .nvm_ops                = &e82571_nvm_ops,
2006 };
2007
2008 const struct e1000_info e1000_82573_info = {
2009         .mac                    = e1000_82573,
2010         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2011                                   | FLAG_HAS_WOL
2012                                   | FLAG_APME_IN_CTRL3
2013                                   | FLAG_HAS_SMART_POWER_DOWN
2014                                   | FLAG_HAS_AMT
2015                                   | FLAG_HAS_SWSM_ON_LOAD,
2016         .flags2                 = FLAG2_DISABLE_ASPM_L1
2017                                   | FLAG2_DISABLE_ASPM_L0S,
2018         .pba                    = 20,
2019         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
2020         .get_variants           = e1000_get_variants_82571,
2021         .mac_ops                = &e82571_mac_ops,
2022         .phy_ops                = &e82_phy_ops_m88,
2023         .nvm_ops                = &e82571_nvm_ops,
2024 };
2025
2026 const struct e1000_info e1000_82574_info = {
2027         .mac                    = e1000_82574,
2028         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2029                                   | FLAG_HAS_MSIX
2030                                   | FLAG_HAS_JUMBO_FRAMES
2031                                   | FLAG_HAS_WOL
2032                                   | FLAG_HAS_HW_TIMESTAMP
2033                                   | FLAG_APME_IN_CTRL3
2034                                   | FLAG_HAS_SMART_POWER_DOWN
2035                                   | FLAG_HAS_AMT
2036                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2037         .flags2                  = FLAG2_CHECK_PHY_HANG
2038                                   | FLAG2_DISABLE_ASPM_L0S
2039                                   | FLAG2_DISABLE_ASPM_L1
2040                                   | FLAG2_NO_DISABLE_RX
2041                                   | FLAG2_DMA_BURST,
2042         .pba                    = 32,
2043         .max_hw_frame_size      = DEFAULT_JUMBO,
2044         .get_variants           = e1000_get_variants_82571,
2045         .mac_ops                = &e82571_mac_ops,
2046         .phy_ops                = &e82_phy_ops_bm,
2047         .nvm_ops                = &e82571_nvm_ops,
2048 };
2049
2050 const struct e1000_info e1000_82583_info = {
2051         .mac                    = e1000_82583,
2052         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2053                                   | FLAG_HAS_WOL
2054                                   | FLAG_HAS_HW_TIMESTAMP
2055                                   | FLAG_APME_IN_CTRL3
2056                                   | FLAG_HAS_SMART_POWER_DOWN
2057                                   | FLAG_HAS_AMT
2058                                   | FLAG_HAS_JUMBO_FRAMES
2059                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2060         .flags2                 = FLAG2_DISABLE_ASPM_L0S
2061                                   | FLAG2_NO_DISABLE_RX,
2062         .pba                    = 32,
2063         .max_hw_frame_size      = DEFAULT_JUMBO,
2064         .get_variants           = e1000_get_variants_82571,
2065         .mac_ops                = &e82571_mac_ops,
2066         .phy_ops                = &e82_phy_ops_bm,
2067         .nvm_ops                = &e82571_nvm_ops,
2068 };
2069