e1000e: cleanup unusually placed comments
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 82571EB Gigabit Ethernet Controller
30  * 82571EB Gigabit Ethernet Controller (Copper)
31  * 82571EB Gigabit Ethernet Controller (Fiber)
32  * 82571EB Dual Port Gigabit Mezzanine Adapter
33  * 82571EB Quad Port Gigabit Mezzanine Adapter
34  * 82571PT Gigabit PT Quad Port Server ExpressModule
35  * 82572EI Gigabit Ethernet Controller (Copper)
36  * 82572EI Gigabit Ethernet Controller (Fiber)
37  * 82572EI Gigabit Ethernet Controller
38  * 82573V Gigabit Ethernet Controller (Copper)
39  * 82573E Gigabit Ethernet Controller (Copper)
40  * 82573L Gigabit Ethernet Controller
41  * 82574L Gigabit Network Connection
42  * 82583V Gigabit Network Connection
43  */
44
45 #include "e1000.h"
46
47 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
48 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
49 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
50 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
51 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
52                                       u16 words, u16 *data);
53 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
54 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
55 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
56 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
57 static s32 e1000_led_on_82574(struct e1000_hw *hw);
58 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
59 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
60 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
61 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
62 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
63 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
64 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
65
66 /**
67  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
68  *  @hw: pointer to the HW structure
69  **/
70 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
71 {
72         struct e1000_phy_info *phy = &hw->phy;
73         s32 ret_val;
74
75         if (hw->phy.media_type != e1000_media_type_copper) {
76                 phy->type = e1000_phy_none;
77                 return 0;
78         }
79
80         phy->addr                        = 1;
81         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
82         phy->reset_delay_us              = 100;
83
84         phy->ops.power_up                = e1000_power_up_phy_copper;
85         phy->ops.power_down              = e1000_power_down_phy_copper_82571;
86
87         switch (hw->mac.type) {
88         case e1000_82571:
89         case e1000_82572:
90                 phy->type                = e1000_phy_igp_2;
91                 break;
92         case e1000_82573:
93                 phy->type                = e1000_phy_m88;
94                 break;
95         case e1000_82574:
96         case e1000_82583:
97                 phy->type                = e1000_phy_bm;
98                 phy->ops.acquire = e1000_get_hw_semaphore_82574;
99                 phy->ops.release = e1000_put_hw_semaphore_82574;
100                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
101                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
102                 break;
103         default:
104                 return -E1000_ERR_PHY;
105                 break;
106         }
107
108         /* This can only be done after all function pointers are setup. */
109         ret_val = e1000_get_phy_id_82571(hw);
110         if (ret_val) {
111                 e_dbg("Error getting PHY ID\n");
112                 return ret_val;
113         }
114
115         /* Verify phy id */
116         switch (hw->mac.type) {
117         case e1000_82571:
118         case e1000_82572:
119                 if (phy->id != IGP01E1000_I_PHY_ID)
120                         ret_val = -E1000_ERR_PHY;
121                 break;
122         case e1000_82573:
123                 if (phy->id != M88E1111_I_PHY_ID)
124                         ret_val = -E1000_ERR_PHY;
125                 break;
126         case e1000_82574:
127         case e1000_82583:
128                 if (phy->id != BME1000_E_PHY_ID_R2)
129                         ret_val = -E1000_ERR_PHY;
130                 break;
131         default:
132                 ret_val = -E1000_ERR_PHY;
133                 break;
134         }
135
136         if (ret_val)
137                 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
138
139         return ret_val;
140 }
141
142 /**
143  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
144  *  @hw: pointer to the HW structure
145  **/
146 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
147 {
148         struct e1000_nvm_info *nvm = &hw->nvm;
149         u32 eecd = er32(EECD);
150         u16 size;
151
152         nvm->opcode_bits = 8;
153         nvm->delay_usec = 1;
154         switch (nvm->override) {
155         case e1000_nvm_override_spi_large:
156                 nvm->page_size = 32;
157                 nvm->address_bits = 16;
158                 break;
159         case e1000_nvm_override_spi_small:
160                 nvm->page_size = 8;
161                 nvm->address_bits = 8;
162                 break;
163         default:
164                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
165                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
166                 break;
167         }
168
169         switch (hw->mac.type) {
170         case e1000_82573:
171         case e1000_82574:
172         case e1000_82583:
173                 if (((eecd >> 15) & 0x3) == 0x3) {
174                         nvm->type = e1000_nvm_flash_hw;
175                         nvm->word_size = 2048;
176                         /* Autonomous Flash update bit must be cleared due
177                          * to Flash update issue.
178                          */
179                         eecd &= ~E1000_EECD_AUPDEN;
180                         ew32(EECD, eecd);
181                         break;
182                 }
183                 /* Fall Through */
184         default:
185                 nvm->type = e1000_nvm_eeprom_spi;
186                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
187                              E1000_EECD_SIZE_EX_SHIFT);
188                 /* Added to a constant, "size" becomes the left-shift value
189                  * for setting word_size.
190                  */
191                 size += NVM_WORD_SIZE_BASE_SHIFT;
192
193                 /* EEPROM access above 16k is unsupported */
194                 if (size > 14)
195                         size = 14;
196                 nvm->word_size  = 1 << size;
197                 break;
198         }
199
200         /* Function Pointers */
201         switch (hw->mac.type) {
202         case e1000_82574:
203         case e1000_82583:
204                 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
205                 nvm->ops.release = e1000_put_hw_semaphore_82574;
206                 break;
207         default:
208                 break;
209         }
210
211         return 0;
212 }
213
214 /**
215  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
216  *  @hw: pointer to the HW structure
217  **/
218 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
219 {
220         struct e1000_mac_info *mac = &hw->mac;
221         u32 swsm = 0;
222         u32 swsm2 = 0;
223         bool force_clear_smbi = false;
224
225         /* Set media type and media-dependent function pointers */
226         switch (hw->adapter->pdev->device) {
227         case E1000_DEV_ID_82571EB_FIBER:
228         case E1000_DEV_ID_82572EI_FIBER:
229         case E1000_DEV_ID_82571EB_QUAD_FIBER:
230                 hw->phy.media_type = e1000_media_type_fiber;
231                 mac->ops.setup_physical_interface =
232                     e1000_setup_fiber_serdes_link_82571;
233                 mac->ops.check_for_link = e1000e_check_for_fiber_link;
234                 mac->ops.get_link_up_info =
235                     e1000e_get_speed_and_duplex_fiber_serdes;
236                 break;
237         case E1000_DEV_ID_82571EB_SERDES:
238         case E1000_DEV_ID_82571EB_SERDES_DUAL:
239         case E1000_DEV_ID_82571EB_SERDES_QUAD:
240         case E1000_DEV_ID_82572EI_SERDES:
241                 hw->phy.media_type = e1000_media_type_internal_serdes;
242                 mac->ops.setup_physical_interface =
243                     e1000_setup_fiber_serdes_link_82571;
244                 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
245                 mac->ops.get_link_up_info =
246                     e1000e_get_speed_and_duplex_fiber_serdes;
247                 break;
248         default:
249                 hw->phy.media_type = e1000_media_type_copper;
250                 mac->ops.setup_physical_interface =
251                     e1000_setup_copper_link_82571;
252                 mac->ops.check_for_link = e1000e_check_for_copper_link;
253                 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
254                 break;
255         }
256
257         /* Set mta register count */
258         mac->mta_reg_count = 128;
259         /* Set rar entry count */
260         mac->rar_entry_count = E1000_RAR_ENTRIES;
261         /* Adaptive IFS supported */
262         mac->adaptive_ifs = true;
263
264         /* MAC-specific function pointers */
265         switch (hw->mac.type) {
266         case e1000_82573:
267                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
268                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
269                 mac->ops.led_on = e1000e_led_on_generic;
270                 mac->ops.blink_led = e1000e_blink_led_generic;
271
272                 /* FWSM register */
273                 mac->has_fwsm = true;
274                 /* ARC supported; valid only if manageability features are
275                  * enabled.
276                  */
277                 mac->arc_subsystem_valid = !!(er32(FWSM) &
278                                               E1000_FWSM_MODE_MASK);
279                 break;
280         case e1000_82574:
281         case e1000_82583:
282                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
283                 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
284                 mac->ops.led_on = e1000_led_on_82574;
285                 break;
286         default:
287                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
288                 mac->ops.led_on = e1000e_led_on_generic;
289                 mac->ops.blink_led = e1000e_blink_led_generic;
290
291                 /* FWSM register */
292                 mac->has_fwsm = true;
293                 break;
294         }
295
296         /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
297          * first NVM or PHY access. This should be done for single-port
298          * devices, and for one port only on dual-port devices so that
299          * for those devices we can still use the SMBI lock to synchronize
300          * inter-port accesses to the PHY & NVM.
301          */
302         switch (hw->mac.type) {
303         case e1000_82571:
304         case e1000_82572:
305                 swsm2 = er32(SWSM2);
306
307                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
308                         /* Only do this for the first interface on this card */
309                         ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
310                         force_clear_smbi = true;
311                 } else {
312                         force_clear_smbi = false;
313                 }
314                 break;
315         default:
316                 force_clear_smbi = true;
317                 break;
318         }
319
320         if (force_clear_smbi) {
321                 /* Make sure SWSM.SMBI is clear */
322                 swsm = er32(SWSM);
323                 if (swsm & E1000_SWSM_SMBI) {
324                         /* This bit should not be set on a first interface, and
325                          * indicates that the bootagent or EFI code has
326                          * improperly left this bit enabled
327                          */
328                         e_dbg("Please update your 82571 Bootagent\n");
329                 }
330                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
331         }
332
333         /* Initialize device specific counter of SMBI acquisition timeouts. */
334         hw->dev_spec.e82571.smb_counter = 0;
335
336         return 0;
337 }
338
339 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
340 {
341         struct e1000_hw *hw = &adapter->hw;
342         static int global_quad_port_a; /* global port a indication */
343         struct pci_dev *pdev = adapter->pdev;
344         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
345         s32 rc;
346
347         rc = e1000_init_mac_params_82571(hw);
348         if (rc)
349                 return rc;
350
351         rc = e1000_init_nvm_params_82571(hw);
352         if (rc)
353                 return rc;
354
355         rc = e1000_init_phy_params_82571(hw);
356         if (rc)
357                 return rc;
358
359         /* tag quad port adapters first, it's used below */
360         switch (pdev->device) {
361         case E1000_DEV_ID_82571EB_QUAD_COPPER:
362         case E1000_DEV_ID_82571EB_QUAD_FIBER:
363         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
364         case E1000_DEV_ID_82571PT_QUAD_COPPER:
365                 adapter->flags |= FLAG_IS_QUAD_PORT;
366                 /* mark the first port */
367                 if (global_quad_port_a == 0)
368                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
369                 /* Reset for multiple quad port adapters */
370                 global_quad_port_a++;
371                 if (global_quad_port_a == 4)
372                         global_quad_port_a = 0;
373                 break;
374         default:
375                 break;
376         }
377
378         switch (adapter->hw.mac.type) {
379         case e1000_82571:
380                 /* these dual ports don't have WoL on port B at all */
381                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
382                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
383                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
384                     (is_port_b))
385                         adapter->flags &= ~FLAG_HAS_WOL;
386                 /* quad ports only support WoL on port A */
387                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
388                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
389                         adapter->flags &= ~FLAG_HAS_WOL;
390                 /* Does not support WoL on any port */
391                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
392                         adapter->flags &= ~FLAG_HAS_WOL;
393                 break;
394         case e1000_82573:
395                 if (pdev->device == E1000_DEV_ID_82573L) {
396                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
397                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
398                 }
399                 break;
400         default:
401                 break;
402         }
403
404         return 0;
405 }
406
407 /**
408  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
409  *  @hw: pointer to the HW structure
410  *
411  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
412  *  revision in the hardware structure.
413  **/
414 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
415 {
416         struct e1000_phy_info *phy = &hw->phy;
417         s32 ret_val;
418         u16 phy_id = 0;
419
420         switch (hw->mac.type) {
421         case e1000_82571:
422         case e1000_82572:
423                 /* The 82571 firmware may still be configuring the PHY.
424                  * In this case, we cannot access the PHY until the
425                  * configuration is done.  So we explicitly set the
426                  * PHY ID.
427                  */
428                 phy->id = IGP01E1000_I_PHY_ID;
429                 break;
430         case e1000_82573:
431                 return e1000e_get_phy_id(hw);
432                 break;
433         case e1000_82574:
434         case e1000_82583:
435                 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
436                 if (ret_val)
437                         return ret_val;
438
439                 phy->id = (u32)(phy_id << 16);
440                 udelay(20);
441                 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
442                 if (ret_val)
443                         return ret_val;
444
445                 phy->id |= (u32)(phy_id);
446                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
447                 break;
448         default:
449                 return -E1000_ERR_PHY;
450                 break;
451         }
452
453         return 0;
454 }
455
456 /**
457  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
458  *  @hw: pointer to the HW structure
459  *
460  *  Acquire the HW semaphore to access the PHY or NVM
461  **/
462 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
463 {
464         u32 swsm;
465         s32 sw_timeout = hw->nvm.word_size + 1;
466         s32 fw_timeout = hw->nvm.word_size + 1;
467         s32 i = 0;
468
469         /* If we have timedout 3 times on trying to acquire
470          * the inter-port SMBI semaphore, there is old code
471          * operating on the other port, and it is not
472          * releasing SMBI. Modify the number of times that
473          * we try for the semaphore to interwork with this
474          * older code.
475          */
476         if (hw->dev_spec.e82571.smb_counter > 2)
477                 sw_timeout = 1;
478
479         /* Get the SW semaphore */
480         while (i < sw_timeout) {
481                 swsm = er32(SWSM);
482                 if (!(swsm & E1000_SWSM_SMBI))
483                         break;
484
485                 udelay(50);
486                 i++;
487         }
488
489         if (i == sw_timeout) {
490                 e_dbg("Driver can't access device - SMBI bit is set.\n");
491                 hw->dev_spec.e82571.smb_counter++;
492         }
493         /* Get the FW semaphore. */
494         for (i = 0; i < fw_timeout; i++) {
495                 swsm = er32(SWSM);
496                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
497
498                 /* Semaphore acquired if bit latched */
499                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
500                         break;
501
502                 udelay(50);
503         }
504
505         if (i == fw_timeout) {
506                 /* Release semaphores */
507                 e1000_put_hw_semaphore_82571(hw);
508                 e_dbg("Driver can't access the NVM\n");
509                 return -E1000_ERR_NVM;
510         }
511
512         return 0;
513 }
514
515 /**
516  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
517  *  @hw: pointer to the HW structure
518  *
519  *  Release hardware semaphore used to access the PHY or NVM
520  **/
521 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
522 {
523         u32 swsm;
524
525         swsm = er32(SWSM);
526         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
527         ew32(SWSM, swsm);
528 }
529
530 /**
531  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
532  *  @hw: pointer to the HW structure
533  *
534  *  Acquire the HW semaphore during reset.
535  *
536  **/
537 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
538 {
539         u32 extcnf_ctrl;
540         s32 i = 0;
541
542         extcnf_ctrl = er32(EXTCNF_CTRL);
543         do {
544                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
545                 ew32(EXTCNF_CTRL, extcnf_ctrl);
546                 extcnf_ctrl = er32(EXTCNF_CTRL);
547
548                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
549                         break;
550
551                 usleep_range(2000, 4000);
552                 i++;
553         } while (i < MDIO_OWNERSHIP_TIMEOUT);
554
555         if (i == MDIO_OWNERSHIP_TIMEOUT) {
556                 /* Release semaphores */
557                 e1000_put_hw_semaphore_82573(hw);
558                 e_dbg("Driver can't access the PHY\n");
559                 return -E1000_ERR_PHY;
560         }
561
562         return 0;
563 }
564
565 /**
566  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
567  *  @hw: pointer to the HW structure
568  *
569  *  Release hardware semaphore used during reset.
570  *
571  **/
572 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
573 {
574         u32 extcnf_ctrl;
575
576         extcnf_ctrl = er32(EXTCNF_CTRL);
577         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
578         ew32(EXTCNF_CTRL, extcnf_ctrl);
579 }
580
581 static DEFINE_MUTEX(swflag_mutex);
582
583 /**
584  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
585  *  @hw: pointer to the HW structure
586  *
587  *  Acquire the HW semaphore to access the PHY or NVM.
588  *
589  **/
590 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
591 {
592         s32 ret_val;
593
594         mutex_lock(&swflag_mutex);
595         ret_val = e1000_get_hw_semaphore_82573(hw);
596         if (ret_val)
597                 mutex_unlock(&swflag_mutex);
598         return ret_val;
599 }
600
601 /**
602  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
603  *  @hw: pointer to the HW structure
604  *
605  *  Release hardware semaphore used to access the PHY or NVM
606  *
607  **/
608 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
609 {
610         e1000_put_hw_semaphore_82573(hw);
611         mutex_unlock(&swflag_mutex);
612 }
613
614 /**
615  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
616  *  @hw: pointer to the HW structure
617  *  @active: true to enable LPLU, false to disable
618  *
619  *  Sets the LPLU D0 state according to the active flag.
620  *  LPLU will not be activated unless the
621  *  device autonegotiation advertisement meets standards of
622  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
623  *  This is a function pointer entry point only called by
624  *  PHY setup routines.
625  **/
626 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
627 {
628         u32 data = er32(POEMB);
629
630         if (active)
631                 data |= E1000_PHY_CTRL_D0A_LPLU;
632         else
633                 data &= ~E1000_PHY_CTRL_D0A_LPLU;
634
635         ew32(POEMB, data);
636         return 0;
637 }
638
639 /**
640  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
641  *  @hw: pointer to the HW structure
642  *  @active: boolean used to enable/disable lplu
643  *
644  *  The low power link up (lplu) state is set to the power management level D3
645  *  when active is true, else clear lplu for D3. LPLU
646  *  is used during Dx states where the power conservation is most important.
647  *  During driver activity, SmartSpeed should be enabled so performance is
648  *  maintained.
649  **/
650 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
651 {
652         u32 data = er32(POEMB);
653
654         if (!active) {
655                 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
656         } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
657                    (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
658                    (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
659                 data |= E1000_PHY_CTRL_NOND0A_LPLU;
660         }
661
662         ew32(POEMB, data);
663         return 0;
664 }
665
666 /**
667  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
668  *  @hw: pointer to the HW structure
669  *
670  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
671  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
672  *  for EEPROM access grant bit.  If the access grant bit is not set, release
673  *  hardware semaphore.
674  **/
675 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
676 {
677         s32 ret_val;
678
679         ret_val = e1000_get_hw_semaphore_82571(hw);
680         if (ret_val)
681                 return ret_val;
682
683         switch (hw->mac.type) {
684         case e1000_82573:
685                 break;
686         default:
687                 ret_val = e1000e_acquire_nvm(hw);
688                 break;
689         }
690
691         if (ret_val)
692                 e1000_put_hw_semaphore_82571(hw);
693
694         return ret_val;
695 }
696
697 /**
698  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
699  *  @hw: pointer to the HW structure
700  *
701  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
702  **/
703 static void e1000_release_nvm_82571(struct e1000_hw *hw)
704 {
705         e1000e_release_nvm(hw);
706         e1000_put_hw_semaphore_82571(hw);
707 }
708
709 /**
710  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
711  *  @hw: pointer to the HW structure
712  *  @offset: offset within the EEPROM to be written to
713  *  @words: number of words to write
714  *  @data: 16 bit word(s) to be written to the EEPROM
715  *
716  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
717  *
718  *  If e1000e_update_nvm_checksum is not called after this function, the
719  *  EEPROM will most likely contain an invalid checksum.
720  **/
721 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
722                                  u16 *data)
723 {
724         s32 ret_val;
725
726         switch (hw->mac.type) {
727         case e1000_82573:
728         case e1000_82574:
729         case e1000_82583:
730                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
731                 break;
732         case e1000_82571:
733         case e1000_82572:
734                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
735                 break;
736         default:
737                 ret_val = -E1000_ERR_NVM;
738                 break;
739         }
740
741         return ret_val;
742 }
743
744 /**
745  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
746  *  @hw: pointer to the HW structure
747  *
748  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
749  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
750  *  value to the EEPROM.
751  **/
752 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
753 {
754         u32 eecd;
755         s32 ret_val;
756         u16 i;
757
758         ret_val = e1000e_update_nvm_checksum_generic(hw);
759         if (ret_val)
760                 return ret_val;
761
762         /* If our nvm is an EEPROM, then we're done
763          * otherwise, commit the checksum to the flash NVM.
764          */
765         if (hw->nvm.type != e1000_nvm_flash_hw)
766                 return 0;
767
768         /* Check for pending operations. */
769         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
770                 usleep_range(1000, 2000);
771                 if (!(er32(EECD) & E1000_EECD_FLUPD))
772                         break;
773         }
774
775         if (i == E1000_FLASH_UPDATES)
776                 return -E1000_ERR_NVM;
777
778         /* Reset the firmware if using STM opcode. */
779         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
780                 /* The enabling of and the actual reset must be done
781                  * in two write cycles.
782                  */
783                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
784                 e1e_flush();
785                 ew32(HICR, E1000_HICR_FW_RESET);
786         }
787
788         /* Commit the write to flash */
789         eecd = er32(EECD) | E1000_EECD_FLUPD;
790         ew32(EECD, eecd);
791
792         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
793                 usleep_range(1000, 2000);
794                 if (!(er32(EECD) & E1000_EECD_FLUPD))
795                         break;
796         }
797
798         if (i == E1000_FLASH_UPDATES)
799                 return -E1000_ERR_NVM;
800
801         return 0;
802 }
803
804 /**
805  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
806  *  @hw: pointer to the HW structure
807  *
808  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
809  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
810  **/
811 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
812 {
813         if (hw->nvm.type == e1000_nvm_flash_hw)
814                 e1000_fix_nvm_checksum_82571(hw);
815
816         return e1000e_validate_nvm_checksum_generic(hw);
817 }
818
819 /**
820  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
821  *  @hw: pointer to the HW structure
822  *  @offset: offset within the EEPROM to be written to
823  *  @words: number of words to write
824  *  @data: 16 bit word(s) to be written to the EEPROM
825  *
826  *  After checking for invalid values, poll the EEPROM to ensure the previous
827  *  command has completed before trying to write the next word.  After write
828  *  poll for completion.
829  *
830  *  If e1000e_update_nvm_checksum is not called after this function, the
831  *  EEPROM will most likely contain an invalid checksum.
832  **/
833 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
834                                       u16 words, u16 *data)
835 {
836         struct e1000_nvm_info *nvm = &hw->nvm;
837         u32 i, eewr = 0;
838         s32 ret_val = 0;
839
840         /* A check for invalid values:  offset too large, too many words,
841          * and not enough words.
842          */
843         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
844             (words == 0)) {
845                 e_dbg("nvm parameter(s) out of bounds\n");
846                 return -E1000_ERR_NVM;
847         }
848
849         for (i = 0; i < words; i++) {
850                 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
851                         ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
852                         E1000_NVM_RW_REG_START);
853
854                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
855                 if (ret_val)
856                         break;
857
858                 ew32(EEWR, eewr);
859
860                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
861                 if (ret_val)
862                         break;
863         }
864
865         return ret_val;
866 }
867
868 /**
869  *  e1000_get_cfg_done_82571 - Poll for configuration done
870  *  @hw: pointer to the HW structure
871  *
872  *  Reads the management control register for the config done bit to be set.
873  **/
874 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
875 {
876         s32 timeout = PHY_CFG_TIMEOUT;
877
878         while (timeout) {
879                 if (er32(EEMNGCTL) &
880                     E1000_NVM_CFG_DONE_PORT_0)
881                         break;
882                 usleep_range(1000, 2000);
883                 timeout--;
884         }
885         if (!timeout) {
886                 e_dbg("MNG configuration cycle has not completed.\n");
887                 return -E1000_ERR_RESET;
888         }
889
890         return 0;
891 }
892
893 /**
894  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
895  *  @hw: pointer to the HW structure
896  *  @active: true to enable LPLU, false to disable
897  *
898  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
899  *  this function also disables smart speed and vice versa.  LPLU will not be
900  *  activated unless the device autonegotiation advertisement meets standards
901  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
902  *  pointer entry point only called by PHY setup routines.
903  **/
904 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
905 {
906         struct e1000_phy_info *phy = &hw->phy;
907         s32 ret_val;
908         u16 data;
909
910         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
911         if (ret_val)
912                 return ret_val;
913
914         if (active) {
915                 data |= IGP02E1000_PM_D0_LPLU;
916                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
917                 if (ret_val)
918                         return ret_val;
919
920                 /* When LPLU is enabled, we should disable SmartSpeed */
921                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
922                 if (ret_val)
923                         return ret_val;
924                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
925                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
926                 if (ret_val)
927                         return ret_val;
928         } else {
929                 data &= ~IGP02E1000_PM_D0_LPLU;
930                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
931                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
932                  * during Dx states where the power conservation is most
933                  * important.  During driver activity we should enable
934                  * SmartSpeed, so performance is maintained.
935                  */
936                 if (phy->smart_speed == e1000_smart_speed_on) {
937                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
938                                            &data);
939                         if (ret_val)
940                                 return ret_val;
941
942                         data |= IGP01E1000_PSCFR_SMART_SPEED;
943                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
944                                            data);
945                         if (ret_val)
946                                 return ret_val;
947                 } else if (phy->smart_speed == e1000_smart_speed_off) {
948                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
949                                            &data);
950                         if (ret_val)
951                                 return ret_val;
952
953                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
954                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
955                                            data);
956                         if (ret_val)
957                                 return ret_val;
958                 }
959         }
960
961         return 0;
962 }
963
964 /**
965  *  e1000_reset_hw_82571 - Reset hardware
966  *  @hw: pointer to the HW structure
967  *
968  *  This resets the hardware into a known state.
969  **/
970 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
971 {
972         u32 ctrl, ctrl_ext, eecd, tctl;
973         s32 ret_val;
974
975         /* Prevent the PCI-E bus from sticking if there is no TLP connection
976          * on the last TLP read/write transaction when MAC is reset.
977          */
978         ret_val = e1000e_disable_pcie_master(hw);
979         if (ret_val)
980                 e_dbg("PCI-E Master disable polling has failed.\n");
981
982         e_dbg("Masking off all interrupts\n");
983         ew32(IMC, 0xffffffff);
984
985         ew32(RCTL, 0);
986         tctl = er32(TCTL);
987         tctl &= ~E1000_TCTL_EN;
988         ew32(TCTL, tctl);
989         e1e_flush();
990
991         usleep_range(10000, 20000);
992
993         /* Must acquire the MDIO ownership before MAC reset.
994          * Ownership defaults to firmware after a reset.
995          */
996         switch (hw->mac.type) {
997         case e1000_82573:
998                 ret_val = e1000_get_hw_semaphore_82573(hw);
999                 break;
1000         case e1000_82574:
1001         case e1000_82583:
1002                 ret_val = e1000_get_hw_semaphore_82574(hw);
1003                 break;
1004         default:
1005                 break;
1006         }
1007         if (ret_val)
1008                 e_dbg("Cannot acquire MDIO ownership\n");
1009
1010         ctrl = er32(CTRL);
1011
1012         e_dbg("Issuing a global reset to MAC\n");
1013         ew32(CTRL, ctrl | E1000_CTRL_RST);
1014
1015         /* Must release MDIO ownership and mutex after MAC reset. */
1016         switch (hw->mac.type) {
1017         case e1000_82574:
1018         case e1000_82583:
1019                 e1000_put_hw_semaphore_82574(hw);
1020                 break;
1021         default:
1022                 break;
1023         }
1024
1025         if (hw->nvm.type == e1000_nvm_flash_hw) {
1026                 udelay(10);
1027                 ctrl_ext = er32(CTRL_EXT);
1028                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1029                 ew32(CTRL_EXT, ctrl_ext);
1030                 e1e_flush();
1031         }
1032
1033         ret_val = e1000e_get_auto_rd_done(hw);
1034         if (ret_val)
1035                 /* We don't want to continue accessing MAC registers. */
1036                 return ret_val;
1037
1038         /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1039          * Need to wait for Phy configuration completion before accessing
1040          * NVM and Phy.
1041          */
1042
1043         switch (hw->mac.type) {
1044         case e1000_82571:
1045         case e1000_82572:
1046                 /* REQ and GNT bits need to be cleared when using AUTO_RD
1047                  * to access the EEPROM.
1048                  */
1049                 eecd = er32(EECD);
1050                 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1051                 ew32(EECD, eecd);
1052                 break;
1053         case e1000_82573:
1054         case e1000_82574:
1055         case e1000_82583:
1056                 msleep(25);
1057                 break;
1058         default:
1059                 break;
1060         }
1061
1062         /* Clear any pending interrupt events. */
1063         ew32(IMC, 0xffffffff);
1064         er32(ICR);
1065
1066         if (hw->mac.type == e1000_82571) {
1067                 /* Install any alternate MAC address into RAR0 */
1068                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1069                 if (ret_val)
1070                         return ret_val;
1071
1072                 e1000e_set_laa_state_82571(hw, true);
1073         }
1074
1075         /* Reinitialize the 82571 serdes link state machine */
1076         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1077                 hw->mac.serdes_link_state = e1000_serdes_link_down;
1078
1079         return 0;
1080 }
1081
1082 /**
1083  *  e1000_init_hw_82571 - Initialize hardware
1084  *  @hw: pointer to the HW structure
1085  *
1086  *  This inits the hardware readying it for operation.
1087  **/
1088 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1089 {
1090         struct e1000_mac_info *mac = &hw->mac;
1091         u32 reg_data;
1092         s32 ret_val;
1093         u16 i, rar_count = mac->rar_entry_count;
1094
1095         e1000_initialize_hw_bits_82571(hw);
1096
1097         /* Initialize identification LED */
1098         ret_val = mac->ops.id_led_init(hw);
1099         /* An error is not fatal and we should not stop init due to this */
1100         if (ret_val)
1101                 e_dbg("Error initializing identification LED\n");
1102
1103         /* Disabling VLAN filtering */
1104         e_dbg("Initializing the IEEE VLAN\n");
1105         mac->ops.clear_vfta(hw);
1106
1107         /* Setup the receive address.
1108          * If, however, a locally administered address was assigned to the
1109          * 82571, we must reserve a RAR for it to work around an issue where
1110          * resetting one port will reload the MAC on the other port.
1111          */
1112         if (e1000e_get_laa_state_82571(hw))
1113                 rar_count--;
1114         e1000e_init_rx_addrs(hw, rar_count);
1115
1116         /* Zero out the Multicast HASH table */
1117         e_dbg("Zeroing the MTA\n");
1118         for (i = 0; i < mac->mta_reg_count; i++)
1119                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1120
1121         /* Setup link and flow control */
1122         ret_val = mac->ops.setup_link(hw);
1123
1124         /* Set the transmit descriptor write-back policy */
1125         reg_data = er32(TXDCTL(0));
1126         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1127                     E1000_TXDCTL_FULL_TX_DESC_WB |
1128                     E1000_TXDCTL_COUNT_DESC);
1129         ew32(TXDCTL(0), reg_data);
1130
1131         /* ...for both queues. */
1132         switch (mac->type) {
1133         case e1000_82573:
1134                 e1000e_enable_tx_pkt_filtering(hw);
1135                 /* fall through */
1136         case e1000_82574:
1137         case e1000_82583:
1138                 reg_data = er32(GCR);
1139                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1140                 ew32(GCR, reg_data);
1141                 break;
1142         default:
1143                 reg_data = er32(TXDCTL(1));
1144                 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1145                             E1000_TXDCTL_FULL_TX_DESC_WB |
1146                             E1000_TXDCTL_COUNT_DESC);
1147                 ew32(TXDCTL(1), reg_data);
1148                 break;
1149         }
1150
1151         /* Clear all of the statistics registers (clear on read).  It is
1152          * important that we do this after we have tried to establish link
1153          * because the symbol error count will increment wildly if there
1154          * is no link.
1155          */
1156         e1000_clear_hw_cntrs_82571(hw);
1157
1158         return ret_val;
1159 }
1160
1161 /**
1162  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1163  *  @hw: pointer to the HW structure
1164  *
1165  *  Initializes required hardware-dependent bits needed for normal operation.
1166  **/
1167 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1168 {
1169         u32 reg;
1170
1171         /* Transmit Descriptor Control 0 */
1172         reg = er32(TXDCTL(0));
1173         reg |= (1 << 22);
1174         ew32(TXDCTL(0), reg);
1175
1176         /* Transmit Descriptor Control 1 */
1177         reg = er32(TXDCTL(1));
1178         reg |= (1 << 22);
1179         ew32(TXDCTL(1), reg);
1180
1181         /* Transmit Arbitration Control 0 */
1182         reg = er32(TARC(0));
1183         reg &= ~(0xF << 27); /* 30:27 */
1184         switch (hw->mac.type) {
1185         case e1000_82571:
1186         case e1000_82572:
1187                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1188                 break;
1189         case e1000_82574:
1190         case e1000_82583:
1191                 reg |= (1 << 26);
1192                 break;
1193         default:
1194                 break;
1195         }
1196         ew32(TARC(0), reg);
1197
1198         /* Transmit Arbitration Control 1 */
1199         reg = er32(TARC(1));
1200         switch (hw->mac.type) {
1201         case e1000_82571:
1202         case e1000_82572:
1203                 reg &= ~((1 << 29) | (1 << 30));
1204                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1205                 if (er32(TCTL) & E1000_TCTL_MULR)
1206                         reg &= ~(1 << 28);
1207                 else
1208                         reg |= (1 << 28);
1209                 ew32(TARC(1), reg);
1210                 break;
1211         default:
1212                 break;
1213         }
1214
1215         /* Device Control */
1216         switch (hw->mac.type) {
1217         case e1000_82573:
1218         case e1000_82574:
1219         case e1000_82583:
1220                 reg = er32(CTRL);
1221                 reg &= ~(1 << 29);
1222                 ew32(CTRL, reg);
1223                 break;
1224         default:
1225                 break;
1226         }
1227
1228         /* Extended Device Control */
1229         switch (hw->mac.type) {
1230         case e1000_82573:
1231         case e1000_82574:
1232         case e1000_82583:
1233                 reg = er32(CTRL_EXT);
1234                 reg &= ~(1 << 23);
1235                 reg |= (1 << 22);
1236                 ew32(CTRL_EXT, reg);
1237                 break;
1238         default:
1239                 break;
1240         }
1241
1242         if (hw->mac.type == e1000_82571) {
1243                 reg = er32(PBA_ECC);
1244                 reg |= E1000_PBA_ECC_CORR_EN;
1245                 ew32(PBA_ECC, reg);
1246         }
1247
1248         /* Workaround for hardware errata.
1249          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1250          */
1251         if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1252                 reg = er32(CTRL_EXT);
1253                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1254                 ew32(CTRL_EXT, reg);
1255         }
1256
1257         /* Disable IPv6 extension header parsing because some malformed
1258          * IPv6 headers can hang the Rx.
1259          */
1260         if (hw->mac.type <= e1000_82573) {
1261                 reg = er32(RFCTL);
1262                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1263                 ew32(RFCTL, reg);
1264         }
1265
1266         /* PCI-Ex Control Registers */
1267         switch (hw->mac.type) {
1268         case e1000_82574:
1269         case e1000_82583:
1270                 reg = er32(GCR);
1271                 reg |= (1 << 22);
1272                 ew32(GCR, reg);
1273
1274                 /* Workaround for hardware errata.
1275                  * apply workaround for hardware errata documented in errata
1276                  * docs Fixes issue where some error prone or unreliable PCIe
1277                  * completions are occurring, particularly with ASPM enabled.
1278                  * Without fix, issue can cause Tx timeouts.
1279                  */
1280                 reg = er32(GCR2);
1281                 reg |= 1;
1282                 ew32(GCR2, reg);
1283                 break;
1284         default:
1285                 break;
1286         }
1287 }
1288
1289 /**
1290  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1291  *  @hw: pointer to the HW structure
1292  *
1293  *  Clears the register array which contains the VLAN filter table by
1294  *  setting all the values to 0.
1295  **/
1296 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1297 {
1298         u32 offset;
1299         u32 vfta_value = 0;
1300         u32 vfta_offset = 0;
1301         u32 vfta_bit_in_reg = 0;
1302
1303         switch (hw->mac.type) {
1304         case e1000_82573:
1305         case e1000_82574:
1306         case e1000_82583:
1307                 if (hw->mng_cookie.vlan_id != 0) {
1308                         /* The VFTA is a 4096b bit-field, each identifying
1309                          * a single VLAN ID.  The following operations
1310                          * determine which 32b entry (i.e. offset) into the
1311                          * array we want to set the VLAN ID (i.e. bit) of
1312                          * the manageability unit.
1313                          */
1314                         vfta_offset = (hw->mng_cookie.vlan_id >>
1315                                        E1000_VFTA_ENTRY_SHIFT) &
1316                             E1000_VFTA_ENTRY_MASK;
1317                         vfta_bit_in_reg =
1318                             1 << (hw->mng_cookie.vlan_id &
1319                                   E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1320                 }
1321                 break;
1322         default:
1323                 break;
1324         }
1325         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1326                 /* If the offset we want to clear is the same offset of the
1327                  * manageability VLAN ID, then clear all bits except that of
1328                  * the manageability unit.
1329                  */
1330                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1331                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1332                 e1e_flush();
1333         }
1334 }
1335
1336 /**
1337  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1338  *  @hw: pointer to the HW structure
1339  *
1340  *  Reads the NVM Initialization Control Word 2 and returns true
1341  *  (>0) if any manageability is enabled, else false (0).
1342  **/
1343 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1344 {
1345         u16 data;
1346
1347         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1348         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1349 }
1350
1351 /**
1352  *  e1000_led_on_82574 - Turn LED on
1353  *  @hw: pointer to the HW structure
1354  *
1355  *  Turn LED on.
1356  **/
1357 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1358 {
1359         u32 ctrl;
1360         u32 i;
1361
1362         ctrl = hw->mac.ledctl_mode2;
1363         if (!(E1000_STATUS_LU & er32(STATUS))) {
1364                 /* If no link, then turn LED on by setting the invert bit
1365                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1366                  */
1367                 for (i = 0; i < 4; i++)
1368                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1369                             E1000_LEDCTL_MODE_LED_ON)
1370                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1371         }
1372         ew32(LEDCTL, ctrl);
1373
1374         return 0;
1375 }
1376
1377 /**
1378  *  e1000_check_phy_82574 - check 82574 phy hung state
1379  *  @hw: pointer to the HW structure
1380  *
1381  *  Returns whether phy is hung or not
1382  **/
1383 bool e1000_check_phy_82574(struct e1000_hw *hw)
1384 {
1385         u16 status_1kbt = 0;
1386         u16 receive_errors = 0;
1387         s32 ret_val;
1388
1389         /* Read PHY Receive Error counter first, if its is max - all F's then
1390          * read the Base1000T status register If both are max then PHY is hung.
1391          */
1392         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1393         if (ret_val)
1394                 return false;
1395         if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
1396                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1397                 if (ret_val)
1398                         return false;
1399                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1400                     E1000_IDLE_ERROR_COUNT_MASK)
1401                         return true;
1402         }
1403
1404         return false;
1405 }
1406
1407 /**
1408  *  e1000_setup_link_82571 - Setup flow control and link settings
1409  *  @hw: pointer to the HW structure
1410  *
1411  *  Determines which flow control settings to use, then configures flow
1412  *  control.  Calls the appropriate media-specific link configuration
1413  *  function.  Assuming the adapter has a valid link partner, a valid link
1414  *  should be established.  Assumes the hardware has previously been reset
1415  *  and the transmitter and receiver are not enabled.
1416  **/
1417 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1418 {
1419         /* 82573 does not have a word in the NVM to determine
1420          * the default flow control setting, so we explicitly
1421          * set it to full.
1422          */
1423         switch (hw->mac.type) {
1424         case e1000_82573:
1425         case e1000_82574:
1426         case e1000_82583:
1427                 if (hw->fc.requested_mode == e1000_fc_default)
1428                         hw->fc.requested_mode = e1000_fc_full;
1429                 break;
1430         default:
1431                 break;
1432         }
1433
1434         return e1000e_setup_link_generic(hw);
1435 }
1436
1437 /**
1438  *  e1000_setup_copper_link_82571 - Configure copper link settings
1439  *  @hw: pointer to the HW structure
1440  *
1441  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1442  *  for link, once link is established calls to configure collision distance
1443  *  and flow control are called.
1444  **/
1445 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1446 {
1447         u32 ctrl;
1448         s32 ret_val;
1449
1450         ctrl = er32(CTRL);
1451         ctrl |= E1000_CTRL_SLU;
1452         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1453         ew32(CTRL, ctrl);
1454
1455         switch (hw->phy.type) {
1456         case e1000_phy_m88:
1457         case e1000_phy_bm:
1458                 ret_val = e1000e_copper_link_setup_m88(hw);
1459                 break;
1460         case e1000_phy_igp_2:
1461                 ret_val = e1000e_copper_link_setup_igp(hw);
1462                 break;
1463         default:
1464                 return -E1000_ERR_PHY;
1465                 break;
1466         }
1467
1468         if (ret_val)
1469                 return ret_val;
1470
1471         return e1000e_setup_copper_link(hw);
1472 }
1473
1474 /**
1475  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1476  *  @hw: pointer to the HW structure
1477  *
1478  *  Configures collision distance and flow control for fiber and serdes links.
1479  *  Upon successful setup, poll for link.
1480  **/
1481 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1482 {
1483         switch (hw->mac.type) {
1484         case e1000_82571:
1485         case e1000_82572:
1486                 /* If SerDes loopback mode is entered, there is no form
1487                  * of reset to take the adapter out of that mode.  So we
1488                  * have to explicitly take the adapter out of loopback
1489                  * mode.  This prevents drivers from twiddling their thumbs
1490                  * if another tool failed to take it out of loopback mode.
1491                  */
1492                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1493                 break;
1494         default:
1495                 break;
1496         }
1497
1498         return e1000e_setup_fiber_serdes_link(hw);
1499 }
1500
1501 /**
1502  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1503  *  @hw: pointer to the HW structure
1504  *
1505  *  Reports the link state as up or down.
1506  *
1507  *  If autonegotiation is supported by the link partner, the link state is
1508  *  determined by the result of autonegotiation. This is the most likely case.
1509  *  If autonegotiation is not supported by the link partner, and the link
1510  *  has a valid signal, force the link up.
1511  *
1512  *  The link state is represented internally here by 4 states:
1513  *
1514  *  1) down
1515  *  2) autoneg_progress
1516  *  3) autoneg_complete (the link successfully autonegotiated)
1517  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1518  *
1519  **/
1520 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1521 {
1522         struct e1000_mac_info *mac = &hw->mac;
1523         u32 rxcw;
1524         u32 ctrl;
1525         u32 status;
1526         u32 txcw;
1527         u32 i;
1528         s32 ret_val = 0;
1529
1530         ctrl = er32(CTRL);
1531         status = er32(STATUS);
1532         er32(RXCW);
1533         /* SYNCH bit and IV bit are sticky */
1534         udelay(10);
1535         rxcw = er32(RXCW);
1536
1537         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1538                 /* Receiver is synchronized with no invalid bits.  */
1539                 switch (mac->serdes_link_state) {
1540                 case e1000_serdes_link_autoneg_complete:
1541                         if (!(status & E1000_STATUS_LU)) {
1542                                 /* We have lost link, retry autoneg before
1543                                  * reporting link failure
1544                                  */
1545                                 mac->serdes_link_state =
1546                                     e1000_serdes_link_autoneg_progress;
1547                                 mac->serdes_has_link = false;
1548                                 e_dbg("AN_UP     -> AN_PROG\n");
1549                         } else {
1550                                 mac->serdes_has_link = true;
1551                         }
1552                         break;
1553
1554                 case e1000_serdes_link_forced_up:
1555                         /* If we are receiving /C/ ordered sets, re-enable
1556                          * auto-negotiation in the TXCW register and disable
1557                          * forced link in the Device Control register in an
1558                          * attempt to auto-negotiate with our link partner.
1559                          */
1560                         if (rxcw & E1000_RXCW_C) {
1561                                 /* Enable autoneg, and unforce link up */
1562                                 ew32(TXCW, mac->txcw);
1563                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1564                                 mac->serdes_link_state =
1565                                     e1000_serdes_link_autoneg_progress;
1566                                 mac->serdes_has_link = false;
1567                                 e_dbg("FORCED_UP -> AN_PROG\n");
1568                         } else {
1569                                 mac->serdes_has_link = true;
1570                         }
1571                         break;
1572
1573                 case e1000_serdes_link_autoneg_progress:
1574                         if (rxcw & E1000_RXCW_C) {
1575                                 /* We received /C/ ordered sets, meaning the
1576                                  * link partner has autonegotiated, and we can
1577                                  * trust the Link Up (LU) status bit.
1578                                  */
1579                                 if (status & E1000_STATUS_LU) {
1580                                         mac->serdes_link_state =
1581                                             e1000_serdes_link_autoneg_complete;
1582                                         e_dbg("AN_PROG   -> AN_UP\n");
1583                                         mac->serdes_has_link = true;
1584                                 } else {
1585                                         /* Autoneg completed, but failed. */
1586                                         mac->serdes_link_state =
1587                                             e1000_serdes_link_down;
1588                                         e_dbg("AN_PROG   -> DOWN\n");
1589                                 }
1590                         } else {
1591                                 /* The link partner did not autoneg.
1592                                  * Force link up and full duplex, and change
1593                                  * state to forced.
1594                                  */
1595                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1596                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1597                                 ew32(CTRL, ctrl);
1598
1599                                 /* Configure Flow Control after link up. */
1600                                 ret_val = e1000e_config_fc_after_link_up(hw);
1601                                 if (ret_val) {
1602                                         e_dbg("Error config flow control\n");
1603                                         break;
1604                                 }
1605                                 mac->serdes_link_state =
1606                                     e1000_serdes_link_forced_up;
1607                                 mac->serdes_has_link = true;
1608                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1609                         }
1610                         break;
1611
1612                 case e1000_serdes_link_down:
1613                 default:
1614                         /* The link was down but the receiver has now gained
1615                          * valid sync, so lets see if we can bring the link
1616                          * up.
1617                          */
1618                         ew32(TXCW, mac->txcw);
1619                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1620                         mac->serdes_link_state =
1621                             e1000_serdes_link_autoneg_progress;
1622                         mac->serdes_has_link = false;
1623                         e_dbg("DOWN      -> AN_PROG\n");
1624                         break;
1625                 }
1626         } else {
1627                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1628                         mac->serdes_has_link = false;
1629                         mac->serdes_link_state = e1000_serdes_link_down;
1630                         e_dbg("ANYSTATE  -> DOWN\n");
1631                 } else {
1632                         /* Check several times, if SYNCH bit and CONFIG
1633                          * bit both are consistently 1 then simply ignore
1634                          * the IV bit and restart Autoneg
1635                          */
1636                         for (i = 0; i < AN_RETRY_COUNT; i++) {
1637                                 udelay(10);
1638                                 rxcw = er32(RXCW);
1639                                 if ((rxcw & E1000_RXCW_SYNCH) &&
1640                                     (rxcw & E1000_RXCW_C))
1641                                         continue;
1642
1643                                 if (rxcw & E1000_RXCW_IV) {
1644                                         mac->serdes_has_link = false;
1645                                         mac->serdes_link_state =
1646                                             e1000_serdes_link_down;
1647                                         e_dbg("ANYSTATE  -> DOWN\n");
1648                                         break;
1649                                 }
1650                         }
1651
1652                         if (i == AN_RETRY_COUNT) {
1653                                 txcw = er32(TXCW);
1654                                 txcw |= E1000_TXCW_ANE;
1655                                 ew32(TXCW, txcw);
1656                                 mac->serdes_link_state =
1657                                     e1000_serdes_link_autoneg_progress;
1658                                 mac->serdes_has_link = false;
1659                                 e_dbg("ANYSTATE  -> AN_PROG\n");
1660                         }
1661                 }
1662         }
1663
1664         return ret_val;
1665 }
1666
1667 /**
1668  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1669  *  @hw: pointer to the HW structure
1670  *  @data: pointer to the NVM (EEPROM)
1671  *
1672  *  Read the EEPROM for the current default LED configuration.  If the
1673  *  LED configuration is not valid, set to a valid LED configuration.
1674  **/
1675 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1676 {
1677         s32 ret_val;
1678
1679         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1680         if (ret_val) {
1681                 e_dbg("NVM Read Error\n");
1682                 return ret_val;
1683         }
1684
1685         switch (hw->mac.type) {
1686         case e1000_82573:
1687         case e1000_82574:
1688         case e1000_82583:
1689                 if (*data == ID_LED_RESERVED_F746)
1690                         *data = ID_LED_DEFAULT_82573;
1691                 break;
1692         default:
1693                 if (*data == ID_LED_RESERVED_0000 ||
1694                     *data == ID_LED_RESERVED_FFFF)
1695                         *data = ID_LED_DEFAULT;
1696                 break;
1697         }
1698
1699         return 0;
1700 }
1701
1702 /**
1703  *  e1000e_get_laa_state_82571 - Get locally administered address state
1704  *  @hw: pointer to the HW structure
1705  *
1706  *  Retrieve and return the current locally administered address state.
1707  **/
1708 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1709 {
1710         if (hw->mac.type != e1000_82571)
1711                 return false;
1712
1713         return hw->dev_spec.e82571.laa_is_present;
1714 }
1715
1716 /**
1717  *  e1000e_set_laa_state_82571 - Set locally administered address state
1718  *  @hw: pointer to the HW structure
1719  *  @state: enable/disable locally administered address
1720  *
1721  *  Enable/Disable the current locally administered address state.
1722  **/
1723 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1724 {
1725         if (hw->mac.type != e1000_82571)
1726                 return;
1727
1728         hw->dev_spec.e82571.laa_is_present = state;
1729
1730         /* If workaround is activated... */
1731         if (state)
1732                 /* Hold a copy of the LAA in RAR[14] This is done so that
1733                  * between the time RAR[0] gets clobbered and the time it
1734                  * gets fixed, the actual LAA is in one of the RARs and no
1735                  * incoming packets directed to this port are dropped.
1736                  * Eventually the LAA will be in RAR[0] and RAR[14].
1737                  */
1738                 hw->mac.ops.rar_set(hw, hw->mac.addr,
1739                                     hw->mac.rar_entry_count - 1);
1740 }
1741
1742 /**
1743  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1744  *  @hw: pointer to the HW structure
1745  *
1746  *  Verifies that the EEPROM has completed the update.  After updating the
1747  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1748  *  the checksum fix is not implemented, we need to set the bit and update
1749  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1750  *  we need to return bad checksum.
1751  **/
1752 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1753 {
1754         struct e1000_nvm_info *nvm = &hw->nvm;
1755         s32 ret_val;
1756         u16 data;
1757
1758         if (nvm->type != e1000_nvm_flash_hw)
1759                 return 0;
1760
1761         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1762          * 10h-12h.  Checksum may need to be fixed.
1763          */
1764         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1765         if (ret_val)
1766                 return ret_val;
1767
1768         if (!(data & 0x10)) {
1769                 /* Read 0x23 and check bit 15.  This bit is a 1
1770                  * when the checksum has already been fixed.  If
1771                  * the checksum is still wrong and this bit is a
1772                  * 1, we need to return bad checksum.  Otherwise,
1773                  * we need to set this bit to a 1 and update the
1774                  * checksum.
1775                  */
1776                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1777                 if (ret_val)
1778                         return ret_val;
1779
1780                 if (!(data & 0x8000)) {
1781                         data |= 0x8000;
1782                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1783                         if (ret_val)
1784                                 return ret_val;
1785                         ret_val = e1000e_update_nvm_checksum(hw);
1786                         if (ret_val)
1787                                 return ret_val;
1788                 }
1789         }
1790
1791         return 0;
1792 }
1793
1794 /**
1795  *  e1000_read_mac_addr_82571 - Read device MAC address
1796  *  @hw: pointer to the HW structure
1797  **/
1798 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1799 {
1800         if (hw->mac.type == e1000_82571) {
1801                 s32 ret_val;
1802
1803                 /* If there's an alternate MAC address place it in RAR0
1804                  * so that it will override the Si installed default perm
1805                  * address.
1806                  */
1807                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1808                 if (ret_val)
1809                         return ret_val;
1810         }
1811
1812         return e1000_read_mac_addr_generic(hw);
1813 }
1814
1815 /**
1816  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1817  * @hw: pointer to the HW structure
1818  *
1819  * In the case of a PHY power down to save power, or to turn off link during a
1820  * driver unload, or wake on lan is not enabled, remove the link.
1821  **/
1822 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1823 {
1824         struct e1000_phy_info *phy = &hw->phy;
1825         struct e1000_mac_info *mac = &hw->mac;
1826
1827         if (!phy->ops.check_reset_block)
1828                 return;
1829
1830         /* If the management interface is not enabled, then power down */
1831         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1832                 e1000_power_down_phy_copper(hw);
1833 }
1834
1835 /**
1836  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1837  *  @hw: pointer to the HW structure
1838  *
1839  *  Clears the hardware counters by reading the counter registers.
1840  **/
1841 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1842 {
1843         e1000e_clear_hw_cntrs_base(hw);
1844
1845         er32(PRC64);
1846         er32(PRC127);
1847         er32(PRC255);
1848         er32(PRC511);
1849         er32(PRC1023);
1850         er32(PRC1522);
1851         er32(PTC64);
1852         er32(PTC127);
1853         er32(PTC255);
1854         er32(PTC511);
1855         er32(PTC1023);
1856         er32(PTC1522);
1857
1858         er32(ALGNERRC);
1859         er32(RXERRC);
1860         er32(TNCRS);
1861         er32(CEXTERR);
1862         er32(TSCTC);
1863         er32(TSCTFC);
1864
1865         er32(MGTPRC);
1866         er32(MGTPDC);
1867         er32(MGTPTC);
1868
1869         er32(IAC);
1870         er32(ICRXOC);
1871
1872         er32(ICRXPTC);
1873         er32(ICRXATC);
1874         er32(ICTXPTC);
1875         er32(ICTXATC);
1876         er32(ICTXQEC);
1877         er32(ICTXQMTC);
1878         er32(ICRXDMTC);
1879 }
1880
1881 static const struct e1000_mac_operations e82571_mac_ops = {
1882         /* .check_mng_mode: mac type dependent */
1883         /* .check_for_link: media type dependent */
1884         .id_led_init            = e1000e_id_led_init_generic,
1885         .cleanup_led            = e1000e_cleanup_led_generic,
1886         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1887         .get_bus_info           = e1000e_get_bus_info_pcie,
1888         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1889         /* .get_link_up_info: media type dependent */
1890         /* .led_on: mac type dependent */
1891         .led_off                = e1000e_led_off_generic,
1892         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1893         .write_vfta             = e1000_write_vfta_generic,
1894         .clear_vfta             = e1000_clear_vfta_82571,
1895         .reset_hw               = e1000_reset_hw_82571,
1896         .init_hw                = e1000_init_hw_82571,
1897         .setup_link             = e1000_setup_link_82571,
1898         /* .setup_physical_interface: media type dependent */
1899         .setup_led              = e1000e_setup_led_generic,
1900         .config_collision_dist  = e1000e_config_collision_dist_generic,
1901         .read_mac_addr          = e1000_read_mac_addr_82571,
1902         .rar_set                = e1000e_rar_set_generic,
1903 };
1904
1905 static const struct e1000_phy_operations e82_phy_ops_igp = {
1906         .acquire                = e1000_get_hw_semaphore_82571,
1907         .check_polarity         = e1000_check_polarity_igp,
1908         .check_reset_block      = e1000e_check_reset_block_generic,
1909         .commit                 = NULL,
1910         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1911         .get_cfg_done           = e1000_get_cfg_done_82571,
1912         .get_cable_length       = e1000e_get_cable_length_igp_2,
1913         .get_info               = e1000e_get_phy_info_igp,
1914         .read_reg               = e1000e_read_phy_reg_igp,
1915         .release                = e1000_put_hw_semaphore_82571,
1916         .reset                  = e1000e_phy_hw_reset_generic,
1917         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1918         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1919         .write_reg              = e1000e_write_phy_reg_igp,
1920         .cfg_on_link_up         = NULL,
1921 };
1922
1923 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1924         .acquire                = e1000_get_hw_semaphore_82571,
1925         .check_polarity         = e1000_check_polarity_m88,
1926         .check_reset_block      = e1000e_check_reset_block_generic,
1927         .commit                 = e1000e_phy_sw_reset,
1928         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1929         .get_cfg_done           = e1000e_get_cfg_done_generic,
1930         .get_cable_length       = e1000e_get_cable_length_m88,
1931         .get_info               = e1000e_get_phy_info_m88,
1932         .read_reg               = e1000e_read_phy_reg_m88,
1933         .release                = e1000_put_hw_semaphore_82571,
1934         .reset                  = e1000e_phy_hw_reset_generic,
1935         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1936         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1937         .write_reg              = e1000e_write_phy_reg_m88,
1938         .cfg_on_link_up         = NULL,
1939 };
1940
1941 static const struct e1000_phy_operations e82_phy_ops_bm = {
1942         .acquire                = e1000_get_hw_semaphore_82571,
1943         .check_polarity         = e1000_check_polarity_m88,
1944         .check_reset_block      = e1000e_check_reset_block_generic,
1945         .commit                 = e1000e_phy_sw_reset,
1946         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1947         .get_cfg_done           = e1000e_get_cfg_done_generic,
1948         .get_cable_length       = e1000e_get_cable_length_m88,
1949         .get_info               = e1000e_get_phy_info_m88,
1950         .read_reg               = e1000e_read_phy_reg_bm2,
1951         .release                = e1000_put_hw_semaphore_82571,
1952         .reset                  = e1000e_phy_hw_reset_generic,
1953         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1954         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1955         .write_reg              = e1000e_write_phy_reg_bm2,
1956         .cfg_on_link_up         = NULL,
1957 };
1958
1959 static const struct e1000_nvm_operations e82571_nvm_ops = {
1960         .acquire                = e1000_acquire_nvm_82571,
1961         .read                   = e1000e_read_nvm_eerd,
1962         .release                = e1000_release_nvm_82571,
1963         .reload                 = e1000e_reload_nvm_generic,
1964         .update                 = e1000_update_nvm_checksum_82571,
1965         .valid_led_default      = e1000_valid_led_default_82571,
1966         .validate               = e1000_validate_nvm_checksum_82571,
1967         .write                  = e1000_write_nvm_82571,
1968 };
1969
1970 const struct e1000_info e1000_82571_info = {
1971         .mac                    = e1000_82571,
1972         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1973                                   | FLAG_HAS_JUMBO_FRAMES
1974                                   | FLAG_HAS_WOL
1975                                   | FLAG_APME_IN_CTRL3
1976                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1977                                   | FLAG_HAS_SMART_POWER_DOWN
1978                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1979                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1980                                   | FLAG_APME_CHECK_PORT_B,
1981         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1982                                   | FLAG2_DMA_BURST,
1983         .pba                    = 38,
1984         .max_hw_frame_size      = DEFAULT_JUMBO,
1985         .get_variants           = e1000_get_variants_82571,
1986         .mac_ops                = &e82571_mac_ops,
1987         .phy_ops                = &e82_phy_ops_igp,
1988         .nvm_ops                = &e82571_nvm_ops,
1989 };
1990
1991 const struct e1000_info e1000_82572_info = {
1992         .mac                    = e1000_82572,
1993         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1994                                   | FLAG_HAS_JUMBO_FRAMES
1995                                   | FLAG_HAS_WOL
1996                                   | FLAG_APME_IN_CTRL3
1997                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1998                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1999         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2000                                   | FLAG2_DMA_BURST,
2001         .pba                    = 38,
2002         .max_hw_frame_size      = DEFAULT_JUMBO,
2003         .get_variants           = e1000_get_variants_82571,
2004         .mac_ops                = &e82571_mac_ops,
2005         .phy_ops                = &e82_phy_ops_igp,
2006         .nvm_ops                = &e82571_nvm_ops,
2007 };
2008
2009 const struct e1000_info e1000_82573_info = {
2010         .mac                    = e1000_82573,
2011         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2012                                   | FLAG_HAS_WOL
2013                                   | FLAG_APME_IN_CTRL3
2014                                   | FLAG_HAS_SMART_POWER_DOWN
2015                                   | FLAG_HAS_AMT
2016                                   | FLAG_HAS_SWSM_ON_LOAD,
2017         .flags2                 = FLAG2_DISABLE_ASPM_L1
2018                                   | FLAG2_DISABLE_ASPM_L0S,
2019         .pba                    = 20,
2020         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
2021         .get_variants           = e1000_get_variants_82571,
2022         .mac_ops                = &e82571_mac_ops,
2023         .phy_ops                = &e82_phy_ops_m88,
2024         .nvm_ops                = &e82571_nvm_ops,
2025 };
2026
2027 const struct e1000_info e1000_82574_info = {
2028         .mac                    = e1000_82574,
2029         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2030                                   | FLAG_HAS_MSIX
2031                                   | FLAG_HAS_JUMBO_FRAMES
2032                                   | FLAG_HAS_WOL
2033                                   | FLAG_HAS_HW_TIMESTAMP
2034                                   | FLAG_APME_IN_CTRL3
2035                                   | FLAG_HAS_SMART_POWER_DOWN
2036                                   | FLAG_HAS_AMT
2037                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2038         .flags2                  = FLAG2_CHECK_PHY_HANG
2039                                   | FLAG2_DISABLE_ASPM_L0S
2040                                   | FLAG2_DISABLE_ASPM_L1
2041                                   | FLAG2_NO_DISABLE_RX
2042                                   | FLAG2_DMA_BURST,
2043         .pba                    = 32,
2044         .max_hw_frame_size      = DEFAULT_JUMBO,
2045         .get_variants           = e1000_get_variants_82571,
2046         .mac_ops                = &e82571_mac_ops,
2047         .phy_ops                = &e82_phy_ops_bm,
2048         .nvm_ops                = &e82571_nvm_ops,
2049 };
2050
2051 const struct e1000_info e1000_82583_info = {
2052         .mac                    = e1000_82583,
2053         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2054                                   | FLAG_HAS_WOL
2055                                   | FLAG_HAS_HW_TIMESTAMP
2056                                   | FLAG_APME_IN_CTRL3
2057                                   | FLAG_HAS_SMART_POWER_DOWN
2058                                   | FLAG_HAS_AMT
2059                                   | FLAG_HAS_JUMBO_FRAMES
2060                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2061         .flags2                 = FLAG2_DISABLE_ASPM_L0S
2062                                   | FLAG2_NO_DISABLE_RX,
2063         .pba                    = 32,
2064         .max_hw_frame_size      = DEFAULT_JUMBO,
2065         .get_variants           = e1000_get_variants_82571,
2066         .mac_ops                = &e82571_mac_ops,
2067         .phy_ops                = &e82_phy_ops_bm,
2068         .nvm_ops                = &e82571_nvm_ops,
2069 };