Linux 3.9-rc8
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mdio.h>
39 #include <linux/pm_runtime.h>
40
41 #include "e1000.h"
42
43 enum {NETDEV_STATS, E1000_STATS};
44
45 struct e1000_stats {
46         char stat_string[ETH_GSTRING_LEN];
47         int type;
48         int sizeof_stat;
49         int stat_offset;
50 };
51
52 #define E1000_STAT(str, m) { \
53                 .stat_string = str, \
54                 .type = E1000_STATS, \
55                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
56                 .stat_offset = offsetof(struct e1000_adapter, m) }
57 #define E1000_NETDEV_STAT(str, m) { \
58                 .stat_string = str, \
59                 .type = NETDEV_STATS, \
60                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
61                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
62
63 static const struct e1000_stats e1000_gstrings_stats[] = {
64         E1000_STAT("rx_packets", stats.gprc),
65         E1000_STAT("tx_packets", stats.gptc),
66         E1000_STAT("rx_bytes", stats.gorc),
67         E1000_STAT("tx_bytes", stats.gotc),
68         E1000_STAT("rx_broadcast", stats.bprc),
69         E1000_STAT("tx_broadcast", stats.bptc),
70         E1000_STAT("rx_multicast", stats.mprc),
71         E1000_STAT("tx_multicast", stats.mptc),
72         E1000_NETDEV_STAT("rx_errors", rx_errors),
73         E1000_NETDEV_STAT("tx_errors", tx_errors),
74         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
75         E1000_STAT("multicast", stats.mprc),
76         E1000_STAT("collisions", stats.colc),
77         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
78         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
79         E1000_STAT("rx_crc_errors", stats.crcerrs),
80         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
81         E1000_STAT("rx_no_buffer_count", stats.rnbc),
82         E1000_STAT("rx_missed_errors", stats.mpc),
83         E1000_STAT("tx_aborted_errors", stats.ecol),
84         E1000_STAT("tx_carrier_errors", stats.tncrs),
85         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
86         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
87         E1000_STAT("tx_window_errors", stats.latecol),
88         E1000_STAT("tx_abort_late_coll", stats.latecol),
89         E1000_STAT("tx_deferred_ok", stats.dc),
90         E1000_STAT("tx_single_coll_ok", stats.scc),
91         E1000_STAT("tx_multi_coll_ok", stats.mcc),
92         E1000_STAT("tx_timeout_count", tx_timeout_count),
93         E1000_STAT("tx_restart_queue", restart_queue),
94         E1000_STAT("rx_long_length_errors", stats.roc),
95         E1000_STAT("rx_short_length_errors", stats.ruc),
96         E1000_STAT("rx_align_errors", stats.algnerrc),
97         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
98         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
99         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
100         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
101         E1000_STAT("tx_flow_control_xon", stats.xontxc),
102         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
103         E1000_STAT("rx_csum_offload_good", hw_csum_good),
104         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
105         E1000_STAT("rx_header_split", rx_hdr_split),
106         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
107         E1000_STAT("tx_smbus", stats.mgptc),
108         E1000_STAT("rx_smbus", stats.mgprc),
109         E1000_STAT("dropped_smbus", stats.mgpdc),
110         E1000_STAT("rx_dma_failed", rx_dma_failed),
111         E1000_STAT("tx_dma_failed", tx_dma_failed),
112         E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
113         E1000_STAT("uncorr_ecc_errors", uncorr_errors),
114         E1000_STAT("corr_ecc_errors", corr_errors),
115 };
116
117 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
118 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
119 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
120         "Register test  (offline)", "Eeprom test    (offline)",
121         "Interrupt test (offline)", "Loopback test  (offline)",
122         "Link test   (on/offline)"
123 };
124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
125
126 static int e1000_get_settings(struct net_device *netdev,
127                               struct ethtool_cmd *ecmd)
128 {
129         struct e1000_adapter *adapter = netdev_priv(netdev);
130         struct e1000_hw *hw = &adapter->hw;
131         u32 speed;
132
133         if (hw->phy.media_type == e1000_media_type_copper) {
134                 ecmd->supported = (SUPPORTED_10baseT_Half |
135                                    SUPPORTED_10baseT_Full |
136                                    SUPPORTED_100baseT_Half |
137                                    SUPPORTED_100baseT_Full |
138                                    SUPPORTED_1000baseT_Full |
139                                    SUPPORTED_Autoneg |
140                                    SUPPORTED_TP);
141                 if (hw->phy.type == e1000_phy_ife)
142                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
143                 ecmd->advertising = ADVERTISED_TP;
144
145                 if (hw->mac.autoneg == 1) {
146                         ecmd->advertising |= ADVERTISED_Autoneg;
147                         /* the e1000 autoneg seems to match ethtool nicely */
148                         ecmd->advertising |= hw->phy.autoneg_advertised;
149                 }
150
151                 ecmd->port = PORT_TP;
152                 ecmd->phy_address = hw->phy.addr;
153                 ecmd->transceiver = XCVR_INTERNAL;
154
155         } else {
156                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
157                                      SUPPORTED_FIBRE |
158                                      SUPPORTED_Autoneg);
159
160                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
161                                      ADVERTISED_FIBRE |
162                                      ADVERTISED_Autoneg);
163
164                 ecmd->port = PORT_FIBRE;
165                 ecmd->transceiver = XCVR_EXTERNAL;
166         }
167
168         speed = -1;
169         ecmd->duplex = -1;
170
171         if (netif_running(netdev)) {
172                 if (netif_carrier_ok(netdev)) {
173                         speed = adapter->link_speed;
174                         ecmd->duplex = adapter->link_duplex - 1;
175                 }
176         } else {
177                 u32 status = er32(STATUS);
178                 if (status & E1000_STATUS_LU) {
179                         if (status & E1000_STATUS_SPEED_1000)
180                                 speed = SPEED_1000;
181                         else if (status & E1000_STATUS_SPEED_100)
182                                 speed = SPEED_100;
183                         else
184                                 speed = SPEED_10;
185
186                         if (status & E1000_STATUS_FD)
187                                 ecmd->duplex = DUPLEX_FULL;
188                         else
189                                 ecmd->duplex = DUPLEX_HALF;
190                 }
191         }
192
193         ethtool_cmd_speed_set(ecmd, speed);
194         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
195                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
196
197         /* MDI-X => 2; MDI =>1; Invalid =>0 */
198         if ((hw->phy.media_type == e1000_media_type_copper) &&
199             netif_carrier_ok(netdev))
200                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
201                                                       ETH_TP_MDI;
202         else
203                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
204
205         if (hw->phy.mdix == AUTO_ALL_MODES)
206                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
207         else
208                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
209
210         return 0;
211 }
212
213 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
214 {
215         struct e1000_mac_info *mac = &adapter->hw.mac;
216
217         mac->autoneg = 0;
218
219         /* Make sure dplx is at most 1 bit and lsb of speed is not set
220          * for the switch() below to work
221          */
222         if ((spd & 1) || (dplx & ~1))
223                 goto err_inval;
224
225         /* Fiber NICs only allow 1000 gbps Full duplex */
226         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
227             spd != SPEED_1000 &&
228             dplx != DUPLEX_FULL) {
229                 goto err_inval;
230         }
231
232         switch (spd + dplx) {
233         case SPEED_10 + DUPLEX_HALF:
234                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
235                 break;
236         case SPEED_10 + DUPLEX_FULL:
237                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
238                 break;
239         case SPEED_100 + DUPLEX_HALF:
240                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
241                 break;
242         case SPEED_100 + DUPLEX_FULL:
243                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
244                 break;
245         case SPEED_1000 + DUPLEX_FULL:
246                 mac->autoneg = 1;
247                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
248                 break;
249         case SPEED_1000 + DUPLEX_HALF: /* not supported */
250         default:
251                 goto err_inval;
252         }
253
254         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
255         adapter->hw.phy.mdix = AUTO_ALL_MODES;
256
257         return 0;
258
259 err_inval:
260         e_err("Unsupported Speed/Duplex configuration\n");
261         return -EINVAL;
262 }
263
264 static int e1000_set_settings(struct net_device *netdev,
265                               struct ethtool_cmd *ecmd)
266 {
267         struct e1000_adapter *adapter = netdev_priv(netdev);
268         struct e1000_hw *hw = &adapter->hw;
269
270         /* When SoL/IDER sessions are active, autoneg/speed/duplex
271          * cannot be changed
272          */
273         if (hw->phy.ops.check_reset_block &&
274             hw->phy.ops.check_reset_block(hw)) {
275                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
276                 return -EINVAL;
277         }
278
279         /* MDI setting is only allowed when autoneg enabled because
280          * some hardware doesn't allow MDI setting when speed or
281          * duplex is forced.
282          */
283         if (ecmd->eth_tp_mdix_ctrl) {
284                 if (hw->phy.media_type != e1000_media_type_copper)
285                         return -EOPNOTSUPP;
286
287                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
288                     (ecmd->autoneg != AUTONEG_ENABLE)) {
289                         e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
290                         return -EINVAL;
291                 }
292         }
293
294         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
295                 usleep_range(1000, 2000);
296
297         if (ecmd->autoneg == AUTONEG_ENABLE) {
298                 hw->mac.autoneg = 1;
299                 if (hw->phy.media_type == e1000_media_type_fiber)
300                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
301                                                      ADVERTISED_FIBRE |
302                                                      ADVERTISED_Autoneg;
303                 else
304                         hw->phy.autoneg_advertised = ecmd->advertising |
305                                                      ADVERTISED_TP |
306                                                      ADVERTISED_Autoneg;
307                 ecmd->advertising = hw->phy.autoneg_advertised;
308                 if (adapter->fc_autoneg)
309                         hw->fc.requested_mode = e1000_fc_default;
310         } else {
311                 u32 speed = ethtool_cmd_speed(ecmd);
312                 /* calling this overrides forced MDI setting */
313                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
314                         clear_bit(__E1000_RESETTING, &adapter->state);
315                         return -EINVAL;
316                 }
317         }
318
319         /* MDI-X => 2; MDI => 1; Auto => 3 */
320         if (ecmd->eth_tp_mdix_ctrl) {
321                 /* fix up the value for auto (3 => 0) as zero is mapped
322                  * internally to auto
323                  */
324                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
325                         hw->phy.mdix = AUTO_ALL_MODES;
326                 else
327                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
328         }
329
330         /* reset the link */
331         if (netif_running(adapter->netdev)) {
332                 e1000e_down(adapter);
333                 e1000e_up(adapter);
334         } else {
335                 e1000e_reset(adapter);
336         }
337
338         clear_bit(__E1000_RESETTING, &adapter->state);
339         return 0;
340 }
341
342 static void e1000_get_pauseparam(struct net_device *netdev,
343                                  struct ethtool_pauseparam *pause)
344 {
345         struct e1000_adapter *adapter = netdev_priv(netdev);
346         struct e1000_hw *hw = &adapter->hw;
347
348         pause->autoneg =
349                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
350
351         if (hw->fc.current_mode == e1000_fc_rx_pause) {
352                 pause->rx_pause = 1;
353         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
354                 pause->tx_pause = 1;
355         } else if (hw->fc.current_mode == e1000_fc_full) {
356                 pause->rx_pause = 1;
357                 pause->tx_pause = 1;
358         }
359 }
360
361 static int e1000_set_pauseparam(struct net_device *netdev,
362                                 struct ethtool_pauseparam *pause)
363 {
364         struct e1000_adapter *adapter = netdev_priv(netdev);
365         struct e1000_hw *hw = &adapter->hw;
366         int retval = 0;
367
368         adapter->fc_autoneg = pause->autoneg;
369
370         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
371                 usleep_range(1000, 2000);
372
373         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
374                 hw->fc.requested_mode = e1000_fc_default;
375                 if (netif_running(adapter->netdev)) {
376                         e1000e_down(adapter);
377                         e1000e_up(adapter);
378                 } else {
379                         e1000e_reset(adapter);
380                 }
381         } else {
382                 if (pause->rx_pause && pause->tx_pause)
383                         hw->fc.requested_mode = e1000_fc_full;
384                 else if (pause->rx_pause && !pause->tx_pause)
385                         hw->fc.requested_mode = e1000_fc_rx_pause;
386                 else if (!pause->rx_pause && pause->tx_pause)
387                         hw->fc.requested_mode = e1000_fc_tx_pause;
388                 else if (!pause->rx_pause && !pause->tx_pause)
389                         hw->fc.requested_mode = e1000_fc_none;
390
391                 hw->fc.current_mode = hw->fc.requested_mode;
392
393                 if (hw->phy.media_type == e1000_media_type_fiber) {
394                         retval = hw->mac.ops.setup_link(hw);
395                         /* implicit goto out */
396                 } else {
397                         retval = e1000e_force_mac_fc(hw);
398                         if (retval)
399                                 goto out;
400                         e1000e_set_fc_watermarks(hw);
401                 }
402         }
403
404 out:
405         clear_bit(__E1000_RESETTING, &adapter->state);
406         return retval;
407 }
408
409 static u32 e1000_get_msglevel(struct net_device *netdev)
410 {
411         struct e1000_adapter *adapter = netdev_priv(netdev);
412         return adapter->msg_enable;
413 }
414
415 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
416 {
417         struct e1000_adapter *adapter = netdev_priv(netdev);
418         adapter->msg_enable = data;
419 }
420
421 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
422 {
423 #define E1000_REGS_LEN 32 /* overestimate */
424         return E1000_REGS_LEN * sizeof(u32);
425 }
426
427 static void e1000_get_regs(struct net_device *netdev,
428                            struct ethtool_regs *regs, void *p)
429 {
430         struct e1000_adapter *adapter = netdev_priv(netdev);
431         struct e1000_hw *hw = &adapter->hw;
432         u32 *regs_buff = p;
433         u16 phy_data;
434
435         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
436
437         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
438                         adapter->pdev->device;
439
440         regs_buff[0]  = er32(CTRL);
441         regs_buff[1]  = er32(STATUS);
442
443         regs_buff[2]  = er32(RCTL);
444         regs_buff[3]  = er32(RDLEN(0));
445         regs_buff[4]  = er32(RDH(0));
446         regs_buff[5]  = er32(RDT(0));
447         regs_buff[6]  = er32(RDTR);
448
449         regs_buff[7]  = er32(TCTL);
450         regs_buff[8]  = er32(TDLEN(0));
451         regs_buff[9]  = er32(TDH(0));
452         regs_buff[10] = er32(TDT(0));
453         regs_buff[11] = er32(TIDV);
454
455         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
456
457         /* ethtool doesn't use anything past this point, so all this
458          * code is likely legacy junk for apps that may or may not exist
459          */
460         if (hw->phy.type == e1000_phy_m88) {
461                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
462                 regs_buff[13] = (u32)phy_data; /* cable length */
463                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
464                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
465                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
466                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
467                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
468                 regs_buff[18] = regs_buff[13]; /* cable polarity */
469                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
470                 regs_buff[20] = regs_buff[17]; /* polarity correction */
471                 /* phy receive errors */
472                 regs_buff[22] = adapter->phy_stats.receive_errors;
473                 regs_buff[23] = regs_buff[13]; /* mdix mode */
474         }
475         regs_buff[21] = 0;      /* was idle_errors */
476         e1e_rphy(hw, MII_STAT1000, &phy_data);
477         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
478         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
479 }
480
481 static int e1000_get_eeprom_len(struct net_device *netdev)
482 {
483         struct e1000_adapter *adapter = netdev_priv(netdev);
484         return adapter->hw.nvm.word_size * 2;
485 }
486
487 static int e1000_get_eeprom(struct net_device *netdev,
488                             struct ethtool_eeprom *eeprom, u8 *bytes)
489 {
490         struct e1000_adapter *adapter = netdev_priv(netdev);
491         struct e1000_hw *hw = &adapter->hw;
492         u16 *eeprom_buff;
493         int first_word;
494         int last_word;
495         int ret_val = 0;
496         u16 i;
497
498         if (eeprom->len == 0)
499                 return -EINVAL;
500
501         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
502
503         first_word = eeprom->offset >> 1;
504         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
505
506         eeprom_buff = kmalloc(sizeof(u16) *
507                         (last_word - first_word + 1), GFP_KERNEL);
508         if (!eeprom_buff)
509                 return -ENOMEM;
510
511         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
512                 ret_val = e1000_read_nvm(hw, first_word,
513                                          last_word - first_word + 1,
514                                          eeprom_buff);
515         } else {
516                 for (i = 0; i < last_word - first_word + 1; i++) {
517                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
518                                                       &eeprom_buff[i]);
519                         if (ret_val)
520                                 break;
521                 }
522         }
523
524         if (ret_val) {
525                 /* a read error occurred, throw away the result */
526                 memset(eeprom_buff, 0xff, sizeof(u16) *
527                        (last_word - first_word + 1));
528         } else {
529                 /* Device's eeprom is always little-endian, word addressable */
530                 for (i = 0; i < last_word - first_word + 1; i++)
531                         le16_to_cpus(&eeprom_buff[i]);
532         }
533
534         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
535         kfree(eeprom_buff);
536
537         return ret_val;
538 }
539
540 static int e1000_set_eeprom(struct net_device *netdev,
541                             struct ethtool_eeprom *eeprom, u8 *bytes)
542 {
543         struct e1000_adapter *adapter = netdev_priv(netdev);
544         struct e1000_hw *hw = &adapter->hw;
545         u16 *eeprom_buff;
546         void *ptr;
547         int max_len;
548         int first_word;
549         int last_word;
550         int ret_val = 0;
551         u16 i;
552
553         if (eeprom->len == 0)
554                 return -EOPNOTSUPP;
555
556         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
557                 return -EFAULT;
558
559         if (adapter->flags & FLAG_READ_ONLY_NVM)
560                 return -EINVAL;
561
562         max_len = hw->nvm.word_size * 2;
563
564         first_word = eeprom->offset >> 1;
565         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
566         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
567         if (!eeprom_buff)
568                 return -ENOMEM;
569
570         ptr = (void *)eeprom_buff;
571
572         if (eeprom->offset & 1) {
573                 /* need read/modify/write of first changed EEPROM word */
574                 /* only the second byte of the word is being modified */
575                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
576                 ptr++;
577         }
578         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
579                 /* need read/modify/write of last changed EEPROM word */
580                 /* only the first byte of the word is being modified */
581                 ret_val = e1000_read_nvm(hw, last_word, 1,
582                                   &eeprom_buff[last_word - first_word]);
583
584         if (ret_val)
585                 goto out;
586
587         /* Device's eeprom is always little-endian, word addressable */
588         for (i = 0; i < last_word - first_word + 1; i++)
589                 le16_to_cpus(&eeprom_buff[i]);
590
591         memcpy(ptr, bytes, eeprom->len);
592
593         for (i = 0; i < last_word - first_word + 1; i++)
594                 cpu_to_le16s(&eeprom_buff[i]);
595
596         ret_val = e1000_write_nvm(hw, first_word,
597                                   last_word - first_word + 1, eeprom_buff);
598
599         if (ret_val)
600                 goto out;
601
602         /* Update the checksum over the first part of the EEPROM if needed
603          * and flush shadow RAM for applicable controllers
604          */
605         if ((first_word <= NVM_CHECKSUM_REG) ||
606             (hw->mac.type == e1000_82583) ||
607             (hw->mac.type == e1000_82574) ||
608             (hw->mac.type == e1000_82573))
609                 ret_val = e1000e_update_nvm_checksum(hw);
610
611 out:
612         kfree(eeprom_buff);
613         return ret_val;
614 }
615
616 static void e1000_get_drvinfo(struct net_device *netdev,
617                               struct ethtool_drvinfo *drvinfo)
618 {
619         struct e1000_adapter *adapter = netdev_priv(netdev);
620
621         strlcpy(drvinfo->driver,  e1000e_driver_name,
622                 sizeof(drvinfo->driver));
623         strlcpy(drvinfo->version, e1000e_driver_version,
624                 sizeof(drvinfo->version));
625
626         /* EEPROM image version # is reported as firmware version # for
627          * PCI-E controllers
628          */
629         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
630                 "%d.%d-%d",
631                 (adapter->eeprom_vers & 0xF000) >> 12,
632                 (adapter->eeprom_vers & 0x0FF0) >> 4,
633                 (adapter->eeprom_vers & 0x000F));
634
635         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
636                 sizeof(drvinfo->bus_info));
637         drvinfo->regdump_len = e1000_get_regs_len(netdev);
638         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
639 }
640
641 static void e1000_get_ringparam(struct net_device *netdev,
642                                 struct ethtool_ringparam *ring)
643 {
644         struct e1000_adapter *adapter = netdev_priv(netdev);
645
646         ring->rx_max_pending = E1000_MAX_RXD;
647         ring->tx_max_pending = E1000_MAX_TXD;
648         ring->rx_pending = adapter->rx_ring_count;
649         ring->tx_pending = adapter->tx_ring_count;
650 }
651
652 static int e1000_set_ringparam(struct net_device *netdev,
653                                struct ethtool_ringparam *ring)
654 {
655         struct e1000_adapter *adapter = netdev_priv(netdev);
656         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
657         int err = 0, size = sizeof(struct e1000_ring);
658         bool set_tx = false, set_rx = false;
659         u16 new_rx_count, new_tx_count;
660
661         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
662                 return -EINVAL;
663
664         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
665                                E1000_MAX_RXD);
666         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
667
668         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
669                                E1000_MAX_TXD);
670         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
671
672         if ((new_tx_count == adapter->tx_ring_count) &&
673             (new_rx_count == adapter->rx_ring_count))
674                 /* nothing to do */
675                 return 0;
676
677         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
678                 usleep_range(1000, 2000);
679
680         if (!netif_running(adapter->netdev)) {
681                 /* Set counts now and allocate resources during open() */
682                 adapter->tx_ring->count = new_tx_count;
683                 adapter->rx_ring->count = new_rx_count;
684                 adapter->tx_ring_count = new_tx_count;
685                 adapter->rx_ring_count = new_rx_count;
686                 goto clear_reset;
687         }
688
689         set_tx = (new_tx_count != adapter->tx_ring_count);
690         set_rx = (new_rx_count != adapter->rx_ring_count);
691
692         /* Allocate temporary storage for ring updates */
693         if (set_tx) {
694                 temp_tx = vmalloc(size);
695                 if (!temp_tx) {
696                         err = -ENOMEM;
697                         goto free_temp;
698                 }
699         }
700         if (set_rx) {
701                 temp_rx = vmalloc(size);
702                 if (!temp_rx) {
703                         err = -ENOMEM;
704                         goto free_temp;
705                 }
706         }
707
708         e1000e_down(adapter);
709
710         /* We can't just free everything and then setup again, because the
711          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
712          * structs.  First, attempt to allocate new resources...
713          */
714         if (set_tx) {
715                 memcpy(temp_tx, adapter->tx_ring, size);
716                 temp_tx->count = new_tx_count;
717                 err = e1000e_setup_tx_resources(temp_tx);
718                 if (err)
719                         goto err_setup;
720         }
721         if (set_rx) {
722                 memcpy(temp_rx, adapter->rx_ring, size);
723                 temp_rx->count = new_rx_count;
724                 err = e1000e_setup_rx_resources(temp_rx);
725                 if (err)
726                         goto err_setup_rx;
727         }
728
729         /* ...then free the old resources and copy back any new ring data */
730         if (set_tx) {
731                 e1000e_free_tx_resources(adapter->tx_ring);
732                 memcpy(adapter->tx_ring, temp_tx, size);
733                 adapter->tx_ring_count = new_tx_count;
734         }
735         if (set_rx) {
736                 e1000e_free_rx_resources(adapter->rx_ring);
737                 memcpy(adapter->rx_ring, temp_rx, size);
738                 adapter->rx_ring_count = new_rx_count;
739         }
740
741 err_setup_rx:
742         if (err && set_tx)
743                 e1000e_free_tx_resources(temp_tx);
744 err_setup:
745         e1000e_up(adapter);
746 free_temp:
747         vfree(temp_tx);
748         vfree(temp_rx);
749 clear_reset:
750         clear_bit(__E1000_RESETTING, &adapter->state);
751         return err;
752 }
753
754 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
755                              int reg, int offset, u32 mask, u32 write)
756 {
757         u32 pat, val;
758         static const u32 test[] = {
759                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
760         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
761                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
762                                       (test[pat] & write));
763                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
764                 if (val != (test[pat] & write & mask)) {
765                         e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
766                               reg + (offset << 2), val,
767                               (test[pat] & write & mask));
768                         *data = reg;
769                         return 1;
770                 }
771         }
772         return 0;
773 }
774
775 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
776                               int reg, u32 mask, u32 write)
777 {
778         u32 val;
779         __ew32(&adapter->hw, reg, write & mask);
780         val = __er32(&adapter->hw, reg);
781         if ((write & mask) != (val & mask)) {
782                 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
783                       reg, (val & mask), (write & mask));
784                 *data = reg;
785                 return 1;
786         }
787         return 0;
788 }
789 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
790         do {                                                                   \
791                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
792                         return 1;                                              \
793         } while (0)
794 #define REG_PATTERN_TEST(reg, mask, write)                                     \
795         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
796
797 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
798         do {                                                                   \
799                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
800                         return 1;                                              \
801         } while (0)
802
803 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
804 {
805         struct e1000_hw *hw = &adapter->hw;
806         struct e1000_mac_info *mac = &adapter->hw.mac;
807         u32 value;
808         u32 before;
809         u32 after;
810         u32 i;
811         u32 toggle;
812         u32 mask;
813         u32 wlock_mac = 0;
814
815         /* The status register is Read Only, so a write should fail.
816          * Some bits that get toggled are ignored.
817          */
818         switch (mac->type) {
819         /* there are several bits on newer hardware that are r/w */
820         case e1000_82571:
821         case e1000_82572:
822         case e1000_80003es2lan:
823                 toggle = 0x7FFFF3FF;
824                 break;
825         default:
826                 toggle = 0x7FFFF033;
827                 break;
828         }
829
830         before = er32(STATUS);
831         value = (er32(STATUS) & toggle);
832         ew32(STATUS, toggle);
833         after = er32(STATUS) & toggle;
834         if (value != after) {
835                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
836                       after, value);
837                 *data = 1;
838                 return 1;
839         }
840         /* restore previous status */
841         ew32(STATUS, before);
842
843         if (!(adapter->flags & FLAG_IS_ICH)) {
844                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
845                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
846                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
847                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
848         }
849
850         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
851         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
852         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
853         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
854         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
855         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
856         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
857         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
858         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
859         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
860
861         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
862
863         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
864         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
865         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
866
867         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
868         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
869         if (!(adapter->flags & FLAG_IS_ICH))
870                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
871         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
872         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
873         mask = 0x8003FFFF;
874         switch (mac->type) {
875         case e1000_ich10lan:
876         case e1000_pchlan:
877         case e1000_pch2lan:
878         case e1000_pch_lpt:
879                 mask |= (1 << 18);
880                 break;
881         default:
882                 break;
883         }
884
885         if (mac->type == e1000_pch_lpt)
886                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
887                     E1000_FWSM_WLOCK_MAC_SHIFT;
888
889         for (i = 0; i < mac->rar_entry_count; i++) {
890                 if (mac->type == e1000_pch_lpt) {
891                         /* Cannot test write-protected SHRAL[n] registers */
892                         if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
893                                 continue;
894
895                         /* SHRAH[9] different than the others */
896                         if (i == 10)
897                                 mask |= (1 << 30);
898                         else
899                                 mask &= ~(1 << 30);
900                 }
901
902                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
903                                        0xFFFFFFFF);
904         }
905
906         for (i = 0; i < mac->mta_reg_count; i++)
907                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
908
909         *data = 0;
910
911         return 0;
912 }
913
914 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
915 {
916         u16 temp;
917         u16 checksum = 0;
918         u16 i;
919
920         *data = 0;
921         /* Read and add up the contents of the EEPROM */
922         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
923                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
924                         *data = 1;
925                         return *data;
926                 }
927                 checksum += temp;
928         }
929
930         /* If Checksum is not Correct return error else test passed */
931         if ((checksum != (u16) NVM_SUM) && !(*data))
932                 *data = 2;
933
934         return *data;
935 }
936
937 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
938 {
939         struct net_device *netdev = (struct net_device *) data;
940         struct e1000_adapter *adapter = netdev_priv(netdev);
941         struct e1000_hw *hw = &adapter->hw;
942
943         adapter->test_icr |= er32(ICR);
944
945         return IRQ_HANDLED;
946 }
947
948 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
949 {
950         struct net_device *netdev = adapter->netdev;
951         struct e1000_hw *hw = &adapter->hw;
952         u32 mask;
953         u32 shared_int = 1;
954         u32 irq = adapter->pdev->irq;
955         int i;
956         int ret_val = 0;
957         int int_mode = E1000E_INT_MODE_LEGACY;
958
959         *data = 0;
960
961         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
962         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
963                 int_mode = adapter->int_mode;
964                 e1000e_reset_interrupt_capability(adapter);
965                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
966                 e1000e_set_interrupt_capability(adapter);
967         }
968         /* Hook up test interrupt handler just for this test */
969         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
970                          netdev)) {
971                 shared_int = 0;
972         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
973                  netdev->name, netdev)) {
974                 *data = 1;
975                 ret_val = -1;
976                 goto out;
977         }
978         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
979
980         /* Disable all the interrupts */
981         ew32(IMC, 0xFFFFFFFF);
982         e1e_flush();
983         usleep_range(10000, 20000);
984
985         /* Test each interrupt */
986         for (i = 0; i < 10; i++) {
987                 /* Interrupt to test */
988                 mask = 1 << i;
989
990                 if (adapter->flags & FLAG_IS_ICH) {
991                         switch (mask) {
992                         case E1000_ICR_RXSEQ:
993                                 continue;
994                         case 0x00000100:
995                                 if (adapter->hw.mac.type == e1000_ich8lan ||
996                                     adapter->hw.mac.type == e1000_ich9lan)
997                                         continue;
998                                 break;
999                         default:
1000                                 break;
1001                         }
1002                 }
1003
1004                 if (!shared_int) {
1005                         /* Disable the interrupt to be reported in
1006                          * the cause register and then force the same
1007                          * interrupt and see if one gets posted.  If
1008                          * an interrupt was posted to the bus, the
1009                          * test failed.
1010                          */
1011                         adapter->test_icr = 0;
1012                         ew32(IMC, mask);
1013                         ew32(ICS, mask);
1014                         e1e_flush();
1015                         usleep_range(10000, 20000);
1016
1017                         if (adapter->test_icr & mask) {
1018                                 *data = 3;
1019                                 break;
1020                         }
1021                 }
1022
1023                 /* Enable the interrupt to be reported in
1024                  * the cause register and then force the same
1025                  * interrupt and see if one gets posted.  If
1026                  * an interrupt was not posted to the bus, the
1027                  * test failed.
1028                  */
1029                 adapter->test_icr = 0;
1030                 ew32(IMS, mask);
1031                 ew32(ICS, mask);
1032                 e1e_flush();
1033                 usleep_range(10000, 20000);
1034
1035                 if (!(adapter->test_icr & mask)) {
1036                         *data = 4;
1037                         break;
1038                 }
1039
1040                 if (!shared_int) {
1041                         /* Disable the other interrupts to be reported in
1042                          * the cause register and then force the other
1043                          * interrupts and see if any get posted.  If
1044                          * an interrupt was posted to the bus, the
1045                          * test failed.
1046                          */
1047                         adapter->test_icr = 0;
1048                         ew32(IMC, ~mask & 0x00007FFF);
1049                         ew32(ICS, ~mask & 0x00007FFF);
1050                         e1e_flush();
1051                         usleep_range(10000, 20000);
1052
1053                         if (adapter->test_icr) {
1054                                 *data = 5;
1055                                 break;
1056                         }
1057                 }
1058         }
1059
1060         /* Disable all the interrupts */
1061         ew32(IMC, 0xFFFFFFFF);
1062         e1e_flush();
1063         usleep_range(10000, 20000);
1064
1065         /* Unhook test interrupt handler */
1066         free_irq(irq, netdev);
1067
1068 out:
1069         if (int_mode == E1000E_INT_MODE_MSIX) {
1070                 e1000e_reset_interrupt_capability(adapter);
1071                 adapter->int_mode = int_mode;
1072                 e1000e_set_interrupt_capability(adapter);
1073         }
1074
1075         return ret_val;
1076 }
1077
1078 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1079 {
1080         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1081         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1082         struct pci_dev *pdev = adapter->pdev;
1083         int i;
1084
1085         if (tx_ring->desc && tx_ring->buffer_info) {
1086                 for (i = 0; i < tx_ring->count; i++) {
1087                         if (tx_ring->buffer_info[i].dma)
1088                                 dma_unmap_single(&pdev->dev,
1089                                         tx_ring->buffer_info[i].dma,
1090                                         tx_ring->buffer_info[i].length,
1091                                         DMA_TO_DEVICE);
1092                         if (tx_ring->buffer_info[i].skb)
1093                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1094                 }
1095         }
1096
1097         if (rx_ring->desc && rx_ring->buffer_info) {
1098                 for (i = 0; i < rx_ring->count; i++) {
1099                         if (rx_ring->buffer_info[i].dma)
1100                                 dma_unmap_single(&pdev->dev,
1101                                         rx_ring->buffer_info[i].dma,
1102                                         2048, DMA_FROM_DEVICE);
1103                         if (rx_ring->buffer_info[i].skb)
1104                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1105                 }
1106         }
1107
1108         if (tx_ring->desc) {
1109                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1110                                   tx_ring->dma);
1111                 tx_ring->desc = NULL;
1112         }
1113         if (rx_ring->desc) {
1114                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1115                                   rx_ring->dma);
1116                 rx_ring->desc = NULL;
1117         }
1118
1119         kfree(tx_ring->buffer_info);
1120         tx_ring->buffer_info = NULL;
1121         kfree(rx_ring->buffer_info);
1122         rx_ring->buffer_info = NULL;
1123 }
1124
1125 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1126 {
1127         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1128         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1129         struct pci_dev *pdev = adapter->pdev;
1130         struct e1000_hw *hw = &adapter->hw;
1131         u32 rctl;
1132         int i;
1133         int ret_val;
1134
1135         /* Setup Tx descriptor ring and Tx buffers */
1136
1137         if (!tx_ring->count)
1138                 tx_ring->count = E1000_DEFAULT_TXD;
1139
1140         tx_ring->buffer_info = kcalloc(tx_ring->count,
1141                                        sizeof(struct e1000_buffer),
1142                                        GFP_KERNEL);
1143         if (!tx_ring->buffer_info) {
1144                 ret_val = 1;
1145                 goto err_nomem;
1146         }
1147
1148         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1149         tx_ring->size = ALIGN(tx_ring->size, 4096);
1150         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1151                                            &tx_ring->dma, GFP_KERNEL);
1152         if (!tx_ring->desc) {
1153                 ret_val = 2;
1154                 goto err_nomem;
1155         }
1156         tx_ring->next_to_use = 0;
1157         tx_ring->next_to_clean = 0;
1158
1159         ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1160         ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1161         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1162         ew32(TDH(0), 0);
1163         ew32(TDT(0), 0);
1164         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1165              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1166              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1167
1168         for (i = 0; i < tx_ring->count; i++) {
1169                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1170                 struct sk_buff *skb;
1171                 unsigned int skb_size = 1024;
1172
1173                 skb = alloc_skb(skb_size, GFP_KERNEL);
1174                 if (!skb) {
1175                         ret_val = 3;
1176                         goto err_nomem;
1177                 }
1178                 skb_put(skb, skb_size);
1179                 tx_ring->buffer_info[i].skb = skb;
1180                 tx_ring->buffer_info[i].length = skb->len;
1181                 tx_ring->buffer_info[i].dma =
1182                         dma_map_single(&pdev->dev, skb->data, skb->len,
1183                                        DMA_TO_DEVICE);
1184                 if (dma_mapping_error(&pdev->dev,
1185                                       tx_ring->buffer_info[i].dma)) {
1186                         ret_val = 4;
1187                         goto err_nomem;
1188                 }
1189                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1190                 tx_desc->lower.data = cpu_to_le32(skb->len);
1191                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1192                                                    E1000_TXD_CMD_IFCS |
1193                                                    E1000_TXD_CMD_RS);
1194                 tx_desc->upper.data = 0;
1195         }
1196
1197         /* Setup Rx descriptor ring and Rx buffers */
1198
1199         if (!rx_ring->count)
1200                 rx_ring->count = E1000_DEFAULT_RXD;
1201
1202         rx_ring->buffer_info = kcalloc(rx_ring->count,
1203                                        sizeof(struct e1000_buffer),
1204                                        GFP_KERNEL);
1205         if (!rx_ring->buffer_info) {
1206                 ret_val = 5;
1207                 goto err_nomem;
1208         }
1209
1210         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1211         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1212                                            &rx_ring->dma, GFP_KERNEL);
1213         if (!rx_ring->desc) {
1214                 ret_val = 6;
1215                 goto err_nomem;
1216         }
1217         rx_ring->next_to_use = 0;
1218         rx_ring->next_to_clean = 0;
1219
1220         rctl = er32(RCTL);
1221         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1222                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1223         ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1224         ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1225         ew32(RDLEN(0), rx_ring->size);
1226         ew32(RDH(0), 0);
1227         ew32(RDT(0), 0);
1228         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1229                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1230                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1231                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1232                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1233         ew32(RCTL, rctl);
1234
1235         for (i = 0; i < rx_ring->count; i++) {
1236                 union e1000_rx_desc_extended *rx_desc;
1237                 struct sk_buff *skb;
1238
1239                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1240                 if (!skb) {
1241                         ret_val = 7;
1242                         goto err_nomem;
1243                 }
1244                 skb_reserve(skb, NET_IP_ALIGN);
1245                 rx_ring->buffer_info[i].skb = skb;
1246                 rx_ring->buffer_info[i].dma =
1247                         dma_map_single(&pdev->dev, skb->data, 2048,
1248                                        DMA_FROM_DEVICE);
1249                 if (dma_mapping_error(&pdev->dev,
1250                                       rx_ring->buffer_info[i].dma)) {
1251                         ret_val = 8;
1252                         goto err_nomem;
1253                 }
1254                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1255                 rx_desc->read.buffer_addr =
1256                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1257                 memset(skb->data, 0x00, skb->len);
1258         }
1259
1260         return 0;
1261
1262 err_nomem:
1263         e1000_free_desc_rings(adapter);
1264         return ret_val;
1265 }
1266
1267 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1268 {
1269         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1270         e1e_wphy(&adapter->hw, 29, 0x001F);
1271         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1272         e1e_wphy(&adapter->hw, 29, 0x001A);
1273         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1274 }
1275
1276 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1277 {
1278         struct e1000_hw *hw = &adapter->hw;
1279         u32 ctrl_reg = 0;
1280         u16 phy_reg = 0;
1281         s32 ret_val = 0;
1282
1283         hw->mac.autoneg = 0;
1284
1285         if (hw->phy.type == e1000_phy_ife) {
1286                 /* force 100, set loopback */
1287                 e1e_wphy(hw, MII_BMCR, 0x6100);
1288
1289                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1290                 ctrl_reg = er32(CTRL);
1291                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1292                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1293                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1294                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1295                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1296
1297                 ew32(CTRL, ctrl_reg);
1298                 e1e_flush();
1299                 udelay(500);
1300
1301                 return 0;
1302         }
1303
1304         /* Specific PHY configuration for loopback */
1305         switch (hw->phy.type) {
1306         case e1000_phy_m88:
1307                 /* Auto-MDI/MDIX Off */
1308                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1309                 /* reset to update Auto-MDI/MDIX */
1310                 e1e_wphy(hw, MII_BMCR, 0x9140);
1311                 /* autoneg off */
1312                 e1e_wphy(hw, MII_BMCR, 0x8140);
1313                 break;
1314         case e1000_phy_gg82563:
1315                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1316                 break;
1317         case e1000_phy_bm:
1318                 /* Set Default MAC Interface speed to 1GB */
1319                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1320                 phy_reg &= ~0x0007;
1321                 phy_reg |= 0x006;
1322                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1323                 /* Assert SW reset for above settings to take effect */
1324                 hw->phy.ops.commit(hw);
1325                 mdelay(1);
1326                 /* Force Full Duplex */
1327                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1328                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1329                 /* Set Link Up (in force link) */
1330                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1331                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1332                 /* Force Link */
1333                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1334                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1335                 /* Set Early Link Enable */
1336                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1337                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1338                 break;
1339         case e1000_phy_82577:
1340         case e1000_phy_82578:
1341                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1342                 ret_val = hw->phy.ops.acquire(hw);
1343                 if (ret_val) {
1344                         e_err("Cannot setup 1Gbps loopback.\n");
1345                         return ret_val;
1346                 }
1347                 e1000_configure_k1_ich8lan(hw, false);
1348                 hw->phy.ops.release(hw);
1349                 break;
1350         case e1000_phy_82579:
1351                 /* Disable PHY energy detect power down */
1352                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1353                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1354                 /* Disable full chip energy detect */
1355                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1356                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1357                 /* Enable loopback on the PHY */
1358                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1359                 break;
1360         default:
1361                 break;
1362         }
1363
1364         /* force 1000, set loopback */
1365         e1e_wphy(hw, MII_BMCR, 0x4140);
1366         mdelay(250);
1367
1368         /* Now set up the MAC to the same speed/duplex as the PHY. */
1369         ctrl_reg = er32(CTRL);
1370         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1371         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1372                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1373                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1374                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1375
1376         if (adapter->flags & FLAG_IS_ICH)
1377                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1378
1379         if (hw->phy.media_type == e1000_media_type_copper &&
1380             hw->phy.type == e1000_phy_m88) {
1381                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1382         } else {
1383                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1384                  * detected.
1385                  */
1386                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1387                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1388         }
1389
1390         ew32(CTRL, ctrl_reg);
1391
1392         /* Disable the receiver on the PHY so when a cable is plugged in, the
1393          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1394          */
1395         if (hw->phy.type == e1000_phy_m88)
1396                 e1000_phy_disable_receiver(adapter);
1397
1398         udelay(500);
1399
1400         return 0;
1401 }
1402
1403 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1404 {
1405         struct e1000_hw *hw = &adapter->hw;
1406         u32 ctrl = er32(CTRL);
1407         int link;
1408
1409         /* special requirements for 82571/82572 fiber adapters */
1410
1411         /* jump through hoops to make sure link is up because serdes
1412          * link is hardwired up
1413          */
1414         ctrl |= E1000_CTRL_SLU;
1415         ew32(CTRL, ctrl);
1416
1417         /* disable autoneg */
1418         ctrl = er32(TXCW);
1419         ctrl &= ~(1 << 31);
1420         ew32(TXCW, ctrl);
1421
1422         link = (er32(STATUS) & E1000_STATUS_LU);
1423
1424         if (!link) {
1425                 /* set invert loss of signal */
1426                 ctrl = er32(CTRL);
1427                 ctrl |= E1000_CTRL_ILOS;
1428                 ew32(CTRL, ctrl);
1429         }
1430
1431         /* special write to serdes control register to enable SerDes analog
1432          * loopback
1433          */
1434 #define E1000_SERDES_LB_ON 0x410
1435         ew32(SCTL, E1000_SERDES_LB_ON);
1436         e1e_flush();
1437         usleep_range(10000, 20000);
1438
1439         return 0;
1440 }
1441
1442 /* only call this for fiber/serdes connections to es2lan */
1443 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1444 {
1445         struct e1000_hw *hw = &adapter->hw;
1446         u32 ctrlext = er32(CTRL_EXT);
1447         u32 ctrl = er32(CTRL);
1448
1449         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1450          * on mac_type 80003es2lan)
1451          */
1452         adapter->tx_fifo_head = ctrlext;
1453
1454         /* clear the serdes mode bits, putting the device into mac loopback */
1455         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1456         ew32(CTRL_EXT, ctrlext);
1457
1458         /* force speed to 1000/FD, link up */
1459         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1460         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1461                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1462         ew32(CTRL, ctrl);
1463
1464         /* set mac loopback */
1465         ctrl = er32(RCTL);
1466         ctrl |= E1000_RCTL_LBM_MAC;
1467         ew32(RCTL, ctrl);
1468
1469         /* set testing mode parameters (no need to reset later) */
1470 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1471 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1472         ew32(KMRNCTRLSTA,
1473              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1474
1475         return 0;
1476 }
1477
1478 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1479 {
1480         struct e1000_hw *hw = &adapter->hw;
1481         u32 rctl;
1482
1483         if (hw->phy.media_type == e1000_media_type_fiber ||
1484             hw->phy.media_type == e1000_media_type_internal_serdes) {
1485                 switch (hw->mac.type) {
1486                 case e1000_80003es2lan:
1487                         return e1000_set_es2lan_mac_loopback(adapter);
1488                         break;
1489                 case e1000_82571:
1490                 case e1000_82572:
1491                         return e1000_set_82571_fiber_loopback(adapter);
1492                         break;
1493                 default:
1494                         rctl = er32(RCTL);
1495                         rctl |= E1000_RCTL_LBM_TCVR;
1496                         ew32(RCTL, rctl);
1497                         return 0;
1498                 }
1499         } else if (hw->phy.media_type == e1000_media_type_copper) {
1500                 return e1000_integrated_phy_loopback(adapter);
1501         }
1502
1503         return 7;
1504 }
1505
1506 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1507 {
1508         struct e1000_hw *hw = &adapter->hw;
1509         u32 rctl;
1510         u16 phy_reg;
1511
1512         rctl = er32(RCTL);
1513         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1514         ew32(RCTL, rctl);
1515
1516         switch (hw->mac.type) {
1517         case e1000_80003es2lan:
1518                 if (hw->phy.media_type == e1000_media_type_fiber ||
1519                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1520                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1521                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1522                         adapter->tx_fifo_head = 0;
1523                 }
1524                 /* fall through */
1525         case e1000_82571:
1526         case e1000_82572:
1527                 if (hw->phy.media_type == e1000_media_type_fiber ||
1528                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1529 #define E1000_SERDES_LB_OFF 0x400
1530                         ew32(SCTL, E1000_SERDES_LB_OFF);
1531                         e1e_flush();
1532                         usleep_range(10000, 20000);
1533                         break;
1534                 }
1535                 /* Fall Through */
1536         default:
1537                 hw->mac.autoneg = 1;
1538                 if (hw->phy.type == e1000_phy_gg82563)
1539                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1540                 e1e_rphy(hw, MII_BMCR, &phy_reg);
1541                 if (phy_reg & BMCR_LOOPBACK) {
1542                         phy_reg &= ~BMCR_LOOPBACK;
1543                         e1e_wphy(hw, MII_BMCR, phy_reg);
1544                         if (hw->phy.ops.commit)
1545                                 hw->phy.ops.commit(hw);
1546                 }
1547                 break;
1548         }
1549 }
1550
1551 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1552                                       unsigned int frame_size)
1553 {
1554         memset(skb->data, 0xFF, frame_size);
1555         frame_size &= ~1;
1556         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1557         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1558         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1559 }
1560
1561 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1562                                     unsigned int frame_size)
1563 {
1564         frame_size &= ~1;
1565         if (*(skb->data + 3) == 0xFF)
1566                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1567                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1568                         return 0;
1569         return 13;
1570 }
1571
1572 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1573 {
1574         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1575         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1576         struct pci_dev *pdev = adapter->pdev;
1577         struct e1000_hw *hw = &adapter->hw;
1578         int i, j, k, l;
1579         int lc;
1580         int good_cnt;
1581         int ret_val = 0;
1582         unsigned long time;
1583
1584         ew32(RDT(0), rx_ring->count - 1);
1585
1586         /* Calculate the loop count based on the largest descriptor ring
1587          * The idea is to wrap the largest ring a number of times using 64
1588          * send/receive pairs during each loop
1589          */
1590
1591         if (rx_ring->count <= tx_ring->count)
1592                 lc = ((tx_ring->count / 64) * 2) + 1;
1593         else
1594                 lc = ((rx_ring->count / 64) * 2) + 1;
1595
1596         k = 0;
1597         l = 0;
1598         for (j = 0; j <= lc; j++) { /* loop count loop */
1599                 for (i = 0; i < 64; i++) { /* send the packets */
1600                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1601                                                   1024);
1602                         dma_sync_single_for_device(&pdev->dev,
1603                                         tx_ring->buffer_info[k].dma,
1604                                         tx_ring->buffer_info[k].length,
1605                                         DMA_TO_DEVICE);
1606                         k++;
1607                         if (k == tx_ring->count)
1608                                 k = 0;
1609                 }
1610                 ew32(TDT(0), k);
1611                 e1e_flush();
1612                 msleep(200);
1613                 time = jiffies; /* set the start time for the receive */
1614                 good_cnt = 0;
1615                 do { /* receive the sent packets */
1616                         dma_sync_single_for_cpu(&pdev->dev,
1617                                         rx_ring->buffer_info[l].dma, 2048,
1618                                         DMA_FROM_DEVICE);
1619
1620                         ret_val = e1000_check_lbtest_frame(
1621                                         rx_ring->buffer_info[l].skb, 1024);
1622                         if (!ret_val)
1623                                 good_cnt++;
1624                         l++;
1625                         if (l == rx_ring->count)
1626                                 l = 0;
1627                         /* time + 20 msecs (200 msecs on 2.4) is more than
1628                          * enough time to complete the receives, if it's
1629                          * exceeded, break and error off
1630                          */
1631                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1632                 if (good_cnt != 64) {
1633                         ret_val = 13; /* ret_val is the same as mis-compare */
1634                         break;
1635                 }
1636                 if (jiffies >= (time + 20)) {
1637                         ret_val = 14; /* error code for time out error */
1638                         break;
1639                 }
1640         } /* end loop count loop */
1641         return ret_val;
1642 }
1643
1644 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1645 {
1646         struct e1000_hw *hw = &adapter->hw;
1647
1648         /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1649         if (hw->phy.ops.check_reset_block &&
1650             hw->phy.ops.check_reset_block(hw)) {
1651                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1652                 *data = 0;
1653                 goto out;
1654         }
1655
1656         *data = e1000_setup_desc_rings(adapter);
1657         if (*data)
1658                 goto out;
1659
1660         *data = e1000_setup_loopback_test(adapter);
1661         if (*data)
1662                 goto err_loopback;
1663
1664         *data = e1000_run_loopback_test(adapter);
1665         e1000_loopback_cleanup(adapter);
1666
1667 err_loopback:
1668         e1000_free_desc_rings(adapter);
1669 out:
1670         return *data;
1671 }
1672
1673 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1674 {
1675         struct e1000_hw *hw = &adapter->hw;
1676
1677         *data = 0;
1678         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1679                 int i = 0;
1680                 hw->mac.serdes_has_link = false;
1681
1682                 /* On some blade server designs, link establishment
1683                  * could take as long as 2-3 minutes
1684                  */
1685                 do {
1686                         hw->mac.ops.check_for_link(hw);
1687                         if (hw->mac.serdes_has_link)
1688                                 return *data;
1689                         msleep(20);
1690                 } while (i++ < 3750);
1691
1692                 *data = 1;
1693         } else {
1694                 hw->mac.ops.check_for_link(hw);
1695                 if (hw->mac.autoneg)
1696                         /* On some Phy/switch combinations, link establishment
1697                          * can take a few seconds more than expected.
1698                          */
1699                         msleep(5000);
1700
1701                 if (!(er32(STATUS) & E1000_STATUS_LU))
1702                         *data = 1;
1703         }
1704         return *data;
1705 }
1706
1707 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1708                                  int sset)
1709 {
1710         switch (sset) {
1711         case ETH_SS_TEST:
1712                 return E1000_TEST_LEN;
1713         case ETH_SS_STATS:
1714                 return E1000_STATS_LEN;
1715         default:
1716                 return -EOPNOTSUPP;
1717         }
1718 }
1719
1720 static void e1000_diag_test(struct net_device *netdev,
1721                             struct ethtool_test *eth_test, u64 *data)
1722 {
1723         struct e1000_adapter *adapter = netdev_priv(netdev);
1724         u16 autoneg_advertised;
1725         u8 forced_speed_duplex;
1726         u8 autoneg;
1727         bool if_running = netif_running(netdev);
1728
1729         set_bit(__E1000_TESTING, &adapter->state);
1730
1731         if (!if_running) {
1732                 /* Get control of and reset hardware */
1733                 if (adapter->flags & FLAG_HAS_AMT)
1734                         e1000e_get_hw_control(adapter);
1735
1736                 e1000e_power_up_phy(adapter);
1737
1738                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1739                 e1000e_reset(adapter);
1740                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1741         }
1742
1743         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1744                 /* Offline tests */
1745
1746                 /* save speed, duplex, autoneg settings */
1747                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1748                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1749                 autoneg = adapter->hw.mac.autoneg;
1750
1751                 e_info("offline testing starting\n");
1752
1753                 if (if_running)
1754                         /* indicate we're in test mode */
1755                         dev_close(netdev);
1756
1757                 if (e1000_reg_test(adapter, &data[0]))
1758                         eth_test->flags |= ETH_TEST_FL_FAILED;
1759
1760                 e1000e_reset(adapter);
1761                 if (e1000_eeprom_test(adapter, &data[1]))
1762                         eth_test->flags |= ETH_TEST_FL_FAILED;
1763
1764                 e1000e_reset(adapter);
1765                 if (e1000_intr_test(adapter, &data[2]))
1766                         eth_test->flags |= ETH_TEST_FL_FAILED;
1767
1768                 e1000e_reset(adapter);
1769                 if (e1000_loopback_test(adapter, &data[3]))
1770                         eth_test->flags |= ETH_TEST_FL_FAILED;
1771
1772                 /* force this routine to wait until autoneg complete/timeout */
1773                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1774                 e1000e_reset(adapter);
1775                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1776
1777                 if (e1000_link_test(adapter, &data[4]))
1778                         eth_test->flags |= ETH_TEST_FL_FAILED;
1779
1780                 /* restore speed, duplex, autoneg settings */
1781                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1782                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1783                 adapter->hw.mac.autoneg = autoneg;
1784                 e1000e_reset(adapter);
1785
1786                 clear_bit(__E1000_TESTING, &adapter->state);
1787                 if (if_running)
1788                         dev_open(netdev);
1789         } else {
1790                 /* Online tests */
1791
1792                 e_info("online testing starting\n");
1793
1794                 /* register, eeprom, intr and loopback tests not run online */
1795                 data[0] = 0;
1796                 data[1] = 0;
1797                 data[2] = 0;
1798                 data[3] = 0;
1799
1800                 if (e1000_link_test(adapter, &data[4]))
1801                         eth_test->flags |= ETH_TEST_FL_FAILED;
1802
1803                 clear_bit(__E1000_TESTING, &adapter->state);
1804         }
1805
1806         if (!if_running) {
1807                 e1000e_reset(adapter);
1808
1809                 if (adapter->flags & FLAG_HAS_AMT)
1810                         e1000e_release_hw_control(adapter);
1811         }
1812
1813         msleep_interruptible(4 * 1000);
1814 }
1815
1816 static void e1000_get_wol(struct net_device *netdev,
1817                           struct ethtool_wolinfo *wol)
1818 {
1819         struct e1000_adapter *adapter = netdev_priv(netdev);
1820
1821         wol->supported = 0;
1822         wol->wolopts = 0;
1823
1824         if (!(adapter->flags & FLAG_HAS_WOL) ||
1825             !device_can_wakeup(&adapter->pdev->dev))
1826                 return;
1827
1828         wol->supported = WAKE_UCAST | WAKE_MCAST |
1829             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1830
1831         /* apply any specific unsupported masks here */
1832         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1833                 wol->supported &= ~WAKE_UCAST;
1834
1835                 if (adapter->wol & E1000_WUFC_EX)
1836                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1837         }
1838
1839         if (adapter->wol & E1000_WUFC_EX)
1840                 wol->wolopts |= WAKE_UCAST;
1841         if (adapter->wol & E1000_WUFC_MC)
1842                 wol->wolopts |= WAKE_MCAST;
1843         if (adapter->wol & E1000_WUFC_BC)
1844                 wol->wolopts |= WAKE_BCAST;
1845         if (adapter->wol & E1000_WUFC_MAG)
1846                 wol->wolopts |= WAKE_MAGIC;
1847         if (adapter->wol & E1000_WUFC_LNKC)
1848                 wol->wolopts |= WAKE_PHY;
1849 }
1850
1851 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1852 {
1853         struct e1000_adapter *adapter = netdev_priv(netdev);
1854
1855         if (!(adapter->flags & FLAG_HAS_WOL) ||
1856             !device_can_wakeup(&adapter->pdev->dev) ||
1857             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1858                               WAKE_MAGIC | WAKE_PHY)))
1859                 return -EOPNOTSUPP;
1860
1861         /* these settings will always override what we currently have */
1862         adapter->wol = 0;
1863
1864         if (wol->wolopts & WAKE_UCAST)
1865                 adapter->wol |= E1000_WUFC_EX;
1866         if (wol->wolopts & WAKE_MCAST)
1867                 adapter->wol |= E1000_WUFC_MC;
1868         if (wol->wolopts & WAKE_BCAST)
1869                 adapter->wol |= E1000_WUFC_BC;
1870         if (wol->wolopts & WAKE_MAGIC)
1871                 adapter->wol |= E1000_WUFC_MAG;
1872         if (wol->wolopts & WAKE_PHY)
1873                 adapter->wol |= E1000_WUFC_LNKC;
1874
1875         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1876
1877         return 0;
1878 }
1879
1880 static int e1000_set_phys_id(struct net_device *netdev,
1881                              enum ethtool_phys_id_state state)
1882 {
1883         struct e1000_adapter *adapter = netdev_priv(netdev);
1884         struct e1000_hw *hw = &adapter->hw;
1885
1886         switch (state) {
1887         case ETHTOOL_ID_ACTIVE:
1888                 if (!hw->mac.ops.blink_led)
1889                         return 2;       /* cycle on/off twice per second */
1890
1891                 hw->mac.ops.blink_led(hw);
1892                 break;
1893
1894         case ETHTOOL_ID_INACTIVE:
1895                 if (hw->phy.type == e1000_phy_ife)
1896                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1897                 hw->mac.ops.led_off(hw);
1898                 hw->mac.ops.cleanup_led(hw);
1899                 break;
1900
1901         case ETHTOOL_ID_ON:
1902                 hw->mac.ops.led_on(hw);
1903                 break;
1904
1905         case ETHTOOL_ID_OFF:
1906                 hw->mac.ops.led_off(hw);
1907                 break;
1908         }
1909         return 0;
1910 }
1911
1912 static int e1000_get_coalesce(struct net_device *netdev,
1913                               struct ethtool_coalesce *ec)
1914 {
1915         struct e1000_adapter *adapter = netdev_priv(netdev);
1916
1917         if (adapter->itr_setting <= 4)
1918                 ec->rx_coalesce_usecs = adapter->itr_setting;
1919         else
1920                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1921
1922         return 0;
1923 }
1924
1925 static int e1000_set_coalesce(struct net_device *netdev,
1926                               struct ethtool_coalesce *ec)
1927 {
1928         struct e1000_adapter *adapter = netdev_priv(netdev);
1929
1930         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1931             ((ec->rx_coalesce_usecs > 4) &&
1932              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1933             (ec->rx_coalesce_usecs == 2))
1934                 return -EINVAL;
1935
1936         if (ec->rx_coalesce_usecs == 4) {
1937                 adapter->itr_setting = 4;
1938                 adapter->itr = adapter->itr_setting;
1939         } else if (ec->rx_coalesce_usecs <= 3) {
1940                 adapter->itr = 20000;
1941                 adapter->itr_setting = ec->rx_coalesce_usecs;
1942         } else {
1943                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1944                 adapter->itr_setting = adapter->itr & ~3;
1945         }
1946
1947         if (adapter->itr_setting != 0)
1948                 e1000e_write_itr(adapter, adapter->itr);
1949         else
1950                 e1000e_write_itr(adapter, 0);
1951
1952         return 0;
1953 }
1954
1955 static int e1000_nway_reset(struct net_device *netdev)
1956 {
1957         struct e1000_adapter *adapter = netdev_priv(netdev);
1958
1959         if (!netif_running(netdev))
1960                 return -EAGAIN;
1961
1962         if (!adapter->hw.mac.autoneg)
1963                 return -EINVAL;
1964
1965         e1000e_reinit_locked(adapter);
1966
1967         return 0;
1968 }
1969
1970 static void e1000_get_ethtool_stats(struct net_device *netdev,
1971                                     struct ethtool_stats __always_unused *stats,
1972                                     u64 *data)
1973 {
1974         struct e1000_adapter *adapter = netdev_priv(netdev);
1975         struct rtnl_link_stats64 net_stats;
1976         int i;
1977         char *p = NULL;
1978
1979         e1000e_get_stats64(netdev, &net_stats);
1980         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1981                 switch (e1000_gstrings_stats[i].type) {
1982                 case NETDEV_STATS:
1983                         p = (char *) &net_stats +
1984                                         e1000_gstrings_stats[i].stat_offset;
1985                         break;
1986                 case E1000_STATS:
1987                         p = (char *) adapter +
1988                                         e1000_gstrings_stats[i].stat_offset;
1989                         break;
1990                 default:
1991                         data[i] = 0;
1992                         continue;
1993                 }
1994
1995                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1996                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1997         }
1998 }
1999
2000 static void e1000_get_strings(struct net_device __always_unused *netdev,
2001                               u32 stringset, u8 *data)
2002 {
2003         u8 *p = data;
2004         int i;
2005
2006         switch (stringset) {
2007         case ETH_SS_TEST:
2008                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2009                 break;
2010         case ETH_SS_STATS:
2011                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2012                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2013                                ETH_GSTRING_LEN);
2014                         p += ETH_GSTRING_LEN;
2015                 }
2016                 break;
2017         }
2018 }
2019
2020 static int e1000_get_rxnfc(struct net_device *netdev,
2021                            struct ethtool_rxnfc *info,
2022                            u32 __always_unused *rule_locs)
2023 {
2024         info->data = 0;
2025
2026         switch (info->cmd) {
2027         case ETHTOOL_GRXFH: {
2028                 struct e1000_adapter *adapter = netdev_priv(netdev);
2029                 struct e1000_hw *hw = &adapter->hw;
2030                 u32 mrqc = er32(MRQC);
2031
2032                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2033                         return 0;
2034
2035                 switch (info->flow_type) {
2036                 case TCP_V4_FLOW:
2037                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2038                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2039                         /* fall through */
2040                 case UDP_V4_FLOW:
2041                 case SCTP_V4_FLOW:
2042                 case AH_ESP_V4_FLOW:
2043                 case IPV4_FLOW:
2044                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2045                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2046                         break;
2047                 case TCP_V6_FLOW:
2048                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2049                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2050                         /* fall through */
2051                 case UDP_V6_FLOW:
2052                 case SCTP_V6_FLOW:
2053                 case AH_ESP_V6_FLOW:
2054                 case IPV6_FLOW:
2055                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2056                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2057                         break;
2058                 default:
2059                         break;
2060                 }
2061                 return 0;
2062         }
2063         default:
2064                 return -EOPNOTSUPP;
2065         }
2066 }
2067
2068 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2069 {
2070         struct e1000_adapter *adapter = netdev_priv(netdev);
2071         struct e1000_hw *hw = &adapter->hw;
2072         u16 cap_addr, adv_addr, lpa_addr, pcs_stat_addr, phy_data, lpi_ctrl;
2073         u32 status, ret_val;
2074
2075         if (!(adapter->flags & FLAG_IS_ICH) ||
2076             !(adapter->flags2 & FLAG2_HAS_EEE))
2077                 return -EOPNOTSUPP;
2078
2079         switch (hw->phy.type) {
2080         case e1000_phy_82579:
2081                 cap_addr = I82579_EEE_CAPABILITY;
2082                 adv_addr = I82579_EEE_ADVERTISEMENT;
2083                 lpa_addr = I82579_EEE_LP_ABILITY;
2084                 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2085                 break;
2086         case e1000_phy_i217:
2087                 cap_addr = I217_EEE_CAPABILITY;
2088                 adv_addr = I217_EEE_ADVERTISEMENT;
2089                 lpa_addr = I217_EEE_LP_ABILITY;
2090                 pcs_stat_addr = I217_EEE_PCS_STATUS;
2091                 break;
2092         default:
2093                 return -EOPNOTSUPP;
2094         }
2095
2096         ret_val = hw->phy.ops.acquire(hw);
2097         if (ret_val)
2098                 return -EBUSY;
2099
2100         /* EEE Capability */
2101         ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2102         if (ret_val)
2103                 goto release;
2104         edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2105
2106         /* EEE Advertised */
2107         ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &phy_data);
2108         if (ret_val)
2109                 goto release;
2110         edata->advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2111
2112         /* EEE Link Partner Advertised */
2113         ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2114         if (ret_val)
2115                 goto release;
2116         edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2117
2118         /* EEE PCS Status */
2119         ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2120         if (hw->phy.type == e1000_phy_82579)
2121                 phy_data <<= 8;
2122
2123 release:
2124         hw->phy.ops.release(hw);
2125         if (ret_val)
2126                 return -ENODATA;
2127
2128         e1e_rphy(hw, I82579_LPI_CTRL, &lpi_ctrl);
2129         status = er32(STATUS);
2130
2131         /* Result of the EEE auto negotiation - there is no register that
2132          * has the status of the EEE negotiation so do a best-guess based
2133          * on whether both Tx and Rx LPI indications have been received or
2134          * base it on the link speed, the EEE advertised speeds on both ends
2135          * and the speeds on which EEE is enabled locally.
2136          */
2137         if (((phy_data & E1000_EEE_TX_LPI_RCVD) &&
2138              (phy_data & E1000_EEE_RX_LPI_RCVD)) ||
2139             ((status & E1000_STATUS_SPEED_100) &&
2140              (edata->advertised & ADVERTISED_100baseT_Full) &&
2141              (edata->lp_advertised & ADVERTISED_100baseT_Full) &&
2142              (lpi_ctrl & I82579_LPI_CTRL_100_ENABLE)) ||
2143             ((status & E1000_STATUS_SPEED_1000) &&
2144              (edata->advertised & ADVERTISED_1000baseT_Full) &&
2145              (edata->lp_advertised & ADVERTISED_1000baseT_Full) &&
2146              (lpi_ctrl & I82579_LPI_CTRL_1000_ENABLE)))
2147                 edata->eee_active = true;
2148
2149         edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2150         edata->tx_lpi_enabled = true;
2151         edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2152
2153         return 0;
2154 }
2155
2156 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2157 {
2158         struct e1000_adapter *adapter = netdev_priv(netdev);
2159         struct e1000_hw *hw = &adapter->hw;
2160         struct ethtool_eee eee_curr;
2161         s32 ret_val;
2162
2163         if (!(adapter->flags & FLAG_IS_ICH) ||
2164             !(adapter->flags2 & FLAG2_HAS_EEE))
2165                 return -EOPNOTSUPP;
2166
2167         ret_val = e1000e_get_eee(netdev, &eee_curr);
2168         if (ret_val)
2169                 return ret_val;
2170
2171         if (eee_curr.advertised != edata->advertised) {
2172                 e_err("Setting EEE advertisement is not supported\n");
2173                 return -EINVAL;
2174         }
2175
2176         if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2177                 e_err("Setting EEE tx-lpi is not supported\n");
2178                 return -EINVAL;
2179         }
2180
2181         if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2182                 e_err("Setting EEE Tx LPI timer is not supported\n");
2183                 return -EINVAL;
2184         }
2185
2186         if (hw->dev_spec.ich8lan.eee_disable != !edata->eee_enabled) {
2187                 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2188
2189                 /* reset the link */
2190                 if (netif_running(netdev))
2191                         e1000e_reinit_locked(adapter);
2192                 else
2193                         e1000e_reset(adapter);
2194         }
2195
2196         return 0;
2197 }
2198
2199 static int e1000e_get_ts_info(struct net_device *netdev,
2200                               struct ethtool_ts_info *info)
2201 {
2202         struct e1000_adapter *adapter = netdev_priv(netdev);
2203
2204         ethtool_op_get_ts_info(netdev, info);
2205
2206         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2207                 return 0;
2208
2209         info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2210                                   SOF_TIMESTAMPING_RX_HARDWARE |
2211                                   SOF_TIMESTAMPING_RAW_HARDWARE);
2212
2213         info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2214
2215         info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2216                             (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2217                             (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2218                             (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2219                             (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2220                             (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2221                             (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2222                             (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2223                             (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2224                             (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2225                             (1 << HWTSTAMP_FILTER_ALL));
2226
2227         if (adapter->ptp_clock)
2228                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2229
2230         return 0;
2231 }
2232
2233 static int e1000e_ethtool_begin(struct net_device *netdev)
2234 {
2235         return pm_runtime_get_sync(netdev->dev.parent);
2236 }
2237
2238 static void e1000e_ethtool_complete(struct net_device *netdev)
2239 {
2240         pm_runtime_put_sync(netdev->dev.parent);
2241 }
2242
2243 static const struct ethtool_ops e1000_ethtool_ops = {
2244         .begin                  = e1000e_ethtool_begin,
2245         .complete               = e1000e_ethtool_complete,
2246         .get_settings           = e1000_get_settings,
2247         .set_settings           = e1000_set_settings,
2248         .get_drvinfo            = e1000_get_drvinfo,
2249         .get_regs_len           = e1000_get_regs_len,
2250         .get_regs               = e1000_get_regs,
2251         .get_wol                = e1000_get_wol,
2252         .set_wol                = e1000_set_wol,
2253         .get_msglevel           = e1000_get_msglevel,
2254         .set_msglevel           = e1000_set_msglevel,
2255         .nway_reset             = e1000_nway_reset,
2256         .get_link               = ethtool_op_get_link,
2257         .get_eeprom_len         = e1000_get_eeprom_len,
2258         .get_eeprom             = e1000_get_eeprom,
2259         .set_eeprom             = e1000_set_eeprom,
2260         .get_ringparam          = e1000_get_ringparam,
2261         .set_ringparam          = e1000_set_ringparam,
2262         .get_pauseparam         = e1000_get_pauseparam,
2263         .set_pauseparam         = e1000_set_pauseparam,
2264         .self_test              = e1000_diag_test,
2265         .get_strings            = e1000_get_strings,
2266         .set_phys_id            = e1000_set_phys_id,
2267         .get_ethtool_stats      = e1000_get_ethtool_stats,
2268         .get_sset_count         = e1000e_get_sset_count,
2269         .get_coalesce           = e1000_get_coalesce,
2270         .set_coalesce           = e1000_set_coalesce,
2271         .get_rxnfc              = e1000_get_rxnfc,
2272         .get_ts_info            = e1000e_get_ts_info,
2273         .get_eee                = e1000e_get_eee,
2274         .set_eee                = e1000e_set_eee,
2275 };
2276
2277 void e1000e_set_ethtool_ops(struct net_device *netdev)
2278 {
2279         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2280 }