e1000e: Workaround for dropped packets in Gig/100 speeds on 82579
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58
59 #include "e1000.h"
60
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64         struct ich8_hsfsts {
65                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
66                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
67                 u16 dael:1;     /* bit 2 Direct Access error Log */
68                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
70                 u16 reserved1:2;        /* bit 13:6 Reserved */
71                 u16 reserved2:6;        /* bit 13:6 Reserved */
72                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
73                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
74         } hsf_status;
75         u16 regval;
76 };
77
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81         struct ich8_hsflctl {
82                 u16 flcgo:1;    /* 0 Flash Cycle Go */
83                 u16 flcycle:2;  /* 2:1 Flash Cycle */
84                 u16 reserved:5; /* 7:3 Reserved  */
85                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
86                 u16 flockdn:6;  /* 15:10 Reserved */
87         } hsf_ctrl;
88         u16 regval;
89 };
90
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93         struct ich8_flracc {
94                 u32 grra:8;     /* 0:7 GbE region Read Access */
95                 u32 grwa:8;     /* 8:15 GbE region Write Access */
96                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
97                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
98         } hsf_flregacc;
99         u16 regval;
100 };
101
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104         struct ich8_pr {
105                 u32 base:13;    /* 0:12 Protected Range Base */
106                 u32 reserved1:2;        /* 13:14 Reserved */
107                 u32 rpe:1;      /* 15 Read Protection Enable */
108                 u32 limit:13;   /* 16:28 Protected Range Limit */
109                 u32 reserved2:2;        /* 29:30 Reserved */
110                 u32 wpe:1;      /* 31 Write Protection Enable */
111         } range;
112         u32 regval;
113 };
114
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119                                                 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121                                          u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123                                          u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125                                          u8 size, u16 *data);
126 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
130 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
131 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
134 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
135 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
136 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
137 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
139 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
141 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
142 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
143 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
144 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
145 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
146 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
147 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
148 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
149
150 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
151 {
152         return readw(hw->flash_address + reg);
153 }
154
155 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
156 {
157         return readl(hw->flash_address + reg);
158 }
159
160 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
161 {
162         writew(val, hw->flash_address + reg);
163 }
164
165 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
166 {
167         writel(val, hw->flash_address + reg);
168 }
169
170 #define er16flash(reg)          __er16flash(hw, (reg))
171 #define er32flash(reg)          __er32flash(hw, (reg))
172 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
173 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
174
175 /**
176  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
177  *  @hw: pointer to the HW structure
178  *
179  *  Test access to the PHY registers by reading the PHY ID registers.  If
180  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
181  *  otherwise assume the read PHY ID is correct if it is valid.
182  *
183  *  Assumes the sw/fw/hw semaphore is already acquired.
184  **/
185 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
186 {
187         u16 phy_reg = 0;
188         u32 phy_id = 0;
189         s32 ret_val;
190         u16 retry_count;
191         u32 mac_reg = 0;
192
193         for (retry_count = 0; retry_count < 2; retry_count++) {
194                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
195                 if (ret_val || (phy_reg == 0xFFFF))
196                         continue;
197                 phy_id = (u32)(phy_reg << 16);
198
199                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
200                 if (ret_val || (phy_reg == 0xFFFF)) {
201                         phy_id = 0;
202                         continue;
203                 }
204                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
205                 break;
206         }
207
208         if (hw->phy.id) {
209                 if (hw->phy.id == phy_id)
210                         goto out;
211         } else if (phy_id) {
212                 hw->phy.id = phy_id;
213                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
214                 goto out;
215         }
216
217         /* In case the PHY needs to be in mdio slow mode,
218          * set slow mode and try to get the PHY id again.
219          */
220         hw->phy.ops.release(hw);
221         ret_val = e1000_set_mdio_slow_mode_hv(hw);
222         if (!ret_val)
223                 ret_val = e1000e_get_phy_id(hw);
224         hw->phy.ops.acquire(hw);
225
226         if (ret_val)
227                 return false;
228 out:
229         if (hw->mac.type == e1000_pch_lpt) {
230                 /* Unforce SMBus mode in PHY */
231                 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233                 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234
235                 /* Unforce SMBus mode in MAC */
236                 mac_reg = er32(CTRL_EXT);
237                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
238                 ew32(CTRL_EXT, mac_reg);
239         }
240
241         return true;
242 }
243
244 /**
245  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
246  *  @hw: pointer to the HW structure
247  *
248  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
249  *  used to reset the PHY to a quiescent state when necessary.
250  **/
251 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
252 {
253         u32 mac_reg;
254
255         /* Set Phy Config Counter to 50msec */
256         mac_reg = er32(FEXTNVM3);
257         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
258         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
259         ew32(FEXTNVM3, mac_reg);
260
261         /* Toggle LANPHYPC Value bit */
262         mac_reg = er32(CTRL);
263         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
264         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
265         ew32(CTRL, mac_reg);
266         e1e_flush();
267         usleep_range(10, 20);
268         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
269         ew32(CTRL, mac_reg);
270         e1e_flush();
271
272         if (hw->mac.type < e1000_pch_lpt) {
273                 msleep(50);
274         } else {
275                 u16 count = 20;
276
277                 do {
278                         usleep_range(5000, 10000);
279                 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
280
281                 msleep(30);
282         }
283 }
284
285 /**
286  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
287  *  @hw: pointer to the HW structure
288  *
289  *  Workarounds/flow necessary for PHY initialization during driver load
290  *  and resume paths.
291  **/
292 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
293 {
294         struct e1000_adapter *adapter = hw->adapter;
295         u32 mac_reg, fwsm = er32(FWSM);
296         s32 ret_val;
297
298         /* Gate automatic PHY configuration by hardware on managed and
299          * non-managed 82579 and newer adapters.
300          */
301         e1000_gate_hw_phy_config_ich8lan(hw, true);
302
303         /* It is not possible to be certain of the current state of ULP
304          * so forcibly disable it.
305          */
306         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
307         e1000_disable_ulp_lpt_lp(hw, true);
308
309         ret_val = hw->phy.ops.acquire(hw);
310         if (ret_val) {
311                 e_dbg("Failed to initialize PHY flow\n");
312                 goto out;
313         }
314
315         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
316          * inaccessible and resetting the PHY is not blocked, toggle the
317          * LANPHYPC Value bit to force the interconnect to PCIe mode.
318          */
319         switch (hw->mac.type) {
320         case e1000_pch_lpt:
321                 if (e1000_phy_is_accessible_pchlan(hw))
322                         break;
323
324                 /* Before toggling LANPHYPC, see if PHY is accessible by
325                  * forcing MAC to SMBus mode first.
326                  */
327                 mac_reg = er32(CTRL_EXT);
328                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
329                 ew32(CTRL_EXT, mac_reg);
330
331                 /* Wait 50 milliseconds for MAC to finish any retries
332                  * that it might be trying to perform from previous
333                  * attempts to acknowledge any phy read requests.
334                  */
335                 msleep(50);
336
337                 /* fall-through */
338         case e1000_pch2lan:
339                 if (e1000_phy_is_accessible_pchlan(hw))
340                         break;
341
342                 /* fall-through */
343         case e1000_pchlan:
344                 if ((hw->mac.type == e1000_pchlan) &&
345                     (fwsm & E1000_ICH_FWSM_FW_VALID))
346                         break;
347
348                 if (hw->phy.ops.check_reset_block(hw)) {
349                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
350                         ret_val = -E1000_ERR_PHY;
351                         break;
352                 }
353
354                 /* Toggle LANPHYPC Value bit */
355                 e1000_toggle_lanphypc_pch_lpt(hw);
356                 if (hw->mac.type >= e1000_pch_lpt) {
357                         if (e1000_phy_is_accessible_pchlan(hw))
358                                 break;
359
360                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
361                          * so ensure that the MAC is also out of SMBus mode
362                          */
363                         mac_reg = er32(CTRL_EXT);
364                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
365                         ew32(CTRL_EXT, mac_reg);
366
367                         if (e1000_phy_is_accessible_pchlan(hw))
368                                 break;
369
370                         ret_val = -E1000_ERR_PHY;
371                 }
372                 break;
373         default:
374                 break;
375         }
376
377         hw->phy.ops.release(hw);
378         if (!ret_val) {
379
380                 /* Check to see if able to reset PHY.  Print error if not */
381                 if (hw->phy.ops.check_reset_block(hw)) {
382                         e_err("Reset blocked by ME\n");
383                         goto out;
384                 }
385
386                 /* Reset the PHY before any access to it.  Doing so, ensures
387                  * that the PHY is in a known good state before we read/write
388                  * PHY registers.  The generic reset is sufficient here,
389                  * because we haven't determined the PHY type yet.
390                  */
391                 ret_val = e1000e_phy_hw_reset_generic(hw);
392                 if (ret_val)
393                         goto out;
394
395                 /* On a successful reset, possibly need to wait for the PHY
396                  * to quiesce to an accessible state before returning control
397                  * to the calling function.  If the PHY does not quiesce, then
398                  * return E1000E_BLK_PHY_RESET, as this is the condition that
399                  *  the PHY is in.
400                  */
401                 ret_val = hw->phy.ops.check_reset_block(hw);
402                 if (ret_val)
403                         e_err("ME blocked access to PHY after reset\n");
404         }
405
406 out:
407         /* Ungate automatic PHY configuration on non-managed 82579 */
408         if ((hw->mac.type == e1000_pch2lan) &&
409             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
410                 usleep_range(10000, 20000);
411                 e1000_gate_hw_phy_config_ich8lan(hw, false);
412         }
413
414         return ret_val;
415 }
416
417 /**
418  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
419  *  @hw: pointer to the HW structure
420  *
421  *  Initialize family-specific PHY parameters and function pointers.
422  **/
423 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
424 {
425         struct e1000_phy_info *phy = &hw->phy;
426         s32 ret_val;
427
428         phy->addr = 1;
429         phy->reset_delay_us = 100;
430
431         phy->ops.set_page = e1000_set_page_igp;
432         phy->ops.read_reg = e1000_read_phy_reg_hv;
433         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
434         phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
435         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
436         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
437         phy->ops.write_reg = e1000_write_phy_reg_hv;
438         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
439         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
440         phy->ops.power_up = e1000_power_up_phy_copper;
441         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
442         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
443
444         phy->id = e1000_phy_unknown;
445
446         ret_val = e1000_init_phy_workarounds_pchlan(hw);
447         if (ret_val)
448                 return ret_val;
449
450         if (phy->id == e1000_phy_unknown)
451                 switch (hw->mac.type) {
452                 default:
453                         ret_val = e1000e_get_phy_id(hw);
454                         if (ret_val)
455                                 return ret_val;
456                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
457                                 break;
458                         /* fall-through */
459                 case e1000_pch2lan:
460                 case e1000_pch_lpt:
461                         /* In case the PHY needs to be in mdio slow mode,
462                          * set slow mode and try to get the PHY id again.
463                          */
464                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
465                         if (ret_val)
466                                 return ret_val;
467                         ret_val = e1000e_get_phy_id(hw);
468                         if (ret_val)
469                                 return ret_val;
470                         break;
471                 }
472         phy->type = e1000e_get_phy_type_from_id(phy->id);
473
474         switch (phy->type) {
475         case e1000_phy_82577:
476         case e1000_phy_82579:
477         case e1000_phy_i217:
478                 phy->ops.check_polarity = e1000_check_polarity_82577;
479                 phy->ops.force_speed_duplex =
480                     e1000_phy_force_speed_duplex_82577;
481                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
482                 phy->ops.get_info = e1000_get_phy_info_82577;
483                 phy->ops.commit = e1000e_phy_sw_reset;
484                 break;
485         case e1000_phy_82578:
486                 phy->ops.check_polarity = e1000_check_polarity_m88;
487                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
488                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
489                 phy->ops.get_info = e1000e_get_phy_info_m88;
490                 break;
491         default:
492                 ret_val = -E1000_ERR_PHY;
493                 break;
494         }
495
496         return ret_val;
497 }
498
499 /**
500  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
501  *  @hw: pointer to the HW structure
502  *
503  *  Initialize family-specific PHY parameters and function pointers.
504  **/
505 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
506 {
507         struct e1000_phy_info *phy = &hw->phy;
508         s32 ret_val;
509         u16 i = 0;
510
511         phy->addr = 1;
512         phy->reset_delay_us = 100;
513
514         phy->ops.power_up = e1000_power_up_phy_copper;
515         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
516
517         /* We may need to do this twice - once for IGP and if that fails,
518          * we'll set BM func pointers and try again
519          */
520         ret_val = e1000e_determine_phy_address(hw);
521         if (ret_val) {
522                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
523                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
524                 ret_val = e1000e_determine_phy_address(hw);
525                 if (ret_val) {
526                         e_dbg("Cannot determine PHY addr. Erroring out\n");
527                         return ret_val;
528                 }
529         }
530
531         phy->id = 0;
532         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
533                (i++ < 100)) {
534                 usleep_range(1000, 2000);
535                 ret_val = e1000e_get_phy_id(hw);
536                 if (ret_val)
537                         return ret_val;
538         }
539
540         /* Verify phy id */
541         switch (phy->id) {
542         case IGP03E1000_E_PHY_ID:
543                 phy->type = e1000_phy_igp_3;
544                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
545                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
546                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
547                 phy->ops.get_info = e1000e_get_phy_info_igp;
548                 phy->ops.check_polarity = e1000_check_polarity_igp;
549                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
550                 break;
551         case IFE_E_PHY_ID:
552         case IFE_PLUS_E_PHY_ID:
553         case IFE_C_E_PHY_ID:
554                 phy->type = e1000_phy_ife;
555                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
556                 phy->ops.get_info = e1000_get_phy_info_ife;
557                 phy->ops.check_polarity = e1000_check_polarity_ife;
558                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
559                 break;
560         case BME1000_E_PHY_ID:
561                 phy->type = e1000_phy_bm;
562                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
564                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
565                 phy->ops.commit = e1000e_phy_sw_reset;
566                 phy->ops.get_info = e1000e_get_phy_info_m88;
567                 phy->ops.check_polarity = e1000_check_polarity_m88;
568                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
569                 break;
570         default:
571                 return -E1000_ERR_PHY;
572                 break;
573         }
574
575         return 0;
576 }
577
578 /**
579  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
580  *  @hw: pointer to the HW structure
581  *
582  *  Initialize family-specific NVM parameters and function
583  *  pointers.
584  **/
585 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
586 {
587         struct e1000_nvm_info *nvm = &hw->nvm;
588         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
589         u32 gfpreg, sector_base_addr, sector_end_addr;
590         u16 i;
591
592         /* Can't read flash registers if the register set isn't mapped. */
593         if (!hw->flash_address) {
594                 e_dbg("ERROR: Flash registers not mapped\n");
595                 return -E1000_ERR_CONFIG;
596         }
597
598         nvm->type = e1000_nvm_flash_sw;
599
600         gfpreg = er32flash(ICH_FLASH_GFPREG);
601
602         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
603          * Add 1 to sector_end_addr since this sector is included in
604          * the overall size.
605          */
606         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
607         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
608
609         /* flash_base_addr is byte-aligned */
610         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
611
612         /* find total size of the NVM, then cut in half since the total
613          * size represents two separate NVM banks.
614          */
615         nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
616                                 << FLASH_SECTOR_ADDR_SHIFT);
617         nvm->flash_bank_size /= 2;
618         /* Adjust to word count */
619         nvm->flash_bank_size /= sizeof(u16);
620
621         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
622
623         /* Clear shadow ram */
624         for (i = 0; i < nvm->word_size; i++) {
625                 dev_spec->shadow_ram[i].modified = false;
626                 dev_spec->shadow_ram[i].value = 0xFFFF;
627         }
628
629         return 0;
630 }
631
632 /**
633  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
634  *  @hw: pointer to the HW structure
635  *
636  *  Initialize family-specific MAC parameters and function
637  *  pointers.
638  **/
639 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
640 {
641         struct e1000_mac_info *mac = &hw->mac;
642
643         /* Set media type function pointer */
644         hw->phy.media_type = e1000_media_type_copper;
645
646         /* Set mta register count */
647         mac->mta_reg_count = 32;
648         /* Set rar entry count */
649         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
650         if (mac->type == e1000_ich8lan)
651                 mac->rar_entry_count--;
652         /* FWSM register */
653         mac->has_fwsm = true;
654         /* ARC subsystem not supported */
655         mac->arc_subsystem_valid = false;
656         /* Adaptive IFS supported */
657         mac->adaptive_ifs = true;
658
659         /* LED and other operations */
660         switch (mac->type) {
661         case e1000_ich8lan:
662         case e1000_ich9lan:
663         case e1000_ich10lan:
664                 /* check management mode */
665                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
666                 /* ID LED init */
667                 mac->ops.id_led_init = e1000e_id_led_init_generic;
668                 /* blink LED */
669                 mac->ops.blink_led = e1000e_blink_led_generic;
670                 /* setup LED */
671                 mac->ops.setup_led = e1000e_setup_led_generic;
672                 /* cleanup LED */
673                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
674                 /* turn on/off LED */
675                 mac->ops.led_on = e1000_led_on_ich8lan;
676                 mac->ops.led_off = e1000_led_off_ich8lan;
677                 break;
678         case e1000_pch2lan:
679                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
680                 mac->ops.rar_set = e1000_rar_set_pch2lan;
681                 /* fall-through */
682         case e1000_pch_lpt:
683         case e1000_pchlan:
684                 /* check management mode */
685                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
686                 /* ID LED init */
687                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
688                 /* setup LED */
689                 mac->ops.setup_led = e1000_setup_led_pchlan;
690                 /* cleanup LED */
691                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
692                 /* turn on/off LED */
693                 mac->ops.led_on = e1000_led_on_pchlan;
694                 mac->ops.led_off = e1000_led_off_pchlan;
695                 break;
696         default:
697                 break;
698         }
699
700         if (mac->type == e1000_pch_lpt) {
701                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
702                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
703                 mac->ops.setup_physical_interface =
704                     e1000_setup_copper_link_pch_lpt;
705         }
706
707         /* Enable PCS Lock-loss workaround for ICH8 */
708         if (mac->type == e1000_ich8lan)
709                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
710
711         return 0;
712 }
713
714 /**
715  *  __e1000_access_emi_reg_locked - Read/write EMI register
716  *  @hw: pointer to the HW structure
717  *  @addr: EMI address to program
718  *  @data: pointer to value to read/write from/to the EMI address
719  *  @read: boolean flag to indicate read or write
720  *
721  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
722  **/
723 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
724                                          u16 *data, bool read)
725 {
726         s32 ret_val;
727
728         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
729         if (ret_val)
730                 return ret_val;
731
732         if (read)
733                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
734         else
735                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
736
737         return ret_val;
738 }
739
740 /**
741  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
742  *  @hw: pointer to the HW structure
743  *  @addr: EMI address to program
744  *  @data: value to be read from the EMI address
745  *
746  *  Assumes the SW/FW/HW Semaphore is already acquired.
747  **/
748 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
749 {
750         return __e1000_access_emi_reg_locked(hw, addr, data, true);
751 }
752
753 /**
754  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
755  *  @hw: pointer to the HW structure
756  *  @addr: EMI address to program
757  *  @data: value to be written to the EMI address
758  *
759  *  Assumes the SW/FW/HW Semaphore is already acquired.
760  **/
761 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
762 {
763         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
764 }
765
766 /**
767  *  e1000_set_eee_pchlan - Enable/disable EEE support
768  *  @hw: pointer to the HW structure
769  *
770  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
771  *  the link and the EEE capabilities of the link partner.  The LPI Control
772  *  register bits will remain set only if/when link is up.
773  *
774  *  EEE LPI must not be asserted earlier than one second after link is up.
775  *  On 82579, EEE LPI should not be enabled until such time otherwise there
776  *  can be link issues with some switches.  Other devices can have EEE LPI
777  *  enabled immediately upon link up since they have a timer in hardware which
778  *  prevents LPI from being asserted too early.
779  **/
780 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
781 {
782         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
783         s32 ret_val;
784         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
785
786         switch (hw->phy.type) {
787         case e1000_phy_82579:
788                 lpa = I82579_EEE_LP_ABILITY;
789                 pcs_status = I82579_EEE_PCS_STATUS;
790                 adv_addr = I82579_EEE_ADVERTISEMENT;
791                 break;
792         case e1000_phy_i217:
793                 lpa = I217_EEE_LP_ABILITY;
794                 pcs_status = I217_EEE_PCS_STATUS;
795                 adv_addr = I217_EEE_ADVERTISEMENT;
796                 break;
797         default:
798                 return 0;
799         }
800
801         ret_val = hw->phy.ops.acquire(hw);
802         if (ret_val)
803                 return ret_val;
804
805         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
806         if (ret_val)
807                 goto release;
808
809         /* Clear bits that enable EEE in various speeds */
810         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
811
812         /* Enable EEE if not disabled by user */
813         if (!dev_spec->eee_disable) {
814                 /* Save off link partner's EEE ability */
815                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
816                                                     &dev_spec->eee_lp_ability);
817                 if (ret_val)
818                         goto release;
819
820                 /* Read EEE advertisement */
821                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
822                 if (ret_val)
823                         goto release;
824
825                 /* Enable EEE only for speeds in which the link partner is
826                  * EEE capable and for which we advertise EEE.
827                  */
828                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
829                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
830
831                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
832                         e1e_rphy_locked(hw, MII_LPA, &data);
833                         if (data & LPA_100FULL)
834                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
835                         else
836                                 /* EEE is not supported in 100Half, so ignore
837                                  * partner's EEE in 100 ability if full-duplex
838                                  * is not advertised.
839                                  */
840                                 dev_spec->eee_lp_ability &=
841                                     ~I82579_EEE_100_SUPPORTED;
842                 }
843         }
844
845         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
846         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
847         if (ret_val)
848                 goto release;
849
850         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
851 release:
852         hw->phy.ops.release(hw);
853
854         return ret_val;
855 }
856
857 /**
858  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
859  *  @hw:   pointer to the HW structure
860  *  @link: link up bool flag
861  *
862  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
863  *  preventing further DMA write requests.  Workaround the issue by disabling
864  *  the de-assertion of the clock request when in 1Gpbs mode.
865  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
866  *  speeds in order to avoid Tx hangs.
867  **/
868 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
869 {
870         u32 fextnvm6 = er32(FEXTNVM6);
871         u32 status = er32(STATUS);
872         s32 ret_val = 0;
873         u16 reg;
874
875         if (link && (status & E1000_STATUS_SPEED_1000)) {
876                 ret_val = hw->phy.ops.acquire(hw);
877                 if (ret_val)
878                         return ret_val;
879
880                 ret_val =
881                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
882                                                 &reg);
883                 if (ret_val)
884                         goto release;
885
886                 ret_val =
887                     e1000e_write_kmrn_reg_locked(hw,
888                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
889                                                  reg &
890                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
891                 if (ret_val)
892                         goto release;
893
894                 usleep_range(10, 20);
895
896                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
897
898                 ret_val =
899                     e1000e_write_kmrn_reg_locked(hw,
900                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
901                                                  reg);
902 release:
903                 hw->phy.ops.release(hw);
904         } else {
905                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
906                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
907
908                 if (!link || ((status & E1000_STATUS_SPEED_100) &&
909                               (status & E1000_STATUS_FD)))
910                         goto update_fextnvm6;
911
912                 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
913                 if (ret_val)
914                         return ret_val;
915
916                 /* Clear link status transmit timeout */
917                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
918
919                 if (status & E1000_STATUS_SPEED_100) {
920                         /* Set inband Tx timeout to 5x10us for 100Half */
921                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
922
923                         /* Do not extend the K1 entry latency for 100Half */
924                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
925                 } else {
926                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
927                         reg |= 50 <<
928                             I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
929
930                         /* Extend the K1 entry latency for 10 Mbps */
931                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
932                 }
933
934                 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
935                 if (ret_val)
936                         return ret_val;
937
938 update_fextnvm6:
939                 ew32(FEXTNVM6, fextnvm6);
940         }
941
942         return ret_val;
943 }
944
945 /**
946  *  e1000_platform_pm_pch_lpt - Set platform power management values
947  *  @hw: pointer to the HW structure
948  *  @link: bool indicating link status
949  *
950  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
951  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
952  *  when link is up (which must not exceed the maximum latency supported
953  *  by the platform), otherwise specify there is no LTR requirement.
954  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
955  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
956  *  Capability register set, on this device LTR is set by writing the
957  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
958  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
959  *  message to the PMC.
960  **/
961 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
962 {
963         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
964             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
965         u16 lat_enc = 0;        /* latency encoded */
966
967         if (link) {
968                 u16 speed, duplex, scale = 0;
969                 u16 max_snoop, max_nosnoop;
970                 u16 max_ltr_enc;        /* max LTR latency encoded */
971                 s64 lat_ns;     /* latency (ns) */
972                 s64 value;
973                 u32 rxa;
974
975                 if (!hw->adapter->max_frame_size) {
976                         e_dbg("max_frame_size not set.\n");
977                         return -E1000_ERR_CONFIG;
978                 }
979
980                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
981                 if (!speed) {
982                         e_dbg("Speed not set.\n");
983                         return -E1000_ERR_CONFIG;
984                 }
985
986                 /* Rx Packet Buffer Allocation size (KB) */
987                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
988
989                 /* Determine the maximum latency tolerated by the device.
990                  *
991                  * Per the PCIe spec, the tolerated latencies are encoded as
992                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
993                  * a 10-bit value (0-1023) to provide a range from 1 ns to
994                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
995                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
996                  */
997                 lat_ns = ((s64)rxa * 1024 -
998                           (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
999                 if (lat_ns < 0)
1000                         lat_ns = 0;
1001                 else
1002                         do_div(lat_ns, speed);
1003
1004                 value = lat_ns;
1005                 while (value > PCI_LTR_VALUE_MASK) {
1006                         scale++;
1007                         value = DIV_ROUND_UP(value, (1 << 5));
1008                 }
1009                 if (scale > E1000_LTRV_SCALE_MAX) {
1010                         e_dbg("Invalid LTR latency scale %d\n", scale);
1011                         return -E1000_ERR_CONFIG;
1012                 }
1013                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1014
1015                 /* Determine the maximum latency tolerated by the platform */
1016                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1017                                      &max_snoop);
1018                 pci_read_config_word(hw->adapter->pdev,
1019                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1020                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1021
1022                 if (lat_enc > max_ltr_enc)
1023                         lat_enc = max_ltr_enc;
1024         }
1025
1026         /* Set Snoop and No-Snoop latencies the same */
1027         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1028         ew32(LTRV, reg);
1029
1030         return 0;
1031 }
1032
1033 /**
1034  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1035  *  @hw: pointer to the HW structure
1036  *  @to_sx: boolean indicating a system power state transition to Sx
1037  *
1038  *  When link is down, configure ULP mode to significantly reduce the power
1039  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1040  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1041  *  system, configure the ULP mode by software.
1042  */
1043 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1044 {
1045         u32 mac_reg;
1046         s32 ret_val = 0;
1047         u16 phy_reg;
1048
1049         if ((hw->mac.type < e1000_pch_lpt) ||
1050             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1051             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1052             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1053             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1054             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1055                 return 0;
1056
1057         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1058                 /* Request ME configure ULP mode in the PHY */
1059                 mac_reg = er32(H2ME);
1060                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1061                 ew32(H2ME, mac_reg);
1062
1063                 goto out;
1064         }
1065
1066         if (!to_sx) {
1067                 int i = 0;
1068
1069                 /* Poll up to 5 seconds for Cable Disconnected indication */
1070                 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1071                         /* Bail if link is re-acquired */
1072                         if (er32(STATUS) & E1000_STATUS_LU)
1073                                 return -E1000_ERR_PHY;
1074
1075                         if (i++ == 100)
1076                                 break;
1077
1078                         msleep(50);
1079                 }
1080                 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1081                       (er32(FEXT) &
1082                        E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1083         }
1084
1085         ret_val = hw->phy.ops.acquire(hw);
1086         if (ret_val)
1087                 goto out;
1088
1089         /* Force SMBus mode in PHY */
1090         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1091         if (ret_val)
1092                 goto release;
1093         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1094         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1095
1096         /* Force SMBus mode in MAC */
1097         mac_reg = er32(CTRL_EXT);
1098         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1099         ew32(CTRL_EXT, mac_reg);
1100
1101         /* Set Inband ULP Exit, Reset to SMBus mode and
1102          * Disable SMBus Release on PERST# in PHY
1103          */
1104         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1105         if (ret_val)
1106                 goto release;
1107         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1108                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1109         if (to_sx) {
1110                 if (er32(WUFC) & E1000_WUFC_LNKC)
1111                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1112
1113                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1114         } else {
1115                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1116         }
1117         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1118
1119         /* Set Disable SMBus Release on PERST# in MAC */
1120         mac_reg = er32(FEXTNVM7);
1121         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1122         ew32(FEXTNVM7, mac_reg);
1123
1124         /* Commit ULP changes in PHY by starting auto ULP configuration */
1125         phy_reg |= I218_ULP_CONFIG1_START;
1126         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1127 release:
1128         hw->phy.ops.release(hw);
1129 out:
1130         if (ret_val)
1131                 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1132         else
1133                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1134
1135         return ret_val;
1136 }
1137
1138 /**
1139  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1140  *  @hw: pointer to the HW structure
1141  *  @force: boolean indicating whether or not to force disabling ULP
1142  *
1143  *  Un-configure ULP mode when link is up, the system is transitioned from
1144  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1145  *  system, poll for an indication from ME that ULP has been un-configured.
1146  *  If not on an ME enabled system, un-configure the ULP mode by software.
1147  *
1148  *  During nominal operation, this function is called when link is acquired
1149  *  to disable ULP mode (force=false); otherwise, for example when unloading
1150  *  the driver or during Sx->S0 transitions, this is called with force=true
1151  *  to forcibly disable ULP.
1152  */
1153 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1154 {
1155         s32 ret_val = 0;
1156         u32 mac_reg;
1157         u16 phy_reg;
1158         int i = 0;
1159
1160         if ((hw->mac.type < e1000_pch_lpt) ||
1161             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1162             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1163             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1164             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1165             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1166                 return 0;
1167
1168         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1169                 if (force) {
1170                         /* Request ME un-configure ULP mode in the PHY */
1171                         mac_reg = er32(H2ME);
1172                         mac_reg &= ~E1000_H2ME_ULP;
1173                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1174                         ew32(H2ME, mac_reg);
1175                 }
1176
1177                 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1178                 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1179                         if (i++ == 10) {
1180                                 ret_val = -E1000_ERR_PHY;
1181                                 goto out;
1182                         }
1183
1184                         usleep_range(10000, 20000);
1185                 }
1186                 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1187
1188                 if (force) {
1189                         mac_reg = er32(H2ME);
1190                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1191                         ew32(H2ME, mac_reg);
1192                 } else {
1193                         /* Clear H2ME.ULP after ME ULP configuration */
1194                         mac_reg = er32(H2ME);
1195                         mac_reg &= ~E1000_H2ME_ULP;
1196                         ew32(H2ME, mac_reg);
1197                 }
1198
1199                 goto out;
1200         }
1201
1202         ret_val = hw->phy.ops.acquire(hw);
1203         if (ret_val)
1204                 goto out;
1205
1206         if (force)
1207                 /* Toggle LANPHYPC Value bit */
1208                 e1000_toggle_lanphypc_pch_lpt(hw);
1209
1210         /* Unforce SMBus mode in PHY */
1211         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1212         if (ret_val) {
1213                 /* The MAC might be in PCIe mode, so temporarily force to
1214                  * SMBus mode in order to access the PHY.
1215                  */
1216                 mac_reg = er32(CTRL_EXT);
1217                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1218                 ew32(CTRL_EXT, mac_reg);
1219
1220                 msleep(50);
1221
1222                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1223                                                        &phy_reg);
1224                 if (ret_val)
1225                         goto release;
1226         }
1227         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1228         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1229
1230         /* Unforce SMBus mode in MAC */
1231         mac_reg = er32(CTRL_EXT);
1232         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1233         ew32(CTRL_EXT, mac_reg);
1234
1235         /* When ULP mode was previously entered, K1 was disabled by the
1236          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1237          */
1238         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1239         if (ret_val)
1240                 goto release;
1241         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1242         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1243
1244         /* Clear ULP enabled configuration */
1245         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1246         if (ret_val)
1247                 goto release;
1248         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1249                      I218_ULP_CONFIG1_STICKY_ULP |
1250                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1251                      I218_ULP_CONFIG1_WOL_HOST |
1252                      I218_ULP_CONFIG1_INBAND_EXIT |
1253                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1254         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1255
1256         /* Commit ULP changes by starting auto ULP configuration */
1257         phy_reg |= I218_ULP_CONFIG1_START;
1258         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1259
1260         /* Clear Disable SMBus Release on PERST# in MAC */
1261         mac_reg = er32(FEXTNVM7);
1262         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1263         ew32(FEXTNVM7, mac_reg);
1264
1265 release:
1266         hw->phy.ops.release(hw);
1267         if (force) {
1268                 e1000_phy_hw_reset(hw);
1269                 msleep(50);
1270         }
1271 out:
1272         if (ret_val)
1273                 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1274         else
1275                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1276
1277         return ret_val;
1278 }
1279
1280 /**
1281  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1282  *  @hw: pointer to the HW structure
1283  *
1284  *  Checks to see of the link status of the hardware has changed.  If a
1285  *  change in link status has been detected, then we read the PHY registers
1286  *  to get the current speed/duplex if link exists.
1287  **/
1288 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1289 {
1290         struct e1000_mac_info *mac = &hw->mac;
1291         s32 ret_val;
1292         bool link;
1293         u16 phy_reg;
1294
1295         /* We only want to go out to the PHY registers to see if Auto-Neg
1296          * has completed and/or if our link status has changed.  The
1297          * get_link_status flag is set upon receiving a Link Status
1298          * Change or Rx Sequence Error interrupt.
1299          */
1300         if (!mac->get_link_status)
1301                 return 0;
1302
1303         /* First we want to see if the MII Status Register reports
1304          * link.  If so, then we want to get the current speed/duplex
1305          * of the PHY.
1306          */
1307         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1308         if (ret_val)
1309                 return ret_val;
1310
1311         if (hw->mac.type == e1000_pchlan) {
1312                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1313                 if (ret_val)
1314                         return ret_val;
1315         }
1316
1317         /* When connected at 10Mbps half-duplex, 82579 parts are excessively
1318          * aggressive resulting in many collisions. To avoid this, increase
1319          * the IPG and reduce Rx latency in the PHY.
1320          */
1321         if ((hw->mac.type == e1000_pch2lan) && link) {
1322                 u32 reg;
1323                 reg = er32(STATUS);
1324                 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1325                         reg = er32(TIPG);
1326                         reg &= ~E1000_TIPG_IPGT_MASK;
1327                         reg |= 0xFF;
1328                         ew32(TIPG, reg);
1329
1330                         /* Reduce Rx latency in analog PHY */
1331                         ret_val = hw->phy.ops.acquire(hw);
1332                         if (ret_val)
1333                                 return ret_val;
1334
1335                         ret_val =
1336                             e1000_write_emi_reg_locked(hw, I82579_RX_CONFIG, 0);
1337
1338                         hw->phy.ops.release(hw);
1339
1340                         if (ret_val)
1341                                 return ret_val;
1342                 }
1343         }
1344
1345         /* Work-around I218 hang issue */
1346         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1347             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1348             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1349             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1350                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1351                 if (ret_val)
1352                         return ret_val;
1353         }
1354
1355         if (hw->mac.type == e1000_pch_lpt) {
1356                 /* Set platform power management values for
1357                  * Latency Tolerance Reporting (LTR)
1358                  */
1359                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1360                 if (ret_val)
1361                         return ret_val;
1362         }
1363
1364         /* Clear link partner's EEE ability */
1365         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1366
1367         if (!link)
1368                 return 0;       /* No link detected */
1369
1370         mac->get_link_status = false;
1371
1372         switch (hw->mac.type) {
1373         case e1000_pch2lan:
1374                 ret_val = e1000_k1_workaround_lv(hw);
1375                 if (ret_val)
1376                         return ret_val;
1377                 /* fall-thru */
1378         case e1000_pchlan:
1379                 if (hw->phy.type == e1000_phy_82578) {
1380                         ret_val = e1000_link_stall_workaround_hv(hw);
1381                         if (ret_val)
1382                                 return ret_val;
1383                 }
1384
1385                 /* Workaround for PCHx parts in half-duplex:
1386                  * Set the number of preambles removed from the packet
1387                  * when it is passed from the PHY to the MAC to prevent
1388                  * the MAC from misinterpreting the packet type.
1389                  */
1390                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1391                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1392
1393                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1394                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1395
1396                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1397                 break;
1398         default:
1399                 break;
1400         }
1401
1402         /* Check if there was DownShift, must be checked
1403          * immediately after link-up
1404          */
1405         e1000e_check_downshift(hw);
1406
1407         /* Enable/Disable EEE after link up */
1408         if (hw->phy.type > e1000_phy_82579) {
1409                 ret_val = e1000_set_eee_pchlan(hw);
1410                 if (ret_val)
1411                         return ret_val;
1412         }
1413
1414         /* If we are forcing speed/duplex, then we simply return since
1415          * we have already determined whether we have link or not.
1416          */
1417         if (!mac->autoneg)
1418                 return -E1000_ERR_CONFIG;
1419
1420         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1421          * of MAC speed/duplex configuration.  So we only need to
1422          * configure Collision Distance in the MAC.
1423          */
1424         mac->ops.config_collision_dist(hw);
1425
1426         /* Configure Flow Control now that Auto-Neg has completed.
1427          * First, we need to restore the desired flow control
1428          * settings because we may have had to re-autoneg with a
1429          * different link partner.
1430          */
1431         ret_val = e1000e_config_fc_after_link_up(hw);
1432         if (ret_val)
1433                 e_dbg("Error configuring flow control\n");
1434
1435         return ret_val;
1436 }
1437
1438 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1439 {
1440         struct e1000_hw *hw = &adapter->hw;
1441         s32 rc;
1442
1443         rc = e1000_init_mac_params_ich8lan(hw);
1444         if (rc)
1445                 return rc;
1446
1447         rc = e1000_init_nvm_params_ich8lan(hw);
1448         if (rc)
1449                 return rc;
1450
1451         switch (hw->mac.type) {
1452         case e1000_ich8lan:
1453         case e1000_ich9lan:
1454         case e1000_ich10lan:
1455                 rc = e1000_init_phy_params_ich8lan(hw);
1456                 break;
1457         case e1000_pchlan:
1458         case e1000_pch2lan:
1459         case e1000_pch_lpt:
1460                 rc = e1000_init_phy_params_pchlan(hw);
1461                 break;
1462         default:
1463                 break;
1464         }
1465         if (rc)
1466                 return rc;
1467
1468         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1469          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1470          */
1471         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1472             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1473              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1474                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1475                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1476
1477                 hw->mac.ops.blink_led = NULL;
1478         }
1479
1480         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1481             (adapter->hw.phy.type != e1000_phy_ife))
1482                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1483
1484         /* Enable workaround for 82579 w/ ME enabled */
1485         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1486             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1487                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1488
1489         return 0;
1490 }
1491
1492 static DEFINE_MUTEX(nvm_mutex);
1493
1494 /**
1495  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1496  *  @hw: pointer to the HW structure
1497  *
1498  *  Acquires the mutex for performing NVM operations.
1499  **/
1500 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1501 {
1502         mutex_lock(&nvm_mutex);
1503
1504         return 0;
1505 }
1506
1507 /**
1508  *  e1000_release_nvm_ich8lan - Release NVM mutex
1509  *  @hw: pointer to the HW structure
1510  *
1511  *  Releases the mutex used while performing NVM operations.
1512  **/
1513 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1514 {
1515         mutex_unlock(&nvm_mutex);
1516 }
1517
1518 /**
1519  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1520  *  @hw: pointer to the HW structure
1521  *
1522  *  Acquires the software control flag for performing PHY and select
1523  *  MAC CSR accesses.
1524  **/
1525 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1526 {
1527         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1528         s32 ret_val = 0;
1529
1530         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1531                              &hw->adapter->state)) {
1532                 e_dbg("contention for Phy access\n");
1533                 return -E1000_ERR_PHY;
1534         }
1535
1536         while (timeout) {
1537                 extcnf_ctrl = er32(EXTCNF_CTRL);
1538                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1539                         break;
1540
1541                 mdelay(1);
1542                 timeout--;
1543         }
1544
1545         if (!timeout) {
1546                 e_dbg("SW has already locked the resource.\n");
1547                 ret_val = -E1000_ERR_CONFIG;
1548                 goto out;
1549         }
1550
1551         timeout = SW_FLAG_TIMEOUT;
1552
1553         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1554         ew32(EXTCNF_CTRL, extcnf_ctrl);
1555
1556         while (timeout) {
1557                 extcnf_ctrl = er32(EXTCNF_CTRL);
1558                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1559                         break;
1560
1561                 mdelay(1);
1562                 timeout--;
1563         }
1564
1565         if (!timeout) {
1566                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1567                       er32(FWSM), extcnf_ctrl);
1568                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1569                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1570                 ret_val = -E1000_ERR_CONFIG;
1571                 goto out;
1572         }
1573
1574 out:
1575         if (ret_val)
1576                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1577
1578         return ret_val;
1579 }
1580
1581 /**
1582  *  e1000_release_swflag_ich8lan - Release software control flag
1583  *  @hw: pointer to the HW structure
1584  *
1585  *  Releases the software control flag for performing PHY and select
1586  *  MAC CSR accesses.
1587  **/
1588 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1589 {
1590         u32 extcnf_ctrl;
1591
1592         extcnf_ctrl = er32(EXTCNF_CTRL);
1593
1594         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1595                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1596                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1597         } else {
1598                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1599         }
1600
1601         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1602 }
1603
1604 /**
1605  *  e1000_check_mng_mode_ich8lan - Checks management mode
1606  *  @hw: pointer to the HW structure
1607  *
1608  *  This checks if the adapter has any manageability enabled.
1609  *  This is a function pointer entry point only called by read/write
1610  *  routines for the PHY and NVM parts.
1611  **/
1612 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1613 {
1614         u32 fwsm;
1615
1616         fwsm = er32(FWSM);
1617         return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
1618                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1619                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
1620 }
1621
1622 /**
1623  *  e1000_check_mng_mode_pchlan - Checks management mode
1624  *  @hw: pointer to the HW structure
1625  *
1626  *  This checks if the adapter has iAMT enabled.
1627  *  This is a function pointer entry point only called by read/write
1628  *  routines for the PHY and NVM parts.
1629  **/
1630 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1631 {
1632         u32 fwsm;
1633
1634         fwsm = er32(FWSM);
1635         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1636             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1637 }
1638
1639 /**
1640  *  e1000_rar_set_pch2lan - Set receive address register
1641  *  @hw: pointer to the HW structure
1642  *  @addr: pointer to the receive address
1643  *  @index: receive address array register
1644  *
1645  *  Sets the receive address array register at index to the address passed
1646  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1647  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1648  *  Use SHRA[0-3] in place of those reserved for ME.
1649  **/
1650 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1651 {
1652         u32 rar_low, rar_high;
1653
1654         /* HW expects these in little endian so we reverse the byte order
1655          * from network order (big endian) to little endian
1656          */
1657         rar_low = ((u32)addr[0] |
1658                    ((u32)addr[1] << 8) |
1659                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1660
1661         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1662
1663         /* If MAC address zero, no need to set the AV bit */
1664         if (rar_low || rar_high)
1665                 rar_high |= E1000_RAH_AV;
1666
1667         if (index == 0) {
1668                 ew32(RAL(index), rar_low);
1669                 e1e_flush();
1670                 ew32(RAH(index), rar_high);
1671                 e1e_flush();
1672                 return;
1673         }
1674
1675         /* RAR[1-6] are owned by manageability.  Skip those and program the
1676          * next address into the SHRA register array.
1677          */
1678         if (index < (u32)(hw->mac.rar_entry_count)) {
1679                 s32 ret_val;
1680
1681                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1682                 if (ret_val)
1683                         goto out;
1684
1685                 ew32(SHRAL(index - 1), rar_low);
1686                 e1e_flush();
1687                 ew32(SHRAH(index - 1), rar_high);
1688                 e1e_flush();
1689
1690                 e1000_release_swflag_ich8lan(hw);
1691
1692                 /* verify the register updates */
1693                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1694                     (er32(SHRAH(index - 1)) == rar_high))
1695                         return;
1696
1697                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1698                       (index - 1), er32(FWSM));
1699         }
1700
1701 out:
1702         e_dbg("Failed to write receive address at index %d\n", index);
1703 }
1704
1705 /**
1706  *  e1000_rar_set_pch_lpt - Set receive address registers
1707  *  @hw: pointer to the HW structure
1708  *  @addr: pointer to the receive address
1709  *  @index: receive address array register
1710  *
1711  *  Sets the receive address register array at index to the address passed
1712  *  in by addr. For LPT, RAR[0] is the base address register that is to
1713  *  contain the MAC address. SHRA[0-10] are the shared receive address
1714  *  registers that are shared between the Host and manageability engine (ME).
1715  **/
1716 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1717 {
1718         u32 rar_low, rar_high;
1719         u32 wlock_mac;
1720
1721         /* HW expects these in little endian so we reverse the byte order
1722          * from network order (big endian) to little endian
1723          */
1724         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1725                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1726
1727         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1728
1729         /* If MAC address zero, no need to set the AV bit */
1730         if (rar_low || rar_high)
1731                 rar_high |= E1000_RAH_AV;
1732
1733         if (index == 0) {
1734                 ew32(RAL(index), rar_low);
1735                 e1e_flush();
1736                 ew32(RAH(index), rar_high);
1737                 e1e_flush();
1738                 return;
1739         }
1740
1741         /* The manageability engine (ME) can lock certain SHRAR registers that
1742          * it is using - those registers are unavailable for use.
1743          */
1744         if (index < hw->mac.rar_entry_count) {
1745                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1746                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1747
1748                 /* Check if all SHRAR registers are locked */
1749                 if (wlock_mac == 1)
1750                         goto out;
1751
1752                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1753                         s32 ret_val;
1754
1755                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1756
1757                         if (ret_val)
1758                                 goto out;
1759
1760                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1761                         e1e_flush();
1762                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1763                         e1e_flush();
1764
1765                         e1000_release_swflag_ich8lan(hw);
1766
1767                         /* verify the register updates */
1768                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1769                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1770                                 return;
1771                 }
1772         }
1773
1774 out:
1775         e_dbg("Failed to write receive address at index %d\n", index);
1776 }
1777
1778 /**
1779  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1780  *  @hw: pointer to the HW structure
1781  *
1782  *  Checks if firmware is blocking the reset of the PHY.
1783  *  This is a function pointer entry point only called by
1784  *  reset routines.
1785  **/
1786 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1787 {
1788         bool blocked = false;
1789         int i = 0;
1790
1791         while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1792                (i++ < 10))
1793                 usleep_range(10000, 20000);
1794         return blocked ? E1000_BLK_PHY_RESET : 0;
1795 }
1796
1797 /**
1798  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1799  *  @hw: pointer to the HW structure
1800  *
1801  *  Assumes semaphore already acquired.
1802  *
1803  **/
1804 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1805 {
1806         u16 phy_data;
1807         u32 strap = er32(STRAP);
1808         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1809             E1000_STRAP_SMT_FREQ_SHIFT;
1810         s32 ret_val;
1811
1812         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1813
1814         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1815         if (ret_val)
1816                 return ret_val;
1817
1818         phy_data &= ~HV_SMB_ADDR_MASK;
1819         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1820         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1821
1822         if (hw->phy.type == e1000_phy_i217) {
1823                 /* Restore SMBus frequency */
1824                 if (freq--) {
1825                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1826                         phy_data |= (freq & (1 << 0)) <<
1827                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
1828                         phy_data |= (freq & (1 << 1)) <<
1829                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1830                 } else {
1831                         e_dbg("Unsupported SMB frequency in PHY\n");
1832                 }
1833         }
1834
1835         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1836 }
1837
1838 /**
1839  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1840  *  @hw:   pointer to the HW structure
1841  *
1842  *  SW should configure the LCD from the NVM extended configuration region
1843  *  as a workaround for certain parts.
1844  **/
1845 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1846 {
1847         struct e1000_phy_info *phy = &hw->phy;
1848         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1849         s32 ret_val = 0;
1850         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1851
1852         /* Initialize the PHY from the NVM on ICH platforms.  This
1853          * is needed due to an issue where the NVM configuration is
1854          * not properly autoloaded after power transitions.
1855          * Therefore, after each PHY reset, we will load the
1856          * configuration data out of the NVM manually.
1857          */
1858         switch (hw->mac.type) {
1859         case e1000_ich8lan:
1860                 if (phy->type != e1000_phy_igp_3)
1861                         return ret_val;
1862
1863                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1864                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1865                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1866                         break;
1867                 }
1868                 /* Fall-thru */
1869         case e1000_pchlan:
1870         case e1000_pch2lan:
1871         case e1000_pch_lpt:
1872                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1873                 break;
1874         default:
1875                 return ret_val;
1876         }
1877
1878         ret_val = hw->phy.ops.acquire(hw);
1879         if (ret_val)
1880                 return ret_val;
1881
1882         data = er32(FEXTNVM);
1883         if (!(data & sw_cfg_mask))
1884                 goto release;
1885
1886         /* Make sure HW does not configure LCD from PHY
1887          * extended configuration before SW configuration
1888          */
1889         data = er32(EXTCNF_CTRL);
1890         if ((hw->mac.type < e1000_pch2lan) &&
1891             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1892                 goto release;
1893
1894         cnf_size = er32(EXTCNF_SIZE);
1895         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1896         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1897         if (!cnf_size)
1898                 goto release;
1899
1900         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1901         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1902
1903         if (((hw->mac.type == e1000_pchlan) &&
1904              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1905             (hw->mac.type > e1000_pchlan)) {
1906                 /* HW configures the SMBus address and LEDs when the
1907                  * OEM and LCD Write Enable bits are set in the NVM.
1908                  * When both NVM bits are cleared, SW will configure
1909                  * them instead.
1910                  */
1911                 ret_val = e1000_write_smbus_addr(hw);
1912                 if (ret_val)
1913                         goto release;
1914
1915                 data = er32(LEDCTL);
1916                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1917                                                         (u16)data);
1918                 if (ret_val)
1919                         goto release;
1920         }
1921
1922         /* Configure LCD from extended configuration region. */
1923
1924         /* cnf_base_addr is in DWORD */
1925         word_addr = (u16)(cnf_base_addr << 1);
1926
1927         for (i = 0; i < cnf_size; i++) {
1928                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1929                 if (ret_val)
1930                         goto release;
1931
1932                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1933                                          1, &reg_addr);
1934                 if (ret_val)
1935                         goto release;
1936
1937                 /* Save off the PHY page for future writes. */
1938                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1939                         phy_page = reg_data;
1940                         continue;
1941                 }
1942
1943                 reg_addr &= PHY_REG_MASK;
1944                 reg_addr |= phy_page;
1945
1946                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1947                 if (ret_val)
1948                         goto release;
1949         }
1950
1951 release:
1952         hw->phy.ops.release(hw);
1953         return ret_val;
1954 }
1955
1956 /**
1957  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1958  *  @hw:   pointer to the HW structure
1959  *  @link: link up bool flag
1960  *
1961  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1962  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1963  *  If link is down, the function will restore the default K1 setting located
1964  *  in the NVM.
1965  **/
1966 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1967 {
1968         s32 ret_val = 0;
1969         u16 status_reg = 0;
1970         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1971
1972         if (hw->mac.type != e1000_pchlan)
1973                 return 0;
1974
1975         /* Wrap the whole flow with the sw flag */
1976         ret_val = hw->phy.ops.acquire(hw);
1977         if (ret_val)
1978                 return ret_val;
1979
1980         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1981         if (link) {
1982                 if (hw->phy.type == e1000_phy_82578) {
1983                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1984                                                   &status_reg);
1985                         if (ret_val)
1986                                 goto release;
1987
1988                         status_reg &= (BM_CS_STATUS_LINK_UP |
1989                                        BM_CS_STATUS_RESOLVED |
1990                                        BM_CS_STATUS_SPEED_MASK);
1991
1992                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1993                                            BM_CS_STATUS_RESOLVED |
1994                                            BM_CS_STATUS_SPEED_1000))
1995                                 k1_enable = false;
1996                 }
1997
1998                 if (hw->phy.type == e1000_phy_82577) {
1999                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2000                         if (ret_val)
2001                                 goto release;
2002
2003                         status_reg &= (HV_M_STATUS_LINK_UP |
2004                                        HV_M_STATUS_AUTONEG_COMPLETE |
2005                                        HV_M_STATUS_SPEED_MASK);
2006
2007                         if (status_reg == (HV_M_STATUS_LINK_UP |
2008                                            HV_M_STATUS_AUTONEG_COMPLETE |
2009                                            HV_M_STATUS_SPEED_1000))
2010                                 k1_enable = false;
2011                 }
2012
2013                 /* Link stall fix for link up */
2014                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2015                 if (ret_val)
2016                         goto release;
2017
2018         } else {
2019                 /* Link stall fix for link down */
2020                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2021                 if (ret_val)
2022                         goto release;
2023         }
2024
2025         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2026
2027 release:
2028         hw->phy.ops.release(hw);
2029
2030         return ret_val;
2031 }
2032
2033 /**
2034  *  e1000_configure_k1_ich8lan - Configure K1 power state
2035  *  @hw: pointer to the HW structure
2036  *  @enable: K1 state to configure
2037  *
2038  *  Configure the K1 power state based on the provided parameter.
2039  *  Assumes semaphore already acquired.
2040  *
2041  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2042  **/
2043 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2044 {
2045         s32 ret_val;
2046         u32 ctrl_reg = 0;
2047         u32 ctrl_ext = 0;
2048         u32 reg = 0;
2049         u16 kmrn_reg = 0;
2050
2051         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2052                                               &kmrn_reg);
2053         if (ret_val)
2054                 return ret_val;
2055
2056         if (k1_enable)
2057                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2058         else
2059                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2060
2061         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2062                                                kmrn_reg);
2063         if (ret_val)
2064                 return ret_val;
2065
2066         usleep_range(20, 40);
2067         ctrl_ext = er32(CTRL_EXT);
2068         ctrl_reg = er32(CTRL);
2069
2070         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2071         reg |= E1000_CTRL_FRCSPD;
2072         ew32(CTRL, reg);
2073
2074         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2075         e1e_flush();
2076         usleep_range(20, 40);
2077         ew32(CTRL, ctrl_reg);
2078         ew32(CTRL_EXT, ctrl_ext);
2079         e1e_flush();
2080         usleep_range(20, 40);
2081
2082         return 0;
2083 }
2084
2085 /**
2086  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2087  *  @hw:       pointer to the HW structure
2088  *  @d0_state: boolean if entering d0 or d3 device state
2089  *
2090  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2091  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2092  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2093  **/
2094 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2095 {
2096         s32 ret_val = 0;
2097         u32 mac_reg;
2098         u16 oem_reg;
2099
2100         if (hw->mac.type < e1000_pchlan)
2101                 return ret_val;
2102
2103         ret_val = hw->phy.ops.acquire(hw);
2104         if (ret_val)
2105                 return ret_val;
2106
2107         if (hw->mac.type == e1000_pchlan) {
2108                 mac_reg = er32(EXTCNF_CTRL);
2109                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2110                         goto release;
2111         }
2112
2113         mac_reg = er32(FEXTNVM);
2114         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2115                 goto release;
2116
2117         mac_reg = er32(PHY_CTRL);
2118
2119         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2120         if (ret_val)
2121                 goto release;
2122
2123         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2124
2125         if (d0_state) {
2126                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2127                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2128
2129                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2130                         oem_reg |= HV_OEM_BITS_LPLU;
2131         } else {
2132                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2133                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2134                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2135
2136                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2137                                E1000_PHY_CTRL_NOND0A_LPLU))
2138                         oem_reg |= HV_OEM_BITS_LPLU;
2139         }
2140
2141         /* Set Restart auto-neg to activate the bits */
2142         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2143             !hw->phy.ops.check_reset_block(hw))
2144                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2145
2146         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2147
2148 release:
2149         hw->phy.ops.release(hw);
2150
2151         return ret_val;
2152 }
2153
2154 /**
2155  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2156  *  @hw:   pointer to the HW structure
2157  **/
2158 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2159 {
2160         s32 ret_val;
2161         u16 data;
2162
2163         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2164         if (ret_val)
2165                 return ret_val;
2166
2167         data |= HV_KMRN_MDIO_SLOW;
2168
2169         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2170
2171         return ret_val;
2172 }
2173
2174 /**
2175  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2176  *  done after every PHY reset.
2177  **/
2178 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2179 {
2180         s32 ret_val = 0;
2181         u16 phy_data;
2182
2183         if (hw->mac.type != e1000_pchlan)
2184                 return 0;
2185
2186         /* Set MDIO slow mode before any other MDIO access */
2187         if (hw->phy.type == e1000_phy_82577) {
2188                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2189                 if (ret_val)
2190                         return ret_val;
2191         }
2192
2193         if (((hw->phy.type == e1000_phy_82577) &&
2194              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2195             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2196                 /* Disable generation of early preamble */
2197                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2198                 if (ret_val)
2199                         return ret_val;
2200
2201                 /* Preamble tuning for SSC */
2202                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2203                 if (ret_val)
2204                         return ret_val;
2205         }
2206
2207         if (hw->phy.type == e1000_phy_82578) {
2208                 /* Return registers to default by doing a soft reset then
2209                  * writing 0x3140 to the control register.
2210                  */
2211                 if (hw->phy.revision < 2) {
2212                         e1000e_phy_sw_reset(hw);
2213                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2214                 }
2215         }
2216
2217         /* Select page 0 */
2218         ret_val = hw->phy.ops.acquire(hw);
2219         if (ret_val)
2220                 return ret_val;
2221
2222         hw->phy.addr = 1;
2223         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2224         hw->phy.ops.release(hw);
2225         if (ret_val)
2226                 return ret_val;
2227
2228         /* Configure the K1 Si workaround during phy reset assuming there is
2229          * link so that it disables K1 if link is in 1Gbps.
2230          */
2231         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2232         if (ret_val)
2233                 return ret_val;
2234
2235         /* Workaround for link disconnects on a busy hub in half duplex */
2236         ret_val = hw->phy.ops.acquire(hw);
2237         if (ret_val)
2238                 return ret_val;
2239         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2240         if (ret_val)
2241                 goto release;
2242         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2243         if (ret_val)
2244                 goto release;
2245
2246         /* set MSE higher to enable link to stay up when noise is high */
2247         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2248 release:
2249         hw->phy.ops.release(hw);
2250
2251         return ret_val;
2252 }
2253
2254 /**
2255  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2256  *  @hw:   pointer to the HW structure
2257  **/
2258 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2259 {
2260         u32 mac_reg;
2261         u16 i, phy_reg = 0;
2262         s32 ret_val;
2263
2264         ret_val = hw->phy.ops.acquire(hw);
2265         if (ret_val)
2266                 return;
2267         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2268         if (ret_val)
2269                 goto release;
2270
2271         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2272         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2273                 mac_reg = er32(RAL(i));
2274                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2275                                            (u16)(mac_reg & 0xFFFF));
2276                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2277                                            (u16)((mac_reg >> 16) & 0xFFFF));
2278
2279                 mac_reg = er32(RAH(i));
2280                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2281                                            (u16)(mac_reg & 0xFFFF));
2282                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2283                                            (u16)((mac_reg & E1000_RAH_AV)
2284                                                  >> 16));
2285         }
2286
2287         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2288
2289 release:
2290         hw->phy.ops.release(hw);
2291 }
2292
2293 /**
2294  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2295  *  with 82579 PHY
2296  *  @hw: pointer to the HW structure
2297  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2298  **/
2299 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2300 {
2301         s32 ret_val = 0;
2302         u16 phy_reg, data;
2303         u32 mac_reg;
2304         u16 i;
2305
2306         if (hw->mac.type < e1000_pch2lan)
2307                 return 0;
2308
2309         /* disable Rx path while enabling/disabling workaround */
2310         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2311         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2312         if (ret_val)
2313                 return ret_val;
2314
2315         if (enable) {
2316                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2317                  * SHRAL/H) and initial CRC values to the MAC
2318                  */
2319                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2320                         u8 mac_addr[ETH_ALEN] = { 0 };
2321                         u32 addr_high, addr_low;
2322
2323                         addr_high = er32(RAH(i));
2324                         if (!(addr_high & E1000_RAH_AV))
2325                                 continue;
2326                         addr_low = er32(RAL(i));
2327                         mac_addr[0] = (addr_low & 0xFF);
2328                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2329                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2330                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2331                         mac_addr[4] = (addr_high & 0xFF);
2332                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2333
2334                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2335                 }
2336
2337                 /* Write Rx addresses to the PHY */
2338                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2339
2340                 /* Enable jumbo frame workaround in the MAC */
2341                 mac_reg = er32(FFLT_DBG);
2342                 mac_reg &= ~(1 << 14);
2343                 mac_reg |= (7 << 15);
2344                 ew32(FFLT_DBG, mac_reg);
2345
2346                 mac_reg = er32(RCTL);
2347                 mac_reg |= E1000_RCTL_SECRC;
2348                 ew32(RCTL, mac_reg);
2349
2350                 ret_val = e1000e_read_kmrn_reg(hw,
2351                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2352                                                &data);
2353                 if (ret_val)
2354                         return ret_val;
2355                 ret_val = e1000e_write_kmrn_reg(hw,
2356                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2357                                                 data | (1 << 0));
2358                 if (ret_val)
2359                         return ret_val;
2360                 ret_val = e1000e_read_kmrn_reg(hw,
2361                                                E1000_KMRNCTRLSTA_HD_CTRL,
2362                                                &data);
2363                 if (ret_val)
2364                         return ret_val;
2365                 data &= ~(0xF << 8);
2366                 data |= (0xB << 8);
2367                 ret_val = e1000e_write_kmrn_reg(hw,
2368                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2369                                                 data);
2370                 if (ret_val)
2371                         return ret_val;
2372
2373                 /* Enable jumbo frame workaround in the PHY */
2374                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2375                 data &= ~(0x7F << 5);
2376                 data |= (0x37 << 5);
2377                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2378                 if (ret_val)
2379                         return ret_val;
2380                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2381                 data &= ~(1 << 13);
2382                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2383                 if (ret_val)
2384                         return ret_val;
2385                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2386                 data &= ~(0x3FF << 2);
2387                 data |= (0x1A << 2);
2388                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2389                 if (ret_val)
2390                         return ret_val;
2391                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2392                 if (ret_val)
2393                         return ret_val;
2394                 e1e_rphy(hw, HV_PM_CTRL, &data);
2395                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2396                 if (ret_val)
2397                         return ret_val;
2398         } else {
2399                 /* Write MAC register values back to h/w defaults */
2400                 mac_reg = er32(FFLT_DBG);
2401                 mac_reg &= ~(0xF << 14);
2402                 ew32(FFLT_DBG, mac_reg);
2403
2404                 mac_reg = er32(RCTL);
2405                 mac_reg &= ~E1000_RCTL_SECRC;
2406                 ew32(RCTL, mac_reg);
2407
2408                 ret_val = e1000e_read_kmrn_reg(hw,
2409                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2410                                                &data);
2411                 if (ret_val)
2412                         return ret_val;
2413                 ret_val = e1000e_write_kmrn_reg(hw,
2414                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2415                                                 data & ~(1 << 0));
2416                 if (ret_val)
2417                         return ret_val;
2418                 ret_val = e1000e_read_kmrn_reg(hw,
2419                                                E1000_KMRNCTRLSTA_HD_CTRL,
2420                                                &data);
2421                 if (ret_val)
2422                         return ret_val;
2423                 data &= ~(0xF << 8);
2424                 data |= (0xB << 8);
2425                 ret_val = e1000e_write_kmrn_reg(hw,
2426                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2427                                                 data);
2428                 if (ret_val)
2429                         return ret_val;
2430
2431                 /* Write PHY register values back to h/w defaults */
2432                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2433                 data &= ~(0x7F << 5);
2434                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2435                 if (ret_val)
2436                         return ret_val;
2437                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2438                 data |= (1 << 13);
2439                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2440                 if (ret_val)
2441                         return ret_val;
2442                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2443                 data &= ~(0x3FF << 2);
2444                 data |= (0x8 << 2);
2445                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2446                 if (ret_val)
2447                         return ret_val;
2448                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2449                 if (ret_val)
2450                         return ret_val;
2451                 e1e_rphy(hw, HV_PM_CTRL, &data);
2452                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2453                 if (ret_val)
2454                         return ret_val;
2455         }
2456
2457         /* re-enable Rx path after enabling/disabling workaround */
2458         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2459 }
2460
2461 /**
2462  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2463  *  done after every PHY reset.
2464  **/
2465 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2466 {
2467         s32 ret_val = 0;
2468
2469         if (hw->mac.type != e1000_pch2lan)
2470                 return 0;
2471
2472         /* Set MDIO slow mode before any other MDIO access */
2473         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2474         if (ret_val)
2475                 return ret_val;
2476
2477         ret_val = hw->phy.ops.acquire(hw);
2478         if (ret_val)
2479                 return ret_val;
2480         /* set MSE higher to enable link to stay up when noise is high */
2481         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2482         if (ret_val)
2483                 goto release;
2484         /* drop link after 5 times MSE threshold was reached */
2485         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2486 release:
2487         hw->phy.ops.release(hw);
2488
2489         return ret_val;
2490 }
2491
2492 /**
2493  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2494  *  @hw:   pointer to the HW structure
2495  *
2496  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2497  *  Disable K1 in 1000Mbps and 100Mbps
2498  **/
2499 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2500 {
2501         s32 ret_val = 0;
2502         u16 status_reg = 0;
2503
2504         if (hw->mac.type != e1000_pch2lan)
2505                 return 0;
2506
2507         /* Set K1 beacon duration based on 10Mbs speed */
2508         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2509         if (ret_val)
2510                 return ret_val;
2511
2512         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2513             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2514                 if (status_reg &
2515                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2516                         u16 pm_phy_reg;
2517
2518                         /* LV 1G/100 Packet drop issue wa  */
2519                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2520                         if (ret_val)
2521                                 return ret_val;
2522                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2523                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2524                         if (ret_val)
2525                                 return ret_val;
2526                 } else {
2527                         u32 mac_reg;
2528
2529                         mac_reg = er32(FEXTNVM4);
2530                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2531                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2532                         ew32(FEXTNVM4, mac_reg);
2533                 }
2534         }
2535
2536         return ret_val;
2537 }
2538
2539 /**
2540  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2541  *  @hw:   pointer to the HW structure
2542  *  @gate: boolean set to true to gate, false to ungate
2543  *
2544  *  Gate/ungate the automatic PHY configuration via hardware; perform
2545  *  the configuration via software instead.
2546  **/
2547 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2548 {
2549         u32 extcnf_ctrl;
2550
2551         if (hw->mac.type < e1000_pch2lan)
2552                 return;
2553
2554         extcnf_ctrl = er32(EXTCNF_CTRL);
2555
2556         if (gate)
2557                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2558         else
2559                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2560
2561         ew32(EXTCNF_CTRL, extcnf_ctrl);
2562 }
2563
2564 /**
2565  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2566  *  @hw: pointer to the HW structure
2567  *
2568  *  Check the appropriate indication the MAC has finished configuring the
2569  *  PHY after a software reset.
2570  **/
2571 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2572 {
2573         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2574
2575         /* Wait for basic configuration completes before proceeding */
2576         do {
2577                 data = er32(STATUS);
2578                 data &= E1000_STATUS_LAN_INIT_DONE;
2579                 usleep_range(100, 200);
2580         } while ((!data) && --loop);
2581
2582         /* If basic configuration is incomplete before the above loop
2583          * count reaches 0, loading the configuration from NVM will
2584          * leave the PHY in a bad state possibly resulting in no link.
2585          */
2586         if (loop == 0)
2587                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2588
2589         /* Clear the Init Done bit for the next init event */
2590         data = er32(STATUS);
2591         data &= ~E1000_STATUS_LAN_INIT_DONE;
2592         ew32(STATUS, data);
2593 }
2594
2595 /**
2596  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2597  *  @hw: pointer to the HW structure
2598  **/
2599 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2600 {
2601         s32 ret_val = 0;
2602         u16 reg;
2603
2604         if (hw->phy.ops.check_reset_block(hw))
2605                 return 0;
2606
2607         /* Allow time for h/w to get to quiescent state after reset */
2608         usleep_range(10000, 20000);
2609
2610         /* Perform any necessary post-reset workarounds */
2611         switch (hw->mac.type) {
2612         case e1000_pchlan:
2613                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2614                 if (ret_val)
2615                         return ret_val;
2616                 break;
2617         case e1000_pch2lan:
2618                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2619                 if (ret_val)
2620                         return ret_val;
2621                 break;
2622         default:
2623                 break;
2624         }
2625
2626         /* Clear the host wakeup bit after lcd reset */
2627         if (hw->mac.type >= e1000_pchlan) {
2628                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2629                 reg &= ~BM_WUC_HOST_WU_BIT;
2630                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2631         }
2632
2633         /* Configure the LCD with the extended configuration region in NVM */
2634         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2635         if (ret_val)
2636                 return ret_val;
2637
2638         /* Configure the LCD with the OEM bits in NVM */
2639         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2640
2641         if (hw->mac.type == e1000_pch2lan) {
2642                 /* Ungate automatic PHY configuration on non-managed 82579 */
2643                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2644                         usleep_range(10000, 20000);
2645                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2646                 }
2647
2648                 /* Set EEE LPI Update Timer to 200usec */
2649                 ret_val = hw->phy.ops.acquire(hw);
2650                 if (ret_val)
2651                         return ret_val;
2652                 ret_val = e1000_write_emi_reg_locked(hw,
2653                                                      I82579_LPI_UPDATE_TIMER,
2654                                                      0x1387);
2655                 hw->phy.ops.release(hw);
2656         }
2657
2658         return ret_val;
2659 }
2660
2661 /**
2662  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2663  *  @hw: pointer to the HW structure
2664  *
2665  *  Resets the PHY
2666  *  This is a function pointer entry point called by drivers
2667  *  or other shared routines.
2668  **/
2669 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2670 {
2671         s32 ret_val = 0;
2672
2673         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2674         if ((hw->mac.type == e1000_pch2lan) &&
2675             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2676                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2677
2678         ret_val = e1000e_phy_hw_reset_generic(hw);
2679         if (ret_val)
2680                 return ret_val;
2681
2682         return e1000_post_phy_reset_ich8lan(hw);
2683 }
2684
2685 /**
2686  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2687  *  @hw: pointer to the HW structure
2688  *  @active: true to enable LPLU, false to disable
2689  *
2690  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2691  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2692  *  the phy speed. This function will manually set the LPLU bit and restart
2693  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2694  *  since it configures the same bit.
2695  **/
2696 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2697 {
2698         s32 ret_val;
2699         u16 oem_reg;
2700
2701         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2702         if (ret_val)
2703                 return ret_val;
2704
2705         if (active)
2706                 oem_reg |= HV_OEM_BITS_LPLU;
2707         else
2708                 oem_reg &= ~HV_OEM_BITS_LPLU;
2709
2710         if (!hw->phy.ops.check_reset_block(hw))
2711                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2712
2713         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2714 }
2715
2716 /**
2717  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2718  *  @hw: pointer to the HW structure
2719  *  @active: true to enable LPLU, false to disable
2720  *
2721  *  Sets the LPLU D0 state according to the active flag.  When
2722  *  activating LPLU this function also disables smart speed
2723  *  and vice versa.  LPLU will not be activated unless the
2724  *  device autonegotiation advertisement meets standards of
2725  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2726  *  This is a function pointer entry point only called by
2727  *  PHY setup routines.
2728  **/
2729 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2730 {
2731         struct e1000_phy_info *phy = &hw->phy;
2732         u32 phy_ctrl;
2733         s32 ret_val = 0;
2734         u16 data;
2735
2736         if (phy->type == e1000_phy_ife)
2737                 return 0;
2738
2739         phy_ctrl = er32(PHY_CTRL);
2740
2741         if (active) {
2742                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2743                 ew32(PHY_CTRL, phy_ctrl);
2744
2745                 if (phy->type != e1000_phy_igp_3)
2746                         return 0;
2747
2748                 /* Call gig speed drop workaround on LPLU before accessing
2749                  * any PHY registers
2750                  */
2751                 if (hw->mac.type == e1000_ich8lan)
2752                         e1000e_gig_downshift_workaround_ich8lan(hw);
2753
2754                 /* When LPLU is enabled, we should disable SmartSpeed */
2755                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2756                 if (ret_val)
2757                         return ret_val;
2758                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2759                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2760                 if (ret_val)
2761                         return ret_val;
2762         } else {
2763                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2764                 ew32(PHY_CTRL, phy_ctrl);
2765
2766                 if (phy->type != e1000_phy_igp_3)
2767                         return 0;
2768
2769                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2770                  * during Dx states where the power conservation is most
2771                  * important.  During driver activity we should enable
2772                  * SmartSpeed, so performance is maintained.
2773                  */
2774                 if (phy->smart_speed == e1000_smart_speed_on) {
2775                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2776                                            &data);
2777                         if (ret_val)
2778                                 return ret_val;
2779
2780                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2781                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2782                                            data);
2783                         if (ret_val)
2784                                 return ret_val;
2785                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2786                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2787                                            &data);
2788                         if (ret_val)
2789                                 return ret_val;
2790
2791                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2792                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2793                                            data);
2794                         if (ret_val)
2795                                 return ret_val;
2796                 }
2797         }
2798
2799         return 0;
2800 }
2801
2802 /**
2803  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2804  *  @hw: pointer to the HW structure
2805  *  @active: true to enable LPLU, false to disable
2806  *
2807  *  Sets the LPLU D3 state according to the active flag.  When
2808  *  activating LPLU this function also disables smart speed
2809  *  and vice versa.  LPLU will not be activated unless the
2810  *  device autonegotiation advertisement meets standards of
2811  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2812  *  This is a function pointer entry point only called by
2813  *  PHY setup routines.
2814  **/
2815 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2816 {
2817         struct e1000_phy_info *phy = &hw->phy;
2818         u32 phy_ctrl;
2819         s32 ret_val = 0;
2820         u16 data;
2821
2822         phy_ctrl = er32(PHY_CTRL);
2823
2824         if (!active) {
2825                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2826                 ew32(PHY_CTRL, phy_ctrl);
2827
2828                 if (phy->type != e1000_phy_igp_3)
2829                         return 0;
2830
2831                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2832                  * during Dx states where the power conservation is most
2833                  * important.  During driver activity we should enable
2834                  * SmartSpeed, so performance is maintained.
2835                  */
2836                 if (phy->smart_speed == e1000_smart_speed_on) {
2837                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2838                                            &data);
2839                         if (ret_val)
2840                                 return ret_val;
2841
2842                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2843                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2844                                            data);
2845                         if (ret_val)
2846                                 return ret_val;
2847                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2848                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2849                                            &data);
2850                         if (ret_val)
2851                                 return ret_val;
2852
2853                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2854                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2855                                            data);
2856                         if (ret_val)
2857                                 return ret_val;
2858                 }
2859         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2860                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2861                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2862                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2863                 ew32(PHY_CTRL, phy_ctrl);
2864
2865                 if (phy->type != e1000_phy_igp_3)
2866                         return 0;
2867
2868                 /* Call gig speed drop workaround on LPLU before accessing
2869                  * any PHY registers
2870                  */
2871                 if (hw->mac.type == e1000_ich8lan)
2872                         e1000e_gig_downshift_workaround_ich8lan(hw);
2873
2874                 /* When LPLU is enabled, we should disable SmartSpeed */
2875                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2876                 if (ret_val)
2877                         return ret_val;
2878
2879                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2880                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2881         }
2882
2883         return ret_val;
2884 }
2885
2886 /**
2887  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2888  *  @hw: pointer to the HW structure
2889  *  @bank:  pointer to the variable that returns the active bank
2890  *
2891  *  Reads signature byte from the NVM using the flash access registers.
2892  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2893  **/
2894 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2895 {
2896         u32 eecd;
2897         struct e1000_nvm_info *nvm = &hw->nvm;
2898         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2899         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2900         u8 sig_byte = 0;
2901         s32 ret_val;
2902
2903         switch (hw->mac.type) {
2904         case e1000_ich8lan:
2905         case e1000_ich9lan:
2906                 eecd = er32(EECD);
2907                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2908                     E1000_EECD_SEC1VAL_VALID_MASK) {
2909                         if (eecd & E1000_EECD_SEC1VAL)
2910                                 *bank = 1;
2911                         else
2912                                 *bank = 0;
2913
2914                         return 0;
2915                 }
2916                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2917                 /* fall-thru */
2918         default:
2919                 /* set bank to 0 in case flash read fails */
2920                 *bank = 0;
2921
2922                 /* Check bank 0 */
2923                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2924                                                         &sig_byte);
2925                 if (ret_val)
2926                         return ret_val;
2927                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2928                     E1000_ICH_NVM_SIG_VALUE) {
2929                         *bank = 0;
2930                         return 0;
2931                 }
2932
2933                 /* Check bank 1 */
2934                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2935                                                         bank1_offset,
2936                                                         &sig_byte);
2937                 if (ret_val)
2938                         return ret_val;
2939                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2940                     E1000_ICH_NVM_SIG_VALUE) {
2941                         *bank = 1;
2942                         return 0;
2943                 }
2944
2945                 e_dbg("ERROR: No valid NVM bank present\n");
2946                 return -E1000_ERR_NVM;
2947         }
2948 }
2949
2950 /**
2951  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2952  *  @hw: pointer to the HW structure
2953  *  @offset: The offset (in bytes) of the word(s) to read.
2954  *  @words: Size of data to read in words
2955  *  @data: Pointer to the word(s) to read at offset.
2956  *
2957  *  Reads a word(s) from the NVM using the flash access registers.
2958  **/
2959 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2960                                   u16 *data)
2961 {
2962         struct e1000_nvm_info *nvm = &hw->nvm;
2963         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2964         u32 act_offset;
2965         s32 ret_val = 0;
2966         u32 bank = 0;
2967         u16 i, word;
2968
2969         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2970             (words == 0)) {
2971                 e_dbg("nvm parameter(s) out of bounds\n");
2972                 ret_val = -E1000_ERR_NVM;
2973                 goto out;
2974         }
2975
2976         nvm->ops.acquire(hw);
2977
2978         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2979         if (ret_val) {
2980                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2981                 bank = 0;
2982         }
2983
2984         act_offset = (bank) ? nvm->flash_bank_size : 0;
2985         act_offset += offset;
2986
2987         ret_val = 0;
2988         for (i = 0; i < words; i++) {
2989                 if (dev_spec->shadow_ram[offset + i].modified) {
2990                         data[i] = dev_spec->shadow_ram[offset + i].value;
2991                 } else {
2992                         ret_val = e1000_read_flash_word_ich8lan(hw,
2993                                                                 act_offset + i,
2994                                                                 &word);
2995                         if (ret_val)
2996                                 break;
2997                         data[i] = word;
2998                 }
2999         }
3000
3001         nvm->ops.release(hw);
3002
3003 out:
3004         if (ret_val)
3005                 e_dbg("NVM read error: %d\n", ret_val);
3006
3007         return ret_val;
3008 }
3009
3010 /**
3011  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3012  *  @hw: pointer to the HW structure
3013  *
3014  *  This function does initial flash setup so that a new read/write/erase cycle
3015  *  can be started.
3016  **/
3017 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3018 {
3019         union ich8_hws_flash_status hsfsts;
3020         s32 ret_val = -E1000_ERR_NVM;
3021
3022         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3023
3024         /* Check if the flash descriptor is valid */
3025         if (!hsfsts.hsf_status.fldesvalid) {
3026                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3027                 return -E1000_ERR_NVM;
3028         }
3029
3030         /* Clear FCERR and DAEL in hw status by writing 1 */
3031         hsfsts.hsf_status.flcerr = 1;
3032         hsfsts.hsf_status.dael = 1;
3033
3034         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3035
3036         /* Either we should have a hardware SPI cycle in progress
3037          * bit to check against, in order to start a new cycle or
3038          * FDONE bit should be changed in the hardware so that it
3039          * is 1 after hardware reset, which can then be used as an
3040          * indication whether a cycle is in progress or has been
3041          * completed.
3042          */
3043
3044         if (!hsfsts.hsf_status.flcinprog) {
3045                 /* There is no cycle running at present,
3046                  * so we can start a cycle.
3047                  * Begin by setting Flash Cycle Done.
3048                  */
3049                 hsfsts.hsf_status.flcdone = 1;
3050                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3051                 ret_val = 0;
3052         } else {
3053                 s32 i;
3054
3055                 /* Otherwise poll for sometime so the current
3056                  * cycle has a chance to end before giving up.
3057                  */
3058                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3059                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3060                         if (!hsfsts.hsf_status.flcinprog) {
3061                                 ret_val = 0;
3062                                 break;
3063                         }
3064                         udelay(1);
3065                 }
3066                 if (!ret_val) {
3067                         /* Successful in waiting for previous cycle to timeout,
3068                          * now set the Flash Cycle Done.
3069                          */
3070                         hsfsts.hsf_status.flcdone = 1;
3071                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3072                 } else {
3073                         e_dbg("Flash controller busy, cannot get access\n");
3074                 }
3075         }
3076
3077         return ret_val;
3078 }
3079
3080 /**
3081  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3082  *  @hw: pointer to the HW structure
3083  *  @timeout: maximum time to wait for completion
3084  *
3085  *  This function starts a flash cycle and waits for its completion.
3086  **/
3087 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3088 {
3089         union ich8_hws_flash_ctrl hsflctl;
3090         union ich8_hws_flash_status hsfsts;
3091         u32 i = 0;
3092
3093         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3094         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3095         hsflctl.hsf_ctrl.flcgo = 1;
3096         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3097
3098         /* wait till FDONE bit is set to 1 */
3099         do {
3100                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3101                 if (hsfsts.hsf_status.flcdone)
3102                         break;
3103                 udelay(1);
3104         } while (i++ < timeout);
3105
3106         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3107                 return 0;
3108
3109         return -E1000_ERR_NVM;
3110 }
3111
3112 /**
3113  *  e1000_read_flash_word_ich8lan - Read word from flash
3114  *  @hw: pointer to the HW structure
3115  *  @offset: offset to data location
3116  *  @data: pointer to the location for storing the data
3117  *
3118  *  Reads the flash word at offset into data.  Offset is converted
3119  *  to bytes before read.
3120  **/
3121 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3122                                          u16 *data)
3123 {
3124         /* Must convert offset into bytes. */
3125         offset <<= 1;
3126
3127         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3128 }
3129
3130 /**
3131  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3132  *  @hw: pointer to the HW structure
3133  *  @offset: The offset of the byte to read.
3134  *  @data: Pointer to a byte to store the value read.
3135  *
3136  *  Reads a single byte from the NVM using the flash access registers.
3137  **/
3138 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3139                                          u8 *data)
3140 {
3141         s32 ret_val;
3142         u16 word = 0;
3143
3144         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3145         if (ret_val)
3146                 return ret_val;
3147
3148         *data = (u8)word;
3149
3150         return 0;
3151 }
3152
3153 /**
3154  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3155  *  @hw: pointer to the HW structure
3156  *  @offset: The offset (in bytes) of the byte or word to read.
3157  *  @size: Size of data to read, 1=byte 2=word
3158  *  @data: Pointer to the word to store the value read.
3159  *
3160  *  Reads a byte or word from the NVM using the flash access registers.
3161  **/
3162 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3163                                          u8 size, u16 *data)
3164 {
3165         union ich8_hws_flash_status hsfsts;
3166         union ich8_hws_flash_ctrl hsflctl;
3167         u32 flash_linear_addr;
3168         u32 flash_data = 0;
3169         s32 ret_val = -E1000_ERR_NVM;
3170         u8 count = 0;
3171
3172         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3173                 return -E1000_ERR_NVM;
3174
3175         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3176                              hw->nvm.flash_base_addr);
3177
3178         do {
3179                 udelay(1);
3180                 /* Steps */
3181                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3182                 if (ret_val)
3183                         break;
3184
3185                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3186                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3187                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3188                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3189                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3190
3191                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3192
3193                 ret_val =
3194                     e1000_flash_cycle_ich8lan(hw,
3195                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
3196
3197                 /* Check if FCERR is set to 1, if set to 1, clear it
3198                  * and try the whole sequence a few more times, else
3199                  * read in (shift in) the Flash Data0, the order is
3200                  * least significant byte first msb to lsb
3201                  */
3202                 if (!ret_val) {
3203                         flash_data = er32flash(ICH_FLASH_FDATA0);
3204                         if (size == 1)
3205                                 *data = (u8)(flash_data & 0x000000FF);
3206                         else if (size == 2)
3207                                 *data = (u16)(flash_data & 0x0000FFFF);
3208                         break;
3209                 } else {
3210                         /* If we've gotten here, then things are probably
3211                          * completely hosed, but if the error condition is
3212                          * detected, it won't hurt to give it another try...
3213                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3214                          */
3215                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3216                         if (hsfsts.hsf_status.flcerr) {
3217                                 /* Repeat for some time before giving up. */
3218                                 continue;
3219                         } else if (!hsfsts.hsf_status.flcdone) {
3220                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3221                                 break;
3222                         }
3223                 }
3224         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3225
3226         return ret_val;
3227 }
3228
3229 /**
3230  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3231  *  @hw: pointer to the HW structure
3232  *  @offset: The offset (in bytes) of the word(s) to write.
3233  *  @words: Size of data to write in words
3234  *  @data: Pointer to the word(s) to write at offset.
3235  *
3236  *  Writes a byte or word to the NVM using the flash access registers.
3237  **/
3238 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3239                                    u16 *data)
3240 {
3241         struct e1000_nvm_info *nvm = &hw->nvm;
3242         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3243         u16 i;
3244
3245         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3246             (words == 0)) {
3247                 e_dbg("nvm parameter(s) out of bounds\n");
3248                 return -E1000_ERR_NVM;
3249         }
3250
3251         nvm->ops.acquire(hw);
3252
3253         for (i = 0; i < words; i++) {
3254                 dev_spec->shadow_ram[offset + i].modified = true;
3255                 dev_spec->shadow_ram[offset + i].value = data[i];
3256         }
3257
3258         nvm->ops.release(hw);
3259
3260         return 0;
3261 }
3262
3263 /**
3264  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3265  *  @hw: pointer to the HW structure
3266  *
3267  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3268  *  which writes the checksum to the shadow ram.  The changes in the shadow
3269  *  ram are then committed to the EEPROM by processing each bank at a time
3270  *  checking for the modified bit and writing only the pending changes.
3271  *  After a successful commit, the shadow ram is cleared and is ready for
3272  *  future writes.
3273  **/
3274 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3275 {
3276         struct e1000_nvm_info *nvm = &hw->nvm;
3277         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3278         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3279         s32 ret_val;
3280         u16 data;
3281
3282         ret_val = e1000e_update_nvm_checksum_generic(hw);
3283         if (ret_val)
3284                 goto out;
3285
3286         if (nvm->type != e1000_nvm_flash_sw)
3287                 goto out;
3288
3289         nvm->ops.acquire(hw);
3290
3291         /* We're writing to the opposite bank so if we're on bank 1,
3292          * write to bank 0 etc.  We also need to erase the segment that
3293          * is going to be written
3294          */
3295         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3296         if (ret_val) {
3297                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3298                 bank = 0;
3299         }
3300
3301         if (bank == 0) {
3302                 new_bank_offset = nvm->flash_bank_size;
3303                 old_bank_offset = 0;
3304                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3305                 if (ret_val)
3306                         goto release;
3307         } else {
3308                 old_bank_offset = nvm->flash_bank_size;
3309                 new_bank_offset = 0;
3310                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3311                 if (ret_val)
3312                         goto release;
3313         }
3314
3315         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3316                 /* Determine whether to write the value stored
3317                  * in the other NVM bank or a modified value stored
3318                  * in the shadow RAM
3319                  */
3320                 if (dev_spec->shadow_ram[i].modified) {
3321                         data = dev_spec->shadow_ram[i].value;
3322                 } else {
3323                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
3324                                                                 old_bank_offset,
3325                                                                 &data);
3326                         if (ret_val)
3327                                 break;
3328                 }
3329
3330                 /* If the word is 0x13, then make sure the signature bits
3331                  * (15:14) are 11b until the commit has completed.
3332                  * This will allow us to write 10b which indicates the
3333                  * signature is valid.  We want to do this after the write
3334                  * has completed so that we don't mark the segment valid
3335                  * while the write is still in progress
3336                  */
3337                 if (i == E1000_ICH_NVM_SIG_WORD)
3338                         data |= E1000_ICH_NVM_SIG_MASK;
3339
3340                 /* Convert offset to bytes. */
3341                 act_offset = (i + new_bank_offset) << 1;
3342
3343                 usleep_range(100, 200);
3344                 /* Write the bytes to the new bank. */
3345                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3346                                                                act_offset,
3347                                                                (u8)data);
3348                 if (ret_val)
3349                         break;
3350
3351                 usleep_range(100, 200);
3352                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3353                                                                act_offset + 1,
3354                                                                (u8)(data >> 8));
3355                 if (ret_val)
3356                         break;
3357         }
3358
3359         /* Don't bother writing the segment valid bits if sector
3360          * programming failed.
3361          */
3362         if (ret_val) {
3363                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3364                 e_dbg("Flash commit failed.\n");
3365                 goto release;
3366         }
3367
3368         /* Finally validate the new segment by setting bit 15:14
3369          * to 10b in word 0x13 , this can be done without an
3370          * erase as well since these bits are 11 to start with
3371          * and we need to change bit 14 to 0b
3372          */
3373         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3374         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3375         if (ret_val)
3376                 goto release;
3377
3378         data &= 0xBFFF;
3379         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3380                                                        act_offset * 2 + 1,
3381                                                        (u8)(data >> 8));
3382         if (ret_val)
3383                 goto release;
3384
3385         /* And invalidate the previously valid segment by setting
3386          * its signature word (0x13) high_byte to 0b. This can be
3387          * done without an erase because flash erase sets all bits
3388          * to 1's. We can write 1's to 0's without an erase
3389          */
3390         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3391         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3392         if (ret_val)
3393                 goto release;
3394
3395         /* Great!  Everything worked, we can now clear the cached entries. */
3396         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3397                 dev_spec->shadow_ram[i].modified = false;
3398                 dev_spec->shadow_ram[i].value = 0xFFFF;
3399         }
3400
3401 release:
3402         nvm->ops.release(hw);
3403
3404         /* Reload the EEPROM, or else modifications will not appear
3405          * until after the next adapter reset.
3406          */
3407         if (!ret_val) {
3408                 nvm->ops.reload(hw);
3409                 usleep_range(10000, 20000);
3410         }
3411
3412 out:
3413         if (ret_val)
3414                 e_dbg("NVM update error: %d\n", ret_val);
3415
3416         return ret_val;
3417 }
3418
3419 /**
3420  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3421  *  @hw: pointer to the HW structure
3422  *
3423  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3424  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3425  *  calculated, in which case we need to calculate the checksum and set bit 6.
3426  **/
3427 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3428 {
3429         s32 ret_val;
3430         u16 data;
3431         u16 word;
3432         u16 valid_csum_mask;
3433
3434         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3435          * the checksum needs to be fixed.  This bit is an indication that
3436          * the NVM was prepared by OEM software and did not calculate
3437          * the checksum...a likely scenario.
3438          */
3439         switch (hw->mac.type) {
3440         case e1000_pch_lpt:
3441                 word = NVM_COMPAT;
3442                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3443                 break;
3444         default:
3445                 word = NVM_FUTURE_INIT_WORD1;
3446                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3447                 break;
3448         }
3449
3450         ret_val = e1000_read_nvm(hw, word, 1, &data);
3451         if (ret_val)
3452                 return ret_val;
3453
3454         if (!(data & valid_csum_mask)) {
3455                 data |= valid_csum_mask;
3456                 ret_val = e1000_write_nvm(hw, word, 1, &data);
3457                 if (ret_val)
3458                         return ret_val;
3459                 ret_val = e1000e_update_nvm_checksum(hw);
3460                 if (ret_val)
3461                         return ret_val;
3462         }
3463
3464         return e1000e_validate_nvm_checksum_generic(hw);
3465 }
3466
3467 /**
3468  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3469  *  @hw: pointer to the HW structure
3470  *
3471  *  To prevent malicious write/erase of the NVM, set it to be read-only
3472  *  so that the hardware ignores all write/erase cycles of the NVM via
3473  *  the flash control registers.  The shadow-ram copy of the NVM will
3474  *  still be updated, however any updates to this copy will not stick
3475  *  across driver reloads.
3476  **/
3477 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3478 {
3479         struct e1000_nvm_info *nvm = &hw->nvm;
3480         union ich8_flash_protected_range pr0;
3481         union ich8_hws_flash_status hsfsts;
3482         u32 gfpreg;
3483
3484         nvm->ops.acquire(hw);
3485
3486         gfpreg = er32flash(ICH_FLASH_GFPREG);
3487
3488         /* Write-protect GbE Sector of NVM */
3489         pr0.regval = er32flash(ICH_FLASH_PR0);
3490         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3491         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3492         pr0.range.wpe = true;
3493         ew32flash(ICH_FLASH_PR0, pr0.regval);
3494
3495         /* Lock down a subset of GbE Flash Control Registers, e.g.
3496          * PR0 to prevent the write-protection from being lifted.
3497          * Once FLOCKDN is set, the registers protected by it cannot
3498          * be written until FLOCKDN is cleared by a hardware reset.
3499          */
3500         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3501         hsfsts.hsf_status.flockdn = true;
3502         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3503
3504         nvm->ops.release(hw);
3505 }
3506
3507 /**
3508  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3509  *  @hw: pointer to the HW structure
3510  *  @offset: The offset (in bytes) of the byte/word to read.
3511  *  @size: Size of data to read, 1=byte 2=word
3512  *  @data: The byte(s) to write to the NVM.
3513  *
3514  *  Writes one/two bytes to the NVM using the flash access registers.
3515  **/
3516 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3517                                           u8 size, u16 data)
3518 {
3519         union ich8_hws_flash_status hsfsts;
3520         union ich8_hws_flash_ctrl hsflctl;
3521         u32 flash_linear_addr;
3522         u32 flash_data = 0;
3523         s32 ret_val;
3524         u8 count = 0;
3525
3526         if (size < 1 || size > 2 || data > size * 0xff ||
3527             offset > ICH_FLASH_LINEAR_ADDR_MASK)
3528                 return -E1000_ERR_NVM;
3529
3530         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3531                              hw->nvm.flash_base_addr);
3532
3533         do {
3534                 udelay(1);
3535                 /* Steps */
3536                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3537                 if (ret_val)
3538                         break;
3539
3540                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3541                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3542                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3543                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3544                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3545
3546                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3547
3548                 if (size == 1)
3549                         flash_data = (u32)data & 0x00FF;
3550                 else
3551                         flash_data = (u32)data;
3552
3553                 ew32flash(ICH_FLASH_FDATA0, flash_data);
3554
3555                 /* check if FCERR is set to 1 , if set to 1, clear it
3556                  * and try the whole sequence a few more times else done
3557                  */
3558                 ret_val =
3559                     e1000_flash_cycle_ich8lan(hw,
3560                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3561                 if (!ret_val)
3562                         break;
3563
3564                 /* If we're here, then things are most likely
3565                  * completely hosed, but if the error condition
3566                  * is detected, it won't hurt to give it another
3567                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3568                  */
3569                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3570                 if (hsfsts.hsf_status.flcerr)
3571                         /* Repeat for some time before giving up. */
3572                         continue;
3573                 if (!hsfsts.hsf_status.flcdone) {
3574                         e_dbg("Timeout error - flash cycle did not complete.\n");
3575                         break;
3576                 }
3577         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3578
3579         return ret_val;
3580 }
3581
3582 /**
3583  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3584  *  @hw: pointer to the HW structure
3585  *  @offset: The index of the byte to read.
3586  *  @data: The byte to write to the NVM.
3587  *
3588  *  Writes a single byte to the NVM using the flash access registers.
3589  **/
3590 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3591                                           u8 data)
3592 {
3593         u16 word = (u16)data;
3594
3595         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3596 }
3597
3598 /**
3599  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3600  *  @hw: pointer to the HW structure
3601  *  @offset: The offset of the byte to write.
3602  *  @byte: The byte to write to the NVM.
3603  *
3604  *  Writes a single byte to the NVM using the flash access registers.
3605  *  Goes through a retry algorithm before giving up.
3606  **/
3607 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3608                                                 u32 offset, u8 byte)
3609 {
3610         s32 ret_val;
3611         u16 program_retries;
3612
3613         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3614         if (!ret_val)
3615                 return ret_val;
3616
3617         for (program_retries = 0; program_retries < 100; program_retries++) {
3618                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3619                 usleep_range(100, 200);
3620                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3621                 if (!ret_val)
3622                         break;
3623         }
3624         if (program_retries == 100)
3625                 return -E1000_ERR_NVM;
3626
3627         return 0;
3628 }
3629
3630 /**
3631  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3632  *  @hw: pointer to the HW structure
3633  *  @bank: 0 for first bank, 1 for second bank, etc.
3634  *
3635  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3636  *  bank N is 4096 * N + flash_reg_addr.
3637  **/
3638 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3639 {
3640         struct e1000_nvm_info *nvm = &hw->nvm;
3641         union ich8_hws_flash_status hsfsts;
3642         union ich8_hws_flash_ctrl hsflctl;
3643         u32 flash_linear_addr;
3644         /* bank size is in 16bit words - adjust to bytes */
3645         u32 flash_bank_size = nvm->flash_bank_size * 2;
3646         s32 ret_val;
3647         s32 count = 0;
3648         s32 j, iteration, sector_size;
3649
3650         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3651
3652         /* Determine HW Sector size: Read BERASE bits of hw flash status
3653          * register
3654          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3655          *     consecutive sectors.  The start index for the nth Hw sector
3656          *     can be calculated as = bank * 4096 + n * 256
3657          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3658          *     The start index for the nth Hw sector can be calculated
3659          *     as = bank * 4096
3660          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3661          *     (ich9 only, otherwise error condition)
3662          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3663          */
3664         switch (hsfsts.hsf_status.berasesz) {
3665         case 0:
3666                 /* Hw sector size 256 */
3667                 sector_size = ICH_FLASH_SEG_SIZE_256;
3668                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3669                 break;
3670         case 1:
3671                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3672                 iteration = 1;
3673                 break;
3674         case 2:
3675                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3676                 iteration = 1;
3677                 break;
3678         case 3:
3679                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3680                 iteration = 1;
3681                 break;
3682         default:
3683                 return -E1000_ERR_NVM;
3684         }
3685
3686         /* Start with the base address, then add the sector offset. */
3687         flash_linear_addr = hw->nvm.flash_base_addr;
3688         flash_linear_addr += (bank) ? flash_bank_size : 0;
3689
3690         for (j = 0; j < iteration; j++) {
3691                 do {
3692                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3693
3694                         /* Steps */
3695                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3696                         if (ret_val)
3697                                 return ret_val;
3698
3699                         /* Write a value 11 (block Erase) in Flash
3700                          * Cycle field in hw flash control
3701                          */
3702                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3703                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3704                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3705
3706                         /* Write the last 24 bits of an index within the
3707                          * block into Flash Linear address field in Flash
3708                          * Address.
3709                          */
3710                         flash_linear_addr += (j * sector_size);
3711                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3712
3713                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3714                         if (!ret_val)
3715                                 break;
3716
3717                         /* Check if FCERR is set to 1.  If 1,
3718                          * clear it and try the whole sequence
3719                          * a few more times else Done
3720                          */
3721                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3722                         if (hsfsts.hsf_status.flcerr)
3723                                 /* repeat for some time before giving up */
3724                                 continue;
3725                         else if (!hsfsts.hsf_status.flcdone)
3726                                 return ret_val;
3727                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3728         }
3729
3730         return 0;
3731 }
3732
3733 /**
3734  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3735  *  @hw: pointer to the HW structure
3736  *  @data: Pointer to the LED settings
3737  *
3738  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3739  *  settings is all 0's or F's, set the LED default to a valid LED default
3740  *  setting.
3741  **/
3742 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3743 {
3744         s32 ret_val;
3745
3746         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3747         if (ret_val) {
3748                 e_dbg("NVM Read Error\n");
3749                 return ret_val;
3750         }
3751
3752         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3753                 *data = ID_LED_DEFAULT_ICH8LAN;
3754
3755         return 0;
3756 }
3757
3758 /**
3759  *  e1000_id_led_init_pchlan - store LED configurations
3760  *  @hw: pointer to the HW structure
3761  *
3762  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3763  *  the PHY LED configuration register.
3764  *
3765  *  PCH also does not have an "always on" or "always off" mode which
3766  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3767  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3768  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3769  *  link based on logic in e1000_led_[on|off]_pchlan().
3770  **/
3771 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3772 {
3773         struct e1000_mac_info *mac = &hw->mac;
3774         s32 ret_val;
3775         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3776         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3777         u16 data, i, temp, shift;
3778
3779         /* Get default ID LED modes */
3780         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3781         if (ret_val)
3782                 return ret_val;
3783
3784         mac->ledctl_default = er32(LEDCTL);
3785         mac->ledctl_mode1 = mac->ledctl_default;
3786         mac->ledctl_mode2 = mac->ledctl_default;
3787
3788         for (i = 0; i < 4; i++) {
3789                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3790                 shift = (i * 5);
3791                 switch (temp) {
3792                 case ID_LED_ON1_DEF2:
3793                 case ID_LED_ON1_ON2:
3794                 case ID_LED_ON1_OFF2:
3795                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3796                         mac->ledctl_mode1 |= (ledctl_on << shift);
3797                         break;
3798                 case ID_LED_OFF1_DEF2:
3799                 case ID_LED_OFF1_ON2:
3800                 case ID_LED_OFF1_OFF2:
3801                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3802                         mac->ledctl_mode1 |= (ledctl_off << shift);
3803                         break;
3804                 default:
3805                         /* Do nothing */
3806                         break;
3807                 }
3808                 switch (temp) {
3809                 case ID_LED_DEF1_ON2:
3810                 case ID_LED_ON1_ON2:
3811                 case ID_LED_OFF1_ON2:
3812                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3813                         mac->ledctl_mode2 |= (ledctl_on << shift);
3814                         break;
3815                 case ID_LED_DEF1_OFF2:
3816                 case ID_LED_ON1_OFF2:
3817                 case ID_LED_OFF1_OFF2:
3818                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3819                         mac->ledctl_mode2 |= (ledctl_off << shift);
3820                         break;
3821                 default:
3822                         /* Do nothing */
3823                         break;
3824                 }
3825         }
3826
3827         return 0;
3828 }
3829
3830 /**
3831  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3832  *  @hw: pointer to the HW structure
3833  *
3834  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3835  *  register, so the the bus width is hard coded.
3836  **/
3837 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3838 {
3839         struct e1000_bus_info *bus = &hw->bus;
3840         s32 ret_val;
3841
3842         ret_val = e1000e_get_bus_info_pcie(hw);
3843
3844         /* ICH devices are "PCI Express"-ish.  They have
3845          * a configuration space, but do not contain
3846          * PCI Express Capability registers, so bus width
3847          * must be hardcoded.
3848          */
3849         if (bus->width == e1000_bus_width_unknown)
3850                 bus->width = e1000_bus_width_pcie_x1;
3851
3852         return ret_val;
3853 }
3854
3855 /**
3856  *  e1000_reset_hw_ich8lan - Reset the hardware
3857  *  @hw: pointer to the HW structure
3858  *
3859  *  Does a full reset of the hardware which includes a reset of the PHY and
3860  *  MAC.
3861  **/
3862 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3863 {
3864         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3865         u16 kum_cfg;
3866         u32 ctrl, reg;
3867         s32 ret_val;
3868
3869         /* Prevent the PCI-E bus from sticking if there is no TLP connection
3870          * on the last TLP read/write transaction when MAC is reset.
3871          */
3872         ret_val = e1000e_disable_pcie_master(hw);
3873         if (ret_val)
3874                 e_dbg("PCI-E Master disable polling has failed.\n");
3875
3876         e_dbg("Masking off all interrupts\n");
3877         ew32(IMC, 0xffffffff);
3878
3879         /* Disable the Transmit and Receive units.  Then delay to allow
3880          * any pending transactions to complete before we hit the MAC
3881          * with the global reset.
3882          */
3883         ew32(RCTL, 0);
3884         ew32(TCTL, E1000_TCTL_PSP);
3885         e1e_flush();
3886
3887         usleep_range(10000, 20000);
3888
3889         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3890         if (hw->mac.type == e1000_ich8lan) {
3891                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3892                 ew32(PBA, E1000_PBA_8K);
3893                 /* Set Packet Buffer Size to 16k. */
3894                 ew32(PBS, E1000_PBS_16K);
3895         }
3896
3897         if (hw->mac.type == e1000_pchlan) {
3898                 /* Save the NVM K1 bit setting */
3899                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3900                 if (ret_val)
3901                         return ret_val;
3902
3903                 if (kum_cfg & E1000_NVM_K1_ENABLE)
3904                         dev_spec->nvm_k1_enabled = true;
3905                 else
3906                         dev_spec->nvm_k1_enabled = false;
3907         }
3908
3909         ctrl = er32(CTRL);
3910
3911         if (!hw->phy.ops.check_reset_block(hw)) {
3912                 /* Full-chip reset requires MAC and PHY reset at the same
3913                  * time to make sure the interface between MAC and the
3914                  * external PHY is reset.
3915                  */
3916                 ctrl |= E1000_CTRL_PHY_RST;
3917
3918                 /* Gate automatic PHY configuration by hardware on
3919                  * non-managed 82579
3920                  */
3921                 if ((hw->mac.type == e1000_pch2lan) &&
3922                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3923                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3924         }
3925         ret_val = e1000_acquire_swflag_ich8lan(hw);
3926         e_dbg("Issuing a global reset to ich8lan\n");
3927         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3928         /* cannot issue a flush here because it hangs the hardware */
3929         msleep(20);
3930
3931         /* Set Phy Config Counter to 50msec */
3932         if (hw->mac.type == e1000_pch2lan) {
3933                 reg = er32(FEXTNVM3);
3934                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3935                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3936                 ew32(FEXTNVM3, reg);
3937         }
3938
3939         if (!ret_val)
3940                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3941
3942         if (ctrl & E1000_CTRL_PHY_RST) {
3943                 ret_val = hw->phy.ops.get_cfg_done(hw);
3944                 if (ret_val)
3945                         return ret_val;
3946
3947                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3948                 if (ret_val)
3949                         return ret_val;
3950         }
3951
3952         /* For PCH, this write will make sure that any noise
3953          * will be detected as a CRC error and be dropped rather than show up
3954          * as a bad packet to the DMA engine.
3955          */
3956         if (hw->mac.type == e1000_pchlan)
3957                 ew32(CRC_OFFSET, 0x65656565);
3958
3959         ew32(IMC, 0xffffffff);
3960         er32(ICR);
3961
3962         reg = er32(KABGTXD);
3963         reg |= E1000_KABGTXD_BGSQLBIAS;
3964         ew32(KABGTXD, reg);
3965
3966         return 0;
3967 }
3968
3969 /**
3970  *  e1000_init_hw_ich8lan - Initialize the hardware
3971  *  @hw: pointer to the HW structure
3972  *
3973  *  Prepares the hardware for transmit and receive by doing the following:
3974  *   - initialize hardware bits
3975  *   - initialize LED identification
3976  *   - setup receive address registers
3977  *   - setup flow control
3978  *   - setup transmit descriptors
3979  *   - clear statistics
3980  **/
3981 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3982 {
3983         struct e1000_mac_info *mac = &hw->mac;
3984         u32 ctrl_ext, txdctl, snoop;
3985         s32 ret_val;
3986         u16 i;
3987
3988         e1000_initialize_hw_bits_ich8lan(hw);
3989
3990         /* Initialize identification LED */
3991         ret_val = mac->ops.id_led_init(hw);
3992         /* An error is not fatal and we should not stop init due to this */
3993         if (ret_val)
3994                 e_dbg("Error initializing identification LED\n");
3995
3996         /* Setup the receive address. */
3997         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3998
3999         /* Zero out the Multicast HASH table */
4000         e_dbg("Zeroing the MTA\n");
4001         for (i = 0; i < mac->mta_reg_count; i++)
4002                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4003
4004         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4005          * the ME.  Disable wakeup by clearing the host wakeup bit.
4006          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4007          */
4008         if (hw->phy.type == e1000_phy_82578) {
4009                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4010                 i &= ~BM_WUC_HOST_WU_BIT;
4011                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4012                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4013                 if (ret_val)
4014                         return ret_val;
4015         }
4016
4017         /* Setup link and flow control */
4018         ret_val = mac->ops.setup_link(hw);
4019
4020         /* Set the transmit descriptor write-back policy for both queues */
4021         txdctl = er32(TXDCTL(0));
4022         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4023                   E1000_TXDCTL_FULL_TX_DESC_WB);
4024         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4025                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4026         ew32(TXDCTL(0), txdctl);
4027         txdctl = er32(TXDCTL(1));
4028         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4029                   E1000_TXDCTL_FULL_TX_DESC_WB);
4030         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4031                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4032         ew32(TXDCTL(1), txdctl);
4033
4034         /* ICH8 has opposite polarity of no_snoop bits.
4035          * By default, we should use snoop behavior.
4036          */
4037         if (mac->type == e1000_ich8lan)
4038                 snoop = PCIE_ICH8_SNOOP_ALL;
4039         else
4040                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4041         e1000e_set_pcie_no_snoop(hw, snoop);
4042
4043         ctrl_ext = er32(CTRL_EXT);
4044         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4045         ew32(CTRL_EXT, ctrl_ext);
4046
4047         /* Clear all of the statistics registers (clear on read).  It is
4048          * important that we do this after we have tried to establish link
4049          * because the symbol error count will increment wildly if there
4050          * is no link.
4051          */
4052         e1000_clear_hw_cntrs_ich8lan(hw);
4053
4054         return ret_val;
4055 }
4056
4057 /**
4058  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4059  *  @hw: pointer to the HW structure
4060  *
4061  *  Sets/Clears required hardware bits necessary for correctly setting up the
4062  *  hardware for transmit and receive.
4063  **/
4064 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4065 {
4066         u32 reg;
4067
4068         /* Extended Device Control */
4069         reg = er32(CTRL_EXT);
4070         reg |= (1 << 22);
4071         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4072         if (hw->mac.type >= e1000_pchlan)
4073                 reg |= E1000_CTRL_EXT_PHYPDEN;
4074         ew32(CTRL_EXT, reg);
4075
4076         /* Transmit Descriptor Control 0 */
4077         reg = er32(TXDCTL(0));
4078         reg |= (1 << 22);
4079         ew32(TXDCTL(0), reg);
4080
4081         /* Transmit Descriptor Control 1 */
4082         reg = er32(TXDCTL(1));
4083         reg |= (1 << 22);
4084         ew32(TXDCTL(1), reg);
4085
4086         /* Transmit Arbitration Control 0 */
4087         reg = er32(TARC(0));
4088         if (hw->mac.type == e1000_ich8lan)
4089                 reg |= (1 << 28) | (1 << 29);
4090         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4091         ew32(TARC(0), reg);
4092
4093         /* Transmit Arbitration Control 1 */
4094         reg = er32(TARC(1));
4095         if (er32(TCTL) & E1000_TCTL_MULR)
4096                 reg &= ~(1 << 28);
4097         else
4098                 reg |= (1 << 28);
4099         reg |= (1 << 24) | (1 << 26) | (1 << 30);
4100         ew32(TARC(1), reg);
4101
4102         /* Device Status */
4103         if (hw->mac.type == e1000_ich8lan) {
4104                 reg = er32(STATUS);
4105                 reg &= ~(1 << 31);
4106                 ew32(STATUS, reg);
4107         }
4108
4109         /* work-around descriptor data corruption issue during nfs v2 udp
4110          * traffic, just disable the nfs filtering capability
4111          */
4112         reg = er32(RFCTL);
4113         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4114
4115         /* Disable IPv6 extension header parsing because some malformed
4116          * IPv6 headers can hang the Rx.
4117          */
4118         if (hw->mac.type == e1000_ich8lan)
4119                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4120         ew32(RFCTL, reg);
4121
4122         /* Enable ECC on Lynxpoint */
4123         if (hw->mac.type == e1000_pch_lpt) {
4124                 reg = er32(PBECCSTS);
4125                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4126                 ew32(PBECCSTS, reg);
4127
4128                 reg = er32(CTRL);
4129                 reg |= E1000_CTRL_MEHE;
4130                 ew32(CTRL, reg);
4131         }
4132 }
4133
4134 /**
4135  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4136  *  @hw: pointer to the HW structure
4137  *
4138  *  Determines which flow control settings to use, then configures flow
4139  *  control.  Calls the appropriate media-specific link configuration
4140  *  function.  Assuming the adapter has a valid link partner, a valid link
4141  *  should be established.  Assumes the hardware has previously been reset
4142  *  and the transmitter and receiver are not enabled.
4143  **/
4144 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4145 {
4146         s32 ret_val;
4147
4148         if (hw->phy.ops.check_reset_block(hw))
4149                 return 0;
4150
4151         /* ICH parts do not have a word in the NVM to determine
4152          * the default flow control setting, so we explicitly
4153          * set it to full.
4154          */
4155         if (hw->fc.requested_mode == e1000_fc_default) {
4156                 /* Workaround h/w hang when Tx flow control enabled */
4157                 if (hw->mac.type == e1000_pchlan)
4158                         hw->fc.requested_mode = e1000_fc_rx_pause;
4159                 else
4160                         hw->fc.requested_mode = e1000_fc_full;
4161         }
4162
4163         /* Save off the requested flow control mode for use later.  Depending
4164          * on the link partner's capabilities, we may or may not use this mode.
4165          */
4166         hw->fc.current_mode = hw->fc.requested_mode;
4167
4168         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4169
4170         /* Continue to configure the copper link. */
4171         ret_val = hw->mac.ops.setup_physical_interface(hw);
4172         if (ret_val)
4173                 return ret_val;
4174
4175         ew32(FCTTV, hw->fc.pause_time);
4176         if ((hw->phy.type == e1000_phy_82578) ||
4177             (hw->phy.type == e1000_phy_82579) ||
4178             (hw->phy.type == e1000_phy_i217) ||
4179             (hw->phy.type == e1000_phy_82577)) {
4180                 ew32(FCRTV_PCH, hw->fc.refresh_time);
4181
4182                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4183                                    hw->fc.pause_time);
4184                 if (ret_val)
4185                         return ret_val;
4186         }
4187
4188         return e1000e_set_fc_watermarks(hw);
4189 }
4190
4191 /**
4192  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4193  *  @hw: pointer to the HW structure
4194  *
4195  *  Configures the kumeran interface to the PHY to wait the appropriate time
4196  *  when polling the PHY, then call the generic setup_copper_link to finish
4197  *  configuring the copper link.
4198  **/
4199 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4200 {
4201         u32 ctrl;
4202         s32 ret_val;
4203         u16 reg_data;
4204
4205         ctrl = er32(CTRL);
4206         ctrl |= E1000_CTRL_SLU;
4207         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4208         ew32(CTRL, ctrl);
4209
4210         /* Set the mac to wait the maximum time between each iteration
4211          * and increase the max iterations when polling the phy;
4212          * this fixes erroneous timeouts at 10Mbps.
4213          */
4214         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4215         if (ret_val)
4216                 return ret_val;
4217         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4218                                        &reg_data);
4219         if (ret_val)
4220                 return ret_val;
4221         reg_data |= 0x3F;
4222         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4223                                         reg_data);
4224         if (ret_val)
4225                 return ret_val;
4226
4227         switch (hw->phy.type) {
4228         case e1000_phy_igp_3:
4229                 ret_val = e1000e_copper_link_setup_igp(hw);
4230                 if (ret_val)
4231                         return ret_val;
4232                 break;
4233         case e1000_phy_bm:
4234         case e1000_phy_82578:
4235                 ret_val = e1000e_copper_link_setup_m88(hw);
4236                 if (ret_val)
4237                         return ret_val;
4238                 break;
4239         case e1000_phy_82577:
4240         case e1000_phy_82579:
4241                 ret_val = e1000_copper_link_setup_82577(hw);
4242                 if (ret_val)
4243                         return ret_val;
4244                 break;
4245         case e1000_phy_ife:
4246                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4247                 if (ret_val)
4248                         return ret_val;
4249
4250                 reg_data &= ~IFE_PMC_AUTO_MDIX;
4251
4252                 switch (hw->phy.mdix) {
4253                 case 1:
4254                         reg_data &= ~IFE_PMC_FORCE_MDIX;
4255                         break;
4256                 case 2:
4257                         reg_data |= IFE_PMC_FORCE_MDIX;
4258                         break;
4259                 case 0:
4260                 default:
4261                         reg_data |= IFE_PMC_AUTO_MDIX;
4262                         break;
4263                 }
4264                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4265                 if (ret_val)
4266                         return ret_val;
4267                 break;
4268         default:
4269                 break;
4270         }
4271
4272         return e1000e_setup_copper_link(hw);
4273 }
4274
4275 /**
4276  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4277  *  @hw: pointer to the HW structure
4278  *
4279  *  Calls the PHY specific link setup function and then calls the
4280  *  generic setup_copper_link to finish configuring the link for
4281  *  Lynxpoint PCH devices
4282  **/
4283 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4284 {
4285         u32 ctrl;
4286         s32 ret_val;
4287
4288         ctrl = er32(CTRL);
4289         ctrl |= E1000_CTRL_SLU;
4290         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4291         ew32(CTRL, ctrl);
4292
4293         ret_val = e1000_copper_link_setup_82577(hw);
4294         if (ret_val)
4295                 return ret_val;
4296
4297         return e1000e_setup_copper_link(hw);
4298 }
4299
4300 /**
4301  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4302  *  @hw: pointer to the HW structure
4303  *  @speed: pointer to store current link speed
4304  *  @duplex: pointer to store the current link duplex
4305  *
4306  *  Calls the generic get_speed_and_duplex to retrieve the current link
4307  *  information and then calls the Kumeran lock loss workaround for links at
4308  *  gigabit speeds.
4309  **/
4310 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4311                                           u16 *duplex)
4312 {
4313         s32 ret_val;
4314
4315         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4316         if (ret_val)
4317                 return ret_val;
4318
4319         if ((hw->mac.type == e1000_ich8lan) &&
4320             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4321                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4322         }
4323
4324         return ret_val;
4325 }
4326
4327 /**
4328  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4329  *  @hw: pointer to the HW structure
4330  *
4331  *  Work-around for 82566 Kumeran PCS lock loss:
4332  *  On link status change (i.e. PCI reset, speed change) and link is up and
4333  *  speed is gigabit-
4334  *    0) if workaround is optionally disabled do nothing
4335  *    1) wait 1ms for Kumeran link to come up
4336  *    2) check Kumeran Diagnostic register PCS lock loss bit
4337  *    3) if not set the link is locked (all is good), otherwise...
4338  *    4) reset the PHY
4339  *    5) repeat up to 10 times
4340  *  Note: this is only called for IGP3 copper when speed is 1gb.
4341  **/
4342 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4343 {
4344         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4345         u32 phy_ctrl;
4346         s32 ret_val;
4347         u16 i, data;
4348         bool link;
4349
4350         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4351                 return 0;
4352
4353         /* Make sure link is up before proceeding.  If not just return.
4354          * Attempting this while link is negotiating fouled up link
4355          * stability
4356          */
4357         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4358         if (!link)
4359                 return 0;
4360
4361         for (i = 0; i < 10; i++) {
4362                 /* read once to clear */
4363                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4364                 if (ret_val)
4365                         return ret_val;
4366                 /* and again to get new status */
4367                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4368                 if (ret_val)
4369                         return ret_val;
4370
4371                 /* check for PCS lock */
4372                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4373                         return 0;
4374
4375                 /* Issue PHY reset */
4376                 e1000_phy_hw_reset(hw);
4377                 mdelay(5);
4378         }
4379         /* Disable GigE link negotiation */
4380         phy_ctrl = er32(PHY_CTRL);
4381         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4382                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4383         ew32(PHY_CTRL, phy_ctrl);
4384
4385         /* Call gig speed drop workaround on Gig disable before accessing
4386          * any PHY registers
4387          */
4388         e1000e_gig_downshift_workaround_ich8lan(hw);
4389
4390         /* unable to acquire PCS lock */
4391         return -E1000_ERR_PHY;
4392 }
4393
4394 /**
4395  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4396  *  @hw: pointer to the HW structure
4397  *  @state: boolean value used to set the current Kumeran workaround state
4398  *
4399  *  If ICH8, set the current Kumeran workaround state (enabled - true
4400  *  /disabled - false).
4401  **/
4402 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4403                                                   bool state)
4404 {
4405         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4406
4407         if (hw->mac.type != e1000_ich8lan) {
4408                 e_dbg("Workaround applies to ICH8 only.\n");
4409                 return;
4410         }
4411
4412         dev_spec->kmrn_lock_loss_workaround_enabled = state;
4413 }
4414
4415 /**
4416  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4417  *  @hw: pointer to the HW structure
4418  *
4419  *  Workaround for 82566 power-down on D3 entry:
4420  *    1) disable gigabit link
4421  *    2) write VR power-down enable
4422  *    3) read it back
4423  *  Continue if successful, else issue LCD reset and repeat
4424  **/
4425 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4426 {
4427         u32 reg;
4428         u16 data;
4429         u8 retry = 0;
4430
4431         if (hw->phy.type != e1000_phy_igp_3)
4432                 return;
4433
4434         /* Try the workaround twice (if needed) */
4435         do {
4436                 /* Disable link */
4437                 reg = er32(PHY_CTRL);
4438                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4439                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4440                 ew32(PHY_CTRL, reg);
4441
4442                 /* Call gig speed drop workaround on Gig disable before
4443                  * accessing any PHY registers
4444                  */
4445                 if (hw->mac.type == e1000_ich8lan)
4446                         e1000e_gig_downshift_workaround_ich8lan(hw);
4447
4448                 /* Write VR power-down enable */
4449                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
4450                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4451                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4452
4453                 /* Read it back and test */
4454                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
4455                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4456                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4457                         break;
4458
4459                 /* Issue PHY reset and repeat at most one more time */
4460                 reg = er32(CTRL);
4461                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4462                 retry++;
4463         } while (retry);
4464 }
4465
4466 /**
4467  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4468  *  @hw: pointer to the HW structure
4469  *
4470  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4471  *  LPLU, Gig disable, MDIC PHY reset):
4472  *    1) Set Kumeran Near-end loopback
4473  *    2) Clear Kumeran Near-end loopback
4474  *  Should only be called for ICH8[m] devices with any 1G Phy.
4475  **/
4476 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4477 {
4478         s32 ret_val;
4479         u16 reg_data;
4480
4481         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4482                 return;
4483
4484         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4485                                        &reg_data);
4486         if (ret_val)
4487                 return;
4488         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4489         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4490                                         reg_data);
4491         if (ret_val)
4492                 return;
4493         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4494         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4495 }
4496
4497 /**
4498  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4499  *  @hw: pointer to the HW structure
4500  *
4501  *  During S0 to Sx transition, it is possible the link remains at gig
4502  *  instead of negotiating to a lower speed.  Before going to Sx, set
4503  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4504  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4505  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4506  *  needs to be written.
4507  *  Parts that support (and are linked to a partner which support) EEE in
4508  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4509  *  than 10Mbps w/o EEE.
4510  **/
4511 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4512 {
4513         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4514         u32 phy_ctrl;
4515         s32 ret_val;
4516
4517         phy_ctrl = er32(PHY_CTRL);
4518         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4519
4520         if (hw->phy.type == e1000_phy_i217) {
4521                 u16 phy_reg, device_id = hw->adapter->pdev->device;
4522
4523                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4524                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4525                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4526                     (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4527                         u32 fextnvm6 = er32(FEXTNVM6);
4528
4529                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4530                 }
4531
4532                 ret_val = hw->phy.ops.acquire(hw);
4533                 if (ret_val)
4534                         goto out;
4535
4536                 if (!dev_spec->eee_disable) {
4537                         u16 eee_advert;
4538
4539                         ret_val =
4540                             e1000_read_emi_reg_locked(hw,
4541                                                       I217_EEE_ADVERTISEMENT,
4542                                                       &eee_advert);
4543                         if (ret_val)
4544                                 goto release;
4545
4546                         /* Disable LPLU if both link partners support 100BaseT
4547                          * EEE and 100Full is advertised on both ends of the
4548                          * link.
4549                          */
4550                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4551                             (dev_spec->eee_lp_ability &
4552                              I82579_EEE_100_SUPPORTED) &&
4553                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4554                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4555                                               E1000_PHY_CTRL_NOND0A_LPLU);
4556                 }
4557
4558                 /* For i217 Intel Rapid Start Technology support,
4559                  * when the system is going into Sx and no manageability engine
4560                  * is present, the driver must configure proxy to reset only on
4561                  * power good.  LPI (Low Power Idle) state must also reset only
4562                  * on power good, as well as the MTA (Multicast table array).
4563                  * The SMBus release must also be disabled on LCD reset.
4564                  */
4565                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4566                         /* Enable proxy to reset only on power good. */
4567                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4568                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4569                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4570
4571                         /* Set bit enable LPI (EEE) to reset only on
4572                          * power good.
4573                          */
4574                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4575                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4576                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4577
4578                         /* Disable the SMB release on LCD reset. */
4579                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4580                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4581                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4582                 }
4583
4584                 /* Enable MTA to reset for Intel Rapid Start Technology
4585                  * Support
4586                  */
4587                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4588                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4589                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4590
4591 release:
4592                 hw->phy.ops.release(hw);
4593         }
4594 out:
4595         ew32(PHY_CTRL, phy_ctrl);
4596
4597         if (hw->mac.type == e1000_ich8lan)
4598                 e1000e_gig_downshift_workaround_ich8lan(hw);
4599
4600         if (hw->mac.type >= e1000_pchlan) {
4601                 e1000_oem_bits_config_ich8lan(hw, false);
4602
4603                 /* Reset PHY to activate OEM bits on 82577/8 */
4604                 if (hw->mac.type == e1000_pchlan)
4605                         e1000e_phy_hw_reset_generic(hw);
4606
4607                 ret_val = hw->phy.ops.acquire(hw);
4608                 if (ret_val)
4609                         return;
4610                 e1000_write_smbus_addr(hw);
4611                 hw->phy.ops.release(hw);
4612         }
4613 }
4614
4615 /**
4616  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4617  *  @hw: pointer to the HW structure
4618  *
4619  *  During Sx to S0 transitions on non-managed devices or managed devices
4620  *  on which PHY resets are not blocked, if the PHY registers cannot be
4621  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4622  *  the PHY.
4623  *  On i217, setup Intel Rapid Start Technology.
4624  **/
4625 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4626 {
4627         s32 ret_val;
4628
4629         if (hw->mac.type < e1000_pch2lan)
4630                 return;
4631
4632         ret_val = e1000_init_phy_workarounds_pchlan(hw);
4633         if (ret_val) {
4634                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4635                 return;
4636         }
4637
4638         /* For i217 Intel Rapid Start Technology support when the system
4639          * is transitioning from Sx and no manageability engine is present
4640          * configure SMBus to restore on reset, disable proxy, and enable
4641          * the reset on MTA (Multicast table array).
4642          */
4643         if (hw->phy.type == e1000_phy_i217) {
4644                 u16 phy_reg;
4645
4646                 ret_val = hw->phy.ops.acquire(hw);
4647                 if (ret_val) {
4648                         e_dbg("Failed to setup iRST\n");
4649                         return;
4650                 }
4651
4652                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4653                         /* Restore clear on SMB if no manageability engine
4654                          * is present
4655                          */
4656                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4657                         if (ret_val)
4658                                 goto release;
4659                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4660                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4661
4662                         /* Disable Proxy */
4663                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4664                 }
4665                 /* Enable reset on MTA */
4666                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4667                 if (ret_val)
4668                         goto release;
4669                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4670                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4671 release:
4672                 if (ret_val)
4673                         e_dbg("Error %d in resume workarounds\n", ret_val);
4674                 hw->phy.ops.release(hw);
4675         }
4676 }
4677
4678 /**
4679  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4680  *  @hw: pointer to the HW structure
4681  *
4682  *  Return the LED back to the default configuration.
4683  **/
4684 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4685 {
4686         if (hw->phy.type == e1000_phy_ife)
4687                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4688
4689         ew32(LEDCTL, hw->mac.ledctl_default);
4690         return 0;
4691 }
4692
4693 /**
4694  *  e1000_led_on_ich8lan - Turn LEDs on
4695  *  @hw: pointer to the HW structure
4696  *
4697  *  Turn on the LEDs.
4698  **/
4699 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4700 {
4701         if (hw->phy.type == e1000_phy_ife)
4702                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4703                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4704
4705         ew32(LEDCTL, hw->mac.ledctl_mode2);
4706         return 0;
4707 }
4708
4709 /**
4710  *  e1000_led_off_ich8lan - Turn LEDs off
4711  *  @hw: pointer to the HW structure
4712  *
4713  *  Turn off the LEDs.
4714  **/
4715 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4716 {
4717         if (hw->phy.type == e1000_phy_ife)
4718                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4719                                 (IFE_PSCL_PROBE_MODE |
4720                                  IFE_PSCL_PROBE_LEDS_OFF));
4721
4722         ew32(LEDCTL, hw->mac.ledctl_mode1);
4723         return 0;
4724 }
4725
4726 /**
4727  *  e1000_setup_led_pchlan - Configures SW controllable LED
4728  *  @hw: pointer to the HW structure
4729  *
4730  *  This prepares the SW controllable LED for use.
4731  **/
4732 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4733 {
4734         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4735 }
4736
4737 /**
4738  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4739  *  @hw: pointer to the HW structure
4740  *
4741  *  Return the LED back to the default configuration.
4742  **/
4743 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4744 {
4745         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4746 }
4747
4748 /**
4749  *  e1000_led_on_pchlan - Turn LEDs on
4750  *  @hw: pointer to the HW structure
4751  *
4752  *  Turn on the LEDs.
4753  **/
4754 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4755 {
4756         u16 data = (u16)hw->mac.ledctl_mode2;
4757         u32 i, led;
4758
4759         /* If no link, then turn LED on by setting the invert bit
4760          * for each LED that's mode is "link_up" in ledctl_mode2.
4761          */
4762         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4763                 for (i = 0; i < 3; i++) {
4764                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4765                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4766                             E1000_LEDCTL_MODE_LINK_UP)
4767                                 continue;
4768                         if (led & E1000_PHY_LED0_IVRT)
4769                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4770                         else
4771                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4772                 }
4773         }
4774
4775         return e1e_wphy(hw, HV_LED_CONFIG, data);
4776 }
4777
4778 /**
4779  *  e1000_led_off_pchlan - Turn LEDs off
4780  *  @hw: pointer to the HW structure
4781  *
4782  *  Turn off the LEDs.
4783  **/
4784 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4785 {
4786         u16 data = (u16)hw->mac.ledctl_mode1;
4787         u32 i, led;
4788
4789         /* If no link, then turn LED off by clearing the invert bit
4790          * for each LED that's mode is "link_up" in ledctl_mode1.
4791          */
4792         if (!(er32(STATUS) & E1000_STATUS_LU)) {
4793                 for (i = 0; i < 3; i++) {
4794                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4795                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
4796                             E1000_LEDCTL_MODE_LINK_UP)
4797                                 continue;
4798                         if (led & E1000_PHY_LED0_IVRT)
4799                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4800                         else
4801                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4802                 }
4803         }
4804
4805         return e1e_wphy(hw, HV_LED_CONFIG, data);
4806 }
4807
4808 /**
4809  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4810  *  @hw: pointer to the HW structure
4811  *
4812  *  Read appropriate register for the config done bit for completion status
4813  *  and configure the PHY through s/w for EEPROM-less parts.
4814  *
4815  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4816  *  config done bit, so only an error is logged and continues.  If we were
4817  *  to return with error, EEPROM-less silicon would not be able to be reset
4818  *  or change link.
4819  **/
4820 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4821 {
4822         s32 ret_val = 0;
4823         u32 bank = 0;
4824         u32 status;
4825
4826         e1000e_get_cfg_done_generic(hw);
4827
4828         /* Wait for indication from h/w that it has completed basic config */
4829         if (hw->mac.type >= e1000_ich10lan) {
4830                 e1000_lan_init_done_ich8lan(hw);
4831         } else {
4832                 ret_val = e1000e_get_auto_rd_done(hw);
4833                 if (ret_val) {
4834                         /* When auto config read does not complete, do not
4835                          * return with an error. This can happen in situations
4836                          * where there is no eeprom and prevents getting link.
4837                          */
4838                         e_dbg("Auto Read Done did not complete\n");
4839                         ret_val = 0;
4840                 }
4841         }
4842
4843         /* Clear PHY Reset Asserted bit */
4844         status = er32(STATUS);
4845         if (status & E1000_STATUS_PHYRA)
4846                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4847         else
4848                 e_dbg("PHY Reset Asserted not set - needs delay\n");
4849
4850         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4851         if (hw->mac.type <= e1000_ich9lan) {
4852                 if (!(er32(EECD) & E1000_EECD_PRES) &&
4853                     (hw->phy.type == e1000_phy_igp_3)) {
4854                         e1000e_phy_init_script_igp3(hw);
4855                 }
4856         } else {
4857                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4858                         /* Maybe we should do a basic PHY config */
4859                         e_dbg("EEPROM not present\n");
4860                         ret_val = -E1000_ERR_CONFIG;
4861                 }
4862         }
4863
4864         return ret_val;
4865 }
4866
4867 /**
4868  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4869  * @hw: pointer to the HW structure
4870  *
4871  * In the case of a PHY power down to save power, or to turn off link during a
4872  * driver unload, or wake on lan is not enabled, remove the link.
4873  **/
4874 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4875 {
4876         /* If the management interface is not enabled, then power down */
4877         if (!(hw->mac.ops.check_mng_mode(hw) ||
4878               hw->phy.ops.check_reset_block(hw)))
4879                 e1000_power_down_phy_copper(hw);
4880 }
4881
4882 /**
4883  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4884  *  @hw: pointer to the HW structure
4885  *
4886  *  Clears hardware counters specific to the silicon family and calls
4887  *  clear_hw_cntrs_generic to clear all general purpose counters.
4888  **/
4889 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4890 {
4891         u16 phy_data;
4892         s32 ret_val;
4893
4894         e1000e_clear_hw_cntrs_base(hw);
4895
4896         er32(ALGNERRC);
4897         er32(RXERRC);
4898         er32(TNCRS);
4899         er32(CEXTERR);
4900         er32(TSCTC);
4901         er32(TSCTFC);
4902
4903         er32(MGTPRC);
4904         er32(MGTPDC);
4905         er32(MGTPTC);
4906
4907         er32(IAC);
4908         er32(ICRXOC);
4909
4910         /* Clear PHY statistics registers */
4911         if ((hw->phy.type == e1000_phy_82578) ||
4912             (hw->phy.type == e1000_phy_82579) ||
4913             (hw->phy.type == e1000_phy_i217) ||
4914             (hw->phy.type == e1000_phy_82577)) {
4915                 ret_val = hw->phy.ops.acquire(hw);
4916                 if (ret_val)
4917                         return;
4918                 ret_val = hw->phy.ops.set_page(hw,
4919                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4920                 if (ret_val)
4921                         goto release;
4922                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4923                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4924                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4925                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4926                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4927                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4928                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4929                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4930                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4931                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4932                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4933                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4934                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4935                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4936 release:
4937                 hw->phy.ops.release(hw);
4938         }
4939 }
4940
4941 static const struct e1000_mac_operations ich8_mac_ops = {
4942         /* check_mng_mode dependent on mac type */
4943         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4944         /* cleanup_led dependent on mac type */
4945         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4946         .get_bus_info           = e1000_get_bus_info_ich8lan,
4947         .set_lan_id             = e1000_set_lan_id_single_port,
4948         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4949         /* led_on dependent on mac type */
4950         /* led_off dependent on mac type */
4951         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4952         .reset_hw               = e1000_reset_hw_ich8lan,
4953         .init_hw                = e1000_init_hw_ich8lan,
4954         .setup_link             = e1000_setup_link_ich8lan,
4955         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
4956         /* id_led_init dependent on mac type */
4957         .config_collision_dist  = e1000e_config_collision_dist_generic,
4958         .rar_set                = e1000e_rar_set_generic,
4959 };
4960
4961 static const struct e1000_phy_operations ich8_phy_ops = {
4962         .acquire                = e1000_acquire_swflag_ich8lan,
4963         .check_reset_block      = e1000_check_reset_block_ich8lan,
4964         .commit                 = NULL,
4965         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4966         .get_cable_length       = e1000e_get_cable_length_igp_2,
4967         .read_reg               = e1000e_read_phy_reg_igp,
4968         .release                = e1000_release_swflag_ich8lan,
4969         .reset                  = e1000_phy_hw_reset_ich8lan,
4970         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4971         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4972         .write_reg              = e1000e_write_phy_reg_igp,
4973 };
4974
4975 static const struct e1000_nvm_operations ich8_nvm_ops = {
4976         .acquire                = e1000_acquire_nvm_ich8lan,
4977         .read                   = e1000_read_nvm_ich8lan,
4978         .release                = e1000_release_nvm_ich8lan,
4979         .reload                 = e1000e_reload_nvm_generic,
4980         .update                 = e1000_update_nvm_checksum_ich8lan,
4981         .valid_led_default      = e1000_valid_led_default_ich8lan,
4982         .validate               = e1000_validate_nvm_checksum_ich8lan,
4983         .write                  = e1000_write_nvm_ich8lan,
4984 };
4985
4986 const struct e1000_info e1000_ich8_info = {
4987         .mac                    = e1000_ich8lan,
4988         .flags                  = FLAG_HAS_WOL
4989                                   | FLAG_IS_ICH
4990                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4991                                   | FLAG_HAS_AMT
4992                                   | FLAG_HAS_FLASH
4993                                   | FLAG_APME_IN_WUC,
4994         .pba                    = 8,
4995         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4996         .get_variants           = e1000_get_variants_ich8lan,
4997         .mac_ops                = &ich8_mac_ops,
4998         .phy_ops                = &ich8_phy_ops,
4999         .nvm_ops                = &ich8_nvm_ops,
5000 };
5001
5002 const struct e1000_info e1000_ich9_info = {
5003         .mac                    = e1000_ich9lan,
5004         .flags                  = FLAG_HAS_JUMBO_FRAMES
5005                                   | FLAG_IS_ICH
5006                                   | FLAG_HAS_WOL
5007                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5008                                   | FLAG_HAS_AMT
5009                                   | FLAG_HAS_FLASH
5010                                   | FLAG_APME_IN_WUC,
5011         .pba                    = 18,
5012         .max_hw_frame_size      = DEFAULT_JUMBO,
5013         .get_variants           = e1000_get_variants_ich8lan,
5014         .mac_ops                = &ich8_mac_ops,
5015         .phy_ops                = &ich8_phy_ops,
5016         .nvm_ops                = &ich8_nvm_ops,
5017 };
5018
5019 const struct e1000_info e1000_ich10_info = {
5020         .mac                    = e1000_ich10lan,
5021         .flags                  = FLAG_HAS_JUMBO_FRAMES
5022                                   | FLAG_IS_ICH
5023                                   | FLAG_HAS_WOL
5024                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5025                                   | FLAG_HAS_AMT
5026                                   | FLAG_HAS_FLASH
5027                                   | FLAG_APME_IN_WUC,
5028         .pba                    = 18,
5029         .max_hw_frame_size      = DEFAULT_JUMBO,
5030         .get_variants           = e1000_get_variants_ich8lan,
5031         .mac_ops                = &ich8_mac_ops,
5032         .phy_ops                = &ich8_phy_ops,
5033         .nvm_ops                = &ich8_nvm_ops,
5034 };
5035
5036 const struct e1000_info e1000_pch_info = {
5037         .mac                    = e1000_pchlan,
5038         .flags                  = FLAG_IS_ICH
5039                                   | FLAG_HAS_WOL
5040                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5041                                   | FLAG_HAS_AMT
5042                                   | FLAG_HAS_FLASH
5043                                   | FLAG_HAS_JUMBO_FRAMES
5044                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5045                                   | FLAG_APME_IN_WUC,
5046         .flags2                 = FLAG2_HAS_PHY_STATS,
5047         .pba                    = 26,
5048         .max_hw_frame_size      = 4096,
5049         .get_variants           = e1000_get_variants_ich8lan,
5050         .mac_ops                = &ich8_mac_ops,
5051         .phy_ops                = &ich8_phy_ops,
5052         .nvm_ops                = &ich8_nvm_ops,
5053 };
5054
5055 const struct e1000_info e1000_pch2_info = {
5056         .mac                    = e1000_pch2lan,
5057         .flags                  = FLAG_IS_ICH
5058                                   | FLAG_HAS_WOL
5059                                   | FLAG_HAS_HW_TIMESTAMP
5060                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5061                                   | FLAG_HAS_AMT
5062                                   | FLAG_HAS_FLASH
5063                                   | FLAG_HAS_JUMBO_FRAMES
5064                                   | FLAG_APME_IN_WUC,
5065         .flags2                 = FLAG2_HAS_PHY_STATS
5066                                   | FLAG2_HAS_EEE,
5067         .pba                    = 26,
5068         .max_hw_frame_size      = 9018,
5069         .get_variants           = e1000_get_variants_ich8lan,
5070         .mac_ops                = &ich8_mac_ops,
5071         .phy_ops                = &ich8_phy_ops,
5072         .nvm_ops                = &ich8_nvm_ops,
5073 };
5074
5075 const struct e1000_info e1000_pch_lpt_info = {
5076         .mac                    = e1000_pch_lpt,
5077         .flags                  = FLAG_IS_ICH
5078                                   | FLAG_HAS_WOL
5079                                   | FLAG_HAS_HW_TIMESTAMP
5080                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5081                                   | FLAG_HAS_AMT
5082                                   | FLAG_HAS_FLASH
5083                                   | FLAG_HAS_JUMBO_FRAMES
5084                                   | FLAG_APME_IN_WUC,
5085         .flags2                 = FLAG2_HAS_PHY_STATS
5086                                   | FLAG2_HAS_EEE,
5087         .pba                    = 26,
5088         .max_hw_frame_size      = 9018,
5089         .get_variants           = e1000_get_variants_ich8lan,
5090         .mac_ops                = &ich8_mac_ops,
5091         .phy_ops                = &ich8_phy_ops,
5092         .nvm_ops                = &ich8_nvm_ops,
5093 };