Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec...
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53
54 #include "e1000.h"
55
56 #define DRV_EXTRAVERSION "-k"
57
58 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
59 char e1000e_driver_name[] = "e1000e";
60 const char e1000e_driver_version[] = DRV_VERSION;
61
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66
67 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
68
69 static const struct e1000_info *e1000_info_tbl[] = {
70         [board_82571]           = &e1000_82571_info,
71         [board_82572]           = &e1000_82572_info,
72         [board_82573]           = &e1000_82573_info,
73         [board_82574]           = &e1000_82574_info,
74         [board_82583]           = &e1000_82583_info,
75         [board_80003es2lan]     = &e1000_es2_info,
76         [board_ich8lan]         = &e1000_ich8_info,
77         [board_ich9lan]         = &e1000_ich9_info,
78         [board_ich10lan]        = &e1000_ich10_info,
79         [board_pchlan]          = &e1000_pch_info,
80         [board_pch2lan]         = &e1000_pch2_info,
81         [board_pch_lpt]         = &e1000_pch_lpt_info,
82 };
83
84 struct e1000_reg_info {
85         u32 ofs;
86         char *name;
87 };
88
89 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
90         /* General Registers */
91         {E1000_CTRL, "CTRL"},
92         {E1000_STATUS, "STATUS"},
93         {E1000_CTRL_EXT, "CTRL_EXT"},
94
95         /* Interrupt Registers */
96         {E1000_ICR, "ICR"},
97
98         /* Rx Registers */
99         {E1000_RCTL, "RCTL"},
100         {E1000_RDLEN(0), "RDLEN"},
101         {E1000_RDH(0), "RDH"},
102         {E1000_RDT(0), "RDT"},
103         {E1000_RDTR, "RDTR"},
104         {E1000_RXDCTL(0), "RXDCTL"},
105         {E1000_ERT, "ERT"},
106         {E1000_RDBAL(0), "RDBAL"},
107         {E1000_RDBAH(0), "RDBAH"},
108         {E1000_RDFH, "RDFH"},
109         {E1000_RDFT, "RDFT"},
110         {E1000_RDFHS, "RDFHS"},
111         {E1000_RDFTS, "RDFTS"},
112         {E1000_RDFPC, "RDFPC"},
113
114         /* Tx Registers */
115         {E1000_TCTL, "TCTL"},
116         {E1000_TDBAL(0), "TDBAL"},
117         {E1000_TDBAH(0), "TDBAH"},
118         {E1000_TDLEN(0), "TDLEN"},
119         {E1000_TDH(0), "TDH"},
120         {E1000_TDT(0), "TDT"},
121         {E1000_TIDV, "TIDV"},
122         {E1000_TXDCTL(0), "TXDCTL"},
123         {E1000_TADV, "TADV"},
124         {E1000_TARC(0), "TARC"},
125         {E1000_TDFH, "TDFH"},
126         {E1000_TDFT, "TDFT"},
127         {E1000_TDFHS, "TDFHS"},
128         {E1000_TDFTS, "TDFTS"},
129         {E1000_TDFPC, "TDFPC"},
130
131         /* List Terminator */
132         {0, NULL}
133 };
134
135 /**
136  * e1000_regdump - register printout routine
137  * @hw: pointer to the HW structure
138  * @reginfo: pointer to the register info table
139  **/
140 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
141 {
142         int n = 0;
143         char rname[16];
144         u32 regs[8];
145
146         switch (reginfo->ofs) {
147         case E1000_RXDCTL(0):
148                 for (n = 0; n < 2; n++)
149                         regs[n] = __er32(hw, E1000_RXDCTL(n));
150                 break;
151         case E1000_TXDCTL(0):
152                 for (n = 0; n < 2; n++)
153                         regs[n] = __er32(hw, E1000_TXDCTL(n));
154                 break;
155         case E1000_TARC(0):
156                 for (n = 0; n < 2; n++)
157                         regs[n] = __er32(hw, E1000_TARC(n));
158                 break;
159         default:
160                 pr_info("%-15s %08x\n",
161                         reginfo->name, __er32(hw, reginfo->ofs));
162                 return;
163         }
164
165         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
166         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
167 }
168
169 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
170                                  struct e1000_buffer *bi)
171 {
172         int i;
173         struct e1000_ps_page *ps_page;
174
175         for (i = 0; i < adapter->rx_ps_pages; i++) {
176                 ps_page = &bi->ps_pages[i];
177
178                 if (ps_page->page) {
179                         pr_info("packet dump for ps_page %d:\n", i);
180                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
181                                        16, 1, page_address(ps_page->page),
182                                        PAGE_SIZE, true);
183                 }
184         }
185 }
186
187 /**
188  * e1000e_dump - Print registers, Tx-ring and Rx-ring
189  * @adapter: board private structure
190  **/
191 static void e1000e_dump(struct e1000_adapter *adapter)
192 {
193         struct net_device *netdev = adapter->netdev;
194         struct e1000_hw *hw = &adapter->hw;
195         struct e1000_reg_info *reginfo;
196         struct e1000_ring *tx_ring = adapter->tx_ring;
197         struct e1000_tx_desc *tx_desc;
198         struct my_u0 {
199                 __le64 a;
200                 __le64 b;
201         } *u0;
202         struct e1000_buffer *buffer_info;
203         struct e1000_ring *rx_ring = adapter->rx_ring;
204         union e1000_rx_desc_packet_split *rx_desc_ps;
205         union e1000_rx_desc_extended *rx_desc;
206         struct my_u1 {
207                 __le64 a;
208                 __le64 b;
209                 __le64 c;
210                 __le64 d;
211         } *u1;
212         u32 staterr;
213         int i = 0;
214
215         if (!netif_msg_hw(adapter))
216                 return;
217
218         /* Print netdevice Info */
219         if (netdev) {
220                 dev_info(&adapter->pdev->dev, "Net device Info\n");
221                 pr_info("Device Name     state            trans_start      last_rx\n");
222                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
223                         netdev->state, netdev->trans_start, netdev->last_rx);
224         }
225
226         /* Print Registers */
227         dev_info(&adapter->pdev->dev, "Register Dump\n");
228         pr_info(" Register Name   Value\n");
229         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
230              reginfo->name; reginfo++) {
231                 e1000_regdump(hw, reginfo);
232         }
233
234         /* Print Tx Ring Summary */
235         if (!netdev || !netif_running(netdev))
236                 return;
237
238         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
239         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
240         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
241         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
242                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
243                 (unsigned long long)buffer_info->dma,
244                 buffer_info->length,
245                 buffer_info->next_to_watch,
246                 (unsigned long long)buffer_info->time_stamp);
247
248         /* Print Tx Ring */
249         if (!netif_msg_tx_done(adapter))
250                 goto rx_ring_summary;
251
252         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
253
254         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
255          *
256          * Legacy Transmit Descriptor
257          *   +--------------------------------------------------------------+
258          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
259          *   +--------------------------------------------------------------+
260          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
261          *   +--------------------------------------------------------------+
262          *   63       48 47        36 35    32 31     24 23    16 15        0
263          *
264          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
265          *   63      48 47    40 39       32 31             16 15    8 7      0
266          *   +----------------------------------------------------------------+
267          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
268          *   +----------------------------------------------------------------+
269          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
270          *   +----------------------------------------------------------------+
271          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
272          *
273          * Extended Data Descriptor (DTYP=0x1)
274          *   +----------------------------------------------------------------+
275          * 0 |                     Buffer Address [63:0]                      |
276          *   +----------------------------------------------------------------+
277          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
278          *   +----------------------------------------------------------------+
279          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
280          */
281         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
282         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
283         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
284         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
285                 const char *next_desc;
286                 tx_desc = E1000_TX_DESC(*tx_ring, i);
287                 buffer_info = &tx_ring->buffer_info[i];
288                 u0 = (struct my_u0 *)tx_desc;
289                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
290                         next_desc = " NTC/U";
291                 else if (i == tx_ring->next_to_use)
292                         next_desc = " NTU";
293                 else if (i == tx_ring->next_to_clean)
294                         next_desc = " NTC";
295                 else
296                         next_desc = "";
297                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
298                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
299                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
300                         i,
301                         (unsigned long long)le64_to_cpu(u0->a),
302                         (unsigned long long)le64_to_cpu(u0->b),
303                         (unsigned long long)buffer_info->dma,
304                         buffer_info->length, buffer_info->next_to_watch,
305                         (unsigned long long)buffer_info->time_stamp,
306                         buffer_info->skb, next_desc);
307
308                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
309                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
310                                        16, 1, buffer_info->skb->data,
311                                        buffer_info->skb->len, true);
312         }
313
314         /* Print Rx Ring Summary */
315 rx_ring_summary:
316         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
317         pr_info("Queue [NTU] [NTC]\n");
318         pr_info(" %5d %5X %5X\n",
319                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
320
321         /* Print Rx Ring */
322         if (!netif_msg_rx_status(adapter))
323                 return;
324
325         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
326         switch (adapter->rx_ps_pages) {
327         case 1:
328         case 2:
329         case 3:
330                 /* [Extended] Packet Split Receive Descriptor Format
331                  *
332                  *    +-----------------------------------------------------+
333                  *  0 |                Buffer Address 0 [63:0]              |
334                  *    +-----------------------------------------------------+
335                  *  8 |                Buffer Address 1 [63:0]              |
336                  *    +-----------------------------------------------------+
337                  * 16 |                Buffer Address 2 [63:0]              |
338                  *    +-----------------------------------------------------+
339                  * 24 |                Buffer Address 3 [63:0]              |
340                  *    +-----------------------------------------------------+
341                  */
342                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
343                 /* [Extended] Receive Descriptor (Write-Back) Format
344                  *
345                  *   63       48 47    32 31     13 12    8 7    4 3        0
346                  *   +------------------------------------------------------+
347                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
348                  *   | Checksum | Ident  |         | Queue |      |  Type   |
349                  *   +------------------------------------------------------+
350                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
351                  *   +------------------------------------------------------+
352                  *   63       48 47    32 31            20 19               0
353                  */
354                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
355                 for (i = 0; i < rx_ring->count; i++) {
356                         const char *next_desc;
357                         buffer_info = &rx_ring->buffer_info[i];
358                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
359                         u1 = (struct my_u1 *)rx_desc_ps;
360                         staterr =
361                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
362
363                         if (i == rx_ring->next_to_use)
364                                 next_desc = " NTU";
365                         else if (i == rx_ring->next_to_clean)
366                                 next_desc = " NTC";
367                         else
368                                 next_desc = "";
369
370                         if (staterr & E1000_RXD_STAT_DD) {
371                                 /* Descriptor Done */
372                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
373                                         "RWB", i,
374                                         (unsigned long long)le64_to_cpu(u1->a),
375                                         (unsigned long long)le64_to_cpu(u1->b),
376                                         (unsigned long long)le64_to_cpu(u1->c),
377                                         (unsigned long long)le64_to_cpu(u1->d),
378                                         buffer_info->skb, next_desc);
379                         } else {
380                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
381                                         "R  ", i,
382                                         (unsigned long long)le64_to_cpu(u1->a),
383                                         (unsigned long long)le64_to_cpu(u1->b),
384                                         (unsigned long long)le64_to_cpu(u1->c),
385                                         (unsigned long long)le64_to_cpu(u1->d),
386                                         (unsigned long long)buffer_info->dma,
387                                         buffer_info->skb, next_desc);
388
389                                 if (netif_msg_pktdata(adapter))
390                                         e1000e_dump_ps_pages(adapter,
391                                                              buffer_info);
392                         }
393                 }
394                 break;
395         default:
396         case 0:
397                 /* Extended Receive Descriptor (Read) Format
398                  *
399                  *   +-----------------------------------------------------+
400                  * 0 |                Buffer Address [63:0]                |
401                  *   +-----------------------------------------------------+
402                  * 8 |                      Reserved                       |
403                  *   +-----------------------------------------------------+
404                  */
405                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
406                 /* Extended Receive Descriptor (Write-Back) Format
407                  *
408                  *   63       48 47    32 31    24 23            4 3        0
409                  *   +------------------------------------------------------+
410                  *   |     RSS Hash      |        |               |         |
411                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
412                  *   | Packet   | IP     |        |               |  Type   |
413                  *   | Checksum | Ident  |        |               |         |
414                  *   +------------------------------------------------------+
415                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
416                  *   +------------------------------------------------------+
417                  *   63       48 47    32 31            20 19               0
418                  */
419                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
420
421                 for (i = 0; i < rx_ring->count; i++) {
422                         const char *next_desc;
423
424                         buffer_info = &rx_ring->buffer_info[i];
425                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
426                         u1 = (struct my_u1 *)rx_desc;
427                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
428
429                         if (i == rx_ring->next_to_use)
430                                 next_desc = " NTU";
431                         else if (i == rx_ring->next_to_clean)
432                                 next_desc = " NTC";
433                         else
434                                 next_desc = "";
435
436                         if (staterr & E1000_RXD_STAT_DD) {
437                                 /* Descriptor Done */
438                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
439                                         "RWB", i,
440                                         (unsigned long long)le64_to_cpu(u1->a),
441                                         (unsigned long long)le64_to_cpu(u1->b),
442                                         buffer_info->skb, next_desc);
443                         } else {
444                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
445                                         "R  ", i,
446                                         (unsigned long long)le64_to_cpu(u1->a),
447                                         (unsigned long long)le64_to_cpu(u1->b),
448                                         (unsigned long long)buffer_info->dma,
449                                         buffer_info->skb, next_desc);
450
451                                 if (netif_msg_pktdata(adapter) &&
452                                     buffer_info->skb)
453                                         print_hex_dump(KERN_INFO, "",
454                                                        DUMP_PREFIX_ADDRESS, 16,
455                                                        1,
456                                                        buffer_info->skb->data,
457                                                        adapter->rx_buffer_len,
458                                                        true);
459                         }
460                 }
461         }
462 }
463
464 /**
465  * e1000_desc_unused - calculate if we have unused descriptors
466  **/
467 static int e1000_desc_unused(struct e1000_ring *ring)
468 {
469         if (ring->next_to_clean > ring->next_to_use)
470                 return ring->next_to_clean - ring->next_to_use - 1;
471
472         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
473 }
474
475 /**
476  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
477  * @adapter: board private structure
478  * @hwtstamps: time stamp structure to update
479  * @systim: unsigned 64bit system time value.
480  *
481  * Convert the system time value stored in the RX/TXSTMP registers into a
482  * hwtstamp which can be used by the upper level time stamping functions.
483  *
484  * The 'systim_lock' spinlock is used to protect the consistency of the
485  * system time value. This is needed because reading the 64 bit time
486  * value involves reading two 32 bit registers. The first read latches the
487  * value.
488  **/
489 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
490                                       struct skb_shared_hwtstamps *hwtstamps,
491                                       u64 systim)
492 {
493         u64 ns;
494         unsigned long flags;
495
496         spin_lock_irqsave(&adapter->systim_lock, flags);
497         ns = timecounter_cyc2time(&adapter->tc, systim);
498         spin_unlock_irqrestore(&adapter->systim_lock, flags);
499
500         memset(hwtstamps, 0, sizeof(*hwtstamps));
501         hwtstamps->hwtstamp = ns_to_ktime(ns);
502 }
503
504 /**
505  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
506  * @adapter: board private structure
507  * @status: descriptor extended error and status field
508  * @skb: particular skb to include time stamp
509  *
510  * If the time stamp is valid, convert it into the timecounter ns value
511  * and store that result into the shhwtstamps structure which is passed
512  * up the network stack.
513  **/
514 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
515                                struct sk_buff *skb)
516 {
517         struct e1000_hw *hw = &adapter->hw;
518         u64 rxstmp;
519
520         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
521             !(status & E1000_RXDEXT_STATERR_TST) ||
522             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
523                 return;
524
525         /* The Rx time stamp registers contain the time stamp.  No other
526          * received packet will be time stamped until the Rx time stamp
527          * registers are read.  Because only one packet can be time stamped
528          * at a time, the register values must belong to this packet and
529          * therefore none of the other additional attributes need to be
530          * compared.
531          */
532         rxstmp = (u64)er32(RXSTMPL);
533         rxstmp |= (u64)er32(RXSTMPH) << 32;
534         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
535
536         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
537 }
538
539 /**
540  * e1000_receive_skb - helper function to handle Rx indications
541  * @adapter: board private structure
542  * @staterr: descriptor extended error and status field as written by hardware
543  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
544  * @skb: pointer to sk_buff to be indicated to stack
545  **/
546 static void e1000_receive_skb(struct e1000_adapter *adapter,
547                               struct net_device *netdev, struct sk_buff *skb,
548                               u32 staterr, __le16 vlan)
549 {
550         u16 tag = le16_to_cpu(vlan);
551
552         e1000e_rx_hwtstamp(adapter, staterr, skb);
553
554         skb->protocol = eth_type_trans(skb, netdev);
555
556         if (staterr & E1000_RXD_STAT_VP)
557                 __vlan_hwaccel_put_tag(skb, tag);
558
559         napi_gro_receive(&adapter->napi, skb);
560 }
561
562 /**
563  * e1000_rx_checksum - Receive Checksum Offload
564  * @adapter: board private structure
565  * @status_err: receive descriptor status and error fields
566  * @csum: receive descriptor csum field
567  * @sk_buff: socket buffer with received data
568  **/
569 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
570                               struct sk_buff *skb)
571 {
572         u16 status = (u16)status_err;
573         u8 errors = (u8)(status_err >> 24);
574
575         skb_checksum_none_assert(skb);
576
577         /* Rx checksum disabled */
578         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
579                 return;
580
581         /* Ignore Checksum bit is set */
582         if (status & E1000_RXD_STAT_IXSM)
583                 return;
584
585         /* TCP/UDP checksum error bit or IP checksum error bit is set */
586         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
587                 /* let the stack verify checksum errors */
588                 adapter->hw_csum_err++;
589                 return;
590         }
591
592         /* TCP/UDP Checksum has not been calculated */
593         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
594                 return;
595
596         /* It must be a TCP or UDP packet with a valid checksum */
597         skb->ip_summed = CHECKSUM_UNNECESSARY;
598         adapter->hw_csum_good++;
599 }
600
601 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
602 {
603         struct e1000_adapter *adapter = rx_ring->adapter;
604         struct e1000_hw *hw = &adapter->hw;
605         s32 ret_val = __ew32_prepare(hw);
606
607         writel(i, rx_ring->tail);
608
609         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
610                 u32 rctl = er32(RCTL);
611                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
612                 e_err("ME firmware caused invalid RDT - resetting\n");
613                 schedule_work(&adapter->reset_task);
614         }
615 }
616
617 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
618 {
619         struct e1000_adapter *adapter = tx_ring->adapter;
620         struct e1000_hw *hw = &adapter->hw;
621         s32 ret_val = __ew32_prepare(hw);
622
623         writel(i, tx_ring->tail);
624
625         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
626                 u32 tctl = er32(TCTL);
627                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
628                 e_err("ME firmware caused invalid TDT - resetting\n");
629                 schedule_work(&adapter->reset_task);
630         }
631 }
632
633 /**
634  * e1000_alloc_rx_buffers - Replace used receive buffers
635  * @rx_ring: Rx descriptor ring
636  **/
637 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
638                                    int cleaned_count, gfp_t gfp)
639 {
640         struct e1000_adapter *adapter = rx_ring->adapter;
641         struct net_device *netdev = adapter->netdev;
642         struct pci_dev *pdev = adapter->pdev;
643         union e1000_rx_desc_extended *rx_desc;
644         struct e1000_buffer *buffer_info;
645         struct sk_buff *skb;
646         unsigned int i;
647         unsigned int bufsz = adapter->rx_buffer_len;
648
649         i = rx_ring->next_to_use;
650         buffer_info = &rx_ring->buffer_info[i];
651
652         while (cleaned_count--) {
653                 skb = buffer_info->skb;
654                 if (skb) {
655                         skb_trim(skb, 0);
656                         goto map_skb;
657                 }
658
659                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
660                 if (!skb) {
661                         /* Better luck next round */
662                         adapter->alloc_rx_buff_failed++;
663                         break;
664                 }
665
666                 buffer_info->skb = skb;
667 map_skb:
668                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
669                                                   adapter->rx_buffer_len,
670                                                   DMA_FROM_DEVICE);
671                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
672                         dev_err(&pdev->dev, "Rx DMA map failed\n");
673                         adapter->rx_dma_failed++;
674                         break;
675                 }
676
677                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
678                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
679
680                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
681                         /* Force memory writes to complete before letting h/w
682                          * know there are new descriptors to fetch.  (Only
683                          * applicable for weak-ordered memory model archs,
684                          * such as IA-64).
685                          */
686                         wmb();
687                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
688                                 e1000e_update_rdt_wa(rx_ring, i);
689                         else
690                                 writel(i, rx_ring->tail);
691                 }
692                 i++;
693                 if (i == rx_ring->count)
694                         i = 0;
695                 buffer_info = &rx_ring->buffer_info[i];
696         }
697
698         rx_ring->next_to_use = i;
699 }
700
701 /**
702  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
703  * @rx_ring: Rx descriptor ring
704  **/
705 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
706                                       int cleaned_count, gfp_t gfp)
707 {
708         struct e1000_adapter *adapter = rx_ring->adapter;
709         struct net_device *netdev = adapter->netdev;
710         struct pci_dev *pdev = adapter->pdev;
711         union e1000_rx_desc_packet_split *rx_desc;
712         struct e1000_buffer *buffer_info;
713         struct e1000_ps_page *ps_page;
714         struct sk_buff *skb;
715         unsigned int i, j;
716
717         i = rx_ring->next_to_use;
718         buffer_info = &rx_ring->buffer_info[i];
719
720         while (cleaned_count--) {
721                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
722
723                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
724                         ps_page = &buffer_info->ps_pages[j];
725                         if (j >= adapter->rx_ps_pages) {
726                                 /* all unused desc entries get hw null ptr */
727                                 rx_desc->read.buffer_addr[j + 1] =
728                                     ~cpu_to_le64(0);
729                                 continue;
730                         }
731                         if (!ps_page->page) {
732                                 ps_page->page = alloc_page(gfp);
733                                 if (!ps_page->page) {
734                                         adapter->alloc_rx_buff_failed++;
735                                         goto no_buffers;
736                                 }
737                                 ps_page->dma = dma_map_page(&pdev->dev,
738                                                             ps_page->page,
739                                                             0, PAGE_SIZE,
740                                                             DMA_FROM_DEVICE);
741                                 if (dma_mapping_error(&pdev->dev,
742                                                       ps_page->dma)) {
743                                         dev_err(&adapter->pdev->dev,
744                                                 "Rx DMA page map failed\n");
745                                         adapter->rx_dma_failed++;
746                                         goto no_buffers;
747                                 }
748                         }
749                         /* Refresh the desc even if buffer_addrs
750                          * didn't change because each write-back
751                          * erases this info.
752                          */
753                         rx_desc->read.buffer_addr[j + 1] =
754                             cpu_to_le64(ps_page->dma);
755                 }
756
757                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
758                                                   gfp);
759
760                 if (!skb) {
761                         adapter->alloc_rx_buff_failed++;
762                         break;
763                 }
764
765                 buffer_info->skb = skb;
766                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
767                                                   adapter->rx_ps_bsize0,
768                                                   DMA_FROM_DEVICE);
769                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
770                         dev_err(&pdev->dev, "Rx DMA map failed\n");
771                         adapter->rx_dma_failed++;
772                         /* cleanup skb */
773                         dev_kfree_skb_any(skb);
774                         buffer_info->skb = NULL;
775                         break;
776                 }
777
778                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
779
780                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
781                         /* Force memory writes to complete before letting h/w
782                          * know there are new descriptors to fetch.  (Only
783                          * applicable for weak-ordered memory model archs,
784                          * such as IA-64).
785                          */
786                         wmb();
787                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
788                                 e1000e_update_rdt_wa(rx_ring, i << 1);
789                         else
790                                 writel(i << 1, rx_ring->tail);
791                 }
792
793                 i++;
794                 if (i == rx_ring->count)
795                         i = 0;
796                 buffer_info = &rx_ring->buffer_info[i];
797         }
798
799 no_buffers:
800         rx_ring->next_to_use = i;
801 }
802
803 /**
804  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
805  * @rx_ring: Rx descriptor ring
806  * @cleaned_count: number of buffers to allocate this pass
807  **/
808
809 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
810                                          int cleaned_count, gfp_t gfp)
811 {
812         struct e1000_adapter *adapter = rx_ring->adapter;
813         struct net_device *netdev = adapter->netdev;
814         struct pci_dev *pdev = adapter->pdev;
815         union e1000_rx_desc_extended *rx_desc;
816         struct e1000_buffer *buffer_info;
817         struct sk_buff *skb;
818         unsigned int i;
819         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
820
821         i = rx_ring->next_to_use;
822         buffer_info = &rx_ring->buffer_info[i];
823
824         while (cleaned_count--) {
825                 skb = buffer_info->skb;
826                 if (skb) {
827                         skb_trim(skb, 0);
828                         goto check_page;
829                 }
830
831                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
832                 if (unlikely(!skb)) {
833                         /* Better luck next round */
834                         adapter->alloc_rx_buff_failed++;
835                         break;
836                 }
837
838                 buffer_info->skb = skb;
839 check_page:
840                 /* allocate a new page if necessary */
841                 if (!buffer_info->page) {
842                         buffer_info->page = alloc_page(gfp);
843                         if (unlikely(!buffer_info->page)) {
844                                 adapter->alloc_rx_buff_failed++;
845                                 break;
846                         }
847                 }
848
849                 if (!buffer_info->dma) {
850                         buffer_info->dma = dma_map_page(&pdev->dev,
851                                                         buffer_info->page, 0,
852                                                         PAGE_SIZE,
853                                                         DMA_FROM_DEVICE);
854                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
855                                 adapter->alloc_rx_buff_failed++;
856                                 break;
857                         }
858                 }
859
860                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
861                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
862
863                 if (unlikely(++i == rx_ring->count))
864                         i = 0;
865                 buffer_info = &rx_ring->buffer_info[i];
866         }
867
868         if (likely(rx_ring->next_to_use != i)) {
869                 rx_ring->next_to_use = i;
870                 if (unlikely(i-- == 0))
871                         i = (rx_ring->count - 1);
872
873                 /* Force memory writes to complete before letting h/w
874                  * know there are new descriptors to fetch.  (Only
875                  * applicable for weak-ordered memory model archs,
876                  * such as IA-64).
877                  */
878                 wmb();
879                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
880                         e1000e_update_rdt_wa(rx_ring, i);
881                 else
882                         writel(i, rx_ring->tail);
883         }
884 }
885
886 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
887                                  struct sk_buff *skb)
888 {
889         if (netdev->features & NETIF_F_RXHASH)
890                 skb->rxhash = le32_to_cpu(rss);
891 }
892
893 /**
894  * e1000_clean_rx_irq - Send received data up the network stack
895  * @rx_ring: Rx descriptor ring
896  *
897  * the return value indicates whether actual cleaning was done, there
898  * is no guarantee that everything was cleaned
899  **/
900 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
901                                int work_to_do)
902 {
903         struct e1000_adapter *adapter = rx_ring->adapter;
904         struct net_device *netdev = adapter->netdev;
905         struct pci_dev *pdev = adapter->pdev;
906         struct e1000_hw *hw = &adapter->hw;
907         union e1000_rx_desc_extended *rx_desc, *next_rxd;
908         struct e1000_buffer *buffer_info, *next_buffer;
909         u32 length, staterr;
910         unsigned int i;
911         int cleaned_count = 0;
912         bool cleaned = false;
913         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
914
915         i = rx_ring->next_to_clean;
916         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
917         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
918         buffer_info = &rx_ring->buffer_info[i];
919
920         while (staterr & E1000_RXD_STAT_DD) {
921                 struct sk_buff *skb;
922
923                 if (*work_done >= work_to_do)
924                         break;
925                 (*work_done)++;
926                 rmb();  /* read descriptor and rx_buffer_info after status DD */
927
928                 skb = buffer_info->skb;
929                 buffer_info->skb = NULL;
930
931                 prefetch(skb->data - NET_IP_ALIGN);
932
933                 i++;
934                 if (i == rx_ring->count)
935                         i = 0;
936                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
937                 prefetch(next_rxd);
938
939                 next_buffer = &rx_ring->buffer_info[i];
940
941                 cleaned = true;
942                 cleaned_count++;
943                 dma_unmap_single(&pdev->dev, buffer_info->dma,
944                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
945                 buffer_info->dma = 0;
946
947                 length = le16_to_cpu(rx_desc->wb.upper.length);
948
949                 /* !EOP means multiple descriptors were used to store a single
950                  * packet, if that's the case we need to toss it.  In fact, we
951                  * need to toss every packet with the EOP bit clear and the
952                  * next frame that _does_ have the EOP bit set, as it is by
953                  * definition only a frame fragment
954                  */
955                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
956                         adapter->flags2 |= FLAG2_IS_DISCARDING;
957
958                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
959                         /* All receives must fit into a single buffer */
960                         e_dbg("Receive packet consumed multiple buffers\n");
961                         /* recycle */
962                         buffer_info->skb = skb;
963                         if (staterr & E1000_RXD_STAT_EOP)
964                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
965                         goto next_desc;
966                 }
967
968                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
969                              !(netdev->features & NETIF_F_RXALL))) {
970                         /* recycle */
971                         buffer_info->skb = skb;
972                         goto next_desc;
973                 }
974
975                 /* adjust length to remove Ethernet CRC */
976                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
977                         /* If configured to store CRC, don't subtract FCS,
978                          * but keep the FCS bytes out of the total_rx_bytes
979                          * counter
980                          */
981                         if (netdev->features & NETIF_F_RXFCS)
982                                 total_rx_bytes -= 4;
983                         else
984                                 length -= 4;
985                 }
986
987                 total_rx_bytes += length;
988                 total_rx_packets++;
989
990                 /* code added for copybreak, this should improve
991                  * performance for small packets with large amounts
992                  * of reassembly being done in the stack
993                  */
994                 if (length < copybreak) {
995                         struct sk_buff *new_skb =
996                             netdev_alloc_skb_ip_align(netdev, length);
997                         if (new_skb) {
998                                 skb_copy_to_linear_data_offset(new_skb,
999                                                                -NET_IP_ALIGN,
1000                                                                (skb->data -
1001                                                                 NET_IP_ALIGN),
1002                                                                (length +
1003                                                                 NET_IP_ALIGN));
1004                                 /* save the skb in buffer_info as good */
1005                                 buffer_info->skb = skb;
1006                                 skb = new_skb;
1007                         }
1008                         /* else just continue with the old one */
1009                 }
1010                 /* end copybreak code */
1011                 skb_put(skb, length);
1012
1013                 /* Receive Checksum Offload */
1014                 e1000_rx_checksum(adapter, staterr, skb);
1015
1016                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1017
1018                 e1000_receive_skb(adapter, netdev, skb, staterr,
1019                                   rx_desc->wb.upper.vlan);
1020
1021 next_desc:
1022                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1023
1024                 /* return some buffers to hardware, one at a time is too slow */
1025                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1026                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1027                                               GFP_ATOMIC);
1028                         cleaned_count = 0;
1029                 }
1030
1031                 /* use prefetched values */
1032                 rx_desc = next_rxd;
1033                 buffer_info = next_buffer;
1034
1035                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1036         }
1037         rx_ring->next_to_clean = i;
1038
1039         cleaned_count = e1000_desc_unused(rx_ring);
1040         if (cleaned_count)
1041                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1042
1043         adapter->total_rx_bytes += total_rx_bytes;
1044         adapter->total_rx_packets += total_rx_packets;
1045         return cleaned;
1046 }
1047
1048 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1049                             struct e1000_buffer *buffer_info)
1050 {
1051         struct e1000_adapter *adapter = tx_ring->adapter;
1052
1053         if (buffer_info->dma) {
1054                 if (buffer_info->mapped_as_page)
1055                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1056                                        buffer_info->length, DMA_TO_DEVICE);
1057                 else
1058                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1059                                          buffer_info->length, DMA_TO_DEVICE);
1060                 buffer_info->dma = 0;
1061         }
1062         if (buffer_info->skb) {
1063                 dev_kfree_skb_any(buffer_info->skb);
1064                 buffer_info->skb = NULL;
1065         }
1066         buffer_info->time_stamp = 0;
1067 }
1068
1069 static void e1000_print_hw_hang(struct work_struct *work)
1070 {
1071         struct e1000_adapter *adapter = container_of(work,
1072                                                      struct e1000_adapter,
1073                                                      print_hang_task);
1074         struct net_device *netdev = adapter->netdev;
1075         struct e1000_ring *tx_ring = adapter->tx_ring;
1076         unsigned int i = tx_ring->next_to_clean;
1077         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1078         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1079         struct e1000_hw *hw = &adapter->hw;
1080         u16 phy_status, phy_1000t_status, phy_ext_status;
1081         u16 pci_status;
1082
1083         if (test_bit(__E1000_DOWN, &adapter->state))
1084                 return;
1085
1086         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1087                 /* May be block on write-back, flush and detect again
1088                  * flush pending descriptor writebacks to memory
1089                  */
1090                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1091                 /* execute the writes immediately */
1092                 e1e_flush();
1093                 /* Due to rare timing issues, write to TIDV again to ensure
1094                  * the write is successful
1095                  */
1096                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1097                 /* execute the writes immediately */
1098                 e1e_flush();
1099                 adapter->tx_hang_recheck = true;
1100                 return;
1101         }
1102         /* Real hang detected */
1103         adapter->tx_hang_recheck = false;
1104         netif_stop_queue(netdev);
1105
1106         e1e_rphy(hw, MII_BMSR, &phy_status);
1107         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1108         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1109
1110         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1111
1112         /* detected Hardware unit hang */
1113         e_err("Detected Hardware Unit Hang:\n"
1114               "  TDH                  <%x>\n"
1115               "  TDT                  <%x>\n"
1116               "  next_to_use          <%x>\n"
1117               "  next_to_clean        <%x>\n"
1118               "buffer_info[next_to_clean]:\n"
1119               "  time_stamp           <%lx>\n"
1120               "  next_to_watch        <%x>\n"
1121               "  jiffies              <%lx>\n"
1122               "  next_to_watch.status <%x>\n"
1123               "MAC Status             <%x>\n"
1124               "PHY Status             <%x>\n"
1125               "PHY 1000BASE-T Status  <%x>\n"
1126               "PHY Extended Status    <%x>\n"
1127               "PCI Status             <%x>\n",
1128               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1129               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1130               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1131               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1132
1133         /* Suggest workaround for known h/w issue */
1134         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1135                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1136 }
1137
1138 /**
1139  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1140  * @work: pointer to work struct
1141  *
1142  * This work function polls the TSYNCTXCTL valid bit to determine when a
1143  * timestamp has been taken for the current stored skb.  The timestamp must
1144  * be for this skb because only one such packet is allowed in the queue.
1145  */
1146 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1147 {
1148         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1149                                                      tx_hwtstamp_work);
1150         struct e1000_hw *hw = &adapter->hw;
1151
1152         if (!adapter->tx_hwtstamp_skb)
1153                 return;
1154
1155         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1156                 struct skb_shared_hwtstamps shhwtstamps;
1157                 u64 txstmp;
1158
1159                 txstmp = er32(TXSTMPL);
1160                 txstmp |= (u64)er32(TXSTMPH) << 32;
1161
1162                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1163
1164                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1165                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1166                 adapter->tx_hwtstamp_skb = NULL;
1167         } else {
1168                 /* reschedule to check later */
1169                 schedule_work(&adapter->tx_hwtstamp_work);
1170         }
1171 }
1172
1173 /**
1174  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1175  * @tx_ring: Tx descriptor ring
1176  *
1177  * the return value indicates whether actual cleaning was done, there
1178  * is no guarantee that everything was cleaned
1179  **/
1180 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1181 {
1182         struct e1000_adapter *adapter = tx_ring->adapter;
1183         struct net_device *netdev = adapter->netdev;
1184         struct e1000_hw *hw = &adapter->hw;
1185         struct e1000_tx_desc *tx_desc, *eop_desc;
1186         struct e1000_buffer *buffer_info;
1187         unsigned int i, eop;
1188         unsigned int count = 0;
1189         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1190         unsigned int bytes_compl = 0, pkts_compl = 0;
1191
1192         i = tx_ring->next_to_clean;
1193         eop = tx_ring->buffer_info[i].next_to_watch;
1194         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1195
1196         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1197                (count < tx_ring->count)) {
1198                 bool cleaned = false;
1199                 rmb(); /* read buffer_info after eop_desc */
1200                 for (; !cleaned; count++) {
1201                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1202                         buffer_info = &tx_ring->buffer_info[i];
1203                         cleaned = (i == eop);
1204
1205                         if (cleaned) {
1206                                 total_tx_packets += buffer_info->segs;
1207                                 total_tx_bytes += buffer_info->bytecount;
1208                                 if (buffer_info->skb) {
1209                                         bytes_compl += buffer_info->skb->len;
1210                                         pkts_compl++;
1211                                 }
1212                         }
1213
1214                         e1000_put_txbuf(tx_ring, buffer_info);
1215                         tx_desc->upper.data = 0;
1216
1217                         i++;
1218                         if (i == tx_ring->count)
1219                                 i = 0;
1220                 }
1221
1222                 if (i == tx_ring->next_to_use)
1223                         break;
1224                 eop = tx_ring->buffer_info[i].next_to_watch;
1225                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1226         }
1227
1228         tx_ring->next_to_clean = i;
1229
1230         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1231
1232 #define TX_WAKE_THRESHOLD 32
1233         if (count && netif_carrier_ok(netdev) &&
1234             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1235                 /* Make sure that anybody stopping the queue after this
1236                  * sees the new next_to_clean.
1237                  */
1238                 smp_mb();
1239
1240                 if (netif_queue_stopped(netdev) &&
1241                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1242                         netif_wake_queue(netdev);
1243                         ++adapter->restart_queue;
1244                 }
1245         }
1246
1247         if (adapter->detect_tx_hung) {
1248                 /* Detect a transmit hang in hardware, this serializes the
1249                  * check with the clearing of time_stamp and movement of i
1250                  */
1251                 adapter->detect_tx_hung = false;
1252                 if (tx_ring->buffer_info[i].time_stamp &&
1253                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1254                                + (adapter->tx_timeout_factor * HZ)) &&
1255                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1256                         schedule_work(&adapter->print_hang_task);
1257                 else
1258                         adapter->tx_hang_recheck = false;
1259         }
1260         adapter->total_tx_bytes += total_tx_bytes;
1261         adapter->total_tx_packets += total_tx_packets;
1262         return count < tx_ring->count;
1263 }
1264
1265 /**
1266  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1267  * @rx_ring: Rx descriptor ring
1268  *
1269  * the return value indicates whether actual cleaning was done, there
1270  * is no guarantee that everything was cleaned
1271  **/
1272 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1273                                   int work_to_do)
1274 {
1275         struct e1000_adapter *adapter = rx_ring->adapter;
1276         struct e1000_hw *hw = &adapter->hw;
1277         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1278         struct net_device *netdev = adapter->netdev;
1279         struct pci_dev *pdev = adapter->pdev;
1280         struct e1000_buffer *buffer_info, *next_buffer;
1281         struct e1000_ps_page *ps_page;
1282         struct sk_buff *skb;
1283         unsigned int i, j;
1284         u32 length, staterr;
1285         int cleaned_count = 0;
1286         bool cleaned = false;
1287         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1288
1289         i = rx_ring->next_to_clean;
1290         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1291         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1292         buffer_info = &rx_ring->buffer_info[i];
1293
1294         while (staterr & E1000_RXD_STAT_DD) {
1295                 if (*work_done >= work_to_do)
1296                         break;
1297                 (*work_done)++;
1298                 skb = buffer_info->skb;
1299                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1300
1301                 /* in the packet split case this is header only */
1302                 prefetch(skb->data - NET_IP_ALIGN);
1303
1304                 i++;
1305                 if (i == rx_ring->count)
1306                         i = 0;
1307                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1308                 prefetch(next_rxd);
1309
1310                 next_buffer = &rx_ring->buffer_info[i];
1311
1312                 cleaned = true;
1313                 cleaned_count++;
1314                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1315                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1316                 buffer_info->dma = 0;
1317
1318                 /* see !EOP comment in other Rx routine */
1319                 if (!(staterr & E1000_RXD_STAT_EOP))
1320                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1321
1322                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1323                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1324                         dev_kfree_skb_irq(skb);
1325                         if (staterr & E1000_RXD_STAT_EOP)
1326                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1327                         goto next_desc;
1328                 }
1329
1330                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1331                              !(netdev->features & NETIF_F_RXALL))) {
1332                         dev_kfree_skb_irq(skb);
1333                         goto next_desc;
1334                 }
1335
1336                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1337
1338                 if (!length) {
1339                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1340                         dev_kfree_skb_irq(skb);
1341                         goto next_desc;
1342                 }
1343
1344                 /* Good Receive */
1345                 skb_put(skb, length);
1346
1347                 {
1348                         /* this looks ugly, but it seems compiler issues make
1349                          * it more efficient than reusing j
1350                          */
1351                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1352
1353                         /* page alloc/put takes too long and effects small
1354                          * packet throughput, so unsplit small packets and
1355                          * save the alloc/put only valid in softirq (napi)
1356                          * context to call kmap_*
1357                          */
1358                         if (l1 && (l1 <= copybreak) &&
1359                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1360                                 u8 *vaddr;
1361
1362                                 ps_page = &buffer_info->ps_pages[0];
1363
1364                                 /* there is no documentation about how to call
1365                                  * kmap_atomic, so we can't hold the mapping
1366                                  * very long
1367                                  */
1368                                 dma_sync_single_for_cpu(&pdev->dev,
1369                                                         ps_page->dma,
1370                                                         PAGE_SIZE,
1371                                                         DMA_FROM_DEVICE);
1372                                 vaddr = kmap_atomic(ps_page->page);
1373                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1374                                 kunmap_atomic(vaddr);
1375                                 dma_sync_single_for_device(&pdev->dev,
1376                                                            ps_page->dma,
1377                                                            PAGE_SIZE,
1378                                                            DMA_FROM_DEVICE);
1379
1380                                 /* remove the CRC */
1381                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1382                                         if (!(netdev->features & NETIF_F_RXFCS))
1383                                                 l1 -= 4;
1384                                 }
1385
1386                                 skb_put(skb, l1);
1387                                 goto copydone;
1388                         } /* if */
1389                 }
1390
1391                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1392                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1393                         if (!length)
1394                                 break;
1395
1396                         ps_page = &buffer_info->ps_pages[j];
1397                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1398                                        DMA_FROM_DEVICE);
1399                         ps_page->dma = 0;
1400                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1401                         ps_page->page = NULL;
1402                         skb->len += length;
1403                         skb->data_len += length;
1404                         skb->truesize += PAGE_SIZE;
1405                 }
1406
1407                 /* strip the ethernet crc, problem is we're using pages now so
1408                  * this whole operation can get a little cpu intensive
1409                  */
1410                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1411                         if (!(netdev->features & NETIF_F_RXFCS))
1412                                 pskb_trim(skb, skb->len - 4);
1413                 }
1414
1415 copydone:
1416                 total_rx_bytes += skb->len;
1417                 total_rx_packets++;
1418
1419                 e1000_rx_checksum(adapter, staterr, skb);
1420
1421                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1422
1423                 if (rx_desc->wb.upper.header_status &
1424                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1425                         adapter->rx_hdr_split++;
1426
1427                 e1000_receive_skb(adapter, netdev, skb, staterr,
1428                                   rx_desc->wb.middle.vlan);
1429
1430 next_desc:
1431                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1432                 buffer_info->skb = NULL;
1433
1434                 /* return some buffers to hardware, one at a time is too slow */
1435                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1436                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1437                                               GFP_ATOMIC);
1438                         cleaned_count = 0;
1439                 }
1440
1441                 /* use prefetched values */
1442                 rx_desc = next_rxd;
1443                 buffer_info = next_buffer;
1444
1445                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1446         }
1447         rx_ring->next_to_clean = i;
1448
1449         cleaned_count = e1000_desc_unused(rx_ring);
1450         if (cleaned_count)
1451                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1452
1453         adapter->total_rx_bytes += total_rx_bytes;
1454         adapter->total_rx_packets += total_rx_packets;
1455         return cleaned;
1456 }
1457
1458 /**
1459  * e1000_consume_page - helper function
1460  **/
1461 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1462                                u16 length)
1463 {
1464         bi->page = NULL;
1465         skb->len += length;
1466         skb->data_len += length;
1467         skb->truesize += PAGE_SIZE;
1468 }
1469
1470 /**
1471  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1472  * @adapter: board private structure
1473  *
1474  * the return value indicates whether actual cleaning was done, there
1475  * is no guarantee that everything was cleaned
1476  **/
1477 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1478                                      int work_to_do)
1479 {
1480         struct e1000_adapter *adapter = rx_ring->adapter;
1481         struct net_device *netdev = adapter->netdev;
1482         struct pci_dev *pdev = adapter->pdev;
1483         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1484         struct e1000_buffer *buffer_info, *next_buffer;
1485         u32 length, staterr;
1486         unsigned int i;
1487         int cleaned_count = 0;
1488         bool cleaned = false;
1489         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1490         struct skb_shared_info *shinfo;
1491
1492         i = rx_ring->next_to_clean;
1493         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1494         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1495         buffer_info = &rx_ring->buffer_info[i];
1496
1497         while (staterr & E1000_RXD_STAT_DD) {
1498                 struct sk_buff *skb;
1499
1500                 if (*work_done >= work_to_do)
1501                         break;
1502                 (*work_done)++;
1503                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1504
1505                 skb = buffer_info->skb;
1506                 buffer_info->skb = NULL;
1507
1508                 ++i;
1509                 if (i == rx_ring->count)
1510                         i = 0;
1511                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1512                 prefetch(next_rxd);
1513
1514                 next_buffer = &rx_ring->buffer_info[i];
1515
1516                 cleaned = true;
1517                 cleaned_count++;
1518                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1519                                DMA_FROM_DEVICE);
1520                 buffer_info->dma = 0;
1521
1522                 length = le16_to_cpu(rx_desc->wb.upper.length);
1523
1524                 /* errors is only valid for DD + EOP descriptors */
1525                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1526                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1527                               !(netdev->features & NETIF_F_RXALL)))) {
1528                         /* recycle both page and skb */
1529                         buffer_info->skb = skb;
1530                         /* an error means any chain goes out the window too */
1531                         if (rx_ring->rx_skb_top)
1532                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1533                         rx_ring->rx_skb_top = NULL;
1534                         goto next_desc;
1535                 }
1536 #define rxtop (rx_ring->rx_skb_top)
1537                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1538                         /* this descriptor is only the beginning (or middle) */
1539                         if (!rxtop) {
1540                                 /* this is the beginning of a chain */
1541                                 rxtop = skb;
1542                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1543                                                    0, length);
1544                         } else {
1545                                 /* this is the middle of a chain */
1546                                 shinfo = skb_shinfo(rxtop);
1547                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1548                                                    buffer_info->page, 0,
1549                                                    length);
1550                                 /* re-use the skb, only consumed the page */
1551                                 buffer_info->skb = skb;
1552                         }
1553                         e1000_consume_page(buffer_info, rxtop, length);
1554                         goto next_desc;
1555                 } else {
1556                         if (rxtop) {
1557                                 /* end of the chain */
1558                                 shinfo = skb_shinfo(rxtop);
1559                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1560                                                    buffer_info->page, 0,
1561                                                    length);
1562                                 /* re-use the current skb, we only consumed the
1563                                  * page
1564                                  */
1565                                 buffer_info->skb = skb;
1566                                 skb = rxtop;
1567                                 rxtop = NULL;
1568                                 e1000_consume_page(buffer_info, skb, length);
1569                         } else {
1570                                 /* no chain, got EOP, this buf is the packet
1571                                  * copybreak to save the put_page/alloc_page
1572                                  */
1573                                 if (length <= copybreak &&
1574                                     skb_tailroom(skb) >= length) {
1575                                         u8 *vaddr;
1576                                         vaddr = kmap_atomic(buffer_info->page);
1577                                         memcpy(skb_tail_pointer(skb), vaddr,
1578                                                length);
1579                                         kunmap_atomic(vaddr);
1580                                         /* re-use the page, so don't erase
1581                                          * buffer_info->page
1582                                          */
1583                                         skb_put(skb, length);
1584                                 } else {
1585                                         skb_fill_page_desc(skb, 0,
1586                                                            buffer_info->page, 0,
1587                                                            length);
1588                                         e1000_consume_page(buffer_info, skb,
1589                                                            length);
1590                                 }
1591                         }
1592                 }
1593
1594                 /* Receive Checksum Offload */
1595                 e1000_rx_checksum(adapter, staterr, skb);
1596
1597                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1598
1599                 /* probably a little skewed due to removing CRC */
1600                 total_rx_bytes += skb->len;
1601                 total_rx_packets++;
1602
1603                 /* eth type trans needs skb->data to point to something */
1604                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1605                         e_err("pskb_may_pull failed.\n");
1606                         dev_kfree_skb_irq(skb);
1607                         goto next_desc;
1608                 }
1609
1610                 e1000_receive_skb(adapter, netdev, skb, staterr,
1611                                   rx_desc->wb.upper.vlan);
1612
1613 next_desc:
1614                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1615
1616                 /* return some buffers to hardware, one at a time is too slow */
1617                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1618                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1619                                               GFP_ATOMIC);
1620                         cleaned_count = 0;
1621                 }
1622
1623                 /* use prefetched values */
1624                 rx_desc = next_rxd;
1625                 buffer_info = next_buffer;
1626
1627                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1628         }
1629         rx_ring->next_to_clean = i;
1630
1631         cleaned_count = e1000_desc_unused(rx_ring);
1632         if (cleaned_count)
1633                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1634
1635         adapter->total_rx_bytes += total_rx_bytes;
1636         adapter->total_rx_packets += total_rx_packets;
1637         return cleaned;
1638 }
1639
1640 /**
1641  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1642  * @rx_ring: Rx descriptor ring
1643  **/
1644 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1645 {
1646         struct e1000_adapter *adapter = rx_ring->adapter;
1647         struct e1000_buffer *buffer_info;
1648         struct e1000_ps_page *ps_page;
1649         struct pci_dev *pdev = adapter->pdev;
1650         unsigned int i, j;
1651
1652         /* Free all the Rx ring sk_buffs */
1653         for (i = 0; i < rx_ring->count; i++) {
1654                 buffer_info = &rx_ring->buffer_info[i];
1655                 if (buffer_info->dma) {
1656                         if (adapter->clean_rx == e1000_clean_rx_irq)
1657                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1658                                                  adapter->rx_buffer_len,
1659                                                  DMA_FROM_DEVICE);
1660                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1661                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1662                                                PAGE_SIZE, DMA_FROM_DEVICE);
1663                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1664                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1665                                                  adapter->rx_ps_bsize0,
1666                                                  DMA_FROM_DEVICE);
1667                         buffer_info->dma = 0;
1668                 }
1669
1670                 if (buffer_info->page) {
1671                         put_page(buffer_info->page);
1672                         buffer_info->page = NULL;
1673                 }
1674
1675                 if (buffer_info->skb) {
1676                         dev_kfree_skb(buffer_info->skb);
1677                         buffer_info->skb = NULL;
1678                 }
1679
1680                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1681                         ps_page = &buffer_info->ps_pages[j];
1682                         if (!ps_page->page)
1683                                 break;
1684                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1685                                        DMA_FROM_DEVICE);
1686                         ps_page->dma = 0;
1687                         put_page(ps_page->page);
1688                         ps_page->page = NULL;
1689                 }
1690         }
1691
1692         /* there also may be some cached data from a chained receive */
1693         if (rx_ring->rx_skb_top) {
1694                 dev_kfree_skb(rx_ring->rx_skb_top);
1695                 rx_ring->rx_skb_top = NULL;
1696         }
1697
1698         /* Zero out the descriptor ring */
1699         memset(rx_ring->desc, 0, rx_ring->size);
1700
1701         rx_ring->next_to_clean = 0;
1702         rx_ring->next_to_use = 0;
1703         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1704
1705         writel(0, rx_ring->head);
1706         if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1707                 e1000e_update_rdt_wa(rx_ring, 0);
1708         else
1709                 writel(0, rx_ring->tail);
1710 }
1711
1712 static void e1000e_downshift_workaround(struct work_struct *work)
1713 {
1714         struct e1000_adapter *adapter = container_of(work,
1715                                                      struct e1000_adapter,
1716                                                      downshift_task);
1717
1718         if (test_bit(__E1000_DOWN, &adapter->state))
1719                 return;
1720
1721         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1722 }
1723
1724 /**
1725  * e1000_intr_msi - Interrupt Handler
1726  * @irq: interrupt number
1727  * @data: pointer to a network interface device structure
1728  **/
1729 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1730 {
1731         struct net_device *netdev = data;
1732         struct e1000_adapter *adapter = netdev_priv(netdev);
1733         struct e1000_hw *hw = &adapter->hw;
1734         u32 icr = er32(ICR);
1735
1736         /* read ICR disables interrupts using IAM */
1737         if (icr & E1000_ICR_LSC) {
1738                 hw->mac.get_link_status = true;
1739                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1740                  * disconnect (LSC) before accessing any PHY registers
1741                  */
1742                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1743                     (!(er32(STATUS) & E1000_STATUS_LU)))
1744                         schedule_work(&adapter->downshift_task);
1745
1746                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1747                  * link down event; disable receives here in the ISR and reset
1748                  * adapter in watchdog
1749                  */
1750                 if (netif_carrier_ok(netdev) &&
1751                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1752                         /* disable receives */
1753                         u32 rctl = er32(RCTL);
1754                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1755                         adapter->flags |= FLAG_RESTART_NOW;
1756                 }
1757                 /* guard against interrupt when we're going down */
1758                 if (!test_bit(__E1000_DOWN, &adapter->state))
1759                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1760         }
1761
1762         /* Reset on uncorrectable ECC error */
1763         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1764                 u32 pbeccsts = er32(PBECCSTS);
1765
1766                 adapter->corr_errors +=
1767                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1768                 adapter->uncorr_errors +=
1769                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1770                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1771
1772                 /* Do the reset outside of interrupt context */
1773                 schedule_work(&adapter->reset_task);
1774
1775                 /* return immediately since reset is imminent */
1776                 return IRQ_HANDLED;
1777         }
1778
1779         if (napi_schedule_prep(&adapter->napi)) {
1780                 adapter->total_tx_bytes = 0;
1781                 adapter->total_tx_packets = 0;
1782                 adapter->total_rx_bytes = 0;
1783                 adapter->total_rx_packets = 0;
1784                 __napi_schedule(&adapter->napi);
1785         }
1786
1787         return IRQ_HANDLED;
1788 }
1789
1790 /**
1791  * e1000_intr - Interrupt Handler
1792  * @irq: interrupt number
1793  * @data: pointer to a network interface device structure
1794  **/
1795 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1796 {
1797         struct net_device *netdev = data;
1798         struct e1000_adapter *adapter = netdev_priv(netdev);
1799         struct e1000_hw *hw = &adapter->hw;
1800         u32 rctl, icr = er32(ICR);
1801
1802         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1803                 return IRQ_NONE;  /* Not our interrupt */
1804
1805         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1806          * not set, then the adapter didn't send an interrupt
1807          */
1808         if (!(icr & E1000_ICR_INT_ASSERTED))
1809                 return IRQ_NONE;
1810
1811         /* Interrupt Auto-Mask...upon reading ICR,
1812          * interrupts are masked.  No need for the
1813          * IMC write
1814          */
1815
1816         if (icr & E1000_ICR_LSC) {
1817                 hw->mac.get_link_status = true;
1818                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1819                  * disconnect (LSC) before accessing any PHY registers
1820                  */
1821                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1822                     (!(er32(STATUS) & E1000_STATUS_LU)))
1823                         schedule_work(&adapter->downshift_task);
1824
1825                 /* 80003ES2LAN workaround--
1826                  * For packet buffer work-around on link down event;
1827                  * disable receives here in the ISR and
1828                  * reset adapter in watchdog
1829                  */
1830                 if (netif_carrier_ok(netdev) &&
1831                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1832                         /* disable receives */
1833                         rctl = er32(RCTL);
1834                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1835                         adapter->flags |= FLAG_RESTART_NOW;
1836                 }
1837                 /* guard against interrupt when we're going down */
1838                 if (!test_bit(__E1000_DOWN, &adapter->state))
1839                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1840         }
1841
1842         /* Reset on uncorrectable ECC error */
1843         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1844                 u32 pbeccsts = er32(PBECCSTS);
1845
1846                 adapter->corr_errors +=
1847                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1848                 adapter->uncorr_errors +=
1849                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1850                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1851
1852                 /* Do the reset outside of interrupt context */
1853                 schedule_work(&adapter->reset_task);
1854
1855                 /* return immediately since reset is imminent */
1856                 return IRQ_HANDLED;
1857         }
1858
1859         if (napi_schedule_prep(&adapter->napi)) {
1860                 adapter->total_tx_bytes = 0;
1861                 adapter->total_tx_packets = 0;
1862                 adapter->total_rx_bytes = 0;
1863                 adapter->total_rx_packets = 0;
1864                 __napi_schedule(&adapter->napi);
1865         }
1866
1867         return IRQ_HANDLED;
1868 }
1869
1870 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1871 {
1872         struct net_device *netdev = data;
1873         struct e1000_adapter *adapter = netdev_priv(netdev);
1874         struct e1000_hw *hw = &adapter->hw;
1875         u32 icr = er32(ICR);
1876
1877         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1878                 if (!test_bit(__E1000_DOWN, &adapter->state))
1879                         ew32(IMS, E1000_IMS_OTHER);
1880                 return IRQ_NONE;
1881         }
1882
1883         if (icr & adapter->eiac_mask)
1884                 ew32(ICS, (icr & adapter->eiac_mask));
1885
1886         if (icr & E1000_ICR_OTHER) {
1887                 if (!(icr & E1000_ICR_LSC))
1888                         goto no_link_interrupt;
1889                 hw->mac.get_link_status = true;
1890                 /* guard against interrupt when we're going down */
1891                 if (!test_bit(__E1000_DOWN, &adapter->state))
1892                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1893         }
1894
1895 no_link_interrupt:
1896         if (!test_bit(__E1000_DOWN, &adapter->state))
1897                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1898
1899         return IRQ_HANDLED;
1900 }
1901
1902 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1903 {
1904         struct net_device *netdev = data;
1905         struct e1000_adapter *adapter = netdev_priv(netdev);
1906         struct e1000_hw *hw = &adapter->hw;
1907         struct e1000_ring *tx_ring = adapter->tx_ring;
1908
1909         adapter->total_tx_bytes = 0;
1910         adapter->total_tx_packets = 0;
1911
1912         if (!e1000_clean_tx_irq(tx_ring))
1913                 /* Ring was not completely cleaned, so fire another interrupt */
1914                 ew32(ICS, tx_ring->ims_val);
1915
1916         return IRQ_HANDLED;
1917 }
1918
1919 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1920 {
1921         struct net_device *netdev = data;
1922         struct e1000_adapter *adapter = netdev_priv(netdev);
1923         struct e1000_ring *rx_ring = adapter->rx_ring;
1924
1925         /* Write the ITR value calculated at the end of the
1926          * previous interrupt.
1927          */
1928         if (rx_ring->set_itr) {
1929                 writel(1000000000 / (rx_ring->itr_val * 256),
1930                        rx_ring->itr_register);
1931                 rx_ring->set_itr = 0;
1932         }
1933
1934         if (napi_schedule_prep(&adapter->napi)) {
1935                 adapter->total_rx_bytes = 0;
1936                 adapter->total_rx_packets = 0;
1937                 __napi_schedule(&adapter->napi);
1938         }
1939         return IRQ_HANDLED;
1940 }
1941
1942 /**
1943  * e1000_configure_msix - Configure MSI-X hardware
1944  *
1945  * e1000_configure_msix sets up the hardware to properly
1946  * generate MSI-X interrupts.
1947  **/
1948 static void e1000_configure_msix(struct e1000_adapter *adapter)
1949 {
1950         struct e1000_hw *hw = &adapter->hw;
1951         struct e1000_ring *rx_ring = adapter->rx_ring;
1952         struct e1000_ring *tx_ring = adapter->tx_ring;
1953         int vector = 0;
1954         u32 ctrl_ext, ivar = 0;
1955
1956         adapter->eiac_mask = 0;
1957
1958         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1959         if (hw->mac.type == e1000_82574) {
1960                 u32 rfctl = er32(RFCTL);
1961                 rfctl |= E1000_RFCTL_ACK_DIS;
1962                 ew32(RFCTL, rfctl);
1963         }
1964
1965         /* Configure Rx vector */
1966         rx_ring->ims_val = E1000_IMS_RXQ0;
1967         adapter->eiac_mask |= rx_ring->ims_val;
1968         if (rx_ring->itr_val)
1969                 writel(1000000000 / (rx_ring->itr_val * 256),
1970                        rx_ring->itr_register);
1971         else
1972                 writel(1, rx_ring->itr_register);
1973         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1974
1975         /* Configure Tx vector */
1976         tx_ring->ims_val = E1000_IMS_TXQ0;
1977         vector++;
1978         if (tx_ring->itr_val)
1979                 writel(1000000000 / (tx_ring->itr_val * 256),
1980                        tx_ring->itr_register);
1981         else
1982                 writel(1, tx_ring->itr_register);
1983         adapter->eiac_mask |= tx_ring->ims_val;
1984         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1985
1986         /* set vector for Other Causes, e.g. link changes */
1987         vector++;
1988         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1989         if (rx_ring->itr_val)
1990                 writel(1000000000 / (rx_ring->itr_val * 256),
1991                        hw->hw_addr + E1000_EITR_82574(vector));
1992         else
1993                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1994
1995         /* Cause Tx interrupts on every write back */
1996         ivar |= (1 << 31);
1997
1998         ew32(IVAR, ivar);
1999
2000         /* enable MSI-X PBA support */
2001         ctrl_ext = er32(CTRL_EXT);
2002         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2003
2004         /* Auto-Mask Other interrupts upon ICR read */
2005         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2006         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2007         ew32(CTRL_EXT, ctrl_ext);
2008         e1e_flush();
2009 }
2010
2011 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2012 {
2013         if (adapter->msix_entries) {
2014                 pci_disable_msix(adapter->pdev);
2015                 kfree(adapter->msix_entries);
2016                 adapter->msix_entries = NULL;
2017         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2018                 pci_disable_msi(adapter->pdev);
2019                 adapter->flags &= ~FLAG_MSI_ENABLED;
2020         }
2021 }
2022
2023 /**
2024  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2025  *
2026  * Attempt to configure interrupts using the best available
2027  * capabilities of the hardware and kernel.
2028  **/
2029 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2030 {
2031         int err;
2032         int i;
2033
2034         switch (adapter->int_mode) {
2035         case E1000E_INT_MODE_MSIX:
2036                 if (adapter->flags & FLAG_HAS_MSIX) {
2037                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2038                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2039                                                         sizeof(struct
2040                                                                msix_entry),
2041                                                         GFP_KERNEL);
2042                         if (adapter->msix_entries) {
2043                                 for (i = 0; i < adapter->num_vectors; i++)
2044                                         adapter->msix_entries[i].entry = i;
2045
2046                                 err = pci_enable_msix(adapter->pdev,
2047                                                       adapter->msix_entries,
2048                                                       adapter->num_vectors);
2049                                 if (err == 0)
2050                                         return;
2051                         }
2052                         /* MSI-X failed, so fall through and try MSI */
2053                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2054                         e1000e_reset_interrupt_capability(adapter);
2055                 }
2056                 adapter->int_mode = E1000E_INT_MODE_MSI;
2057                 /* Fall through */
2058         case E1000E_INT_MODE_MSI:
2059                 if (!pci_enable_msi(adapter->pdev)) {
2060                         adapter->flags |= FLAG_MSI_ENABLED;
2061                 } else {
2062                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2063                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2064                 }
2065                 /* Fall through */
2066         case E1000E_INT_MODE_LEGACY:
2067                 /* Don't do anything; this is the system default */
2068                 break;
2069         }
2070
2071         /* store the number of vectors being used */
2072         adapter->num_vectors = 1;
2073 }
2074
2075 /**
2076  * e1000_request_msix - Initialize MSI-X interrupts
2077  *
2078  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2079  * kernel.
2080  **/
2081 static int e1000_request_msix(struct e1000_adapter *adapter)
2082 {
2083         struct net_device *netdev = adapter->netdev;
2084         int err = 0, vector = 0;
2085
2086         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2087                 snprintf(adapter->rx_ring->name,
2088                          sizeof(adapter->rx_ring->name) - 1,
2089                          "%s-rx-0", netdev->name);
2090         else
2091                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2092         err = request_irq(adapter->msix_entries[vector].vector,
2093                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2094                           netdev);
2095         if (err)
2096                 return err;
2097         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2098             E1000_EITR_82574(vector);
2099         adapter->rx_ring->itr_val = adapter->itr;
2100         vector++;
2101
2102         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2103                 snprintf(adapter->tx_ring->name,
2104                          sizeof(adapter->tx_ring->name) - 1,
2105                          "%s-tx-0", netdev->name);
2106         else
2107                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2108         err = request_irq(adapter->msix_entries[vector].vector,
2109                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2110                           netdev);
2111         if (err)
2112                 return err;
2113         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2114             E1000_EITR_82574(vector);
2115         adapter->tx_ring->itr_val = adapter->itr;
2116         vector++;
2117
2118         err = request_irq(adapter->msix_entries[vector].vector,
2119                           e1000_msix_other, 0, netdev->name, netdev);
2120         if (err)
2121                 return err;
2122
2123         e1000_configure_msix(adapter);
2124
2125         return 0;
2126 }
2127
2128 /**
2129  * e1000_request_irq - initialize interrupts
2130  *
2131  * Attempts to configure interrupts using the best available
2132  * capabilities of the hardware and kernel.
2133  **/
2134 static int e1000_request_irq(struct e1000_adapter *adapter)
2135 {
2136         struct net_device *netdev = adapter->netdev;
2137         int err;
2138
2139         if (adapter->msix_entries) {
2140                 err = e1000_request_msix(adapter);
2141                 if (!err)
2142                         return err;
2143                 /* fall back to MSI */
2144                 e1000e_reset_interrupt_capability(adapter);
2145                 adapter->int_mode = E1000E_INT_MODE_MSI;
2146                 e1000e_set_interrupt_capability(adapter);
2147         }
2148         if (adapter->flags & FLAG_MSI_ENABLED) {
2149                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2150                                   netdev->name, netdev);
2151                 if (!err)
2152                         return err;
2153
2154                 /* fall back to legacy interrupt */
2155                 e1000e_reset_interrupt_capability(adapter);
2156                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2157         }
2158
2159         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2160                           netdev->name, netdev);
2161         if (err)
2162                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2163
2164         return err;
2165 }
2166
2167 static void e1000_free_irq(struct e1000_adapter *adapter)
2168 {
2169         struct net_device *netdev = adapter->netdev;
2170
2171         if (adapter->msix_entries) {
2172                 int vector = 0;
2173
2174                 free_irq(adapter->msix_entries[vector].vector, netdev);
2175                 vector++;
2176
2177                 free_irq(adapter->msix_entries[vector].vector, netdev);
2178                 vector++;
2179
2180                 /* Other Causes interrupt vector */
2181                 free_irq(adapter->msix_entries[vector].vector, netdev);
2182                 return;
2183         }
2184
2185         free_irq(adapter->pdev->irq, netdev);
2186 }
2187
2188 /**
2189  * e1000_irq_disable - Mask off interrupt generation on the NIC
2190  **/
2191 static void e1000_irq_disable(struct e1000_adapter *adapter)
2192 {
2193         struct e1000_hw *hw = &adapter->hw;
2194
2195         ew32(IMC, ~0);
2196         if (adapter->msix_entries)
2197                 ew32(EIAC_82574, 0);
2198         e1e_flush();
2199
2200         if (adapter->msix_entries) {
2201                 int i;
2202                 for (i = 0; i < adapter->num_vectors; i++)
2203                         synchronize_irq(adapter->msix_entries[i].vector);
2204         } else {
2205                 synchronize_irq(adapter->pdev->irq);
2206         }
2207 }
2208
2209 /**
2210  * e1000_irq_enable - Enable default interrupt generation settings
2211  **/
2212 static void e1000_irq_enable(struct e1000_adapter *adapter)
2213 {
2214         struct e1000_hw *hw = &adapter->hw;
2215
2216         if (adapter->msix_entries) {
2217                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2218                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2219         } else if (hw->mac.type == e1000_pch_lpt) {
2220                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2221         } else {
2222                 ew32(IMS, IMS_ENABLE_MASK);
2223         }
2224         e1e_flush();
2225 }
2226
2227 /**
2228  * e1000e_get_hw_control - get control of the h/w from f/w
2229  * @adapter: address of board private structure
2230  *
2231  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2232  * For ASF and Pass Through versions of f/w this means that
2233  * the driver is loaded. For AMT version (only with 82573)
2234  * of the f/w this means that the network i/f is open.
2235  **/
2236 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2237 {
2238         struct e1000_hw *hw = &adapter->hw;
2239         u32 ctrl_ext;
2240         u32 swsm;
2241
2242         /* Let firmware know the driver has taken over */
2243         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2244                 swsm = er32(SWSM);
2245                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2246         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2247                 ctrl_ext = er32(CTRL_EXT);
2248                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2249         }
2250 }
2251
2252 /**
2253  * e1000e_release_hw_control - release control of the h/w to f/w
2254  * @adapter: address of board private structure
2255  *
2256  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2257  * For ASF and Pass Through versions of f/w this means that the
2258  * driver is no longer loaded. For AMT version (only with 82573) i
2259  * of the f/w this means that the network i/f is closed.
2260  *
2261  **/
2262 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2263 {
2264         struct e1000_hw *hw = &adapter->hw;
2265         u32 ctrl_ext;
2266         u32 swsm;
2267
2268         /* Let firmware taken over control of h/w */
2269         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2270                 swsm = er32(SWSM);
2271                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2272         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2273                 ctrl_ext = er32(CTRL_EXT);
2274                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2275         }
2276 }
2277
2278 /**
2279  * e1000_alloc_ring_dma - allocate memory for a ring structure
2280  **/
2281 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2282                                 struct e1000_ring *ring)
2283 {
2284         struct pci_dev *pdev = adapter->pdev;
2285
2286         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2287                                         GFP_KERNEL);
2288         if (!ring->desc)
2289                 return -ENOMEM;
2290
2291         return 0;
2292 }
2293
2294 /**
2295  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2296  * @tx_ring: Tx descriptor ring
2297  *
2298  * Return 0 on success, negative on failure
2299  **/
2300 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2301 {
2302         struct e1000_adapter *adapter = tx_ring->adapter;
2303         int err = -ENOMEM, size;
2304
2305         size = sizeof(struct e1000_buffer) * tx_ring->count;
2306         tx_ring->buffer_info = vzalloc(size);
2307         if (!tx_ring->buffer_info)
2308                 goto err;
2309
2310         /* round up to nearest 4K */
2311         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2312         tx_ring->size = ALIGN(tx_ring->size, 4096);
2313
2314         err = e1000_alloc_ring_dma(adapter, tx_ring);
2315         if (err)
2316                 goto err;
2317
2318         tx_ring->next_to_use = 0;
2319         tx_ring->next_to_clean = 0;
2320
2321         return 0;
2322 err:
2323         vfree(tx_ring->buffer_info);
2324         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2325         return err;
2326 }
2327
2328 /**
2329  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2330  * @rx_ring: Rx descriptor ring
2331  *
2332  * Returns 0 on success, negative on failure
2333  **/
2334 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2335 {
2336         struct e1000_adapter *adapter = rx_ring->adapter;
2337         struct e1000_buffer *buffer_info;
2338         int i, size, desc_len, err = -ENOMEM;
2339
2340         size = sizeof(struct e1000_buffer) * rx_ring->count;
2341         rx_ring->buffer_info = vzalloc(size);
2342         if (!rx_ring->buffer_info)
2343                 goto err;
2344
2345         for (i = 0; i < rx_ring->count; i++) {
2346                 buffer_info = &rx_ring->buffer_info[i];
2347                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2348                                                 sizeof(struct e1000_ps_page),
2349                                                 GFP_KERNEL);
2350                 if (!buffer_info->ps_pages)
2351                         goto err_pages;
2352         }
2353
2354         desc_len = sizeof(union e1000_rx_desc_packet_split);
2355
2356         /* Round up to nearest 4K */
2357         rx_ring->size = rx_ring->count * desc_len;
2358         rx_ring->size = ALIGN(rx_ring->size, 4096);
2359
2360         err = e1000_alloc_ring_dma(adapter, rx_ring);
2361         if (err)
2362                 goto err_pages;
2363
2364         rx_ring->next_to_clean = 0;
2365         rx_ring->next_to_use = 0;
2366         rx_ring->rx_skb_top = NULL;
2367
2368         return 0;
2369
2370 err_pages:
2371         for (i = 0; i < rx_ring->count; i++) {
2372                 buffer_info = &rx_ring->buffer_info[i];
2373                 kfree(buffer_info->ps_pages);
2374         }
2375 err:
2376         vfree(rx_ring->buffer_info);
2377         e_err("Unable to allocate memory for the receive descriptor ring\n");
2378         return err;
2379 }
2380
2381 /**
2382  * e1000_clean_tx_ring - Free Tx Buffers
2383  * @tx_ring: Tx descriptor ring
2384  **/
2385 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2386 {
2387         struct e1000_adapter *adapter = tx_ring->adapter;
2388         struct e1000_buffer *buffer_info;
2389         unsigned long size;
2390         unsigned int i;
2391
2392         for (i = 0; i < tx_ring->count; i++) {
2393                 buffer_info = &tx_ring->buffer_info[i];
2394                 e1000_put_txbuf(tx_ring, buffer_info);
2395         }
2396
2397         netdev_reset_queue(adapter->netdev);
2398         size = sizeof(struct e1000_buffer) * tx_ring->count;
2399         memset(tx_ring->buffer_info, 0, size);
2400
2401         memset(tx_ring->desc, 0, tx_ring->size);
2402
2403         tx_ring->next_to_use = 0;
2404         tx_ring->next_to_clean = 0;
2405
2406         writel(0, tx_ring->head);
2407         if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2408                 e1000e_update_tdt_wa(tx_ring, 0);
2409         else
2410                 writel(0, tx_ring->tail);
2411 }
2412
2413 /**
2414  * e1000e_free_tx_resources - Free Tx Resources per Queue
2415  * @tx_ring: Tx descriptor ring
2416  *
2417  * Free all transmit software resources
2418  **/
2419 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2420 {
2421         struct e1000_adapter *adapter = tx_ring->adapter;
2422         struct pci_dev *pdev = adapter->pdev;
2423
2424         e1000_clean_tx_ring(tx_ring);
2425
2426         vfree(tx_ring->buffer_info);
2427         tx_ring->buffer_info = NULL;
2428
2429         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2430                           tx_ring->dma);
2431         tx_ring->desc = NULL;
2432 }
2433
2434 /**
2435  * e1000e_free_rx_resources - Free Rx Resources
2436  * @rx_ring: Rx descriptor ring
2437  *
2438  * Free all receive software resources
2439  **/
2440 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2441 {
2442         struct e1000_adapter *adapter = rx_ring->adapter;
2443         struct pci_dev *pdev = adapter->pdev;
2444         int i;
2445
2446         e1000_clean_rx_ring(rx_ring);
2447
2448         for (i = 0; i < rx_ring->count; i++)
2449                 kfree(rx_ring->buffer_info[i].ps_pages);
2450
2451         vfree(rx_ring->buffer_info);
2452         rx_ring->buffer_info = NULL;
2453
2454         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2455                           rx_ring->dma);
2456         rx_ring->desc = NULL;
2457 }
2458
2459 /**
2460  * e1000_update_itr - update the dynamic ITR value based on statistics
2461  * @adapter: pointer to adapter
2462  * @itr_setting: current adapter->itr
2463  * @packets: the number of packets during this measurement interval
2464  * @bytes: the number of bytes during this measurement interval
2465  *
2466  *      Stores a new ITR value based on packets and byte
2467  *      counts during the last interrupt.  The advantage of per interrupt
2468  *      computation is faster updates and more accurate ITR for the current
2469  *      traffic pattern.  Constants in this function were computed
2470  *      based on theoretical maximum wire speed and thresholds were set based
2471  *      on testing data as well as attempting to minimize response time
2472  *      while increasing bulk throughput.  This functionality is controlled
2473  *      by the InterruptThrottleRate module parameter.
2474  **/
2475 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2476 {
2477         unsigned int retval = itr_setting;
2478
2479         if (packets == 0)
2480                 return itr_setting;
2481
2482         switch (itr_setting) {
2483         case lowest_latency:
2484                 /* handle TSO and jumbo frames */
2485                 if (bytes / packets > 8000)
2486                         retval = bulk_latency;
2487                 else if ((packets < 5) && (bytes > 512))
2488                         retval = low_latency;
2489                 break;
2490         case low_latency:  /* 50 usec aka 20000 ints/s */
2491                 if (bytes > 10000) {
2492                         /* this if handles the TSO accounting */
2493                         if (bytes / packets > 8000)
2494                                 retval = bulk_latency;
2495                         else if ((packets < 10) || ((bytes / packets) > 1200))
2496                                 retval = bulk_latency;
2497                         else if ((packets > 35))
2498                                 retval = lowest_latency;
2499                 } else if (bytes / packets > 2000) {
2500                         retval = bulk_latency;
2501                 } else if (packets <= 2 && bytes < 512) {
2502                         retval = lowest_latency;
2503                 }
2504                 break;
2505         case bulk_latency: /* 250 usec aka 4000 ints/s */
2506                 if (bytes > 25000) {
2507                         if (packets > 35)
2508                                 retval = low_latency;
2509                 } else if (bytes < 6000) {
2510                         retval = low_latency;
2511                 }
2512                 break;
2513         }
2514
2515         return retval;
2516 }
2517
2518 static void e1000_set_itr(struct e1000_adapter *adapter)
2519 {
2520         u16 current_itr;
2521         u32 new_itr = adapter->itr;
2522
2523         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2524         if (adapter->link_speed != SPEED_1000) {
2525                 current_itr = 0;
2526                 new_itr = 4000;
2527                 goto set_itr_now;
2528         }
2529
2530         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2531                 new_itr = 0;
2532                 goto set_itr_now;
2533         }
2534
2535         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2536                                            adapter->total_tx_packets,
2537                                            adapter->total_tx_bytes);
2538         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2539         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2540                 adapter->tx_itr = low_latency;
2541
2542         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2543                                            adapter->total_rx_packets,
2544                                            adapter->total_rx_bytes);
2545         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2546         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2547                 adapter->rx_itr = low_latency;
2548
2549         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2550
2551         /* counts and packets in update_itr are dependent on these numbers */
2552         switch (current_itr) {
2553         case lowest_latency:
2554                 new_itr = 70000;
2555                 break;
2556         case low_latency:
2557                 new_itr = 20000; /* aka hwitr = ~200 */
2558                 break;
2559         case bulk_latency:
2560                 new_itr = 4000;
2561                 break;
2562         default:
2563                 break;
2564         }
2565
2566 set_itr_now:
2567         if (new_itr != adapter->itr) {
2568                 /* this attempts to bias the interrupt rate towards Bulk
2569                  * by adding intermediate steps when interrupt rate is
2570                  * increasing
2571                  */
2572                 new_itr = new_itr > adapter->itr ?
2573                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2574                 adapter->itr = new_itr;
2575                 adapter->rx_ring->itr_val = new_itr;
2576                 if (adapter->msix_entries)
2577                         adapter->rx_ring->set_itr = 1;
2578                 else
2579                         e1000e_write_itr(adapter, new_itr);
2580         }
2581 }
2582
2583 /**
2584  * e1000e_write_itr - write the ITR value to the appropriate registers
2585  * @adapter: address of board private structure
2586  * @itr: new ITR value to program
2587  *
2588  * e1000e_write_itr determines if the adapter is in MSI-X mode
2589  * and, if so, writes the EITR registers with the ITR value.
2590  * Otherwise, it writes the ITR value into the ITR register.
2591  **/
2592 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2593 {
2594         struct e1000_hw *hw = &adapter->hw;
2595         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2596
2597         if (adapter->msix_entries) {
2598                 int vector;
2599
2600                 for (vector = 0; vector < adapter->num_vectors; vector++)
2601                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2602         } else {
2603                 ew32(ITR, new_itr);
2604         }
2605 }
2606
2607 /**
2608  * e1000_alloc_queues - Allocate memory for all rings
2609  * @adapter: board private structure to initialize
2610  **/
2611 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2612 {
2613         int size = sizeof(struct e1000_ring);
2614
2615         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2616         if (!adapter->tx_ring)
2617                 goto err;
2618         adapter->tx_ring->count = adapter->tx_ring_count;
2619         adapter->tx_ring->adapter = adapter;
2620
2621         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2622         if (!adapter->rx_ring)
2623                 goto err;
2624         adapter->rx_ring->count = adapter->rx_ring_count;
2625         adapter->rx_ring->adapter = adapter;
2626
2627         return 0;
2628 err:
2629         e_err("Unable to allocate memory for queues\n");
2630         kfree(adapter->rx_ring);
2631         kfree(adapter->tx_ring);
2632         return -ENOMEM;
2633 }
2634
2635 /**
2636  * e1000e_poll - NAPI Rx polling callback
2637  * @napi: struct associated with this polling callback
2638  * @weight: number of packets driver is allowed to process this poll
2639  **/
2640 static int e1000e_poll(struct napi_struct *napi, int weight)
2641 {
2642         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2643                                                      napi);
2644         struct e1000_hw *hw = &adapter->hw;
2645         struct net_device *poll_dev = adapter->netdev;
2646         int tx_cleaned = 1, work_done = 0;
2647
2648         adapter = netdev_priv(poll_dev);
2649
2650         if (!adapter->msix_entries ||
2651             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2652                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2653
2654         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2655
2656         if (!tx_cleaned)
2657                 work_done = weight;
2658
2659         /* If weight not fully consumed, exit the polling mode */
2660         if (work_done < weight) {
2661                 if (adapter->itr_setting & 3)
2662                         e1000_set_itr(adapter);
2663                 napi_complete(napi);
2664                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2665                         if (adapter->msix_entries)
2666                                 ew32(IMS, adapter->rx_ring->ims_val);
2667                         else
2668                                 e1000_irq_enable(adapter);
2669                 }
2670         }
2671
2672         return work_done;
2673 }
2674
2675 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2676 {
2677         struct e1000_adapter *adapter = netdev_priv(netdev);
2678         struct e1000_hw *hw = &adapter->hw;
2679         u32 vfta, index;
2680
2681         /* don't update vlan cookie if already programmed */
2682         if ((adapter->hw.mng_cookie.status &
2683              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2684             (vid == adapter->mng_vlan_id))
2685                 return 0;
2686
2687         /* add VID to filter table */
2688         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2689                 index = (vid >> 5) & 0x7F;
2690                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2691                 vfta |= (1 << (vid & 0x1F));
2692                 hw->mac.ops.write_vfta(hw, index, vfta);
2693         }
2694
2695         set_bit(vid, adapter->active_vlans);
2696
2697         return 0;
2698 }
2699
2700 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2701 {
2702         struct e1000_adapter *adapter = netdev_priv(netdev);
2703         struct e1000_hw *hw = &adapter->hw;
2704         u32 vfta, index;
2705
2706         if ((adapter->hw.mng_cookie.status &
2707              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2708             (vid == adapter->mng_vlan_id)) {
2709                 /* release control to f/w */
2710                 e1000e_release_hw_control(adapter);
2711                 return 0;
2712         }
2713
2714         /* remove VID from filter table */
2715         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2716                 index = (vid >> 5) & 0x7F;
2717                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2718                 vfta &= ~(1 << (vid & 0x1F));
2719                 hw->mac.ops.write_vfta(hw, index, vfta);
2720         }
2721
2722         clear_bit(vid, adapter->active_vlans);
2723
2724         return 0;
2725 }
2726
2727 /**
2728  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2729  * @adapter: board private structure to initialize
2730  **/
2731 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2732 {
2733         struct net_device *netdev = adapter->netdev;
2734         struct e1000_hw *hw = &adapter->hw;
2735         u32 rctl;
2736
2737         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2738                 /* disable VLAN receive filtering */
2739                 rctl = er32(RCTL);
2740                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2741                 ew32(RCTL, rctl);
2742
2743                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2744                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2745                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2746                 }
2747         }
2748 }
2749
2750 /**
2751  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2752  * @adapter: board private structure to initialize
2753  **/
2754 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2755 {
2756         struct e1000_hw *hw = &adapter->hw;
2757         u32 rctl;
2758
2759         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2760                 /* enable VLAN receive filtering */
2761                 rctl = er32(RCTL);
2762                 rctl |= E1000_RCTL_VFE;
2763                 rctl &= ~E1000_RCTL_CFIEN;
2764                 ew32(RCTL, rctl);
2765         }
2766 }
2767
2768 /**
2769  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2770  * @adapter: board private structure to initialize
2771  **/
2772 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2773 {
2774         struct e1000_hw *hw = &adapter->hw;
2775         u32 ctrl;
2776
2777         /* disable VLAN tag insert/strip */
2778         ctrl = er32(CTRL);
2779         ctrl &= ~E1000_CTRL_VME;
2780         ew32(CTRL, ctrl);
2781 }
2782
2783 /**
2784  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2785  * @adapter: board private structure to initialize
2786  **/
2787 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2788 {
2789         struct e1000_hw *hw = &adapter->hw;
2790         u32 ctrl;
2791
2792         /* enable VLAN tag insert/strip */
2793         ctrl = er32(CTRL);
2794         ctrl |= E1000_CTRL_VME;
2795         ew32(CTRL, ctrl);
2796 }
2797
2798 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2799 {
2800         struct net_device *netdev = adapter->netdev;
2801         u16 vid = adapter->hw.mng_cookie.vlan_id;
2802         u16 old_vid = adapter->mng_vlan_id;
2803
2804         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2805                 e1000_vlan_rx_add_vid(netdev, vid);
2806                 adapter->mng_vlan_id = vid;
2807         }
2808
2809         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2810                 e1000_vlan_rx_kill_vid(netdev, old_vid);
2811 }
2812
2813 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2814 {
2815         u16 vid;
2816
2817         e1000_vlan_rx_add_vid(adapter->netdev, 0);
2818
2819         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2820             e1000_vlan_rx_add_vid(adapter->netdev, vid);
2821 }
2822
2823 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2824 {
2825         struct e1000_hw *hw = &adapter->hw;
2826         u32 manc, manc2h, mdef, i, j;
2827
2828         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2829                 return;
2830
2831         manc = er32(MANC);
2832
2833         /* enable receiving management packets to the host. this will probably
2834          * generate destination unreachable messages from the host OS, but
2835          * the packets will be handled on SMBUS
2836          */
2837         manc |= E1000_MANC_EN_MNG2HOST;
2838         manc2h = er32(MANC2H);
2839
2840         switch (hw->mac.type) {
2841         default:
2842                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2843                 break;
2844         case e1000_82574:
2845         case e1000_82583:
2846                 /* Check if IPMI pass-through decision filter already exists;
2847                  * if so, enable it.
2848                  */
2849                 for (i = 0, j = 0; i < 8; i++) {
2850                         mdef = er32(MDEF(i));
2851
2852                         /* Ignore filters with anything other than IPMI ports */
2853                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2854                                 continue;
2855
2856                         /* Enable this decision filter in MANC2H */
2857                         if (mdef)
2858                                 manc2h |= (1 << i);
2859
2860                         j |= mdef;
2861                 }
2862
2863                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2864                         break;
2865
2866                 /* Create new decision filter in an empty filter */
2867                 for (i = 0, j = 0; i < 8; i++)
2868                         if (er32(MDEF(i)) == 0) {
2869                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2870                                                E1000_MDEF_PORT_664));
2871                                 manc2h |= (1 << 1);
2872                                 j++;
2873                                 break;
2874                         }
2875
2876                 if (!j)
2877                         e_warn("Unable to create IPMI pass-through filter\n");
2878                 break;
2879         }
2880
2881         ew32(MANC2H, manc2h);
2882         ew32(MANC, manc);
2883 }
2884
2885 /**
2886  * e1000_configure_tx - Configure Transmit Unit after Reset
2887  * @adapter: board private structure
2888  *
2889  * Configure the Tx unit of the MAC after a reset.
2890  **/
2891 static void e1000_configure_tx(struct e1000_adapter *adapter)
2892 {
2893         struct e1000_hw *hw = &adapter->hw;
2894         struct e1000_ring *tx_ring = adapter->tx_ring;
2895         u64 tdba;
2896         u32 tdlen, tarc;
2897
2898         /* Setup the HW Tx Head and Tail descriptor pointers */
2899         tdba = tx_ring->dma;
2900         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2901         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2902         ew32(TDBAH(0), (tdba >> 32));
2903         ew32(TDLEN(0), tdlen);
2904         ew32(TDH(0), 0);
2905         ew32(TDT(0), 0);
2906         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2907         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2908
2909         /* Set the Tx Interrupt Delay register */
2910         ew32(TIDV, adapter->tx_int_delay);
2911         /* Tx irq moderation */
2912         ew32(TADV, adapter->tx_abs_int_delay);
2913
2914         if (adapter->flags2 & FLAG2_DMA_BURST) {
2915                 u32 txdctl = er32(TXDCTL(0));
2916                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2917                             E1000_TXDCTL_WTHRESH);
2918                 /* set up some performance related parameters to encourage the
2919                  * hardware to use the bus more efficiently in bursts, depends
2920                  * on the tx_int_delay to be enabled,
2921                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2922                  * hthresh = 1 ==> prefetch when one or more available
2923                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2924                  * BEWARE: this seems to work but should be considered first if
2925                  * there are Tx hangs or other Tx related bugs
2926                  */
2927                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2928                 ew32(TXDCTL(0), txdctl);
2929         }
2930         /* erratum work around: set txdctl the same for both queues */
2931         ew32(TXDCTL(1), er32(TXDCTL(0)));
2932
2933         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2934                 tarc = er32(TARC(0));
2935                 /* set the speed mode bit, we'll clear it if we're not at
2936                  * gigabit link later
2937                  */
2938 #define SPEED_MODE_BIT (1 << 21)
2939                 tarc |= SPEED_MODE_BIT;
2940                 ew32(TARC(0), tarc);
2941         }
2942
2943         /* errata: program both queues to unweighted RR */
2944         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2945                 tarc = er32(TARC(0));
2946                 tarc |= 1;
2947                 ew32(TARC(0), tarc);
2948                 tarc = er32(TARC(1));
2949                 tarc |= 1;
2950                 ew32(TARC(1), tarc);
2951         }
2952
2953         /* Setup Transmit Descriptor Settings for eop descriptor */
2954         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2955
2956         /* only set IDE if we are delaying interrupts using the timers */
2957         if (adapter->tx_int_delay)
2958                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2959
2960         /* enable Report Status bit */
2961         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2962
2963         hw->mac.ops.config_collision_dist(hw);
2964 }
2965
2966 /**
2967  * e1000_setup_rctl - configure the receive control registers
2968  * @adapter: Board private structure
2969  **/
2970 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2971                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2972 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2973 {
2974         struct e1000_hw *hw = &adapter->hw;
2975         u32 rctl, rfctl;
2976         u32 pages = 0;
2977
2978         /* Workaround Si errata on PCHx - configure jumbo frame flow */
2979         if (hw->mac.type >= e1000_pch2lan) {
2980                 s32 ret_val;
2981
2982                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2983                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2984                 else
2985                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2986
2987                 if (ret_val)
2988                         e_dbg("failed to enable jumbo frame workaround mode\n");
2989         }
2990
2991         /* Program MC offset vector base */
2992         rctl = er32(RCTL);
2993         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2994         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2995             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2996             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2997
2998         /* Do not Store bad packets */
2999         rctl &= ~E1000_RCTL_SBP;
3000
3001         /* Enable Long Packet receive */
3002         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3003                 rctl &= ~E1000_RCTL_LPE;
3004         else
3005                 rctl |= E1000_RCTL_LPE;
3006
3007         /* Some systems expect that the CRC is included in SMBUS traffic. The
3008          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3009          * host memory when this is enabled
3010          */
3011         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3012                 rctl |= E1000_RCTL_SECRC;
3013
3014         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3015         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3016                 u16 phy_data;
3017
3018                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3019                 phy_data &= 0xfff8;
3020                 phy_data |= (1 << 2);
3021                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3022
3023                 e1e_rphy(hw, 22, &phy_data);
3024                 phy_data &= 0x0fff;
3025                 phy_data |= (1 << 14);
3026                 e1e_wphy(hw, 0x10, 0x2823);
3027                 e1e_wphy(hw, 0x11, 0x0003);
3028                 e1e_wphy(hw, 22, phy_data);
3029         }
3030
3031         /* Setup buffer sizes */
3032         rctl &= ~E1000_RCTL_SZ_4096;
3033         rctl |= E1000_RCTL_BSEX;
3034         switch (adapter->rx_buffer_len) {
3035         case 2048:
3036         default:
3037                 rctl |= E1000_RCTL_SZ_2048;
3038                 rctl &= ~E1000_RCTL_BSEX;
3039                 break;
3040         case 4096:
3041                 rctl |= E1000_RCTL_SZ_4096;
3042                 break;
3043         case 8192:
3044                 rctl |= E1000_RCTL_SZ_8192;
3045                 break;
3046         case 16384:
3047                 rctl |= E1000_RCTL_SZ_16384;
3048                 break;
3049         }
3050
3051         /* Enable Extended Status in all Receive Descriptors */
3052         rfctl = er32(RFCTL);
3053         rfctl |= E1000_RFCTL_EXTEN;
3054         ew32(RFCTL, rfctl);
3055
3056         /* 82571 and greater support packet-split where the protocol
3057          * header is placed in skb->data and the packet data is
3058          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3059          * In the case of a non-split, skb->data is linearly filled,
3060          * followed by the page buffers.  Therefore, skb->data is
3061          * sized to hold the largest protocol header.
3062          *
3063          * allocations using alloc_page take too long for regular MTU
3064          * so only enable packet split for jumbo frames
3065          *
3066          * Using pages when the page size is greater than 16k wastes
3067          * a lot of memory, since we allocate 3 pages at all times
3068          * per packet.
3069          */
3070         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3071         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3072                 adapter->rx_ps_pages = pages;
3073         else
3074                 adapter->rx_ps_pages = 0;
3075
3076         if (adapter->rx_ps_pages) {
3077                 u32 psrctl = 0;
3078
3079                 /* Enable Packet split descriptors */
3080                 rctl |= E1000_RCTL_DTYP_PS;
3081
3082                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3083
3084                 switch (adapter->rx_ps_pages) {
3085                 case 3:
3086                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3087                         /* fall-through */
3088                 case 2:
3089                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3090                         /* fall-through */
3091                 case 1:
3092                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3093                         break;
3094                 }
3095
3096                 ew32(PSRCTL, psrctl);
3097         }
3098
3099         /* This is useful for sniffing bad packets. */
3100         if (adapter->netdev->features & NETIF_F_RXALL) {
3101                 /* UPE and MPE will be handled by normal PROMISC logic
3102                  * in e1000e_set_rx_mode
3103                  */
3104                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3105                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3106                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3107
3108                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3109                           E1000_RCTL_DPF | /* Allow filtered pause */
3110                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3111                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3112                  * and that breaks VLANs.
3113                  */
3114         }
3115
3116         ew32(RCTL, rctl);
3117         /* just started the receive unit, no need to restart */
3118         adapter->flags &= ~FLAG_RESTART_NOW;
3119 }
3120
3121 /**
3122  * e1000_configure_rx - Configure Receive Unit after Reset
3123  * @adapter: board private structure
3124  *
3125  * Configure the Rx unit of the MAC after a reset.
3126  **/
3127 static void e1000_configure_rx(struct e1000_adapter *adapter)
3128 {
3129         struct e1000_hw *hw = &adapter->hw;
3130         struct e1000_ring *rx_ring = adapter->rx_ring;
3131         u64 rdba;
3132         u32 rdlen, rctl, rxcsum, ctrl_ext;
3133
3134         if (adapter->rx_ps_pages) {
3135                 /* this is a 32 byte descriptor */
3136                 rdlen = rx_ring->count *
3137                     sizeof(union e1000_rx_desc_packet_split);
3138                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3139                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3140         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3141                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3142                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3143                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3144         } else {
3145                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3146                 adapter->clean_rx = e1000_clean_rx_irq;
3147                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3148         }
3149
3150         /* disable receives while setting up the descriptors */
3151         rctl = er32(RCTL);
3152         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3153                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3154         e1e_flush();
3155         usleep_range(10000, 20000);
3156
3157         if (adapter->flags2 & FLAG2_DMA_BURST) {
3158                 /* set the writeback threshold (only takes effect if the RDTR
3159                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3160                  * enable prefetching of 0x20 Rx descriptors
3161                  * granularity = 01
3162                  * wthresh = 04,
3163                  * hthresh = 04,
3164                  * pthresh = 0x20
3165                  */
3166                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3167                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3168
3169                 /* override the delay timers for enabling bursting, only if
3170                  * the value was not set by the user via module options
3171                  */
3172                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3173                         adapter->rx_int_delay = BURST_RDTR;
3174                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3175                         adapter->rx_abs_int_delay = BURST_RADV;
3176         }
3177
3178         /* set the Receive Delay Timer Register */
3179         ew32(RDTR, adapter->rx_int_delay);
3180
3181         /* irq moderation */
3182         ew32(RADV, adapter->rx_abs_int_delay);
3183         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3184                 e1000e_write_itr(adapter, adapter->itr);
3185
3186         ctrl_ext = er32(CTRL_EXT);
3187         /* Auto-Mask interrupts upon ICR access */
3188         ctrl_ext |= E1000_CTRL_EXT_IAME;
3189         ew32(IAM, 0xffffffff);
3190         ew32(CTRL_EXT, ctrl_ext);
3191         e1e_flush();
3192
3193         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3194          * the Base and Length of the Rx Descriptor Ring
3195          */
3196         rdba = rx_ring->dma;
3197         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3198         ew32(RDBAH(0), (rdba >> 32));
3199         ew32(RDLEN(0), rdlen);
3200         ew32(RDH(0), 0);
3201         ew32(RDT(0), 0);
3202         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3203         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3204
3205         /* Enable Receive Checksum Offload for TCP and UDP */
3206         rxcsum = er32(RXCSUM);
3207         if (adapter->netdev->features & NETIF_F_RXCSUM)
3208                 rxcsum |= E1000_RXCSUM_TUOFL;
3209         else
3210                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3211         ew32(RXCSUM, rxcsum);
3212
3213         /* With jumbo frames, excessive C-state transition latencies result
3214          * in dropped transactions.
3215          */
3216         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3217                 u32 lat =
3218                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3219                      adapter->max_frame_size) * 8 / 1000;
3220
3221                 if (adapter->flags & FLAG_IS_ICH) {
3222                         u32 rxdctl = er32(RXDCTL(0));
3223                         ew32(RXDCTL(0), rxdctl | 0x3);
3224                 }
3225
3226                 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3227         } else {
3228                 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3229                                       PM_QOS_DEFAULT_VALUE);
3230         }
3231
3232         /* Enable Receives */
3233         ew32(RCTL, rctl);
3234 }
3235
3236 /**
3237  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3238  * @netdev: network interface device structure
3239  *
3240  * Writes multicast address list to the MTA hash table.
3241  * Returns: -ENOMEM on failure
3242  *                0 on no addresses written
3243  *                X on writing X addresses to MTA
3244  */
3245 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3246 {
3247         struct e1000_adapter *adapter = netdev_priv(netdev);
3248         struct e1000_hw *hw = &adapter->hw;
3249         struct netdev_hw_addr *ha;
3250         u8 *mta_list;
3251         int i;
3252
3253         if (netdev_mc_empty(netdev)) {
3254                 /* nothing to program, so clear mc list */
3255                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3256                 return 0;
3257         }
3258
3259         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3260         if (!mta_list)
3261                 return -ENOMEM;
3262
3263         /* update_mc_addr_list expects a packed array of only addresses. */
3264         i = 0;
3265         netdev_for_each_mc_addr(ha, netdev)
3266             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3267
3268         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3269         kfree(mta_list);
3270
3271         return netdev_mc_count(netdev);
3272 }
3273
3274 /**
3275  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3276  * @netdev: network interface device structure
3277  *
3278  * Writes unicast address list to the RAR table.
3279  * Returns: -ENOMEM on failure/insufficient address space
3280  *                0 on no addresses written
3281  *                X on writing X addresses to the RAR table
3282  **/
3283 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3284 {
3285         struct e1000_adapter *adapter = netdev_priv(netdev);
3286         struct e1000_hw *hw = &adapter->hw;
3287         unsigned int rar_entries = hw->mac.rar_entry_count;
3288         int count = 0;
3289
3290         /* save a rar entry for our hardware address */
3291         rar_entries--;
3292
3293         /* save a rar entry for the LAA workaround */
3294         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3295                 rar_entries--;
3296
3297         /* return ENOMEM indicating insufficient memory for addresses */
3298         if (netdev_uc_count(netdev) > rar_entries)
3299                 return -ENOMEM;
3300
3301         if (!netdev_uc_empty(netdev) && rar_entries) {
3302                 struct netdev_hw_addr *ha;
3303
3304                 /* write the addresses in reverse order to avoid write
3305                  * combining
3306                  */
3307                 netdev_for_each_uc_addr(ha, netdev) {
3308                         if (!rar_entries)
3309                                 break;
3310                         hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3311                         count++;
3312                 }
3313         }
3314
3315         /* zero out the remaining RAR entries not used above */
3316         for (; rar_entries > 0; rar_entries--) {
3317                 ew32(RAH(rar_entries), 0);
3318                 ew32(RAL(rar_entries), 0);
3319         }
3320         e1e_flush();
3321
3322         return count;
3323 }
3324
3325 /**
3326  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3327  * @netdev: network interface device structure
3328  *
3329  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3330  * address list or the network interface flags are updated.  This routine is
3331  * responsible for configuring the hardware for proper unicast, multicast,
3332  * promiscuous mode, and all-multi behavior.
3333  **/
3334 static void e1000e_set_rx_mode(struct net_device *netdev)
3335 {
3336         struct e1000_adapter *adapter = netdev_priv(netdev);
3337         struct e1000_hw *hw = &adapter->hw;
3338         u32 rctl;
3339
3340         /* Check for Promiscuous and All Multicast modes */
3341         rctl = er32(RCTL);
3342
3343         /* clear the affected bits */
3344         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3345
3346         if (netdev->flags & IFF_PROMISC) {
3347                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3348                 /* Do not hardware filter VLANs in promisc mode */
3349                 e1000e_vlan_filter_disable(adapter);
3350         } else {
3351                 int count;
3352
3353                 if (netdev->flags & IFF_ALLMULTI) {
3354                         rctl |= E1000_RCTL_MPE;
3355                 } else {
3356                         /* Write addresses to the MTA, if the attempt fails
3357                          * then we should just turn on promiscuous mode so
3358                          * that we can at least receive multicast traffic
3359                          */
3360                         count = e1000e_write_mc_addr_list(netdev);
3361                         if (count < 0)
3362                                 rctl |= E1000_RCTL_MPE;
3363                 }
3364                 e1000e_vlan_filter_enable(adapter);
3365                 /* Write addresses to available RAR registers, if there is not
3366                  * sufficient space to store all the addresses then enable
3367                  * unicast promiscuous mode
3368                  */
3369                 count = e1000e_write_uc_addr_list(netdev);
3370                 if (count < 0)
3371                         rctl |= E1000_RCTL_UPE;
3372         }
3373
3374         ew32(RCTL, rctl);
3375
3376         if (netdev->features & NETIF_F_HW_VLAN_RX)
3377                 e1000e_vlan_strip_enable(adapter);
3378         else
3379                 e1000e_vlan_strip_disable(adapter);
3380 }
3381
3382 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3383 {
3384         struct e1000_hw *hw = &adapter->hw;
3385         u32 mrqc, rxcsum;
3386         int i;
3387         static const u32 rsskey[10] = {
3388                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3389                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3390         };
3391
3392         /* Fill out hash function seed */
3393         for (i = 0; i < 10; i++)
3394                 ew32(RSSRK(i), rsskey[i]);
3395
3396         /* Direct all traffic to queue 0 */
3397         for (i = 0; i < 32; i++)
3398                 ew32(RETA(i), 0);
3399
3400         /* Disable raw packet checksumming so that RSS hash is placed in
3401          * descriptor on writeback.
3402          */
3403         rxcsum = er32(RXCSUM);
3404         rxcsum |= E1000_RXCSUM_PCSD;
3405
3406         ew32(RXCSUM, rxcsum);
3407
3408         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3409                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3410                 E1000_MRQC_RSS_FIELD_IPV6 |
3411                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3412                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3413
3414         ew32(MRQC, mrqc);
3415 }
3416
3417 /**
3418  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3419  * @adapter: board private structure
3420  * @timinca: pointer to returned time increment attributes
3421  *
3422  * Get attributes for incrementing the System Time Register SYSTIML/H at
3423  * the default base frequency, and set the cyclecounter shift value.
3424  **/
3425 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3426 {
3427         struct e1000_hw *hw = &adapter->hw;
3428         u32 incvalue, incperiod, shift;
3429
3430         /* Make sure clock is enabled on I217 before checking the frequency */
3431         if ((hw->mac.type == e1000_pch_lpt) &&
3432             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3433             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3434                 u32 fextnvm7 = er32(FEXTNVM7);
3435
3436                 if (!(fextnvm7 & (1 << 0))) {
3437                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3438                         e1e_flush();
3439                 }
3440         }
3441
3442         switch (hw->mac.type) {
3443         case e1000_pch2lan:
3444         case e1000_pch_lpt:
3445                 /* On I217, the clock frequency is 25MHz or 96MHz as
3446                  * indicated by the System Clock Frequency Indication
3447                  */
3448                 if ((hw->mac.type != e1000_pch_lpt) ||
3449                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3450                         /* Stable 96MHz frequency */
3451                         incperiod = INCPERIOD_96MHz;
3452                         incvalue = INCVALUE_96MHz;
3453                         shift = INCVALUE_SHIFT_96MHz;
3454                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3455                         break;
3456                 }
3457                 /* fall-through */
3458         case e1000_82574:
3459         case e1000_82583:
3460                 /* Stable 25MHz frequency */
3461                 incperiod = INCPERIOD_25MHz;
3462                 incvalue = INCVALUE_25MHz;
3463                 shift = INCVALUE_SHIFT_25MHz;
3464                 adapter->cc.shift = shift;
3465                 break;
3466         default:
3467                 return -EINVAL;
3468         }
3469
3470         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3471                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3472
3473         return 0;
3474 }
3475
3476 /**
3477  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3478  * @adapter: board private structure
3479  *
3480  * Outgoing time stamping can be enabled and disabled. Play nice and
3481  * disable it when requested, although it shouldn't cause any overhead
3482  * when no packet needs it. At most one packet in the queue may be
3483  * marked for time stamping, otherwise it would be impossible to tell
3484  * for sure to which packet the hardware time stamp belongs.
3485  *
3486  * Incoming time stamping has to be configured via the hardware filters.
3487  * Not all combinations are supported, in particular event type has to be
3488  * specified. Matching the kind of event packet is not supported, with the
3489  * exception of "all V2 events regardless of level 2 or 4".
3490  **/
3491 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter)
3492 {
3493         struct e1000_hw *hw = &adapter->hw;
3494         struct hwtstamp_config *config = &adapter->hwtstamp_config;
3495         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3496         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3497         u32 rxmtrl = 0;
3498         u16 rxudp = 0;
3499         bool is_l4 = false;
3500         bool is_l2 = false;
3501         u32 regval;
3502         s32 ret_val;
3503
3504         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3505                 return -EINVAL;
3506
3507         /* flags reserved for future extensions - must be zero */
3508         if (config->flags)
3509                 return -EINVAL;
3510
3511         switch (config->tx_type) {
3512         case HWTSTAMP_TX_OFF:
3513                 tsync_tx_ctl = 0;
3514                 break;
3515         case HWTSTAMP_TX_ON:
3516                 break;
3517         default:
3518                 return -ERANGE;
3519         }
3520
3521         switch (config->rx_filter) {
3522         case HWTSTAMP_FILTER_NONE:
3523                 tsync_rx_ctl = 0;
3524                 break;
3525         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3526                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3527                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3528                 is_l4 = true;
3529                 break;
3530         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3531                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3532                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3533                 is_l4 = true;
3534                 break;
3535         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3536                 /* Also time stamps V2 L2 Path Delay Request/Response */
3537                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3538                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3539                 is_l2 = true;
3540                 break;
3541         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3542                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3543                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3544                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3545                 is_l2 = true;
3546                 break;
3547         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3548                 /* Hardware cannot filter just V2 L4 Sync messages;
3549                  * fall-through to V2 (both L2 and L4) Sync.
3550                  */
3551         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3552                 /* Also time stamps V2 Path Delay Request/Response. */
3553                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3554                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3555                 is_l2 = true;
3556                 is_l4 = true;
3557                 break;
3558         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3559                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3560                  * fall-through to V2 (both L2 and L4) Delay Request.
3561                  */
3562         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3563                 /* Also time stamps V2 Path Delay Request/Response. */
3564                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3565                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3566                 is_l2 = true;
3567                 is_l4 = true;
3568                 break;
3569         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3570         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3571                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3572                  * fall-through to all V2 (both L2 and L4) Events.
3573                  */
3574         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3575                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3576                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3577                 is_l2 = true;
3578                 is_l4 = true;
3579                 break;
3580         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3581                 /* For V1, the hardware can only filter Sync messages or
3582                  * Delay Request messages but not both so fall-through to
3583                  * time stamp all packets.
3584                  */
3585         case HWTSTAMP_FILTER_ALL:
3586                 is_l2 = true;
3587                 is_l4 = true;
3588                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3589                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3590                 break;
3591         default:
3592                 return -ERANGE;
3593         }
3594
3595         /* enable/disable Tx h/w time stamping */
3596         regval = er32(TSYNCTXCTL);
3597         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3598         regval |= tsync_tx_ctl;
3599         ew32(TSYNCTXCTL, regval);
3600         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3601             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3602                 e_err("Timesync Tx Control register not set as expected\n");
3603                 return -EAGAIN;
3604         }
3605
3606         /* enable/disable Rx h/w time stamping */
3607         regval = er32(TSYNCRXCTL);
3608         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3609         regval |= tsync_rx_ctl;
3610         ew32(TSYNCRXCTL, regval);
3611         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3612                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3613             (regval & (E1000_TSYNCRXCTL_ENABLED |
3614                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3615                 e_err("Timesync Rx Control register not set as expected\n");
3616                 return -EAGAIN;
3617         }
3618
3619         /* L2: define ethertype filter for time stamped packets */
3620         if (is_l2)
3621                 rxmtrl |= ETH_P_1588;
3622
3623         /* define which PTP packets get time stamped */
3624         ew32(RXMTRL, rxmtrl);
3625
3626         /* Filter by destination port */
3627         if (is_l4) {
3628                 rxudp = PTP_EV_PORT;
3629                 cpu_to_be16s(&rxudp);
3630         }
3631         ew32(RXUDP, rxudp);
3632
3633         e1e_flush();
3634
3635         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3636         er32(RXSTMPH);
3637         er32(TXSTMPH);
3638
3639         /* Get and set the System Time Register SYSTIM base frequency */
3640         ret_val = e1000e_get_base_timinca(adapter, &regval);
3641         if (ret_val)
3642                 return ret_val;
3643         ew32(TIMINCA, regval);
3644
3645         /* reset the ns time counter */
3646         timecounter_init(&adapter->tc, &adapter->cc,
3647                          ktime_to_ns(ktime_get_real()));
3648
3649         return 0;
3650 }
3651
3652 /**
3653  * e1000_configure - configure the hardware for Rx and Tx
3654  * @adapter: private board structure
3655  **/
3656 static void e1000_configure(struct e1000_adapter *adapter)
3657 {
3658         struct e1000_ring *rx_ring = adapter->rx_ring;
3659
3660         e1000e_set_rx_mode(adapter->netdev);
3661
3662         e1000_restore_vlan(adapter);
3663         e1000_init_manageability_pt(adapter);
3664
3665         e1000_configure_tx(adapter);
3666
3667         if (adapter->netdev->features & NETIF_F_RXHASH)
3668                 e1000e_setup_rss_hash(adapter);
3669         e1000_setup_rctl(adapter);
3670         e1000_configure_rx(adapter);
3671         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3672 }
3673
3674 /**
3675  * e1000e_power_up_phy - restore link in case the phy was powered down
3676  * @adapter: address of board private structure
3677  *
3678  * The phy may be powered down to save power and turn off link when the
3679  * driver is unloaded and wake on lan is not enabled (among others)
3680  * *** this routine MUST be followed by a call to e1000e_reset ***
3681  **/
3682 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3683 {
3684         if (adapter->hw.phy.ops.power_up)
3685                 adapter->hw.phy.ops.power_up(&adapter->hw);
3686
3687         adapter->hw.mac.ops.setup_link(&adapter->hw);
3688 }
3689
3690 /**
3691  * e1000_power_down_phy - Power down the PHY
3692  *
3693  * Power down the PHY so no link is implied when interface is down.
3694  * The PHY cannot be powered down if management or WoL is active.
3695  */
3696 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3697 {
3698         /* WoL is enabled */
3699         if (adapter->wol)
3700                 return;
3701
3702         if (adapter->hw.phy.ops.power_down)
3703                 adapter->hw.phy.ops.power_down(&adapter->hw);
3704 }
3705
3706 /**
3707  * e1000e_reset - bring the hardware into a known good state
3708  *
3709  * This function boots the hardware and enables some settings that
3710  * require a configuration cycle of the hardware - those cannot be
3711  * set/changed during runtime. After reset the device needs to be
3712  * properly configured for Rx, Tx etc.
3713  */
3714 void e1000e_reset(struct e1000_adapter *adapter)
3715 {
3716         struct e1000_mac_info *mac = &adapter->hw.mac;
3717         struct e1000_fc_info *fc = &adapter->hw.fc;
3718         struct e1000_hw *hw = &adapter->hw;
3719         u32 tx_space, min_tx_space, min_rx_space;
3720         u32 pba = adapter->pba;
3721         u16 hwm;
3722
3723         /* reset Packet Buffer Allocation to default */
3724         ew32(PBA, pba);
3725
3726         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3727                 /* To maintain wire speed transmits, the Tx FIFO should be
3728                  * large enough to accommodate two full transmit packets,
3729                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3730                  * the Rx FIFO should be large enough to accommodate at least
3731                  * one full receive packet and is similarly rounded up and
3732                  * expressed in KB.
3733                  */
3734                 pba = er32(PBA);
3735                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3736                 tx_space = pba >> 16;
3737                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3738                 pba &= 0xffff;
3739                 /* the Tx fifo also stores 16 bytes of information about the Tx
3740                  * but don't include ethernet FCS because hardware appends it
3741                  */
3742                 min_tx_space = (adapter->max_frame_size +
3743                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3744                 min_tx_space = ALIGN(min_tx_space, 1024);
3745                 min_tx_space >>= 10;
3746                 /* software strips receive CRC, so leave room for it */
3747                 min_rx_space = adapter->max_frame_size;
3748                 min_rx_space = ALIGN(min_rx_space, 1024);
3749                 min_rx_space >>= 10;
3750
3751                 /* If current Tx allocation is less than the min Tx FIFO size,
3752                  * and the min Tx FIFO size is less than the current Rx FIFO
3753                  * allocation, take space away from current Rx allocation
3754                  */
3755                 if ((tx_space < min_tx_space) &&
3756                     ((min_tx_space - tx_space) < pba)) {
3757                         pba -= min_tx_space - tx_space;
3758
3759                         /* if short on Rx space, Rx wins and must trump Tx
3760                          * adjustment
3761                          */
3762                         if (pba < min_rx_space)
3763                                 pba = min_rx_space;
3764                 }
3765
3766                 ew32(PBA, pba);
3767         }
3768
3769         /* flow control settings
3770          *
3771          * The high water mark must be low enough to fit one full frame
3772          * (or the size used for early receive) above it in the Rx FIFO.
3773          * Set it to the lower of:
3774          * - 90% of the Rx FIFO size, and
3775          * - the full Rx FIFO size minus one full frame
3776          */
3777         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3778                 fc->pause_time = 0xFFFF;
3779         else
3780                 fc->pause_time = E1000_FC_PAUSE_TIME;
3781         fc->send_xon = true;
3782         fc->current_mode = fc->requested_mode;
3783
3784         switch (hw->mac.type) {
3785         case e1000_ich9lan:
3786         case e1000_ich10lan:
3787                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3788                         pba = 14;
3789                         ew32(PBA, pba);
3790                         fc->high_water = 0x2800;
3791                         fc->low_water = fc->high_water - 8;
3792                         break;
3793                 }
3794                 /* fall-through */
3795         default:
3796                 hwm = min(((pba << 10) * 9 / 10),
3797                           ((pba << 10) - adapter->max_frame_size));
3798
3799                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3800                 fc->low_water = fc->high_water - 8;
3801                 break;
3802         case e1000_pchlan:
3803                 /* Workaround PCH LOM adapter hangs with certain network
3804                  * loads.  If hangs persist, try disabling Tx flow control.
3805                  */
3806                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3807                         fc->high_water = 0x3500;
3808                         fc->low_water  = 0x1500;
3809                 } else {
3810                         fc->high_water = 0x5000;
3811                         fc->low_water  = 0x3000;
3812                 }
3813                 fc->refresh_time = 0x1000;
3814                 break;
3815         case e1000_pch2lan:
3816         case e1000_pch_lpt:
3817                 fc->refresh_time = 0x0400;
3818
3819                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3820                         fc->high_water = 0x05C20;
3821                         fc->low_water = 0x05048;
3822                         fc->pause_time = 0x0650;
3823                         break;
3824                 }
3825
3826                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3827                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3828                 break;
3829         }
3830
3831         /* Alignment of Tx data is on an arbitrary byte boundary with the
3832          * maximum size per Tx descriptor limited only to the transmit
3833          * allocation of the packet buffer minus 96 bytes with an upper
3834          * limit of 24KB due to receive synchronization limitations.
3835          */
3836         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3837                                        24 << 10);
3838
3839         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3840          * fit in receive buffer.
3841          */
3842         if (adapter->itr_setting & 0x3) {
3843                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3844                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3845                                 dev_info(&adapter->pdev->dev,
3846                                          "Interrupt Throttle Rate off\n");
3847                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3848                                 e1000e_write_itr(adapter, 0);
3849                         }
3850                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3851                         dev_info(&adapter->pdev->dev,
3852                                  "Interrupt Throttle Rate on\n");
3853                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3854                         adapter->itr = 20000;
3855                         e1000e_write_itr(adapter, adapter->itr);
3856                 }
3857         }
3858
3859         /* Allow time for pending master requests to run */
3860         mac->ops.reset_hw(hw);
3861
3862         /* For parts with AMT enabled, let the firmware know
3863          * that the network interface is in control
3864          */
3865         if (adapter->flags & FLAG_HAS_AMT)
3866                 e1000e_get_hw_control(adapter);
3867
3868         ew32(WUC, 0);
3869
3870         if (mac->ops.init_hw(hw))
3871                 e_err("Hardware Error\n");
3872
3873         e1000_update_mng_vlan(adapter);
3874
3875         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3876         ew32(VET, ETH_P_8021Q);
3877
3878         e1000e_reset_adaptive(hw);
3879
3880         /* initialize systim and reset the ns time counter */
3881         e1000e_config_hwtstamp(adapter);
3882
3883         /* Set EEE advertisement as appropriate */
3884         if (adapter->flags2 & FLAG2_HAS_EEE) {
3885                 s32 ret_val;
3886                 u16 adv_addr;
3887
3888                 switch (hw->phy.type) {
3889                 case e1000_phy_82579:
3890                         adv_addr = I82579_EEE_ADVERTISEMENT;
3891                         break;
3892                 case e1000_phy_i217:
3893                         adv_addr = I217_EEE_ADVERTISEMENT;
3894                         break;
3895                 default:
3896                         dev_err(&adapter->pdev->dev,
3897                                 "Invalid PHY type setting EEE advertisement\n");
3898                         return;
3899                 }
3900
3901                 ret_val = hw->phy.ops.acquire(hw);
3902                 if (ret_val) {
3903                         dev_err(&adapter->pdev->dev,
3904                                 "EEE advertisement - unable to acquire PHY\n");
3905                         return;
3906                 }
3907
3908                 e1000_write_emi_reg_locked(hw, adv_addr,
3909                                            hw->dev_spec.ich8lan.eee_disable ?
3910                                            0 : adapter->eee_advert);
3911
3912                 hw->phy.ops.release(hw);
3913         }
3914
3915         if (!netif_running(adapter->netdev) &&
3916             !test_bit(__E1000_TESTING, &adapter->state)) {
3917                 e1000_power_down_phy(adapter);
3918                 return;
3919         }
3920
3921         e1000_get_phy_info(hw);
3922
3923         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3924             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3925                 u16 phy_data = 0;
3926                 /* speed up time to link by disabling smart power down, ignore
3927                  * the return value of this function because there is nothing
3928                  * different we would do if it failed
3929                  */
3930                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3931                 phy_data &= ~IGP02E1000_PM_SPD;
3932                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3933         }
3934 }
3935
3936 int e1000e_up(struct e1000_adapter *adapter)
3937 {
3938         struct e1000_hw *hw = &adapter->hw;
3939
3940         /* hardware has been reset, we need to reload some things */
3941         e1000_configure(adapter);
3942
3943         clear_bit(__E1000_DOWN, &adapter->state);
3944
3945         if (adapter->msix_entries)
3946                 e1000_configure_msix(adapter);
3947         e1000_irq_enable(adapter);
3948
3949         netif_start_queue(adapter->netdev);
3950
3951         /* fire a link change interrupt to start the watchdog */
3952         if (adapter->msix_entries)
3953                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3954         else
3955                 ew32(ICS, E1000_ICS_LSC);
3956
3957         return 0;
3958 }
3959
3960 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3961 {
3962         struct e1000_hw *hw = &adapter->hw;
3963
3964         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3965                 return;
3966
3967         /* flush pending descriptor writebacks to memory */
3968         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3969         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3970
3971         /* execute the writes immediately */
3972         e1e_flush();
3973
3974         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
3975          * write is successful
3976          */
3977         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3978         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3979
3980         /* execute the writes immediately */
3981         e1e_flush();
3982 }
3983
3984 static void e1000e_update_stats(struct e1000_adapter *adapter);
3985
3986 void e1000e_down(struct e1000_adapter *adapter)
3987 {
3988         struct net_device *netdev = adapter->netdev;
3989         struct e1000_hw *hw = &adapter->hw;
3990         u32 tctl, rctl;
3991
3992         /* signal that we're down so the interrupt handler does not
3993          * reschedule our watchdog timer
3994          */
3995         set_bit(__E1000_DOWN, &adapter->state);
3996
3997         /* disable receives in the hardware */
3998         rctl = er32(RCTL);
3999         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4000                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4001         /* flush and sleep below */
4002
4003         netif_stop_queue(netdev);
4004
4005         /* disable transmits in the hardware */
4006         tctl = er32(TCTL);
4007         tctl &= ~E1000_TCTL_EN;
4008         ew32(TCTL, tctl);
4009
4010         /* flush both disables and wait for them to finish */
4011         e1e_flush();
4012         usleep_range(10000, 20000);
4013
4014         e1000_irq_disable(adapter);
4015
4016         del_timer_sync(&adapter->watchdog_timer);
4017         del_timer_sync(&adapter->phy_info_timer);
4018
4019         netif_carrier_off(netdev);
4020
4021         spin_lock(&adapter->stats64_lock);
4022         e1000e_update_stats(adapter);
4023         spin_unlock(&adapter->stats64_lock);
4024
4025         e1000e_flush_descriptors(adapter);
4026         e1000_clean_tx_ring(adapter->tx_ring);
4027         e1000_clean_rx_ring(adapter->rx_ring);
4028
4029         adapter->link_speed = 0;
4030         adapter->link_duplex = 0;
4031
4032         if (!pci_channel_offline(adapter->pdev))
4033                 e1000e_reset(adapter);
4034
4035         /* TODO: for power management, we could drop the link and
4036          * pci_disable_device here.
4037          */
4038 }
4039
4040 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4041 {
4042         might_sleep();
4043         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4044                 usleep_range(1000, 2000);
4045         e1000e_down(adapter);
4046         e1000e_up(adapter);
4047         clear_bit(__E1000_RESETTING, &adapter->state);
4048 }
4049
4050 /**
4051  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4052  * @cc: cyclecounter structure
4053  **/
4054 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4055 {
4056         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4057                                                      cc);
4058         struct e1000_hw *hw = &adapter->hw;
4059         cycle_t systim;
4060
4061         /* latch SYSTIMH on read of SYSTIML */
4062         systim = (cycle_t)er32(SYSTIML);
4063         systim |= (cycle_t)er32(SYSTIMH) << 32;
4064
4065         return systim;
4066 }
4067
4068 /**
4069  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4070  * @adapter: board private structure to initialize
4071  *
4072  * e1000_sw_init initializes the Adapter private data structure.
4073  * Fields are initialized based on PCI device information and
4074  * OS network device settings (MTU size).
4075  **/
4076 static int e1000_sw_init(struct e1000_adapter *adapter)
4077 {
4078         struct net_device *netdev = adapter->netdev;
4079
4080         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4081         adapter->rx_ps_bsize0 = 128;
4082         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4083         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4084         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4085         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4086
4087         spin_lock_init(&adapter->stats64_lock);
4088
4089         e1000e_set_interrupt_capability(adapter);
4090
4091         if (e1000_alloc_queues(adapter))
4092                 return -ENOMEM;
4093
4094         /* Setup hardware time stamping cyclecounter */
4095         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4096                 adapter->cc.read = e1000e_cyclecounter_read;
4097                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4098                 adapter->cc.mult = 1;
4099                 /* cc.shift set in e1000e_get_base_tininca() */
4100
4101                 spin_lock_init(&adapter->systim_lock);
4102                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4103         }
4104
4105         /* Explicitly disable IRQ since the NIC can be in any state. */
4106         e1000_irq_disable(adapter);
4107
4108         set_bit(__E1000_DOWN, &adapter->state);
4109         return 0;
4110 }
4111
4112 /**
4113  * e1000_intr_msi_test - Interrupt Handler
4114  * @irq: interrupt number
4115  * @data: pointer to a network interface device structure
4116  **/
4117 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4118 {
4119         struct net_device *netdev = data;
4120         struct e1000_adapter *adapter = netdev_priv(netdev);
4121         struct e1000_hw *hw = &adapter->hw;
4122         u32 icr = er32(ICR);
4123
4124         e_dbg("icr is %08X\n", icr);
4125         if (icr & E1000_ICR_RXSEQ) {
4126                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4127                 /* Force memory writes to complete before acknowledging the
4128                  * interrupt is handled.
4129                  */
4130                 wmb();
4131         }
4132
4133         return IRQ_HANDLED;
4134 }
4135
4136 /**
4137  * e1000_test_msi_interrupt - Returns 0 for successful test
4138  * @adapter: board private struct
4139  *
4140  * code flow taken from tg3.c
4141  **/
4142 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4143 {
4144         struct net_device *netdev = adapter->netdev;
4145         struct e1000_hw *hw = &adapter->hw;
4146         int err;
4147
4148         /* poll_enable hasn't been called yet, so don't need disable */
4149         /* clear any pending events */
4150         er32(ICR);
4151
4152         /* free the real vector and request a test handler */
4153         e1000_free_irq(adapter);
4154         e1000e_reset_interrupt_capability(adapter);
4155
4156         /* Assume that the test fails, if it succeeds then the test
4157          * MSI irq handler will unset this flag
4158          */
4159         adapter->flags |= FLAG_MSI_TEST_FAILED;
4160
4161         err = pci_enable_msi(adapter->pdev);
4162         if (err)
4163                 goto msi_test_failed;
4164
4165         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4166                           netdev->name, netdev);
4167         if (err) {
4168                 pci_disable_msi(adapter->pdev);
4169                 goto msi_test_failed;
4170         }
4171
4172         /* Force memory writes to complete before enabling and firing an
4173          * interrupt.
4174          */
4175         wmb();
4176
4177         e1000_irq_enable(adapter);
4178
4179         /* fire an unusual interrupt on the test handler */
4180         ew32(ICS, E1000_ICS_RXSEQ);
4181         e1e_flush();
4182         msleep(100);
4183
4184         e1000_irq_disable(adapter);
4185
4186         rmb();                  /* read flags after interrupt has been fired */
4187
4188         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4189                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4190                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4191         } else {
4192                 e_dbg("MSI interrupt test succeeded!\n");
4193         }
4194
4195         free_irq(adapter->pdev->irq, netdev);
4196         pci_disable_msi(adapter->pdev);
4197
4198 msi_test_failed:
4199         e1000e_set_interrupt_capability(adapter);
4200         return e1000_request_irq(adapter);
4201 }
4202
4203 /**
4204  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4205  * @adapter: board private struct
4206  *
4207  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4208  **/
4209 static int e1000_test_msi(struct e1000_adapter *adapter)
4210 {
4211         int err;
4212         u16 pci_cmd;
4213
4214         if (!(adapter->flags & FLAG_MSI_ENABLED))
4215                 return 0;
4216
4217         /* disable SERR in case the MSI write causes a master abort */
4218         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4219         if (pci_cmd & PCI_COMMAND_SERR)
4220                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4221                                       pci_cmd & ~PCI_COMMAND_SERR);
4222
4223         err = e1000_test_msi_interrupt(adapter);
4224
4225         /* re-enable SERR */
4226         if (pci_cmd & PCI_COMMAND_SERR) {
4227                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4228                 pci_cmd |= PCI_COMMAND_SERR;
4229                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4230         }
4231
4232         return err;
4233 }
4234
4235 /**
4236  * e1000_open - Called when a network interface is made active
4237  * @netdev: network interface device structure
4238  *
4239  * Returns 0 on success, negative value on failure
4240  *
4241  * The open entry point is called when a network interface is made
4242  * active by the system (IFF_UP).  At this point all resources needed
4243  * for transmit and receive operations are allocated, the interrupt
4244  * handler is registered with the OS, the watchdog timer is started,
4245  * and the stack is notified that the interface is ready.
4246  **/
4247 static int e1000_open(struct net_device *netdev)
4248 {
4249         struct e1000_adapter *adapter = netdev_priv(netdev);
4250         struct e1000_hw *hw = &adapter->hw;
4251         struct pci_dev *pdev = adapter->pdev;
4252         int err;
4253
4254         /* disallow open during test */
4255         if (test_bit(__E1000_TESTING, &adapter->state))
4256                 return -EBUSY;
4257
4258         pm_runtime_get_sync(&pdev->dev);
4259
4260         netif_carrier_off(netdev);
4261
4262         /* allocate transmit descriptors */
4263         err = e1000e_setup_tx_resources(adapter->tx_ring);
4264         if (err)
4265                 goto err_setup_tx;
4266
4267         /* allocate receive descriptors */
4268         err = e1000e_setup_rx_resources(adapter->rx_ring);
4269         if (err)
4270                 goto err_setup_rx;
4271
4272         /* If AMT is enabled, let the firmware know that the network
4273          * interface is now open and reset the part to a known state.
4274          */
4275         if (adapter->flags & FLAG_HAS_AMT) {
4276                 e1000e_get_hw_control(adapter);
4277                 e1000e_reset(adapter);
4278         }
4279
4280         e1000e_power_up_phy(adapter);
4281
4282         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4283         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4284                 e1000_update_mng_vlan(adapter);
4285
4286         /* DMA latency requirement to workaround jumbo issue */
4287         pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4288                            PM_QOS_DEFAULT_VALUE);
4289
4290         /* before we allocate an interrupt, we must be ready to handle it.
4291          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4292          * as soon as we call pci_request_irq, so we have to setup our
4293          * clean_rx handler before we do so.
4294          */
4295         e1000_configure(adapter);
4296
4297         err = e1000_request_irq(adapter);
4298         if (err)
4299                 goto err_req_irq;
4300
4301         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4302          * ignore e1000e MSI messages, which means we need to test our MSI
4303          * interrupt now
4304          */
4305         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4306                 err = e1000_test_msi(adapter);
4307                 if (err) {
4308                         e_err("Interrupt allocation failed\n");
4309                         goto err_req_irq;
4310                 }
4311         }
4312
4313         /* From here on the code is the same as e1000e_up() */
4314         clear_bit(__E1000_DOWN, &adapter->state);
4315
4316         napi_enable(&adapter->napi);
4317
4318         e1000_irq_enable(adapter);
4319
4320         adapter->tx_hang_recheck = false;
4321         netif_start_queue(netdev);
4322
4323         adapter->idle_check = true;
4324         hw->mac.get_link_status = true;
4325         pm_runtime_put(&pdev->dev);
4326
4327         /* fire a link status change interrupt to start the watchdog */
4328         if (adapter->msix_entries)
4329                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4330         else
4331                 ew32(ICS, E1000_ICS_LSC);
4332
4333         return 0;
4334
4335 err_req_irq:
4336         e1000e_release_hw_control(adapter);
4337         e1000_power_down_phy(adapter);
4338         e1000e_free_rx_resources(adapter->rx_ring);
4339 err_setup_rx:
4340         e1000e_free_tx_resources(adapter->tx_ring);
4341 err_setup_tx:
4342         e1000e_reset(adapter);
4343         pm_runtime_put_sync(&pdev->dev);
4344
4345         return err;
4346 }
4347
4348 /**
4349  * e1000_close - Disables a network interface
4350  * @netdev: network interface device structure
4351  *
4352  * Returns 0, this is not allowed to fail
4353  *
4354  * The close entry point is called when an interface is de-activated
4355  * by the OS.  The hardware is still under the drivers control, but
4356  * needs to be disabled.  A global MAC reset is issued to stop the
4357  * hardware, and all transmit and receive resources are freed.
4358  **/
4359 static int e1000_close(struct net_device *netdev)
4360 {
4361         struct e1000_adapter *adapter = netdev_priv(netdev);
4362         struct pci_dev *pdev = adapter->pdev;
4363         int count = E1000_CHECK_RESET_COUNT;
4364
4365         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4366                 usleep_range(10000, 20000);
4367
4368         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4369
4370         pm_runtime_get_sync(&pdev->dev);
4371
4372         napi_disable(&adapter->napi);
4373
4374         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4375                 e1000e_down(adapter);
4376                 e1000_free_irq(adapter);
4377         }
4378         e1000_power_down_phy(adapter);
4379
4380         e1000e_free_tx_resources(adapter->tx_ring);
4381         e1000e_free_rx_resources(adapter->rx_ring);
4382
4383         /* kill manageability vlan ID if supported, but not if a vlan with
4384          * the same ID is registered on the host OS (let 8021q kill it)
4385          */
4386         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4387                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4388
4389         /* If AMT is enabled, let the firmware know that the network
4390          * interface is now closed
4391          */
4392         if ((adapter->flags & FLAG_HAS_AMT) &&
4393             !test_bit(__E1000_TESTING, &adapter->state))
4394                 e1000e_release_hw_control(adapter);
4395
4396         pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4397
4398         pm_runtime_put_sync(&pdev->dev);
4399
4400         return 0;
4401 }
4402
4403 /**
4404  * e1000_set_mac - Change the Ethernet Address of the NIC
4405  * @netdev: network interface device structure
4406  * @p: pointer to an address structure
4407  *
4408  * Returns 0 on success, negative on failure
4409  **/
4410 static int e1000_set_mac(struct net_device *netdev, void *p)
4411 {
4412         struct e1000_adapter *adapter = netdev_priv(netdev);
4413         struct e1000_hw *hw = &adapter->hw;
4414         struct sockaddr *addr = p;
4415
4416         if (!is_valid_ether_addr(addr->sa_data))
4417                 return -EADDRNOTAVAIL;
4418
4419         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4420         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4421
4422         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4423
4424         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4425                 /* activate the work around */
4426                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4427
4428                 /* Hold a copy of the LAA in RAR[14] This is done so that
4429                  * between the time RAR[0] gets clobbered  and the time it
4430                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4431                  * of the RARs and no incoming packets directed to this port
4432                  * are dropped. Eventually the LAA will be in RAR[0] and
4433                  * RAR[14]
4434                  */
4435                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4436                                     adapter->hw.mac.rar_entry_count - 1);
4437         }
4438
4439         return 0;
4440 }
4441
4442 /**
4443  * e1000e_update_phy_task - work thread to update phy
4444  * @work: pointer to our work struct
4445  *
4446  * this worker thread exists because we must acquire a
4447  * semaphore to read the phy, which we could msleep while
4448  * waiting for it, and we can't msleep in a timer.
4449  **/
4450 static void e1000e_update_phy_task(struct work_struct *work)
4451 {
4452         struct e1000_adapter *adapter = container_of(work,
4453                                                      struct e1000_adapter,
4454                                                      update_phy_task);
4455
4456         if (test_bit(__E1000_DOWN, &adapter->state))
4457                 return;
4458
4459         e1000_get_phy_info(&adapter->hw);
4460 }
4461
4462 /**
4463  * e1000_update_phy_info - timre call-back to update PHY info
4464  * @data: pointer to adapter cast into an unsigned long
4465  *
4466  * Need to wait a few seconds after link up to get diagnostic information from
4467  * the phy
4468  **/
4469 static void e1000_update_phy_info(unsigned long data)
4470 {
4471         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4472
4473         if (test_bit(__E1000_DOWN, &adapter->state))
4474                 return;
4475
4476         schedule_work(&adapter->update_phy_task);
4477 }
4478
4479 /**
4480  * e1000e_update_phy_stats - Update the PHY statistics counters
4481  * @adapter: board private structure
4482  *
4483  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4484  **/
4485 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4486 {
4487         struct e1000_hw *hw = &adapter->hw;
4488         s32 ret_val;
4489         u16 phy_data;
4490
4491         ret_val = hw->phy.ops.acquire(hw);
4492         if (ret_val)
4493                 return;
4494
4495         /* A page set is expensive so check if already on desired page.
4496          * If not, set to the page with the PHY status registers.
4497          */
4498         hw->phy.addr = 1;
4499         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4500                                            &phy_data);
4501         if (ret_val)
4502                 goto release;
4503         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4504                 ret_val = hw->phy.ops.set_page(hw,
4505                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4506                 if (ret_val)
4507                         goto release;
4508         }
4509
4510         /* Single Collision Count */
4511         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4512         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4513         if (!ret_val)
4514                 adapter->stats.scc += phy_data;
4515
4516         /* Excessive Collision Count */
4517         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4518         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4519         if (!ret_val)
4520                 adapter->stats.ecol += phy_data;
4521
4522         /* Multiple Collision Count */
4523         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4524         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4525         if (!ret_val)
4526                 adapter->stats.mcc += phy_data;
4527
4528         /* Late Collision Count */
4529         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4530         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4531         if (!ret_val)
4532                 adapter->stats.latecol += phy_data;
4533
4534         /* Collision Count - also used for adaptive IFS */
4535         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4536         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4537         if (!ret_val)
4538                 hw->mac.collision_delta = phy_data;
4539
4540         /* Defer Count */
4541         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4542         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4543         if (!ret_val)
4544                 adapter->stats.dc += phy_data;
4545
4546         /* Transmit with no CRS */
4547         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4548         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4549         if (!ret_val)
4550                 adapter->stats.tncrs += phy_data;
4551
4552 release:
4553         hw->phy.ops.release(hw);
4554 }
4555
4556 /**
4557  * e1000e_update_stats - Update the board statistics counters
4558  * @adapter: board private structure
4559  **/
4560 static void e1000e_update_stats(struct e1000_adapter *adapter)
4561 {
4562         struct net_device *netdev = adapter->netdev;
4563         struct e1000_hw *hw = &adapter->hw;
4564         struct pci_dev *pdev = adapter->pdev;
4565
4566         /* Prevent stats update while adapter is being reset, or if the pci
4567          * connection is down.
4568          */
4569         if (adapter->link_speed == 0)
4570                 return;
4571         if (pci_channel_offline(pdev))
4572                 return;
4573
4574         adapter->stats.crcerrs += er32(CRCERRS);
4575         adapter->stats.gprc += er32(GPRC);
4576         adapter->stats.gorc += er32(GORCL);
4577         er32(GORCH); /* Clear gorc */
4578         adapter->stats.bprc += er32(BPRC);
4579         adapter->stats.mprc += er32(MPRC);
4580         adapter->stats.roc += er32(ROC);
4581
4582         adapter->stats.mpc += er32(MPC);
4583
4584         /* Half-duplex statistics */
4585         if (adapter->link_duplex == HALF_DUPLEX) {
4586                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4587                         e1000e_update_phy_stats(adapter);
4588                 } else {
4589                         adapter->stats.scc += er32(SCC);
4590                         adapter->stats.ecol += er32(ECOL);
4591                         adapter->stats.mcc += er32(MCC);
4592                         adapter->stats.latecol += er32(LATECOL);
4593                         adapter->stats.dc += er32(DC);
4594
4595                         hw->mac.collision_delta = er32(COLC);
4596
4597                         if ((hw->mac.type != e1000_82574) &&
4598                             (hw->mac.type != e1000_82583))
4599                                 adapter->stats.tncrs += er32(TNCRS);
4600                 }
4601                 adapter->stats.colc += hw->mac.collision_delta;
4602         }
4603
4604         adapter->stats.xonrxc += er32(XONRXC);
4605         adapter->stats.xontxc += er32(XONTXC);
4606         adapter->stats.xoffrxc += er32(XOFFRXC);
4607         adapter->stats.xofftxc += er32(XOFFTXC);
4608         adapter->stats.gptc += er32(GPTC);
4609         adapter->stats.gotc += er32(GOTCL);
4610         er32(GOTCH); /* Clear gotc */
4611         adapter->stats.rnbc += er32(RNBC);
4612         adapter->stats.ruc += er32(RUC);
4613
4614         adapter->stats.mptc += er32(MPTC);
4615         adapter->stats.bptc += er32(BPTC);
4616
4617         /* used for adaptive IFS */
4618
4619         hw->mac.tx_packet_delta = er32(TPT);
4620         adapter->stats.tpt += hw->mac.tx_packet_delta;
4621
4622         adapter->stats.algnerrc += er32(ALGNERRC);
4623         adapter->stats.rxerrc += er32(RXERRC);
4624         adapter->stats.cexterr += er32(CEXTERR);
4625         adapter->stats.tsctc += er32(TSCTC);
4626         adapter->stats.tsctfc += er32(TSCTFC);
4627
4628         /* Fill out the OS statistics structure */
4629         netdev->stats.multicast = adapter->stats.mprc;
4630         netdev->stats.collisions = adapter->stats.colc;
4631
4632         /* Rx Errors */
4633
4634         /* RLEC on some newer hardware can be incorrect so build
4635          * our own version based on RUC and ROC
4636          */
4637         netdev->stats.rx_errors = adapter->stats.rxerrc +
4638             adapter->stats.crcerrs + adapter->stats.algnerrc +
4639             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4640         netdev->stats.rx_length_errors = adapter->stats.ruc +
4641             adapter->stats.roc;
4642         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4643         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4644         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4645
4646         /* Tx Errors */
4647         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4648         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4649         netdev->stats.tx_window_errors = adapter->stats.latecol;
4650         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4651
4652         /* Tx Dropped needs to be maintained elsewhere */
4653
4654         /* Management Stats */
4655         adapter->stats.mgptc += er32(MGTPTC);
4656         adapter->stats.mgprc += er32(MGTPRC);
4657         adapter->stats.mgpdc += er32(MGTPDC);
4658
4659         /* Correctable ECC Errors */
4660         if (hw->mac.type == e1000_pch_lpt) {
4661                 u32 pbeccsts = er32(PBECCSTS);
4662                 adapter->corr_errors +=
4663                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4664                 adapter->uncorr_errors +=
4665                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4666                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4667         }
4668 }
4669
4670 /**
4671  * e1000_phy_read_status - Update the PHY register status snapshot
4672  * @adapter: board private structure
4673  **/
4674 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4675 {
4676         struct e1000_hw *hw = &adapter->hw;
4677         struct e1000_phy_regs *phy = &adapter->phy_regs;
4678
4679         if ((er32(STATUS) & E1000_STATUS_LU) &&
4680             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4681                 int ret_val;
4682
4683                 pm_runtime_get_sync(&adapter->pdev->dev);
4684                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4685                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4686                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4687                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4688                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4689                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4690                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4691                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4692                 if (ret_val)
4693                         e_warn("Error reading PHY register\n");
4694                 pm_runtime_put_sync(&adapter->pdev->dev);
4695         } else {
4696                 /* Do not read PHY registers if link is not up
4697                  * Set values to typical power-on defaults
4698                  */
4699                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4700                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4701                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4702                              BMSR_ERCAP);
4703                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4704                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4705                 phy->lpa = 0;
4706                 phy->expansion = EXPANSION_ENABLENPAGE;
4707                 phy->ctrl1000 = ADVERTISE_1000FULL;
4708                 phy->stat1000 = 0;
4709                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4710         }
4711 }
4712
4713 static void e1000_print_link_info(struct e1000_adapter *adapter)
4714 {
4715         struct e1000_hw *hw = &adapter->hw;
4716         u32 ctrl = er32(CTRL);
4717
4718         /* Link status message must follow this format for user tools */
4719         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4720                 adapter->netdev->name, adapter->link_speed,
4721                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4722                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4723                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4724                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4725 }
4726
4727 static bool e1000e_has_link(struct e1000_adapter *adapter)
4728 {
4729         struct e1000_hw *hw = &adapter->hw;
4730         bool link_active = false;
4731         s32 ret_val = 0;
4732
4733         /* get_link_status is set on LSC (link status) interrupt or
4734          * Rx sequence error interrupt.  get_link_status will stay
4735          * false until the check_for_link establishes link
4736          * for copper adapters ONLY
4737          */
4738         switch (hw->phy.media_type) {
4739         case e1000_media_type_copper:
4740                 if (hw->mac.get_link_status) {
4741                         ret_val = hw->mac.ops.check_for_link(hw);
4742                         link_active = !hw->mac.get_link_status;
4743                 } else {
4744                         link_active = true;
4745                 }
4746                 break;
4747         case e1000_media_type_fiber:
4748                 ret_val = hw->mac.ops.check_for_link(hw);
4749                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4750                 break;
4751         case e1000_media_type_internal_serdes:
4752                 ret_val = hw->mac.ops.check_for_link(hw);
4753                 link_active = adapter->hw.mac.serdes_has_link;
4754                 break;
4755         default:
4756         case e1000_media_type_unknown:
4757                 break;
4758         }
4759
4760         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4761             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4762                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4763                 e_info("Gigabit has been disabled, downgrading speed\n");
4764         }
4765
4766         return link_active;
4767 }
4768
4769 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4770 {
4771         /* make sure the receive unit is started */
4772         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4773             (adapter->flags & FLAG_RESTART_NOW)) {
4774                 struct e1000_hw *hw = &adapter->hw;
4775                 u32 rctl = er32(RCTL);
4776                 ew32(RCTL, rctl | E1000_RCTL_EN);
4777                 adapter->flags &= ~FLAG_RESTART_NOW;
4778         }
4779 }
4780
4781 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4782 {
4783         struct e1000_hw *hw = &adapter->hw;
4784
4785         /* With 82574 controllers, PHY needs to be checked periodically
4786          * for hung state and reset, if two calls return true
4787          */
4788         if (e1000_check_phy_82574(hw))
4789                 adapter->phy_hang_count++;
4790         else
4791                 adapter->phy_hang_count = 0;
4792
4793         if (adapter->phy_hang_count > 1) {
4794                 adapter->phy_hang_count = 0;
4795                 schedule_work(&adapter->reset_task);
4796         }
4797 }
4798
4799 /**
4800  * e1000_watchdog - Timer Call-back
4801  * @data: pointer to adapter cast into an unsigned long
4802  **/
4803 static void e1000_watchdog(unsigned long data)
4804 {
4805         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4806
4807         /* Do the rest outside of interrupt context */
4808         schedule_work(&adapter->watchdog_task);
4809
4810         /* TODO: make this use queue_delayed_work() */
4811 }
4812
4813 static void e1000_watchdog_task(struct work_struct *work)
4814 {
4815         struct e1000_adapter *adapter = container_of(work,
4816                                                      struct e1000_adapter,
4817                                                      watchdog_task);
4818         struct net_device *netdev = adapter->netdev;
4819         struct e1000_mac_info *mac = &adapter->hw.mac;
4820         struct e1000_phy_info *phy = &adapter->hw.phy;
4821         struct e1000_ring *tx_ring = adapter->tx_ring;
4822         struct e1000_hw *hw = &adapter->hw;
4823         u32 link, tctl;
4824
4825         if (test_bit(__E1000_DOWN, &adapter->state))
4826                 return;
4827
4828         link = e1000e_has_link(adapter);
4829         if ((netif_carrier_ok(netdev)) && link) {
4830                 /* Cancel scheduled suspend requests. */
4831                 pm_runtime_resume(netdev->dev.parent);
4832
4833                 e1000e_enable_receives(adapter);
4834                 goto link_up;
4835         }
4836
4837         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4838             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4839                 e1000_update_mng_vlan(adapter);
4840
4841         if (link) {
4842                 if (!netif_carrier_ok(netdev)) {
4843                         bool txb2b = true;
4844
4845                         /* Cancel scheduled suspend requests. */
4846                         pm_runtime_resume(netdev->dev.parent);
4847
4848                         /* update snapshot of PHY registers on LSC */
4849                         e1000_phy_read_status(adapter);
4850                         mac->ops.get_link_up_info(&adapter->hw,
4851                                                   &adapter->link_speed,
4852                                                   &adapter->link_duplex);
4853                         e1000_print_link_info(adapter);
4854
4855                         /* check if SmartSpeed worked */
4856                         e1000e_check_downshift(hw);
4857                         if (phy->speed_downgraded)
4858                                 netdev_warn(netdev,
4859                                             "Link Speed was downgraded by SmartSpeed\n");
4860
4861                         /* On supported PHYs, check for duplex mismatch only
4862                          * if link has autonegotiated at 10/100 half
4863                          */
4864                         if ((hw->phy.type == e1000_phy_igp_3 ||
4865                              hw->phy.type == e1000_phy_bm) &&
4866                             (hw->mac.autoneg == true) &&
4867                             (adapter->link_speed == SPEED_10 ||
4868                              adapter->link_speed == SPEED_100) &&
4869                             (adapter->link_duplex == HALF_DUPLEX)) {
4870                                 u16 autoneg_exp;
4871
4872                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4873
4874                                 if (!(autoneg_exp & EXPANSION_NWAY))
4875                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4876                         }
4877
4878                         /* adjust timeout factor according to speed/duplex */
4879                         adapter->tx_timeout_factor = 1;
4880                         switch (adapter->link_speed) {
4881                         case SPEED_10:
4882                                 txb2b = false;
4883                                 adapter->tx_timeout_factor = 16;
4884                                 break;
4885                         case SPEED_100:
4886                                 txb2b = false;
4887                                 adapter->tx_timeout_factor = 10;
4888                                 break;
4889                         }
4890
4891                         /* workaround: re-program speed mode bit after
4892                          * link-up event
4893                          */
4894                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4895                             !txb2b) {
4896                                 u32 tarc0;
4897                                 tarc0 = er32(TARC(0));
4898                                 tarc0 &= ~SPEED_MODE_BIT;
4899                                 ew32(TARC(0), tarc0);
4900                         }
4901
4902                         /* disable TSO for pcie and 10/100 speeds, to avoid
4903                          * some hardware issues
4904                          */
4905                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4906                                 switch (adapter->link_speed) {
4907                                 case SPEED_10:
4908                                 case SPEED_100:
4909                                         e_info("10/100 speed: disabling TSO\n");
4910                                         netdev->features &= ~NETIF_F_TSO;
4911                                         netdev->features &= ~NETIF_F_TSO6;
4912                                         break;
4913                                 case SPEED_1000:
4914                                         netdev->features |= NETIF_F_TSO;
4915                                         netdev->features |= NETIF_F_TSO6;
4916                                         break;
4917                                 default:
4918                                         /* oops */
4919                                         break;
4920                                 }
4921                         }
4922
4923                         /* enable transmits in the hardware, need to do this
4924                          * after setting TARC(0)
4925                          */
4926                         tctl = er32(TCTL);
4927                         tctl |= E1000_TCTL_EN;
4928                         ew32(TCTL, tctl);
4929
4930                         /* Perform any post-link-up configuration before
4931                          * reporting link up.
4932                          */
4933                         if (phy->ops.cfg_on_link_up)
4934                                 phy->ops.cfg_on_link_up(hw);
4935
4936                         netif_carrier_on(netdev);
4937
4938                         if (!test_bit(__E1000_DOWN, &adapter->state))
4939                                 mod_timer(&adapter->phy_info_timer,
4940                                           round_jiffies(jiffies + 2 * HZ));
4941                 }
4942         } else {
4943                 if (netif_carrier_ok(netdev)) {
4944                         adapter->link_speed = 0;
4945                         adapter->link_duplex = 0;
4946                         /* Link status message must follow this format */
4947                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4948                         netif_carrier_off(netdev);
4949                         if (!test_bit(__E1000_DOWN, &adapter->state))
4950                                 mod_timer(&adapter->phy_info_timer,
4951                                           round_jiffies(jiffies + 2 * HZ));
4952
4953                         /* The link is lost so the controller stops DMA.
4954                          * If there is queued Tx work that cannot be done
4955                          * or if on an 8000ES2LAN which requires a Rx packet
4956                          * buffer work-around on link down event, reset the
4957                          * controller to flush the Tx/Rx packet buffers.
4958                          * (Do the reset outside of interrupt context).
4959                          */
4960                         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) ||
4961                             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
4962                                 adapter->flags |= FLAG_RESTART_NOW;
4963                         else
4964                                 pm_schedule_suspend(netdev->dev.parent,
4965                                                     LINK_TIMEOUT);
4966                 }
4967         }
4968
4969 link_up:
4970         spin_lock(&adapter->stats64_lock);
4971         e1000e_update_stats(adapter);
4972
4973         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4974         adapter->tpt_old = adapter->stats.tpt;
4975         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4976         adapter->colc_old = adapter->stats.colc;
4977
4978         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4979         adapter->gorc_old = adapter->stats.gorc;
4980         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4981         adapter->gotc_old = adapter->stats.gotc;
4982         spin_unlock(&adapter->stats64_lock);
4983
4984         if (adapter->flags & FLAG_RESTART_NOW) {
4985                 schedule_work(&adapter->reset_task);
4986                 /* return immediately since reset is imminent */
4987                 return;
4988         }
4989
4990         e1000e_update_adaptive(&adapter->hw);
4991
4992         /* Simple mode for Interrupt Throttle Rate (ITR) */
4993         if (adapter->itr_setting == 4) {
4994                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
4995                  * Total asymmetrical Tx or Rx gets ITR=8000;
4996                  * everyone else is between 2000-8000.
4997                  */
4998                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4999                 u32 dif = (adapter->gotc > adapter->gorc ?
5000                            adapter->gotc - adapter->gorc :
5001                            adapter->gorc - adapter->gotc) / 10000;
5002                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5003
5004                 e1000e_write_itr(adapter, itr);
5005         }
5006
5007         /* Cause software interrupt to ensure Rx ring is cleaned */
5008         if (adapter->msix_entries)
5009                 ew32(ICS, adapter->rx_ring->ims_val);
5010         else
5011                 ew32(ICS, E1000_ICS_RXDMT0);
5012
5013         /* flush pending descriptors to memory before detecting Tx hang */
5014         e1000e_flush_descriptors(adapter);
5015
5016         /* Force detection of hung controller every watchdog period */
5017         adapter->detect_tx_hung = true;
5018
5019         /* With 82571 controllers, LAA may be overwritten due to controller
5020          * reset from the other port. Set the appropriate LAA in RAR[0]
5021          */
5022         if (e1000e_get_laa_state_82571(hw))
5023                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5024
5025         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5026                 e1000e_check_82574_phy_workaround(adapter);
5027
5028         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5029         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5030                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5031                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5032                         er32(RXSTMPH);
5033                         adapter->rx_hwtstamp_cleared++;
5034                 } else {
5035                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5036                 }
5037         }
5038
5039         /* Reset the timer */
5040         if (!test_bit(__E1000_DOWN, &adapter->state))
5041                 mod_timer(&adapter->watchdog_timer,
5042                           round_jiffies(jiffies + 2 * HZ));
5043 }
5044
5045 #define E1000_TX_FLAGS_CSUM             0x00000001
5046 #define E1000_TX_FLAGS_VLAN             0x00000002
5047 #define E1000_TX_FLAGS_TSO              0x00000004
5048 #define E1000_TX_FLAGS_IPV4             0x00000008
5049 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5050 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5051 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5052 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5053
5054 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5055 {
5056         struct e1000_context_desc *context_desc;
5057         struct e1000_buffer *buffer_info;
5058         unsigned int i;
5059         u32 cmd_length = 0;
5060         u16 ipcse = 0, mss;
5061         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5062
5063         if (!skb_is_gso(skb))
5064                 return 0;
5065
5066         if (skb_header_cloned(skb)) {
5067                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5068
5069                 if (err)
5070                         return err;
5071         }
5072
5073         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5074         mss = skb_shinfo(skb)->gso_size;
5075         if (skb->protocol == htons(ETH_P_IP)) {
5076                 struct iphdr *iph = ip_hdr(skb);
5077                 iph->tot_len = 0;
5078                 iph->check = 0;
5079                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5080                                                          0, IPPROTO_TCP, 0);
5081                 cmd_length = E1000_TXD_CMD_IP;
5082                 ipcse = skb_transport_offset(skb) - 1;
5083         } else if (skb_is_gso_v6(skb)) {
5084                 ipv6_hdr(skb)->payload_len = 0;
5085                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5086                                                        &ipv6_hdr(skb)->daddr,
5087                                                        0, IPPROTO_TCP, 0);
5088                 ipcse = 0;
5089         }
5090         ipcss = skb_network_offset(skb);
5091         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5092         tucss = skb_transport_offset(skb);
5093         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5094
5095         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5096                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5097
5098         i = tx_ring->next_to_use;
5099         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5100         buffer_info = &tx_ring->buffer_info[i];
5101
5102         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
5103         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
5104         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
5105         context_desc->upper_setup.tcp_fields.tucss = tucss;
5106         context_desc->upper_setup.tcp_fields.tucso = tucso;
5107         context_desc->upper_setup.tcp_fields.tucse = 0;
5108         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
5109         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5110         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5111
5112         buffer_info->time_stamp = jiffies;
5113         buffer_info->next_to_watch = i;
5114
5115         i++;
5116         if (i == tx_ring->count)
5117                 i = 0;
5118         tx_ring->next_to_use = i;
5119
5120         return 1;
5121 }
5122
5123 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5124 {
5125         struct e1000_adapter *adapter = tx_ring->adapter;
5126         struct e1000_context_desc *context_desc;
5127         struct e1000_buffer *buffer_info;
5128         unsigned int i;
5129         u8 css;
5130         u32 cmd_len = E1000_TXD_CMD_DEXT;
5131         __be16 protocol;
5132
5133         if (skb->ip_summed != CHECKSUM_PARTIAL)
5134                 return 0;
5135
5136         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5137                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5138         else
5139                 protocol = skb->protocol;
5140
5141         switch (protocol) {
5142         case cpu_to_be16(ETH_P_IP):
5143                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5144                         cmd_len |= E1000_TXD_CMD_TCP;
5145                 break;
5146         case cpu_to_be16(ETH_P_IPV6):
5147                 /* XXX not handling all IPV6 headers */
5148                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5149                         cmd_len |= E1000_TXD_CMD_TCP;
5150                 break;
5151         default:
5152                 if (unlikely(net_ratelimit()))
5153                         e_warn("checksum_partial proto=%x!\n",
5154                                be16_to_cpu(protocol));
5155                 break;
5156         }
5157
5158         css = skb_checksum_start_offset(skb);
5159
5160         i = tx_ring->next_to_use;
5161         buffer_info = &tx_ring->buffer_info[i];
5162         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5163
5164         context_desc->lower_setup.ip_config = 0;
5165         context_desc->upper_setup.tcp_fields.tucss = css;
5166         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5167         context_desc->upper_setup.tcp_fields.tucse = 0;
5168         context_desc->tcp_seg_setup.data = 0;
5169         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5170
5171         buffer_info->time_stamp = jiffies;
5172         buffer_info->next_to_watch = i;
5173
5174         i++;
5175         if (i == tx_ring->count)
5176                 i = 0;
5177         tx_ring->next_to_use = i;
5178
5179         return 1;
5180 }
5181
5182 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5183                         unsigned int first, unsigned int max_per_txd,
5184                         unsigned int nr_frags)
5185 {
5186         struct e1000_adapter *adapter = tx_ring->adapter;
5187         struct pci_dev *pdev = adapter->pdev;
5188         struct e1000_buffer *buffer_info;
5189         unsigned int len = skb_headlen(skb);
5190         unsigned int offset = 0, size, count = 0, i;
5191         unsigned int f, bytecount, segs;
5192
5193         i = tx_ring->next_to_use;
5194
5195         while (len) {
5196                 buffer_info = &tx_ring->buffer_info[i];
5197                 size = min(len, max_per_txd);
5198
5199                 buffer_info->length = size;
5200                 buffer_info->time_stamp = jiffies;
5201                 buffer_info->next_to_watch = i;
5202                 buffer_info->dma = dma_map_single(&pdev->dev,
5203                                                   skb->data + offset,
5204                                                   size, DMA_TO_DEVICE);
5205                 buffer_info->mapped_as_page = false;
5206                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5207                         goto dma_error;
5208
5209                 len -= size;
5210                 offset += size;
5211                 count++;
5212
5213                 if (len) {
5214                         i++;
5215                         if (i == tx_ring->count)
5216                                 i = 0;
5217                 }
5218         }
5219
5220         for (f = 0; f < nr_frags; f++) {
5221                 const struct skb_frag_struct *frag;
5222
5223                 frag = &skb_shinfo(skb)->frags[f];
5224                 len = skb_frag_size(frag);
5225                 offset = 0;
5226
5227                 while (len) {
5228                         i++;
5229                         if (i == tx_ring->count)
5230                                 i = 0;
5231
5232                         buffer_info = &tx_ring->buffer_info[i];
5233                         size = min(len, max_per_txd);
5234
5235                         buffer_info->length = size;
5236                         buffer_info->time_stamp = jiffies;
5237                         buffer_info->next_to_watch = i;
5238                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5239                                                             offset, size,
5240                                                             DMA_TO_DEVICE);
5241                         buffer_info->mapped_as_page = true;
5242                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5243                                 goto dma_error;
5244
5245                         len -= size;
5246                         offset += size;
5247                         count++;
5248                 }
5249         }
5250
5251         segs = skb_shinfo(skb)->gso_segs ? : 1;
5252         /* multiply data chunks by size of headers */
5253         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5254
5255         tx_ring->buffer_info[i].skb = skb;
5256         tx_ring->buffer_info[i].segs = segs;
5257         tx_ring->buffer_info[i].bytecount = bytecount;
5258         tx_ring->buffer_info[first].next_to_watch = i;
5259
5260         return count;
5261
5262 dma_error:
5263         dev_err(&pdev->dev, "Tx DMA map failed\n");
5264         buffer_info->dma = 0;
5265         if (count)
5266                 count--;
5267
5268         while (count--) {
5269                 if (i == 0)
5270                         i += tx_ring->count;
5271                 i--;
5272                 buffer_info = &tx_ring->buffer_info[i];
5273                 e1000_put_txbuf(tx_ring, buffer_info);
5274         }
5275
5276         return 0;
5277 }
5278
5279 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5280 {
5281         struct e1000_adapter *adapter = tx_ring->adapter;
5282         struct e1000_tx_desc *tx_desc = NULL;
5283         struct e1000_buffer *buffer_info;
5284         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5285         unsigned int i;
5286
5287         if (tx_flags & E1000_TX_FLAGS_TSO) {
5288                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5289                     E1000_TXD_CMD_TSE;
5290                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5291
5292                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5293                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5294         }
5295
5296         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5297                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5298                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5299         }
5300
5301         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5302                 txd_lower |= E1000_TXD_CMD_VLE;
5303                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5304         }
5305
5306         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5307                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5308
5309         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5310                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5311                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5312         }
5313
5314         i = tx_ring->next_to_use;
5315
5316         do {
5317                 buffer_info = &tx_ring->buffer_info[i];
5318                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5319                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5320                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5321                                                   buffer_info->length);
5322                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5323
5324                 i++;
5325                 if (i == tx_ring->count)
5326                         i = 0;
5327         } while (--count > 0);
5328
5329         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5330
5331         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5332         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5333                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5334
5335         /* Force memory writes to complete before letting h/w
5336          * know there are new descriptors to fetch.  (Only
5337          * applicable for weak-ordered memory model archs,
5338          * such as IA-64).
5339          */
5340         wmb();
5341
5342         tx_ring->next_to_use = i;
5343
5344         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5345                 e1000e_update_tdt_wa(tx_ring, i);
5346         else
5347                 writel(i, tx_ring->tail);
5348
5349         /* we need this if more than one processor can write to our tail
5350          * at a time, it synchronizes IO on IA64/Altix systems
5351          */
5352         mmiowb();
5353 }
5354
5355 #define MINIMUM_DHCP_PACKET_SIZE 282
5356 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5357                                     struct sk_buff *skb)
5358 {
5359         struct e1000_hw *hw =  &adapter->hw;
5360         u16 length, offset;
5361
5362         if (vlan_tx_tag_present(skb) &&
5363             !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5364               (adapter->hw.mng_cookie.status &
5365                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5366                 return 0;
5367
5368         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5369                 return 0;
5370
5371         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5372                 return 0;
5373
5374         {
5375                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5376                 struct udphdr *udp;
5377
5378                 if (ip->protocol != IPPROTO_UDP)
5379                         return 0;
5380
5381                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5382                 if (ntohs(udp->dest) != 67)
5383                         return 0;
5384
5385                 offset = (u8 *)udp + 8 - skb->data;
5386                 length = skb->len - offset;
5387                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5388         }
5389
5390         return 0;
5391 }
5392
5393 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5394 {
5395         struct e1000_adapter *adapter = tx_ring->adapter;
5396
5397         netif_stop_queue(adapter->netdev);
5398         /* Herbert's original patch had:
5399          *  smp_mb__after_netif_stop_queue();
5400          * but since that doesn't exist yet, just open code it.
5401          */
5402         smp_mb();
5403
5404         /* We need to check again in a case another CPU has just
5405          * made room available.
5406          */
5407         if (e1000_desc_unused(tx_ring) < size)
5408                 return -EBUSY;
5409
5410         /* A reprieve! */
5411         netif_start_queue(adapter->netdev);
5412         ++adapter->restart_queue;
5413         return 0;
5414 }
5415
5416 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5417 {
5418         BUG_ON(size > tx_ring->count);
5419
5420         if (e1000_desc_unused(tx_ring) >= size)
5421                 return 0;
5422         return __e1000_maybe_stop_tx(tx_ring, size);
5423 }
5424
5425 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5426                                     struct net_device *netdev)
5427 {
5428         struct e1000_adapter *adapter = netdev_priv(netdev);
5429         struct e1000_ring *tx_ring = adapter->tx_ring;
5430         unsigned int first;
5431         unsigned int tx_flags = 0;
5432         unsigned int len = skb_headlen(skb);
5433         unsigned int nr_frags;
5434         unsigned int mss;
5435         int count = 0;
5436         int tso;
5437         unsigned int f;
5438
5439         if (test_bit(__E1000_DOWN, &adapter->state)) {
5440                 dev_kfree_skb_any(skb);
5441                 return NETDEV_TX_OK;
5442         }
5443
5444         if (skb->len <= 0) {
5445                 dev_kfree_skb_any(skb);
5446                 return NETDEV_TX_OK;
5447         }
5448
5449         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5450          * pad skb in order to meet this minimum size requirement
5451          */
5452         if (unlikely(skb->len < 17)) {
5453                 if (skb_pad(skb, 17 - skb->len))
5454                         return NETDEV_TX_OK;
5455                 skb->len = 17;
5456                 skb_set_tail_pointer(skb, 17);
5457         }
5458
5459         mss = skb_shinfo(skb)->gso_size;
5460         if (mss) {
5461                 u8 hdr_len;
5462
5463                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5464                  * points to just header, pull a few bytes of payload from
5465                  * frags into skb->data
5466                  */
5467                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5468                 /* we do this workaround for ES2LAN, but it is un-necessary,
5469                  * avoiding it could save a lot of cycles
5470                  */
5471                 if (skb->data_len && (hdr_len == len)) {
5472                         unsigned int pull_size;
5473
5474                         pull_size = min_t(unsigned int, 4, skb->data_len);
5475                         if (!__pskb_pull_tail(skb, pull_size)) {
5476                                 e_err("__pskb_pull_tail failed.\n");
5477                                 dev_kfree_skb_any(skb);
5478                                 return NETDEV_TX_OK;
5479                         }
5480                         len = skb_headlen(skb);
5481                 }
5482         }
5483
5484         /* reserve a descriptor for the offload context */
5485         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5486                 count++;
5487         count++;
5488
5489         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5490
5491         nr_frags = skb_shinfo(skb)->nr_frags;
5492         for (f = 0; f < nr_frags; f++)
5493                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5494                                       adapter->tx_fifo_limit);
5495
5496         if (adapter->hw.mac.tx_pkt_filtering)
5497                 e1000_transfer_dhcp_info(adapter, skb);
5498
5499         /* need: count + 2 desc gap to keep tail from touching
5500          * head, otherwise try next time
5501          */
5502         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5503                 return NETDEV_TX_BUSY;
5504
5505         if (vlan_tx_tag_present(skb)) {
5506                 tx_flags |= E1000_TX_FLAGS_VLAN;
5507                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5508         }
5509
5510         first = tx_ring->next_to_use;
5511
5512         tso = e1000_tso(tx_ring, skb);
5513         if (tso < 0) {
5514                 dev_kfree_skb_any(skb);
5515                 return NETDEV_TX_OK;
5516         }
5517
5518         if (tso)
5519                 tx_flags |= E1000_TX_FLAGS_TSO;
5520         else if (e1000_tx_csum(tx_ring, skb))
5521                 tx_flags |= E1000_TX_FLAGS_CSUM;
5522
5523         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5524          * 82571 hardware supports TSO capabilities for IPv6 as well...
5525          * no longer assume, we must.
5526          */
5527         if (skb->protocol == htons(ETH_P_IP))
5528                 tx_flags |= E1000_TX_FLAGS_IPV4;
5529
5530         if (unlikely(skb->no_fcs))
5531                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5532
5533         /* if count is 0 then mapping error has occurred */
5534         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5535                              nr_frags);
5536         if (count) {
5537                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5538                              !adapter->tx_hwtstamp_skb)) {
5539                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5540                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5541                         adapter->tx_hwtstamp_skb = skb_get(skb);
5542                         schedule_work(&adapter->tx_hwtstamp_work);
5543                 } else {
5544                         skb_tx_timestamp(skb);
5545                 }
5546
5547                 netdev_sent_queue(netdev, skb->len);
5548                 e1000_tx_queue(tx_ring, tx_flags, count);
5549                 /* Make sure there is space in the ring for the next send. */
5550                 e1000_maybe_stop_tx(tx_ring,
5551                                     (MAX_SKB_FRAGS *
5552                                      DIV_ROUND_UP(PAGE_SIZE,
5553                                                   adapter->tx_fifo_limit) + 2));
5554         } else {
5555                 dev_kfree_skb_any(skb);
5556                 tx_ring->buffer_info[first].time_stamp = 0;
5557                 tx_ring->next_to_use = first;
5558         }
5559
5560         return NETDEV_TX_OK;
5561 }
5562
5563 /**
5564  * e1000_tx_timeout - Respond to a Tx Hang
5565  * @netdev: network interface device structure
5566  **/
5567 static void e1000_tx_timeout(struct net_device *netdev)
5568 {
5569         struct e1000_adapter *adapter = netdev_priv(netdev);
5570
5571         /* Do the reset outside of interrupt context */
5572         adapter->tx_timeout_count++;
5573         schedule_work(&adapter->reset_task);
5574 }
5575
5576 static void e1000_reset_task(struct work_struct *work)
5577 {
5578         struct e1000_adapter *adapter;
5579         adapter = container_of(work, struct e1000_adapter, reset_task);
5580
5581         /* don't run the task if already down */
5582         if (test_bit(__E1000_DOWN, &adapter->state))
5583                 return;
5584
5585         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5586                 e1000e_dump(adapter);
5587                 e_err("Reset adapter unexpectedly\n");
5588         }
5589         e1000e_reinit_locked(adapter);
5590 }
5591
5592 /**
5593  * e1000_get_stats64 - Get System Network Statistics
5594  * @netdev: network interface device structure
5595  * @stats: rtnl_link_stats64 pointer
5596  *
5597  * Returns the address of the device statistics structure.
5598  **/
5599 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5600                                              struct rtnl_link_stats64 *stats)
5601 {
5602         struct e1000_adapter *adapter = netdev_priv(netdev);
5603
5604         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5605         spin_lock(&adapter->stats64_lock);
5606         e1000e_update_stats(adapter);
5607         /* Fill out the OS statistics structure */
5608         stats->rx_bytes = adapter->stats.gorc;
5609         stats->rx_packets = adapter->stats.gprc;
5610         stats->tx_bytes = adapter->stats.gotc;
5611         stats->tx_packets = adapter->stats.gptc;
5612         stats->multicast = adapter->stats.mprc;
5613         stats->collisions = adapter->stats.colc;
5614
5615         /* Rx Errors */
5616
5617         /* RLEC on some newer hardware can be incorrect so build
5618          * our own version based on RUC and ROC
5619          */
5620         stats->rx_errors = adapter->stats.rxerrc +
5621             adapter->stats.crcerrs + adapter->stats.algnerrc +
5622             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5623         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5624         stats->rx_crc_errors = adapter->stats.crcerrs;
5625         stats->rx_frame_errors = adapter->stats.algnerrc;
5626         stats->rx_missed_errors = adapter->stats.mpc;
5627
5628         /* Tx Errors */
5629         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5630         stats->tx_aborted_errors = adapter->stats.ecol;
5631         stats->tx_window_errors = adapter->stats.latecol;
5632         stats->tx_carrier_errors = adapter->stats.tncrs;
5633
5634         /* Tx Dropped needs to be maintained elsewhere */
5635
5636         spin_unlock(&adapter->stats64_lock);
5637         return stats;
5638 }
5639
5640 /**
5641  * e1000_change_mtu - Change the Maximum Transfer Unit
5642  * @netdev: network interface device structure
5643  * @new_mtu: new value for maximum frame size
5644  *
5645  * Returns 0 on success, negative on failure
5646  **/
5647 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5648 {
5649         struct e1000_adapter *adapter = netdev_priv(netdev);
5650         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5651
5652         /* Jumbo frame support */
5653         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5654             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5655                 e_err("Jumbo Frames not supported.\n");
5656                 return -EINVAL;
5657         }
5658
5659         /* Supported frame sizes */
5660         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5661             (max_frame > adapter->max_hw_frame_size)) {
5662                 e_err("Unsupported MTU setting\n");
5663                 return -EINVAL;
5664         }
5665
5666         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5667         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5668             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5669             (new_mtu > ETH_DATA_LEN)) {
5670                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5671                 return -EINVAL;
5672         }
5673
5674         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5675                 usleep_range(1000, 2000);
5676         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5677         adapter->max_frame_size = max_frame;
5678         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5679         netdev->mtu = new_mtu;
5680         if (netif_running(netdev))
5681                 e1000e_down(adapter);
5682
5683         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5684          * means we reserve 2 more, this pushes us to allocate from the next
5685          * larger slab size.
5686          * i.e. RXBUFFER_2048 --> size-4096 slab
5687          * However with the new *_jumbo_rx* routines, jumbo receives will use
5688          * fragmented skbs
5689          */
5690
5691         if (max_frame <= 2048)
5692                 adapter->rx_buffer_len = 2048;
5693         else
5694                 adapter->rx_buffer_len = 4096;
5695
5696         /* adjust allocation if LPE protects us, and we aren't using SBP */
5697         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5698             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5699                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5700                     + ETH_FCS_LEN;
5701
5702         if (netif_running(netdev))
5703                 e1000e_up(adapter);
5704         else
5705                 e1000e_reset(adapter);
5706
5707         clear_bit(__E1000_RESETTING, &adapter->state);
5708
5709         return 0;
5710 }
5711
5712 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5713                            int cmd)
5714 {
5715         struct e1000_adapter *adapter = netdev_priv(netdev);
5716         struct mii_ioctl_data *data = if_mii(ifr);
5717
5718         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5719                 return -EOPNOTSUPP;
5720
5721         switch (cmd) {
5722         case SIOCGMIIPHY:
5723                 data->phy_id = adapter->hw.phy.addr;
5724                 break;
5725         case SIOCGMIIREG:
5726                 e1000_phy_read_status(adapter);
5727
5728                 switch (data->reg_num & 0x1F) {
5729                 case MII_BMCR:
5730                         data->val_out = adapter->phy_regs.bmcr;
5731                         break;
5732                 case MII_BMSR:
5733                         data->val_out = adapter->phy_regs.bmsr;
5734                         break;
5735                 case MII_PHYSID1:
5736                         data->val_out = (adapter->hw.phy.id >> 16);
5737                         break;
5738                 case MII_PHYSID2:
5739                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5740                         break;
5741                 case MII_ADVERTISE:
5742                         data->val_out = adapter->phy_regs.advertise;
5743                         break;
5744                 case MII_LPA:
5745                         data->val_out = adapter->phy_regs.lpa;
5746                         break;
5747                 case MII_EXPANSION:
5748                         data->val_out = adapter->phy_regs.expansion;
5749                         break;
5750                 case MII_CTRL1000:
5751                         data->val_out = adapter->phy_regs.ctrl1000;
5752                         break;
5753                 case MII_STAT1000:
5754                         data->val_out = adapter->phy_regs.stat1000;
5755                         break;
5756                 case MII_ESTATUS:
5757                         data->val_out = adapter->phy_regs.estatus;
5758                         break;
5759                 default:
5760                         return -EIO;
5761                 }
5762                 break;
5763         case SIOCSMIIREG:
5764         default:
5765                 return -EOPNOTSUPP;
5766         }
5767         return 0;
5768 }
5769
5770 /**
5771  * e1000e_hwtstamp_ioctl - control hardware time stamping
5772  * @netdev: network interface device structure
5773  * @ifreq: interface request
5774  *
5775  * Outgoing time stamping can be enabled and disabled. Play nice and
5776  * disable it when requested, although it shouldn't cause any overhead
5777  * when no packet needs it. At most one packet in the queue may be
5778  * marked for time stamping, otherwise it would be impossible to tell
5779  * for sure to which packet the hardware time stamp belongs.
5780  *
5781  * Incoming time stamping has to be configured via the hardware filters.
5782  * Not all combinations are supported, in particular event type has to be
5783  * specified. Matching the kind of event packet is not supported, with the
5784  * exception of "all V2 events regardless of level 2 or 4".
5785  **/
5786 static int e1000e_hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
5787 {
5788         struct e1000_adapter *adapter = netdev_priv(netdev);
5789         struct hwtstamp_config config;
5790         int ret_val;
5791
5792         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5793                 return -EFAULT;
5794
5795         adapter->hwtstamp_config = config;
5796
5797         ret_val = e1000e_config_hwtstamp(adapter);
5798         if (ret_val)
5799                 return ret_val;
5800
5801         config = adapter->hwtstamp_config;
5802
5803         switch (config.rx_filter) {
5804         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5805         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5806         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5807         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5808         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5809         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5810                 /* With V2 type filters which specify a Sync or Delay Request,
5811                  * Path Delay Request/Response messages are also time stamped
5812                  * by hardware so notify the caller the requested packets plus
5813                  * some others are time stamped.
5814                  */
5815                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5816                 break;
5817         default:
5818                 break;
5819         }
5820
5821         return copy_to_user(ifr->ifr_data, &config,
5822                             sizeof(config)) ? -EFAULT : 0;
5823 }
5824
5825 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5826 {
5827         switch (cmd) {
5828         case SIOCGMIIPHY:
5829         case SIOCGMIIREG:
5830         case SIOCSMIIREG:
5831                 return e1000_mii_ioctl(netdev, ifr, cmd);
5832         case SIOCSHWTSTAMP:
5833                 return e1000e_hwtstamp_ioctl(netdev, ifr);
5834         default:
5835                 return -EOPNOTSUPP;
5836         }
5837 }
5838
5839 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5840 {
5841         struct e1000_hw *hw = &adapter->hw;
5842         u32 i, mac_reg;
5843         u16 phy_reg, wuc_enable;
5844         int retval;
5845
5846         /* copy MAC RARs to PHY RARs */
5847         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5848
5849         retval = hw->phy.ops.acquire(hw);
5850         if (retval) {
5851                 e_err("Could not acquire PHY\n");
5852                 return retval;
5853         }
5854
5855         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5856         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5857         if (retval)
5858                 goto release;
5859
5860         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5861         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5862                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5863                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5864                                            (u16)(mac_reg & 0xFFFF));
5865                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5866                                            (u16)((mac_reg >> 16) & 0xFFFF));
5867         }
5868
5869         /* configure PHY Rx Control register */
5870         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5871         mac_reg = er32(RCTL);
5872         if (mac_reg & E1000_RCTL_UPE)
5873                 phy_reg |= BM_RCTL_UPE;
5874         if (mac_reg & E1000_RCTL_MPE)
5875                 phy_reg |= BM_RCTL_MPE;
5876         phy_reg &= ~(BM_RCTL_MO_MASK);
5877         if (mac_reg & E1000_RCTL_MO_3)
5878                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5879                             << BM_RCTL_MO_SHIFT);
5880         if (mac_reg & E1000_RCTL_BAM)
5881                 phy_reg |= BM_RCTL_BAM;
5882         if (mac_reg & E1000_RCTL_PMCF)
5883                 phy_reg |= BM_RCTL_PMCF;
5884         mac_reg = er32(CTRL);
5885         if (mac_reg & E1000_CTRL_RFCE)
5886                 phy_reg |= BM_RCTL_RFCE;
5887         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5888
5889         /* enable PHY wakeup in MAC register */
5890         ew32(WUFC, wufc);
5891         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5892
5893         /* configure and enable PHY wakeup in PHY registers */
5894         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5895         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5896
5897         /* activate PHY wakeup */
5898         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5899         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5900         if (retval)
5901                 e_err("Could not set PHY Host Wakeup bit\n");
5902 release:
5903         hw->phy.ops.release(hw);
5904
5905         return retval;
5906 }
5907
5908 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
5909 {
5910         struct net_device *netdev = pci_get_drvdata(pdev);
5911         struct e1000_adapter *adapter = netdev_priv(netdev);
5912         struct e1000_hw *hw = &adapter->hw;
5913         u32 ctrl, ctrl_ext, rctl, status;
5914         /* Runtime suspend should only enable wakeup for link changes */
5915         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5916         int retval = 0;
5917
5918         netif_device_detach(netdev);
5919
5920         if (netif_running(netdev)) {
5921                 int count = E1000_CHECK_RESET_COUNT;
5922
5923                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5924                         usleep_range(10000, 20000);
5925
5926                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5927                 e1000e_down(adapter);
5928                 e1000_free_irq(adapter);
5929         }
5930         e1000e_reset_interrupt_capability(adapter);
5931
5932         status = er32(STATUS);
5933         if (status & E1000_STATUS_LU)
5934                 wufc &= ~E1000_WUFC_LNKC;
5935
5936         if (wufc) {
5937                 e1000_setup_rctl(adapter);
5938                 e1000e_set_rx_mode(netdev);
5939
5940                 /* turn on all-multi mode if wake on multicast is enabled */
5941                 if (wufc & E1000_WUFC_MC) {
5942                         rctl = er32(RCTL);
5943                         rctl |= E1000_RCTL_MPE;
5944                         ew32(RCTL, rctl);
5945                 }
5946
5947                 ctrl = er32(CTRL);
5948                 ctrl |= E1000_CTRL_ADVD3WUC;
5949                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5950                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5951                 ew32(CTRL, ctrl);
5952
5953                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5954                     adapter->hw.phy.media_type ==
5955                     e1000_media_type_internal_serdes) {
5956                         /* keep the laser running in D3 */
5957                         ctrl_ext = er32(CTRL_EXT);
5958                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5959                         ew32(CTRL_EXT, ctrl_ext);
5960                 }
5961
5962                 if (adapter->flags & FLAG_IS_ICH)
5963                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
5964
5965                 /* Allow time for pending master requests to run */
5966                 e1000e_disable_pcie_master(&adapter->hw);
5967
5968                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5969                         /* enable wakeup by the PHY */
5970                         retval = e1000_init_phy_wakeup(adapter, wufc);
5971                         if (retval)
5972                                 return retval;
5973                 } else {
5974                         /* enable wakeup by the MAC */
5975                         ew32(WUFC, wufc);
5976                         ew32(WUC, E1000_WUC_PME_EN);
5977                 }
5978         } else {
5979                 ew32(WUC, 0);
5980                 ew32(WUFC, 0);
5981         }
5982
5983         if (adapter->hw.phy.type == e1000_phy_igp_3)
5984                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5985
5986         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5987          * would have already happened in close and is redundant.
5988          */
5989         e1000e_release_hw_control(adapter);
5990
5991         /* The pci-e switch on some quad port adapters will report a
5992          * correctable error when the MAC transitions from D0 to D3.  To
5993          * prevent this we need to mask off the correctable errors on the
5994          * downstream port of the pci-e switch.
5995          */
5996         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5997                 struct pci_dev *us_dev = pdev->bus->self;
5998                 u16 devctl;
5999
6000                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6001                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6002                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6003
6004                 pci_save_state(pdev);
6005                 pci_prepare_to_sleep(pdev);
6006
6007                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6008         }
6009
6010         return 0;
6011 }
6012
6013 #ifdef CONFIG_PCIEASPM
6014 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6015 {
6016         pci_disable_link_state_locked(pdev, state);
6017 }
6018 #else
6019 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6020 {
6021         u16 aspm_ctl = 0;
6022
6023         if (state & PCIE_LINK_STATE_L0S)
6024                 aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L0S;
6025         if (state & PCIE_LINK_STATE_L1)
6026                 aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L1;
6027
6028         /* Both device and parent should have the same ASPM setting.
6029          * Disable ASPM in downstream component first and then upstream.
6030          */
6031         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_ctl);
6032
6033         if (pdev->bus->self)
6034                 pcie_capability_clear_word(pdev->bus->self, PCI_EXP_LNKCTL,
6035                                            aspm_ctl);
6036 }
6037 #endif
6038 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6039 {
6040         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6041                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
6042                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
6043
6044         __e1000e_disable_aspm(pdev, state);
6045 }
6046
6047 #ifdef CONFIG_PM
6048 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
6049 {
6050         return !!adapter->tx_ring->buffer_info;
6051 }
6052
6053 static int __e1000_resume(struct pci_dev *pdev)
6054 {
6055         struct net_device *netdev = pci_get_drvdata(pdev);
6056         struct e1000_adapter *adapter = netdev_priv(netdev);
6057         struct e1000_hw *hw = &adapter->hw;
6058         u16 aspm_disable_flag = 0;
6059         u32 err;
6060
6061         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6062                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6063         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6064                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6065         if (aspm_disable_flag)
6066                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6067
6068         pci_set_master(pdev);
6069
6070         e1000e_set_interrupt_capability(adapter);
6071         if (netif_running(netdev)) {
6072                 err = e1000_request_irq(adapter);
6073                 if (err)
6074                         return err;
6075         }
6076
6077         if (hw->mac.type >= e1000_pch2lan)
6078                 e1000_resume_workarounds_pchlan(&adapter->hw);
6079
6080         e1000e_power_up_phy(adapter);
6081
6082         /* report the system wakeup cause from S3/S4 */
6083         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6084                 u16 phy_data;
6085
6086                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6087                 if (phy_data) {
6088                         e_info("PHY Wakeup cause - %s\n",
6089                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6090                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6091                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6092                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6093                                phy_data & E1000_WUS_LNKC ?
6094                                "Link Status Change" : "other");
6095                 }
6096                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6097         } else {
6098                 u32 wus = er32(WUS);
6099                 if (wus) {
6100                         e_info("MAC Wakeup cause - %s\n",
6101                                wus & E1000_WUS_EX ? "Unicast Packet" :
6102                                wus & E1000_WUS_MC ? "Multicast Packet" :
6103                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6104                                wus & E1000_WUS_MAG ? "Magic Packet" :
6105                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6106                                "other");
6107                 }
6108                 ew32(WUS, ~0);
6109         }
6110
6111         e1000e_reset(adapter);
6112
6113         e1000_init_manageability_pt(adapter);
6114
6115         if (netif_running(netdev))
6116                 e1000e_up(adapter);
6117
6118         netif_device_attach(netdev);
6119
6120         /* If the controller has AMT, do not set DRV_LOAD until the interface
6121          * is up.  For all other cases, let the f/w know that the h/w is now
6122          * under the control of the driver.
6123          */
6124         if (!(adapter->flags & FLAG_HAS_AMT))
6125                 e1000e_get_hw_control(adapter);
6126
6127         return 0;
6128 }
6129
6130 #ifdef CONFIG_PM_SLEEP
6131 static int e1000_suspend(struct device *dev)
6132 {
6133         struct pci_dev *pdev = to_pci_dev(dev);
6134
6135         return __e1000_shutdown(pdev, false);
6136 }
6137
6138 static int e1000_resume(struct device *dev)
6139 {
6140         struct pci_dev *pdev = to_pci_dev(dev);
6141         struct net_device *netdev = pci_get_drvdata(pdev);
6142         struct e1000_adapter *adapter = netdev_priv(netdev);
6143
6144         if (e1000e_pm_ready(adapter))
6145                 adapter->idle_check = true;
6146
6147         return __e1000_resume(pdev);
6148 }
6149 #endif /* CONFIG_PM_SLEEP */
6150
6151 #ifdef CONFIG_PM_RUNTIME
6152 static int e1000_runtime_suspend(struct device *dev)
6153 {
6154         struct pci_dev *pdev = to_pci_dev(dev);
6155         struct net_device *netdev = pci_get_drvdata(pdev);
6156         struct e1000_adapter *adapter = netdev_priv(netdev);
6157
6158         if (!e1000e_pm_ready(adapter))
6159                 return 0;
6160
6161         return __e1000_shutdown(pdev, true);
6162 }
6163
6164 static int e1000_idle(struct device *dev)
6165 {
6166         struct pci_dev *pdev = to_pci_dev(dev);
6167         struct net_device *netdev = pci_get_drvdata(pdev);
6168         struct e1000_adapter *adapter = netdev_priv(netdev);
6169
6170         if (!e1000e_pm_ready(adapter))
6171                 return 0;
6172
6173         if (adapter->idle_check) {
6174                 adapter->idle_check = false;
6175                 if (!e1000e_has_link(adapter))
6176                         pm_schedule_suspend(dev, MSEC_PER_SEC);
6177         }
6178
6179         return -EBUSY;
6180 }
6181
6182 static int e1000_runtime_resume(struct device *dev)
6183 {
6184         struct pci_dev *pdev = to_pci_dev(dev);
6185         struct net_device *netdev = pci_get_drvdata(pdev);
6186         struct e1000_adapter *adapter = netdev_priv(netdev);
6187
6188         if (!e1000e_pm_ready(adapter))
6189                 return 0;
6190
6191         adapter->idle_check = !dev->power.runtime_auto;
6192         return __e1000_resume(pdev);
6193 }
6194 #endif /* CONFIG_PM_RUNTIME */
6195 #endif /* CONFIG_PM */
6196
6197 static void e1000_shutdown(struct pci_dev *pdev)
6198 {
6199         __e1000_shutdown(pdev, false);
6200 }
6201
6202 #ifdef CONFIG_NET_POLL_CONTROLLER
6203
6204 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6205 {
6206         struct net_device *netdev = data;
6207         struct e1000_adapter *adapter = netdev_priv(netdev);
6208
6209         if (adapter->msix_entries) {
6210                 int vector, msix_irq;
6211
6212                 vector = 0;
6213                 msix_irq = adapter->msix_entries[vector].vector;
6214                 disable_irq(msix_irq);
6215                 e1000_intr_msix_rx(msix_irq, netdev);
6216                 enable_irq(msix_irq);
6217
6218                 vector++;
6219                 msix_irq = adapter->msix_entries[vector].vector;
6220                 disable_irq(msix_irq);
6221                 e1000_intr_msix_tx(msix_irq, netdev);
6222                 enable_irq(msix_irq);
6223
6224                 vector++;
6225                 msix_irq = adapter->msix_entries[vector].vector;
6226                 disable_irq(msix_irq);
6227                 e1000_msix_other(msix_irq, netdev);
6228                 enable_irq(msix_irq);
6229         }
6230
6231         return IRQ_HANDLED;
6232 }
6233
6234 /**
6235  * e1000_netpoll
6236  * @netdev: network interface device structure
6237  *
6238  * Polling 'interrupt' - used by things like netconsole to send skbs
6239  * without having to re-enable interrupts. It's not called while
6240  * the interrupt routine is executing.
6241  */
6242 static void e1000_netpoll(struct net_device *netdev)
6243 {
6244         struct e1000_adapter *adapter = netdev_priv(netdev);
6245
6246         switch (adapter->int_mode) {
6247         case E1000E_INT_MODE_MSIX:
6248                 e1000_intr_msix(adapter->pdev->irq, netdev);
6249                 break;
6250         case E1000E_INT_MODE_MSI:
6251                 disable_irq(adapter->pdev->irq);
6252                 e1000_intr_msi(adapter->pdev->irq, netdev);
6253                 enable_irq(adapter->pdev->irq);
6254                 break;
6255         default: /* E1000E_INT_MODE_LEGACY */
6256                 disable_irq(adapter->pdev->irq);
6257                 e1000_intr(adapter->pdev->irq, netdev);
6258                 enable_irq(adapter->pdev->irq);
6259                 break;
6260         }
6261 }
6262 #endif
6263
6264 /**
6265  * e1000_io_error_detected - called when PCI error is detected
6266  * @pdev: Pointer to PCI device
6267  * @state: The current pci connection state
6268  *
6269  * This function is called after a PCI bus error affecting
6270  * this device has been detected.
6271  */
6272 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6273                                                 pci_channel_state_t state)
6274 {
6275         struct net_device *netdev = pci_get_drvdata(pdev);
6276         struct e1000_adapter *adapter = netdev_priv(netdev);
6277
6278         netif_device_detach(netdev);
6279
6280         if (state == pci_channel_io_perm_failure)
6281                 return PCI_ERS_RESULT_DISCONNECT;
6282
6283         if (netif_running(netdev))
6284                 e1000e_down(adapter);
6285         pci_disable_device(pdev);
6286
6287         /* Request a slot slot reset. */
6288         return PCI_ERS_RESULT_NEED_RESET;
6289 }
6290
6291 /**
6292  * e1000_io_slot_reset - called after the pci bus has been reset.
6293  * @pdev: Pointer to PCI device
6294  *
6295  * Restart the card from scratch, as if from a cold-boot. Implementation
6296  * resembles the first-half of the e1000_resume routine.
6297  */
6298 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6299 {
6300         struct net_device *netdev = pci_get_drvdata(pdev);
6301         struct e1000_adapter *adapter = netdev_priv(netdev);
6302         struct e1000_hw *hw = &adapter->hw;
6303         u16 aspm_disable_flag = 0;
6304         int err;
6305         pci_ers_result_t result;
6306
6307         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6308                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6309         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6310                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6311         if (aspm_disable_flag)
6312                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6313
6314         err = pci_enable_device_mem(pdev);
6315         if (err) {
6316                 dev_err(&pdev->dev,
6317                         "Cannot re-enable PCI device after reset.\n");
6318                 result = PCI_ERS_RESULT_DISCONNECT;
6319         } else {
6320                 pdev->state_saved = true;
6321                 pci_restore_state(pdev);
6322                 pci_set_master(pdev);
6323
6324                 pci_enable_wake(pdev, PCI_D3hot, 0);
6325                 pci_enable_wake(pdev, PCI_D3cold, 0);
6326
6327                 e1000e_reset(adapter);
6328                 ew32(WUS, ~0);
6329                 result = PCI_ERS_RESULT_RECOVERED;
6330         }
6331
6332         pci_cleanup_aer_uncorrect_error_status(pdev);
6333
6334         return result;
6335 }
6336
6337 /**
6338  * e1000_io_resume - called when traffic can start flowing again.
6339  * @pdev: Pointer to PCI device
6340  *
6341  * This callback is called when the error recovery driver tells us that
6342  * its OK to resume normal operation. Implementation resembles the
6343  * second-half of the e1000_resume routine.
6344  */
6345 static void e1000_io_resume(struct pci_dev *pdev)
6346 {
6347         struct net_device *netdev = pci_get_drvdata(pdev);
6348         struct e1000_adapter *adapter = netdev_priv(netdev);
6349
6350         e1000_init_manageability_pt(adapter);
6351
6352         if (netif_running(netdev)) {
6353                 if (e1000e_up(adapter)) {
6354                         dev_err(&pdev->dev,
6355                                 "can't bring device back up after reset\n");
6356                         return;
6357                 }
6358         }
6359
6360         netif_device_attach(netdev);
6361
6362         /* If the controller has AMT, do not set DRV_LOAD until the interface
6363          * is up.  For all other cases, let the f/w know that the h/w is now
6364          * under the control of the driver.
6365          */
6366         if (!(adapter->flags & FLAG_HAS_AMT))
6367                 e1000e_get_hw_control(adapter);
6368 }
6369
6370 static void e1000_print_device_info(struct e1000_adapter *adapter)
6371 {
6372         struct e1000_hw *hw = &adapter->hw;
6373         struct net_device *netdev = adapter->netdev;
6374         u32 ret_val;
6375         u8 pba_str[E1000_PBANUM_LENGTH];
6376
6377         /* print bus type/speed/width info */
6378         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6379                /* bus width */
6380                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6381                 "Width x1"),
6382                /* MAC address */
6383                netdev->dev_addr);
6384         e_info("Intel(R) PRO/%s Network Connection\n",
6385                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6386         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6387                                                 E1000_PBANUM_LENGTH);
6388         if (ret_val)
6389                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6390         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6391                hw->mac.type, hw->phy.type, pba_str);
6392 }
6393
6394 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6395 {
6396         struct e1000_hw *hw = &adapter->hw;
6397         int ret_val;
6398         u16 buf = 0;
6399
6400         if (hw->mac.type != e1000_82573)
6401                 return;
6402
6403         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6404         le16_to_cpus(&buf);
6405         if (!ret_val && (!(buf & (1 << 0)))) {
6406                 /* Deep Smart Power Down (DSPD) */
6407                 dev_warn(&adapter->pdev->dev,
6408                          "Warning: detected DSPD enabled in EEPROM\n");
6409         }
6410 }
6411
6412 static int e1000_set_features(struct net_device *netdev,
6413                               netdev_features_t features)
6414 {
6415         struct e1000_adapter *adapter = netdev_priv(netdev);
6416         netdev_features_t changed = features ^ netdev->features;
6417
6418         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6419                 adapter->flags |= FLAG_TSO_FORCE;
6420
6421         if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6422                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6423                          NETIF_F_RXALL)))
6424                 return 0;
6425
6426         if (changed & NETIF_F_RXFCS) {
6427                 if (features & NETIF_F_RXFCS) {
6428                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6429                 } else {
6430                         /* We need to take it back to defaults, which might mean
6431                          * stripping is still disabled at the adapter level.
6432                          */
6433                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6434                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6435                         else
6436                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6437                 }
6438         }
6439
6440         netdev->features = features;
6441
6442         if (netif_running(netdev))
6443                 e1000e_reinit_locked(adapter);
6444         else
6445                 e1000e_reset(adapter);
6446
6447         return 0;
6448 }
6449
6450 static const struct net_device_ops e1000e_netdev_ops = {
6451         .ndo_open               = e1000_open,
6452         .ndo_stop               = e1000_close,
6453         .ndo_start_xmit         = e1000_xmit_frame,
6454         .ndo_get_stats64        = e1000e_get_stats64,
6455         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6456         .ndo_set_mac_address    = e1000_set_mac,
6457         .ndo_change_mtu         = e1000_change_mtu,
6458         .ndo_do_ioctl           = e1000_ioctl,
6459         .ndo_tx_timeout         = e1000_tx_timeout,
6460         .ndo_validate_addr      = eth_validate_addr,
6461
6462         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6463         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6464 #ifdef CONFIG_NET_POLL_CONTROLLER
6465         .ndo_poll_controller    = e1000_netpoll,
6466 #endif
6467         .ndo_set_features = e1000_set_features,
6468 };
6469
6470 /**
6471  * e1000_probe - Device Initialization Routine
6472  * @pdev: PCI device information struct
6473  * @ent: entry in e1000_pci_tbl
6474  *
6475  * Returns 0 on success, negative on failure
6476  *
6477  * e1000_probe initializes an adapter identified by a pci_dev structure.
6478  * The OS initialization, configuring of the adapter private structure,
6479  * and a hardware reset occur.
6480  **/
6481 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6482 {
6483         struct net_device *netdev;
6484         struct e1000_adapter *adapter;
6485         struct e1000_hw *hw;
6486         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6487         resource_size_t mmio_start, mmio_len;
6488         resource_size_t flash_start, flash_len;
6489         static int cards_found;
6490         u16 aspm_disable_flag = 0;
6491         int bars, i, err, pci_using_dac;
6492         u16 eeprom_data = 0;
6493         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6494
6495         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6496                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6497         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6498                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6499         if (aspm_disable_flag)
6500                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6501
6502         err = pci_enable_device_mem(pdev);
6503         if (err)
6504                 return err;
6505
6506         pci_using_dac = 0;
6507         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6508         if (!err) {
6509                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6510                 if (!err)
6511                         pci_using_dac = 1;
6512         } else {
6513                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6514                 if (err) {
6515                         err = dma_set_coherent_mask(&pdev->dev,
6516                                                     DMA_BIT_MASK(32));
6517                         if (err) {
6518                                 dev_err(&pdev->dev,
6519                                         "No usable DMA configuration, aborting\n");
6520                                 goto err_dma;
6521                         }
6522                 }
6523         }
6524
6525         bars = pci_select_bars(pdev, IORESOURCE_MEM);
6526         err = pci_request_selected_regions_exclusive(pdev, bars,
6527                                                      e1000e_driver_name);
6528         if (err)
6529                 goto err_pci_reg;
6530
6531         /* AER (Advanced Error Reporting) hooks */
6532         pci_enable_pcie_error_reporting(pdev);
6533
6534         pci_set_master(pdev);
6535         /* PCI config space info */
6536         err = pci_save_state(pdev);
6537         if (err)
6538                 goto err_alloc_etherdev;
6539
6540         err = -ENOMEM;
6541         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6542         if (!netdev)
6543                 goto err_alloc_etherdev;
6544
6545         SET_NETDEV_DEV(netdev, &pdev->dev);
6546
6547         netdev->irq = pdev->irq;
6548
6549         pci_set_drvdata(pdev, netdev);
6550         adapter = netdev_priv(netdev);
6551         hw = &adapter->hw;
6552         adapter->netdev = netdev;
6553         adapter->pdev = pdev;
6554         adapter->ei = ei;
6555         adapter->pba = ei->pba;
6556         adapter->flags = ei->flags;
6557         adapter->flags2 = ei->flags2;
6558         adapter->hw.adapter = adapter;
6559         adapter->hw.mac.type = ei->mac;
6560         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6561         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6562
6563         mmio_start = pci_resource_start(pdev, 0);
6564         mmio_len = pci_resource_len(pdev, 0);
6565
6566         err = -EIO;
6567         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6568         if (!adapter->hw.hw_addr)
6569                 goto err_ioremap;
6570
6571         if ((adapter->flags & FLAG_HAS_FLASH) &&
6572             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6573                 flash_start = pci_resource_start(pdev, 1);
6574                 flash_len = pci_resource_len(pdev, 1);
6575                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6576                 if (!adapter->hw.flash_address)
6577                         goto err_flashmap;
6578         }
6579
6580         /* Set default EEE advertisement */
6581         if (adapter->flags2 & FLAG2_HAS_EEE)
6582                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6583
6584         /* construct the net_device struct */
6585         netdev->netdev_ops              = &e1000e_netdev_ops;
6586         e1000e_set_ethtool_ops(netdev);
6587         netdev->watchdog_timeo          = 5 * HZ;
6588         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6589         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6590
6591         netdev->mem_start = mmio_start;
6592         netdev->mem_end = mmio_start + mmio_len;
6593
6594         adapter->bd_number = cards_found++;
6595
6596         e1000e_check_options(adapter);
6597
6598         /* setup adapter struct */
6599         err = e1000_sw_init(adapter);
6600         if (err)
6601                 goto err_sw_init;
6602
6603         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6604         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6605         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6606
6607         err = ei->get_variants(adapter);
6608         if (err)
6609                 goto err_hw_init;
6610
6611         if ((adapter->flags & FLAG_IS_ICH) &&
6612             (adapter->flags & FLAG_READ_ONLY_NVM))
6613                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6614
6615         hw->mac.ops.get_bus_info(&adapter->hw);
6616
6617         adapter->hw.phy.autoneg_wait_to_complete = 0;
6618
6619         /* Copper options */
6620         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6621                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6622                 adapter->hw.phy.disable_polarity_correction = 0;
6623                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6624         }
6625
6626         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6627                 dev_info(&pdev->dev,
6628                          "PHY reset is blocked due to SOL/IDER session.\n");
6629
6630         /* Set initial default active device features */
6631         netdev->features = (NETIF_F_SG |
6632                             NETIF_F_HW_VLAN_RX |
6633                             NETIF_F_HW_VLAN_TX |
6634                             NETIF_F_TSO |
6635                             NETIF_F_TSO6 |
6636                             NETIF_F_RXHASH |
6637                             NETIF_F_RXCSUM |
6638                             NETIF_F_HW_CSUM);
6639
6640         /* Set user-changeable features (subset of all device features) */
6641         netdev->hw_features = netdev->features;
6642         netdev->hw_features |= NETIF_F_RXFCS;
6643         netdev->priv_flags |= IFF_SUPP_NOFCS;
6644         netdev->hw_features |= NETIF_F_RXALL;
6645
6646         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6647                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6648
6649         netdev->vlan_features |= (NETIF_F_SG |
6650                                   NETIF_F_TSO |
6651                                   NETIF_F_TSO6 |
6652                                   NETIF_F_HW_CSUM);
6653
6654         netdev->priv_flags |= IFF_UNICAST_FLT;
6655
6656         if (pci_using_dac) {
6657                 netdev->features |= NETIF_F_HIGHDMA;
6658                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6659         }
6660
6661         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6662                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6663
6664         /* before reading the NVM, reset the controller to
6665          * put the device in a known good starting state
6666          */
6667         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6668
6669         /* systems with ASPM and others may see the checksum fail on the first
6670          * attempt. Let's give it a few tries
6671          */
6672         for (i = 0;; i++) {
6673                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6674                         break;
6675                 if (i == 2) {
6676                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6677                         err = -EIO;
6678                         goto err_eeprom;
6679                 }
6680         }
6681
6682         e1000_eeprom_checks(adapter);
6683
6684         /* copy the MAC address */
6685         if (e1000e_read_mac_addr(&adapter->hw))
6686                 dev_err(&pdev->dev,
6687                         "NVM Read Error while reading MAC address\n");
6688
6689         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6690
6691         if (!is_valid_ether_addr(netdev->dev_addr)) {
6692                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6693                         netdev->dev_addr);
6694                 err = -EIO;
6695                 goto err_eeprom;
6696         }
6697
6698         init_timer(&adapter->watchdog_timer);
6699         adapter->watchdog_timer.function = e1000_watchdog;
6700         adapter->watchdog_timer.data = (unsigned long)adapter;
6701
6702         init_timer(&adapter->phy_info_timer);
6703         adapter->phy_info_timer.function = e1000_update_phy_info;
6704         adapter->phy_info_timer.data = (unsigned long)adapter;
6705
6706         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6707         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6708         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6709         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6710         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6711
6712         /* Initialize link parameters. User can change them with ethtool */
6713         adapter->hw.mac.autoneg = 1;
6714         adapter->fc_autoneg = true;
6715         adapter->hw.fc.requested_mode = e1000_fc_default;
6716         adapter->hw.fc.current_mode = e1000_fc_default;
6717         adapter->hw.phy.autoneg_advertised = 0x2f;
6718
6719         /* ring size defaults */
6720         adapter->rx_ring->count = E1000_DEFAULT_RXD;
6721         adapter->tx_ring->count = E1000_DEFAULT_TXD;
6722
6723         /* Initial Wake on LAN setting - If APM wake is enabled in
6724          * the EEPROM, enable the ACPI Magic Packet filter
6725          */
6726         if (adapter->flags & FLAG_APME_IN_WUC) {
6727                 /* APME bit in EEPROM is mapped to WUC.APME */
6728                 eeprom_data = er32(WUC);
6729                 eeprom_apme_mask = E1000_WUC_APME;
6730                 if ((hw->mac.type > e1000_ich10lan) &&
6731                     (eeprom_data & E1000_WUC_PHY_WAKE))
6732                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6733         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6734                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6735                     (adapter->hw.bus.func == 1))
6736                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6737                                        1, &eeprom_data);
6738                 else
6739                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6740                                        1, &eeprom_data);
6741         }
6742
6743         /* fetch WoL from EEPROM */
6744         if (eeprom_data & eeprom_apme_mask)
6745                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6746
6747         /* now that we have the eeprom settings, apply the special cases
6748          * where the eeprom may be wrong or the board simply won't support
6749          * wake on lan on a particular port
6750          */
6751         if (!(adapter->flags & FLAG_HAS_WOL))
6752                 adapter->eeprom_wol = 0;
6753
6754         /* initialize the wol settings based on the eeprom settings */
6755         adapter->wol = adapter->eeprom_wol;
6756
6757         /* make sure adapter isn't asleep if manageability is enabled */
6758         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6759             (hw->mac.ops.check_mng_mode(hw)))
6760                 device_wakeup_enable(&pdev->dev);
6761
6762         /* save off EEPROM version number */
6763         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6764
6765         /* reset the hardware with the new settings */
6766         e1000e_reset(adapter);
6767
6768         /* If the controller has AMT, do not set DRV_LOAD until the interface
6769          * is up.  For all other cases, let the f/w know that the h/w is now
6770          * under the control of the driver.
6771          */
6772         if (!(adapter->flags & FLAG_HAS_AMT))
6773                 e1000e_get_hw_control(adapter);
6774
6775         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6776         err = register_netdev(netdev);
6777         if (err)
6778                 goto err_register;
6779
6780         /* carrier off reporting is important to ethtool even BEFORE open */
6781         netif_carrier_off(netdev);
6782
6783         /* init PTP hardware clock */
6784         e1000e_ptp_init(adapter);
6785
6786         e1000_print_device_info(adapter);
6787
6788         if (pci_dev_run_wake(pdev))
6789                 pm_runtime_put_noidle(&pdev->dev);
6790
6791         return 0;
6792
6793 err_register:
6794         if (!(adapter->flags & FLAG_HAS_AMT))
6795                 e1000e_release_hw_control(adapter);
6796 err_eeprom:
6797         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6798                 e1000_phy_hw_reset(&adapter->hw);
6799 err_hw_init:
6800         kfree(adapter->tx_ring);
6801         kfree(adapter->rx_ring);
6802 err_sw_init:
6803         if (adapter->hw.flash_address)
6804                 iounmap(adapter->hw.flash_address);
6805         e1000e_reset_interrupt_capability(adapter);
6806 err_flashmap:
6807         iounmap(adapter->hw.hw_addr);
6808 err_ioremap:
6809         free_netdev(netdev);
6810 err_alloc_etherdev:
6811         pci_release_selected_regions(pdev,
6812                                      pci_select_bars(pdev, IORESOURCE_MEM));
6813 err_pci_reg:
6814 err_dma:
6815         pci_disable_device(pdev);
6816         return err;
6817 }
6818
6819 /**
6820  * e1000_remove - Device Removal Routine
6821  * @pdev: PCI device information struct
6822  *
6823  * e1000_remove is called by the PCI subsystem to alert the driver
6824  * that it should release a PCI device.  The could be caused by a
6825  * Hot-Plug event, or because the driver is going to be removed from
6826  * memory.
6827  **/
6828 static void e1000_remove(struct pci_dev *pdev)
6829 {
6830         struct net_device *netdev = pci_get_drvdata(pdev);
6831         struct e1000_adapter *adapter = netdev_priv(netdev);
6832         bool down = test_bit(__E1000_DOWN, &adapter->state);
6833
6834         e1000e_ptp_remove(adapter);
6835
6836         /* The timers may be rescheduled, so explicitly disable them
6837          * from being rescheduled.
6838          */
6839         if (!down)
6840                 set_bit(__E1000_DOWN, &adapter->state);
6841         del_timer_sync(&adapter->watchdog_timer);
6842         del_timer_sync(&adapter->phy_info_timer);
6843
6844         cancel_work_sync(&adapter->reset_task);
6845         cancel_work_sync(&adapter->watchdog_task);
6846         cancel_work_sync(&adapter->downshift_task);
6847         cancel_work_sync(&adapter->update_phy_task);
6848         cancel_work_sync(&adapter->print_hang_task);
6849
6850         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6851                 cancel_work_sync(&adapter->tx_hwtstamp_work);
6852                 if (adapter->tx_hwtstamp_skb) {
6853                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6854                         adapter->tx_hwtstamp_skb = NULL;
6855                 }
6856         }
6857
6858         if (!(netdev->flags & IFF_UP))
6859                 e1000_power_down_phy(adapter);
6860
6861         /* Don't lie to e1000_close() down the road. */
6862         if (!down)
6863                 clear_bit(__E1000_DOWN, &adapter->state);
6864         unregister_netdev(netdev);
6865
6866         if (pci_dev_run_wake(pdev))
6867                 pm_runtime_get_noresume(&pdev->dev);
6868
6869         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6870          * would have already happened in close and is redundant.
6871          */
6872         e1000e_release_hw_control(adapter);
6873
6874         e1000e_reset_interrupt_capability(adapter);
6875         kfree(adapter->tx_ring);
6876         kfree(adapter->rx_ring);
6877
6878         iounmap(adapter->hw.hw_addr);
6879         if (adapter->hw.flash_address)
6880                 iounmap(adapter->hw.flash_address);
6881         pci_release_selected_regions(pdev,
6882                                      pci_select_bars(pdev, IORESOURCE_MEM));
6883
6884         free_netdev(netdev);
6885
6886         /* AER disable */
6887         pci_disable_pcie_error_reporting(pdev);
6888
6889         pci_disable_device(pdev);
6890 }
6891
6892 /* PCI Error Recovery (ERS) */
6893 static const struct pci_error_handlers e1000_err_handler = {
6894         .error_detected = e1000_io_error_detected,
6895         .slot_reset = e1000_io_slot_reset,
6896         .resume = e1000_io_resume,
6897 };
6898
6899 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6900         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6901         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6902         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6903         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
6904           board_82571 },
6905         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6906         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6907         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6908         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6909         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6910
6911         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6912         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6913         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6914         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6915
6916         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6917         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6918         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6919
6920         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6921         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6922         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6923
6924         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6925           board_80003es2lan },
6926         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6927           board_80003es2lan },
6928         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6929           board_80003es2lan },
6930         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6931           board_80003es2lan },
6932
6933         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6934         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6935         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6936         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6937         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6938         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6939         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6940         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6941
6942         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6943         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6944         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6945         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6946         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6947         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6948         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6949         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6950         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6951
6952         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6953         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6954         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6955
6956         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6957         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6958         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6959
6960         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6961         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6962         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6963         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6964
6965         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6966         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6967
6968         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6969         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6970         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
6971         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
6972
6973         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6974 };
6975 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6976
6977 #ifdef CONFIG_PM
6978 static const struct dev_pm_ops e1000_pm_ops = {
6979         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6980         SET_RUNTIME_PM_OPS(e1000_runtime_suspend, e1000_runtime_resume,
6981                            e1000_idle)
6982 };
6983 #endif
6984
6985 /* PCI Device API Driver */
6986 static struct pci_driver e1000_driver = {
6987         .name     = e1000e_driver_name,
6988         .id_table = e1000_pci_tbl,
6989         .probe    = e1000_probe,
6990         .remove   = e1000_remove,
6991 #ifdef CONFIG_PM
6992         .driver   = {
6993                 .pm = &e1000_pm_ops,
6994         },
6995 #endif
6996         .shutdown = e1000_shutdown,
6997         .err_handler = &e1000_err_handler
6998 };
6999
7000 /**
7001  * e1000_init_module - Driver Registration Routine
7002  *
7003  * e1000_init_module is the first routine called when the driver is
7004  * loaded. All it does is register with the PCI subsystem.
7005  **/
7006 static int __init e1000_init_module(void)
7007 {
7008         int ret;
7009         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7010                 e1000e_driver_version);
7011         pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
7012         ret = pci_register_driver(&e1000_driver);
7013
7014         return ret;
7015 }
7016 module_init(e1000_init_module);
7017
7018 /**
7019  * e1000_exit_module - Driver Exit Cleanup Routine
7020  *
7021  * e1000_exit_module is called just before the driver is removed
7022  * from memory.
7023  **/
7024 static void __exit e1000_exit_module(void)
7025 {
7026         pci_unregister_driver(&e1000_driver);
7027 }
7028 module_exit(e1000_exit_module);
7029
7030
7031 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7032 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7033 MODULE_LICENSE("GPL");
7034 MODULE_VERSION(DRV_VERSION);
7035
7036 /* netdev.c */