i40e: refactor interrupt enable
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45  * i40e_program_fdir_filter - Program a Flow Director filter
46  * @fdir_data: Packet data that will be filter parameters
47  * @raw_packet: the pre-allocated packet buffer for FDir
48  * @pf: The PF pointer
49  * @add: True for add/update, False for remove
50  **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52                              struct i40e_pf *pf, bool add)
53 {
54         struct i40e_filter_program_desc *fdir_desc;
55         struct i40e_tx_buffer *tx_buf, *first;
56         struct i40e_tx_desc *tx_desc;
57         struct i40e_ring *tx_ring;
58         unsigned int fpt, dcc;
59         struct i40e_vsi *vsi;
60         struct device *dev;
61         dma_addr_t dma;
62         u32 td_cmd = 0;
63         u16 delay = 0;
64         u16 i;
65
66         /* find existing FDIR VSI */
67         vsi = NULL;
68         for (i = 0; i < pf->num_alloc_vsi; i++)
69                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70                         vsi = pf->vsi[i];
71         if (!vsi)
72                 return -ENOENT;
73
74         tx_ring = vsi->tx_rings[0];
75         dev = tx_ring->dev;
76
77         /* we need two descriptors to add/del a filter and we can wait */
78         do {
79                 if (I40E_DESC_UNUSED(tx_ring) > 1)
80                         break;
81                 msleep_interruptible(1);
82                 delay++;
83         } while (delay < I40E_FD_CLEAN_DELAY);
84
85         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86                 return -EAGAIN;
87
88         dma = dma_map_single(dev, raw_packet,
89                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90         if (dma_mapping_error(dev, dma))
91                 goto dma_fail;
92
93         /* grab the next descriptor */
94         i = tx_ring->next_to_use;
95         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96         first = &tx_ring->tx_bi[i];
97         memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102               I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110         /* Use LAN VSI Id if not programmed by user */
111         if (fdir_data->dest_vsi == 0)
112                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114         else
115                 fpt |= ((u32)fdir_data->dest_vsi <<
116                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121         if (add)
122                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124         else
125                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129                I40E_TXD_FLTR_QW1_DEST_MASK;
130
131         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134         if (fdir_data->cnt_index != 0) {
135                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136                 dcc |= ((u32)fdir_data->cnt_index <<
137                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139         }
140
141         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142         fdir_desc->rsvd = cpu_to_le32(0);
143         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146         /* Now program a dummy descriptor */
147         i = tx_ring->next_to_use;
148         tx_desc = I40E_TX_DESC(tx_ring, i);
149         tx_buf = &tx_ring->tx_bi[i];
150
151         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155         /* record length, and DMA address */
156         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157         dma_unmap_addr_set(tx_buf, dma, dma);
158
159         tx_desc->buffer_addr = cpu_to_le64(dma);
160         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163         tx_buf->raw_buf = (void *)raw_packet;
164
165         tx_desc->cmd_type_offset_bsz =
166                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168         /* Force memory writes to complete before letting h/w
169          * know there are new descriptors to fetch.
170          */
171         wmb();
172
173         /* Mark the data descriptor to be watched */
174         first->next_to_watch = tx_desc;
175
176         writel(tx_ring->next_to_use, tx_ring->tail);
177         return 0;
178
179 dma_fail:
180         return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187  * @vsi: pointer to the targeted VSI
188  * @fd_data: the flow director data required for the FDir descriptor
189  * @add: true adds a filter, false removes it
190  *
191  * Returns 0 if the filters were successfully added or removed
192  **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194                                    struct i40e_fdir_filter *fd_data,
195                                    bool add)
196 {
197         struct i40e_pf *pf = vsi->back;
198         struct udphdr *udp;
199         struct iphdr *ip;
200         bool err = false;
201         u8 *raw_packet;
202         int ret;
203         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208         if (!raw_packet)
209                 return -ENOMEM;
210         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214               + sizeof(struct iphdr));
215
216         ip->daddr = fd_data->dst_ip[0];
217         udp->dest = fd_data->dst_port;
218         ip->saddr = fd_data->src_ip[0];
219         udp->source = fd_data->src_port;
220
221         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223         if (ret) {
224                 dev_info(&pf->pdev->dev,
225                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226                          fd_data->pctype, fd_data->fd_id, ret);
227                 err = true;
228         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229                 if (add)
230                         dev_info(&pf->pdev->dev,
231                                  "Filter OK for PCTYPE %d loc = %d\n",
232                                  fd_data->pctype, fd_data->fd_id);
233                 else
234                         dev_info(&pf->pdev->dev,
235                                  "Filter deleted for PCTYPE %d loc = %d\n",
236                                  fd_data->pctype, fd_data->fd_id);
237         }
238         return err ? -EOPNOTSUPP : 0;
239 }
240
241 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
242 /**
243  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
244  * @vsi: pointer to the targeted VSI
245  * @fd_data: the flow director data required for the FDir descriptor
246  * @add: true adds a filter, false removes it
247  *
248  * Returns 0 if the filters were successfully added or removed
249  **/
250 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
251                                    struct i40e_fdir_filter *fd_data,
252                                    bool add)
253 {
254         struct i40e_pf *pf = vsi->back;
255         struct tcphdr *tcp;
256         struct iphdr *ip;
257         bool err = false;
258         u8 *raw_packet;
259         int ret;
260         /* Dummy packet */
261         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
262                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
263                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
264                 0x0, 0x72, 0, 0, 0, 0};
265
266         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
267         if (!raw_packet)
268                 return -ENOMEM;
269         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
270
271         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
272         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
273               + sizeof(struct iphdr));
274
275         ip->daddr = fd_data->dst_ip[0];
276         tcp->dest = fd_data->dst_port;
277         ip->saddr = fd_data->src_ip[0];
278         tcp->source = fd_data->src_port;
279
280         if (add) {
281                 pf->fd_tcp_rule++;
282                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
283                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
284                                 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
285                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
286                 }
287         } else {
288                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
289                                   (pf->fd_tcp_rule - 1) : 0;
290                 if (pf->fd_tcp_rule == 0) {
291                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
292                         if (I40E_DEBUG_FD & pf->hw.debug_mask)
293                                 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294                 }
295         }
296
297         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300         if (ret) {
301                 dev_info(&pf->pdev->dev,
302                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303                          fd_data->pctype, fd_data->fd_id, ret);
304                 err = true;
305         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
306                 if (add)
307                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308                                  fd_data->pctype, fd_data->fd_id);
309                 else
310                         dev_info(&pf->pdev->dev,
311                                  "Filter deleted for PCTYPE %d loc = %d\n",
312                                  fd_data->pctype, fd_data->fd_id);
313         }
314
315         return err ? -EOPNOTSUPP : 0;
316 }
317
318 /**
319  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320  * a specific flow spec
321  * @vsi: pointer to the targeted VSI
322  * @fd_data: the flow director data required for the FDir descriptor
323  * @add: true adds a filter, false removes it
324  *
325  * Always returns -EOPNOTSUPP
326  **/
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328                                     struct i40e_fdir_filter *fd_data,
329                                     bool add)
330 {
331         return -EOPNOTSUPP;
332 }
333
334 #define I40E_IP_DUMMY_PACKET_LEN 34
335 /**
336  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337  * a specific flow spec
338  * @vsi: pointer to the targeted VSI
339  * @fd_data: the flow director data required for the FDir descriptor
340  * @add: true adds a filter, false removes it
341  *
342  * Returns 0 if the filters were successfully added or removed
343  **/
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345                                   struct i40e_fdir_filter *fd_data,
346                                   bool add)
347 {
348         struct i40e_pf *pf = vsi->back;
349         struct iphdr *ip;
350         bool err = false;
351         u8 *raw_packet;
352         int ret;
353         int i;
354         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356                 0, 0, 0, 0};
357
358         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361                 if (!raw_packet)
362                         return -ENOMEM;
363                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366                 ip->saddr = fd_data->src_ip[0];
367                 ip->daddr = fd_data->dst_ip[0];
368                 ip->protocol = 0;
369
370                 fd_data->pctype = i;
371                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373                 if (ret) {
374                         dev_info(&pf->pdev->dev,
375                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376                                  fd_data->pctype, fd_data->fd_id, ret);
377                         err = true;
378                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
379                         if (add)
380                                 dev_info(&pf->pdev->dev,
381                                          "Filter OK for PCTYPE %d loc = %d\n",
382                                          fd_data->pctype, fd_data->fd_id);
383                         else
384                                 dev_info(&pf->pdev->dev,
385                                          "Filter deleted for PCTYPE %d loc = %d\n",
386                                          fd_data->pctype, fd_data->fd_id);
387                 }
388         }
389
390         return err ? -EOPNOTSUPP : 0;
391 }
392
393 /**
394  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395  * @vsi: pointer to the targeted VSI
396  * @cmd: command to get or set RX flow classification rules
397  * @add: true adds a filter, false removes it
398  *
399  **/
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401                       struct i40e_fdir_filter *input, bool add)
402 {
403         struct i40e_pf *pf = vsi->back;
404         int ret;
405
406         switch (input->flow_type & ~FLOW_EXT) {
407         case TCP_V4_FLOW:
408                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409                 break;
410         case UDP_V4_FLOW:
411                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412                 break;
413         case SCTP_V4_FLOW:
414                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415                 break;
416         case IPV4_FLOW:
417                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418                 break;
419         case IP_USER_FLOW:
420                 switch (input->ip4_proto) {
421                 case IPPROTO_TCP:
422                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423                         break;
424                 case IPPROTO_UDP:
425                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426                         break;
427                 case IPPROTO_SCTP:
428                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429                         break;
430                 default:
431                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432                         break;
433                 }
434                 break;
435         default:
436                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437                          input->flow_type);
438                 ret = -EINVAL;
439         }
440
441         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442         return ret;
443 }
444
445 /**
446  * i40e_fd_handle_status - check the Programming Status for FD
447  * @rx_ring: the Rx ring for this descriptor
448  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449  * @prog_id: the id originally used for programming
450  *
451  * This is used to verify if the FD programming or invalidation
452  * requested by SW to the HW is successful or not and take actions accordingly.
453  **/
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455                                   union i40e_rx_desc *rx_desc, u8 prog_id)
456 {
457         struct i40e_pf *pf = rx_ring->vsi->back;
458         struct pci_dev *pdev = pf->pdev;
459         u32 fcnt_prog, fcnt_avail;
460         u32 error;
461         u64 qw;
462
463         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
469                     (I40E_DEBUG_FD & pf->hw.debug_mask))
470                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471                                  rx_desc->wb.qword0.hi_dword.fd_id);
472
473                 /* Check if the programming error is for ATR.
474                  * If so, auto disable ATR and set a state for
475                  * flush in progress. Next time we come here if flush is in
476                  * progress do nothing, once flush is complete the state will
477                  * be cleared.
478                  */
479                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
480                         return;
481
482                 pf->fd_add_err++;
483                 /* store the current atr filter count */
484                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
485
486                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
487                     (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
488                         pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
489                         set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
490                 }
491
492                 /* filter programming failed most likely due to table full */
493                 fcnt_prog = i40e_get_global_fd_count(pf);
494                 fcnt_avail = pf->fdir_pf_filter_count;
495                 /* If ATR is running fcnt_prog can quickly change,
496                  * if we are very close to full, it makes sense to disable
497                  * FD ATR/SB and then re-enable it when there is room.
498                  */
499                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
500                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
501                             !(pf->auto_disable_flags &
502                                      I40E_FLAG_FD_SB_ENABLED)) {
503                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
504                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
505                                 pf->auto_disable_flags |=
506                                                         I40E_FLAG_FD_SB_ENABLED;
507                         }
508                 } else {
509                         dev_info(&pdev->dev,
510                                 "FD filter programming failed due to incorrect filter parameters\n");
511                 }
512         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
513                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
514                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
515                                  rx_desc->wb.qword0.hi_dword.fd_id);
516         }
517 }
518
519 /**
520  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
521  * @ring:      the ring that owns the buffer
522  * @tx_buffer: the buffer to free
523  **/
524 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
525                                             struct i40e_tx_buffer *tx_buffer)
526 {
527         if (tx_buffer->skb) {
528                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
529                         kfree(tx_buffer->raw_buf);
530                 else
531                         dev_kfree_skb_any(tx_buffer->skb);
532
533                 if (dma_unmap_len(tx_buffer, len))
534                         dma_unmap_single(ring->dev,
535                                          dma_unmap_addr(tx_buffer, dma),
536                                          dma_unmap_len(tx_buffer, len),
537                                          DMA_TO_DEVICE);
538         } else if (dma_unmap_len(tx_buffer, len)) {
539                 dma_unmap_page(ring->dev,
540                                dma_unmap_addr(tx_buffer, dma),
541                                dma_unmap_len(tx_buffer, len),
542                                DMA_TO_DEVICE);
543         }
544         tx_buffer->next_to_watch = NULL;
545         tx_buffer->skb = NULL;
546         dma_unmap_len_set(tx_buffer, len, 0);
547         /* tx_buffer must be completely set up in the transmit path */
548 }
549
550 /**
551  * i40e_clean_tx_ring - Free any empty Tx buffers
552  * @tx_ring: ring to be cleaned
553  **/
554 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
555 {
556         unsigned long bi_size;
557         u16 i;
558
559         /* ring already cleared, nothing to do */
560         if (!tx_ring->tx_bi)
561                 return;
562
563         /* Free all the Tx ring sk_buffs */
564         for (i = 0; i < tx_ring->count; i++)
565                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
566
567         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
568         memset(tx_ring->tx_bi, 0, bi_size);
569
570         /* Zero out the descriptor ring */
571         memset(tx_ring->desc, 0, tx_ring->size);
572
573         tx_ring->next_to_use = 0;
574         tx_ring->next_to_clean = 0;
575
576         if (!tx_ring->netdev)
577                 return;
578
579         /* cleanup Tx queue statistics */
580         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
581                                                   tx_ring->queue_index));
582 }
583
584 /**
585  * i40e_free_tx_resources - Free Tx resources per queue
586  * @tx_ring: Tx descriptor ring for a specific queue
587  *
588  * Free all transmit software resources
589  **/
590 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
591 {
592         i40e_clean_tx_ring(tx_ring);
593         kfree(tx_ring->tx_bi);
594         tx_ring->tx_bi = NULL;
595
596         if (tx_ring->desc) {
597                 dma_free_coherent(tx_ring->dev, tx_ring->size,
598                                   tx_ring->desc, tx_ring->dma);
599                 tx_ring->desc = NULL;
600         }
601 }
602
603 /**
604  * i40e_get_tx_pending - how many tx descriptors not processed
605  * @tx_ring: the ring of descriptors
606  *
607  * Since there is no access to the ring head register
608  * in XL710, we need to use our local copies
609  **/
610 u32 i40e_get_tx_pending(struct i40e_ring *ring)
611 {
612         u32 head, tail;
613
614         head = i40e_get_head(ring);
615         tail = readl(ring->tail);
616
617         if (head != tail)
618                 return (head < tail) ?
619                         tail - head : (tail + ring->count - head);
620
621         return 0;
622 }
623
624 #define WB_STRIDE 0x3
625
626 /**
627  * i40e_clean_tx_irq - Reclaim resources after transmit completes
628  * @tx_ring:  tx ring to clean
629  * @budget:   how many cleans we're allowed
630  *
631  * Returns true if there's any budget left (e.g. the clean is finished)
632  **/
633 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
634 {
635         u16 i = tx_ring->next_to_clean;
636         struct i40e_tx_buffer *tx_buf;
637         struct i40e_tx_desc *tx_head;
638         struct i40e_tx_desc *tx_desc;
639         unsigned int total_packets = 0;
640         unsigned int total_bytes = 0;
641
642         tx_buf = &tx_ring->tx_bi[i];
643         tx_desc = I40E_TX_DESC(tx_ring, i);
644         i -= tx_ring->count;
645
646         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
647
648         do {
649                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
650
651                 /* if next_to_watch is not set then there is no work pending */
652                 if (!eop_desc)
653                         break;
654
655                 /* prevent any other reads prior to eop_desc */
656                 read_barrier_depends();
657
658                 /* we have caught up to head, no work left to do */
659                 if (tx_head == tx_desc)
660                         break;
661
662                 /* clear next_to_watch to prevent false hangs */
663                 tx_buf->next_to_watch = NULL;
664
665                 /* update the statistics for this packet */
666                 total_bytes += tx_buf->bytecount;
667                 total_packets += tx_buf->gso_segs;
668
669                 /* free the skb */
670                 dev_consume_skb_any(tx_buf->skb);
671
672                 /* unmap skb header data */
673                 dma_unmap_single(tx_ring->dev,
674                                  dma_unmap_addr(tx_buf, dma),
675                                  dma_unmap_len(tx_buf, len),
676                                  DMA_TO_DEVICE);
677
678                 /* clear tx_buffer data */
679                 tx_buf->skb = NULL;
680                 dma_unmap_len_set(tx_buf, len, 0);
681
682                 /* unmap remaining buffers */
683                 while (tx_desc != eop_desc) {
684
685                         tx_buf++;
686                         tx_desc++;
687                         i++;
688                         if (unlikely(!i)) {
689                                 i -= tx_ring->count;
690                                 tx_buf = tx_ring->tx_bi;
691                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
692                         }
693
694                         /* unmap any remaining paged data */
695                         if (dma_unmap_len(tx_buf, len)) {
696                                 dma_unmap_page(tx_ring->dev,
697                                                dma_unmap_addr(tx_buf, dma),
698                                                dma_unmap_len(tx_buf, len),
699                                                DMA_TO_DEVICE);
700                                 dma_unmap_len_set(tx_buf, len, 0);
701                         }
702                 }
703
704                 /* move us one more past the eop_desc for start of next pkt */
705                 tx_buf++;
706                 tx_desc++;
707                 i++;
708                 if (unlikely(!i)) {
709                         i -= tx_ring->count;
710                         tx_buf = tx_ring->tx_bi;
711                         tx_desc = I40E_TX_DESC(tx_ring, 0);
712                 }
713
714                 prefetch(tx_desc);
715
716                 /* update budget accounting */
717                 budget--;
718         } while (likely(budget));
719
720         i += tx_ring->count;
721         tx_ring->next_to_clean = i;
722         u64_stats_update_begin(&tx_ring->syncp);
723         tx_ring->stats.bytes += total_bytes;
724         tx_ring->stats.packets += total_packets;
725         u64_stats_update_end(&tx_ring->syncp);
726         tx_ring->q_vector->tx.total_bytes += total_bytes;
727         tx_ring->q_vector->tx.total_packets += total_packets;
728
729         if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
730                 unsigned int j = 0;
731
732                 /* check to see if there are < 4 descriptors
733                  * waiting to be written back, then kick the hardware to force
734                  * them to be written back in case we stay in NAPI.
735                  * In this mode on X722 we do not enable Interrupt.
736                  */
737                 j = i40e_get_tx_pending(tx_ring);
738
739                 if (budget &&
740                     ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
741                     !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
742                     (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
743                         tx_ring->arm_wb = true;
744         }
745
746         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
747                                                       tx_ring->queue_index),
748                                   total_packets, total_bytes);
749
750 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
751         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
752                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
753                 /* Make sure that anybody stopping the queue after this
754                  * sees the new next_to_clean.
755                  */
756                 smp_mb();
757                 if (__netif_subqueue_stopped(tx_ring->netdev,
758                                              tx_ring->queue_index) &&
759                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
760                         netif_wake_subqueue(tx_ring->netdev,
761                                             tx_ring->queue_index);
762                         ++tx_ring->tx_stats.restart_queue;
763                 }
764         }
765
766         return !!budget;
767 }
768
769 /**
770  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
771  * @vsi: the VSI we care about
772  * @q_vector: the vector  on which to force writeback
773  *
774  **/
775 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
776 {
777         u16 flags = q_vector->tx.ring[0].flags;
778
779         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
780                 u32 val;
781
782                 if (q_vector->arm_wb_state)
783                         return;
784
785                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK;
786
787                 wr32(&vsi->back->hw,
788                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
789                                          vsi->base_vector - 1),
790                      val);
791                 q_vector->arm_wb_state = true;
792         } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
793                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
794                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
795                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
796                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
797                           /* allow 00 to be written to the index */
798
799                 wr32(&vsi->back->hw,
800                      I40E_PFINT_DYN_CTLN(q_vector->v_idx +
801                                          vsi->base_vector - 1), val);
802         } else {
803                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
804                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
805                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
806                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
807                         /* allow 00 to be written to the index */
808
809                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
810         }
811 }
812
813 /**
814  * i40e_set_new_dynamic_itr - Find new ITR level
815  * @rc: structure containing ring performance data
816  *
817  * Stores a new ITR value based on packets and byte counts during
818  * the last interrupt.  The advantage of per interrupt computation
819  * is faster updates and more accurate ITR for the current traffic
820  * pattern.  Constants in this function were computed based on
821  * theoretical maximum wire speed and thresholds were set based on
822  * testing data as well as attempting to minimize response time
823  * while increasing bulk throughput.
824  **/
825 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
826 {
827         enum i40e_latency_range new_latency_range = rc->latency_range;
828         u32 new_itr = rc->itr;
829         int bytes_per_int;
830
831         if (rc->total_packets == 0 || !rc->itr)
832                 return;
833
834         /* simple throttlerate management
835          *   0-10MB/s   lowest (100000 ints/s)
836          *  10-20MB/s   low    (20000 ints/s)
837          *  20-1249MB/s bulk   (8000 ints/s)
838          */
839         bytes_per_int = rc->total_bytes / rc->itr;
840         switch (new_latency_range) {
841         case I40E_LOWEST_LATENCY:
842                 if (bytes_per_int > 10)
843                         new_latency_range = I40E_LOW_LATENCY;
844                 break;
845         case I40E_LOW_LATENCY:
846                 if (bytes_per_int > 20)
847                         new_latency_range = I40E_BULK_LATENCY;
848                 else if (bytes_per_int <= 10)
849                         new_latency_range = I40E_LOWEST_LATENCY;
850                 break;
851         case I40E_BULK_LATENCY:
852                 if (bytes_per_int <= 20)
853                         new_latency_range = I40E_LOW_LATENCY;
854                 break;
855         default:
856                 if (bytes_per_int <= 20)
857                         new_latency_range = I40E_LOW_LATENCY;
858                 break;
859         }
860         rc->latency_range = new_latency_range;
861
862         switch (new_latency_range) {
863         case I40E_LOWEST_LATENCY:
864                 new_itr = I40E_ITR_100K;
865                 break;
866         case I40E_LOW_LATENCY:
867                 new_itr = I40E_ITR_20K;
868                 break;
869         case I40E_BULK_LATENCY:
870                 new_itr = I40E_ITR_8K;
871                 break;
872         default:
873                 break;
874         }
875
876         if (new_itr != rc->itr)
877                 rc->itr = new_itr;
878
879         rc->total_bytes = 0;
880         rc->total_packets = 0;
881 }
882
883 /**
884  * i40e_clean_programming_status - clean the programming status descriptor
885  * @rx_ring: the rx ring that has this descriptor
886  * @rx_desc: the rx descriptor written back by HW
887  *
888  * Flow director should handle FD_FILTER_STATUS to check its filter programming
889  * status being successful or not and take actions accordingly. FCoE should
890  * handle its context/filter programming/invalidation status and take actions.
891  *
892  **/
893 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
894                                           union i40e_rx_desc *rx_desc)
895 {
896         u64 qw;
897         u8 id;
898
899         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
900         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
901                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
902
903         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
904                 i40e_fd_handle_status(rx_ring, rx_desc, id);
905 #ifdef I40E_FCOE
906         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
907                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
908                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
909 #endif
910 }
911
912 /**
913  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
914  * @tx_ring: the tx ring to set up
915  *
916  * Return 0 on success, negative on error
917  **/
918 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
919 {
920         struct device *dev = tx_ring->dev;
921         int bi_size;
922
923         if (!dev)
924                 return -ENOMEM;
925
926         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
927         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
928         if (!tx_ring->tx_bi)
929                 goto err;
930
931         /* round up to nearest 4K */
932         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
933         /* add u32 for head writeback, align after this takes care of
934          * guaranteeing this is at least one cache line in size
935          */
936         tx_ring->size += sizeof(u32);
937         tx_ring->size = ALIGN(tx_ring->size, 4096);
938         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
939                                            &tx_ring->dma, GFP_KERNEL);
940         if (!tx_ring->desc) {
941                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
942                          tx_ring->size);
943                 goto err;
944         }
945
946         tx_ring->next_to_use = 0;
947         tx_ring->next_to_clean = 0;
948         return 0;
949
950 err:
951         kfree(tx_ring->tx_bi);
952         tx_ring->tx_bi = NULL;
953         return -ENOMEM;
954 }
955
956 /**
957  * i40e_clean_rx_ring - Free Rx buffers
958  * @rx_ring: ring to be cleaned
959  **/
960 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
961 {
962         struct device *dev = rx_ring->dev;
963         struct i40e_rx_buffer *rx_bi;
964         unsigned long bi_size;
965         u16 i;
966
967         /* ring already cleared, nothing to do */
968         if (!rx_ring->rx_bi)
969                 return;
970
971         if (ring_is_ps_enabled(rx_ring)) {
972                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
973
974                 rx_bi = &rx_ring->rx_bi[0];
975                 if (rx_bi->hdr_buf) {
976                         dma_free_coherent(dev,
977                                           bufsz,
978                                           rx_bi->hdr_buf,
979                                           rx_bi->dma);
980                         for (i = 0; i < rx_ring->count; i++) {
981                                 rx_bi = &rx_ring->rx_bi[i];
982                                 rx_bi->dma = 0;
983                                 rx_bi->hdr_buf = NULL;
984                         }
985                 }
986         }
987         /* Free all the Rx ring sk_buffs */
988         for (i = 0; i < rx_ring->count; i++) {
989                 rx_bi = &rx_ring->rx_bi[i];
990                 if (rx_bi->dma) {
991                         dma_unmap_single(dev,
992                                          rx_bi->dma,
993                                          rx_ring->rx_buf_len,
994                                          DMA_FROM_DEVICE);
995                         rx_bi->dma = 0;
996                 }
997                 if (rx_bi->skb) {
998                         dev_kfree_skb(rx_bi->skb);
999                         rx_bi->skb = NULL;
1000                 }
1001                 if (rx_bi->page) {
1002                         if (rx_bi->page_dma) {
1003                                 dma_unmap_page(dev,
1004                                                rx_bi->page_dma,
1005                                                PAGE_SIZE / 2,
1006                                                DMA_FROM_DEVICE);
1007                                 rx_bi->page_dma = 0;
1008                         }
1009                         __free_page(rx_bi->page);
1010                         rx_bi->page = NULL;
1011                         rx_bi->page_offset = 0;
1012                 }
1013         }
1014
1015         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1016         memset(rx_ring->rx_bi, 0, bi_size);
1017
1018         /* Zero out the descriptor ring */
1019         memset(rx_ring->desc, 0, rx_ring->size);
1020
1021         rx_ring->next_to_clean = 0;
1022         rx_ring->next_to_use = 0;
1023 }
1024
1025 /**
1026  * i40e_free_rx_resources - Free Rx resources
1027  * @rx_ring: ring to clean the resources from
1028  *
1029  * Free all receive software resources
1030  **/
1031 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1032 {
1033         i40e_clean_rx_ring(rx_ring);
1034         kfree(rx_ring->rx_bi);
1035         rx_ring->rx_bi = NULL;
1036
1037         if (rx_ring->desc) {
1038                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1039                                   rx_ring->desc, rx_ring->dma);
1040                 rx_ring->desc = NULL;
1041         }
1042 }
1043
1044 /**
1045  * i40e_alloc_rx_headers - allocate rx header buffers
1046  * @rx_ring: ring to alloc buffers
1047  *
1048  * Allocate rx header buffers for the entire ring. As these are static,
1049  * this is only called when setting up a new ring.
1050  **/
1051 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1052 {
1053         struct device *dev = rx_ring->dev;
1054         struct i40e_rx_buffer *rx_bi;
1055         dma_addr_t dma;
1056         void *buffer;
1057         int buf_size;
1058         int i;
1059
1060         if (rx_ring->rx_bi[0].hdr_buf)
1061                 return;
1062         /* Make sure the buffers don't cross cache line boundaries. */
1063         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1064         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1065                                     &dma, GFP_KERNEL);
1066         if (!buffer)
1067                 return;
1068         for (i = 0; i < rx_ring->count; i++) {
1069                 rx_bi = &rx_ring->rx_bi[i];
1070                 rx_bi->dma = dma + (i * buf_size);
1071                 rx_bi->hdr_buf = buffer + (i * buf_size);
1072         }
1073 }
1074
1075 /**
1076  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1077  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1078  *
1079  * Returns 0 on success, negative on failure
1080  **/
1081 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1082 {
1083         struct device *dev = rx_ring->dev;
1084         int bi_size;
1085
1086         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1087         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1088         if (!rx_ring->rx_bi)
1089                 goto err;
1090
1091         u64_stats_init(&rx_ring->syncp);
1092
1093         /* Round up to nearest 4K */
1094         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1095                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1096                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1097         rx_ring->size = ALIGN(rx_ring->size, 4096);
1098         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1099                                            &rx_ring->dma, GFP_KERNEL);
1100
1101         if (!rx_ring->desc) {
1102                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1103                          rx_ring->size);
1104                 goto err;
1105         }
1106
1107         rx_ring->next_to_clean = 0;
1108         rx_ring->next_to_use = 0;
1109
1110         return 0;
1111 err:
1112         kfree(rx_ring->rx_bi);
1113         rx_ring->rx_bi = NULL;
1114         return -ENOMEM;
1115 }
1116
1117 /**
1118  * i40e_release_rx_desc - Store the new tail and head values
1119  * @rx_ring: ring to bump
1120  * @val: new head index
1121  **/
1122 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1123 {
1124         rx_ring->next_to_use = val;
1125         /* Force memory writes to complete before letting h/w
1126          * know there are new descriptors to fetch.  (Only
1127          * applicable for weak-ordered memory model archs,
1128          * such as IA-64).
1129          */
1130         wmb();
1131         writel(val, rx_ring->tail);
1132 }
1133
1134 /**
1135  * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1136  * @rx_ring: ring to place buffers on
1137  * @cleaned_count: number of buffers to replace
1138  **/
1139 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1140 {
1141         u16 i = rx_ring->next_to_use;
1142         union i40e_rx_desc *rx_desc;
1143         struct i40e_rx_buffer *bi;
1144
1145         /* do nothing if no valid netdev defined */
1146         if (!rx_ring->netdev || !cleaned_count)
1147                 return;
1148
1149         while (cleaned_count--) {
1150                 rx_desc = I40E_RX_DESC(rx_ring, i);
1151                 bi = &rx_ring->rx_bi[i];
1152
1153                 if (bi->skb) /* desc is in use */
1154                         goto no_buffers;
1155                 if (!bi->page) {
1156                         bi->page = alloc_page(GFP_ATOMIC);
1157                         if (!bi->page) {
1158                                 rx_ring->rx_stats.alloc_page_failed++;
1159                                 goto no_buffers;
1160                         }
1161                 }
1162
1163                 if (!bi->page_dma) {
1164                         /* use a half page if we're re-using */
1165                         bi->page_offset ^= PAGE_SIZE / 2;
1166                         bi->page_dma = dma_map_page(rx_ring->dev,
1167                                                     bi->page,
1168                                                     bi->page_offset,
1169                                                     PAGE_SIZE / 2,
1170                                                     DMA_FROM_DEVICE);
1171                         if (dma_mapping_error(rx_ring->dev,
1172                                               bi->page_dma)) {
1173                                 rx_ring->rx_stats.alloc_page_failed++;
1174                                 bi->page_dma = 0;
1175                                 goto no_buffers;
1176                         }
1177                 }
1178
1179                 dma_sync_single_range_for_device(rx_ring->dev,
1180                                                  bi->dma,
1181                                                  0,
1182                                                  rx_ring->rx_hdr_len,
1183                                                  DMA_FROM_DEVICE);
1184                 /* Refresh the desc even if buffer_addrs didn't change
1185                  * because each write-back erases this info.
1186                  */
1187                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1188                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1189                 i++;
1190                 if (i == rx_ring->count)
1191                         i = 0;
1192         }
1193
1194 no_buffers:
1195         if (rx_ring->next_to_use != i)
1196                 i40e_release_rx_desc(rx_ring, i);
1197 }
1198
1199 /**
1200  * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1201  * @rx_ring: ring to place buffers on
1202  * @cleaned_count: number of buffers to replace
1203  **/
1204 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1205 {
1206         u16 i = rx_ring->next_to_use;
1207         union i40e_rx_desc *rx_desc;
1208         struct i40e_rx_buffer *bi;
1209         struct sk_buff *skb;
1210
1211         /* do nothing if no valid netdev defined */
1212         if (!rx_ring->netdev || !cleaned_count)
1213                 return;
1214
1215         while (cleaned_count--) {
1216                 rx_desc = I40E_RX_DESC(rx_ring, i);
1217                 bi = &rx_ring->rx_bi[i];
1218                 skb = bi->skb;
1219
1220                 if (!skb) {
1221                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1222                                                         rx_ring->rx_buf_len);
1223                         if (!skb) {
1224                                 rx_ring->rx_stats.alloc_buff_failed++;
1225                                 goto no_buffers;
1226                         }
1227                         /* initialize queue mapping */
1228                         skb_record_rx_queue(skb, rx_ring->queue_index);
1229                         bi->skb = skb;
1230                 }
1231
1232                 if (!bi->dma) {
1233                         bi->dma = dma_map_single(rx_ring->dev,
1234                                                  skb->data,
1235                                                  rx_ring->rx_buf_len,
1236                                                  DMA_FROM_DEVICE);
1237                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1238                                 rx_ring->rx_stats.alloc_buff_failed++;
1239                                 bi->dma = 0;
1240                                 goto no_buffers;
1241                         }
1242                 }
1243
1244                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1245                 rx_desc->read.hdr_addr = 0;
1246                 i++;
1247                 if (i == rx_ring->count)
1248                         i = 0;
1249         }
1250
1251 no_buffers:
1252         if (rx_ring->next_to_use != i)
1253                 i40e_release_rx_desc(rx_ring, i);
1254 }
1255
1256 /**
1257  * i40e_receive_skb - Send a completed packet up the stack
1258  * @rx_ring:  rx ring in play
1259  * @skb: packet to send up
1260  * @vlan_tag: vlan tag for packet
1261  **/
1262 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1263                              struct sk_buff *skb, u16 vlan_tag)
1264 {
1265         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1266         struct i40e_vsi *vsi = rx_ring->vsi;
1267         u64 flags = vsi->back->flags;
1268
1269         if (vlan_tag & VLAN_VID_MASK)
1270                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1271
1272         if (flags & I40E_FLAG_IN_NETPOLL)
1273                 netif_rx(skb);
1274         else
1275                 napi_gro_receive(&q_vector->napi, skb);
1276 }
1277
1278 /**
1279  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1280  * @vsi: the VSI we care about
1281  * @skb: skb currently being received and modified
1282  * @rx_status: status value of last descriptor in packet
1283  * @rx_error: error value of last descriptor in packet
1284  * @rx_ptype: ptype value of last descriptor in packet
1285  **/
1286 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1287                                     struct sk_buff *skb,
1288                                     u32 rx_status,
1289                                     u32 rx_error,
1290                                     u16 rx_ptype)
1291 {
1292         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1293         bool ipv4 = false, ipv6 = false;
1294         bool ipv4_tunnel, ipv6_tunnel;
1295         __wsum rx_udp_csum;
1296         struct iphdr *iph;
1297         __sum16 csum;
1298
1299         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1300                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1301         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1302                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1303
1304         skb->ip_summed = CHECKSUM_NONE;
1305
1306         /* Rx csum enabled and ip headers found? */
1307         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1308                 return;
1309
1310         /* did the hardware decode the packet and checksum? */
1311         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1312                 return;
1313
1314         /* both known and outer_ip must be set for the below code to work */
1315         if (!(decoded.known && decoded.outer_ip))
1316                 return;
1317
1318         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1319             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1320                 ipv4 = true;
1321         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1322                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1323                 ipv6 = true;
1324
1325         if (ipv4 &&
1326             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1327                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1328                 goto checksum_fail;
1329
1330         /* likely incorrect csum if alternate IP extension headers found */
1331         if (ipv6 &&
1332             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1333                 /* don't increment checksum err here, non-fatal err */
1334                 return;
1335
1336         /* there was some L4 error, count error and punt packet to the stack */
1337         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1338                 goto checksum_fail;
1339
1340         /* handle packets that were not able to be checksummed due
1341          * to arrival speed, in this case the stack can compute
1342          * the csum.
1343          */
1344         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1345                 return;
1346
1347         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1348          * it in the driver, hardware does not do it for us.
1349          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1350          * so the total length of IPv4 header is IHL*4 bytes
1351          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1352          */
1353         if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
1354             (ipv4_tunnel)) {
1355                 skb->transport_header = skb->mac_header +
1356                                         sizeof(struct ethhdr) +
1357                                         (ip_hdr(skb)->ihl * 4);
1358
1359                 /* Add 4 bytes for VLAN tagged packets */
1360                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1361                                           skb->protocol == htons(ETH_P_8021AD))
1362                                           ? VLAN_HLEN : 0;
1363
1364                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1365                     (udp_hdr(skb)->check != 0)) {
1366                         rx_udp_csum = udp_csum(skb);
1367                         iph = ip_hdr(skb);
1368                         csum = csum_tcpudp_magic(
1369                                         iph->saddr, iph->daddr,
1370                                         (skb->len - skb_transport_offset(skb)),
1371                                         IPPROTO_UDP, rx_udp_csum);
1372
1373                         if (udp_hdr(skb)->check != csum)
1374                                 goto checksum_fail;
1375
1376                 } /* else its GRE and so no outer UDP header */
1377         }
1378
1379         skb->ip_summed = CHECKSUM_UNNECESSARY;
1380         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1381
1382         return;
1383
1384 checksum_fail:
1385         vsi->back->hw_csum_rx_error++;
1386 }
1387
1388 /**
1389  * i40e_rx_hash - returns the hash value from the Rx descriptor
1390  * @ring: descriptor ring
1391  * @rx_desc: specific descriptor
1392  **/
1393 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1394                                union i40e_rx_desc *rx_desc)
1395 {
1396         const __le64 rss_mask =
1397                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1398                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1399
1400         if ((ring->netdev->features & NETIF_F_RXHASH) &&
1401             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1402                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1403         else
1404                 return 0;
1405 }
1406
1407 /**
1408  * i40e_ptype_to_hash - get a hash type
1409  * @ptype: the ptype value from the descriptor
1410  *
1411  * Returns a hash type to be used by skb_set_hash
1412  **/
1413 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1414 {
1415         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1416
1417         if (!decoded.known)
1418                 return PKT_HASH_TYPE_NONE;
1419
1420         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1421             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1422                 return PKT_HASH_TYPE_L4;
1423         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1424                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1425                 return PKT_HASH_TYPE_L3;
1426         else
1427                 return PKT_HASH_TYPE_L2;
1428 }
1429
1430 /**
1431  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1432  * @rx_ring:  rx ring to clean
1433  * @budget:   how many cleans we're allowed
1434  *
1435  * Returns true if there's any budget left (e.g. the clean is finished)
1436  **/
1437 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1438 {
1439         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1440         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1441         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1442         const int current_node = numa_node_id();
1443         struct i40e_vsi *vsi = rx_ring->vsi;
1444         u16 i = rx_ring->next_to_clean;
1445         union i40e_rx_desc *rx_desc;
1446         u32 rx_error, rx_status;
1447         u8 rx_ptype;
1448         u64 qword;
1449
1450         if (budget <= 0)
1451                 return 0;
1452
1453         do {
1454                 struct i40e_rx_buffer *rx_bi;
1455                 struct sk_buff *skb;
1456                 u16 vlan_tag;
1457                 /* return some buffers to hardware, one at a time is too slow */
1458                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1459                         i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1460                         cleaned_count = 0;
1461                 }
1462
1463                 i = rx_ring->next_to_clean;
1464                 rx_desc = I40E_RX_DESC(rx_ring, i);
1465                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1466                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1467                         I40E_RXD_QW1_STATUS_SHIFT;
1468
1469                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1470                         break;
1471
1472                 /* This memory barrier is needed to keep us from reading
1473                  * any other fields out of the rx_desc until we know the
1474                  * DD bit is set.
1475                  */
1476                 dma_rmb();
1477                 if (i40e_rx_is_programming_status(qword)) {
1478                         i40e_clean_programming_status(rx_ring, rx_desc);
1479                         I40E_RX_INCREMENT(rx_ring, i);
1480                         continue;
1481                 }
1482                 rx_bi = &rx_ring->rx_bi[i];
1483                 skb = rx_bi->skb;
1484                 if (likely(!skb)) {
1485                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1486                                                         rx_ring->rx_hdr_len);
1487                         if (!skb) {
1488                                 rx_ring->rx_stats.alloc_buff_failed++;
1489                                 break;
1490                         }
1491
1492                         /* initialize queue mapping */
1493                         skb_record_rx_queue(skb, rx_ring->queue_index);
1494                         /* we are reusing so sync this buffer for CPU use */
1495                         dma_sync_single_range_for_cpu(rx_ring->dev,
1496                                                       rx_bi->dma,
1497                                                       0,
1498                                                       rx_ring->rx_hdr_len,
1499                                                       DMA_FROM_DEVICE);
1500                 }
1501                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1502                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1503                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1504                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1505                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1506                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1507
1508                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1509                            I40E_RXD_QW1_ERROR_SHIFT;
1510                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1511                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1512
1513                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1514                            I40E_RXD_QW1_PTYPE_SHIFT;
1515                 prefetch(rx_bi->page);
1516                 rx_bi->skb = NULL;
1517                 cleaned_count++;
1518                 if (rx_hbo || rx_sph) {
1519                         int len;
1520                         if (rx_hbo)
1521                                 len = I40E_RX_HDR_SIZE;
1522                         else
1523                                 len = rx_header_len;
1524                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1525                 } else if (skb->len == 0) {
1526                         int len;
1527
1528                         len = (rx_packet_len > skb_headlen(skb) ?
1529                                 skb_headlen(skb) : rx_packet_len);
1530                         memcpy(__skb_put(skb, len),
1531                                rx_bi->page + rx_bi->page_offset,
1532                                len);
1533                         rx_bi->page_offset += len;
1534                         rx_packet_len -= len;
1535                 }
1536
1537                 /* Get the rest of the data if this was a header split */
1538                 if (rx_packet_len) {
1539                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1540                                            rx_bi->page,
1541                                            rx_bi->page_offset,
1542                                            rx_packet_len);
1543
1544                         skb->len += rx_packet_len;
1545                         skb->data_len += rx_packet_len;
1546                         skb->truesize += rx_packet_len;
1547
1548                         if ((page_count(rx_bi->page) == 1) &&
1549                             (page_to_nid(rx_bi->page) == current_node))
1550                                 get_page(rx_bi->page);
1551                         else
1552                                 rx_bi->page = NULL;
1553
1554                         dma_unmap_page(rx_ring->dev,
1555                                        rx_bi->page_dma,
1556                                        PAGE_SIZE / 2,
1557                                        DMA_FROM_DEVICE);
1558                         rx_bi->page_dma = 0;
1559                 }
1560                 I40E_RX_INCREMENT(rx_ring, i);
1561
1562                 if (unlikely(
1563                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1564                         struct i40e_rx_buffer *next_buffer;
1565
1566                         next_buffer = &rx_ring->rx_bi[i];
1567                         next_buffer->skb = skb;
1568                         rx_ring->rx_stats.non_eop_descs++;
1569                         continue;
1570                 }
1571
1572                 /* ERR_MASK will only have valid bits if EOP set */
1573                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1574                         dev_kfree_skb_any(skb);
1575                         continue;
1576                 }
1577
1578                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1579                              i40e_ptype_to_hash(rx_ptype));
1580                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1581                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1582                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1583                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1584                         rx_ring->last_rx_timestamp = jiffies;
1585                 }
1586
1587                 /* probably a little skewed due to removing CRC */
1588                 total_rx_bytes += skb->len;
1589                 total_rx_packets++;
1590
1591                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1592
1593                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1594
1595                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1596                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1597                          : 0;
1598 #ifdef I40E_FCOE
1599                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1600                         dev_kfree_skb_any(skb);
1601                         continue;
1602                 }
1603 #endif
1604                 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1605                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1606
1607                 rx_desc->wb.qword1.status_error_len = 0;
1608
1609         } while (likely(total_rx_packets < budget));
1610
1611         u64_stats_update_begin(&rx_ring->syncp);
1612         rx_ring->stats.packets += total_rx_packets;
1613         rx_ring->stats.bytes += total_rx_bytes;
1614         u64_stats_update_end(&rx_ring->syncp);
1615         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1616         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1617
1618         return total_rx_packets;
1619 }
1620
1621 /**
1622  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1623  * @rx_ring:  rx ring to clean
1624  * @budget:   how many cleans we're allowed
1625  *
1626  * Returns number of packets cleaned
1627  **/
1628 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1629 {
1630         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1631         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1632         struct i40e_vsi *vsi = rx_ring->vsi;
1633         union i40e_rx_desc *rx_desc;
1634         u32 rx_error, rx_status;
1635         u16 rx_packet_len;
1636         u8 rx_ptype;
1637         u64 qword;
1638         u16 i;
1639
1640         do {
1641                 struct i40e_rx_buffer *rx_bi;
1642                 struct sk_buff *skb;
1643                 u16 vlan_tag;
1644                 /* return some buffers to hardware, one at a time is too slow */
1645                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1646                         i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1647                         cleaned_count = 0;
1648                 }
1649
1650                 i = rx_ring->next_to_clean;
1651                 rx_desc = I40E_RX_DESC(rx_ring, i);
1652                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1653                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1654                         I40E_RXD_QW1_STATUS_SHIFT;
1655
1656                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1657                         break;
1658
1659                 /* This memory barrier is needed to keep us from reading
1660                  * any other fields out of the rx_desc until we know the
1661                  * DD bit is set.
1662                  */
1663                 dma_rmb();
1664
1665                 if (i40e_rx_is_programming_status(qword)) {
1666                         i40e_clean_programming_status(rx_ring, rx_desc);
1667                         I40E_RX_INCREMENT(rx_ring, i);
1668                         continue;
1669                 }
1670                 rx_bi = &rx_ring->rx_bi[i];
1671                 skb = rx_bi->skb;
1672                 prefetch(skb->data);
1673
1674                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1675                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1676
1677                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1678                            I40E_RXD_QW1_ERROR_SHIFT;
1679                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1680
1681                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1682                            I40E_RXD_QW1_PTYPE_SHIFT;
1683                 rx_bi->skb = NULL;
1684                 cleaned_count++;
1685
1686                 /* Get the header and possibly the whole packet
1687                  * If this is an skb from previous receive dma will be 0
1688                  */
1689                 skb_put(skb, rx_packet_len);
1690                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1691                                  DMA_FROM_DEVICE);
1692                 rx_bi->dma = 0;
1693
1694                 I40E_RX_INCREMENT(rx_ring, i);
1695
1696                 if (unlikely(
1697                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1698                         rx_ring->rx_stats.non_eop_descs++;
1699                         continue;
1700                 }
1701
1702                 /* ERR_MASK will only have valid bits if EOP set */
1703                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1704                         dev_kfree_skb_any(skb);
1705                         /* TODO: shouldn't we increment a counter indicating the
1706                          * drop?
1707                          */
1708                         continue;
1709                 }
1710
1711                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1712                              i40e_ptype_to_hash(rx_ptype));
1713                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1714                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1715                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1716                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1717                         rx_ring->last_rx_timestamp = jiffies;
1718                 }
1719
1720                 /* probably a little skewed due to removing CRC */
1721                 total_rx_bytes += skb->len;
1722                 total_rx_packets++;
1723
1724                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1725
1726                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1727
1728                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1729                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1730                          : 0;
1731 #ifdef I40E_FCOE
1732                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1733                         dev_kfree_skb_any(skb);
1734                         continue;
1735                 }
1736 #endif
1737                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1738
1739                 rx_desc->wb.qword1.status_error_len = 0;
1740         } while (likely(total_rx_packets < budget));
1741
1742         u64_stats_update_begin(&rx_ring->syncp);
1743         rx_ring->stats.packets += total_rx_packets;
1744         rx_ring->stats.bytes += total_rx_bytes;
1745         u64_stats_update_end(&rx_ring->syncp);
1746         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1747         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1748
1749         return total_rx_packets;
1750 }
1751
1752 /**
1753  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1754  * @vsi: the VSI we care about
1755  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1756  *
1757  **/
1758 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1759                                           struct i40e_q_vector *q_vector)
1760 {
1761         struct i40e_hw *hw = &vsi->back->hw;
1762         u16 old_itr;
1763         int vector;
1764         u32 val;
1765
1766         vector = (q_vector->v_idx + vsi->base_vector);
1767         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1768                 old_itr = q_vector->rx.itr;
1769                 i40e_set_new_dynamic_itr(&q_vector->rx);
1770                 if (old_itr != q_vector->rx.itr) {
1771                         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1772                         I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1773                         (I40E_RX_ITR <<
1774                                 I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1775                         (q_vector->rx.itr <<
1776                                 I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1777                 } else {
1778                         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1779                         I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1780                         (I40E_ITR_NONE <<
1781                                 I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
1782                 }
1783                 if (!test_bit(__I40E_DOWN, &vsi->state))
1784                         wr32(hw, I40E_PFINT_DYN_CTLN(vector - 1), val);
1785         } else {
1786                 i40e_irq_dynamic_enable(vsi, q_vector->v_idx);
1787         }
1788         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1789                 old_itr = q_vector->tx.itr;
1790                 i40e_set_new_dynamic_itr(&q_vector->tx);
1791                 if (old_itr != q_vector->tx.itr) {
1792                         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1793                                 I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1794                                 (I40E_TX_ITR <<
1795                                    I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1796                                 (q_vector->tx.itr <<
1797                                    I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1798                 } else {
1799                         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1800                                 I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
1801                                 (I40E_ITR_NONE <<
1802                                    I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
1803                 }
1804                 if (!test_bit(__I40E_DOWN, &vsi->state))
1805                         wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->v_idx +
1806                               vsi->base_vector - 1), val);
1807         } else {
1808                 i40e_irq_dynamic_enable(vsi, q_vector->v_idx);
1809         }
1810 }
1811
1812 /**
1813  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1814  * @napi: napi struct with our devices info in it
1815  * @budget: amount of work driver is allowed to do this pass, in packets
1816  *
1817  * This function will clean all queues associated with a q_vector.
1818  *
1819  * Returns the amount of work done
1820  **/
1821 int i40e_napi_poll(struct napi_struct *napi, int budget)
1822 {
1823         struct i40e_q_vector *q_vector =
1824                                container_of(napi, struct i40e_q_vector, napi);
1825         struct i40e_vsi *vsi = q_vector->vsi;
1826         struct i40e_ring *ring;
1827         bool clean_complete = true;
1828         bool arm_wb = false;
1829         int budget_per_ring;
1830         int cleaned;
1831
1832         if (test_bit(__I40E_DOWN, &vsi->state)) {
1833                 napi_complete(napi);
1834                 return 0;
1835         }
1836
1837         /* Since the actual Tx work is minimal, we can give the Tx a larger
1838          * budget and be more aggressive about cleaning up the Tx descriptors.
1839          */
1840         i40e_for_each_ring(ring, q_vector->tx) {
1841                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1842                 arm_wb |= ring->arm_wb;
1843                 ring->arm_wb = false;
1844         }
1845
1846         /* We attempt to distribute budget to each Rx queue fairly, but don't
1847          * allow the budget to go below 1 because that would exit polling early.
1848          */
1849         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1850
1851         i40e_for_each_ring(ring, q_vector->rx) {
1852                 if (ring_is_ps_enabled(ring))
1853                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1854                 else
1855                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1856                 /* if we didn't clean as many as budgeted, we must be done */
1857                 clean_complete &= (budget_per_ring != cleaned);
1858         }
1859
1860         /* If work not completed, return budget and polling will return */
1861         if (!clean_complete) {
1862                 if (arm_wb)
1863                         i40e_force_wb(vsi, q_vector);
1864                 return budget;
1865         }
1866
1867         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1868                 q_vector->arm_wb_state = false;
1869
1870         /* Work is done so exit the polling mode and re-enable the interrupt */
1871         napi_complete(napi);
1872         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1873                 i40e_update_enable_itr(vsi, q_vector);
1874         } else { /* Legacy mode */
1875                 struct i40e_hw *hw = &vsi->back->hw;
1876                 /* We re-enable the queue 0 cause, but
1877                  * don't worry about dynamic_enable
1878                  * because we left it on for the other
1879                  * possible interrupts during napi
1880                  */
1881                 u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
1882                            I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1883
1884                 wr32(hw, I40E_QINT_RQCTL(0), qval);
1885                 qval = rd32(hw, I40E_QINT_TQCTL(0)) |
1886                        I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1887                 wr32(hw, I40E_QINT_TQCTL(0), qval);
1888                 i40e_irq_dynamic_enable_icr0(vsi->back);
1889         }
1890         return 0;
1891 }
1892
1893 /**
1894  * i40e_atr - Add a Flow Director ATR filter
1895  * @tx_ring:  ring to add programming descriptor to
1896  * @skb:      send buffer
1897  * @tx_flags: send tx flags
1898  * @protocol: wire protocol
1899  **/
1900 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1901                      u32 tx_flags, __be16 protocol)
1902 {
1903         struct i40e_filter_program_desc *fdir_desc;
1904         struct i40e_pf *pf = tx_ring->vsi->back;
1905         union {
1906                 unsigned char *network;
1907                 struct iphdr *ipv4;
1908                 struct ipv6hdr *ipv6;
1909         } hdr;
1910         struct tcphdr *th;
1911         unsigned int hlen;
1912         u32 flex_ptype, dtype_cmd;
1913         u16 i;
1914
1915         /* make sure ATR is enabled */
1916         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1917                 return;
1918
1919         if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1920                 return;
1921
1922         /* if sampling is disabled do nothing */
1923         if (!tx_ring->atr_sample_rate)
1924                 return;
1925
1926         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
1927                 return;
1928
1929         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) {
1930                 /* snag network header to get L4 type and address */
1931                 hdr.network = skb_network_header(skb);
1932
1933                 /* Currently only IPv4/IPv6 with TCP is supported
1934                  * access ihl as u8 to avoid unaligned access on ia64
1935                  */
1936                 if (tx_flags & I40E_TX_FLAGS_IPV4)
1937                         hlen = (hdr.network[0] & 0x0F) << 2;
1938                 else if (protocol == htons(ETH_P_IPV6))
1939                         hlen = sizeof(struct ipv6hdr);
1940                 else
1941                         return;
1942         } else {
1943                 hdr.network = skb_inner_network_header(skb);
1944                 hlen = skb_inner_network_header_len(skb);
1945         }
1946
1947         /* Currently only IPv4/IPv6 with TCP is supported
1948          * Note: tx_flags gets modified to reflect inner protocols in
1949          * tx_enable_csum function if encap is enabled.
1950          */
1951         if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
1952             (hdr.ipv4->protocol != IPPROTO_TCP))
1953                 return;
1954         else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
1955                  (hdr.ipv6->nexthdr != IPPROTO_TCP))
1956                 return;
1957
1958         th = (struct tcphdr *)(hdr.network + hlen);
1959
1960         /* Due to lack of space, no more new filters can be programmed */
1961         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1962                 return;
1963         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
1964                 /* HW ATR eviction will take care of removing filters on FIN
1965                  * and RST packets.
1966                  */
1967                 if (th->fin || th->rst)
1968                         return;
1969         }
1970
1971         tx_ring->atr_count++;
1972
1973         /* sample on all syn/fin/rst packets or once every atr sample rate */
1974         if (!th->fin &&
1975             !th->syn &&
1976             !th->rst &&
1977             (tx_ring->atr_count < tx_ring->atr_sample_rate))
1978                 return;
1979
1980         tx_ring->atr_count = 0;
1981
1982         /* grab the next descriptor */
1983         i = tx_ring->next_to_use;
1984         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1985
1986         i++;
1987         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1988
1989         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1990                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
1991         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1992                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1993                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1994                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1995                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1996
1997         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1998
1999         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2000
2001         dtype_cmd |= (th->fin || th->rst) ?
2002                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2003                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2004                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2005                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2006
2007         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2008                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2009
2010         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2011                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2012
2013         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2014         if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL))
2015                 dtype_cmd |=
2016                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2017                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2018                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2019         else
2020                 dtype_cmd |=
2021                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2022                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2023                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2024
2025         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
2026                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2027
2028         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2029         fdir_desc->rsvd = cpu_to_le32(0);
2030         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2031         fdir_desc->fd_id = cpu_to_le32(0);
2032 }
2033
2034 /**
2035  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2036  * @skb:     send buffer
2037  * @tx_ring: ring to send buffer on
2038  * @flags:   the tx flags to be set
2039  *
2040  * Checks the skb and set up correspondingly several generic transmit flags
2041  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2042  *
2043  * Returns error code indicate the frame should be dropped upon error and the
2044  * otherwise  returns 0 to indicate the flags has been set properly.
2045  **/
2046 #ifdef I40E_FCOE
2047 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2048                                       struct i40e_ring *tx_ring,
2049                                       u32 *flags)
2050 #else
2051 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2052                                              struct i40e_ring *tx_ring,
2053                                              u32 *flags)
2054 #endif
2055 {
2056         __be16 protocol = skb->protocol;
2057         u32  tx_flags = 0;
2058
2059         if (protocol == htons(ETH_P_8021Q) &&
2060             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2061                 /* When HW VLAN acceleration is turned off by the user the
2062                  * stack sets the protocol to 8021q so that the driver
2063                  * can take any steps required to support the SW only
2064                  * VLAN handling.  In our case the driver doesn't need
2065                  * to take any further steps so just set the protocol
2066                  * to the encapsulated ethertype.
2067                  */
2068                 skb->protocol = vlan_get_protocol(skb);
2069                 goto out;
2070         }
2071
2072         /* if we have a HW VLAN tag being added, default to the HW one */
2073         if (skb_vlan_tag_present(skb)) {
2074                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2075                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2076         /* else if it is a SW VLAN, check the next protocol and store the tag */
2077         } else if (protocol == htons(ETH_P_8021Q)) {
2078                 struct vlan_hdr *vhdr, _vhdr;
2079                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2080                 if (!vhdr)
2081                         return -EINVAL;
2082
2083                 protocol = vhdr->h_vlan_encapsulated_proto;
2084                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2085                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2086         }
2087
2088         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2089                 goto out;
2090
2091         /* Insert 802.1p priority into VLAN header */
2092         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2093             (skb->priority != TC_PRIO_CONTROL)) {
2094                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2095                 tx_flags |= (skb->priority & 0x7) <<
2096                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2097                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2098                         struct vlan_ethhdr *vhdr;
2099                         int rc;
2100
2101                         rc = skb_cow_head(skb, 0);
2102                         if (rc < 0)
2103                                 return rc;
2104                         vhdr = (struct vlan_ethhdr *)skb->data;
2105                         vhdr->h_vlan_TCI = htons(tx_flags >>
2106                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2107                 } else {
2108                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2109                 }
2110         }
2111
2112 out:
2113         *flags = tx_flags;
2114         return 0;
2115 }
2116
2117 /**
2118  * i40e_tso - set up the tso context descriptor
2119  * @tx_ring:  ptr to the ring to send
2120  * @skb:      ptr to the skb we're sending
2121  * @hdr_len:  ptr to the size of the packet header
2122  * @cd_tunneling: ptr to context descriptor bits
2123  *
2124  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2125  **/
2126 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2127                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
2128                     u32 *cd_tunneling)
2129 {
2130         u32 cd_cmd, cd_tso_len, cd_mss;
2131         struct ipv6hdr *ipv6h;
2132         struct tcphdr *tcph;
2133         struct iphdr *iph;
2134         u32 l4len;
2135         int err;
2136
2137         if (!skb_is_gso(skb))
2138                 return 0;
2139
2140         err = skb_cow_head(skb, 0);
2141         if (err < 0)
2142                 return err;
2143
2144         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2145         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2146
2147         if (iph->version == 4) {
2148                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2149                 iph->tot_len = 0;
2150                 iph->check = 0;
2151                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2152                                                  0, IPPROTO_TCP, 0);
2153         } else if (ipv6h->version == 6) {
2154                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2155                 ipv6h->payload_len = 0;
2156                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2157                                                0, IPPROTO_TCP, 0);
2158         }
2159
2160         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2161         *hdr_len = (skb->encapsulation
2162                     ? (skb_inner_transport_header(skb) - skb->data)
2163                     : skb_transport_offset(skb)) + l4len;
2164
2165         /* find the field values */
2166         cd_cmd = I40E_TX_CTX_DESC_TSO;
2167         cd_tso_len = skb->len - *hdr_len;
2168         cd_mss = skb_shinfo(skb)->gso_size;
2169         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2170                                 ((u64)cd_tso_len <<
2171                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2172                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2173         return 1;
2174 }
2175
2176 /**
2177  * i40e_tsyn - set up the tsyn context descriptor
2178  * @tx_ring:  ptr to the ring to send
2179  * @skb:      ptr to the skb we're sending
2180  * @tx_flags: the collected send information
2181  *
2182  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2183  **/
2184 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2185                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2186 {
2187         struct i40e_pf *pf;
2188
2189         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2190                 return 0;
2191
2192         /* Tx timestamps cannot be sampled when doing TSO */
2193         if (tx_flags & I40E_TX_FLAGS_TSO)
2194                 return 0;
2195
2196         /* only timestamp the outbound packet if the user has requested it and
2197          * we are not already transmitting a packet to be timestamped
2198          */
2199         pf = i40e_netdev_to_pf(tx_ring->netdev);
2200         if (!(pf->flags & I40E_FLAG_PTP))
2201                 return 0;
2202
2203         if (pf->ptp_tx &&
2204             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2205                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2206                 pf->ptp_tx_skb = skb_get(skb);
2207         } else {
2208                 return 0;
2209         }
2210
2211         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2212                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
2213
2214         return 1;
2215 }
2216
2217 /**
2218  * i40e_tx_enable_csum - Enable Tx checksum offloads
2219  * @skb: send buffer
2220  * @tx_flags: pointer to Tx flags currently set
2221  * @td_cmd: Tx descriptor command bits to set
2222  * @td_offset: Tx descriptor header offsets to set
2223  * @cd_tunneling: ptr to context desc bits
2224  **/
2225 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2226                                 u32 *td_cmd, u32 *td_offset,
2227                                 struct i40e_ring *tx_ring,
2228                                 u32 *cd_tunneling)
2229 {
2230         struct ipv6hdr *this_ipv6_hdr;
2231         unsigned int this_tcp_hdrlen;
2232         struct iphdr *this_ip_hdr;
2233         u32 network_hdr_len;
2234         u8 l4_hdr = 0;
2235         struct udphdr *oudph;
2236         struct iphdr *oiph;
2237         u32 l4_tunnel = 0;
2238
2239         if (skb->encapsulation) {
2240                 switch (ip_hdr(skb)->protocol) {
2241                 case IPPROTO_UDP:
2242                         oudph = udp_hdr(skb);
2243                         oiph = ip_hdr(skb);
2244                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2245                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2246                         break;
2247                 case IPPROTO_GRE:
2248                         l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
2249                         break;
2250                 default:
2251                         return;
2252                 }
2253                 network_hdr_len = skb_inner_network_header_len(skb);
2254                 this_ip_hdr = inner_ip_hdr(skb);
2255                 this_ipv6_hdr = inner_ipv6_hdr(skb);
2256                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2257
2258                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2259                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
2260                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2261                                 ip_hdr(skb)->check = 0;
2262                         } else {
2263                                 *cd_tunneling |=
2264                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2265                         }
2266                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2267                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2268                         if (*tx_flags & I40E_TX_FLAGS_TSO)
2269                                 ip_hdr(skb)->check = 0;
2270                 }
2271
2272                 /* Now set the ctx descriptor fields */
2273                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2274                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
2275                                    l4_tunnel                             |
2276                                    ((skb_inner_network_offset(skb) -
2277                                         skb_transport_offset(skb)) >> 1) <<
2278                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2279                 if (this_ip_hdr->version == 6) {
2280                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2281                         *tx_flags |= I40E_TX_FLAGS_IPV6;
2282                 }
2283                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
2284                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
2285                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
2286                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
2287                                         oiph->daddr,
2288                                         (skb->len - skb_transport_offset(skb)),
2289                                         IPPROTO_UDP, 0);
2290                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2291                 }
2292         } else {
2293                 network_hdr_len = skb_network_header_len(skb);
2294                 this_ip_hdr = ip_hdr(skb);
2295                 this_ipv6_hdr = ipv6_hdr(skb);
2296                 this_tcp_hdrlen = tcp_hdrlen(skb);
2297         }
2298
2299         /* Enable IP checksum offloads */
2300         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2301                 l4_hdr = this_ip_hdr->protocol;
2302                 /* the stack computes the IP header already, the only time we
2303                  * need the hardware to recompute it is in the case of TSO.
2304                  */
2305                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2306                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2307                         this_ip_hdr->check = 0;
2308                 } else {
2309                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2310                 }
2311                 /* Now set the td_offset for IP header length */
2312                 *td_offset = (network_hdr_len >> 2) <<
2313                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2314         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2315                 l4_hdr = this_ipv6_hdr->nexthdr;
2316                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2317                 /* Now set the td_offset for IP header length */
2318                 *td_offset = (network_hdr_len >> 2) <<
2319                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2320         }
2321         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2322         *td_offset |= (skb_network_offset(skb) >> 1) <<
2323                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2324
2325         /* Enable L4 checksum offloads */
2326         switch (l4_hdr) {
2327         case IPPROTO_TCP:
2328                 /* enable checksum offloads */
2329                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2330                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2331                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2332                 break;
2333         case IPPROTO_SCTP:
2334                 /* enable SCTP checksum offload */
2335                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2336                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2337                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2338                 break;
2339         case IPPROTO_UDP:
2340                 /* enable UDP checksum offload */
2341                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2342                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2343                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2344                 break;
2345         default:
2346                 break;
2347         }
2348 }
2349
2350 /**
2351  * i40e_create_tx_ctx Build the Tx context descriptor
2352  * @tx_ring:  ring to create the descriptor on
2353  * @cd_type_cmd_tso_mss: Quad Word 1
2354  * @cd_tunneling: Quad Word 0 - bits 0-31
2355  * @cd_l2tag2: Quad Word 0 - bits 32-63
2356  **/
2357 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2358                                const u64 cd_type_cmd_tso_mss,
2359                                const u32 cd_tunneling, const u32 cd_l2tag2)
2360 {
2361         struct i40e_tx_context_desc *context_desc;
2362         int i = tx_ring->next_to_use;
2363
2364         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2365             !cd_tunneling && !cd_l2tag2)
2366                 return;
2367
2368         /* grab the next descriptor */
2369         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2370
2371         i++;
2372         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2373
2374         /* cpu_to_le32 and assign to struct fields */
2375         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2376         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2377         context_desc->rsvd = cpu_to_le16(0);
2378         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2379 }
2380
2381 /**
2382  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2383  * @tx_ring: the ring to be checked
2384  * @size:    the size buffer we want to assure is available
2385  *
2386  * Returns -EBUSY if a stop is needed, else 0
2387  **/
2388 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2389 {
2390         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2391         /* Memory barrier before checking head and tail */
2392         smp_mb();
2393
2394         /* Check again in a case another CPU has just made room available. */
2395         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2396                 return -EBUSY;
2397
2398         /* A reprieve! - use start_queue because it doesn't call schedule */
2399         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2400         ++tx_ring->tx_stats.restart_queue;
2401         return 0;
2402 }
2403
2404 /**
2405  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2406  * @tx_ring: the ring to be checked
2407  * @size:    the size buffer we want to assure is available
2408  *
2409  * Returns 0 if stop is not needed
2410  **/
2411 #ifdef I40E_FCOE
2412 inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2413 #else
2414 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2415 #endif
2416 {
2417         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2418                 return 0;
2419         return __i40e_maybe_stop_tx(tx_ring, size);
2420 }
2421
2422 /**
2423  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2424  * @skb:      send buffer
2425  * @tx_flags: collected send information
2426  *
2427  * Note: Our HW can't scatter-gather more than 8 fragments to build
2428  * a packet on the wire and so we need to figure out the cases where we
2429  * need to linearize the skb.
2430  **/
2431 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
2432 {
2433         struct skb_frag_struct *frag;
2434         bool linearize = false;
2435         unsigned int size = 0;
2436         u16 num_frags;
2437         u16 gso_segs;
2438
2439         num_frags = skb_shinfo(skb)->nr_frags;
2440         gso_segs = skb_shinfo(skb)->gso_segs;
2441
2442         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2443                 u16 j = 0;
2444
2445                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2446                         goto linearize_chk_done;
2447                 /* try the simple math, if we have too many frags per segment */
2448                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2449                     I40E_MAX_BUFFER_TXD) {
2450                         linearize = true;
2451                         goto linearize_chk_done;
2452                 }
2453                 frag = &skb_shinfo(skb)->frags[0];
2454                 /* we might still have more fragments per segment */
2455                 do {
2456                         size += skb_frag_size(frag);
2457                         frag++; j++;
2458                         if ((size >= skb_shinfo(skb)->gso_size) &&
2459                             (j < I40E_MAX_BUFFER_TXD)) {
2460                                 size = (size % skb_shinfo(skb)->gso_size);
2461                                 j = (size) ? 1 : 0;
2462                         }
2463                         if (j == I40E_MAX_BUFFER_TXD) {
2464                                 linearize = true;
2465                                 break;
2466                         }
2467                         num_frags--;
2468                 } while (num_frags);
2469         } else {
2470                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2471                         linearize = true;
2472         }
2473
2474 linearize_chk_done:
2475         return linearize;
2476 }
2477
2478 /**
2479  * i40e_tx_map - Build the Tx descriptor
2480  * @tx_ring:  ring to send buffer on
2481  * @skb:      send buffer
2482  * @first:    first buffer info buffer to use
2483  * @tx_flags: collected send information
2484  * @hdr_len:  size of the packet header
2485  * @td_cmd:   the command field in the descriptor
2486  * @td_offset: offset for checksum or crc
2487  **/
2488 #ifdef I40E_FCOE
2489 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2490                         struct i40e_tx_buffer *first, u32 tx_flags,
2491                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2492 #else
2493 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2494                                struct i40e_tx_buffer *first, u32 tx_flags,
2495                                const u8 hdr_len, u32 td_cmd, u32 td_offset)
2496 #endif
2497 {
2498         unsigned int data_len = skb->data_len;
2499         unsigned int size = skb_headlen(skb);
2500         struct skb_frag_struct *frag;
2501         struct i40e_tx_buffer *tx_bi;
2502         struct i40e_tx_desc *tx_desc;
2503         u16 i = tx_ring->next_to_use;
2504         u32 td_tag = 0;
2505         dma_addr_t dma;
2506         u16 gso_segs;
2507         u16 desc_count = 0;
2508         bool tail_bump = true;
2509         bool do_rs = false;
2510
2511         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2512                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2513                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2514                          I40E_TX_FLAGS_VLAN_SHIFT;
2515         }
2516
2517         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2518                 gso_segs = skb_shinfo(skb)->gso_segs;
2519         else
2520                 gso_segs = 1;
2521
2522         /* multiply data chunks by size of headers */
2523         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2524         first->gso_segs = gso_segs;
2525         first->skb = skb;
2526         first->tx_flags = tx_flags;
2527
2528         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2529
2530         tx_desc = I40E_TX_DESC(tx_ring, i);
2531         tx_bi = first;
2532
2533         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2534                 if (dma_mapping_error(tx_ring->dev, dma))
2535                         goto dma_error;
2536
2537                 /* record length, and DMA address */
2538                 dma_unmap_len_set(tx_bi, len, size);
2539                 dma_unmap_addr_set(tx_bi, dma, dma);
2540
2541                 tx_desc->buffer_addr = cpu_to_le64(dma);
2542
2543                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2544                         tx_desc->cmd_type_offset_bsz =
2545                                 build_ctob(td_cmd, td_offset,
2546                                            I40E_MAX_DATA_PER_TXD, td_tag);
2547
2548                         tx_desc++;
2549                         i++;
2550                         desc_count++;
2551
2552                         if (i == tx_ring->count) {
2553                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2554                                 i = 0;
2555                         }
2556
2557                         dma += I40E_MAX_DATA_PER_TXD;
2558                         size -= I40E_MAX_DATA_PER_TXD;
2559
2560                         tx_desc->buffer_addr = cpu_to_le64(dma);
2561                 }
2562
2563                 if (likely(!data_len))
2564                         break;
2565
2566                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2567                                                           size, td_tag);
2568
2569                 tx_desc++;
2570                 i++;
2571                 desc_count++;
2572
2573                 if (i == tx_ring->count) {
2574                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2575                         i = 0;
2576                 }
2577
2578                 size = skb_frag_size(frag);
2579                 data_len -= size;
2580
2581                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2582                                        DMA_TO_DEVICE);
2583
2584                 tx_bi = &tx_ring->tx_bi[i];
2585         }
2586
2587         /* set next_to_watch value indicating a packet is present */
2588         first->next_to_watch = tx_desc;
2589
2590         i++;
2591         if (i == tx_ring->count)
2592                 i = 0;
2593
2594         tx_ring->next_to_use = i;
2595
2596         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2597                                                  tx_ring->queue_index),
2598                                                  first->bytecount);
2599         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2600
2601         /* Algorithm to optimize tail and RS bit setting:
2602          * if xmit_more is supported
2603          *      if xmit_more is true
2604          *              do not update tail and do not mark RS bit.
2605          *      if xmit_more is false and last xmit_more was false
2606          *              if every packet spanned less than 4 desc
2607          *                      then set RS bit on 4th packet and update tail
2608          *                      on every packet
2609          *              else
2610          *                      update tail and set RS bit on every packet.
2611          *      if xmit_more is false and last_xmit_more was true
2612          *              update tail and set RS bit.
2613          *
2614          * Optimization: wmb to be issued only in case of tail update.
2615          * Also optimize the Descriptor WB path for RS bit with the same
2616          * algorithm.
2617          *
2618          * Note: If there are less than 4 packets
2619          * pending and interrupts were disabled the service task will
2620          * trigger a force WB.
2621          */
2622         if (skb->xmit_more  &&
2623             !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2624                                                     tx_ring->queue_index))) {
2625                 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2626                 tail_bump = false;
2627         } else if (!skb->xmit_more &&
2628                    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2629                                                        tx_ring->queue_index)) &&
2630                    (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2631                    (tx_ring->packet_stride < WB_STRIDE) &&
2632                    (desc_count < WB_STRIDE)) {
2633                 tx_ring->packet_stride++;
2634         } else {
2635                 tx_ring->packet_stride = 0;
2636                 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2637                 do_rs = true;
2638         }
2639         if (do_rs)
2640                 tx_ring->packet_stride = 0;
2641
2642         tx_desc->cmd_type_offset_bsz =
2643                         build_ctob(td_cmd, td_offset, size, td_tag) |
2644                         cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2645                                                   I40E_TX_DESC_CMD_EOP) <<
2646                                                   I40E_TXD_QW1_CMD_SHIFT);
2647
2648         /* notify HW of packet */
2649         if (!tail_bump)
2650                 prefetchw(tx_desc + 1);
2651
2652         if (tail_bump) {
2653                 /* Force memory writes to complete before letting h/w
2654                  * know there are new descriptors to fetch.  (Only
2655                  * applicable for weak-ordered memory model archs,
2656                  * such as IA-64).
2657                  */
2658                 wmb();
2659                 writel(i, tx_ring->tail);
2660         }
2661
2662         return;
2663
2664 dma_error:
2665         dev_info(tx_ring->dev, "TX DMA map failed\n");
2666
2667         /* clear dma mappings for failed tx_bi map */
2668         for (;;) {
2669                 tx_bi = &tx_ring->tx_bi[i];
2670                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2671                 if (tx_bi == first)
2672                         break;
2673                 if (i == 0)
2674                         i = tx_ring->count;
2675                 i--;
2676         }
2677
2678         tx_ring->next_to_use = i;
2679 }
2680
2681 /**
2682  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2683  * @skb:     send buffer
2684  * @tx_ring: ring to send buffer on
2685  *
2686  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2687  * there is not enough descriptors available in this ring since we need at least
2688  * one descriptor.
2689  **/
2690 #ifdef I40E_FCOE
2691 inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2692                                       struct i40e_ring *tx_ring)
2693 #else
2694 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
2695                                              struct i40e_ring *tx_ring)
2696 #endif
2697 {
2698         unsigned int f;
2699         int count = 0;
2700
2701         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2702          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2703          *       + 4 desc gap to avoid the cache line where head is,
2704          *       + 1 desc for context descriptor,
2705          * otherwise try next time
2706          */
2707         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2708                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2709
2710         count += TXD_USE_COUNT(skb_headlen(skb));
2711         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2712                 tx_ring->tx_stats.tx_busy++;
2713                 return 0;
2714         }
2715         return count;
2716 }
2717
2718 /**
2719  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2720  * @skb:     send buffer
2721  * @tx_ring: ring to send buffer on
2722  *
2723  * Returns NETDEV_TX_OK if sent, else an error code
2724  **/
2725 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2726                                         struct i40e_ring *tx_ring)
2727 {
2728         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2729         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2730         struct i40e_tx_buffer *first;
2731         u32 td_offset = 0;
2732         u32 tx_flags = 0;
2733         __be16 protocol;
2734         u32 td_cmd = 0;
2735         u8 hdr_len = 0;
2736         int tsyn;
2737         int tso;
2738         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2739                 return NETDEV_TX_BUSY;
2740
2741         /* prepare the xmit flags */
2742         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2743                 goto out_drop;
2744
2745         /* obtain protocol of skb */
2746         protocol = vlan_get_protocol(skb);
2747
2748         /* record the location of the first descriptor for this packet */
2749         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2750
2751         /* setup IPv4/IPv6 offloads */
2752         if (protocol == htons(ETH_P_IP))
2753                 tx_flags |= I40E_TX_FLAGS_IPV4;
2754         else if (protocol == htons(ETH_P_IPV6))
2755                 tx_flags |= I40E_TX_FLAGS_IPV6;
2756
2757         tso = i40e_tso(tx_ring, skb, &hdr_len,
2758                        &cd_type_cmd_tso_mss, &cd_tunneling);
2759
2760         if (tso < 0)
2761                 goto out_drop;
2762         else if (tso)
2763                 tx_flags |= I40E_TX_FLAGS_TSO;
2764
2765         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2766
2767         if (tsyn)
2768                 tx_flags |= I40E_TX_FLAGS_TSYN;
2769
2770         if (i40e_chk_linearize(skb, tx_flags))
2771                 if (skb_linearize(skb))
2772                         goto out_drop;
2773
2774         skb_tx_timestamp(skb);
2775
2776         /* always enable CRC insertion offload */
2777         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2778
2779         /* Always offload the checksum, since it's in the data descriptor */
2780         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2781                 tx_flags |= I40E_TX_FLAGS_CSUM;
2782
2783                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2784                                     tx_ring, &cd_tunneling);
2785         }
2786
2787         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2788                            cd_tunneling, cd_l2tag2);
2789
2790         /* Add Flow Director ATR if it's enabled.
2791          *
2792          * NOTE: this must always be directly before the data descriptor.
2793          */
2794         i40e_atr(tx_ring, skb, tx_flags, protocol);
2795
2796         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2797                     td_cmd, td_offset);
2798
2799         return NETDEV_TX_OK;
2800
2801 out_drop:
2802         dev_kfree_skb_any(skb);
2803         return NETDEV_TX_OK;
2804 }
2805
2806 /**
2807  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2808  * @skb:    send buffer
2809  * @netdev: network interface device structure
2810  *
2811  * Returns NETDEV_TX_OK if sent, else an error code
2812  **/
2813 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2814 {
2815         struct i40e_netdev_priv *np = netdev_priv(netdev);
2816         struct i40e_vsi *vsi = np->vsi;
2817         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2818
2819         /* hardware can't handle really short frames, hardware padding works
2820          * beyond this point
2821          */
2822         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2823                 return NETDEV_TX_OK;
2824
2825         return i40e_xmit_frame_ring(skb, tx_ring);
2826 }