Merge tag 'firewire-fix-vt6315' of git://git.kernel.org/pub/scm/linux/kernel/git...
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28
29 #include "i40evf.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33                                 u32 td_tag)
34 {
35         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
37                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43
44 /**
45  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
46  * @ring:      the ring that owns the buffer
47  * @tx_buffer: the buffer to free
48  **/
49 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
50                                             struct i40e_tx_buffer *tx_buffer)
51 {
52         if (tx_buffer->skb) {
53                 dev_kfree_skb_any(tx_buffer->skb);
54                 if (dma_unmap_len(tx_buffer, len))
55                         dma_unmap_single(ring->dev,
56                                          dma_unmap_addr(tx_buffer, dma),
57                                          dma_unmap_len(tx_buffer, len),
58                                          DMA_TO_DEVICE);
59         } else if (dma_unmap_len(tx_buffer, len)) {
60                 dma_unmap_page(ring->dev,
61                                dma_unmap_addr(tx_buffer, dma),
62                                dma_unmap_len(tx_buffer, len),
63                                DMA_TO_DEVICE);
64         }
65         tx_buffer->next_to_watch = NULL;
66         tx_buffer->skb = NULL;
67         dma_unmap_len_set(tx_buffer, len, 0);
68         /* tx_buffer must be completely set up in the transmit path */
69 }
70
71 /**
72  * i40evf_clean_tx_ring - Free any empty Tx buffers
73  * @tx_ring: ring to be cleaned
74  **/
75 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
76 {
77         unsigned long bi_size;
78         u16 i;
79
80         /* ring already cleared, nothing to do */
81         if (!tx_ring->tx_bi)
82                 return;
83
84         /* Free all the Tx ring sk_buffs */
85         for (i = 0; i < tx_ring->count; i++)
86                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
87
88         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
89         memset(tx_ring->tx_bi, 0, bi_size);
90
91         /* Zero out the descriptor ring */
92         memset(tx_ring->desc, 0, tx_ring->size);
93
94         tx_ring->next_to_use = 0;
95         tx_ring->next_to_clean = 0;
96
97         if (!tx_ring->netdev)
98                 return;
99
100         /* cleanup Tx queue statistics */
101         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
102                                                   tx_ring->queue_index));
103 }
104
105 /**
106  * i40evf_free_tx_resources - Free Tx resources per queue
107  * @tx_ring: Tx descriptor ring for a specific queue
108  *
109  * Free all transmit software resources
110  **/
111 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
112 {
113         i40evf_clean_tx_ring(tx_ring);
114         kfree(tx_ring->tx_bi);
115         tx_ring->tx_bi = NULL;
116
117         if (tx_ring->desc) {
118                 dma_free_coherent(tx_ring->dev, tx_ring->size,
119                                   tx_ring->desc, tx_ring->dma);
120                 tx_ring->desc = NULL;
121         }
122 }
123
124 /**
125  * i40e_get_tx_pending - how many tx descriptors not processed
126  * @tx_ring: the ring of descriptors
127  *
128  * Since there is no access to the ring head register
129  * in XL710, we need to use our local copies
130  **/
131 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
132 {
133         u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
134                         ? ring->next_to_use
135                         : ring->next_to_use + ring->count);
136         return ntu - ring->next_to_clean;
137 }
138
139 /**
140  * i40e_check_tx_hang - Is there a hang in the Tx queue
141  * @tx_ring: the ring of descriptors
142  **/
143 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
144 {
145         u32 tx_pending = i40e_get_tx_pending(tx_ring);
146         bool ret = false;
147
148         clear_check_for_tx_hang(tx_ring);
149
150         /* Check for a hung queue, but be thorough. This verifies
151          * that a transmit has been completed since the previous
152          * check AND there is at least one packet pending. The
153          * ARMED bit is set to indicate a potential hang. The
154          * bit is cleared if a pause frame is received to remove
155          * false hang detection due to PFC or 802.3x frames. By
156          * requiring this to fail twice we avoid races with
157          * PFC clearing the ARMED bit and conditions where we
158          * run the check_tx_hang logic with a transmit completion
159          * pending but without time to complete it yet.
160          */
161         if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
162             tx_pending) {
163                 /* make sure it is true for two checks in a row */
164                 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
165                                        &tx_ring->state);
166         } else {
167                 /* update completed stats and disarm the hang check */
168                 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
169                 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
170         }
171
172         return ret;
173 }
174
175 /**
176  * i40e_get_head - Retrieve head from head writeback
177  * @tx_ring:  tx ring to fetch head of
178  *
179  * Returns value of Tx ring head based on value stored
180  * in head write-back location
181  **/
182 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
183 {
184         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
185
186         return le32_to_cpu(*(volatile __le32 *)head);
187 }
188
189 /**
190  * i40e_clean_tx_irq - Reclaim resources after transmit completes
191  * @tx_ring:  tx ring to clean
192  * @budget:   how many cleans we're allowed
193  *
194  * Returns true if there's any budget left (e.g. the clean is finished)
195  **/
196 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
197 {
198         u16 i = tx_ring->next_to_clean;
199         struct i40e_tx_buffer *tx_buf;
200         struct i40e_tx_desc *tx_head;
201         struct i40e_tx_desc *tx_desc;
202         unsigned int total_packets = 0;
203         unsigned int total_bytes = 0;
204
205         tx_buf = &tx_ring->tx_bi[i];
206         tx_desc = I40E_TX_DESC(tx_ring, i);
207         i -= tx_ring->count;
208
209         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
210
211         do {
212                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
213
214                 /* if next_to_watch is not set then there is no work pending */
215                 if (!eop_desc)
216                         break;
217
218                 /* prevent any other reads prior to eop_desc */
219                 read_barrier_depends();
220
221                 /* we have caught up to head, no work left to do */
222                 if (tx_head == tx_desc)
223                         break;
224
225                 /* clear next_to_watch to prevent false hangs */
226                 tx_buf->next_to_watch = NULL;
227
228                 /* update the statistics for this packet */
229                 total_bytes += tx_buf->bytecount;
230                 total_packets += tx_buf->gso_segs;
231
232                 /* free the skb */
233                 dev_kfree_skb_any(tx_buf->skb);
234
235                 /* unmap skb header data */
236                 dma_unmap_single(tx_ring->dev,
237                                  dma_unmap_addr(tx_buf, dma),
238                                  dma_unmap_len(tx_buf, len),
239                                  DMA_TO_DEVICE);
240
241                 /* clear tx_buffer data */
242                 tx_buf->skb = NULL;
243                 dma_unmap_len_set(tx_buf, len, 0);
244
245                 /* unmap remaining buffers */
246                 while (tx_desc != eop_desc) {
247
248                         tx_buf++;
249                         tx_desc++;
250                         i++;
251                         if (unlikely(!i)) {
252                                 i -= tx_ring->count;
253                                 tx_buf = tx_ring->tx_bi;
254                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
255                         }
256
257                         /* unmap any remaining paged data */
258                         if (dma_unmap_len(tx_buf, len)) {
259                                 dma_unmap_page(tx_ring->dev,
260                                                dma_unmap_addr(tx_buf, dma),
261                                                dma_unmap_len(tx_buf, len),
262                                                DMA_TO_DEVICE);
263                                 dma_unmap_len_set(tx_buf, len, 0);
264                         }
265                 }
266
267                 /* move us one more past the eop_desc for start of next pkt */
268                 tx_buf++;
269                 tx_desc++;
270                 i++;
271                 if (unlikely(!i)) {
272                         i -= tx_ring->count;
273                         tx_buf = tx_ring->tx_bi;
274                         tx_desc = I40E_TX_DESC(tx_ring, 0);
275                 }
276
277                 /* update budget accounting */
278                 budget--;
279         } while (likely(budget));
280
281         i += tx_ring->count;
282         tx_ring->next_to_clean = i;
283         u64_stats_update_begin(&tx_ring->syncp);
284         tx_ring->stats.bytes += total_bytes;
285         tx_ring->stats.packets += total_packets;
286         u64_stats_update_end(&tx_ring->syncp);
287         tx_ring->q_vector->tx.total_bytes += total_bytes;
288         tx_ring->q_vector->tx.total_packets += total_packets;
289
290         if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
291                 /* schedule immediate reset if we believe we hung */
292                 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
293                          "  VSI                  <%d>\n"
294                          "  Tx Queue             <%d>\n"
295                          "  next_to_use          <%x>\n"
296                          "  next_to_clean        <%x>\n",
297                          tx_ring->vsi->seid,
298                          tx_ring->queue_index,
299                          tx_ring->next_to_use, i);
300                 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
301                          "  time_stamp           <%lx>\n"
302                          "  jiffies              <%lx>\n",
303                          tx_ring->tx_bi[i].time_stamp, jiffies);
304
305                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
306
307                 dev_info(tx_ring->dev,
308                          "tx hang detected on queue %d, resetting adapter\n",
309                          tx_ring->queue_index);
310
311                 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
312
313                 /* the adapter is about to reset, no point in enabling stuff */
314                 return true;
315         }
316
317         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
318                                                       tx_ring->queue_index),
319                                   total_packets, total_bytes);
320
321 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
322         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
323                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
324                 /* Make sure that anybody stopping the queue after this
325                  * sees the new next_to_clean.
326                  */
327                 smp_mb();
328                 if (__netif_subqueue_stopped(tx_ring->netdev,
329                                              tx_ring->queue_index) &&
330                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
331                         netif_wake_subqueue(tx_ring->netdev,
332                                             tx_ring->queue_index);
333                         ++tx_ring->tx_stats.restart_queue;
334                 }
335         }
336
337         return budget > 0;
338 }
339
340 /**
341  * i40e_set_new_dynamic_itr - Find new ITR level
342  * @rc: structure containing ring performance data
343  *
344  * Stores a new ITR value based on packets and byte counts during
345  * the last interrupt.  The advantage of per interrupt computation
346  * is faster updates and more accurate ITR for the current traffic
347  * pattern.  Constants in this function were computed based on
348  * theoretical maximum wire speed and thresholds were set based on
349  * testing data as well as attempting to minimize response time
350  * while increasing bulk throughput.
351  **/
352 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
353 {
354         enum i40e_latency_range new_latency_range = rc->latency_range;
355         u32 new_itr = rc->itr;
356         int bytes_per_int;
357
358         if (rc->total_packets == 0 || !rc->itr)
359                 return;
360
361         /* simple throttlerate management
362          *   0-10MB/s   lowest (100000 ints/s)
363          *  10-20MB/s   low    (20000 ints/s)
364          *  20-1249MB/s bulk   (8000 ints/s)
365          */
366         bytes_per_int = rc->total_bytes / rc->itr;
367         switch (rc->itr) {
368         case I40E_LOWEST_LATENCY:
369                 if (bytes_per_int > 10)
370                         new_latency_range = I40E_LOW_LATENCY;
371                 break;
372         case I40E_LOW_LATENCY:
373                 if (bytes_per_int > 20)
374                         new_latency_range = I40E_BULK_LATENCY;
375                 else if (bytes_per_int <= 10)
376                         new_latency_range = I40E_LOWEST_LATENCY;
377                 break;
378         case I40E_BULK_LATENCY:
379                 if (bytes_per_int <= 20)
380                         rc->latency_range = I40E_LOW_LATENCY;
381                 break;
382         }
383
384         switch (new_latency_range) {
385         case I40E_LOWEST_LATENCY:
386                 new_itr = I40E_ITR_100K;
387                 break;
388         case I40E_LOW_LATENCY:
389                 new_itr = I40E_ITR_20K;
390                 break;
391         case I40E_BULK_LATENCY:
392                 new_itr = I40E_ITR_8K;
393                 break;
394         default:
395                 break;
396         }
397
398         if (new_itr != rc->itr) {
399                 /* do an exponential smoothing */
400                 new_itr = (10 * new_itr * rc->itr) /
401                           ((9 * new_itr) + rc->itr);
402                 rc->itr = new_itr & I40E_MAX_ITR;
403         }
404
405         rc->total_bytes = 0;
406         rc->total_packets = 0;
407 }
408
409 /**
410  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
411  * @q_vector: the vector to adjust
412  **/
413 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
414 {
415         u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
416         struct i40e_hw *hw = &q_vector->vsi->back->hw;
417         u32 reg_addr;
418         u16 old_itr;
419
420         reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
421         old_itr = q_vector->rx.itr;
422         i40e_set_new_dynamic_itr(&q_vector->rx);
423         if (old_itr != q_vector->rx.itr)
424                 wr32(hw, reg_addr, q_vector->rx.itr);
425
426         reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
427         old_itr = q_vector->tx.itr;
428         i40e_set_new_dynamic_itr(&q_vector->tx);
429         if (old_itr != q_vector->tx.itr)
430                 wr32(hw, reg_addr, q_vector->tx.itr);
431 }
432
433 /**
434  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
435  * @tx_ring: the tx ring to set up
436  *
437  * Return 0 on success, negative on error
438  **/
439 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
440 {
441         struct device *dev = tx_ring->dev;
442         int bi_size;
443
444         if (!dev)
445                 return -ENOMEM;
446
447         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
448         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
449         if (!tx_ring->tx_bi)
450                 goto err;
451
452         /* round up to nearest 4K */
453         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
454         /* add u32 for head writeback, align after this takes care of
455          * guaranteeing this is at least one cache line in size
456          */
457         tx_ring->size += sizeof(u32);
458         tx_ring->size = ALIGN(tx_ring->size, 4096);
459         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
460                                            &tx_ring->dma, GFP_KERNEL);
461         if (!tx_ring->desc) {
462                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
463                          tx_ring->size);
464                 goto err;
465         }
466
467         tx_ring->next_to_use = 0;
468         tx_ring->next_to_clean = 0;
469         return 0;
470
471 err:
472         kfree(tx_ring->tx_bi);
473         tx_ring->tx_bi = NULL;
474         return -ENOMEM;
475 }
476
477 /**
478  * i40evf_clean_rx_ring - Free Rx buffers
479  * @rx_ring: ring to be cleaned
480  **/
481 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
482 {
483         struct device *dev = rx_ring->dev;
484         struct i40e_rx_buffer *rx_bi;
485         unsigned long bi_size;
486         u16 i;
487
488         /* ring already cleared, nothing to do */
489         if (!rx_ring->rx_bi)
490                 return;
491
492         /* Free all the Rx ring sk_buffs */
493         for (i = 0; i < rx_ring->count; i++) {
494                 rx_bi = &rx_ring->rx_bi[i];
495                 if (rx_bi->dma) {
496                         dma_unmap_single(dev,
497                                          rx_bi->dma,
498                                          rx_ring->rx_buf_len,
499                                          DMA_FROM_DEVICE);
500                         rx_bi->dma = 0;
501                 }
502                 if (rx_bi->skb) {
503                         dev_kfree_skb(rx_bi->skb);
504                         rx_bi->skb = NULL;
505                 }
506                 if (rx_bi->page) {
507                         if (rx_bi->page_dma) {
508                                 dma_unmap_page(dev,
509                                                rx_bi->page_dma,
510                                                PAGE_SIZE / 2,
511                                                DMA_FROM_DEVICE);
512                                 rx_bi->page_dma = 0;
513                         }
514                         __free_page(rx_bi->page);
515                         rx_bi->page = NULL;
516                         rx_bi->page_offset = 0;
517                 }
518         }
519
520         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
521         memset(rx_ring->rx_bi, 0, bi_size);
522
523         /* Zero out the descriptor ring */
524         memset(rx_ring->desc, 0, rx_ring->size);
525
526         rx_ring->next_to_clean = 0;
527         rx_ring->next_to_use = 0;
528 }
529
530 /**
531  * i40evf_free_rx_resources - Free Rx resources
532  * @rx_ring: ring to clean the resources from
533  *
534  * Free all receive software resources
535  **/
536 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
537 {
538         i40evf_clean_rx_ring(rx_ring);
539         kfree(rx_ring->rx_bi);
540         rx_ring->rx_bi = NULL;
541
542         if (rx_ring->desc) {
543                 dma_free_coherent(rx_ring->dev, rx_ring->size,
544                                   rx_ring->desc, rx_ring->dma);
545                 rx_ring->desc = NULL;
546         }
547 }
548
549 /**
550  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
551  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
552  *
553  * Returns 0 on success, negative on failure
554  **/
555 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
556 {
557         struct device *dev = rx_ring->dev;
558         int bi_size;
559
560         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
561         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
562         if (!rx_ring->rx_bi)
563                 goto err;
564
565         /* Round up to nearest 4K */
566         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
567                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
568                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
569         rx_ring->size = ALIGN(rx_ring->size, 4096);
570         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
571                                            &rx_ring->dma, GFP_KERNEL);
572
573         if (!rx_ring->desc) {
574                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
575                          rx_ring->size);
576                 goto err;
577         }
578
579         rx_ring->next_to_clean = 0;
580         rx_ring->next_to_use = 0;
581
582         return 0;
583 err:
584         kfree(rx_ring->rx_bi);
585         rx_ring->rx_bi = NULL;
586         return -ENOMEM;
587 }
588
589 /**
590  * i40e_release_rx_desc - Store the new tail and head values
591  * @rx_ring: ring to bump
592  * @val: new head index
593  **/
594 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
595 {
596         rx_ring->next_to_use = val;
597         /* Force memory writes to complete before letting h/w
598          * know there are new descriptors to fetch.  (Only
599          * applicable for weak-ordered memory model archs,
600          * such as IA-64).
601          */
602         wmb();
603         writel(val, rx_ring->tail);
604 }
605
606 /**
607  * i40evf_alloc_rx_buffers - Replace used receive buffers; packet split
608  * @rx_ring: ring to place buffers on
609  * @cleaned_count: number of buffers to replace
610  **/
611 void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
612 {
613         u16 i = rx_ring->next_to_use;
614         union i40e_rx_desc *rx_desc;
615         struct i40e_rx_buffer *bi;
616         struct sk_buff *skb;
617
618         /* do nothing if no valid netdev defined */
619         if (!rx_ring->netdev || !cleaned_count)
620                 return;
621
622         while (cleaned_count--) {
623                 rx_desc = I40E_RX_DESC(rx_ring, i);
624                 bi = &rx_ring->rx_bi[i];
625                 skb = bi->skb;
626
627                 if (!skb) {
628                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
629                                                         rx_ring->rx_buf_len);
630                         if (!skb) {
631                                 rx_ring->rx_stats.alloc_buff_failed++;
632                                 goto no_buffers;
633                         }
634                         /* initialize queue mapping */
635                         skb_record_rx_queue(skb, rx_ring->queue_index);
636                         bi->skb = skb;
637                 }
638
639                 if (!bi->dma) {
640                         bi->dma = dma_map_single(rx_ring->dev,
641                                                  skb->data,
642                                                  rx_ring->rx_buf_len,
643                                                  DMA_FROM_DEVICE);
644                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
645                                 rx_ring->rx_stats.alloc_buff_failed++;
646                                 bi->dma = 0;
647                                 goto no_buffers;
648                         }
649                 }
650
651                 if (ring_is_ps_enabled(rx_ring)) {
652                         if (!bi->page) {
653                                 bi->page = alloc_page(GFP_ATOMIC);
654                                 if (!bi->page) {
655                                         rx_ring->rx_stats.alloc_page_failed++;
656                                         goto no_buffers;
657                                 }
658                         }
659
660                         if (!bi->page_dma) {
661                                 /* use a half page if we're re-using */
662                                 bi->page_offset ^= PAGE_SIZE / 2;
663                                 bi->page_dma = dma_map_page(rx_ring->dev,
664                                                             bi->page,
665                                                             bi->page_offset,
666                                                             PAGE_SIZE / 2,
667                                                             DMA_FROM_DEVICE);
668                                 if (dma_mapping_error(rx_ring->dev,
669                                                       bi->page_dma)) {
670                                         rx_ring->rx_stats.alloc_page_failed++;
671                                         bi->page_dma = 0;
672                                         goto no_buffers;
673                                 }
674                         }
675
676                         /* Refresh the desc even if buffer_addrs didn't change
677                          * because each write-back erases this info.
678                          */
679                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
680                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
681                 } else {
682                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
683                         rx_desc->read.hdr_addr = 0;
684                 }
685                 i++;
686                 if (i == rx_ring->count)
687                         i = 0;
688         }
689
690 no_buffers:
691         if (rx_ring->next_to_use != i)
692                 i40e_release_rx_desc(rx_ring, i);
693 }
694
695 /**
696  * i40e_receive_skb - Send a completed packet up the stack
697  * @rx_ring:  rx ring in play
698  * @skb: packet to send up
699  * @vlan_tag: vlan tag for packet
700  **/
701 static void i40e_receive_skb(struct i40e_ring *rx_ring,
702                              struct sk_buff *skb, u16 vlan_tag)
703 {
704         struct i40e_q_vector *q_vector = rx_ring->q_vector;
705         struct i40e_vsi *vsi = rx_ring->vsi;
706         u64 flags = vsi->back->flags;
707
708         if (vlan_tag & VLAN_VID_MASK)
709                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
710
711         if (flags & I40E_FLAG_IN_NETPOLL)
712                 netif_rx(skb);
713         else
714                 napi_gro_receive(&q_vector->napi, skb);
715 }
716
717 /**
718  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
719  * @vsi: the VSI we care about
720  * @skb: skb currently being received and modified
721  * @rx_status: status value of last descriptor in packet
722  * @rx_error: error value of last descriptor in packet
723  * @rx_ptype: ptype value of last descriptor in packet
724  **/
725 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
726                                     struct sk_buff *skb,
727                                     u32 rx_status,
728                                     u32 rx_error,
729                                     u16 rx_ptype)
730 {
731         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
732         bool ipv4 = false, ipv6 = false;
733         bool ipv4_tunnel, ipv6_tunnel;
734         __wsum rx_udp_csum;
735         struct iphdr *iph;
736         __sum16 csum;
737
738         ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
739                       (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
740         ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
741                       (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
742
743         skb->encapsulation = ipv4_tunnel || ipv6_tunnel;
744         skb->ip_summed = CHECKSUM_NONE;
745
746         /* Rx csum enabled and ip headers found? */
747         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
748                 return;
749
750         /* did the hardware decode the packet and checksum? */
751         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
752                 return;
753
754         /* both known and outer_ip must be set for the below code to work */
755         if (!(decoded.known && decoded.outer_ip))
756                 return;
757
758         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
759             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
760                 ipv4 = true;
761         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
762                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
763                 ipv6 = true;
764
765         if (ipv4 &&
766             (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
767                          (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
768                 goto checksum_fail;
769
770         /* likely incorrect csum if alternate IP extension headers found */
771         if (ipv6 &&
772             decoded.inner_prot == I40E_RX_PTYPE_INNER_PROT_TCP &&
773             rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT) &&
774             rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
775                 /* don't increment checksum err here, non-fatal err */
776                 return;
777
778         /* there was some L4 error, count error and punt packet to the stack */
779         if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
780                 goto checksum_fail;
781
782         /* handle packets that were not able to be checksummed due
783          * to arrival speed, in this case the stack can compute
784          * the csum.
785          */
786         if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
787                 return;
788
789         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
790          * it in the driver, hardware does not do it for us.
791          * Since L3L4P bit was set we assume a valid IHL value (>=5)
792          * so the total length of IPv4 header is IHL*4 bytes
793          * The UDP_0 bit *may* bet set if the *inner* header is UDP
794          */
795         if (ipv4_tunnel &&
796             (decoded.inner_prot != I40E_RX_PTYPE_INNER_PROT_UDP) &&
797             !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
798                 skb->transport_header = skb->mac_header +
799                                         sizeof(struct ethhdr) +
800                                         (ip_hdr(skb)->ihl * 4);
801
802                 /* Add 4 bytes for VLAN tagged packets */
803                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
804                                           skb->protocol == htons(ETH_P_8021AD))
805                                           ? VLAN_HLEN : 0;
806
807                 rx_udp_csum = udp_csum(skb);
808                 iph = ip_hdr(skb);
809                 csum = csum_tcpudp_magic(
810                                 iph->saddr, iph->daddr,
811                                 (skb->len - skb_transport_offset(skb)),
812                                 IPPROTO_UDP, rx_udp_csum);
813
814                 if (udp_hdr(skb)->check != csum)
815                         goto checksum_fail;
816         }
817
818         skb->ip_summed = CHECKSUM_UNNECESSARY;
819
820         return;
821
822 checksum_fail:
823         vsi->back->hw_csum_rx_error++;
824 }
825
826 /**
827  * i40e_rx_hash - returns the hash value from the Rx descriptor
828  * @ring: descriptor ring
829  * @rx_desc: specific descriptor
830  **/
831 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
832                                union i40e_rx_desc *rx_desc)
833 {
834         const __le64 rss_mask =
835                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
836                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
837
838         if ((ring->netdev->features & NETIF_F_RXHASH) &&
839             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
840                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
841         else
842                 return 0;
843 }
844
845 /**
846  * i40e_ptype_to_hash - get a hash type
847  * @ptype: the ptype value from the descriptor
848  *
849  * Returns a hash type to be used by skb_set_hash
850  **/
851 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
852 {
853         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
854
855         if (!decoded.known)
856                 return PKT_HASH_TYPE_NONE;
857
858         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
859             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
860                 return PKT_HASH_TYPE_L4;
861         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
862                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
863                 return PKT_HASH_TYPE_L3;
864         else
865                 return PKT_HASH_TYPE_L2;
866 }
867
868 /**
869  * i40e_clean_rx_irq - Reclaim resources after receive completes
870  * @rx_ring:  rx ring to clean
871  * @budget:   how many cleans we're allowed
872  *
873  * Returns true if there's any budget left (e.g. the clean is finished)
874  **/
875 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
876 {
877         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
878         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
879         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
880         const int current_node = numa_node_id();
881         struct i40e_vsi *vsi = rx_ring->vsi;
882         u16 i = rx_ring->next_to_clean;
883         union i40e_rx_desc *rx_desc;
884         u32 rx_error, rx_status;
885         u8 rx_ptype;
886         u64 qword;
887
888         rx_desc = I40E_RX_DESC(rx_ring, i);
889         qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
890         rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
891                     I40E_RXD_QW1_STATUS_SHIFT;
892
893         while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
894                 union i40e_rx_desc *next_rxd;
895                 struct i40e_rx_buffer *rx_bi;
896                 struct sk_buff *skb;
897                 u16 vlan_tag;
898                 rx_bi = &rx_ring->rx_bi[i];
899                 skb = rx_bi->skb;
900                 prefetch(skb->data);
901
902                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
903                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
904                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
905                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
906                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
907                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
908
909                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
910                            I40E_RXD_QW1_ERROR_SHIFT;
911                 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
912                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
913
914                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
915                            I40E_RXD_QW1_PTYPE_SHIFT;
916                 rx_bi->skb = NULL;
917
918                 /* This memory barrier is needed to keep us from reading
919                  * any other fields out of the rx_desc until we know the
920                  * STATUS_DD bit is set
921                  */
922                 rmb();
923
924                 /* Get the header and possibly the whole packet
925                  * If this is an skb from previous receive dma will be 0
926                  */
927                 if (rx_bi->dma) {
928                         u16 len;
929
930                         if (rx_hbo)
931                                 len = I40E_RX_HDR_SIZE;
932                         else if (rx_sph)
933                                 len = rx_header_len;
934                         else if (rx_packet_len)
935                                 len = rx_packet_len;   /* 1buf/no split found */
936                         else
937                                 len = rx_header_len;   /* split always mode */
938
939                         skb_put(skb, len);
940                         dma_unmap_single(rx_ring->dev,
941                                          rx_bi->dma,
942                                          rx_ring->rx_buf_len,
943                                          DMA_FROM_DEVICE);
944                         rx_bi->dma = 0;
945                 }
946
947                 /* Get the rest of the data if this was a header split */
948                 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
949
950                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
951                                            rx_bi->page,
952                                            rx_bi->page_offset,
953                                            rx_packet_len);
954
955                         skb->len += rx_packet_len;
956                         skb->data_len += rx_packet_len;
957                         skb->truesize += rx_packet_len;
958
959                         if ((page_count(rx_bi->page) == 1) &&
960                             (page_to_nid(rx_bi->page) == current_node))
961                                 get_page(rx_bi->page);
962                         else
963                                 rx_bi->page = NULL;
964
965                         dma_unmap_page(rx_ring->dev,
966                                        rx_bi->page_dma,
967                                        PAGE_SIZE / 2,
968                                        DMA_FROM_DEVICE);
969                         rx_bi->page_dma = 0;
970                 }
971                 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
972
973                 if (unlikely(
974                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
975                         struct i40e_rx_buffer *next_buffer;
976
977                         next_buffer = &rx_ring->rx_bi[i];
978
979                         if (ring_is_ps_enabled(rx_ring)) {
980                                 rx_bi->skb = next_buffer->skb;
981                                 rx_bi->dma = next_buffer->dma;
982                                 next_buffer->skb = skb;
983                                 next_buffer->dma = 0;
984                         }
985                         rx_ring->rx_stats.non_eop_descs++;
986                         goto next_desc;
987                 }
988
989                 /* ERR_MASK will only have valid bits if EOP set */
990                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
991                         dev_kfree_skb_any(skb);
992                         /* TODO: shouldn't we increment a counter indicating the
993                          * drop?
994                          */
995                         goto next_desc;
996                 }
997
998                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
999                              i40e_ptype_to_hash(rx_ptype));
1000                 /* probably a little skewed due to removing CRC */
1001                 total_rx_bytes += skb->len;
1002                 total_rx_packets++;
1003
1004                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1005
1006                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1007
1008                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1009                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1010                          : 0;
1011                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1012
1013                 rx_ring->netdev->last_rx = jiffies;
1014                 budget--;
1015 next_desc:
1016                 rx_desc->wb.qword1.status_error_len = 0;
1017                 if (!budget)
1018                         break;
1019
1020                 cleaned_count++;
1021                 /* return some buffers to hardware, one at a time is too slow */
1022                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1023                         i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1024                         cleaned_count = 0;
1025                 }
1026
1027                 /* use prefetched values */
1028                 rx_desc = next_rxd;
1029                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1030                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1031                             I40E_RXD_QW1_STATUS_SHIFT;
1032         }
1033
1034         rx_ring->next_to_clean = i;
1035         u64_stats_update_begin(&rx_ring->syncp);
1036         rx_ring->stats.packets += total_rx_packets;
1037         rx_ring->stats.bytes += total_rx_bytes;
1038         u64_stats_update_end(&rx_ring->syncp);
1039         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1040         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1041
1042         if (cleaned_count)
1043                 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1044
1045         return budget > 0;
1046 }
1047
1048 /**
1049  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1050  * @napi: napi struct with our devices info in it
1051  * @budget: amount of work driver is allowed to do this pass, in packets
1052  *
1053  * This function will clean all queues associated with a q_vector.
1054  *
1055  * Returns the amount of work done
1056  **/
1057 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1058 {
1059         struct i40e_q_vector *q_vector =
1060                                container_of(napi, struct i40e_q_vector, napi);
1061         struct i40e_vsi *vsi = q_vector->vsi;
1062         struct i40e_ring *ring;
1063         bool clean_complete = true;
1064         int budget_per_ring;
1065
1066         if (test_bit(__I40E_DOWN, &vsi->state)) {
1067                 napi_complete(napi);
1068                 return 0;
1069         }
1070
1071         /* Since the actual Tx work is minimal, we can give the Tx a larger
1072          * budget and be more aggressive about cleaning up the Tx descriptors.
1073          */
1074         i40e_for_each_ring(ring, q_vector->tx)
1075                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1076
1077         /* We attempt to distribute budget to each Rx queue fairly, but don't
1078          * allow the budget to go below 1 because that would exit polling early.
1079          */
1080         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1081
1082         i40e_for_each_ring(ring, q_vector->rx)
1083                 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1084
1085         /* If work not completed, return budget and polling will return */
1086         if (!clean_complete)
1087                 return budget;
1088
1089         /* Work is done so exit the polling mode and re-enable the interrupt */
1090         napi_complete(napi);
1091         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1092             ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1093                 i40e_update_dynamic_itr(q_vector);
1094
1095         if (!test_bit(__I40E_DOWN, &vsi->state))
1096                 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1097
1098         return 0;
1099 }
1100
1101 /**
1102  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1103  * @skb:     send buffer
1104  * @tx_ring: ring to send buffer on
1105  * @flags:   the tx flags to be set
1106  *
1107  * Checks the skb and set up correspondingly several generic transmit flags
1108  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1109  *
1110  * Returns error code indicate the frame should be dropped upon error and the
1111  * otherwise  returns 0 to indicate the flags has been set properly.
1112  **/
1113 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1114                                       struct i40e_ring *tx_ring,
1115                                       u32 *flags)
1116 {
1117         __be16 protocol = skb->protocol;
1118         u32  tx_flags = 0;
1119
1120         /* if we have a HW VLAN tag being added, default to the HW one */
1121         if (vlan_tx_tag_present(skb)) {
1122                 tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1123                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1124         /* else if it is a SW VLAN, check the next protocol and store the tag */
1125         } else if (protocol == htons(ETH_P_8021Q)) {
1126                 struct vlan_hdr *vhdr, _vhdr;
1127                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1128                 if (!vhdr)
1129                         return -EINVAL;
1130
1131                 protocol = vhdr->h_vlan_encapsulated_proto;
1132                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1133                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1134         }
1135
1136         *flags = tx_flags;
1137         return 0;
1138 }
1139
1140 /**
1141  * i40e_tso - set up the tso context descriptor
1142  * @tx_ring:  ptr to the ring to send
1143  * @skb:      ptr to the skb we're sending
1144  * @tx_flags: the collected send information
1145  * @protocol: the send protocol
1146  * @hdr_len:  ptr to the size of the packet header
1147  * @cd_tunneling: ptr to context descriptor bits
1148  *
1149  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1150  **/
1151 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1152                     u32 tx_flags, __be16 protocol, u8 *hdr_len,
1153                     u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1154 {
1155         u32 cd_cmd, cd_tso_len, cd_mss;
1156         struct ipv6hdr *ipv6h;
1157         struct tcphdr *tcph;
1158         struct iphdr *iph;
1159         u32 l4len;
1160         int err;
1161
1162         if (!skb_is_gso(skb))
1163                 return 0;
1164
1165         err = skb_cow_head(skb, 0);
1166         if (err < 0)
1167                 return err;
1168
1169         if (protocol == htons(ETH_P_IP)) {
1170                 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1171                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1172                 iph->tot_len = 0;
1173                 iph->check = 0;
1174                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1175                                                  0, IPPROTO_TCP, 0);
1176         } else if (skb_is_gso_v6(skb)) {
1177
1178                 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1179                                            : ipv6_hdr(skb);
1180                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1181                 ipv6h->payload_len = 0;
1182                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1183                                                0, IPPROTO_TCP, 0);
1184         }
1185
1186         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1187         *hdr_len = (skb->encapsulation
1188                     ? (skb_inner_transport_header(skb) - skb->data)
1189                     : skb_transport_offset(skb)) + l4len;
1190
1191         /* find the field values */
1192         cd_cmd = I40E_TX_CTX_DESC_TSO;
1193         cd_tso_len = skb->len - *hdr_len;
1194         cd_mss = skb_shinfo(skb)->gso_size;
1195         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1196                                 ((u64)cd_tso_len <<
1197                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1198                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1199         return 1;
1200 }
1201
1202 /**
1203  * i40e_tx_enable_csum - Enable Tx checksum offloads
1204  * @skb: send buffer
1205  * @tx_flags: Tx flags currently set
1206  * @td_cmd: Tx descriptor command bits to set
1207  * @td_offset: Tx descriptor header offsets to set
1208  * @cd_tunneling: ptr to context desc bits
1209  **/
1210 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1211                                 u32 *td_cmd, u32 *td_offset,
1212                                 struct i40e_ring *tx_ring,
1213                                 u32 *cd_tunneling)
1214 {
1215         struct ipv6hdr *this_ipv6_hdr;
1216         unsigned int this_tcp_hdrlen;
1217         struct iphdr *this_ip_hdr;
1218         u32 network_hdr_len;
1219         u8 l4_hdr = 0;
1220
1221         if (skb->encapsulation) {
1222                 network_hdr_len = skb_inner_network_header_len(skb);
1223                 this_ip_hdr = inner_ip_hdr(skb);
1224                 this_ipv6_hdr = inner_ipv6_hdr(skb);
1225                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1226
1227                 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1228
1229                         if (tx_flags & I40E_TX_FLAGS_TSO) {
1230                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1231                                 ip_hdr(skb)->check = 0;
1232                         } else {
1233                                 *cd_tunneling |=
1234                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1235                         }
1236                 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1237                         if (tx_flags & I40E_TX_FLAGS_TSO) {
1238                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1239                                 ip_hdr(skb)->check = 0;
1240                         } else {
1241                                 *cd_tunneling |=
1242                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1243                         }
1244                 }
1245
1246                 /* Now set the ctx descriptor fields */
1247                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1248                                         I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1249                                    I40E_TXD_CTX_UDP_TUNNELING            |
1250                                    ((skb_inner_network_offset(skb) -
1251                                         skb_transport_offset(skb)) >> 1) <<
1252                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1253
1254         } else {
1255                 network_hdr_len = skb_network_header_len(skb);
1256                 this_ip_hdr = ip_hdr(skb);
1257                 this_ipv6_hdr = ipv6_hdr(skb);
1258                 this_tcp_hdrlen = tcp_hdrlen(skb);
1259         }
1260
1261         /* Enable IP checksum offloads */
1262         if (tx_flags & I40E_TX_FLAGS_IPV4) {
1263                 l4_hdr = this_ip_hdr->protocol;
1264                 /* the stack computes the IP header already, the only time we
1265                  * need the hardware to recompute it is in the case of TSO.
1266                  */
1267                 if (tx_flags & I40E_TX_FLAGS_TSO) {
1268                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1269                         this_ip_hdr->check = 0;
1270                 } else {
1271                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1272                 }
1273                 /* Now set the td_offset for IP header length */
1274                 *td_offset = (network_hdr_len >> 2) <<
1275                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1276         } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1277                 l4_hdr = this_ipv6_hdr->nexthdr;
1278                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1279                 /* Now set the td_offset for IP header length */
1280                 *td_offset = (network_hdr_len >> 2) <<
1281                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1282         }
1283         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1284         *td_offset |= (skb_network_offset(skb) >> 1) <<
1285                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1286
1287         /* Enable L4 checksum offloads */
1288         switch (l4_hdr) {
1289         case IPPROTO_TCP:
1290                 /* enable checksum offloads */
1291                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1292                 *td_offset |= (this_tcp_hdrlen >> 2) <<
1293                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1294                 break;
1295         case IPPROTO_SCTP:
1296                 /* enable SCTP checksum offload */
1297                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1298                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1299                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1300                 break;
1301         case IPPROTO_UDP:
1302                 /* enable UDP checksum offload */
1303                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1304                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1305                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1306                 break;
1307         default:
1308                 break;
1309         }
1310 }
1311
1312 /**
1313  * i40e_create_tx_ctx Build the Tx context descriptor
1314  * @tx_ring:  ring to create the descriptor on
1315  * @cd_type_cmd_tso_mss: Quad Word 1
1316  * @cd_tunneling: Quad Word 0 - bits 0-31
1317  * @cd_l2tag2: Quad Word 0 - bits 32-63
1318  **/
1319 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1320                                const u64 cd_type_cmd_tso_mss,
1321                                const u32 cd_tunneling, const u32 cd_l2tag2)
1322 {
1323         struct i40e_tx_context_desc *context_desc;
1324         int i = tx_ring->next_to_use;
1325
1326         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1327             !cd_tunneling && !cd_l2tag2)
1328                 return;
1329
1330         /* grab the next descriptor */
1331         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1332
1333         i++;
1334         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1335
1336         /* cpu_to_le32 and assign to struct fields */
1337         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1338         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1339         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1340 }
1341
1342 /**
1343  * i40e_tx_map - Build the Tx descriptor
1344  * @tx_ring:  ring to send buffer on
1345  * @skb:      send buffer
1346  * @first:    first buffer info buffer to use
1347  * @tx_flags: collected send information
1348  * @hdr_len:  size of the packet header
1349  * @td_cmd:   the command field in the descriptor
1350  * @td_offset: offset for checksum or crc
1351  **/
1352 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1353                         struct i40e_tx_buffer *first, u32 tx_flags,
1354                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
1355 {
1356         unsigned int data_len = skb->data_len;
1357         unsigned int size = skb_headlen(skb);
1358         struct skb_frag_struct *frag;
1359         struct i40e_tx_buffer *tx_bi;
1360         struct i40e_tx_desc *tx_desc;
1361         u16 i = tx_ring->next_to_use;
1362         u32 td_tag = 0;
1363         dma_addr_t dma;
1364         u16 gso_segs;
1365
1366         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1367                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1368                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1369                          I40E_TX_FLAGS_VLAN_SHIFT;
1370         }
1371
1372         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1373                 gso_segs = skb_shinfo(skb)->gso_segs;
1374         else
1375                 gso_segs = 1;
1376
1377         /* multiply data chunks by size of headers */
1378         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1379         first->gso_segs = gso_segs;
1380         first->skb = skb;
1381         first->tx_flags = tx_flags;
1382
1383         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1384
1385         tx_desc = I40E_TX_DESC(tx_ring, i);
1386         tx_bi = first;
1387
1388         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1389                 if (dma_mapping_error(tx_ring->dev, dma))
1390                         goto dma_error;
1391
1392                 /* record length, and DMA address */
1393                 dma_unmap_len_set(tx_bi, len, size);
1394                 dma_unmap_addr_set(tx_bi, dma, dma);
1395
1396                 tx_desc->buffer_addr = cpu_to_le64(dma);
1397
1398                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1399                         tx_desc->cmd_type_offset_bsz =
1400                                 build_ctob(td_cmd, td_offset,
1401                                            I40E_MAX_DATA_PER_TXD, td_tag);
1402
1403                         tx_desc++;
1404                         i++;
1405                         if (i == tx_ring->count) {
1406                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
1407                                 i = 0;
1408                         }
1409
1410                         dma += I40E_MAX_DATA_PER_TXD;
1411                         size -= I40E_MAX_DATA_PER_TXD;
1412
1413                         tx_desc->buffer_addr = cpu_to_le64(dma);
1414                 }
1415
1416                 if (likely(!data_len))
1417                         break;
1418
1419                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1420                                                           size, td_tag);
1421
1422                 tx_desc++;
1423                 i++;
1424                 if (i == tx_ring->count) {
1425                         tx_desc = I40E_TX_DESC(tx_ring, 0);
1426                         i = 0;
1427                 }
1428
1429                 size = skb_frag_size(frag);
1430                 data_len -= size;
1431
1432                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1433                                        DMA_TO_DEVICE);
1434
1435                 tx_bi = &tx_ring->tx_bi[i];
1436         }
1437
1438         /* Place RS bit on last descriptor of any packet that spans across the
1439          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1440          */
1441 #define WB_STRIDE 0x3
1442         if (((i & WB_STRIDE) != WB_STRIDE) &&
1443             (first <= &tx_ring->tx_bi[i]) &&
1444             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1445                 tx_desc->cmd_type_offset_bsz =
1446                         build_ctob(td_cmd, td_offset, size, td_tag) |
1447                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1448                                          I40E_TXD_QW1_CMD_SHIFT);
1449         } else {
1450                 tx_desc->cmd_type_offset_bsz =
1451                         build_ctob(td_cmd, td_offset, size, td_tag) |
1452                         cpu_to_le64((u64)I40E_TXD_CMD <<
1453                                          I40E_TXD_QW1_CMD_SHIFT);
1454         }
1455
1456         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1457                                                  tx_ring->queue_index),
1458                              first->bytecount);
1459
1460         /* set the timestamp */
1461         first->time_stamp = jiffies;
1462
1463         /* Force memory writes to complete before letting h/w
1464          * know there are new descriptors to fetch.  (Only
1465          * applicable for weak-ordered memory model archs,
1466          * such as IA-64).
1467          */
1468         wmb();
1469
1470         /* set next_to_watch value indicating a packet is present */
1471         first->next_to_watch = tx_desc;
1472
1473         i++;
1474         if (i == tx_ring->count)
1475                 i = 0;
1476
1477         tx_ring->next_to_use = i;
1478
1479         /* notify HW of packet */
1480         writel(i, tx_ring->tail);
1481
1482         return;
1483
1484 dma_error:
1485         dev_info(tx_ring->dev, "TX DMA map failed\n");
1486
1487         /* clear dma mappings for failed tx_bi map */
1488         for (;;) {
1489                 tx_bi = &tx_ring->tx_bi[i];
1490                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1491                 if (tx_bi == first)
1492                         break;
1493                 if (i == 0)
1494                         i = tx_ring->count;
1495                 i--;
1496         }
1497
1498         tx_ring->next_to_use = i;
1499 }
1500
1501 /**
1502  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1503  * @tx_ring: the ring to be checked
1504  * @size:    the size buffer we want to assure is available
1505  *
1506  * Returns -EBUSY if a stop is needed, else 0
1507  **/
1508 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1509 {
1510         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1511         /* Memory barrier before checking head and tail */
1512         smp_mb();
1513
1514         /* Check again in a case another CPU has just made room available. */
1515         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1516                 return -EBUSY;
1517
1518         /* A reprieve! - use start_queue because it doesn't call schedule */
1519         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1520         ++tx_ring->tx_stats.restart_queue;
1521         return 0;
1522 }
1523
1524 /**
1525  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1526  * @tx_ring: the ring to be checked
1527  * @size:    the size buffer we want to assure is available
1528  *
1529  * Returns 0 if stop is not needed
1530  **/
1531 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1532 {
1533         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1534                 return 0;
1535         return __i40e_maybe_stop_tx(tx_ring, size);
1536 }
1537
1538 /**
1539  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1540  * @skb:     send buffer
1541  * @tx_ring: ring to send buffer on
1542  *
1543  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1544  * there is not enough descriptors available in this ring since we need at least
1545  * one descriptor.
1546  **/
1547 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1548                                       struct i40e_ring *tx_ring)
1549 {
1550         unsigned int f;
1551         int count = 0;
1552
1553         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1554          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1555          *       + 4 desc gap to avoid the cache line where head is,
1556          *       + 1 desc for context descriptor,
1557          * otherwise try next time
1558          */
1559         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1560                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1561
1562         count += TXD_USE_COUNT(skb_headlen(skb));
1563         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1564                 tx_ring->tx_stats.tx_busy++;
1565                 return 0;
1566         }
1567         return count;
1568 }
1569
1570 /**
1571  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1572  * @skb:     send buffer
1573  * @tx_ring: ring to send buffer on
1574  *
1575  * Returns NETDEV_TX_OK if sent, else an error code
1576  **/
1577 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1578                                         struct i40e_ring *tx_ring)
1579 {
1580         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1581         u32 cd_tunneling = 0, cd_l2tag2 = 0;
1582         struct i40e_tx_buffer *first;
1583         u32 td_offset = 0;
1584         u32 tx_flags = 0;
1585         __be16 protocol;
1586         u32 td_cmd = 0;
1587         u8 hdr_len = 0;
1588         int tso;
1589         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1590                 return NETDEV_TX_BUSY;
1591
1592         /* prepare the xmit flags */
1593         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1594                 goto out_drop;
1595
1596         /* obtain protocol of skb */
1597         protocol = skb->protocol;
1598
1599         /* record the location of the first descriptor for this packet */
1600         first = &tx_ring->tx_bi[tx_ring->next_to_use];
1601
1602         /* setup IPv4/IPv6 offloads */
1603         if (protocol == htons(ETH_P_IP))
1604                 tx_flags |= I40E_TX_FLAGS_IPV4;
1605         else if (protocol == htons(ETH_P_IPV6))
1606                 tx_flags |= I40E_TX_FLAGS_IPV6;
1607
1608         tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1609                        &cd_type_cmd_tso_mss, &cd_tunneling);
1610
1611         if (tso < 0)
1612                 goto out_drop;
1613         else if (tso)
1614                 tx_flags |= I40E_TX_FLAGS_TSO;
1615
1616         skb_tx_timestamp(skb);
1617
1618         /* always enable CRC insertion offload */
1619         td_cmd |= I40E_TX_DESC_CMD_ICRC;
1620
1621         /* Always offload the checksum, since it's in the data descriptor */
1622         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1623                 tx_flags |= I40E_TX_FLAGS_CSUM;
1624
1625                 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1626                                     tx_ring, &cd_tunneling);
1627         }
1628
1629         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1630                            cd_tunneling, cd_l2tag2);
1631
1632         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1633                     td_cmd, td_offset);
1634
1635         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1636
1637         return NETDEV_TX_OK;
1638
1639 out_drop:
1640         dev_kfree_skb_any(skb);
1641         return NETDEV_TX_OK;
1642 }
1643
1644 /**
1645  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1646  * @skb:    send buffer
1647  * @netdev: network interface device structure
1648  *
1649  * Returns NETDEV_TX_OK if sent, else an error code
1650  **/
1651 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1652 {
1653         struct i40evf_adapter *adapter = netdev_priv(netdev);
1654         struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1655
1656         /* hardware can't handle really short frames, hardware padding works
1657          * beyond this point
1658          */
1659         if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1660                 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1661                         return NETDEV_TX_OK;
1662                 skb->len = I40E_MIN_TX_LEN;
1663                 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1664         }
1665
1666         return i40e_xmit_frame_ring(skb, tx_ring);
1667 }