igb: Cleanups to fix msleep warnings
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 /* e1000_82575
25  * e1000_82576
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61                                                  u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74         36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75
76 /**
77  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78  *  @hw: pointer to the HW structure
79  *
80  *  Called to determine if the I2C pins are being used for I2C or as an
81  *  external MDIO interface since the two options are mutually exclusive.
82  **/
83 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84 {
85         u32 reg = 0;
86         bool ext_mdio = false;
87
88         switch (hw->mac.type) {
89         case e1000_82575:
90         case e1000_82576:
91                 reg = rd32(E1000_MDIC);
92                 ext_mdio = !!(reg & E1000_MDIC_DEST);
93                 break;
94         case e1000_82580:
95         case e1000_i350:
96         case e1000_i354:
97         case e1000_i210:
98         case e1000_i211:
99                 reg = rd32(E1000_MDICNFG);
100                 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101                 break;
102         default:
103                 break;
104         }
105         return ext_mdio;
106 }
107
108 /**
109  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
110  *  @hw: pointer to the HW structure
111  *
112  *  Poll the M88E1112 interfaces to see which interface achieved link.
113  */
114 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115 {
116         struct e1000_phy_info *phy = &hw->phy;
117         s32 ret_val;
118         u16 data;
119         u8 port = 0;
120
121         /* Check the copper medium. */
122         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123         if (ret_val)
124                 return ret_val;
125
126         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127         if (ret_val)
128                 return ret_val;
129
130         if (data & E1000_M88E1112_STATUS_LINK)
131                 port = E1000_MEDIA_PORT_COPPER;
132
133         /* Check the other medium. */
134         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135         if (ret_val)
136                 return ret_val;
137
138         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139         if (ret_val)
140                 return ret_val;
141
142         /* reset page to 0 */
143         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
144         if (ret_val)
145                 return ret_val;
146
147         if (data & E1000_M88E1112_STATUS_LINK)
148                 port = E1000_MEDIA_PORT_OTHER;
149
150         /* Determine if a swap needs to happen. */
151         if (port && (hw->dev_spec._82575.media_port != port)) {
152                 hw->dev_spec._82575.media_port = port;
153                 hw->dev_spec._82575.media_changed = true;
154         } else {
155                 ret_val = igb_check_for_link_82575(hw);
156         }
157
158         return E1000_SUCCESS;
159 }
160
161 /**
162  *  igb_init_phy_params_82575 - Init PHY func ptrs.
163  *  @hw: pointer to the HW structure
164  **/
165 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
166 {
167         struct e1000_phy_info *phy = &hw->phy;
168         s32 ret_val = 0;
169         u32 ctrl_ext;
170
171         if (hw->phy.media_type != e1000_media_type_copper) {
172                 phy->type = e1000_phy_none;
173                 goto out;
174         }
175
176         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
177         phy->reset_delay_us     = 100;
178
179         ctrl_ext = rd32(E1000_CTRL_EXT);
180
181         if (igb_sgmii_active_82575(hw)) {
182                 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
183                 ctrl_ext |= E1000_CTRL_I2C_ENA;
184         } else {
185                 phy->ops.reset = igb_phy_hw_reset;
186                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
187         }
188
189         wr32(E1000_CTRL_EXT, ctrl_ext);
190         igb_reset_mdicnfg_82580(hw);
191
192         if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
193                 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
194                 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
195         } else {
196                 switch (hw->mac.type) {
197                 case e1000_82580:
198                 case e1000_i350:
199                 case e1000_i354:
200                         phy->ops.read_reg = igb_read_phy_reg_82580;
201                         phy->ops.write_reg = igb_write_phy_reg_82580;
202                         break;
203                 case e1000_i210:
204                 case e1000_i211:
205                         phy->ops.read_reg = igb_read_phy_reg_gs40g;
206                         phy->ops.write_reg = igb_write_phy_reg_gs40g;
207                         break;
208                 default:
209                         phy->ops.read_reg = igb_read_phy_reg_igp;
210                         phy->ops.write_reg = igb_write_phy_reg_igp;
211                 }
212         }
213
214         /* set lan id */
215         hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
216                         E1000_STATUS_FUNC_SHIFT;
217
218         /* Set phy->phy_addr and phy->id. */
219         ret_val = igb_get_phy_id_82575(hw);
220         if (ret_val)
221                 return ret_val;
222
223         /* Verify phy id and set remaining function pointers */
224         switch (phy->id) {
225         case M88E1543_E_PHY_ID:
226         case I347AT4_E_PHY_ID:
227         case M88E1112_E_PHY_ID:
228         case M88E1111_I_PHY_ID:
229                 phy->type               = e1000_phy_m88;
230                 phy->ops.check_polarity = igb_check_polarity_m88;
231                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
232                 if (phy->id != M88E1111_I_PHY_ID)
233                         phy->ops.get_cable_length =
234                                          igb_get_cable_length_m88_gen2;
235                 else
236                         phy->ops.get_cable_length = igb_get_cable_length_m88;
237                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
238                 /* Check if this PHY is confgured for media swap. */
239                 if (phy->id == M88E1112_E_PHY_ID) {
240                         u16 data;
241
242                         ret_val = phy->ops.write_reg(hw,
243                                                      E1000_M88E1112_PAGE_ADDR,
244                                                      2);
245                         if (ret_val)
246                                 goto out;
247
248                         ret_val = phy->ops.read_reg(hw,
249                                                     E1000_M88E1112_MAC_CTRL_1,
250                                                     &data);
251                         if (ret_val)
252                                 goto out;
253
254                         data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
255                                E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
256                         if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
257                             data == E1000_M88E1112_AUTO_COPPER_BASEX)
258                                 hw->mac.ops.check_for_link =
259                                                 igb_check_for_link_media_swap;
260                 }
261                 break;
262         case IGP03E1000_E_PHY_ID:
263                 phy->type = e1000_phy_igp_3;
264                 phy->ops.get_phy_info = igb_get_phy_info_igp;
265                 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
266                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
267                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
268                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
269                 break;
270         case I82580_I_PHY_ID:
271         case I350_I_PHY_ID:
272                 phy->type = e1000_phy_82580;
273                 phy->ops.force_speed_duplex =
274                                          igb_phy_force_speed_duplex_82580;
275                 phy->ops.get_cable_length = igb_get_cable_length_82580;
276                 phy->ops.get_phy_info = igb_get_phy_info_82580;
277                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
278                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
279                 break;
280         case I210_I_PHY_ID:
281                 phy->type               = e1000_phy_i210;
282                 phy->ops.check_polarity = igb_check_polarity_m88;
283                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
284                 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
285                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
286                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
287                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
288                 break;
289         default:
290                 ret_val = -E1000_ERR_PHY;
291                 goto out;
292         }
293
294 out:
295         return ret_val;
296 }
297
298 /**
299  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
300  *  @hw: pointer to the HW structure
301  **/
302 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
303 {
304         struct e1000_nvm_info *nvm = &hw->nvm;
305         u32 eecd = rd32(E1000_EECD);
306         u16 size;
307
308         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
309                      E1000_EECD_SIZE_EX_SHIFT);
310
311         /* Added to a constant, "size" becomes the left-shift value
312          * for setting word_size.
313          */
314         size += NVM_WORD_SIZE_BASE_SHIFT;
315
316         /* Just in case size is out of range, cap it to the largest
317          * EEPROM size supported
318          */
319         if (size > 15)
320                 size = 15;
321
322         nvm->word_size = 1 << size;
323         nvm->opcode_bits = 8;
324         nvm->delay_usec = 1;
325
326         switch (nvm->override) {
327         case e1000_nvm_override_spi_large:
328                 nvm->page_size = 32;
329                 nvm->address_bits = 16;
330                 break;
331         case e1000_nvm_override_spi_small:
332                 nvm->page_size = 8;
333                 nvm->address_bits = 8;
334                 break;
335         default:
336                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
337                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
338                                     16 : 8;
339                 break;
340         }
341         if (nvm->word_size == (1 << 15))
342                 nvm->page_size = 128;
343
344         nvm->type = e1000_nvm_eeprom_spi;
345
346         /* NVM Function Pointers */
347         nvm->ops.acquire = igb_acquire_nvm_82575;
348         nvm->ops.release = igb_release_nvm_82575;
349         nvm->ops.write = igb_write_nvm_spi;
350         nvm->ops.validate = igb_validate_nvm_checksum;
351         nvm->ops.update = igb_update_nvm_checksum;
352         if (nvm->word_size < (1 << 15))
353                 nvm->ops.read = igb_read_nvm_eerd;
354         else
355                 nvm->ops.read = igb_read_nvm_spi;
356
357         /* override generic family function pointers for specific descendants */
358         switch (hw->mac.type) {
359         case e1000_82580:
360                 nvm->ops.validate = igb_validate_nvm_checksum_82580;
361                 nvm->ops.update = igb_update_nvm_checksum_82580;
362                 break;
363         case e1000_i354:
364         case e1000_i350:
365                 nvm->ops.validate = igb_validate_nvm_checksum_i350;
366                 nvm->ops.update = igb_update_nvm_checksum_i350;
367                 break;
368         default:
369                 break;
370         }
371
372         return 0;
373 }
374
375 /**
376  *  igb_init_mac_params_82575 - Init MAC func ptrs.
377  *  @hw: pointer to the HW structure
378  **/
379 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
380 {
381         struct e1000_mac_info *mac = &hw->mac;
382         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
383
384         /* Set mta register count */
385         mac->mta_reg_count = 128;
386         /* Set rar entry count */
387         switch (mac->type) {
388         case e1000_82576:
389                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
390                 break;
391         case e1000_82580:
392                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
393                 break;
394         case e1000_i350:
395         case e1000_i354:
396                 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
397                 break;
398         default:
399                 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
400                 break;
401         }
402         /* reset */
403         if (mac->type >= e1000_82580)
404                 mac->ops.reset_hw = igb_reset_hw_82580;
405         else
406                 mac->ops.reset_hw = igb_reset_hw_82575;
407
408         if (mac->type >= e1000_i210) {
409                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
410                 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
411
412         } else {
413                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
414                 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
415         }
416
417         /* Set if part includes ASF firmware */
418         mac->asf_firmware_present = true;
419         /* Set if manageability features are enabled. */
420         mac->arc_subsystem_valid =
421                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
422                         ? true : false;
423         /* enable EEE on i350 parts and later parts */
424         if (mac->type >= e1000_i350)
425                 dev_spec->eee_disable = false;
426         else
427                 dev_spec->eee_disable = true;
428         /* Allow a single clear of the SW semaphore on I210 and newer */
429         if (mac->type >= e1000_i210)
430                 dev_spec->clear_semaphore_once = true;
431         /* physical interface link setup */
432         mac->ops.setup_physical_interface =
433                 (hw->phy.media_type == e1000_media_type_copper)
434                         ? igb_setup_copper_link_82575
435                         : igb_setup_serdes_link_82575;
436
437         if (mac->type == e1000_82580) {
438                 switch (hw->device_id) {
439                 /* feature not supported on these id's */
440                 case E1000_DEV_ID_DH89XXCC_SGMII:
441                 case E1000_DEV_ID_DH89XXCC_SERDES:
442                 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
443                 case E1000_DEV_ID_DH89XXCC_SFP:
444                         break;
445                 default:
446                         hw->dev_spec._82575.mas_capable = true;
447                         break;
448                 }
449         }
450         return 0;
451 }
452
453 /**
454  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
455  *  @hw: pointer to the HW structure
456  *
457  *  The media type is chosen based on SFP module.
458  *  compatibility flags retrieved from SFP ID EEPROM.
459  **/
460 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
461 {
462         s32 ret_val = E1000_ERR_CONFIG;
463         u32 ctrl_ext = 0;
464         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
465         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
466         u8 tranceiver_type = 0;
467         s32 timeout = 3;
468
469         /* Turn I2C interface ON and power on sfp cage */
470         ctrl_ext = rd32(E1000_CTRL_EXT);
471         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
472         wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
473
474         wrfl();
475
476         /* Read SFP module data */
477         while (timeout) {
478                 ret_val = igb_read_sfp_data_byte(hw,
479                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
480                         &tranceiver_type);
481                 if (ret_val == 0)
482                         break;
483                 msleep(100);
484                 timeout--;
485         }
486         if (ret_val != 0)
487                 goto out;
488
489         ret_val = igb_read_sfp_data_byte(hw,
490                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
491                         (u8 *)eth_flags);
492         if (ret_val != 0)
493                 goto out;
494
495         /* Check if there is some SFP module plugged and powered */
496         if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
497             (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
498                 dev_spec->module_plugged = true;
499                 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
500                         hw->phy.media_type = e1000_media_type_internal_serdes;
501                 } else if (eth_flags->e100_base_fx) {
502                         dev_spec->sgmii_active = true;
503                         hw->phy.media_type = e1000_media_type_internal_serdes;
504                 } else if (eth_flags->e1000_base_t) {
505                         dev_spec->sgmii_active = true;
506                         hw->phy.media_type = e1000_media_type_copper;
507                 } else {
508                         hw->phy.media_type = e1000_media_type_unknown;
509                         hw_dbg("PHY module has not been recognized\n");
510                         goto out;
511                 }
512         } else {
513                 hw->phy.media_type = e1000_media_type_unknown;
514         }
515         ret_val = 0;
516 out:
517         /* Restore I2C interface setting */
518         wr32(E1000_CTRL_EXT, ctrl_ext);
519         return ret_val;
520 }
521
522 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
523 {
524         struct e1000_mac_info *mac = &hw->mac;
525         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
526         s32 ret_val;
527         u32 ctrl_ext = 0;
528         u32 link_mode = 0;
529
530         switch (hw->device_id) {
531         case E1000_DEV_ID_82575EB_COPPER:
532         case E1000_DEV_ID_82575EB_FIBER_SERDES:
533         case E1000_DEV_ID_82575GB_QUAD_COPPER:
534                 mac->type = e1000_82575;
535                 break;
536         case E1000_DEV_ID_82576:
537         case E1000_DEV_ID_82576_NS:
538         case E1000_DEV_ID_82576_NS_SERDES:
539         case E1000_DEV_ID_82576_FIBER:
540         case E1000_DEV_ID_82576_SERDES:
541         case E1000_DEV_ID_82576_QUAD_COPPER:
542         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
543         case E1000_DEV_ID_82576_SERDES_QUAD:
544                 mac->type = e1000_82576;
545                 break;
546         case E1000_DEV_ID_82580_COPPER:
547         case E1000_DEV_ID_82580_FIBER:
548         case E1000_DEV_ID_82580_QUAD_FIBER:
549         case E1000_DEV_ID_82580_SERDES:
550         case E1000_DEV_ID_82580_SGMII:
551         case E1000_DEV_ID_82580_COPPER_DUAL:
552         case E1000_DEV_ID_DH89XXCC_SGMII:
553         case E1000_DEV_ID_DH89XXCC_SERDES:
554         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
555         case E1000_DEV_ID_DH89XXCC_SFP:
556                 mac->type = e1000_82580;
557                 break;
558         case E1000_DEV_ID_I350_COPPER:
559         case E1000_DEV_ID_I350_FIBER:
560         case E1000_DEV_ID_I350_SERDES:
561         case E1000_DEV_ID_I350_SGMII:
562                 mac->type = e1000_i350;
563                 break;
564         case E1000_DEV_ID_I210_COPPER:
565         case E1000_DEV_ID_I210_FIBER:
566         case E1000_DEV_ID_I210_SERDES:
567         case E1000_DEV_ID_I210_SGMII:
568         case E1000_DEV_ID_I210_COPPER_FLASHLESS:
569         case E1000_DEV_ID_I210_SERDES_FLASHLESS:
570                 mac->type = e1000_i210;
571                 break;
572         case E1000_DEV_ID_I211_COPPER:
573                 mac->type = e1000_i211;
574                 break;
575         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
576         case E1000_DEV_ID_I354_SGMII:
577         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
578                 mac->type = e1000_i354;
579                 break;
580         default:
581                 return -E1000_ERR_MAC_INIT;
582                 break;
583         }
584
585         /* Set media type */
586         /* The 82575 uses bits 22:23 for link mode. The mode can be changed
587          * based on the EEPROM. We cannot rely upon device ID. There
588          * is no distinguishable difference between fiber and internal
589          * SerDes mode on the 82575. There can be an external PHY attached
590          * on the SGMII interface. For this, we'll set sgmii_active to true.
591          */
592         hw->phy.media_type = e1000_media_type_copper;
593         dev_spec->sgmii_active = false;
594         dev_spec->module_plugged = false;
595
596         ctrl_ext = rd32(E1000_CTRL_EXT);
597
598         link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
599         switch (link_mode) {
600         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
601                 hw->phy.media_type = e1000_media_type_internal_serdes;
602                 break;
603         case E1000_CTRL_EXT_LINK_MODE_SGMII:
604                 /* Get phy control interface type set (MDIO vs. I2C)*/
605                 if (igb_sgmii_uses_mdio_82575(hw)) {
606                         hw->phy.media_type = e1000_media_type_copper;
607                         dev_spec->sgmii_active = true;
608                         break;
609                 }
610                 /* fall through for I2C based SGMII */
611         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
612                 /* read media type from SFP EEPROM */
613                 ret_val = igb_set_sfp_media_type_82575(hw);
614                 if ((ret_val != 0) ||
615                     (hw->phy.media_type == e1000_media_type_unknown)) {
616                         /* If media type was not identified then return media
617                          * type defined by the CTRL_EXT settings.
618                          */
619                         hw->phy.media_type = e1000_media_type_internal_serdes;
620
621                         if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
622                                 hw->phy.media_type = e1000_media_type_copper;
623                                 dev_spec->sgmii_active = true;
624                         }
625
626                         break;
627                 }
628
629                 /* do not change link mode for 100BaseFX */
630                 if (dev_spec->eth_flags.e100_base_fx)
631                         break;
632
633                 /* change current link mode setting */
634                 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
635
636                 if (hw->phy.media_type == e1000_media_type_copper)
637                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
638                 else
639                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
640
641                 wr32(E1000_CTRL_EXT, ctrl_ext);
642
643                 break;
644         default:
645                 break;
646         }
647
648         /* mac initialization and operations */
649         ret_val = igb_init_mac_params_82575(hw);
650         if (ret_val)
651                 goto out;
652
653         /* NVM initialization */
654         ret_val = igb_init_nvm_params_82575(hw);
655         switch (hw->mac.type) {
656         case e1000_i210:
657         case e1000_i211:
658                 ret_val = igb_init_nvm_params_i210(hw);
659                 break;
660         default:
661                 break;
662         }
663
664         if (ret_val)
665                 goto out;
666
667         /* if part supports SR-IOV then initialize mailbox parameters */
668         switch (mac->type) {
669         case e1000_82576:
670         case e1000_i350:
671                 igb_init_mbx_params_pf(hw);
672                 break;
673         default:
674                 break;
675         }
676
677         /* setup PHY parameters */
678         ret_val = igb_init_phy_params_82575(hw);
679
680 out:
681         return ret_val;
682 }
683
684 /**
685  *  igb_acquire_phy_82575 - Acquire rights to access PHY
686  *  @hw: pointer to the HW structure
687  *
688  *  Acquire access rights to the correct PHY.  This is a
689  *  function pointer entry point called by the api module.
690  **/
691 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
692 {
693         u16 mask = E1000_SWFW_PHY0_SM;
694
695         if (hw->bus.func == E1000_FUNC_1)
696                 mask = E1000_SWFW_PHY1_SM;
697         else if (hw->bus.func == E1000_FUNC_2)
698                 mask = E1000_SWFW_PHY2_SM;
699         else if (hw->bus.func == E1000_FUNC_3)
700                 mask = E1000_SWFW_PHY3_SM;
701
702         return hw->mac.ops.acquire_swfw_sync(hw, mask);
703 }
704
705 /**
706  *  igb_release_phy_82575 - Release rights to access PHY
707  *  @hw: pointer to the HW structure
708  *
709  *  A wrapper to release access rights to the correct PHY.  This is a
710  *  function pointer entry point called by the api module.
711  **/
712 static void igb_release_phy_82575(struct e1000_hw *hw)
713 {
714         u16 mask = E1000_SWFW_PHY0_SM;
715
716         if (hw->bus.func == E1000_FUNC_1)
717                 mask = E1000_SWFW_PHY1_SM;
718         else if (hw->bus.func == E1000_FUNC_2)
719                 mask = E1000_SWFW_PHY2_SM;
720         else if (hw->bus.func == E1000_FUNC_3)
721                 mask = E1000_SWFW_PHY3_SM;
722
723         hw->mac.ops.release_swfw_sync(hw, mask);
724 }
725
726 /**
727  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
728  *  @hw: pointer to the HW structure
729  *  @offset: register offset to be read
730  *  @data: pointer to the read data
731  *
732  *  Reads the PHY register at offset using the serial gigabit media independent
733  *  interface and stores the retrieved information in data.
734  **/
735 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
736                                           u16 *data)
737 {
738         s32 ret_val = -E1000_ERR_PARAM;
739
740         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
741                 hw_dbg("PHY Address %u is out of range\n", offset);
742                 goto out;
743         }
744
745         ret_val = hw->phy.ops.acquire(hw);
746         if (ret_val)
747                 goto out;
748
749         ret_val = igb_read_phy_reg_i2c(hw, offset, data);
750
751         hw->phy.ops.release(hw);
752
753 out:
754         return ret_val;
755 }
756
757 /**
758  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
759  *  @hw: pointer to the HW structure
760  *  @offset: register offset to write to
761  *  @data: data to write at register offset
762  *
763  *  Writes the data to PHY register at the offset using the serial gigabit
764  *  media independent interface.
765  **/
766 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
767                                            u16 data)
768 {
769         s32 ret_val = -E1000_ERR_PARAM;
770
771
772         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
773                 hw_dbg("PHY Address %d is out of range\n", offset);
774                 goto out;
775         }
776
777         ret_val = hw->phy.ops.acquire(hw);
778         if (ret_val)
779                 goto out;
780
781         ret_val = igb_write_phy_reg_i2c(hw, offset, data);
782
783         hw->phy.ops.release(hw);
784
785 out:
786         return ret_val;
787 }
788
789 /**
790  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
791  *  @hw: pointer to the HW structure
792  *
793  *  Retrieves the PHY address and ID for both PHY's which do and do not use
794  *  sgmi interface.
795  **/
796 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
797 {
798         struct e1000_phy_info *phy = &hw->phy;
799         s32  ret_val = 0;
800         u16 phy_id;
801         u32 ctrl_ext;
802         u32 mdic;
803
804         /* Extra read required for some PHY's on i354 */
805         if (hw->mac.type == e1000_i354)
806                 igb_get_phy_id(hw);
807
808         /* For SGMII PHYs, we try the list of possible addresses until
809          * we find one that works.  For non-SGMII PHYs
810          * (e.g. integrated copper PHYs), an address of 1 should
811          * work.  The result of this function should mean phy->phy_addr
812          * and phy->id are set correctly.
813          */
814         if (!(igb_sgmii_active_82575(hw))) {
815                 phy->addr = 1;
816                 ret_val = igb_get_phy_id(hw);
817                 goto out;
818         }
819
820         if (igb_sgmii_uses_mdio_82575(hw)) {
821                 switch (hw->mac.type) {
822                 case e1000_82575:
823                 case e1000_82576:
824                         mdic = rd32(E1000_MDIC);
825                         mdic &= E1000_MDIC_PHY_MASK;
826                         phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
827                         break;
828                 case e1000_82580:
829                 case e1000_i350:
830                 case e1000_i354:
831                 case e1000_i210:
832                 case e1000_i211:
833                         mdic = rd32(E1000_MDICNFG);
834                         mdic &= E1000_MDICNFG_PHY_MASK;
835                         phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
836                         break;
837                 default:
838                         ret_val = -E1000_ERR_PHY;
839                         goto out;
840                         break;
841                 }
842                 ret_val = igb_get_phy_id(hw);
843                 goto out;
844         }
845
846         /* Power on sgmii phy if it is disabled */
847         ctrl_ext = rd32(E1000_CTRL_EXT);
848         wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
849         wrfl();
850         msleep(300);
851
852         /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
853          * Therefore, we need to test 1-7
854          */
855         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
856                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
857                 if (ret_val == 0) {
858                         hw_dbg("Vendor ID 0x%08X read at address %u\n",
859                                phy_id, phy->addr);
860                         /* At the time of this writing, The M88 part is
861                          * the only supported SGMII PHY product.
862                          */
863                         if (phy_id == M88_VENDOR)
864                                 break;
865                 } else {
866                         hw_dbg("PHY address %u was unreadable\n", phy->addr);
867                 }
868         }
869
870         /* A valid PHY type couldn't be found. */
871         if (phy->addr == 8) {
872                 phy->addr = 0;
873                 ret_val = -E1000_ERR_PHY;
874                 goto out;
875         } else {
876                 ret_val = igb_get_phy_id(hw);
877         }
878
879         /* restore previous sfp cage power state */
880         wr32(E1000_CTRL_EXT, ctrl_ext);
881
882 out:
883         return ret_val;
884 }
885
886 /**
887  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
888  *  @hw: pointer to the HW structure
889  *
890  *  Resets the PHY using the serial gigabit media independent interface.
891  **/
892 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
893 {
894         s32 ret_val;
895
896         /* This isn't a true "hard" reset, but is the only reset
897          * available to us at this time.
898          */
899
900         hw_dbg("Soft resetting SGMII attached PHY...\n");
901
902         /* SFP documentation requires the following to configure the SPF module
903          * to work on SGMII.  No further documentation is given.
904          */
905         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
906         if (ret_val)
907                 goto out;
908
909         ret_val = igb_phy_sw_reset(hw);
910
911 out:
912         return ret_val;
913 }
914
915 /**
916  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
917  *  @hw: pointer to the HW structure
918  *  @active: true to enable LPLU, false to disable
919  *
920  *  Sets the LPLU D0 state according to the active flag.  When
921  *  activating LPLU this function also disables smart speed
922  *  and vice versa.  LPLU will not be activated unless the
923  *  device autonegotiation advertisement meets standards of
924  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
925  *  This is a function pointer entry point only called by
926  *  PHY setup routines.
927  **/
928 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
929 {
930         struct e1000_phy_info *phy = &hw->phy;
931         s32 ret_val;
932         u16 data;
933
934         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
935         if (ret_val)
936                 goto out;
937
938         if (active) {
939                 data |= IGP02E1000_PM_D0_LPLU;
940                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
941                                                  data);
942                 if (ret_val)
943                         goto out;
944
945                 /* When LPLU is enabled, we should disable SmartSpeed */
946                 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
947                                                 &data);
948                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
949                 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
950                                                  data);
951                 if (ret_val)
952                         goto out;
953         } else {
954                 data &= ~IGP02E1000_PM_D0_LPLU;
955                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
956                                                  data);
957                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
958                  * during Dx states where the power conservation is most
959                  * important.  During driver activity we should enable
960                  * SmartSpeed, so performance is maintained.
961                  */
962                 if (phy->smart_speed == e1000_smart_speed_on) {
963                         ret_val = phy->ops.read_reg(hw,
964                                         IGP01E1000_PHY_PORT_CONFIG, &data);
965                         if (ret_val)
966                                 goto out;
967
968                         data |= IGP01E1000_PSCFR_SMART_SPEED;
969                         ret_val = phy->ops.write_reg(hw,
970                                         IGP01E1000_PHY_PORT_CONFIG, data);
971                         if (ret_val)
972                                 goto out;
973                 } else if (phy->smart_speed == e1000_smart_speed_off) {
974                         ret_val = phy->ops.read_reg(hw,
975                                         IGP01E1000_PHY_PORT_CONFIG, &data);
976                         if (ret_val)
977                                 goto out;
978
979                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
980                         ret_val = phy->ops.write_reg(hw,
981                                         IGP01E1000_PHY_PORT_CONFIG, data);
982                         if (ret_val)
983                                 goto out;
984                 }
985         }
986
987 out:
988         return ret_val;
989 }
990
991 /**
992  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
993  *  @hw: pointer to the HW structure
994  *  @active: true to enable LPLU, false to disable
995  *
996  *  Sets the LPLU D0 state according to the active flag.  When
997  *  activating LPLU this function also disables smart speed
998  *  and vice versa.  LPLU will not be activated unless the
999  *  device autonegotiation advertisement meets standards of
1000  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1001  *  This is a function pointer entry point only called by
1002  *  PHY setup routines.
1003  **/
1004 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1005 {
1006         struct e1000_phy_info *phy = &hw->phy;
1007         s32 ret_val = 0;
1008         u16 data;
1009
1010         data = rd32(E1000_82580_PHY_POWER_MGMT);
1011
1012         if (active) {
1013                 data |= E1000_82580_PM_D0_LPLU;
1014
1015                 /* When LPLU is enabled, we should disable SmartSpeed */
1016                 data &= ~E1000_82580_PM_SPD;
1017         } else {
1018                 data &= ~E1000_82580_PM_D0_LPLU;
1019
1020                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1021                  * during Dx states where the power conservation is most
1022                  * important.  During driver activity we should enable
1023                  * SmartSpeed, so performance is maintained.
1024                  */
1025                 if (phy->smart_speed == e1000_smart_speed_on)
1026                         data |= E1000_82580_PM_SPD;
1027                 else if (phy->smart_speed == e1000_smart_speed_off)
1028                         data &= ~E1000_82580_PM_SPD; }
1029
1030         wr32(E1000_82580_PHY_POWER_MGMT, data);
1031         return ret_val;
1032 }
1033
1034 /**
1035  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1036  *  @hw: pointer to the HW structure
1037  *  @active: boolean used to enable/disable lplu
1038  *
1039  *  Success returns 0, Failure returns 1
1040  *
1041  *  The low power link up (lplu) state is set to the power management level D3
1042  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1043  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1044  *  is used during Dx states where the power conservation is most important.
1045  *  During driver activity, SmartSpeed should be enabled so performance is
1046  *  maintained.
1047  **/
1048 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1049 {
1050         struct e1000_phy_info *phy = &hw->phy;
1051         s32 ret_val = 0;
1052         u16 data;
1053
1054         data = rd32(E1000_82580_PHY_POWER_MGMT);
1055
1056         if (!active) {
1057                 data &= ~E1000_82580_PM_D3_LPLU;
1058                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1059                  * during Dx states where the power conservation is most
1060                  * important.  During driver activity we should enable
1061                  * SmartSpeed, so performance is maintained.
1062                  */
1063                 if (phy->smart_speed == e1000_smart_speed_on)
1064                         data |= E1000_82580_PM_SPD;
1065                 else if (phy->smart_speed == e1000_smart_speed_off)
1066                         data &= ~E1000_82580_PM_SPD;
1067         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1068                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1069                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1070                 data |= E1000_82580_PM_D3_LPLU;
1071                 /* When LPLU is enabled, we should disable SmartSpeed */
1072                 data &= ~E1000_82580_PM_SPD;
1073         }
1074
1075         wr32(E1000_82580_PHY_POWER_MGMT, data);
1076         return ret_val;
1077 }
1078
1079 /**
1080  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1081  *  @hw: pointer to the HW structure
1082  *
1083  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1084  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1085  *  Return successful if access grant bit set, else clear the request for
1086  *  EEPROM access and return -E1000_ERR_NVM (-1).
1087  **/
1088 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1089 {
1090         s32 ret_val;
1091
1092         ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1093         if (ret_val)
1094                 goto out;
1095
1096         ret_val = igb_acquire_nvm(hw);
1097
1098         if (ret_val)
1099                 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1100
1101 out:
1102         return ret_val;
1103 }
1104
1105 /**
1106  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1107  *  @hw: pointer to the HW structure
1108  *
1109  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1110  *  then release the semaphores acquired.
1111  **/
1112 static void igb_release_nvm_82575(struct e1000_hw *hw)
1113 {
1114         igb_release_nvm(hw);
1115         hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1116 }
1117
1118 /**
1119  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1120  *  @hw: pointer to the HW structure
1121  *  @mask: specifies which semaphore to acquire
1122  *
1123  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1124  *  will also specify which port we're acquiring the lock for.
1125  **/
1126 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1127 {
1128         u32 swfw_sync;
1129         u32 swmask = mask;
1130         u32 fwmask = mask << 16;
1131         s32 ret_val = 0;
1132         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1133
1134         while (i < timeout) {
1135                 if (igb_get_hw_semaphore(hw)) {
1136                         ret_val = -E1000_ERR_SWFW_SYNC;
1137                         goto out;
1138                 }
1139
1140                 swfw_sync = rd32(E1000_SW_FW_SYNC);
1141                 if (!(swfw_sync & (fwmask | swmask)))
1142                         break;
1143
1144                 /* Firmware currently using resource (fwmask)
1145                  * or other software thread using resource (swmask)
1146                  */
1147                 igb_put_hw_semaphore(hw);
1148                 mdelay(5);
1149                 i++;
1150         }
1151
1152         if (i == timeout) {
1153                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1154                 ret_val = -E1000_ERR_SWFW_SYNC;
1155                 goto out;
1156         }
1157
1158         swfw_sync |= swmask;
1159         wr32(E1000_SW_FW_SYNC, swfw_sync);
1160
1161         igb_put_hw_semaphore(hw);
1162
1163 out:
1164         return ret_val;
1165 }
1166
1167 /**
1168  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1169  *  @hw: pointer to the HW structure
1170  *  @mask: specifies which semaphore to acquire
1171  *
1172  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1173  *  will also specify which port we're releasing the lock for.
1174  **/
1175 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1176 {
1177         u32 swfw_sync;
1178
1179         while (igb_get_hw_semaphore(hw) != 0)
1180                 ; /* Empty */
1181
1182         swfw_sync = rd32(E1000_SW_FW_SYNC);
1183         swfw_sync &= ~mask;
1184         wr32(E1000_SW_FW_SYNC, swfw_sync);
1185
1186         igb_put_hw_semaphore(hw);
1187 }
1188
1189 /**
1190  *  igb_get_cfg_done_82575 - Read config done bit
1191  *  @hw: pointer to the HW structure
1192  *
1193  *  Read the management control register for the config done bit for
1194  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1195  *  to read the config done bit, so an error is *ONLY* logged and returns
1196  *  0.  If we were to return with error, EEPROM-less silicon
1197  *  would not be able to be reset or change link.
1198  **/
1199 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1200 {
1201         s32 timeout = PHY_CFG_TIMEOUT;
1202         s32 ret_val = 0;
1203         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1204
1205         if (hw->bus.func == 1)
1206                 mask = E1000_NVM_CFG_DONE_PORT_1;
1207         else if (hw->bus.func == E1000_FUNC_2)
1208                 mask = E1000_NVM_CFG_DONE_PORT_2;
1209         else if (hw->bus.func == E1000_FUNC_3)
1210                 mask = E1000_NVM_CFG_DONE_PORT_3;
1211
1212         while (timeout) {
1213                 if (rd32(E1000_EEMNGCTL) & mask)
1214                         break;
1215                 usleep_range(1000, 2000);
1216                 timeout--;
1217         }
1218         if (!timeout)
1219                 hw_dbg("MNG configuration cycle has not completed.\n");
1220
1221         /* If EEPROM is not marked present, init the PHY manually */
1222         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1223             (hw->phy.type == e1000_phy_igp_3))
1224                 igb_phy_init_script_igp3(hw);
1225
1226         return ret_val;
1227 }
1228
1229 /**
1230  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1231  *  @hw: pointer to the HW structure
1232  *  @speed: stores the current speed
1233  *  @duplex: stores the current duplex
1234  *
1235  *  This is a wrapper function, if using the serial gigabit media independent
1236  *  interface, use PCS to retrieve the link speed and duplex information.
1237  *  Otherwise, use the generic function to get the link speed and duplex info.
1238  **/
1239 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1240                                         u16 *duplex)
1241 {
1242         s32 ret_val;
1243
1244         if (hw->phy.media_type != e1000_media_type_copper)
1245                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1246                                                                duplex);
1247         else
1248                 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1249                                                                     duplex);
1250
1251         return ret_val;
1252 }
1253
1254 /**
1255  *  igb_check_for_link_82575 - Check for link
1256  *  @hw: pointer to the HW structure
1257  *
1258  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1259  *  use the generic interface for determining link.
1260  **/
1261 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1262 {
1263         s32 ret_val;
1264         u16 speed, duplex;
1265
1266         if (hw->phy.media_type != e1000_media_type_copper) {
1267                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1268                                                              &duplex);
1269                 /* Use this flag to determine if link needs to be checked or
1270                  * not.  If  we have link clear the flag so that we do not
1271                  * continue to check for link.
1272                  */
1273                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1274
1275                 /* Configure Flow Control now that Auto-Neg has completed.
1276                  * First, we need to restore the desired flow control
1277                  * settings because we may have had to re-autoneg with a
1278                  * different link partner.
1279                  */
1280                 ret_val = igb_config_fc_after_link_up(hw);
1281                 if (ret_val)
1282                         hw_dbg("Error configuring flow control\n");
1283         } else {
1284                 ret_val = igb_check_for_copper_link(hw);
1285         }
1286
1287         return ret_val;
1288 }
1289
1290 /**
1291  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1292  *  @hw: pointer to the HW structure
1293  **/
1294 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1295 {
1296         u32 reg;
1297
1298
1299         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1300             !igb_sgmii_active_82575(hw))
1301                 return;
1302
1303         /* Enable PCS to turn on link */
1304         reg = rd32(E1000_PCS_CFG0);
1305         reg |= E1000_PCS_CFG_PCS_EN;
1306         wr32(E1000_PCS_CFG0, reg);
1307
1308         /* Power up the laser */
1309         reg = rd32(E1000_CTRL_EXT);
1310         reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1311         wr32(E1000_CTRL_EXT, reg);
1312
1313         /* flush the write to verify completion */
1314         wrfl();
1315         usleep_range(1000, 2000);
1316 }
1317
1318 /**
1319  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1320  *  @hw: pointer to the HW structure
1321  *  @speed: stores the current speed
1322  *  @duplex: stores the current duplex
1323  *
1324  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1325  *  duplex, then store the values in the pointers provided.
1326  **/
1327 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1328                                                 u16 *duplex)
1329 {
1330         struct e1000_mac_info *mac = &hw->mac;
1331         u32 pcs, status;
1332
1333         /* Set up defaults for the return values of this function */
1334         mac->serdes_has_link = false;
1335         *speed = 0;
1336         *duplex = 0;
1337
1338         /* Read the PCS Status register for link state. For non-copper mode,
1339          * the status register is not accurate. The PCS status register is
1340          * used instead.
1341          */
1342         pcs = rd32(E1000_PCS_LSTAT);
1343
1344         /* The link up bit determines when link is up on autoneg. The sync ok
1345          * gets set once both sides sync up and agree upon link. Stable link
1346          * can be determined by checking for both link up and link sync ok
1347          */
1348         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1349                 mac->serdes_has_link = true;
1350
1351                 /* Detect and store PCS speed */
1352                 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1353                         *speed = SPEED_1000;
1354                 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1355                         *speed = SPEED_100;
1356                 else
1357                         *speed = SPEED_10;
1358
1359                 /* Detect and store PCS duplex */
1360                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1361                         *duplex = FULL_DUPLEX;
1362                 else
1363                         *duplex = HALF_DUPLEX;
1364
1365         /* Check if it is an I354 2.5Gb backplane connection. */
1366                 if (mac->type == e1000_i354) {
1367                         status = rd32(E1000_STATUS);
1368                         if ((status & E1000_STATUS_2P5_SKU) &&
1369                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
1370                                 *speed = SPEED_2500;
1371                                 *duplex = FULL_DUPLEX;
1372                                 hw_dbg("2500 Mbs, ");
1373                                 hw_dbg("Full Duplex\n");
1374                         }
1375                 }
1376
1377         }
1378
1379         return 0;
1380 }
1381
1382 /**
1383  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1384  *  @hw: pointer to the HW structure
1385  *
1386  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1387  *  when management pass thru is not enabled.
1388  **/
1389 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1390 {
1391         u32 reg;
1392
1393         if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1394             igb_sgmii_active_82575(hw))
1395                 return;
1396
1397         if (!igb_enable_mng_pass_thru(hw)) {
1398                 /* Disable PCS to turn off link */
1399                 reg = rd32(E1000_PCS_CFG0);
1400                 reg &= ~E1000_PCS_CFG_PCS_EN;
1401                 wr32(E1000_PCS_CFG0, reg);
1402
1403                 /* shutdown the laser */
1404                 reg = rd32(E1000_CTRL_EXT);
1405                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1406                 wr32(E1000_CTRL_EXT, reg);
1407
1408                 /* flush the write to verify completion */
1409                 wrfl();
1410                 usleep_range(1000, 2000);
1411         }
1412 }
1413
1414 /**
1415  *  igb_reset_hw_82575 - Reset hardware
1416  *  @hw: pointer to the HW structure
1417  *
1418  *  This resets the hardware into a known state.  This is a
1419  *  function pointer entry point called by the api module.
1420  **/
1421 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1422 {
1423         u32 ctrl;
1424         s32 ret_val;
1425
1426         /* Prevent the PCI-E bus from sticking if there is no TLP connection
1427          * on the last TLP read/write transaction when MAC is reset.
1428          */
1429         ret_val = igb_disable_pcie_master(hw);
1430         if (ret_val)
1431                 hw_dbg("PCI-E Master disable polling has failed.\n");
1432
1433         /* set the completion timeout for interface */
1434         ret_val = igb_set_pcie_completion_timeout(hw);
1435         if (ret_val)
1436                 hw_dbg("PCI-E Set completion timeout has failed.\n");
1437
1438         hw_dbg("Masking off all interrupts\n");
1439         wr32(E1000_IMC, 0xffffffff);
1440
1441         wr32(E1000_RCTL, 0);
1442         wr32(E1000_TCTL, E1000_TCTL_PSP);
1443         wrfl();
1444
1445         usleep_range(10000, 20000);
1446
1447         ctrl = rd32(E1000_CTRL);
1448
1449         hw_dbg("Issuing a global reset to MAC\n");
1450         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1451
1452         ret_val = igb_get_auto_rd_done(hw);
1453         if (ret_val) {
1454                 /* When auto config read does not complete, do not
1455                  * return with an error. This can happen in situations
1456                  * where there is no eeprom and prevents getting link.
1457                  */
1458                 hw_dbg("Auto Read Done did not complete\n");
1459         }
1460
1461         /* If EEPROM is not present, run manual init scripts */
1462         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1463                 igb_reset_init_script_82575(hw);
1464
1465         /* Clear any pending interrupt events. */
1466         wr32(E1000_IMC, 0xffffffff);
1467         rd32(E1000_ICR);
1468
1469         /* Install any alternate MAC address into RAR0 */
1470         ret_val = igb_check_alt_mac_addr(hw);
1471
1472         return ret_val;
1473 }
1474
1475 /**
1476  *  igb_init_hw_82575 - Initialize hardware
1477  *  @hw: pointer to the HW structure
1478  *
1479  *  This inits the hardware readying it for operation.
1480  **/
1481 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1482 {
1483         struct e1000_mac_info *mac = &hw->mac;
1484         s32 ret_val;
1485         u16 i, rar_count = mac->rar_entry_count;
1486
1487         /* Initialize identification LED */
1488         ret_val = igb_id_led_init(hw);
1489         if (ret_val) {
1490                 hw_dbg("Error initializing identification LED\n");
1491                 /* This is not fatal and we should not stop init due to this */
1492         }
1493
1494         /* Disabling VLAN filtering */
1495         hw_dbg("Initializing the IEEE VLAN\n");
1496         if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1497                 igb_clear_vfta_i350(hw);
1498         else
1499                 igb_clear_vfta(hw);
1500
1501         /* Setup the receive address */
1502         igb_init_rx_addrs(hw, rar_count);
1503
1504         /* Zero out the Multicast HASH table */
1505         hw_dbg("Zeroing the MTA\n");
1506         for (i = 0; i < mac->mta_reg_count; i++)
1507                 array_wr32(E1000_MTA, i, 0);
1508
1509         /* Zero out the Unicast HASH table */
1510         hw_dbg("Zeroing the UTA\n");
1511         for (i = 0; i < mac->uta_reg_count; i++)
1512                 array_wr32(E1000_UTA, i, 0);
1513
1514         /* Setup link and flow control */
1515         ret_val = igb_setup_link(hw);
1516
1517         /* Clear all of the statistics registers (clear on read).  It is
1518          * important that we do this after we have tried to establish link
1519          * because the symbol error count will increment wildly if there
1520          * is no link.
1521          */
1522         igb_clear_hw_cntrs_82575(hw);
1523         return ret_val;
1524 }
1525
1526 /**
1527  *  igb_setup_copper_link_82575 - Configure copper link settings
1528  *  @hw: pointer to the HW structure
1529  *
1530  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1531  *  for link, once link is established calls to configure collision distance
1532  *  and flow control are called.
1533  **/
1534 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1535 {
1536         u32 ctrl;
1537         s32  ret_val;
1538         u32 phpm_reg;
1539
1540         ctrl = rd32(E1000_CTRL);
1541         ctrl |= E1000_CTRL_SLU;
1542         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1543         wr32(E1000_CTRL, ctrl);
1544
1545         /* Clear Go Link Disconnect bit on supported devices */
1546         switch (hw->mac.type) {
1547         case e1000_82580:
1548         case e1000_i350:
1549         case e1000_i210:
1550         case e1000_i211:
1551                 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1552                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1553                 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1554                 break;
1555         default:
1556                 break;
1557         }
1558
1559         ret_val = igb_setup_serdes_link_82575(hw);
1560         if (ret_val)
1561                 goto out;
1562
1563         if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1564                 /* allow time for SFP cage time to power up phy */
1565                 msleep(300);
1566
1567                 ret_val = hw->phy.ops.reset(hw);
1568                 if (ret_val) {
1569                         hw_dbg("Error resetting the PHY.\n");
1570                         goto out;
1571                 }
1572         }
1573         switch (hw->phy.type) {
1574         case e1000_phy_i210:
1575         case e1000_phy_m88:
1576                 switch (hw->phy.id) {
1577                 case I347AT4_E_PHY_ID:
1578                 case M88E1112_E_PHY_ID:
1579                 case M88E1543_E_PHY_ID:
1580                 case I210_I_PHY_ID:
1581                         ret_val = igb_copper_link_setup_m88_gen2(hw);
1582                         break;
1583                 default:
1584                         ret_val = igb_copper_link_setup_m88(hw);
1585                         break;
1586                 }
1587                 break;
1588         case e1000_phy_igp_3:
1589                 ret_val = igb_copper_link_setup_igp(hw);
1590                 break;
1591         case e1000_phy_82580:
1592                 ret_val = igb_copper_link_setup_82580(hw);
1593                 break;
1594         default:
1595                 ret_val = -E1000_ERR_PHY;
1596                 break;
1597         }
1598
1599         if (ret_val)
1600                 goto out;
1601
1602         ret_val = igb_setup_copper_link(hw);
1603 out:
1604         return ret_val;
1605 }
1606
1607 /**
1608  *  igb_setup_serdes_link_82575 - Setup link for serdes
1609  *  @hw: pointer to the HW structure
1610  *
1611  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1612  *  used on copper connections where the serialized gigabit media independent
1613  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1614  *  for auto-negotiation or forces speed/duplex.
1615  **/
1616 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1617 {
1618         u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1619         bool pcs_autoneg;
1620         s32 ret_val = E1000_SUCCESS;
1621         u16 data;
1622
1623         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1624             !igb_sgmii_active_82575(hw))
1625                 return ret_val;
1626
1627
1628         /* On the 82575, SerDes loopback mode persists until it is
1629          * explicitly turned off or a power cycle is performed.  A read to
1630          * the register does not indicate its status.  Therefore, we ensure
1631          * loopback mode is disabled during initialization.
1632          */
1633         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1634
1635         /* power on the sfp cage if present and turn on I2C */
1636         ctrl_ext = rd32(E1000_CTRL_EXT);
1637         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1638         ctrl_ext |= E1000_CTRL_I2C_ENA;
1639         wr32(E1000_CTRL_EXT, ctrl_ext);
1640
1641         ctrl_reg = rd32(E1000_CTRL);
1642         ctrl_reg |= E1000_CTRL_SLU;
1643
1644         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1645                 /* set both sw defined pins */
1646                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1647
1648                 /* Set switch control to serdes energy detect */
1649                 reg = rd32(E1000_CONNSW);
1650                 reg |= E1000_CONNSW_ENRGSRC;
1651                 wr32(E1000_CONNSW, reg);
1652         }
1653
1654         reg = rd32(E1000_PCS_LCTL);
1655
1656         /* default pcs_autoneg to the same setting as mac autoneg */
1657         pcs_autoneg = hw->mac.autoneg;
1658
1659         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1660         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1661                 /* sgmii mode lets the phy handle forcing speed/duplex */
1662                 pcs_autoneg = true;
1663                 /* autoneg time out should be disabled for SGMII mode */
1664                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1665                 break;
1666         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1667                 /* disable PCS autoneg and support parallel detect only */
1668                 pcs_autoneg = false;
1669         default:
1670                 if (hw->mac.type == e1000_82575 ||
1671                     hw->mac.type == e1000_82576) {
1672                         ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1673                         if (ret_val) {
1674                                 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1675                                 return ret_val;
1676                         }
1677
1678                         if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1679                                 pcs_autoneg = false;
1680                 }
1681
1682                 /* non-SGMII modes only supports a speed of 1000/Full for the
1683                  * link so it is best to just force the MAC and let the pcs
1684                  * link either autoneg or be forced to 1000/Full
1685                  */
1686                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1687                                 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1688
1689                 /* set speed of 1000/Full if speed/duplex is forced */
1690                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1691                 break;
1692         }
1693
1694         wr32(E1000_CTRL, ctrl_reg);
1695
1696         /* New SerDes mode allows for forcing speed or autonegotiating speed
1697          * at 1gb. Autoneg should be default set by most drivers. This is the
1698          * mode that will be compatible with older link partners and switches.
1699          * However, both are supported by the hardware and some drivers/tools.
1700          */
1701         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1702                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1703
1704         if (pcs_autoneg) {
1705                 /* Set PCS register for autoneg */
1706                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1707                        E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1708
1709                 /* Disable force flow control for autoneg */
1710                 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1711
1712                 /* Configure flow control advertisement for autoneg */
1713                 anadv_reg = rd32(E1000_PCS_ANADV);
1714                 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1715                 switch (hw->fc.requested_mode) {
1716                 case e1000_fc_full:
1717                 case e1000_fc_rx_pause:
1718                         anadv_reg |= E1000_TXCW_ASM_DIR;
1719                         anadv_reg |= E1000_TXCW_PAUSE;
1720                         break;
1721                 case e1000_fc_tx_pause:
1722                         anadv_reg |= E1000_TXCW_ASM_DIR;
1723                         break;
1724                 default:
1725                         break;
1726                 }
1727                 wr32(E1000_PCS_ANADV, anadv_reg);
1728
1729                 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1730         } else {
1731                 /* Set PCS register for forced link */
1732                 reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1733
1734                 /* Force flow control for forced link */
1735                 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1736
1737                 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1738         }
1739
1740         wr32(E1000_PCS_LCTL, reg);
1741
1742         if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1743                 igb_force_mac_fc(hw);
1744
1745         return ret_val;
1746 }
1747
1748 /**
1749  *  igb_sgmii_active_82575 - Return sgmii state
1750  *  @hw: pointer to the HW structure
1751  *
1752  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1753  *  which can be enabled for use in the embedded applications.  Simply
1754  *  return the current state of the sgmii interface.
1755  **/
1756 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1757 {
1758         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1759         return dev_spec->sgmii_active;
1760 }
1761
1762 /**
1763  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1764  *  @hw: pointer to the HW structure
1765  *
1766  *  Inits recommended HW defaults after a reset when there is no EEPROM
1767  *  detected. This is only for the 82575.
1768  **/
1769 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1770 {
1771         if (hw->mac.type == e1000_82575) {
1772                 hw_dbg("Running reset init script for 82575\n");
1773                 /* SerDes configuration via SERDESCTRL */
1774                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1775                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1776                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1777                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1778
1779                 /* CCM configuration via CCMCTL register */
1780                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1781                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1782
1783                 /* PCIe lanes configuration */
1784                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1785                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1786                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1787                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1788
1789                 /* PCIe PLL Configuration */
1790                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1791                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1792                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1793         }
1794
1795         return 0;
1796 }
1797
1798 /**
1799  *  igb_read_mac_addr_82575 - Read device MAC address
1800  *  @hw: pointer to the HW structure
1801  **/
1802 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1803 {
1804         s32 ret_val = 0;
1805
1806         /* If there's an alternate MAC address place it in RAR0
1807          * so that it will override the Si installed default perm
1808          * address.
1809          */
1810         ret_val = igb_check_alt_mac_addr(hw);
1811         if (ret_val)
1812                 goto out;
1813
1814         ret_val = igb_read_mac_addr(hw);
1815
1816 out:
1817         return ret_val;
1818 }
1819
1820 /**
1821  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1822  * @hw: pointer to the HW structure
1823  *
1824  * In the case of a PHY power down to save power, or to turn off link during a
1825  * driver unload, or wake on lan is not enabled, remove the link.
1826  **/
1827 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1828 {
1829         /* If the management interface is not enabled, then power down */
1830         if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1831                 igb_power_down_phy_copper(hw);
1832 }
1833
1834 /**
1835  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1836  *  @hw: pointer to the HW structure
1837  *
1838  *  Clears the hardware counters by reading the counter registers.
1839  **/
1840 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1841 {
1842         igb_clear_hw_cntrs_base(hw);
1843
1844         rd32(E1000_PRC64);
1845         rd32(E1000_PRC127);
1846         rd32(E1000_PRC255);
1847         rd32(E1000_PRC511);
1848         rd32(E1000_PRC1023);
1849         rd32(E1000_PRC1522);
1850         rd32(E1000_PTC64);
1851         rd32(E1000_PTC127);
1852         rd32(E1000_PTC255);
1853         rd32(E1000_PTC511);
1854         rd32(E1000_PTC1023);
1855         rd32(E1000_PTC1522);
1856
1857         rd32(E1000_ALGNERRC);
1858         rd32(E1000_RXERRC);
1859         rd32(E1000_TNCRS);
1860         rd32(E1000_CEXTERR);
1861         rd32(E1000_TSCTC);
1862         rd32(E1000_TSCTFC);
1863
1864         rd32(E1000_MGTPRC);
1865         rd32(E1000_MGTPDC);
1866         rd32(E1000_MGTPTC);
1867
1868         rd32(E1000_IAC);
1869         rd32(E1000_ICRXOC);
1870
1871         rd32(E1000_ICRXPTC);
1872         rd32(E1000_ICRXATC);
1873         rd32(E1000_ICTXPTC);
1874         rd32(E1000_ICTXATC);
1875         rd32(E1000_ICTXQEC);
1876         rd32(E1000_ICTXQMTC);
1877         rd32(E1000_ICRXDMTC);
1878
1879         rd32(E1000_CBTMPC);
1880         rd32(E1000_HTDPMC);
1881         rd32(E1000_CBRMPC);
1882         rd32(E1000_RPTHC);
1883         rd32(E1000_HGPTC);
1884         rd32(E1000_HTCBDPC);
1885         rd32(E1000_HGORCL);
1886         rd32(E1000_HGORCH);
1887         rd32(E1000_HGOTCL);
1888         rd32(E1000_HGOTCH);
1889         rd32(E1000_LENERRS);
1890
1891         /* This register should not be read in copper configurations */
1892         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1893             igb_sgmii_active_82575(hw))
1894                 rd32(E1000_SCVPC);
1895 }
1896
1897 /**
1898  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1899  *  @hw: pointer to the HW structure
1900  *
1901  *  After rx enable if managability is enabled then there is likely some
1902  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1903  *  function clears the fifos and flushes any packets that came in as rx was
1904  *  being enabled.
1905  **/
1906 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1907 {
1908         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1909         int i, ms_wait;
1910
1911         if (hw->mac.type != e1000_82575 ||
1912             !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1913                 return;
1914
1915         /* Disable all RX queues */
1916         for (i = 0; i < 4; i++) {
1917                 rxdctl[i] = rd32(E1000_RXDCTL(i));
1918                 wr32(E1000_RXDCTL(i),
1919                      rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1920         }
1921         /* Poll all queues to verify they have shut down */
1922         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1923                 usleep_range(1000, 2000);
1924                 rx_enabled = 0;
1925                 for (i = 0; i < 4; i++)
1926                         rx_enabled |= rd32(E1000_RXDCTL(i));
1927                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1928                         break;
1929         }
1930
1931         if (ms_wait == 10)
1932                 hw_dbg("Queue disable timed out after 10ms\n");
1933
1934         /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1935          * incoming packets are rejected.  Set enable and wait 2ms so that
1936          * any packet that was coming in as RCTL.EN was set is flushed
1937          */
1938         rfctl = rd32(E1000_RFCTL);
1939         wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1940
1941         rlpml = rd32(E1000_RLPML);
1942         wr32(E1000_RLPML, 0);
1943
1944         rctl = rd32(E1000_RCTL);
1945         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1946         temp_rctl |= E1000_RCTL_LPE;
1947
1948         wr32(E1000_RCTL, temp_rctl);
1949         wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1950         wrfl();
1951         usleep_range(2000, 3000);
1952
1953         /* Enable RX queues that were previously enabled and restore our
1954          * previous state
1955          */
1956         for (i = 0; i < 4; i++)
1957                 wr32(E1000_RXDCTL(i), rxdctl[i]);
1958         wr32(E1000_RCTL, rctl);
1959         wrfl();
1960
1961         wr32(E1000_RLPML, rlpml);
1962         wr32(E1000_RFCTL, rfctl);
1963
1964         /* Flush receive errors generated by workaround */
1965         rd32(E1000_ROC);
1966         rd32(E1000_RNBC);
1967         rd32(E1000_MPC);
1968 }
1969
1970 /**
1971  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1972  *  @hw: pointer to the HW structure
1973  *
1974  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1975  *  however the hardware default for these parts is 500us to 1ms which is less
1976  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1977  *  increase the value to either 10ms to 200ms for capability version 1 config,
1978  *  or 16ms to 55ms for version 2.
1979  **/
1980 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1981 {
1982         u32 gcr = rd32(E1000_GCR);
1983         s32 ret_val = 0;
1984         u16 pcie_devctl2;
1985
1986         /* only take action if timeout value is defaulted to 0 */
1987         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1988                 goto out;
1989
1990         /* if capabilities version is type 1 we can write the
1991          * timeout of 10ms to 200ms through the GCR register
1992          */
1993         if (!(gcr & E1000_GCR_CAP_VER2)) {
1994                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1995                 goto out;
1996         }
1997
1998         /* for version 2 capabilities we need to write the config space
1999          * directly in order to set the completion timeout value for
2000          * 16ms to 55ms
2001          */
2002         ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2003                                         &pcie_devctl2);
2004         if (ret_val)
2005                 goto out;
2006
2007         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2008
2009         ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2010                                          &pcie_devctl2);
2011 out:
2012         /* disable completion timeout resend */
2013         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2014
2015         wr32(E1000_GCR, gcr);
2016         return ret_val;
2017 }
2018
2019 /**
2020  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2021  *  @hw: pointer to the hardware struct
2022  *  @enable: state to enter, either enabled or disabled
2023  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2024  *
2025  *  enables/disables L2 switch anti-spoofing functionality.
2026  **/
2027 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2028 {
2029         u32 reg_val, reg_offset;
2030
2031         switch (hw->mac.type) {
2032         case e1000_82576:
2033                 reg_offset = E1000_DTXSWC;
2034                 break;
2035         case e1000_i350:
2036         case e1000_i354:
2037                 reg_offset = E1000_TXSWC;
2038                 break;
2039         default:
2040                 return;
2041         }
2042
2043         reg_val = rd32(reg_offset);
2044         if (enable) {
2045                 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2046                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2047                 /* The PF can spoof - it has to in order to
2048                  * support emulation mode NICs
2049                  */
2050                 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2051         } else {
2052                 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2053                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2054         }
2055         wr32(reg_offset, reg_val);
2056 }
2057
2058 /**
2059  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2060  *  @hw: pointer to the hardware struct
2061  *  @enable: state to enter, either enabled or disabled
2062  *
2063  *  enables/disables L2 switch loopback functionality.
2064  **/
2065 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2066 {
2067         u32 dtxswc;
2068
2069         switch (hw->mac.type) {
2070         case e1000_82576:
2071                 dtxswc = rd32(E1000_DTXSWC);
2072                 if (enable)
2073                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2074                 else
2075                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2076                 wr32(E1000_DTXSWC, dtxswc);
2077                 break;
2078         case e1000_i354:
2079         case e1000_i350:
2080                 dtxswc = rd32(E1000_TXSWC);
2081                 if (enable)
2082                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2083                 else
2084                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2085                 wr32(E1000_TXSWC, dtxswc);
2086                 break;
2087         default:
2088                 /* Currently no other hardware supports loopback */
2089                 break;
2090         }
2091
2092 }
2093
2094 /**
2095  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2096  *  @hw: pointer to the hardware struct
2097  *  @enable: state to enter, either enabled or disabled
2098  *
2099  *  enables/disables replication of packets across multiple pools.
2100  **/
2101 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2102 {
2103         u32 vt_ctl = rd32(E1000_VT_CTL);
2104
2105         if (enable)
2106                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2107         else
2108                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2109
2110         wr32(E1000_VT_CTL, vt_ctl);
2111 }
2112
2113 /**
2114  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2115  *  @hw: pointer to the HW structure
2116  *  @offset: register offset to be read
2117  *  @data: pointer to the read data
2118  *
2119  *  Reads the MDI control register in the PHY at offset and stores the
2120  *  information read to data.
2121  **/
2122 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2123 {
2124         s32 ret_val;
2125
2126         ret_val = hw->phy.ops.acquire(hw);
2127         if (ret_val)
2128                 goto out;
2129
2130         ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2131
2132         hw->phy.ops.release(hw);
2133
2134 out:
2135         return ret_val;
2136 }
2137
2138 /**
2139  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2140  *  @hw: pointer to the HW structure
2141  *  @offset: register offset to write to
2142  *  @data: data to write to register at offset
2143  *
2144  *  Writes data to MDI control register in the PHY at offset.
2145  **/
2146 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2147 {
2148         s32 ret_val;
2149
2150
2151         ret_val = hw->phy.ops.acquire(hw);
2152         if (ret_val)
2153                 goto out;
2154
2155         ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2156
2157         hw->phy.ops.release(hw);
2158
2159 out:
2160         return ret_val;
2161 }
2162
2163 /**
2164  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2165  *  @hw: pointer to the HW structure
2166  *
2167  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2168  *  the values found in the EEPROM.  This addresses an issue in which these
2169  *  bits are not restored from EEPROM after reset.
2170  **/
2171 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2172 {
2173         s32 ret_val = 0;
2174         u32 mdicnfg;
2175         u16 nvm_data = 0;
2176
2177         if (hw->mac.type != e1000_82580)
2178                 goto out;
2179         if (!igb_sgmii_active_82575(hw))
2180                 goto out;
2181
2182         ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2183                                    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2184                                    &nvm_data);
2185         if (ret_val) {
2186                 hw_dbg("NVM Read Error\n");
2187                 goto out;
2188         }
2189
2190         mdicnfg = rd32(E1000_MDICNFG);
2191         if (nvm_data & NVM_WORD24_EXT_MDIO)
2192                 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2193         if (nvm_data & NVM_WORD24_COM_MDIO)
2194                 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2195         wr32(E1000_MDICNFG, mdicnfg);
2196 out:
2197         return ret_val;
2198 }
2199
2200 /**
2201  *  igb_reset_hw_82580 - Reset hardware
2202  *  @hw: pointer to the HW structure
2203  *
2204  *  This resets function or entire device (all ports, etc.)
2205  *  to a known state.
2206  **/
2207 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2208 {
2209         s32 ret_val = 0;
2210         /* BH SW mailbox bit in SW_FW_SYNC */
2211         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2212         u32 ctrl;
2213         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2214
2215         hw->dev_spec._82575.global_device_reset = false;
2216
2217         /* due to hw errata, global device reset doesn't always
2218          * work on 82580
2219          */
2220         if (hw->mac.type == e1000_82580)
2221                 global_device_reset = false;
2222
2223         /* Get current control state. */
2224         ctrl = rd32(E1000_CTRL);
2225
2226         /* Prevent the PCI-E bus from sticking if there is no TLP connection
2227          * on the last TLP read/write transaction when MAC is reset.
2228          */
2229         ret_val = igb_disable_pcie_master(hw);
2230         if (ret_val)
2231                 hw_dbg("PCI-E Master disable polling has failed.\n");
2232
2233         hw_dbg("Masking off all interrupts\n");
2234         wr32(E1000_IMC, 0xffffffff);
2235         wr32(E1000_RCTL, 0);
2236         wr32(E1000_TCTL, E1000_TCTL_PSP);
2237         wrfl();
2238
2239         usleep_range(10000, 11000);
2240
2241         /* Determine whether or not a global dev reset is requested */
2242         if (global_device_reset &&
2243                 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2244                         global_device_reset = false;
2245
2246         if (global_device_reset &&
2247                 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2248                 ctrl |= E1000_CTRL_DEV_RST;
2249         else
2250                 ctrl |= E1000_CTRL_RST;
2251
2252         wr32(E1000_CTRL, ctrl);
2253         wrfl();
2254
2255         /* Add delay to insure DEV_RST has time to complete */
2256         if (global_device_reset)
2257                 usleep_range(5000, 6000);
2258
2259         ret_val = igb_get_auto_rd_done(hw);
2260         if (ret_val) {
2261                 /* When auto config read does not complete, do not
2262                  * return with an error. This can happen in situations
2263                  * where there is no eeprom and prevents getting link.
2264                  */
2265                 hw_dbg("Auto Read Done did not complete\n");
2266         }
2267
2268         /* clear global device reset status bit */
2269         wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2270
2271         /* Clear any pending interrupt events. */
2272         wr32(E1000_IMC, 0xffffffff);
2273         rd32(E1000_ICR);
2274
2275         ret_val = igb_reset_mdicnfg_82580(hw);
2276         if (ret_val)
2277                 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2278
2279         /* Install any alternate MAC address into RAR0 */
2280         ret_val = igb_check_alt_mac_addr(hw);
2281
2282         /* Release semaphore */
2283         if (global_device_reset)
2284                 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2285
2286         return ret_val;
2287 }
2288
2289 /**
2290  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2291  *  @data: data received by reading RXPBS register
2292  *
2293  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2294  *  This function converts the retrieved value into the correct table value
2295  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2296  *  0x0 36  72 144   1   2   4   8  16
2297  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2298  */
2299 u16 igb_rxpbs_adjust_82580(u32 data)
2300 {
2301         u16 ret_val = 0;
2302
2303         if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2304                 ret_val = e1000_82580_rxpbs_table[data];
2305
2306         return ret_val;
2307 }
2308
2309 /**
2310  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2311  *  checksum
2312  *  @hw: pointer to the HW structure
2313  *  @offset: offset in words of the checksum protected region
2314  *
2315  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2316  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2317  **/
2318 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2319                                                  u16 offset)
2320 {
2321         s32 ret_val = 0;
2322         u16 checksum = 0;
2323         u16 i, nvm_data;
2324
2325         for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2326                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2327                 if (ret_val) {
2328                         hw_dbg("NVM Read Error\n");
2329                         goto out;
2330                 }
2331                 checksum += nvm_data;
2332         }
2333
2334         if (checksum != (u16) NVM_SUM) {
2335                 hw_dbg("NVM Checksum Invalid\n");
2336                 ret_val = -E1000_ERR_NVM;
2337                 goto out;
2338         }
2339
2340 out:
2341         return ret_val;
2342 }
2343
2344 /**
2345  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2346  *  checksum
2347  *  @hw: pointer to the HW structure
2348  *  @offset: offset in words of the checksum protected region
2349  *
2350  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2351  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2352  *  value to the EEPROM.
2353  **/
2354 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2355 {
2356         s32 ret_val;
2357         u16 checksum = 0;
2358         u16 i, nvm_data;
2359
2360         for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2361                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2362                 if (ret_val) {
2363                         hw_dbg("NVM Read Error while updating checksum.\n");
2364                         goto out;
2365                 }
2366                 checksum += nvm_data;
2367         }
2368         checksum = (u16) NVM_SUM - checksum;
2369         ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2370                                 &checksum);
2371         if (ret_val)
2372                 hw_dbg("NVM Write Error while updating checksum.\n");
2373
2374 out:
2375         return ret_val;
2376 }
2377
2378 /**
2379  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2380  *  @hw: pointer to the HW structure
2381  *
2382  *  Calculates the EEPROM section checksum by reading/adding each word of
2383  *  the EEPROM and then verifies that the sum of the EEPROM is
2384  *  equal to 0xBABA.
2385  **/
2386 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2387 {
2388         s32 ret_val = 0;
2389         u16 eeprom_regions_count = 1;
2390         u16 j, nvm_data;
2391         u16 nvm_offset;
2392
2393         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2394         if (ret_val) {
2395                 hw_dbg("NVM Read Error\n");
2396                 goto out;
2397         }
2398
2399         if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2400                 /* if checksums compatibility bit is set validate checksums
2401                  * for all 4 ports.
2402                  */
2403                 eeprom_regions_count = 4;
2404         }
2405
2406         for (j = 0; j < eeprom_regions_count; j++) {
2407                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2408                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2409                                                                 nvm_offset);
2410                 if (ret_val != 0)
2411                         goto out;
2412         }
2413
2414 out:
2415         return ret_val;
2416 }
2417
2418 /**
2419  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2420  *  @hw: pointer to the HW structure
2421  *
2422  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2423  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2424  *  checksum and writes the value to the EEPROM.
2425  **/
2426 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2427 {
2428         s32 ret_val;
2429         u16 j, nvm_data;
2430         u16 nvm_offset;
2431
2432         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2433         if (ret_val) {
2434                 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2435                 goto out;
2436         }
2437
2438         if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2439                 /* set compatibility bit to validate checksums appropriately */
2440                 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2441                 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2442                                         &nvm_data);
2443                 if (ret_val) {
2444                         hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2445                         goto out;
2446                 }
2447         }
2448
2449         for (j = 0; j < 4; j++) {
2450                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2451                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2452                 if (ret_val)
2453                         goto out;
2454         }
2455
2456 out:
2457         return ret_val;
2458 }
2459
2460 /**
2461  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2462  *  @hw: pointer to the HW structure
2463  *
2464  *  Calculates the EEPROM section checksum by reading/adding each word of
2465  *  the EEPROM and then verifies that the sum of the EEPROM is
2466  *  equal to 0xBABA.
2467  **/
2468 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2469 {
2470         s32 ret_val = 0;
2471         u16 j;
2472         u16 nvm_offset;
2473
2474         for (j = 0; j < 4; j++) {
2475                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2476                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2477                                                                 nvm_offset);
2478                 if (ret_val != 0)
2479                         goto out;
2480         }
2481
2482 out:
2483         return ret_val;
2484 }
2485
2486 /**
2487  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2488  *  @hw: pointer to the HW structure
2489  *
2490  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2491  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2492  *  checksum and writes the value to the EEPROM.
2493  **/
2494 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2495 {
2496         s32 ret_val = 0;
2497         u16 j;
2498         u16 nvm_offset;
2499
2500         for (j = 0; j < 4; j++) {
2501                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2502                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2503                 if (ret_val != 0)
2504                         goto out;
2505         }
2506
2507 out:
2508         return ret_val;
2509 }
2510
2511 /**
2512  *  __igb_access_emi_reg - Read/write EMI register
2513  *  @hw: pointer to the HW structure
2514  *  @addr: EMI address to program
2515  *  @data: pointer to value to read/write from/to the EMI address
2516  *  @read: boolean flag to indicate read or write
2517  **/
2518 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2519                                   u16 *data, bool read)
2520 {
2521         s32 ret_val = E1000_SUCCESS;
2522
2523         ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2524         if (ret_val)
2525                 return ret_val;
2526
2527         if (read)
2528                 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2529         else
2530                 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2531
2532         return ret_val;
2533 }
2534
2535 /**
2536  *  igb_read_emi_reg - Read Extended Management Interface register
2537  *  @hw: pointer to the HW structure
2538  *  @addr: EMI address to program
2539  *  @data: value to be read from the EMI address
2540  **/
2541 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2542 {
2543         return __igb_access_emi_reg(hw, addr, data, true);
2544 }
2545
2546 /**
2547  *  igb_set_eee_i350 - Enable/disable EEE support
2548  *  @hw: pointer to the HW structure
2549  *
2550  *  Enable/disable EEE based on setting in dev_spec structure.
2551  *
2552  **/
2553 s32 igb_set_eee_i350(struct e1000_hw *hw)
2554 {
2555         s32 ret_val = 0;
2556         u32 ipcnfg, eeer;
2557
2558         if ((hw->mac.type < e1000_i350) ||
2559             (hw->phy.media_type != e1000_media_type_copper))
2560                 goto out;
2561         ipcnfg = rd32(E1000_IPCNFG);
2562         eeer = rd32(E1000_EEER);
2563
2564         /* enable or disable per user setting */
2565         if (!(hw->dev_spec._82575.eee_disable)) {
2566                 u32 eee_su = rd32(E1000_EEE_SU);
2567
2568                 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2569                 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2570                         E1000_EEER_LPI_FC);
2571
2572                 /* This bit should not be set in normal operation. */
2573                 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2574                         hw_dbg("LPI Clock Stop Bit should not be set!\n");
2575
2576         } else {
2577                 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2578                         E1000_IPCNFG_EEE_100M_AN);
2579                 eeer &= ~(E1000_EEER_TX_LPI_EN |
2580                         E1000_EEER_RX_LPI_EN |
2581                         E1000_EEER_LPI_FC);
2582         }
2583         wr32(E1000_IPCNFG, ipcnfg);
2584         wr32(E1000_EEER, eeer);
2585         rd32(E1000_IPCNFG);
2586         rd32(E1000_EEER);
2587 out:
2588
2589         return ret_val;
2590 }
2591
2592 /**
2593  *  igb_set_eee_i354 - Enable/disable EEE support
2594  *  @hw: pointer to the HW structure
2595  *
2596  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2597  *
2598  **/
2599 s32 igb_set_eee_i354(struct e1000_hw *hw)
2600 {
2601         struct e1000_phy_info *phy = &hw->phy;
2602         s32 ret_val = 0;
2603         u16 phy_data;
2604
2605         if ((hw->phy.media_type != e1000_media_type_copper) ||
2606             (phy->id != M88E1543_E_PHY_ID))
2607                 goto out;
2608
2609         if (!hw->dev_spec._82575.eee_disable) {
2610                 /* Switch to PHY page 18. */
2611                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2612                 if (ret_val)
2613                         goto out;
2614
2615                 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2616                                             &phy_data);
2617                 if (ret_val)
2618                         goto out;
2619
2620                 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2621                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2622                                              phy_data);
2623                 if (ret_val)
2624                         goto out;
2625
2626                 /* Return the PHY to page 0. */
2627                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2628                 if (ret_val)
2629                         goto out;
2630
2631                 /* Turn on EEE advertisement. */
2632                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2633                                              E1000_EEE_ADV_DEV_I354,
2634                                              &phy_data);
2635                 if (ret_val)
2636                         goto out;
2637
2638                 phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2639                             E1000_EEE_ADV_1000_SUPPORTED;
2640                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2641                                                 E1000_EEE_ADV_DEV_I354,
2642                                                 phy_data);
2643         } else {
2644                 /* Turn off EEE advertisement. */
2645                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2646                                              E1000_EEE_ADV_DEV_I354,
2647                                              &phy_data);
2648                 if (ret_val)
2649                         goto out;
2650
2651                 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2652                               E1000_EEE_ADV_1000_SUPPORTED);
2653                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2654                                               E1000_EEE_ADV_DEV_I354,
2655                                               phy_data);
2656         }
2657
2658 out:
2659         return ret_val;
2660 }
2661
2662 /**
2663  *  igb_get_eee_status_i354 - Get EEE status
2664  *  @hw: pointer to the HW structure
2665  *  @status: EEE status
2666  *
2667  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2668  *  been received.
2669  **/
2670 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2671 {
2672         struct e1000_phy_info *phy = &hw->phy;
2673         s32 ret_val = 0;
2674         u16 phy_data;
2675
2676         /* Check if EEE is supported on this device. */
2677         if ((hw->phy.media_type != e1000_media_type_copper) ||
2678             (phy->id != M88E1543_E_PHY_ID))
2679                 goto out;
2680
2681         ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2682                                      E1000_PCS_STATUS_DEV_I354,
2683                                      &phy_data);
2684         if (ret_val)
2685                 goto out;
2686
2687         *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2688                               E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2689
2690 out:
2691         return ret_val;
2692 }
2693
2694 static const u8 e1000_emc_temp_data[4] = {
2695         E1000_EMC_INTERNAL_DATA,
2696         E1000_EMC_DIODE1_DATA,
2697         E1000_EMC_DIODE2_DATA,
2698         E1000_EMC_DIODE3_DATA
2699 };
2700 static const u8 e1000_emc_therm_limit[4] = {
2701         E1000_EMC_INTERNAL_THERM_LIMIT,
2702         E1000_EMC_DIODE1_THERM_LIMIT,
2703         E1000_EMC_DIODE2_THERM_LIMIT,
2704         E1000_EMC_DIODE3_THERM_LIMIT
2705 };
2706
2707 #ifdef CONFIG_IGB_HWMON
2708 /**
2709  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2710  *  @hw: pointer to hardware structure
2711  *
2712  *  Updates the temperatures in mac.thermal_sensor_data
2713  **/
2714 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2715 {
2716         s32 status = E1000_SUCCESS;
2717         u16 ets_offset;
2718         u16 ets_cfg;
2719         u16 ets_sensor;
2720         u8  num_sensors;
2721         u8  sensor_index;
2722         u8  sensor_location;
2723         u8  i;
2724         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2725
2726         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2727                 return E1000_NOT_IMPLEMENTED;
2728
2729         data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2730
2731         /* Return the internal sensor only if ETS is unsupported */
2732         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2733         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2734                 return status;
2735
2736         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2737         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2738             != NVM_ETS_TYPE_EMC)
2739                 return E1000_NOT_IMPLEMENTED;
2740
2741         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2742         if (num_sensors > E1000_MAX_SENSORS)
2743                 num_sensors = E1000_MAX_SENSORS;
2744
2745         for (i = 1; i < num_sensors; i++) {
2746                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2747                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2748                                 NVM_ETS_DATA_INDEX_SHIFT);
2749                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2750                                    NVM_ETS_DATA_LOC_SHIFT);
2751
2752                 if (sensor_location != 0)
2753                         hw->phy.ops.read_i2c_byte(hw,
2754                                         e1000_emc_temp_data[sensor_index],
2755                                         E1000_I2C_THERMAL_SENSOR_ADDR,
2756                                         &data->sensor[i].temp);
2757         }
2758         return status;
2759 }
2760
2761 /**
2762  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2763  *  @hw: pointer to hardware structure
2764  *
2765  *  Sets the thermal sensor thresholds according to the NVM map
2766  *  and save off the threshold and location values into mac.thermal_sensor_data
2767  **/
2768 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2769 {
2770         s32 status = E1000_SUCCESS;
2771         u16 ets_offset;
2772         u16 ets_cfg;
2773         u16 ets_sensor;
2774         u8  low_thresh_delta;
2775         u8  num_sensors;
2776         u8  sensor_index;
2777         u8  sensor_location;
2778         u8  therm_limit;
2779         u8  i;
2780         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2781
2782         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2783                 return E1000_NOT_IMPLEMENTED;
2784
2785         memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2786
2787         data->sensor[0].location = 0x1;
2788         data->sensor[0].caution_thresh =
2789                 (rd32(E1000_THHIGHTC) & 0xFF);
2790         data->sensor[0].max_op_thresh =
2791                 (rd32(E1000_THLOWTC) & 0xFF);
2792
2793         /* Return the internal sensor only if ETS is unsupported */
2794         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2795         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2796                 return status;
2797
2798         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2799         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2800             != NVM_ETS_TYPE_EMC)
2801                 return E1000_NOT_IMPLEMENTED;
2802
2803         low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2804                             NVM_ETS_LTHRES_DELTA_SHIFT);
2805         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2806
2807         for (i = 1; i <= num_sensors; i++) {
2808                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2809                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2810                                 NVM_ETS_DATA_INDEX_SHIFT);
2811                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2812                                    NVM_ETS_DATA_LOC_SHIFT);
2813                 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2814
2815                 hw->phy.ops.write_i2c_byte(hw,
2816                         e1000_emc_therm_limit[sensor_index],
2817                         E1000_I2C_THERMAL_SENSOR_ADDR,
2818                         therm_limit);
2819
2820                 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2821                         data->sensor[i].location = sensor_location;
2822                         data->sensor[i].caution_thresh = therm_limit;
2823                         data->sensor[i].max_op_thresh = therm_limit -
2824                                                         low_thresh_delta;
2825                 }
2826         }
2827         return status;
2828 }
2829
2830 #endif
2831 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2832         .init_hw              = igb_init_hw_82575,
2833         .check_for_link       = igb_check_for_link_82575,
2834         .rar_set              = igb_rar_set,
2835         .read_mac_addr        = igb_read_mac_addr_82575,
2836         .get_speed_and_duplex = igb_get_link_up_info_82575,
2837 #ifdef CONFIG_IGB_HWMON
2838         .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2839         .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2840 #endif
2841 };
2842
2843 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2844         .acquire              = igb_acquire_phy_82575,
2845         .get_cfg_done         = igb_get_cfg_done_82575,
2846         .release              = igb_release_phy_82575,
2847         .write_i2c_byte       = igb_write_i2c_byte,
2848         .read_i2c_byte        = igb_read_i2c_byte,
2849 };
2850
2851 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2852         .acquire              = igb_acquire_nvm_82575,
2853         .read                 = igb_read_nvm_eerd,
2854         .release              = igb_release_nvm_82575,
2855         .write                = igb_write_nvm_spi,
2856 };
2857
2858 const struct e1000_info e1000_82575_info = {
2859         .get_invariants = igb_get_invariants_82575,
2860         .mac_ops = &e1000_mac_ops_82575,
2861         .phy_ops = &e1000_phy_ops_82575,
2862         .nvm_ops = &e1000_nvm_ops_82575,
2863 };
2864