Merge tag 'renesas-soc-for-v3.13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29  * e1000_82576
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 #include <linux/i2c.h>
37
38 #include "e1000_mac.h"
39 #include "e1000_82575.h"
40 #include "e1000_i210.h"
41
42 static s32  igb_get_invariants_82575(struct e1000_hw *);
43 static s32  igb_acquire_phy_82575(struct e1000_hw *);
44 static void igb_release_phy_82575(struct e1000_hw *);
45 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
46 static void igb_release_nvm_82575(struct e1000_hw *);
47 static s32  igb_check_for_link_82575(struct e1000_hw *);
48 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
49 static s32  igb_init_hw_82575(struct e1000_hw *);
50 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54 static s32  igb_reset_hw_82575(struct e1000_hw *);
55 static s32  igb_reset_hw_82580(struct e1000_hw *);
56 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65                                                  u16 *);
66 static s32  igb_get_phy_id_82575(struct e1000_hw *);
67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68 static bool igb_sgmii_active_82575(struct e1000_hw *);
69 static s32  igb_reset_init_script_82575(struct e1000_hw *);
70 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77 static const u16 e1000_82580_rxpbs_table[] =
78         { 36, 72, 144, 1, 2, 4, 8, 16,
79           35, 70, 140 };
80 #define E1000_82580_RXPBS_TABLE_SIZE \
81         (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82
83 /**
84  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85  *  @hw: pointer to the HW structure
86  *
87  *  Called to determine if the I2C pins are being used for I2C or as an
88  *  external MDIO interface since the two options are mutually exclusive.
89  **/
90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91 {
92         u32 reg = 0;
93         bool ext_mdio = false;
94
95         switch (hw->mac.type) {
96         case e1000_82575:
97         case e1000_82576:
98                 reg = rd32(E1000_MDIC);
99                 ext_mdio = !!(reg & E1000_MDIC_DEST);
100                 break;
101         case e1000_82580:
102         case e1000_i350:
103         case e1000_i354:
104         case e1000_i210:
105         case e1000_i211:
106                 reg = rd32(E1000_MDICNFG);
107                 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
108                 break;
109         default:
110                 break;
111         }
112         return ext_mdio;
113 }
114
115 /**
116  *  igb_init_phy_params_82575 - Init PHY func ptrs.
117  *  @hw: pointer to the HW structure
118  **/
119 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
120 {
121         struct e1000_phy_info *phy = &hw->phy;
122         s32 ret_val = 0;
123         u32 ctrl_ext;
124
125         if (hw->phy.media_type != e1000_media_type_copper) {
126                 phy->type = e1000_phy_none;
127                 goto out;
128         }
129
130         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
131         phy->reset_delay_us     = 100;
132
133         ctrl_ext = rd32(E1000_CTRL_EXT);
134
135         if (igb_sgmii_active_82575(hw)) {
136                 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
137                 ctrl_ext |= E1000_CTRL_I2C_ENA;
138         } else {
139                 phy->ops.reset = igb_phy_hw_reset;
140                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
141         }
142
143         wr32(E1000_CTRL_EXT, ctrl_ext);
144         igb_reset_mdicnfg_82580(hw);
145
146         if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
147                 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
148                 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
149         } else {
150                 switch (hw->mac.type) {
151                 case e1000_82580:
152                 case e1000_i350:
153                 case e1000_i354:
154                         phy->ops.read_reg = igb_read_phy_reg_82580;
155                         phy->ops.write_reg = igb_write_phy_reg_82580;
156                         break;
157                 case e1000_i210:
158                 case e1000_i211:
159                         phy->ops.read_reg = igb_read_phy_reg_gs40g;
160                         phy->ops.write_reg = igb_write_phy_reg_gs40g;
161                         break;
162                 default:
163                         phy->ops.read_reg = igb_read_phy_reg_igp;
164                         phy->ops.write_reg = igb_write_phy_reg_igp;
165                 }
166         }
167
168         /* set lan id */
169         hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
170                         E1000_STATUS_FUNC_SHIFT;
171
172         /* Set phy->phy_addr and phy->id. */
173         ret_val = igb_get_phy_id_82575(hw);
174         if (ret_val)
175                 return ret_val;
176
177         /* Verify phy id and set remaining function pointers */
178         switch (phy->id) {
179         case M88E1543_E_PHY_ID:
180         case I347AT4_E_PHY_ID:
181         case M88E1112_E_PHY_ID:
182         case M88E1111_I_PHY_ID:
183                 phy->type               = e1000_phy_m88;
184                 phy->ops.check_polarity = igb_check_polarity_m88;
185                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
186                 if (phy->id != M88E1111_I_PHY_ID)
187                         phy->ops.get_cable_length =
188                                          igb_get_cable_length_m88_gen2;
189                 else
190                         phy->ops.get_cable_length = igb_get_cable_length_m88;
191                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
192                 break;
193         case IGP03E1000_E_PHY_ID:
194                 phy->type = e1000_phy_igp_3;
195                 phy->ops.get_phy_info = igb_get_phy_info_igp;
196                 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
197                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
198                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
199                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
200                 break;
201         case I82580_I_PHY_ID:
202         case I350_I_PHY_ID:
203                 phy->type = e1000_phy_82580;
204                 phy->ops.force_speed_duplex =
205                                          igb_phy_force_speed_duplex_82580;
206                 phy->ops.get_cable_length = igb_get_cable_length_82580;
207                 phy->ops.get_phy_info = igb_get_phy_info_82580;
208                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
209                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
210                 break;
211         case I210_I_PHY_ID:
212                 phy->type               = e1000_phy_i210;
213                 phy->ops.check_polarity = igb_check_polarity_m88;
214                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
215                 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
216                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
217                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
218                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
219                 break;
220         default:
221                 ret_val = -E1000_ERR_PHY;
222                 goto out;
223         }
224
225 out:
226         return ret_val;
227 }
228
229 /**
230  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
231  *  @hw: pointer to the HW structure
232  **/
233 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
234 {
235         struct e1000_nvm_info *nvm = &hw->nvm;
236         u32 eecd = rd32(E1000_EECD);
237         u16 size;
238
239         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
240                      E1000_EECD_SIZE_EX_SHIFT);
241
242         /* Added to a constant, "size" becomes the left-shift value
243          * for setting word_size.
244          */
245         size += NVM_WORD_SIZE_BASE_SHIFT;
246
247         /* Just in case size is out of range, cap it to the largest
248          * EEPROM size supported
249          */
250         if (size > 15)
251                 size = 15;
252
253         nvm->word_size = 1 << size;
254         nvm->opcode_bits = 8;
255         nvm->delay_usec = 1;
256
257         switch (nvm->override) {
258         case e1000_nvm_override_spi_large:
259                 nvm->page_size = 32;
260                 nvm->address_bits = 16;
261                 break;
262         case e1000_nvm_override_spi_small:
263                 nvm->page_size = 8;
264                 nvm->address_bits = 8;
265                 break;
266         default:
267                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
268                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
269                                     16 : 8;
270                 break;
271         }
272         if (nvm->word_size == (1 << 15))
273                 nvm->page_size = 128;
274
275         nvm->type = e1000_nvm_eeprom_spi;
276
277         /* NVM Function Pointers */
278         nvm->ops.acquire = igb_acquire_nvm_82575;
279         nvm->ops.release = igb_release_nvm_82575;
280         nvm->ops.write = igb_write_nvm_spi;
281         nvm->ops.validate = igb_validate_nvm_checksum;
282         nvm->ops.update = igb_update_nvm_checksum;
283         if (nvm->word_size < (1 << 15))
284                 nvm->ops.read = igb_read_nvm_eerd;
285         else
286                 nvm->ops.read = igb_read_nvm_spi;
287
288         /* override generic family function pointers for specific descendants */
289         switch (hw->mac.type) {
290         case e1000_82580:
291                 nvm->ops.validate = igb_validate_nvm_checksum_82580;
292                 nvm->ops.update = igb_update_nvm_checksum_82580;
293                 break;
294         case e1000_i354:
295         case e1000_i350:
296                 nvm->ops.validate = igb_validate_nvm_checksum_i350;
297                 nvm->ops.update = igb_update_nvm_checksum_i350;
298                 break;
299         default:
300                 break;
301         }
302
303         return 0;
304 }
305
306 /**
307  *  igb_init_mac_params_82575 - Init MAC func ptrs.
308  *  @hw: pointer to the HW structure
309  **/
310 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
311 {
312         struct e1000_mac_info *mac = &hw->mac;
313         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
314
315         /* Set mta register count */
316         mac->mta_reg_count = 128;
317         /* Set rar entry count */
318         switch (mac->type) {
319         case e1000_82576:
320                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
321                 break;
322         case e1000_82580:
323                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
324                 break;
325         case e1000_i350:
326         case e1000_i354:
327                 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
328                 break;
329         default:
330                 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
331                 break;
332         }
333         /* reset */
334         if (mac->type >= e1000_82580)
335                 mac->ops.reset_hw = igb_reset_hw_82580;
336         else
337                 mac->ops.reset_hw = igb_reset_hw_82575;
338
339         if (mac->type >= e1000_i210) {
340                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
341                 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
342
343         } else {
344                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
345                 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
346         }
347
348         /* Set if part includes ASF firmware */
349         mac->asf_firmware_present = true;
350         /* Set if manageability features are enabled. */
351         mac->arc_subsystem_valid =
352                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
353                         ? true : false;
354         /* enable EEE on i350 parts and later parts */
355         if (mac->type >= e1000_i350)
356                 dev_spec->eee_disable = false;
357         else
358                 dev_spec->eee_disable = true;
359         /* Allow a single clear of the SW semaphore on I210 and newer */
360         if (mac->type >= e1000_i210)
361                 dev_spec->clear_semaphore_once = true;
362         /* physical interface link setup */
363         mac->ops.setup_physical_interface =
364                 (hw->phy.media_type == e1000_media_type_copper)
365                         ? igb_setup_copper_link_82575
366                         : igb_setup_serdes_link_82575;
367
368         return 0;
369 }
370
371 /**
372  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
373  *  @hw: pointer to the HW structure
374  *
375  *  The media type is chosen based on SFP module.
376  *  compatibility flags retrieved from SFP ID EEPROM.
377  **/
378 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
379 {
380         s32 ret_val = E1000_ERR_CONFIG;
381         u32 ctrl_ext = 0;
382         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
383         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
384         u8 tranceiver_type = 0;
385         s32 timeout = 3;
386
387         /* Turn I2C interface ON and power on sfp cage */
388         ctrl_ext = rd32(E1000_CTRL_EXT);
389         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
390         wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
391
392         wrfl();
393
394         /* Read SFP module data */
395         while (timeout) {
396                 ret_val = igb_read_sfp_data_byte(hw,
397                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
398                         &tranceiver_type);
399                 if (ret_val == 0)
400                         break;
401                 msleep(100);
402                 timeout--;
403         }
404         if (ret_val != 0)
405                 goto out;
406
407         ret_val = igb_read_sfp_data_byte(hw,
408                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
409                         (u8 *)eth_flags);
410         if (ret_val != 0)
411                 goto out;
412
413         /* Check if there is some SFP module plugged and powered */
414         if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
415             (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
416                 dev_spec->module_plugged = true;
417                 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
418                         hw->phy.media_type = e1000_media_type_internal_serdes;
419                 } else if (eth_flags->e100_base_fx) {
420                         dev_spec->sgmii_active = true;
421                         hw->phy.media_type = e1000_media_type_internal_serdes;
422                 } else if (eth_flags->e1000_base_t) {
423                         dev_spec->sgmii_active = true;
424                         hw->phy.media_type = e1000_media_type_copper;
425                 } else {
426                         hw->phy.media_type = e1000_media_type_unknown;
427                         hw_dbg("PHY module has not been recognized\n");
428                         goto out;
429                 }
430         } else {
431                 hw->phy.media_type = e1000_media_type_unknown;
432         }
433         ret_val = 0;
434 out:
435         /* Restore I2C interface setting */
436         wr32(E1000_CTRL_EXT, ctrl_ext);
437         return ret_val;
438 }
439
440 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
441 {
442         struct e1000_mac_info *mac = &hw->mac;
443         struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
444         s32 ret_val;
445         u32 ctrl_ext = 0;
446         u32 link_mode = 0;
447
448         switch (hw->device_id) {
449         case E1000_DEV_ID_82575EB_COPPER:
450         case E1000_DEV_ID_82575EB_FIBER_SERDES:
451         case E1000_DEV_ID_82575GB_QUAD_COPPER:
452                 mac->type = e1000_82575;
453                 break;
454         case E1000_DEV_ID_82576:
455         case E1000_DEV_ID_82576_NS:
456         case E1000_DEV_ID_82576_NS_SERDES:
457         case E1000_DEV_ID_82576_FIBER:
458         case E1000_DEV_ID_82576_SERDES:
459         case E1000_DEV_ID_82576_QUAD_COPPER:
460         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
461         case E1000_DEV_ID_82576_SERDES_QUAD:
462                 mac->type = e1000_82576;
463                 break;
464         case E1000_DEV_ID_82580_COPPER:
465         case E1000_DEV_ID_82580_FIBER:
466         case E1000_DEV_ID_82580_QUAD_FIBER:
467         case E1000_DEV_ID_82580_SERDES:
468         case E1000_DEV_ID_82580_SGMII:
469         case E1000_DEV_ID_82580_COPPER_DUAL:
470         case E1000_DEV_ID_DH89XXCC_SGMII:
471         case E1000_DEV_ID_DH89XXCC_SERDES:
472         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
473         case E1000_DEV_ID_DH89XXCC_SFP:
474                 mac->type = e1000_82580;
475                 break;
476         case E1000_DEV_ID_I350_COPPER:
477         case E1000_DEV_ID_I350_FIBER:
478         case E1000_DEV_ID_I350_SERDES:
479         case E1000_DEV_ID_I350_SGMII:
480                 mac->type = e1000_i350;
481                 break;
482         case E1000_DEV_ID_I210_COPPER:
483         case E1000_DEV_ID_I210_FIBER:
484         case E1000_DEV_ID_I210_SERDES:
485         case E1000_DEV_ID_I210_SGMII:
486         case E1000_DEV_ID_I210_COPPER_FLASHLESS:
487         case E1000_DEV_ID_I210_SERDES_FLASHLESS:
488                 mac->type = e1000_i210;
489                 break;
490         case E1000_DEV_ID_I211_COPPER:
491                 mac->type = e1000_i211;
492                 break;
493         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
494         case E1000_DEV_ID_I354_SGMII:
495         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
496                 mac->type = e1000_i354;
497                 break;
498         default:
499                 return -E1000_ERR_MAC_INIT;
500                 break;
501         }
502
503         /* Set media type */
504         /* The 82575 uses bits 22:23 for link mode. The mode can be changed
505          * based on the EEPROM. We cannot rely upon device ID. There
506          * is no distinguishable difference between fiber and internal
507          * SerDes mode on the 82575. There can be an external PHY attached
508          * on the SGMII interface. For this, we'll set sgmii_active to true.
509          */
510         hw->phy.media_type = e1000_media_type_copper;
511         dev_spec->sgmii_active = false;
512         dev_spec->module_plugged = false;
513
514         ctrl_ext = rd32(E1000_CTRL_EXT);
515
516         link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
517         switch (link_mode) {
518         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
519                 hw->phy.media_type = e1000_media_type_internal_serdes;
520                 break;
521         case E1000_CTRL_EXT_LINK_MODE_SGMII:
522                 /* Get phy control interface type set (MDIO vs. I2C)*/
523                 if (igb_sgmii_uses_mdio_82575(hw)) {
524                         hw->phy.media_type = e1000_media_type_copper;
525                         dev_spec->sgmii_active = true;
526                         break;
527                 }
528                 /* fall through for I2C based SGMII */
529         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
530                 /* read media type from SFP EEPROM */
531                 ret_val = igb_set_sfp_media_type_82575(hw);
532                 if ((ret_val != 0) ||
533                     (hw->phy.media_type == e1000_media_type_unknown)) {
534                         /* If media type was not identified then return media
535                          * type defined by the CTRL_EXT settings.
536                          */
537                         hw->phy.media_type = e1000_media_type_internal_serdes;
538
539                         if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
540                                 hw->phy.media_type = e1000_media_type_copper;
541                                 dev_spec->sgmii_active = true;
542                         }
543
544                         break;
545                 }
546
547                 /* do not change link mode for 100BaseFX */
548                 if (dev_spec->eth_flags.e100_base_fx)
549                         break;
550
551                 /* change current link mode setting */
552                 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
553
554                 if (hw->phy.media_type == e1000_media_type_copper)
555                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
556                 else
557                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
558
559                 wr32(E1000_CTRL_EXT, ctrl_ext);
560
561                 break;
562         default:
563                 break;
564         }
565
566         /* mac initialization and operations */
567         ret_val = igb_init_mac_params_82575(hw);
568         if (ret_val)
569                 goto out;
570
571         /* NVM initialization */
572         ret_val = igb_init_nvm_params_82575(hw);
573         switch (hw->mac.type) {
574         case e1000_i210:
575         case e1000_i211:
576                 ret_val = igb_init_nvm_params_i210(hw);
577                 break;
578         default:
579                 break;
580         }
581
582         if (ret_val)
583                 goto out;
584
585         /* if part supports SR-IOV then initialize mailbox parameters */
586         switch (mac->type) {
587         case e1000_82576:
588         case e1000_i350:
589                 igb_init_mbx_params_pf(hw);
590                 break;
591         default:
592                 break;
593         }
594
595         /* setup PHY parameters */
596         ret_val = igb_init_phy_params_82575(hw);
597
598 out:
599         return ret_val;
600 }
601
602 /**
603  *  igb_acquire_phy_82575 - Acquire rights to access PHY
604  *  @hw: pointer to the HW structure
605  *
606  *  Acquire access rights to the correct PHY.  This is a
607  *  function pointer entry point called by the api module.
608  **/
609 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
610 {
611         u16 mask = E1000_SWFW_PHY0_SM;
612
613         if (hw->bus.func == E1000_FUNC_1)
614                 mask = E1000_SWFW_PHY1_SM;
615         else if (hw->bus.func == E1000_FUNC_2)
616                 mask = E1000_SWFW_PHY2_SM;
617         else if (hw->bus.func == E1000_FUNC_3)
618                 mask = E1000_SWFW_PHY3_SM;
619
620         return hw->mac.ops.acquire_swfw_sync(hw, mask);
621 }
622
623 /**
624  *  igb_release_phy_82575 - Release rights to access PHY
625  *  @hw: pointer to the HW structure
626  *
627  *  A wrapper to release access rights to the correct PHY.  This is a
628  *  function pointer entry point called by the api module.
629  **/
630 static void igb_release_phy_82575(struct e1000_hw *hw)
631 {
632         u16 mask = E1000_SWFW_PHY0_SM;
633
634         if (hw->bus.func == E1000_FUNC_1)
635                 mask = E1000_SWFW_PHY1_SM;
636         else if (hw->bus.func == E1000_FUNC_2)
637                 mask = E1000_SWFW_PHY2_SM;
638         else if (hw->bus.func == E1000_FUNC_3)
639                 mask = E1000_SWFW_PHY3_SM;
640
641         hw->mac.ops.release_swfw_sync(hw, mask);
642 }
643
644 /**
645  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
646  *  @hw: pointer to the HW structure
647  *  @offset: register offset to be read
648  *  @data: pointer to the read data
649  *
650  *  Reads the PHY register at offset using the serial gigabit media independent
651  *  interface and stores the retrieved information in data.
652  **/
653 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
654                                           u16 *data)
655 {
656         s32 ret_val = -E1000_ERR_PARAM;
657
658         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
659                 hw_dbg("PHY Address %u is out of range\n", offset);
660                 goto out;
661         }
662
663         ret_val = hw->phy.ops.acquire(hw);
664         if (ret_val)
665                 goto out;
666
667         ret_val = igb_read_phy_reg_i2c(hw, offset, data);
668
669         hw->phy.ops.release(hw);
670
671 out:
672         return ret_val;
673 }
674
675 /**
676  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
677  *  @hw: pointer to the HW structure
678  *  @offset: register offset to write to
679  *  @data: data to write at register offset
680  *
681  *  Writes the data to PHY register at the offset using the serial gigabit
682  *  media independent interface.
683  **/
684 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
685                                            u16 data)
686 {
687         s32 ret_val = -E1000_ERR_PARAM;
688
689
690         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
691                 hw_dbg("PHY Address %d is out of range\n", offset);
692                 goto out;
693         }
694
695         ret_val = hw->phy.ops.acquire(hw);
696         if (ret_val)
697                 goto out;
698
699         ret_val = igb_write_phy_reg_i2c(hw, offset, data);
700
701         hw->phy.ops.release(hw);
702
703 out:
704         return ret_val;
705 }
706
707 /**
708  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
709  *  @hw: pointer to the HW structure
710  *
711  *  Retrieves the PHY address and ID for both PHY's which do and do not use
712  *  sgmi interface.
713  **/
714 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
715 {
716         struct e1000_phy_info *phy = &hw->phy;
717         s32  ret_val = 0;
718         u16 phy_id;
719         u32 ctrl_ext;
720         u32 mdic;
721
722         /* Extra read required for some PHY's on i354 */
723         if (hw->mac.type == e1000_i354)
724                 igb_get_phy_id(hw);
725
726         /* For SGMII PHYs, we try the list of possible addresses until
727          * we find one that works.  For non-SGMII PHYs
728          * (e.g. integrated copper PHYs), an address of 1 should
729          * work.  The result of this function should mean phy->phy_addr
730          * and phy->id are set correctly.
731          */
732         if (!(igb_sgmii_active_82575(hw))) {
733                 phy->addr = 1;
734                 ret_val = igb_get_phy_id(hw);
735                 goto out;
736         }
737
738         if (igb_sgmii_uses_mdio_82575(hw)) {
739                 switch (hw->mac.type) {
740                 case e1000_82575:
741                 case e1000_82576:
742                         mdic = rd32(E1000_MDIC);
743                         mdic &= E1000_MDIC_PHY_MASK;
744                         phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
745                         break;
746                 case e1000_82580:
747                 case e1000_i350:
748                 case e1000_i354:
749                 case e1000_i210:
750                 case e1000_i211:
751                         mdic = rd32(E1000_MDICNFG);
752                         mdic &= E1000_MDICNFG_PHY_MASK;
753                         phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
754                         break;
755                 default:
756                         ret_val = -E1000_ERR_PHY;
757                         goto out;
758                         break;
759                 }
760                 ret_val = igb_get_phy_id(hw);
761                 goto out;
762         }
763
764         /* Power on sgmii phy if it is disabled */
765         ctrl_ext = rd32(E1000_CTRL_EXT);
766         wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
767         wrfl();
768         msleep(300);
769
770         /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
771          * Therefore, we need to test 1-7
772          */
773         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
774                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
775                 if (ret_val == 0) {
776                         hw_dbg("Vendor ID 0x%08X read at address %u\n",
777                                phy_id, phy->addr);
778                         /* At the time of this writing, The M88 part is
779                          * the only supported SGMII PHY product.
780                          */
781                         if (phy_id == M88_VENDOR)
782                                 break;
783                 } else {
784                         hw_dbg("PHY address %u was unreadable\n", phy->addr);
785                 }
786         }
787
788         /* A valid PHY type couldn't be found. */
789         if (phy->addr == 8) {
790                 phy->addr = 0;
791                 ret_val = -E1000_ERR_PHY;
792                 goto out;
793         } else {
794                 ret_val = igb_get_phy_id(hw);
795         }
796
797         /* restore previous sfp cage power state */
798         wr32(E1000_CTRL_EXT, ctrl_ext);
799
800 out:
801         return ret_val;
802 }
803
804 /**
805  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
806  *  @hw: pointer to the HW structure
807  *
808  *  Resets the PHY using the serial gigabit media independent interface.
809  **/
810 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
811 {
812         s32 ret_val;
813
814         /* This isn't a true "hard" reset, but is the only reset
815          * available to us at this time.
816          */
817
818         hw_dbg("Soft resetting SGMII attached PHY...\n");
819
820         /* SFP documentation requires the following to configure the SPF module
821          * to work on SGMII.  No further documentation is given.
822          */
823         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
824         if (ret_val)
825                 goto out;
826
827         ret_val = igb_phy_sw_reset(hw);
828
829 out:
830         return ret_val;
831 }
832
833 /**
834  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
835  *  @hw: pointer to the HW structure
836  *  @active: true to enable LPLU, false to disable
837  *
838  *  Sets the LPLU D0 state according to the active flag.  When
839  *  activating LPLU this function also disables smart speed
840  *  and vice versa.  LPLU will not be activated unless the
841  *  device autonegotiation advertisement meets standards of
842  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
843  *  This is a function pointer entry point only called by
844  *  PHY setup routines.
845  **/
846 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
847 {
848         struct e1000_phy_info *phy = &hw->phy;
849         s32 ret_val;
850         u16 data;
851
852         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
853         if (ret_val)
854                 goto out;
855
856         if (active) {
857                 data |= IGP02E1000_PM_D0_LPLU;
858                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
859                                                  data);
860                 if (ret_val)
861                         goto out;
862
863                 /* When LPLU is enabled, we should disable SmartSpeed */
864                 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
865                                                 &data);
866                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
867                 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
868                                                  data);
869                 if (ret_val)
870                         goto out;
871         } else {
872                 data &= ~IGP02E1000_PM_D0_LPLU;
873                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
874                                                  data);
875                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
876                  * during Dx states where the power conservation is most
877                  * important.  During driver activity we should enable
878                  * SmartSpeed, so performance is maintained.
879                  */
880                 if (phy->smart_speed == e1000_smart_speed_on) {
881                         ret_val = phy->ops.read_reg(hw,
882                                         IGP01E1000_PHY_PORT_CONFIG, &data);
883                         if (ret_val)
884                                 goto out;
885
886                         data |= IGP01E1000_PSCFR_SMART_SPEED;
887                         ret_val = phy->ops.write_reg(hw,
888                                         IGP01E1000_PHY_PORT_CONFIG, data);
889                         if (ret_val)
890                                 goto out;
891                 } else if (phy->smart_speed == e1000_smart_speed_off) {
892                         ret_val = phy->ops.read_reg(hw,
893                                         IGP01E1000_PHY_PORT_CONFIG, &data);
894                         if (ret_val)
895                                 goto out;
896
897                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
898                         ret_val = phy->ops.write_reg(hw,
899                                         IGP01E1000_PHY_PORT_CONFIG, data);
900                         if (ret_val)
901                                 goto out;
902                 }
903         }
904
905 out:
906         return ret_val;
907 }
908
909 /**
910  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
911  *  @hw: pointer to the HW structure
912  *  @active: true to enable LPLU, false to disable
913  *
914  *  Sets the LPLU D0 state according to the active flag.  When
915  *  activating LPLU this function also disables smart speed
916  *  and vice versa.  LPLU will not be activated unless the
917  *  device autonegotiation advertisement meets standards of
918  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
919  *  This is a function pointer entry point only called by
920  *  PHY setup routines.
921  **/
922 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
923 {
924         struct e1000_phy_info *phy = &hw->phy;
925         s32 ret_val = 0;
926         u16 data;
927
928         data = rd32(E1000_82580_PHY_POWER_MGMT);
929
930         if (active) {
931                 data |= E1000_82580_PM_D0_LPLU;
932
933                 /* When LPLU is enabled, we should disable SmartSpeed */
934                 data &= ~E1000_82580_PM_SPD;
935         } else {
936                 data &= ~E1000_82580_PM_D0_LPLU;
937
938                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
939                  * during Dx states where the power conservation is most
940                  * important.  During driver activity we should enable
941                  * SmartSpeed, so performance is maintained.
942                  */
943                 if (phy->smart_speed == e1000_smart_speed_on)
944                         data |= E1000_82580_PM_SPD;
945                 else if (phy->smart_speed == e1000_smart_speed_off)
946                         data &= ~E1000_82580_PM_SPD; }
947
948         wr32(E1000_82580_PHY_POWER_MGMT, data);
949         return ret_val;
950 }
951
952 /**
953  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
954  *  @hw: pointer to the HW structure
955  *  @active: boolean used to enable/disable lplu
956  *
957  *  Success returns 0, Failure returns 1
958  *
959  *  The low power link up (lplu) state is set to the power management level D3
960  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
961  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
962  *  is used during Dx states where the power conservation is most important.
963  *  During driver activity, SmartSpeed should be enabled so performance is
964  *  maintained.
965  **/
966 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
967 {
968         struct e1000_phy_info *phy = &hw->phy;
969         s32 ret_val = 0;
970         u16 data;
971
972         data = rd32(E1000_82580_PHY_POWER_MGMT);
973
974         if (!active) {
975                 data &= ~E1000_82580_PM_D3_LPLU;
976                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
977                  * during Dx states where the power conservation is most
978                  * important.  During driver activity we should enable
979                  * SmartSpeed, so performance is maintained.
980                  */
981                 if (phy->smart_speed == e1000_smart_speed_on)
982                         data |= E1000_82580_PM_SPD;
983                 else if (phy->smart_speed == e1000_smart_speed_off)
984                         data &= ~E1000_82580_PM_SPD;
985         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
986                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
987                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
988                 data |= E1000_82580_PM_D3_LPLU;
989                 /* When LPLU is enabled, we should disable SmartSpeed */
990                 data &= ~E1000_82580_PM_SPD;
991         }
992
993         wr32(E1000_82580_PHY_POWER_MGMT, data);
994         return ret_val;
995 }
996
997 /**
998  *  igb_acquire_nvm_82575 - Request for access to EEPROM
999  *  @hw: pointer to the HW structure
1000  *
1001  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1002  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1003  *  Return successful if access grant bit set, else clear the request for
1004  *  EEPROM access and return -E1000_ERR_NVM (-1).
1005  **/
1006 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1007 {
1008         s32 ret_val;
1009
1010         ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1011         if (ret_val)
1012                 goto out;
1013
1014         ret_val = igb_acquire_nvm(hw);
1015
1016         if (ret_val)
1017                 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1018
1019 out:
1020         return ret_val;
1021 }
1022
1023 /**
1024  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1025  *  @hw: pointer to the HW structure
1026  *
1027  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1028  *  then release the semaphores acquired.
1029  **/
1030 static void igb_release_nvm_82575(struct e1000_hw *hw)
1031 {
1032         igb_release_nvm(hw);
1033         hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1034 }
1035
1036 /**
1037  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1038  *  @hw: pointer to the HW structure
1039  *  @mask: specifies which semaphore to acquire
1040  *
1041  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1042  *  will also specify which port we're acquiring the lock for.
1043  **/
1044 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1045 {
1046         u32 swfw_sync;
1047         u32 swmask = mask;
1048         u32 fwmask = mask << 16;
1049         s32 ret_val = 0;
1050         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1051
1052         while (i < timeout) {
1053                 if (igb_get_hw_semaphore(hw)) {
1054                         ret_val = -E1000_ERR_SWFW_SYNC;
1055                         goto out;
1056                 }
1057
1058                 swfw_sync = rd32(E1000_SW_FW_SYNC);
1059                 if (!(swfw_sync & (fwmask | swmask)))
1060                         break;
1061
1062                 /* Firmware currently using resource (fwmask)
1063                  * or other software thread using resource (swmask)
1064                  */
1065                 igb_put_hw_semaphore(hw);
1066                 mdelay(5);
1067                 i++;
1068         }
1069
1070         if (i == timeout) {
1071                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1072                 ret_val = -E1000_ERR_SWFW_SYNC;
1073                 goto out;
1074         }
1075
1076         swfw_sync |= swmask;
1077         wr32(E1000_SW_FW_SYNC, swfw_sync);
1078
1079         igb_put_hw_semaphore(hw);
1080
1081 out:
1082         return ret_val;
1083 }
1084
1085 /**
1086  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1087  *  @hw: pointer to the HW structure
1088  *  @mask: specifies which semaphore to acquire
1089  *
1090  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1091  *  will also specify which port we're releasing the lock for.
1092  **/
1093 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1094 {
1095         u32 swfw_sync;
1096
1097         while (igb_get_hw_semaphore(hw) != 0);
1098         /* Empty */
1099
1100         swfw_sync = rd32(E1000_SW_FW_SYNC);
1101         swfw_sync &= ~mask;
1102         wr32(E1000_SW_FW_SYNC, swfw_sync);
1103
1104         igb_put_hw_semaphore(hw);
1105 }
1106
1107 /**
1108  *  igb_get_cfg_done_82575 - Read config done bit
1109  *  @hw: pointer to the HW structure
1110  *
1111  *  Read the management control register for the config done bit for
1112  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1113  *  to read the config done bit, so an error is *ONLY* logged and returns
1114  *  0.  If we were to return with error, EEPROM-less silicon
1115  *  would not be able to be reset or change link.
1116  **/
1117 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1118 {
1119         s32 timeout = PHY_CFG_TIMEOUT;
1120         s32 ret_val = 0;
1121         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1122
1123         if (hw->bus.func == 1)
1124                 mask = E1000_NVM_CFG_DONE_PORT_1;
1125         else if (hw->bus.func == E1000_FUNC_2)
1126                 mask = E1000_NVM_CFG_DONE_PORT_2;
1127         else if (hw->bus.func == E1000_FUNC_3)
1128                 mask = E1000_NVM_CFG_DONE_PORT_3;
1129
1130         while (timeout) {
1131                 if (rd32(E1000_EEMNGCTL) & mask)
1132                         break;
1133                 msleep(1);
1134                 timeout--;
1135         }
1136         if (!timeout)
1137                 hw_dbg("MNG configuration cycle has not completed.\n");
1138
1139         /* If EEPROM is not marked present, init the PHY manually */
1140         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1141             (hw->phy.type == e1000_phy_igp_3))
1142                 igb_phy_init_script_igp3(hw);
1143
1144         return ret_val;
1145 }
1146
1147 /**
1148  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1149  *  @hw: pointer to the HW structure
1150  *  @speed: stores the current speed
1151  *  @duplex: stores the current duplex
1152  *
1153  *  This is a wrapper function, if using the serial gigabit media independent
1154  *  interface, use PCS to retrieve the link speed and duplex information.
1155  *  Otherwise, use the generic function to get the link speed and duplex info.
1156  **/
1157 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1158                                         u16 *duplex)
1159 {
1160         s32 ret_val;
1161
1162         if (hw->phy.media_type != e1000_media_type_copper)
1163                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1164                                                                duplex);
1165         else
1166                 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1167                                                                     duplex);
1168
1169         return ret_val;
1170 }
1171
1172 /**
1173  *  igb_check_for_link_82575 - Check for link
1174  *  @hw: pointer to the HW structure
1175  *
1176  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1177  *  use the generic interface for determining link.
1178  **/
1179 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1180 {
1181         s32 ret_val;
1182         u16 speed, duplex;
1183
1184         if (hw->phy.media_type != e1000_media_type_copper) {
1185                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1186                                                              &duplex);
1187                 /* Use this flag to determine if link needs to be checked or
1188                  * not.  If  we have link clear the flag so that we do not
1189                  * continue to check for link.
1190                  */
1191                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1192
1193                 /* Configure Flow Control now that Auto-Neg has completed.
1194                  * First, we need to restore the desired flow control
1195                  * settings because we may have had to re-autoneg with a
1196                  * different link partner.
1197                  */
1198                 ret_val = igb_config_fc_after_link_up(hw);
1199                 if (ret_val)
1200                         hw_dbg("Error configuring flow control\n");
1201         } else {
1202                 ret_val = igb_check_for_copper_link(hw);
1203         }
1204
1205         return ret_val;
1206 }
1207
1208 /**
1209  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1210  *  @hw: pointer to the HW structure
1211  **/
1212 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1213 {
1214         u32 reg;
1215
1216
1217         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1218             !igb_sgmii_active_82575(hw))
1219                 return;
1220
1221         /* Enable PCS to turn on link */
1222         reg = rd32(E1000_PCS_CFG0);
1223         reg |= E1000_PCS_CFG_PCS_EN;
1224         wr32(E1000_PCS_CFG0, reg);
1225
1226         /* Power up the laser */
1227         reg = rd32(E1000_CTRL_EXT);
1228         reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1229         wr32(E1000_CTRL_EXT, reg);
1230
1231         /* flush the write to verify completion */
1232         wrfl();
1233         msleep(1);
1234 }
1235
1236 /**
1237  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1238  *  @hw: pointer to the HW structure
1239  *  @speed: stores the current speed
1240  *  @duplex: stores the current duplex
1241  *
1242  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1243  *  duplex, then store the values in the pointers provided.
1244  **/
1245 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1246                                                 u16 *duplex)
1247 {
1248         struct e1000_mac_info *mac = &hw->mac;
1249         u32 pcs, status;
1250
1251         /* Set up defaults for the return values of this function */
1252         mac->serdes_has_link = false;
1253         *speed = 0;
1254         *duplex = 0;
1255
1256         /* Read the PCS Status register for link state. For non-copper mode,
1257          * the status register is not accurate. The PCS status register is
1258          * used instead.
1259          */
1260         pcs = rd32(E1000_PCS_LSTAT);
1261
1262         /* The link up bit determines when link is up on autoneg. The sync ok
1263          * gets set once both sides sync up and agree upon link. Stable link
1264          * can be determined by checking for both link up and link sync ok
1265          */
1266         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1267                 mac->serdes_has_link = true;
1268
1269                 /* Detect and store PCS speed */
1270                 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1271                         *speed = SPEED_1000;
1272                 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1273                         *speed = SPEED_100;
1274                 else
1275                         *speed = SPEED_10;
1276
1277                 /* Detect and store PCS duplex */
1278                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1279                         *duplex = FULL_DUPLEX;
1280                 else
1281                         *duplex = HALF_DUPLEX;
1282
1283         /* Check if it is an I354 2.5Gb backplane connection. */
1284                 if (mac->type == e1000_i354) {
1285                         status = rd32(E1000_STATUS);
1286                         if ((status & E1000_STATUS_2P5_SKU) &&
1287                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
1288                                 *speed = SPEED_2500;
1289                                 *duplex = FULL_DUPLEX;
1290                                 hw_dbg("2500 Mbs, ");
1291                                 hw_dbg("Full Duplex\n");
1292                         }
1293                 }
1294
1295         }
1296
1297         return 0;
1298 }
1299
1300 /**
1301  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1302  *  @hw: pointer to the HW structure
1303  *
1304  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1305  *  when management pass thru is not enabled.
1306  **/
1307 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1308 {
1309         u32 reg;
1310
1311         if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1312             igb_sgmii_active_82575(hw))
1313                 return;
1314
1315         if (!igb_enable_mng_pass_thru(hw)) {
1316                 /* Disable PCS to turn off link */
1317                 reg = rd32(E1000_PCS_CFG0);
1318                 reg &= ~E1000_PCS_CFG_PCS_EN;
1319                 wr32(E1000_PCS_CFG0, reg);
1320
1321                 /* shutdown the laser */
1322                 reg = rd32(E1000_CTRL_EXT);
1323                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1324                 wr32(E1000_CTRL_EXT, reg);
1325
1326                 /* flush the write to verify completion */
1327                 wrfl();
1328                 msleep(1);
1329         }
1330 }
1331
1332 /**
1333  *  igb_reset_hw_82575 - Reset hardware
1334  *  @hw: pointer to the HW structure
1335  *
1336  *  This resets the hardware into a known state.  This is a
1337  *  function pointer entry point called by the api module.
1338  **/
1339 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1340 {
1341         u32 ctrl;
1342         s32 ret_val;
1343
1344         /* Prevent the PCI-E bus from sticking if there is no TLP connection
1345          * on the last TLP read/write transaction when MAC is reset.
1346          */
1347         ret_val = igb_disable_pcie_master(hw);
1348         if (ret_val)
1349                 hw_dbg("PCI-E Master disable polling has failed.\n");
1350
1351         /* set the completion timeout for interface */
1352         ret_val = igb_set_pcie_completion_timeout(hw);
1353         if (ret_val) {
1354                 hw_dbg("PCI-E Set completion timeout has failed.\n");
1355         }
1356
1357         hw_dbg("Masking off all interrupts\n");
1358         wr32(E1000_IMC, 0xffffffff);
1359
1360         wr32(E1000_RCTL, 0);
1361         wr32(E1000_TCTL, E1000_TCTL_PSP);
1362         wrfl();
1363
1364         msleep(10);
1365
1366         ctrl = rd32(E1000_CTRL);
1367
1368         hw_dbg("Issuing a global reset to MAC\n");
1369         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1370
1371         ret_val = igb_get_auto_rd_done(hw);
1372         if (ret_val) {
1373                 /* When auto config read does not complete, do not
1374                  * return with an error. This can happen in situations
1375                  * where there is no eeprom and prevents getting link.
1376                  */
1377                 hw_dbg("Auto Read Done did not complete\n");
1378         }
1379
1380         /* If EEPROM is not present, run manual init scripts */
1381         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1382                 igb_reset_init_script_82575(hw);
1383
1384         /* Clear any pending interrupt events. */
1385         wr32(E1000_IMC, 0xffffffff);
1386         rd32(E1000_ICR);
1387
1388         /* Install any alternate MAC address into RAR0 */
1389         ret_val = igb_check_alt_mac_addr(hw);
1390
1391         return ret_val;
1392 }
1393
1394 /**
1395  *  igb_init_hw_82575 - Initialize hardware
1396  *  @hw: pointer to the HW structure
1397  *
1398  *  This inits the hardware readying it for operation.
1399  **/
1400 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1401 {
1402         struct e1000_mac_info *mac = &hw->mac;
1403         s32 ret_val;
1404         u16 i, rar_count = mac->rar_entry_count;
1405
1406         /* Initialize identification LED */
1407         ret_val = igb_id_led_init(hw);
1408         if (ret_val) {
1409                 hw_dbg("Error initializing identification LED\n");
1410                 /* This is not fatal and we should not stop init due to this */
1411         }
1412
1413         /* Disabling VLAN filtering */
1414         hw_dbg("Initializing the IEEE VLAN\n");
1415         if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1416                 igb_clear_vfta_i350(hw);
1417         else
1418                 igb_clear_vfta(hw);
1419
1420         /* Setup the receive address */
1421         igb_init_rx_addrs(hw, rar_count);
1422
1423         /* Zero out the Multicast HASH table */
1424         hw_dbg("Zeroing the MTA\n");
1425         for (i = 0; i < mac->mta_reg_count; i++)
1426                 array_wr32(E1000_MTA, i, 0);
1427
1428         /* Zero out the Unicast HASH table */
1429         hw_dbg("Zeroing the UTA\n");
1430         for (i = 0; i < mac->uta_reg_count; i++)
1431                 array_wr32(E1000_UTA, i, 0);
1432
1433         /* Setup link and flow control */
1434         ret_val = igb_setup_link(hw);
1435
1436         /* Clear all of the statistics registers (clear on read).  It is
1437          * important that we do this after we have tried to establish link
1438          * because the symbol error count will increment wildly if there
1439          * is no link.
1440          */
1441         igb_clear_hw_cntrs_82575(hw);
1442         return ret_val;
1443 }
1444
1445 /**
1446  *  igb_setup_copper_link_82575 - Configure copper link settings
1447  *  @hw: pointer to the HW structure
1448  *
1449  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1450  *  for link, once link is established calls to configure collision distance
1451  *  and flow control are called.
1452  **/
1453 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1454 {
1455         u32 ctrl;
1456         s32  ret_val;
1457         u32 phpm_reg;
1458
1459         ctrl = rd32(E1000_CTRL);
1460         ctrl |= E1000_CTRL_SLU;
1461         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1462         wr32(E1000_CTRL, ctrl);
1463
1464         /* Clear Go Link Disconnect bit on supported devices */
1465         switch (hw->mac.type) {
1466         case e1000_82580:
1467         case e1000_i350:
1468         case e1000_i210:
1469         case e1000_i211:
1470                 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1471                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1472                 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1473                 break;
1474         default:
1475                 break;
1476         }
1477
1478         ret_val = igb_setup_serdes_link_82575(hw);
1479         if (ret_val)
1480                 goto out;
1481
1482         if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1483                 /* allow time for SFP cage time to power up phy */
1484                 msleep(300);
1485
1486                 ret_val = hw->phy.ops.reset(hw);
1487                 if (ret_val) {
1488                         hw_dbg("Error resetting the PHY.\n");
1489                         goto out;
1490                 }
1491         }
1492         switch (hw->phy.type) {
1493         case e1000_phy_i210:
1494         case e1000_phy_m88:
1495                 switch (hw->phy.id) {
1496                 case I347AT4_E_PHY_ID:
1497                 case M88E1112_E_PHY_ID:
1498                 case M88E1543_E_PHY_ID:
1499                 case I210_I_PHY_ID:
1500                         ret_val = igb_copper_link_setup_m88_gen2(hw);
1501                         break;
1502                 default:
1503                         ret_val = igb_copper_link_setup_m88(hw);
1504                         break;
1505                 }
1506                 break;
1507         case e1000_phy_igp_3:
1508                 ret_val = igb_copper_link_setup_igp(hw);
1509                 break;
1510         case e1000_phy_82580:
1511                 ret_val = igb_copper_link_setup_82580(hw);
1512                 break;
1513         default:
1514                 ret_val = -E1000_ERR_PHY;
1515                 break;
1516         }
1517
1518         if (ret_val)
1519                 goto out;
1520
1521         ret_val = igb_setup_copper_link(hw);
1522 out:
1523         return ret_val;
1524 }
1525
1526 /**
1527  *  igb_setup_serdes_link_82575 - Setup link for serdes
1528  *  @hw: pointer to the HW structure
1529  *
1530  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1531  *  used on copper connections where the serialized gigabit media independent
1532  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1533  *  for auto-negotiation or forces speed/duplex.
1534  **/
1535 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1536 {
1537         u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1538         bool pcs_autoneg;
1539         s32 ret_val = E1000_SUCCESS;
1540         u16 data;
1541
1542         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1543             !igb_sgmii_active_82575(hw))
1544                 return ret_val;
1545
1546
1547         /* On the 82575, SerDes loopback mode persists until it is
1548          * explicitly turned off or a power cycle is performed.  A read to
1549          * the register does not indicate its status.  Therefore, we ensure
1550          * loopback mode is disabled during initialization.
1551          */
1552         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1553
1554         /* power on the sfp cage if present and turn on I2C */
1555         ctrl_ext = rd32(E1000_CTRL_EXT);
1556         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1557         ctrl_ext |= E1000_CTRL_I2C_ENA;
1558         wr32(E1000_CTRL_EXT, ctrl_ext);
1559
1560         ctrl_reg = rd32(E1000_CTRL);
1561         ctrl_reg |= E1000_CTRL_SLU;
1562
1563         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1564                 /* set both sw defined pins */
1565                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1566
1567                 /* Set switch control to serdes energy detect */
1568                 reg = rd32(E1000_CONNSW);
1569                 reg |= E1000_CONNSW_ENRGSRC;
1570                 wr32(E1000_CONNSW, reg);
1571         }
1572
1573         reg = rd32(E1000_PCS_LCTL);
1574
1575         /* default pcs_autoneg to the same setting as mac autoneg */
1576         pcs_autoneg = hw->mac.autoneg;
1577
1578         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1579         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1580                 /* sgmii mode lets the phy handle forcing speed/duplex */
1581                 pcs_autoneg = true;
1582                 /* autoneg time out should be disabled for SGMII mode */
1583                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1584                 break;
1585         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1586                 /* disable PCS autoneg and support parallel detect only */
1587                 pcs_autoneg = false;
1588         default:
1589                 if (hw->mac.type == e1000_82575 ||
1590                     hw->mac.type == e1000_82576) {
1591                         ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1592                         if (ret_val) {
1593                                 printk(KERN_DEBUG "NVM Read Error\n\n");
1594                                 return ret_val;
1595                         }
1596
1597                         if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1598                                 pcs_autoneg = false;
1599                 }
1600
1601                 /* non-SGMII modes only supports a speed of 1000/Full for the
1602                  * link so it is best to just force the MAC and let the pcs
1603                  * link either autoneg or be forced to 1000/Full
1604                  */
1605                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1606                             E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1607
1608                 /* set speed of 1000/Full if speed/duplex is forced */
1609                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1610                 break;
1611         }
1612
1613         wr32(E1000_CTRL, ctrl_reg);
1614
1615         /* New SerDes mode allows for forcing speed or autonegotiating speed
1616          * at 1gb. Autoneg should be default set by most drivers. This is the
1617          * mode that will be compatible with older link partners and switches.
1618          * However, both are supported by the hardware and some drivers/tools.
1619          */
1620         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1621                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1622
1623         if (pcs_autoneg) {
1624                 /* Set PCS register for autoneg */
1625                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1626                        E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1627
1628                 /* Disable force flow control for autoneg */
1629                 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1630
1631                 /* Configure flow control advertisement for autoneg */
1632                 anadv_reg = rd32(E1000_PCS_ANADV);
1633                 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1634                 switch (hw->fc.requested_mode) {
1635                 case e1000_fc_full:
1636                 case e1000_fc_rx_pause:
1637                         anadv_reg |= E1000_TXCW_ASM_DIR;
1638                         anadv_reg |= E1000_TXCW_PAUSE;
1639                         break;
1640                 case e1000_fc_tx_pause:
1641                         anadv_reg |= E1000_TXCW_ASM_DIR;
1642                         break;
1643                 default:
1644                         break;
1645                 }
1646                 wr32(E1000_PCS_ANADV, anadv_reg);
1647
1648                 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1649         } else {
1650                 /* Set PCS register for forced link */
1651                 reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1652
1653                 /* Force flow control for forced link */
1654                 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1655
1656                 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1657         }
1658
1659         wr32(E1000_PCS_LCTL, reg);
1660
1661         if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1662                 igb_force_mac_fc(hw);
1663
1664         return ret_val;
1665 }
1666
1667 /**
1668  *  igb_sgmii_active_82575 - Return sgmii state
1669  *  @hw: pointer to the HW structure
1670  *
1671  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1672  *  which can be enabled for use in the embedded applications.  Simply
1673  *  return the current state of the sgmii interface.
1674  **/
1675 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1676 {
1677         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1678         return dev_spec->sgmii_active;
1679 }
1680
1681 /**
1682  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1683  *  @hw: pointer to the HW structure
1684  *
1685  *  Inits recommended HW defaults after a reset when there is no EEPROM
1686  *  detected. This is only for the 82575.
1687  **/
1688 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1689 {
1690         if (hw->mac.type == e1000_82575) {
1691                 hw_dbg("Running reset init script for 82575\n");
1692                 /* SerDes configuration via SERDESCTRL */
1693                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1694                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1695                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1696                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1697
1698                 /* CCM configuration via CCMCTL register */
1699                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1700                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1701
1702                 /* PCIe lanes configuration */
1703                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1704                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1705                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1706                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1707
1708                 /* PCIe PLL Configuration */
1709                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1710                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1711                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1712         }
1713
1714         return 0;
1715 }
1716
1717 /**
1718  *  igb_read_mac_addr_82575 - Read device MAC address
1719  *  @hw: pointer to the HW structure
1720  **/
1721 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1722 {
1723         s32 ret_val = 0;
1724
1725         /* If there's an alternate MAC address place it in RAR0
1726          * so that it will override the Si installed default perm
1727          * address.
1728          */
1729         ret_val = igb_check_alt_mac_addr(hw);
1730         if (ret_val)
1731                 goto out;
1732
1733         ret_val = igb_read_mac_addr(hw);
1734
1735 out:
1736         return ret_val;
1737 }
1738
1739 /**
1740  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1741  * @hw: pointer to the HW structure
1742  *
1743  * In the case of a PHY power down to save power, or to turn off link during a
1744  * driver unload, or wake on lan is not enabled, remove the link.
1745  **/
1746 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1747 {
1748         /* If the management interface is not enabled, then power down */
1749         if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1750                 igb_power_down_phy_copper(hw);
1751 }
1752
1753 /**
1754  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1755  *  @hw: pointer to the HW structure
1756  *
1757  *  Clears the hardware counters by reading the counter registers.
1758  **/
1759 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1760 {
1761         igb_clear_hw_cntrs_base(hw);
1762
1763         rd32(E1000_PRC64);
1764         rd32(E1000_PRC127);
1765         rd32(E1000_PRC255);
1766         rd32(E1000_PRC511);
1767         rd32(E1000_PRC1023);
1768         rd32(E1000_PRC1522);
1769         rd32(E1000_PTC64);
1770         rd32(E1000_PTC127);
1771         rd32(E1000_PTC255);
1772         rd32(E1000_PTC511);
1773         rd32(E1000_PTC1023);
1774         rd32(E1000_PTC1522);
1775
1776         rd32(E1000_ALGNERRC);
1777         rd32(E1000_RXERRC);
1778         rd32(E1000_TNCRS);
1779         rd32(E1000_CEXTERR);
1780         rd32(E1000_TSCTC);
1781         rd32(E1000_TSCTFC);
1782
1783         rd32(E1000_MGTPRC);
1784         rd32(E1000_MGTPDC);
1785         rd32(E1000_MGTPTC);
1786
1787         rd32(E1000_IAC);
1788         rd32(E1000_ICRXOC);
1789
1790         rd32(E1000_ICRXPTC);
1791         rd32(E1000_ICRXATC);
1792         rd32(E1000_ICTXPTC);
1793         rd32(E1000_ICTXATC);
1794         rd32(E1000_ICTXQEC);
1795         rd32(E1000_ICTXQMTC);
1796         rd32(E1000_ICRXDMTC);
1797
1798         rd32(E1000_CBTMPC);
1799         rd32(E1000_HTDPMC);
1800         rd32(E1000_CBRMPC);
1801         rd32(E1000_RPTHC);
1802         rd32(E1000_HGPTC);
1803         rd32(E1000_HTCBDPC);
1804         rd32(E1000_HGORCL);
1805         rd32(E1000_HGORCH);
1806         rd32(E1000_HGOTCL);
1807         rd32(E1000_HGOTCH);
1808         rd32(E1000_LENERRS);
1809
1810         /* This register should not be read in copper configurations */
1811         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1812             igb_sgmii_active_82575(hw))
1813                 rd32(E1000_SCVPC);
1814 }
1815
1816 /**
1817  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1818  *  @hw: pointer to the HW structure
1819  *
1820  *  After rx enable if managability is enabled then there is likely some
1821  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1822  *  function clears the fifos and flushes any packets that came in as rx was
1823  *  being enabled.
1824  **/
1825 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1826 {
1827         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1828         int i, ms_wait;
1829
1830         if (hw->mac.type != e1000_82575 ||
1831             !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1832                 return;
1833
1834         /* Disable all RX queues */
1835         for (i = 0; i < 4; i++) {
1836                 rxdctl[i] = rd32(E1000_RXDCTL(i));
1837                 wr32(E1000_RXDCTL(i),
1838                      rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1839         }
1840         /* Poll all queues to verify they have shut down */
1841         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1842                 msleep(1);
1843                 rx_enabled = 0;
1844                 for (i = 0; i < 4; i++)
1845                         rx_enabled |= rd32(E1000_RXDCTL(i));
1846                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1847                         break;
1848         }
1849
1850         if (ms_wait == 10)
1851                 hw_dbg("Queue disable timed out after 10ms\n");
1852
1853         /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1854          * incoming packets are rejected.  Set enable and wait 2ms so that
1855          * any packet that was coming in as RCTL.EN was set is flushed
1856          */
1857         rfctl = rd32(E1000_RFCTL);
1858         wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1859
1860         rlpml = rd32(E1000_RLPML);
1861         wr32(E1000_RLPML, 0);
1862
1863         rctl = rd32(E1000_RCTL);
1864         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1865         temp_rctl |= E1000_RCTL_LPE;
1866
1867         wr32(E1000_RCTL, temp_rctl);
1868         wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1869         wrfl();
1870         msleep(2);
1871
1872         /* Enable RX queues that were previously enabled and restore our
1873          * previous state
1874          */
1875         for (i = 0; i < 4; i++)
1876                 wr32(E1000_RXDCTL(i), rxdctl[i]);
1877         wr32(E1000_RCTL, rctl);
1878         wrfl();
1879
1880         wr32(E1000_RLPML, rlpml);
1881         wr32(E1000_RFCTL, rfctl);
1882
1883         /* Flush receive errors generated by workaround */
1884         rd32(E1000_ROC);
1885         rd32(E1000_RNBC);
1886         rd32(E1000_MPC);
1887 }
1888
1889 /**
1890  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1891  *  @hw: pointer to the HW structure
1892  *
1893  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1894  *  however the hardware default for these parts is 500us to 1ms which is less
1895  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1896  *  increase the value to either 10ms to 200ms for capability version 1 config,
1897  *  or 16ms to 55ms for version 2.
1898  **/
1899 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1900 {
1901         u32 gcr = rd32(E1000_GCR);
1902         s32 ret_val = 0;
1903         u16 pcie_devctl2;
1904
1905         /* only take action if timeout value is defaulted to 0 */
1906         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1907                 goto out;
1908
1909         /* if capabilities version is type 1 we can write the
1910          * timeout of 10ms to 200ms through the GCR register
1911          */
1912         if (!(gcr & E1000_GCR_CAP_VER2)) {
1913                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1914                 goto out;
1915         }
1916
1917         /* for version 2 capabilities we need to write the config space
1918          * directly in order to set the completion timeout value for
1919          * 16ms to 55ms
1920          */
1921         ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1922                                         &pcie_devctl2);
1923         if (ret_val)
1924                 goto out;
1925
1926         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1927
1928         ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1929                                          &pcie_devctl2);
1930 out:
1931         /* disable completion timeout resend */
1932         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1933
1934         wr32(E1000_GCR, gcr);
1935         return ret_val;
1936 }
1937
1938 /**
1939  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1940  *  @hw: pointer to the hardware struct
1941  *  @enable: state to enter, either enabled or disabled
1942  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1943  *
1944  *  enables/disables L2 switch anti-spoofing functionality.
1945  **/
1946 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1947 {
1948         u32 reg_val, reg_offset;
1949
1950         switch (hw->mac.type) {
1951         case e1000_82576:
1952                 reg_offset = E1000_DTXSWC;
1953                 break;
1954         case e1000_i350:
1955         case e1000_i354:
1956                 reg_offset = E1000_TXSWC;
1957                 break;
1958         default:
1959                 return;
1960         }
1961
1962         reg_val = rd32(reg_offset);
1963         if (enable) {
1964                 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1965                              E1000_DTXSWC_VLAN_SPOOF_MASK);
1966                 /* The PF can spoof - it has to in order to
1967                  * support emulation mode NICs
1968                  */
1969                 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1970         } else {
1971                 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1972                              E1000_DTXSWC_VLAN_SPOOF_MASK);
1973         }
1974         wr32(reg_offset, reg_val);
1975 }
1976
1977 /**
1978  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1979  *  @hw: pointer to the hardware struct
1980  *  @enable: state to enter, either enabled or disabled
1981  *
1982  *  enables/disables L2 switch loopback functionality.
1983  **/
1984 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1985 {
1986         u32 dtxswc;
1987
1988         switch (hw->mac.type) {
1989         case e1000_82576:
1990                 dtxswc = rd32(E1000_DTXSWC);
1991                 if (enable)
1992                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1993                 else
1994                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1995                 wr32(E1000_DTXSWC, dtxswc);
1996                 break;
1997         case e1000_i354:
1998         case e1000_i350:
1999                 dtxswc = rd32(E1000_TXSWC);
2000                 if (enable)
2001                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2002                 else
2003                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2004                 wr32(E1000_TXSWC, dtxswc);
2005                 break;
2006         default:
2007                 /* Currently no other hardware supports loopback */
2008                 break;
2009         }
2010
2011 }
2012
2013 /**
2014  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2015  *  @hw: pointer to the hardware struct
2016  *  @enable: state to enter, either enabled or disabled
2017  *
2018  *  enables/disables replication of packets across multiple pools.
2019  **/
2020 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2021 {
2022         u32 vt_ctl = rd32(E1000_VT_CTL);
2023
2024         if (enable)
2025                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2026         else
2027                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2028
2029         wr32(E1000_VT_CTL, vt_ctl);
2030 }
2031
2032 /**
2033  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2034  *  @hw: pointer to the HW structure
2035  *  @offset: register offset to be read
2036  *  @data: pointer to the read data
2037  *
2038  *  Reads the MDI control register in the PHY at offset and stores the
2039  *  information read to data.
2040  **/
2041 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2042 {
2043         s32 ret_val;
2044
2045         ret_val = hw->phy.ops.acquire(hw);
2046         if (ret_val)
2047                 goto out;
2048
2049         ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2050
2051         hw->phy.ops.release(hw);
2052
2053 out:
2054         return ret_val;
2055 }
2056
2057 /**
2058  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2059  *  @hw: pointer to the HW structure
2060  *  @offset: register offset to write to
2061  *  @data: data to write to register at offset
2062  *
2063  *  Writes data to MDI control register in the PHY at offset.
2064  **/
2065 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2066 {
2067         s32 ret_val;
2068
2069
2070         ret_val = hw->phy.ops.acquire(hw);
2071         if (ret_val)
2072                 goto out;
2073
2074         ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2075
2076         hw->phy.ops.release(hw);
2077
2078 out:
2079         return ret_val;
2080 }
2081
2082 /**
2083  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2084  *  @hw: pointer to the HW structure
2085  *
2086  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2087  *  the values found in the EEPROM.  This addresses an issue in which these
2088  *  bits are not restored from EEPROM after reset.
2089  **/
2090 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2091 {
2092         s32 ret_val = 0;
2093         u32 mdicnfg;
2094         u16 nvm_data = 0;
2095
2096         if (hw->mac.type != e1000_82580)
2097                 goto out;
2098         if (!igb_sgmii_active_82575(hw))
2099                 goto out;
2100
2101         ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2102                                    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2103                                    &nvm_data);
2104         if (ret_val) {
2105                 hw_dbg("NVM Read Error\n");
2106                 goto out;
2107         }
2108
2109         mdicnfg = rd32(E1000_MDICNFG);
2110         if (nvm_data & NVM_WORD24_EXT_MDIO)
2111                 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2112         if (nvm_data & NVM_WORD24_COM_MDIO)
2113                 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2114         wr32(E1000_MDICNFG, mdicnfg);
2115 out:
2116         return ret_val;
2117 }
2118
2119 /**
2120  *  igb_reset_hw_82580 - Reset hardware
2121  *  @hw: pointer to the HW structure
2122  *
2123  *  This resets function or entire device (all ports, etc.)
2124  *  to a known state.
2125  **/
2126 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2127 {
2128         s32 ret_val = 0;
2129         /* BH SW mailbox bit in SW_FW_SYNC */
2130         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2131         u32 ctrl;
2132         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2133
2134         hw->dev_spec._82575.global_device_reset = false;
2135
2136         /* due to hw errata, global device reset doesn't always
2137          * work on 82580
2138          */
2139         if (hw->mac.type == e1000_82580)
2140                 global_device_reset = false;
2141
2142         /* Get current control state. */
2143         ctrl = rd32(E1000_CTRL);
2144
2145         /* Prevent the PCI-E bus from sticking if there is no TLP connection
2146          * on the last TLP read/write transaction when MAC is reset.
2147          */
2148         ret_val = igb_disable_pcie_master(hw);
2149         if (ret_val)
2150                 hw_dbg("PCI-E Master disable polling has failed.\n");
2151
2152         hw_dbg("Masking off all interrupts\n");
2153         wr32(E1000_IMC, 0xffffffff);
2154         wr32(E1000_RCTL, 0);
2155         wr32(E1000_TCTL, E1000_TCTL_PSP);
2156         wrfl();
2157
2158         msleep(10);
2159
2160         /* Determine whether or not a global dev reset is requested */
2161         if (global_device_reset &&
2162                 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2163                         global_device_reset = false;
2164
2165         if (global_device_reset &&
2166                 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2167                 ctrl |= E1000_CTRL_DEV_RST;
2168         else
2169                 ctrl |= E1000_CTRL_RST;
2170
2171         wr32(E1000_CTRL, ctrl);
2172         wrfl();
2173
2174         /* Add delay to insure DEV_RST has time to complete */
2175         if (global_device_reset)
2176                 msleep(5);
2177
2178         ret_val = igb_get_auto_rd_done(hw);
2179         if (ret_val) {
2180                 /* When auto config read does not complete, do not
2181                  * return with an error. This can happen in situations
2182                  * where there is no eeprom and prevents getting link.
2183                  */
2184                 hw_dbg("Auto Read Done did not complete\n");
2185         }
2186
2187         /* clear global device reset status bit */
2188         wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2189
2190         /* Clear any pending interrupt events. */
2191         wr32(E1000_IMC, 0xffffffff);
2192         rd32(E1000_ICR);
2193
2194         ret_val = igb_reset_mdicnfg_82580(hw);
2195         if (ret_val)
2196                 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2197
2198         /* Install any alternate MAC address into RAR0 */
2199         ret_val = igb_check_alt_mac_addr(hw);
2200
2201         /* Release semaphore */
2202         if (global_device_reset)
2203                 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2204
2205         return ret_val;
2206 }
2207
2208 /**
2209  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2210  *  @data: data received by reading RXPBS register
2211  *
2212  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2213  *  This function converts the retrieved value into the correct table value
2214  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2215  *  0x0 36  72 144   1   2   4   8  16
2216  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2217  */
2218 u16 igb_rxpbs_adjust_82580(u32 data)
2219 {
2220         u16 ret_val = 0;
2221
2222         if (data < E1000_82580_RXPBS_TABLE_SIZE)
2223                 ret_val = e1000_82580_rxpbs_table[data];
2224
2225         return ret_val;
2226 }
2227
2228 /**
2229  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2230  *  checksum
2231  *  @hw: pointer to the HW structure
2232  *  @offset: offset in words of the checksum protected region
2233  *
2234  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2235  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2236  **/
2237 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2238                                                  u16 offset)
2239 {
2240         s32 ret_val = 0;
2241         u16 checksum = 0;
2242         u16 i, nvm_data;
2243
2244         for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2245                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2246                 if (ret_val) {
2247                         hw_dbg("NVM Read Error\n");
2248                         goto out;
2249                 }
2250                 checksum += nvm_data;
2251         }
2252
2253         if (checksum != (u16) NVM_SUM) {
2254                 hw_dbg("NVM Checksum Invalid\n");
2255                 ret_val = -E1000_ERR_NVM;
2256                 goto out;
2257         }
2258
2259 out:
2260         return ret_val;
2261 }
2262
2263 /**
2264  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2265  *  checksum
2266  *  @hw: pointer to the HW structure
2267  *  @offset: offset in words of the checksum protected region
2268  *
2269  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2270  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2271  *  value to the EEPROM.
2272  **/
2273 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2274 {
2275         s32 ret_val;
2276         u16 checksum = 0;
2277         u16 i, nvm_data;
2278
2279         for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2280                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2281                 if (ret_val) {
2282                         hw_dbg("NVM Read Error while updating checksum.\n");
2283                         goto out;
2284                 }
2285                 checksum += nvm_data;
2286         }
2287         checksum = (u16) NVM_SUM - checksum;
2288         ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2289                                 &checksum);
2290         if (ret_val)
2291                 hw_dbg("NVM Write Error while updating checksum.\n");
2292
2293 out:
2294         return ret_val;
2295 }
2296
2297 /**
2298  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2299  *  @hw: pointer to the HW structure
2300  *
2301  *  Calculates the EEPROM section checksum by reading/adding each word of
2302  *  the EEPROM and then verifies that the sum of the EEPROM is
2303  *  equal to 0xBABA.
2304  **/
2305 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2306 {
2307         s32 ret_val = 0;
2308         u16 eeprom_regions_count = 1;
2309         u16 j, nvm_data;
2310         u16 nvm_offset;
2311
2312         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2313         if (ret_val) {
2314                 hw_dbg("NVM Read Error\n");
2315                 goto out;
2316         }
2317
2318         if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2319                 /* if checksums compatibility bit is set validate checksums
2320                  * for all 4 ports.
2321                  */
2322                 eeprom_regions_count = 4;
2323         }
2324
2325         for (j = 0; j < eeprom_regions_count; j++) {
2326                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2327                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2328                                                                 nvm_offset);
2329                 if (ret_val != 0)
2330                         goto out;
2331         }
2332
2333 out:
2334         return ret_val;
2335 }
2336
2337 /**
2338  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2339  *  @hw: pointer to the HW structure
2340  *
2341  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2342  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2343  *  checksum and writes the value to the EEPROM.
2344  **/
2345 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2346 {
2347         s32 ret_val;
2348         u16 j, nvm_data;
2349         u16 nvm_offset;
2350
2351         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2352         if (ret_val) {
2353                 hw_dbg("NVM Read Error while updating checksum"
2354                         " compatibility bit.\n");
2355                 goto out;
2356         }
2357
2358         if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2359                 /* set compatibility bit to validate checksums appropriately */
2360                 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2361                 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2362                                         &nvm_data);
2363                 if (ret_val) {
2364                         hw_dbg("NVM Write Error while updating checksum"
2365                                 " compatibility bit.\n");
2366                         goto out;
2367                 }
2368         }
2369
2370         for (j = 0; j < 4; j++) {
2371                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2372                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2373                 if (ret_val)
2374                         goto out;
2375         }
2376
2377 out:
2378         return ret_val;
2379 }
2380
2381 /**
2382  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2383  *  @hw: pointer to the HW structure
2384  *
2385  *  Calculates the EEPROM section checksum by reading/adding each word of
2386  *  the EEPROM and then verifies that the sum of the EEPROM is
2387  *  equal to 0xBABA.
2388  **/
2389 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2390 {
2391         s32 ret_val = 0;
2392         u16 j;
2393         u16 nvm_offset;
2394
2395         for (j = 0; j < 4; j++) {
2396                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2397                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2398                                                                 nvm_offset);
2399                 if (ret_val != 0)
2400                         goto out;
2401         }
2402
2403 out:
2404         return ret_val;
2405 }
2406
2407 /**
2408  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2409  *  @hw: pointer to the HW structure
2410  *
2411  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2412  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2413  *  checksum and writes the value to the EEPROM.
2414  **/
2415 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2416 {
2417         s32 ret_val = 0;
2418         u16 j;
2419         u16 nvm_offset;
2420
2421         for (j = 0; j < 4; j++) {
2422                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2423                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2424                 if (ret_val != 0)
2425                         goto out;
2426         }
2427
2428 out:
2429         return ret_val;
2430 }
2431
2432 /**
2433  *  __igb_access_emi_reg - Read/write EMI register
2434  *  @hw: pointer to the HW structure
2435  *  @addr: EMI address to program
2436  *  @data: pointer to value to read/write from/to the EMI address
2437  *  @read: boolean flag to indicate read or write
2438  **/
2439 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2440                                   u16 *data, bool read)
2441 {
2442         s32 ret_val = E1000_SUCCESS;
2443
2444         ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2445         if (ret_val)
2446                 return ret_val;
2447
2448         if (read)
2449                 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2450         else
2451                 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2452
2453         return ret_val;
2454 }
2455
2456 /**
2457  *  igb_read_emi_reg - Read Extended Management Interface register
2458  *  @hw: pointer to the HW structure
2459  *  @addr: EMI address to program
2460  *  @data: value to be read from the EMI address
2461  **/
2462 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2463 {
2464         return __igb_access_emi_reg(hw, addr, data, true);
2465 }
2466
2467 /**
2468  *  igb_set_eee_i350 - Enable/disable EEE support
2469  *  @hw: pointer to the HW structure
2470  *
2471  *  Enable/disable EEE based on setting in dev_spec structure.
2472  *
2473  **/
2474 s32 igb_set_eee_i350(struct e1000_hw *hw)
2475 {
2476         s32 ret_val = 0;
2477         u32 ipcnfg, eeer;
2478
2479         if ((hw->mac.type < e1000_i350) ||
2480             (hw->phy.media_type != e1000_media_type_copper))
2481                 goto out;
2482         ipcnfg = rd32(E1000_IPCNFG);
2483         eeer = rd32(E1000_EEER);
2484
2485         /* enable or disable per user setting */
2486         if (!(hw->dev_spec._82575.eee_disable)) {
2487                 u32 eee_su = rd32(E1000_EEE_SU);
2488
2489                 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2490                 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2491                         E1000_EEER_LPI_FC);
2492
2493                 /* This bit should not be set in normal operation. */
2494                 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2495                         hw_dbg("LPI Clock Stop Bit should not be set!\n");
2496
2497         } else {
2498                 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2499                         E1000_IPCNFG_EEE_100M_AN);
2500                 eeer &= ~(E1000_EEER_TX_LPI_EN |
2501                         E1000_EEER_RX_LPI_EN |
2502                         E1000_EEER_LPI_FC);
2503         }
2504         wr32(E1000_IPCNFG, ipcnfg);
2505         wr32(E1000_EEER, eeer);
2506         rd32(E1000_IPCNFG);
2507         rd32(E1000_EEER);
2508 out:
2509
2510         return ret_val;
2511 }
2512
2513 /**
2514  *  igb_set_eee_i354 - Enable/disable EEE support
2515  *  @hw: pointer to the HW structure
2516  *
2517  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2518  *
2519  **/
2520 s32 igb_set_eee_i354(struct e1000_hw *hw)
2521 {
2522         struct e1000_phy_info *phy = &hw->phy;
2523         s32 ret_val = 0;
2524         u16 phy_data;
2525
2526         if ((hw->phy.media_type != e1000_media_type_copper) ||
2527             (phy->id != M88E1543_E_PHY_ID))
2528                 goto out;
2529
2530         if (!hw->dev_spec._82575.eee_disable) {
2531                 /* Switch to PHY page 18. */
2532                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2533                 if (ret_val)
2534                         goto out;
2535
2536                 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2537                                             &phy_data);
2538                 if (ret_val)
2539                         goto out;
2540
2541                 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2542                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2543                                              phy_data);
2544                 if (ret_val)
2545                         goto out;
2546
2547                 /* Return the PHY to page 0. */
2548                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2549                 if (ret_val)
2550                         goto out;
2551
2552                 /* Turn on EEE advertisement. */
2553                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2554                                              E1000_EEE_ADV_DEV_I354,
2555                                              &phy_data);
2556                 if (ret_val)
2557                         goto out;
2558
2559                 phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2560                             E1000_EEE_ADV_1000_SUPPORTED;
2561                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2562                                                 E1000_EEE_ADV_DEV_I354,
2563                                                 phy_data);
2564         } else {
2565                 /* Turn off EEE advertisement. */
2566                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2567                                              E1000_EEE_ADV_DEV_I354,
2568                                              &phy_data);
2569                 if (ret_val)
2570                         goto out;
2571
2572                 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2573                               E1000_EEE_ADV_1000_SUPPORTED);
2574                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2575                                               E1000_EEE_ADV_DEV_I354,
2576                                               phy_data);
2577         }
2578
2579 out:
2580         return ret_val;
2581 }
2582
2583 /**
2584  *  igb_get_eee_status_i354 - Get EEE status
2585  *  @hw: pointer to the HW structure
2586  *  @status: EEE status
2587  *
2588  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2589  *  been received.
2590  **/
2591 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2592 {
2593         struct e1000_phy_info *phy = &hw->phy;
2594         s32 ret_val = 0;
2595         u16 phy_data;
2596
2597         /* Check if EEE is supported on this device. */
2598         if ((hw->phy.media_type != e1000_media_type_copper) ||
2599             (phy->id != M88E1543_E_PHY_ID))
2600                 goto out;
2601
2602         ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2603                                      E1000_PCS_STATUS_DEV_I354,
2604                                      &phy_data);
2605         if (ret_val)
2606                 goto out;
2607
2608         *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2609                               E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2610
2611 out:
2612         return ret_val;
2613 }
2614
2615 static const u8 e1000_emc_temp_data[4] = {
2616         E1000_EMC_INTERNAL_DATA,
2617         E1000_EMC_DIODE1_DATA,
2618         E1000_EMC_DIODE2_DATA,
2619         E1000_EMC_DIODE3_DATA
2620 };
2621 static const u8 e1000_emc_therm_limit[4] = {
2622         E1000_EMC_INTERNAL_THERM_LIMIT,
2623         E1000_EMC_DIODE1_THERM_LIMIT,
2624         E1000_EMC_DIODE2_THERM_LIMIT,
2625         E1000_EMC_DIODE3_THERM_LIMIT
2626 };
2627
2628 /**
2629  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2630  *  @hw: pointer to hardware structure
2631  *
2632  *  Updates the temperatures in mac.thermal_sensor_data
2633  **/
2634 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2635 {
2636         s32 status = E1000_SUCCESS;
2637         u16 ets_offset;
2638         u16 ets_cfg;
2639         u16 ets_sensor;
2640         u8  num_sensors;
2641         u8  sensor_index;
2642         u8  sensor_location;
2643         u8  i;
2644         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2645
2646         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2647                 return E1000_NOT_IMPLEMENTED;
2648
2649         data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2650
2651         /* Return the internal sensor only if ETS is unsupported */
2652         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2653         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2654                 return status;
2655
2656         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2657         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2658             != NVM_ETS_TYPE_EMC)
2659                 return E1000_NOT_IMPLEMENTED;
2660
2661         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2662         if (num_sensors > E1000_MAX_SENSORS)
2663                 num_sensors = E1000_MAX_SENSORS;
2664
2665         for (i = 1; i < num_sensors; i++) {
2666                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2667                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2668                                 NVM_ETS_DATA_INDEX_SHIFT);
2669                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2670                                    NVM_ETS_DATA_LOC_SHIFT);
2671
2672                 if (sensor_location != 0)
2673                         hw->phy.ops.read_i2c_byte(hw,
2674                                         e1000_emc_temp_data[sensor_index],
2675                                         E1000_I2C_THERMAL_SENSOR_ADDR,
2676                                         &data->sensor[i].temp);
2677         }
2678         return status;
2679 }
2680
2681 /**
2682  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2683  *  @hw: pointer to hardware structure
2684  *
2685  *  Sets the thermal sensor thresholds according to the NVM map
2686  *  and save off the threshold and location values into mac.thermal_sensor_data
2687  **/
2688 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2689 {
2690         s32 status = E1000_SUCCESS;
2691         u16 ets_offset;
2692         u16 ets_cfg;
2693         u16 ets_sensor;
2694         u8  low_thresh_delta;
2695         u8  num_sensors;
2696         u8  sensor_index;
2697         u8  sensor_location;
2698         u8  therm_limit;
2699         u8  i;
2700         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2701
2702         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2703                 return E1000_NOT_IMPLEMENTED;
2704
2705         memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2706
2707         data->sensor[0].location = 0x1;
2708         data->sensor[0].caution_thresh =
2709                 (rd32(E1000_THHIGHTC) & 0xFF);
2710         data->sensor[0].max_op_thresh =
2711                 (rd32(E1000_THLOWTC) & 0xFF);
2712
2713         /* Return the internal sensor only if ETS is unsupported */
2714         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2715         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2716                 return status;
2717
2718         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2719         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2720             != NVM_ETS_TYPE_EMC)
2721                 return E1000_NOT_IMPLEMENTED;
2722
2723         low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2724                             NVM_ETS_LTHRES_DELTA_SHIFT);
2725         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2726
2727         for (i = 1; i <= num_sensors; i++) {
2728                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2729                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2730                                 NVM_ETS_DATA_INDEX_SHIFT);
2731                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2732                                    NVM_ETS_DATA_LOC_SHIFT);
2733                 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2734
2735                 hw->phy.ops.write_i2c_byte(hw,
2736                         e1000_emc_therm_limit[sensor_index],
2737                         E1000_I2C_THERMAL_SENSOR_ADDR,
2738                         therm_limit);
2739
2740                 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2741                         data->sensor[i].location = sensor_location;
2742                         data->sensor[i].caution_thresh = therm_limit;
2743                         data->sensor[i].max_op_thresh = therm_limit -
2744                                                         low_thresh_delta;
2745                 }
2746         }
2747         return status;
2748 }
2749
2750 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2751         .init_hw              = igb_init_hw_82575,
2752         .check_for_link       = igb_check_for_link_82575,
2753         .rar_set              = igb_rar_set,
2754         .read_mac_addr        = igb_read_mac_addr_82575,
2755         .get_speed_and_duplex = igb_get_link_up_info_82575,
2756 #ifdef CONFIG_IGB_HWMON
2757         .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2758         .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2759 #endif
2760 };
2761
2762 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2763         .acquire              = igb_acquire_phy_82575,
2764         .get_cfg_done         = igb_get_cfg_done_82575,
2765         .release              = igb_release_phy_82575,
2766         .write_i2c_byte       = igb_write_i2c_byte,
2767         .read_i2c_byte        = igb_read_i2c_byte,
2768 };
2769
2770 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2771         .acquire              = igb_acquire_nvm_82575,
2772         .read                 = igb_read_nvm_eerd,
2773         .release              = igb_release_nvm_82575,
2774         .write                = igb_write_nvm_spi,
2775 };
2776
2777 const struct e1000_info e1000_82575_info = {
2778         .get_invariants = igb_get_invariants_82575,
2779         .mac_ops = &e1000_mac_ops_82575,
2780         .phy_ops = &e1000_phy_ops_82575,
2781         .nvm_ops = &e1000_nvm_ops_82575,
2782 };
2783