b1a759c337fbe55b98dfaf32c31c03475fe79325
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2014 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 /* e1000_82575
28  * e1000_82576
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/types.h>
34 #include <linux/if_ether.h>
35 #include <linux/i2c.h>
36
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
39 #include "e1000_i210.h"
40
41 static s32  igb_get_invariants_82575(struct e1000_hw *);
42 static s32  igb_acquire_phy_82575(struct e1000_hw *);
43 static void igb_release_phy_82575(struct e1000_hw *);
44 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
45 static void igb_release_nvm_82575(struct e1000_hw *);
46 static s32  igb_check_for_link_82575(struct e1000_hw *);
47 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
48 static s32  igb_init_hw_82575(struct e1000_hw *);
49 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53 static s32  igb_reset_hw_82575(struct e1000_hw *);
54 static s32  igb_reset_hw_82580(struct e1000_hw *);
55 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64                                                  u16 *);
65 static s32  igb_get_phy_id_82575(struct e1000_hw *);
66 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67 static bool igb_sgmii_active_82575(struct e1000_hw *);
68 static s32  igb_reset_init_script_82575(struct e1000_hw *);
69 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76 static const u16 e1000_82580_rxpbs_table[] = {
77         36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
78
79 /**
80  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
81  *  @hw: pointer to the HW structure
82  *
83  *  Called to determine if the I2C pins are being used for I2C or as an
84  *  external MDIO interface since the two options are mutually exclusive.
85  **/
86 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
87 {
88         u32 reg = 0;
89         bool ext_mdio = false;
90
91         switch (hw->mac.type) {
92         case e1000_82575:
93         case e1000_82576:
94                 reg = rd32(E1000_MDIC);
95                 ext_mdio = !!(reg & E1000_MDIC_DEST);
96                 break;
97         case e1000_82580:
98         case e1000_i350:
99         case e1000_i354:
100         case e1000_i210:
101         case e1000_i211:
102                 reg = rd32(E1000_MDICNFG);
103                 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
104                 break;
105         default:
106                 break;
107         }
108         return ext_mdio;
109 }
110
111 /**
112  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
113  *  @hw: pointer to the HW structure
114  *
115  *  Poll the M88E1112 interfaces to see which interface achieved link.
116  */
117 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
118 {
119         struct e1000_phy_info *phy = &hw->phy;
120         s32 ret_val;
121         u16 data;
122         u8 port = 0;
123
124         /* Check the copper medium. */
125         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
126         if (ret_val)
127                 return ret_val;
128
129         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
130         if (ret_val)
131                 return ret_val;
132
133         if (data & E1000_M88E1112_STATUS_LINK)
134                 port = E1000_MEDIA_PORT_COPPER;
135
136         /* Check the other medium. */
137         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
138         if (ret_val)
139                 return ret_val;
140
141         ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
142         if (ret_val)
143                 return ret_val;
144
145         /* reset page to 0 */
146         ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
147         if (ret_val)
148                 return ret_val;
149
150         if (data & E1000_M88E1112_STATUS_LINK)
151                 port = E1000_MEDIA_PORT_OTHER;
152
153         /* Determine if a swap needs to happen. */
154         if (port && (hw->dev_spec._82575.media_port != port)) {
155                 hw->dev_spec._82575.media_port = port;
156                 hw->dev_spec._82575.media_changed = true;
157         } else {
158                 ret_val = igb_check_for_link_82575(hw);
159         }
160
161         return E1000_SUCCESS;
162 }
163
164 /**
165  *  igb_init_phy_params_82575 - Init PHY func ptrs.
166  *  @hw: pointer to the HW structure
167  **/
168 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
169 {
170         struct e1000_phy_info *phy = &hw->phy;
171         s32 ret_val = 0;
172         u32 ctrl_ext;
173
174         if (hw->phy.media_type != e1000_media_type_copper) {
175                 phy->type = e1000_phy_none;
176                 goto out;
177         }
178
179         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
180         phy->reset_delay_us     = 100;
181
182         ctrl_ext = rd32(E1000_CTRL_EXT);
183
184         if (igb_sgmii_active_82575(hw)) {
185                 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
186                 ctrl_ext |= E1000_CTRL_I2C_ENA;
187         } else {
188                 phy->ops.reset = igb_phy_hw_reset;
189                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
190         }
191
192         wr32(E1000_CTRL_EXT, ctrl_ext);
193         igb_reset_mdicnfg_82580(hw);
194
195         if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
196                 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
197                 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
198         } else {
199                 switch (hw->mac.type) {
200                 case e1000_82580:
201                 case e1000_i350:
202                 case e1000_i354:
203                         phy->ops.read_reg = igb_read_phy_reg_82580;
204                         phy->ops.write_reg = igb_write_phy_reg_82580;
205                         break;
206                 case e1000_i210:
207                 case e1000_i211:
208                         phy->ops.read_reg = igb_read_phy_reg_gs40g;
209                         phy->ops.write_reg = igb_write_phy_reg_gs40g;
210                         break;
211                 default:
212                         phy->ops.read_reg = igb_read_phy_reg_igp;
213                         phy->ops.write_reg = igb_write_phy_reg_igp;
214                 }
215         }
216
217         /* set lan id */
218         hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
219                         E1000_STATUS_FUNC_SHIFT;
220
221         /* Set phy->phy_addr and phy->id. */
222         ret_val = igb_get_phy_id_82575(hw);
223         if (ret_val)
224                 return ret_val;
225
226         /* Verify phy id and set remaining function pointers */
227         switch (phy->id) {
228         case M88E1543_E_PHY_ID:
229         case I347AT4_E_PHY_ID:
230         case M88E1112_E_PHY_ID:
231         case M88E1111_I_PHY_ID:
232                 phy->type               = e1000_phy_m88;
233                 phy->ops.check_polarity = igb_check_polarity_m88;
234                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
235                 if (phy->id != M88E1111_I_PHY_ID)
236                         phy->ops.get_cable_length =
237                                          igb_get_cable_length_m88_gen2;
238                 else
239                         phy->ops.get_cable_length = igb_get_cable_length_m88;
240                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
241                 /* Check if this PHY is confgured for media swap. */
242                 if (phy->id == M88E1112_E_PHY_ID) {
243                         u16 data;
244
245                         ret_val = phy->ops.write_reg(hw,
246                                                      E1000_M88E1112_PAGE_ADDR,
247                                                      2);
248                         if (ret_val)
249                                 goto out;
250
251                         ret_val = phy->ops.read_reg(hw,
252                                                     E1000_M88E1112_MAC_CTRL_1,
253                                                     &data);
254                         if (ret_val)
255                                 goto out;
256
257                         data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
258                                E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
259                         if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
260                             data == E1000_M88E1112_AUTO_COPPER_BASEX)
261                                 hw->mac.ops.check_for_link =
262                                                 igb_check_for_link_media_swap;
263                 }
264                 break;
265         case IGP03E1000_E_PHY_ID:
266                 phy->type = e1000_phy_igp_3;
267                 phy->ops.get_phy_info = igb_get_phy_info_igp;
268                 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
269                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
270                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
271                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
272                 break;
273         case I82580_I_PHY_ID:
274         case I350_I_PHY_ID:
275                 phy->type = e1000_phy_82580;
276                 phy->ops.force_speed_duplex =
277                                          igb_phy_force_speed_duplex_82580;
278                 phy->ops.get_cable_length = igb_get_cable_length_82580;
279                 phy->ops.get_phy_info = igb_get_phy_info_82580;
280                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
281                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
282                 break;
283         case I210_I_PHY_ID:
284                 phy->type               = e1000_phy_i210;
285                 phy->ops.check_polarity = igb_check_polarity_m88;
286                 phy->ops.get_phy_info   = igb_get_phy_info_m88;
287                 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
288                 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
289                 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
290                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
291                 break;
292         default:
293                 ret_val = -E1000_ERR_PHY;
294                 goto out;
295         }
296
297 out:
298         return ret_val;
299 }
300
301 /**
302  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
303  *  @hw: pointer to the HW structure
304  **/
305 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
306 {
307         struct e1000_nvm_info *nvm = &hw->nvm;
308         u32 eecd = rd32(E1000_EECD);
309         u16 size;
310
311         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
312                      E1000_EECD_SIZE_EX_SHIFT);
313
314         /* Added to a constant, "size" becomes the left-shift value
315          * for setting word_size.
316          */
317         size += NVM_WORD_SIZE_BASE_SHIFT;
318
319         /* Just in case size is out of range, cap it to the largest
320          * EEPROM size supported
321          */
322         if (size > 15)
323                 size = 15;
324
325         nvm->word_size = 1 << size;
326         nvm->opcode_bits = 8;
327         nvm->delay_usec = 1;
328
329         switch (nvm->override) {
330         case e1000_nvm_override_spi_large:
331                 nvm->page_size = 32;
332                 nvm->address_bits = 16;
333                 break;
334         case e1000_nvm_override_spi_small:
335                 nvm->page_size = 8;
336                 nvm->address_bits = 8;
337                 break;
338         default:
339                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
340                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
341                                     16 : 8;
342                 break;
343         }
344         if (nvm->word_size == (1 << 15))
345                 nvm->page_size = 128;
346
347         nvm->type = e1000_nvm_eeprom_spi;
348
349         /* NVM Function Pointers */
350         nvm->ops.acquire = igb_acquire_nvm_82575;
351         nvm->ops.release = igb_release_nvm_82575;
352         nvm->ops.write = igb_write_nvm_spi;
353         nvm->ops.validate = igb_validate_nvm_checksum;
354         nvm->ops.update = igb_update_nvm_checksum;
355         if (nvm->word_size < (1 << 15))
356                 nvm->ops.read = igb_read_nvm_eerd;
357         else
358                 nvm->ops.read = igb_read_nvm_spi;
359
360         /* override generic family function pointers for specific descendants */
361         switch (hw->mac.type) {
362         case e1000_82580:
363                 nvm->ops.validate = igb_validate_nvm_checksum_82580;
364                 nvm->ops.update = igb_update_nvm_checksum_82580;
365                 break;
366         case e1000_i354:
367         case e1000_i350:
368                 nvm->ops.validate = igb_validate_nvm_checksum_i350;
369                 nvm->ops.update = igb_update_nvm_checksum_i350;
370                 break;
371         default:
372                 break;
373         }
374
375         return 0;
376 }
377
378 /**
379  *  igb_init_mac_params_82575 - Init MAC func ptrs.
380  *  @hw: pointer to the HW structure
381  **/
382 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
383 {
384         struct e1000_mac_info *mac = &hw->mac;
385         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
386
387         /* Set mta register count */
388         mac->mta_reg_count = 128;
389         /* Set rar entry count */
390         switch (mac->type) {
391         case e1000_82576:
392                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
393                 break;
394         case e1000_82580:
395                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
396                 break;
397         case e1000_i350:
398         case e1000_i354:
399                 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
400                 break;
401         default:
402                 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
403                 break;
404         }
405         /* reset */
406         if (mac->type >= e1000_82580)
407                 mac->ops.reset_hw = igb_reset_hw_82580;
408         else
409                 mac->ops.reset_hw = igb_reset_hw_82575;
410
411         if (mac->type >= e1000_i210) {
412                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
413                 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
414
415         } else {
416                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
417                 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
418         }
419
420         /* Set if part includes ASF firmware */
421         mac->asf_firmware_present = true;
422         /* Set if manageability features are enabled. */
423         mac->arc_subsystem_valid =
424                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
425                         ? true : false;
426         /* enable EEE on i350 parts and later parts */
427         if (mac->type >= e1000_i350)
428                 dev_spec->eee_disable = false;
429         else
430                 dev_spec->eee_disable = true;
431         /* Allow a single clear of the SW semaphore on I210 and newer */
432         if (mac->type >= e1000_i210)
433                 dev_spec->clear_semaphore_once = true;
434         /* physical interface link setup */
435         mac->ops.setup_physical_interface =
436                 (hw->phy.media_type == e1000_media_type_copper)
437                         ? igb_setup_copper_link_82575
438                         : igb_setup_serdes_link_82575;
439
440         if (mac->type == e1000_82580) {
441                 switch (hw->device_id) {
442                 /* feature not supported on these id's */
443                 case E1000_DEV_ID_DH89XXCC_SGMII:
444                 case E1000_DEV_ID_DH89XXCC_SERDES:
445                 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
446                 case E1000_DEV_ID_DH89XXCC_SFP:
447                         break;
448                 default:
449                         hw->dev_spec._82575.mas_capable = true;
450                         break;
451                 }
452         }
453         return 0;
454 }
455
456 /**
457  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
458  *  @hw: pointer to the HW structure
459  *
460  *  The media type is chosen based on SFP module.
461  *  compatibility flags retrieved from SFP ID EEPROM.
462  **/
463 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
464 {
465         s32 ret_val = E1000_ERR_CONFIG;
466         u32 ctrl_ext = 0;
467         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
468         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
469         u8 tranceiver_type = 0;
470         s32 timeout = 3;
471
472         /* Turn I2C interface ON and power on sfp cage */
473         ctrl_ext = rd32(E1000_CTRL_EXT);
474         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
475         wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
476
477         wrfl();
478
479         /* Read SFP module data */
480         while (timeout) {
481                 ret_val = igb_read_sfp_data_byte(hw,
482                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
483                         &tranceiver_type);
484                 if (ret_val == 0)
485                         break;
486                 msleep(100);
487                 timeout--;
488         }
489         if (ret_val != 0)
490                 goto out;
491
492         ret_val = igb_read_sfp_data_byte(hw,
493                         E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
494                         (u8 *)eth_flags);
495         if (ret_val != 0)
496                 goto out;
497
498         /* Check if there is some SFP module plugged and powered */
499         if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
500             (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
501                 dev_spec->module_plugged = true;
502                 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
503                         hw->phy.media_type = e1000_media_type_internal_serdes;
504                 } else if (eth_flags->e100_base_fx) {
505                         dev_spec->sgmii_active = true;
506                         hw->phy.media_type = e1000_media_type_internal_serdes;
507                 } else if (eth_flags->e1000_base_t) {
508                         dev_spec->sgmii_active = true;
509                         hw->phy.media_type = e1000_media_type_copper;
510                 } else {
511                         hw->phy.media_type = e1000_media_type_unknown;
512                         hw_dbg("PHY module has not been recognized\n");
513                         goto out;
514                 }
515         } else {
516                 hw->phy.media_type = e1000_media_type_unknown;
517         }
518         ret_val = 0;
519 out:
520         /* Restore I2C interface setting */
521         wr32(E1000_CTRL_EXT, ctrl_ext);
522         return ret_val;
523 }
524
525 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
526 {
527         struct e1000_mac_info *mac = &hw->mac;
528         struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
529         s32 ret_val;
530         u32 ctrl_ext = 0;
531         u32 link_mode = 0;
532
533         switch (hw->device_id) {
534         case E1000_DEV_ID_82575EB_COPPER:
535         case E1000_DEV_ID_82575EB_FIBER_SERDES:
536         case E1000_DEV_ID_82575GB_QUAD_COPPER:
537                 mac->type = e1000_82575;
538                 break;
539         case E1000_DEV_ID_82576:
540         case E1000_DEV_ID_82576_NS:
541         case E1000_DEV_ID_82576_NS_SERDES:
542         case E1000_DEV_ID_82576_FIBER:
543         case E1000_DEV_ID_82576_SERDES:
544         case E1000_DEV_ID_82576_QUAD_COPPER:
545         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
546         case E1000_DEV_ID_82576_SERDES_QUAD:
547                 mac->type = e1000_82576;
548                 break;
549         case E1000_DEV_ID_82580_COPPER:
550         case E1000_DEV_ID_82580_FIBER:
551         case E1000_DEV_ID_82580_QUAD_FIBER:
552         case E1000_DEV_ID_82580_SERDES:
553         case E1000_DEV_ID_82580_SGMII:
554         case E1000_DEV_ID_82580_COPPER_DUAL:
555         case E1000_DEV_ID_DH89XXCC_SGMII:
556         case E1000_DEV_ID_DH89XXCC_SERDES:
557         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
558         case E1000_DEV_ID_DH89XXCC_SFP:
559                 mac->type = e1000_82580;
560                 break;
561         case E1000_DEV_ID_I350_COPPER:
562         case E1000_DEV_ID_I350_FIBER:
563         case E1000_DEV_ID_I350_SERDES:
564         case E1000_DEV_ID_I350_SGMII:
565                 mac->type = e1000_i350;
566                 break;
567         case E1000_DEV_ID_I210_COPPER:
568         case E1000_DEV_ID_I210_FIBER:
569         case E1000_DEV_ID_I210_SERDES:
570         case E1000_DEV_ID_I210_SGMII:
571         case E1000_DEV_ID_I210_COPPER_FLASHLESS:
572         case E1000_DEV_ID_I210_SERDES_FLASHLESS:
573                 mac->type = e1000_i210;
574                 break;
575         case E1000_DEV_ID_I211_COPPER:
576                 mac->type = e1000_i211;
577                 break;
578         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
579         case E1000_DEV_ID_I354_SGMII:
580         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
581                 mac->type = e1000_i354;
582                 break;
583         default:
584                 return -E1000_ERR_MAC_INIT;
585                 break;
586         }
587
588         /* Set media type */
589         /* The 82575 uses bits 22:23 for link mode. The mode can be changed
590          * based on the EEPROM. We cannot rely upon device ID. There
591          * is no distinguishable difference between fiber and internal
592          * SerDes mode on the 82575. There can be an external PHY attached
593          * on the SGMII interface. For this, we'll set sgmii_active to true.
594          */
595         hw->phy.media_type = e1000_media_type_copper;
596         dev_spec->sgmii_active = false;
597         dev_spec->module_plugged = false;
598
599         ctrl_ext = rd32(E1000_CTRL_EXT);
600
601         link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
602         switch (link_mode) {
603         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
604                 hw->phy.media_type = e1000_media_type_internal_serdes;
605                 break;
606         case E1000_CTRL_EXT_LINK_MODE_SGMII:
607                 /* Get phy control interface type set (MDIO vs. I2C)*/
608                 if (igb_sgmii_uses_mdio_82575(hw)) {
609                         hw->phy.media_type = e1000_media_type_copper;
610                         dev_spec->sgmii_active = true;
611                         break;
612                 }
613                 /* fall through for I2C based SGMII */
614         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
615                 /* read media type from SFP EEPROM */
616                 ret_val = igb_set_sfp_media_type_82575(hw);
617                 if ((ret_val != 0) ||
618                     (hw->phy.media_type == e1000_media_type_unknown)) {
619                         /* If media type was not identified then return media
620                          * type defined by the CTRL_EXT settings.
621                          */
622                         hw->phy.media_type = e1000_media_type_internal_serdes;
623
624                         if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
625                                 hw->phy.media_type = e1000_media_type_copper;
626                                 dev_spec->sgmii_active = true;
627                         }
628
629                         break;
630                 }
631
632                 /* do not change link mode for 100BaseFX */
633                 if (dev_spec->eth_flags.e100_base_fx)
634                         break;
635
636                 /* change current link mode setting */
637                 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
638
639                 if (hw->phy.media_type == e1000_media_type_copper)
640                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
641                 else
642                         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
643
644                 wr32(E1000_CTRL_EXT, ctrl_ext);
645
646                 break;
647         default:
648                 break;
649         }
650
651         /* mac initialization and operations */
652         ret_val = igb_init_mac_params_82575(hw);
653         if (ret_val)
654                 goto out;
655
656         /* NVM initialization */
657         ret_val = igb_init_nvm_params_82575(hw);
658         switch (hw->mac.type) {
659         case e1000_i210:
660         case e1000_i211:
661                 ret_val = igb_init_nvm_params_i210(hw);
662                 break;
663         default:
664                 break;
665         }
666
667         if (ret_val)
668                 goto out;
669
670         /* if part supports SR-IOV then initialize mailbox parameters */
671         switch (mac->type) {
672         case e1000_82576:
673         case e1000_i350:
674                 igb_init_mbx_params_pf(hw);
675                 break;
676         default:
677                 break;
678         }
679
680         /* setup PHY parameters */
681         ret_val = igb_init_phy_params_82575(hw);
682
683 out:
684         return ret_val;
685 }
686
687 /**
688  *  igb_acquire_phy_82575 - Acquire rights to access PHY
689  *  @hw: pointer to the HW structure
690  *
691  *  Acquire access rights to the correct PHY.  This is a
692  *  function pointer entry point called by the api module.
693  **/
694 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
695 {
696         u16 mask = E1000_SWFW_PHY0_SM;
697
698         if (hw->bus.func == E1000_FUNC_1)
699                 mask = E1000_SWFW_PHY1_SM;
700         else if (hw->bus.func == E1000_FUNC_2)
701                 mask = E1000_SWFW_PHY2_SM;
702         else if (hw->bus.func == E1000_FUNC_3)
703                 mask = E1000_SWFW_PHY3_SM;
704
705         return hw->mac.ops.acquire_swfw_sync(hw, mask);
706 }
707
708 /**
709  *  igb_release_phy_82575 - Release rights to access PHY
710  *  @hw: pointer to the HW structure
711  *
712  *  A wrapper to release access rights to the correct PHY.  This is a
713  *  function pointer entry point called by the api module.
714  **/
715 static void igb_release_phy_82575(struct e1000_hw *hw)
716 {
717         u16 mask = E1000_SWFW_PHY0_SM;
718
719         if (hw->bus.func == E1000_FUNC_1)
720                 mask = E1000_SWFW_PHY1_SM;
721         else if (hw->bus.func == E1000_FUNC_2)
722                 mask = E1000_SWFW_PHY2_SM;
723         else if (hw->bus.func == E1000_FUNC_3)
724                 mask = E1000_SWFW_PHY3_SM;
725
726         hw->mac.ops.release_swfw_sync(hw, mask);
727 }
728
729 /**
730  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
731  *  @hw: pointer to the HW structure
732  *  @offset: register offset to be read
733  *  @data: pointer to the read data
734  *
735  *  Reads the PHY register at offset using the serial gigabit media independent
736  *  interface and stores the retrieved information in data.
737  **/
738 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
739                                           u16 *data)
740 {
741         s32 ret_val = -E1000_ERR_PARAM;
742
743         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
744                 hw_dbg("PHY Address %u is out of range\n", offset);
745                 goto out;
746         }
747
748         ret_val = hw->phy.ops.acquire(hw);
749         if (ret_val)
750                 goto out;
751
752         ret_val = igb_read_phy_reg_i2c(hw, offset, data);
753
754         hw->phy.ops.release(hw);
755
756 out:
757         return ret_val;
758 }
759
760 /**
761  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
762  *  @hw: pointer to the HW structure
763  *  @offset: register offset to write to
764  *  @data: data to write at register offset
765  *
766  *  Writes the data to PHY register at the offset using the serial gigabit
767  *  media independent interface.
768  **/
769 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
770                                            u16 data)
771 {
772         s32 ret_val = -E1000_ERR_PARAM;
773
774
775         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
776                 hw_dbg("PHY Address %d is out of range\n", offset);
777                 goto out;
778         }
779
780         ret_val = hw->phy.ops.acquire(hw);
781         if (ret_val)
782                 goto out;
783
784         ret_val = igb_write_phy_reg_i2c(hw, offset, data);
785
786         hw->phy.ops.release(hw);
787
788 out:
789         return ret_val;
790 }
791
792 /**
793  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
794  *  @hw: pointer to the HW structure
795  *
796  *  Retrieves the PHY address and ID for both PHY's which do and do not use
797  *  sgmi interface.
798  **/
799 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
800 {
801         struct e1000_phy_info *phy = &hw->phy;
802         s32  ret_val = 0;
803         u16 phy_id;
804         u32 ctrl_ext;
805         u32 mdic;
806
807         /* Extra read required for some PHY's on i354 */
808         if (hw->mac.type == e1000_i354)
809                 igb_get_phy_id(hw);
810
811         /* For SGMII PHYs, we try the list of possible addresses until
812          * we find one that works.  For non-SGMII PHYs
813          * (e.g. integrated copper PHYs), an address of 1 should
814          * work.  The result of this function should mean phy->phy_addr
815          * and phy->id are set correctly.
816          */
817         if (!(igb_sgmii_active_82575(hw))) {
818                 phy->addr = 1;
819                 ret_val = igb_get_phy_id(hw);
820                 goto out;
821         }
822
823         if (igb_sgmii_uses_mdio_82575(hw)) {
824                 switch (hw->mac.type) {
825                 case e1000_82575:
826                 case e1000_82576:
827                         mdic = rd32(E1000_MDIC);
828                         mdic &= E1000_MDIC_PHY_MASK;
829                         phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
830                         break;
831                 case e1000_82580:
832                 case e1000_i350:
833                 case e1000_i354:
834                 case e1000_i210:
835                 case e1000_i211:
836                         mdic = rd32(E1000_MDICNFG);
837                         mdic &= E1000_MDICNFG_PHY_MASK;
838                         phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
839                         break;
840                 default:
841                         ret_val = -E1000_ERR_PHY;
842                         goto out;
843                         break;
844                 }
845                 ret_val = igb_get_phy_id(hw);
846                 goto out;
847         }
848
849         /* Power on sgmii phy if it is disabled */
850         ctrl_ext = rd32(E1000_CTRL_EXT);
851         wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
852         wrfl();
853         msleep(300);
854
855         /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
856          * Therefore, we need to test 1-7
857          */
858         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
859                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
860                 if (ret_val == 0) {
861                         hw_dbg("Vendor ID 0x%08X read at address %u\n",
862                                phy_id, phy->addr);
863                         /* At the time of this writing, The M88 part is
864                          * the only supported SGMII PHY product.
865                          */
866                         if (phy_id == M88_VENDOR)
867                                 break;
868                 } else {
869                         hw_dbg("PHY address %u was unreadable\n", phy->addr);
870                 }
871         }
872
873         /* A valid PHY type couldn't be found. */
874         if (phy->addr == 8) {
875                 phy->addr = 0;
876                 ret_val = -E1000_ERR_PHY;
877                 goto out;
878         } else {
879                 ret_val = igb_get_phy_id(hw);
880         }
881
882         /* restore previous sfp cage power state */
883         wr32(E1000_CTRL_EXT, ctrl_ext);
884
885 out:
886         return ret_val;
887 }
888
889 /**
890  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
891  *  @hw: pointer to the HW structure
892  *
893  *  Resets the PHY using the serial gigabit media independent interface.
894  **/
895 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
896 {
897         s32 ret_val;
898
899         /* This isn't a true "hard" reset, but is the only reset
900          * available to us at this time.
901          */
902
903         hw_dbg("Soft resetting SGMII attached PHY...\n");
904
905         /* SFP documentation requires the following to configure the SPF module
906          * to work on SGMII.  No further documentation is given.
907          */
908         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
909         if (ret_val)
910                 goto out;
911
912         ret_val = igb_phy_sw_reset(hw);
913
914 out:
915         return ret_val;
916 }
917
918 /**
919  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
920  *  @hw: pointer to the HW structure
921  *  @active: true to enable LPLU, false to disable
922  *
923  *  Sets the LPLU D0 state according to the active flag.  When
924  *  activating LPLU this function also disables smart speed
925  *  and vice versa.  LPLU will not be activated unless the
926  *  device autonegotiation advertisement meets standards of
927  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
928  *  This is a function pointer entry point only called by
929  *  PHY setup routines.
930  **/
931 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
932 {
933         struct e1000_phy_info *phy = &hw->phy;
934         s32 ret_val;
935         u16 data;
936
937         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
938         if (ret_val)
939                 goto out;
940
941         if (active) {
942                 data |= IGP02E1000_PM_D0_LPLU;
943                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
944                                                  data);
945                 if (ret_val)
946                         goto out;
947
948                 /* When LPLU is enabled, we should disable SmartSpeed */
949                 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
950                                                 &data);
951                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
952                 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
953                                                  data);
954                 if (ret_val)
955                         goto out;
956         } else {
957                 data &= ~IGP02E1000_PM_D0_LPLU;
958                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
959                                                  data);
960                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
961                  * during Dx states where the power conservation is most
962                  * important.  During driver activity we should enable
963                  * SmartSpeed, so performance is maintained.
964                  */
965                 if (phy->smart_speed == e1000_smart_speed_on) {
966                         ret_val = phy->ops.read_reg(hw,
967                                         IGP01E1000_PHY_PORT_CONFIG, &data);
968                         if (ret_val)
969                                 goto out;
970
971                         data |= IGP01E1000_PSCFR_SMART_SPEED;
972                         ret_val = phy->ops.write_reg(hw,
973                                         IGP01E1000_PHY_PORT_CONFIG, data);
974                         if (ret_val)
975                                 goto out;
976                 } else if (phy->smart_speed == e1000_smart_speed_off) {
977                         ret_val = phy->ops.read_reg(hw,
978                                         IGP01E1000_PHY_PORT_CONFIG, &data);
979                         if (ret_val)
980                                 goto out;
981
982                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
983                         ret_val = phy->ops.write_reg(hw,
984                                         IGP01E1000_PHY_PORT_CONFIG, data);
985                         if (ret_val)
986                                 goto out;
987                 }
988         }
989
990 out:
991         return ret_val;
992 }
993
994 /**
995  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
996  *  @hw: pointer to the HW structure
997  *  @active: true to enable LPLU, false to disable
998  *
999  *  Sets the LPLU D0 state according to the active flag.  When
1000  *  activating LPLU this function also disables smart speed
1001  *  and vice versa.  LPLU will not be activated unless the
1002  *  device autonegotiation advertisement meets standards of
1003  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1004  *  This is a function pointer entry point only called by
1005  *  PHY setup routines.
1006  **/
1007 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1008 {
1009         struct e1000_phy_info *phy = &hw->phy;
1010         s32 ret_val = 0;
1011         u16 data;
1012
1013         data = rd32(E1000_82580_PHY_POWER_MGMT);
1014
1015         if (active) {
1016                 data |= E1000_82580_PM_D0_LPLU;
1017
1018                 /* When LPLU is enabled, we should disable SmartSpeed */
1019                 data &= ~E1000_82580_PM_SPD;
1020         } else {
1021                 data &= ~E1000_82580_PM_D0_LPLU;
1022
1023                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1024                  * during Dx states where the power conservation is most
1025                  * important.  During driver activity we should enable
1026                  * SmartSpeed, so performance is maintained.
1027                  */
1028                 if (phy->smart_speed == e1000_smart_speed_on)
1029                         data |= E1000_82580_PM_SPD;
1030                 else if (phy->smart_speed == e1000_smart_speed_off)
1031                         data &= ~E1000_82580_PM_SPD; }
1032
1033         wr32(E1000_82580_PHY_POWER_MGMT, data);
1034         return ret_val;
1035 }
1036
1037 /**
1038  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1039  *  @hw: pointer to the HW structure
1040  *  @active: boolean used to enable/disable lplu
1041  *
1042  *  Success returns 0, Failure returns 1
1043  *
1044  *  The low power link up (lplu) state is set to the power management level D3
1045  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1046  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1047  *  is used during Dx states where the power conservation is most important.
1048  *  During driver activity, SmartSpeed should be enabled so performance is
1049  *  maintained.
1050  **/
1051 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1052 {
1053         struct e1000_phy_info *phy = &hw->phy;
1054         s32 ret_val = 0;
1055         u16 data;
1056
1057         data = rd32(E1000_82580_PHY_POWER_MGMT);
1058
1059         if (!active) {
1060                 data &= ~E1000_82580_PM_D3_LPLU;
1061                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1062                  * during Dx states where the power conservation is most
1063                  * important.  During driver activity we should enable
1064                  * SmartSpeed, so performance is maintained.
1065                  */
1066                 if (phy->smart_speed == e1000_smart_speed_on)
1067                         data |= E1000_82580_PM_SPD;
1068                 else if (phy->smart_speed == e1000_smart_speed_off)
1069                         data &= ~E1000_82580_PM_SPD;
1070         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1071                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1072                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1073                 data |= E1000_82580_PM_D3_LPLU;
1074                 /* When LPLU is enabled, we should disable SmartSpeed */
1075                 data &= ~E1000_82580_PM_SPD;
1076         }
1077
1078         wr32(E1000_82580_PHY_POWER_MGMT, data);
1079         return ret_val;
1080 }
1081
1082 /**
1083  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1084  *  @hw: pointer to the HW structure
1085  *
1086  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1087  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1088  *  Return successful if access grant bit set, else clear the request for
1089  *  EEPROM access and return -E1000_ERR_NVM (-1).
1090  **/
1091 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1092 {
1093         s32 ret_val;
1094
1095         ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1096         if (ret_val)
1097                 goto out;
1098
1099         ret_val = igb_acquire_nvm(hw);
1100
1101         if (ret_val)
1102                 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1103
1104 out:
1105         return ret_val;
1106 }
1107
1108 /**
1109  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1110  *  @hw: pointer to the HW structure
1111  *
1112  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1113  *  then release the semaphores acquired.
1114  **/
1115 static void igb_release_nvm_82575(struct e1000_hw *hw)
1116 {
1117         igb_release_nvm(hw);
1118         hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1119 }
1120
1121 /**
1122  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1123  *  @hw: pointer to the HW structure
1124  *  @mask: specifies which semaphore to acquire
1125  *
1126  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1127  *  will also specify which port we're acquiring the lock for.
1128  **/
1129 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1130 {
1131         u32 swfw_sync;
1132         u32 swmask = mask;
1133         u32 fwmask = mask << 16;
1134         s32 ret_val = 0;
1135         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1136
1137         while (i < timeout) {
1138                 if (igb_get_hw_semaphore(hw)) {
1139                         ret_val = -E1000_ERR_SWFW_SYNC;
1140                         goto out;
1141                 }
1142
1143                 swfw_sync = rd32(E1000_SW_FW_SYNC);
1144                 if (!(swfw_sync & (fwmask | swmask)))
1145                         break;
1146
1147                 /* Firmware currently using resource (fwmask)
1148                  * or other software thread using resource (swmask)
1149                  */
1150                 igb_put_hw_semaphore(hw);
1151                 mdelay(5);
1152                 i++;
1153         }
1154
1155         if (i == timeout) {
1156                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1157                 ret_val = -E1000_ERR_SWFW_SYNC;
1158                 goto out;
1159         }
1160
1161         swfw_sync |= swmask;
1162         wr32(E1000_SW_FW_SYNC, swfw_sync);
1163
1164         igb_put_hw_semaphore(hw);
1165
1166 out:
1167         return ret_val;
1168 }
1169
1170 /**
1171  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1172  *  @hw: pointer to the HW structure
1173  *  @mask: specifies which semaphore to acquire
1174  *
1175  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1176  *  will also specify which port we're releasing the lock for.
1177  **/
1178 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1179 {
1180         u32 swfw_sync;
1181
1182         while (igb_get_hw_semaphore(hw) != 0);
1183         /* Empty */
1184
1185         swfw_sync = rd32(E1000_SW_FW_SYNC);
1186         swfw_sync &= ~mask;
1187         wr32(E1000_SW_FW_SYNC, swfw_sync);
1188
1189         igb_put_hw_semaphore(hw);
1190 }
1191
1192 /**
1193  *  igb_get_cfg_done_82575 - Read config done bit
1194  *  @hw: pointer to the HW structure
1195  *
1196  *  Read the management control register for the config done bit for
1197  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1198  *  to read the config done bit, so an error is *ONLY* logged and returns
1199  *  0.  If we were to return with error, EEPROM-less silicon
1200  *  would not be able to be reset or change link.
1201  **/
1202 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1203 {
1204         s32 timeout = PHY_CFG_TIMEOUT;
1205         s32 ret_val = 0;
1206         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1207
1208         if (hw->bus.func == 1)
1209                 mask = E1000_NVM_CFG_DONE_PORT_1;
1210         else if (hw->bus.func == E1000_FUNC_2)
1211                 mask = E1000_NVM_CFG_DONE_PORT_2;
1212         else if (hw->bus.func == E1000_FUNC_3)
1213                 mask = E1000_NVM_CFG_DONE_PORT_3;
1214
1215         while (timeout) {
1216                 if (rd32(E1000_EEMNGCTL) & mask)
1217                         break;
1218                 msleep(1);
1219                 timeout--;
1220         }
1221         if (!timeout)
1222                 hw_dbg("MNG configuration cycle has not completed.\n");
1223
1224         /* If EEPROM is not marked present, init the PHY manually */
1225         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1226             (hw->phy.type == e1000_phy_igp_3))
1227                 igb_phy_init_script_igp3(hw);
1228
1229         return ret_val;
1230 }
1231
1232 /**
1233  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1234  *  @hw: pointer to the HW structure
1235  *  @speed: stores the current speed
1236  *  @duplex: stores the current duplex
1237  *
1238  *  This is a wrapper function, if using the serial gigabit media independent
1239  *  interface, use PCS to retrieve the link speed and duplex information.
1240  *  Otherwise, use the generic function to get the link speed and duplex info.
1241  **/
1242 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1243                                         u16 *duplex)
1244 {
1245         s32 ret_val;
1246
1247         if (hw->phy.media_type != e1000_media_type_copper)
1248                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1249                                                                duplex);
1250         else
1251                 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1252                                                                     duplex);
1253
1254         return ret_val;
1255 }
1256
1257 /**
1258  *  igb_check_for_link_82575 - Check for link
1259  *  @hw: pointer to the HW structure
1260  *
1261  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1262  *  use the generic interface for determining link.
1263  **/
1264 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1265 {
1266         s32 ret_val;
1267         u16 speed, duplex;
1268
1269         if (hw->phy.media_type != e1000_media_type_copper) {
1270                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1271                                                              &duplex);
1272                 /* Use this flag to determine if link needs to be checked or
1273                  * not.  If  we have link clear the flag so that we do not
1274                  * continue to check for link.
1275                  */
1276                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1277
1278                 /* Configure Flow Control now that Auto-Neg has completed.
1279                  * First, we need to restore the desired flow control
1280                  * settings because we may have had to re-autoneg with a
1281                  * different link partner.
1282                  */
1283                 ret_val = igb_config_fc_after_link_up(hw);
1284                 if (ret_val)
1285                         hw_dbg("Error configuring flow control\n");
1286         } else {
1287                 ret_val = igb_check_for_copper_link(hw);
1288         }
1289
1290         return ret_val;
1291 }
1292
1293 /**
1294  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1295  *  @hw: pointer to the HW structure
1296  **/
1297 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1298 {
1299         u32 reg;
1300
1301
1302         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1303             !igb_sgmii_active_82575(hw))
1304                 return;
1305
1306         /* Enable PCS to turn on link */
1307         reg = rd32(E1000_PCS_CFG0);
1308         reg |= E1000_PCS_CFG_PCS_EN;
1309         wr32(E1000_PCS_CFG0, reg);
1310
1311         /* Power up the laser */
1312         reg = rd32(E1000_CTRL_EXT);
1313         reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1314         wr32(E1000_CTRL_EXT, reg);
1315
1316         /* flush the write to verify completion */
1317         wrfl();
1318         msleep(1);
1319 }
1320
1321 /**
1322  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1323  *  @hw: pointer to the HW structure
1324  *  @speed: stores the current speed
1325  *  @duplex: stores the current duplex
1326  *
1327  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1328  *  duplex, then store the values in the pointers provided.
1329  **/
1330 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1331                                                 u16 *duplex)
1332 {
1333         struct e1000_mac_info *mac = &hw->mac;
1334         u32 pcs, status;
1335
1336         /* Set up defaults for the return values of this function */
1337         mac->serdes_has_link = false;
1338         *speed = 0;
1339         *duplex = 0;
1340
1341         /* Read the PCS Status register for link state. For non-copper mode,
1342          * the status register is not accurate. The PCS status register is
1343          * used instead.
1344          */
1345         pcs = rd32(E1000_PCS_LSTAT);
1346
1347         /* The link up bit determines when link is up on autoneg. The sync ok
1348          * gets set once both sides sync up and agree upon link. Stable link
1349          * can be determined by checking for both link up and link sync ok
1350          */
1351         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1352                 mac->serdes_has_link = true;
1353
1354                 /* Detect and store PCS speed */
1355                 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1356                         *speed = SPEED_1000;
1357                 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1358                         *speed = SPEED_100;
1359                 else
1360                         *speed = SPEED_10;
1361
1362                 /* Detect and store PCS duplex */
1363                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1364                         *duplex = FULL_DUPLEX;
1365                 else
1366                         *duplex = HALF_DUPLEX;
1367
1368         /* Check if it is an I354 2.5Gb backplane connection. */
1369                 if (mac->type == e1000_i354) {
1370                         status = rd32(E1000_STATUS);
1371                         if ((status & E1000_STATUS_2P5_SKU) &&
1372                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
1373                                 *speed = SPEED_2500;
1374                                 *duplex = FULL_DUPLEX;
1375                                 hw_dbg("2500 Mbs, ");
1376                                 hw_dbg("Full Duplex\n");
1377                         }
1378                 }
1379
1380         }
1381
1382         return 0;
1383 }
1384
1385 /**
1386  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1387  *  @hw: pointer to the HW structure
1388  *
1389  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1390  *  when management pass thru is not enabled.
1391  **/
1392 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1393 {
1394         u32 reg;
1395
1396         if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1397             igb_sgmii_active_82575(hw))
1398                 return;
1399
1400         if (!igb_enable_mng_pass_thru(hw)) {
1401                 /* Disable PCS to turn off link */
1402                 reg = rd32(E1000_PCS_CFG0);
1403                 reg &= ~E1000_PCS_CFG_PCS_EN;
1404                 wr32(E1000_PCS_CFG0, reg);
1405
1406                 /* shutdown the laser */
1407                 reg = rd32(E1000_CTRL_EXT);
1408                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1409                 wr32(E1000_CTRL_EXT, reg);
1410
1411                 /* flush the write to verify completion */
1412                 wrfl();
1413                 msleep(1);
1414         }
1415 }
1416
1417 /**
1418  *  igb_reset_hw_82575 - Reset hardware
1419  *  @hw: pointer to the HW structure
1420  *
1421  *  This resets the hardware into a known state.  This is a
1422  *  function pointer entry point called by the api module.
1423  **/
1424 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1425 {
1426         u32 ctrl;
1427         s32 ret_val;
1428
1429         /* Prevent the PCI-E bus from sticking if there is no TLP connection
1430          * on the last TLP read/write transaction when MAC is reset.
1431          */
1432         ret_val = igb_disable_pcie_master(hw);
1433         if (ret_val)
1434                 hw_dbg("PCI-E Master disable polling has failed.\n");
1435
1436         /* set the completion timeout for interface */
1437         ret_val = igb_set_pcie_completion_timeout(hw);
1438         if (ret_val)
1439                 hw_dbg("PCI-E Set completion timeout has failed.\n");
1440
1441         hw_dbg("Masking off all interrupts\n");
1442         wr32(E1000_IMC, 0xffffffff);
1443
1444         wr32(E1000_RCTL, 0);
1445         wr32(E1000_TCTL, E1000_TCTL_PSP);
1446         wrfl();
1447
1448         msleep(10);
1449
1450         ctrl = rd32(E1000_CTRL);
1451
1452         hw_dbg("Issuing a global reset to MAC\n");
1453         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1454
1455         ret_val = igb_get_auto_rd_done(hw);
1456         if (ret_val) {
1457                 /* When auto config read does not complete, do not
1458                  * return with an error. This can happen in situations
1459                  * where there is no eeprom and prevents getting link.
1460                  */
1461                 hw_dbg("Auto Read Done did not complete\n");
1462         }
1463
1464         /* If EEPROM is not present, run manual init scripts */
1465         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1466                 igb_reset_init_script_82575(hw);
1467
1468         /* Clear any pending interrupt events. */
1469         wr32(E1000_IMC, 0xffffffff);
1470         rd32(E1000_ICR);
1471
1472         /* Install any alternate MAC address into RAR0 */
1473         ret_val = igb_check_alt_mac_addr(hw);
1474
1475         return ret_val;
1476 }
1477
1478 /**
1479  *  igb_init_hw_82575 - Initialize hardware
1480  *  @hw: pointer to the HW structure
1481  *
1482  *  This inits the hardware readying it for operation.
1483  **/
1484 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1485 {
1486         struct e1000_mac_info *mac = &hw->mac;
1487         s32 ret_val;
1488         u16 i, rar_count = mac->rar_entry_count;
1489
1490         /* Initialize identification LED */
1491         ret_val = igb_id_led_init(hw);
1492         if (ret_val) {
1493                 hw_dbg("Error initializing identification LED\n");
1494                 /* This is not fatal and we should not stop init due to this */
1495         }
1496
1497         /* Disabling VLAN filtering */
1498         hw_dbg("Initializing the IEEE VLAN\n");
1499         if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1500                 igb_clear_vfta_i350(hw);
1501         else
1502                 igb_clear_vfta(hw);
1503
1504         /* Setup the receive address */
1505         igb_init_rx_addrs(hw, rar_count);
1506
1507         /* Zero out the Multicast HASH table */
1508         hw_dbg("Zeroing the MTA\n");
1509         for (i = 0; i < mac->mta_reg_count; i++)
1510                 array_wr32(E1000_MTA, i, 0);
1511
1512         /* Zero out the Unicast HASH table */
1513         hw_dbg("Zeroing the UTA\n");
1514         for (i = 0; i < mac->uta_reg_count; i++)
1515                 array_wr32(E1000_UTA, i, 0);
1516
1517         /* Setup link and flow control */
1518         ret_val = igb_setup_link(hw);
1519
1520         /* Clear all of the statistics registers (clear on read).  It is
1521          * important that we do this after we have tried to establish link
1522          * because the symbol error count will increment wildly if there
1523          * is no link.
1524          */
1525         igb_clear_hw_cntrs_82575(hw);
1526         return ret_val;
1527 }
1528
1529 /**
1530  *  igb_setup_copper_link_82575 - Configure copper link settings
1531  *  @hw: pointer to the HW structure
1532  *
1533  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1534  *  for link, once link is established calls to configure collision distance
1535  *  and flow control are called.
1536  **/
1537 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1538 {
1539         u32 ctrl;
1540         s32  ret_val;
1541         u32 phpm_reg;
1542
1543         ctrl = rd32(E1000_CTRL);
1544         ctrl |= E1000_CTRL_SLU;
1545         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1546         wr32(E1000_CTRL, ctrl);
1547
1548         /* Clear Go Link Disconnect bit on supported devices */
1549         switch (hw->mac.type) {
1550         case e1000_82580:
1551         case e1000_i350:
1552         case e1000_i210:
1553         case e1000_i211:
1554                 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1555                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1556                 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1557                 break;
1558         default:
1559                 break;
1560         }
1561
1562         ret_val = igb_setup_serdes_link_82575(hw);
1563         if (ret_val)
1564                 goto out;
1565
1566         if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1567                 /* allow time for SFP cage time to power up phy */
1568                 msleep(300);
1569
1570                 ret_val = hw->phy.ops.reset(hw);
1571                 if (ret_val) {
1572                         hw_dbg("Error resetting the PHY.\n");
1573                         goto out;
1574                 }
1575         }
1576         switch (hw->phy.type) {
1577         case e1000_phy_i210:
1578         case e1000_phy_m88:
1579                 switch (hw->phy.id) {
1580                 case I347AT4_E_PHY_ID:
1581                 case M88E1112_E_PHY_ID:
1582                 case M88E1543_E_PHY_ID:
1583                 case I210_I_PHY_ID:
1584                         ret_val = igb_copper_link_setup_m88_gen2(hw);
1585                         break;
1586                 default:
1587                         ret_val = igb_copper_link_setup_m88(hw);
1588                         break;
1589                 }
1590                 break;
1591         case e1000_phy_igp_3:
1592                 ret_val = igb_copper_link_setup_igp(hw);
1593                 break;
1594         case e1000_phy_82580:
1595                 ret_val = igb_copper_link_setup_82580(hw);
1596                 break;
1597         default:
1598                 ret_val = -E1000_ERR_PHY;
1599                 break;
1600         }
1601
1602         if (ret_val)
1603                 goto out;
1604
1605         ret_val = igb_setup_copper_link(hw);
1606 out:
1607         return ret_val;
1608 }
1609
1610 /**
1611  *  igb_setup_serdes_link_82575 - Setup link for serdes
1612  *  @hw: pointer to the HW structure
1613  *
1614  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1615  *  used on copper connections where the serialized gigabit media independent
1616  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1617  *  for auto-negotiation or forces speed/duplex.
1618  **/
1619 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1620 {
1621         u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1622         bool pcs_autoneg;
1623         s32 ret_val = E1000_SUCCESS;
1624         u16 data;
1625
1626         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1627             !igb_sgmii_active_82575(hw))
1628                 return ret_val;
1629
1630
1631         /* On the 82575, SerDes loopback mode persists until it is
1632          * explicitly turned off or a power cycle is performed.  A read to
1633          * the register does not indicate its status.  Therefore, we ensure
1634          * loopback mode is disabled during initialization.
1635          */
1636         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1637
1638         /* power on the sfp cage if present and turn on I2C */
1639         ctrl_ext = rd32(E1000_CTRL_EXT);
1640         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1641         ctrl_ext |= E1000_CTRL_I2C_ENA;
1642         wr32(E1000_CTRL_EXT, ctrl_ext);
1643
1644         ctrl_reg = rd32(E1000_CTRL);
1645         ctrl_reg |= E1000_CTRL_SLU;
1646
1647         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1648                 /* set both sw defined pins */
1649                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1650
1651                 /* Set switch control to serdes energy detect */
1652                 reg = rd32(E1000_CONNSW);
1653                 reg |= E1000_CONNSW_ENRGSRC;
1654                 wr32(E1000_CONNSW, reg);
1655         }
1656
1657         reg = rd32(E1000_PCS_LCTL);
1658
1659         /* default pcs_autoneg to the same setting as mac autoneg */
1660         pcs_autoneg = hw->mac.autoneg;
1661
1662         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1663         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1664                 /* sgmii mode lets the phy handle forcing speed/duplex */
1665                 pcs_autoneg = true;
1666                 /* autoneg time out should be disabled for SGMII mode */
1667                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1668                 break;
1669         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1670                 /* disable PCS autoneg and support parallel detect only */
1671                 pcs_autoneg = false;
1672         default:
1673                 if (hw->mac.type == e1000_82575 ||
1674                     hw->mac.type == e1000_82576) {
1675                         ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1676                         if (ret_val) {
1677                                 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1678                                 return ret_val;
1679                         }
1680
1681                         if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1682                                 pcs_autoneg = false;
1683                 }
1684
1685                 /* non-SGMII modes only supports a speed of 1000/Full for the
1686                  * link so it is best to just force the MAC and let the pcs
1687                  * link either autoneg or be forced to 1000/Full
1688                  */
1689                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1690                             E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1691
1692                 /* set speed of 1000/Full if speed/duplex is forced */
1693                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1694                 break;
1695         }
1696
1697         wr32(E1000_CTRL, ctrl_reg);
1698
1699         /* New SerDes mode allows for forcing speed or autonegotiating speed
1700          * at 1gb. Autoneg should be default set by most drivers. This is the
1701          * mode that will be compatible with older link partners and switches.
1702          * However, both are supported by the hardware and some drivers/tools.
1703          */
1704         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1705                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1706
1707         if (pcs_autoneg) {
1708                 /* Set PCS register for autoneg */
1709                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1710                        E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1711
1712                 /* Disable force flow control for autoneg */
1713                 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1714
1715                 /* Configure flow control advertisement for autoneg */
1716                 anadv_reg = rd32(E1000_PCS_ANADV);
1717                 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1718                 switch (hw->fc.requested_mode) {
1719                 case e1000_fc_full:
1720                 case e1000_fc_rx_pause:
1721                         anadv_reg |= E1000_TXCW_ASM_DIR;
1722                         anadv_reg |= E1000_TXCW_PAUSE;
1723                         break;
1724                 case e1000_fc_tx_pause:
1725                         anadv_reg |= E1000_TXCW_ASM_DIR;
1726                         break;
1727                 default:
1728                         break;
1729                 }
1730                 wr32(E1000_PCS_ANADV, anadv_reg);
1731
1732                 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1733         } else {
1734                 /* Set PCS register for forced link */
1735                 reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1736
1737                 /* Force flow control for forced link */
1738                 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1739
1740                 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1741         }
1742
1743         wr32(E1000_PCS_LCTL, reg);
1744
1745         if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1746                 igb_force_mac_fc(hw);
1747
1748         return ret_val;
1749 }
1750
1751 /**
1752  *  igb_sgmii_active_82575 - Return sgmii state
1753  *  @hw: pointer to the HW structure
1754  *
1755  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1756  *  which can be enabled for use in the embedded applications.  Simply
1757  *  return the current state of the sgmii interface.
1758  **/
1759 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1760 {
1761         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1762         return dev_spec->sgmii_active;
1763 }
1764
1765 /**
1766  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1767  *  @hw: pointer to the HW structure
1768  *
1769  *  Inits recommended HW defaults after a reset when there is no EEPROM
1770  *  detected. This is only for the 82575.
1771  **/
1772 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1773 {
1774         if (hw->mac.type == e1000_82575) {
1775                 hw_dbg("Running reset init script for 82575\n");
1776                 /* SerDes configuration via SERDESCTRL */
1777                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1778                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1779                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1780                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1781
1782                 /* CCM configuration via CCMCTL register */
1783                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1784                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1785
1786                 /* PCIe lanes configuration */
1787                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1788                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1789                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1790                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1791
1792                 /* PCIe PLL Configuration */
1793                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1794                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1795                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1796         }
1797
1798         return 0;
1799 }
1800
1801 /**
1802  *  igb_read_mac_addr_82575 - Read device MAC address
1803  *  @hw: pointer to the HW structure
1804  **/
1805 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1806 {
1807         s32 ret_val = 0;
1808
1809         /* If there's an alternate MAC address place it in RAR0
1810          * so that it will override the Si installed default perm
1811          * address.
1812          */
1813         ret_val = igb_check_alt_mac_addr(hw);
1814         if (ret_val)
1815                 goto out;
1816
1817         ret_val = igb_read_mac_addr(hw);
1818
1819 out:
1820         return ret_val;
1821 }
1822
1823 /**
1824  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1825  * @hw: pointer to the HW structure
1826  *
1827  * In the case of a PHY power down to save power, or to turn off link during a
1828  * driver unload, or wake on lan is not enabled, remove the link.
1829  **/
1830 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1831 {
1832         /* If the management interface is not enabled, then power down */
1833         if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1834                 igb_power_down_phy_copper(hw);
1835 }
1836
1837 /**
1838  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1839  *  @hw: pointer to the HW structure
1840  *
1841  *  Clears the hardware counters by reading the counter registers.
1842  **/
1843 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1844 {
1845         igb_clear_hw_cntrs_base(hw);
1846
1847         rd32(E1000_PRC64);
1848         rd32(E1000_PRC127);
1849         rd32(E1000_PRC255);
1850         rd32(E1000_PRC511);
1851         rd32(E1000_PRC1023);
1852         rd32(E1000_PRC1522);
1853         rd32(E1000_PTC64);
1854         rd32(E1000_PTC127);
1855         rd32(E1000_PTC255);
1856         rd32(E1000_PTC511);
1857         rd32(E1000_PTC1023);
1858         rd32(E1000_PTC1522);
1859
1860         rd32(E1000_ALGNERRC);
1861         rd32(E1000_RXERRC);
1862         rd32(E1000_TNCRS);
1863         rd32(E1000_CEXTERR);
1864         rd32(E1000_TSCTC);
1865         rd32(E1000_TSCTFC);
1866
1867         rd32(E1000_MGTPRC);
1868         rd32(E1000_MGTPDC);
1869         rd32(E1000_MGTPTC);
1870
1871         rd32(E1000_IAC);
1872         rd32(E1000_ICRXOC);
1873
1874         rd32(E1000_ICRXPTC);
1875         rd32(E1000_ICRXATC);
1876         rd32(E1000_ICTXPTC);
1877         rd32(E1000_ICTXATC);
1878         rd32(E1000_ICTXQEC);
1879         rd32(E1000_ICTXQMTC);
1880         rd32(E1000_ICRXDMTC);
1881
1882         rd32(E1000_CBTMPC);
1883         rd32(E1000_HTDPMC);
1884         rd32(E1000_CBRMPC);
1885         rd32(E1000_RPTHC);
1886         rd32(E1000_HGPTC);
1887         rd32(E1000_HTCBDPC);
1888         rd32(E1000_HGORCL);
1889         rd32(E1000_HGORCH);
1890         rd32(E1000_HGOTCL);
1891         rd32(E1000_HGOTCH);
1892         rd32(E1000_LENERRS);
1893
1894         /* This register should not be read in copper configurations */
1895         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1896             igb_sgmii_active_82575(hw))
1897                 rd32(E1000_SCVPC);
1898 }
1899
1900 /**
1901  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1902  *  @hw: pointer to the HW structure
1903  *
1904  *  After rx enable if managability is enabled then there is likely some
1905  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1906  *  function clears the fifos and flushes any packets that came in as rx was
1907  *  being enabled.
1908  **/
1909 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1910 {
1911         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1912         int i, ms_wait;
1913
1914         if (hw->mac.type != e1000_82575 ||
1915             !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1916                 return;
1917
1918         /* Disable all RX queues */
1919         for (i = 0; i < 4; i++) {
1920                 rxdctl[i] = rd32(E1000_RXDCTL(i));
1921                 wr32(E1000_RXDCTL(i),
1922                      rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1923         }
1924         /* Poll all queues to verify they have shut down */
1925         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1926                 msleep(1);
1927                 rx_enabled = 0;
1928                 for (i = 0; i < 4; i++)
1929                         rx_enabled |= rd32(E1000_RXDCTL(i));
1930                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1931                         break;
1932         }
1933
1934         if (ms_wait == 10)
1935                 hw_dbg("Queue disable timed out after 10ms\n");
1936
1937         /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1938          * incoming packets are rejected.  Set enable and wait 2ms so that
1939          * any packet that was coming in as RCTL.EN was set is flushed
1940          */
1941         rfctl = rd32(E1000_RFCTL);
1942         wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1943
1944         rlpml = rd32(E1000_RLPML);
1945         wr32(E1000_RLPML, 0);
1946
1947         rctl = rd32(E1000_RCTL);
1948         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1949         temp_rctl |= E1000_RCTL_LPE;
1950
1951         wr32(E1000_RCTL, temp_rctl);
1952         wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1953         wrfl();
1954         msleep(2);
1955
1956         /* Enable RX queues that were previously enabled and restore our
1957          * previous state
1958          */
1959         for (i = 0; i < 4; i++)
1960                 wr32(E1000_RXDCTL(i), rxdctl[i]);
1961         wr32(E1000_RCTL, rctl);
1962         wrfl();
1963
1964         wr32(E1000_RLPML, rlpml);
1965         wr32(E1000_RFCTL, rfctl);
1966
1967         /* Flush receive errors generated by workaround */
1968         rd32(E1000_ROC);
1969         rd32(E1000_RNBC);
1970         rd32(E1000_MPC);
1971 }
1972
1973 /**
1974  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1975  *  @hw: pointer to the HW structure
1976  *
1977  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1978  *  however the hardware default for these parts is 500us to 1ms which is less
1979  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1980  *  increase the value to either 10ms to 200ms for capability version 1 config,
1981  *  or 16ms to 55ms for version 2.
1982  **/
1983 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1984 {
1985         u32 gcr = rd32(E1000_GCR);
1986         s32 ret_val = 0;
1987         u16 pcie_devctl2;
1988
1989         /* only take action if timeout value is defaulted to 0 */
1990         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1991                 goto out;
1992
1993         /* if capabilities version is type 1 we can write the
1994          * timeout of 10ms to 200ms through the GCR register
1995          */
1996         if (!(gcr & E1000_GCR_CAP_VER2)) {
1997                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1998                 goto out;
1999         }
2000
2001         /* for version 2 capabilities we need to write the config space
2002          * directly in order to set the completion timeout value for
2003          * 16ms to 55ms
2004          */
2005         ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2006                                         &pcie_devctl2);
2007         if (ret_val)
2008                 goto out;
2009
2010         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2011
2012         ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2013                                          &pcie_devctl2);
2014 out:
2015         /* disable completion timeout resend */
2016         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2017
2018         wr32(E1000_GCR, gcr);
2019         return ret_val;
2020 }
2021
2022 /**
2023  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2024  *  @hw: pointer to the hardware struct
2025  *  @enable: state to enter, either enabled or disabled
2026  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2027  *
2028  *  enables/disables L2 switch anti-spoofing functionality.
2029  **/
2030 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2031 {
2032         u32 reg_val, reg_offset;
2033
2034         switch (hw->mac.type) {
2035         case e1000_82576:
2036                 reg_offset = E1000_DTXSWC;
2037                 break;
2038         case e1000_i350:
2039         case e1000_i354:
2040                 reg_offset = E1000_TXSWC;
2041                 break;
2042         default:
2043                 return;
2044         }
2045
2046         reg_val = rd32(reg_offset);
2047         if (enable) {
2048                 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2049                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2050                 /* The PF can spoof - it has to in order to
2051                  * support emulation mode NICs
2052                  */
2053                 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2054         } else {
2055                 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2056                              E1000_DTXSWC_VLAN_SPOOF_MASK);
2057         }
2058         wr32(reg_offset, reg_val);
2059 }
2060
2061 /**
2062  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2063  *  @hw: pointer to the hardware struct
2064  *  @enable: state to enter, either enabled or disabled
2065  *
2066  *  enables/disables L2 switch loopback functionality.
2067  **/
2068 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2069 {
2070         u32 dtxswc;
2071
2072         switch (hw->mac.type) {
2073         case e1000_82576:
2074                 dtxswc = rd32(E1000_DTXSWC);
2075                 if (enable)
2076                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2077                 else
2078                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2079                 wr32(E1000_DTXSWC, dtxswc);
2080                 break;
2081         case e1000_i354:
2082         case e1000_i350:
2083                 dtxswc = rd32(E1000_TXSWC);
2084                 if (enable)
2085                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2086                 else
2087                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2088                 wr32(E1000_TXSWC, dtxswc);
2089                 break;
2090         default:
2091                 /* Currently no other hardware supports loopback */
2092                 break;
2093         }
2094
2095 }
2096
2097 /**
2098  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2099  *  @hw: pointer to the hardware struct
2100  *  @enable: state to enter, either enabled or disabled
2101  *
2102  *  enables/disables replication of packets across multiple pools.
2103  **/
2104 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2105 {
2106         u32 vt_ctl = rd32(E1000_VT_CTL);
2107
2108         if (enable)
2109                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2110         else
2111                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2112
2113         wr32(E1000_VT_CTL, vt_ctl);
2114 }
2115
2116 /**
2117  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2118  *  @hw: pointer to the HW structure
2119  *  @offset: register offset to be read
2120  *  @data: pointer to the read data
2121  *
2122  *  Reads the MDI control register in the PHY at offset and stores the
2123  *  information read to data.
2124  **/
2125 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2126 {
2127         s32 ret_val;
2128
2129         ret_val = hw->phy.ops.acquire(hw);
2130         if (ret_val)
2131                 goto out;
2132
2133         ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2134
2135         hw->phy.ops.release(hw);
2136
2137 out:
2138         return ret_val;
2139 }
2140
2141 /**
2142  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2143  *  @hw: pointer to the HW structure
2144  *  @offset: register offset to write to
2145  *  @data: data to write to register at offset
2146  *
2147  *  Writes data to MDI control register in the PHY at offset.
2148  **/
2149 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2150 {
2151         s32 ret_val;
2152
2153
2154         ret_val = hw->phy.ops.acquire(hw);
2155         if (ret_val)
2156                 goto out;
2157
2158         ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2159
2160         hw->phy.ops.release(hw);
2161
2162 out:
2163         return ret_val;
2164 }
2165
2166 /**
2167  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2168  *  @hw: pointer to the HW structure
2169  *
2170  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2171  *  the values found in the EEPROM.  This addresses an issue in which these
2172  *  bits are not restored from EEPROM after reset.
2173  **/
2174 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2175 {
2176         s32 ret_val = 0;
2177         u32 mdicnfg;
2178         u16 nvm_data = 0;
2179
2180         if (hw->mac.type != e1000_82580)
2181                 goto out;
2182         if (!igb_sgmii_active_82575(hw))
2183                 goto out;
2184
2185         ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2186                                    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2187                                    &nvm_data);
2188         if (ret_val) {
2189                 hw_dbg("NVM Read Error\n");
2190                 goto out;
2191         }
2192
2193         mdicnfg = rd32(E1000_MDICNFG);
2194         if (nvm_data & NVM_WORD24_EXT_MDIO)
2195                 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2196         if (nvm_data & NVM_WORD24_COM_MDIO)
2197                 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2198         wr32(E1000_MDICNFG, mdicnfg);
2199 out:
2200         return ret_val;
2201 }
2202
2203 /**
2204  *  igb_reset_hw_82580 - Reset hardware
2205  *  @hw: pointer to the HW structure
2206  *
2207  *  This resets function or entire device (all ports, etc.)
2208  *  to a known state.
2209  **/
2210 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2211 {
2212         s32 ret_val = 0;
2213         /* BH SW mailbox bit in SW_FW_SYNC */
2214         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2215         u32 ctrl;
2216         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2217
2218         hw->dev_spec._82575.global_device_reset = false;
2219
2220         /* due to hw errata, global device reset doesn't always
2221          * work on 82580
2222          */
2223         if (hw->mac.type == e1000_82580)
2224                 global_device_reset = false;
2225
2226         /* Get current control state. */
2227         ctrl = rd32(E1000_CTRL);
2228
2229         /* Prevent the PCI-E bus from sticking if there is no TLP connection
2230          * on the last TLP read/write transaction when MAC is reset.
2231          */
2232         ret_val = igb_disable_pcie_master(hw);
2233         if (ret_val)
2234                 hw_dbg("PCI-E Master disable polling has failed.\n");
2235
2236         hw_dbg("Masking off all interrupts\n");
2237         wr32(E1000_IMC, 0xffffffff);
2238         wr32(E1000_RCTL, 0);
2239         wr32(E1000_TCTL, E1000_TCTL_PSP);
2240         wrfl();
2241
2242         msleep(10);
2243
2244         /* Determine whether or not a global dev reset is requested */
2245         if (global_device_reset &&
2246                 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2247                         global_device_reset = false;
2248
2249         if (global_device_reset &&
2250                 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2251                 ctrl |= E1000_CTRL_DEV_RST;
2252         else
2253                 ctrl |= E1000_CTRL_RST;
2254
2255         wr32(E1000_CTRL, ctrl);
2256         wrfl();
2257
2258         /* Add delay to insure DEV_RST has time to complete */
2259         if (global_device_reset)
2260                 msleep(5);
2261
2262         ret_val = igb_get_auto_rd_done(hw);
2263         if (ret_val) {
2264                 /* When auto config read does not complete, do not
2265                  * return with an error. This can happen in situations
2266                  * where there is no eeprom and prevents getting link.
2267                  */
2268                 hw_dbg("Auto Read Done did not complete\n");
2269         }
2270
2271         /* clear global device reset status bit */
2272         wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2273
2274         /* Clear any pending interrupt events. */
2275         wr32(E1000_IMC, 0xffffffff);
2276         rd32(E1000_ICR);
2277
2278         ret_val = igb_reset_mdicnfg_82580(hw);
2279         if (ret_val)
2280                 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2281
2282         /* Install any alternate MAC address into RAR0 */
2283         ret_val = igb_check_alt_mac_addr(hw);
2284
2285         /* Release semaphore */
2286         if (global_device_reset)
2287                 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2288
2289         return ret_val;
2290 }
2291
2292 /**
2293  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2294  *  @data: data received by reading RXPBS register
2295  *
2296  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2297  *  This function converts the retrieved value into the correct table value
2298  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2299  *  0x0 36  72 144   1   2   4   8  16
2300  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2301  */
2302 u16 igb_rxpbs_adjust_82580(u32 data)
2303 {
2304         u16 ret_val = 0;
2305
2306         if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2307                 ret_val = e1000_82580_rxpbs_table[data];
2308
2309         return ret_val;
2310 }
2311
2312 /**
2313  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2314  *  checksum
2315  *  @hw: pointer to the HW structure
2316  *  @offset: offset in words of the checksum protected region
2317  *
2318  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2319  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2320  **/
2321 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2322                                                  u16 offset)
2323 {
2324         s32 ret_val = 0;
2325         u16 checksum = 0;
2326         u16 i, nvm_data;
2327
2328         for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2329                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2330                 if (ret_val) {
2331                         hw_dbg("NVM Read Error\n");
2332                         goto out;
2333                 }
2334                 checksum += nvm_data;
2335         }
2336
2337         if (checksum != (u16) NVM_SUM) {
2338                 hw_dbg("NVM Checksum Invalid\n");
2339                 ret_val = -E1000_ERR_NVM;
2340                 goto out;
2341         }
2342
2343 out:
2344         return ret_val;
2345 }
2346
2347 /**
2348  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2349  *  checksum
2350  *  @hw: pointer to the HW structure
2351  *  @offset: offset in words of the checksum protected region
2352  *
2353  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2354  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2355  *  value to the EEPROM.
2356  **/
2357 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2358 {
2359         s32 ret_val;
2360         u16 checksum = 0;
2361         u16 i, nvm_data;
2362
2363         for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2364                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2365                 if (ret_val) {
2366                         hw_dbg("NVM Read Error while updating checksum.\n");
2367                         goto out;
2368                 }
2369                 checksum += nvm_data;
2370         }
2371         checksum = (u16) NVM_SUM - checksum;
2372         ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2373                                 &checksum);
2374         if (ret_val)
2375                 hw_dbg("NVM Write Error while updating checksum.\n");
2376
2377 out:
2378         return ret_val;
2379 }
2380
2381 /**
2382  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2383  *  @hw: pointer to the HW structure
2384  *
2385  *  Calculates the EEPROM section checksum by reading/adding each word of
2386  *  the EEPROM and then verifies that the sum of the EEPROM is
2387  *  equal to 0xBABA.
2388  **/
2389 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2390 {
2391         s32 ret_val = 0;
2392         u16 eeprom_regions_count = 1;
2393         u16 j, nvm_data;
2394         u16 nvm_offset;
2395
2396         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2397         if (ret_val) {
2398                 hw_dbg("NVM Read Error\n");
2399                 goto out;
2400         }
2401
2402         if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2403                 /* if checksums compatibility bit is set validate checksums
2404                  * for all 4 ports.
2405                  */
2406                 eeprom_regions_count = 4;
2407         }
2408
2409         for (j = 0; j < eeprom_regions_count; j++) {
2410                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2411                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2412                                                                 nvm_offset);
2413                 if (ret_val != 0)
2414                         goto out;
2415         }
2416
2417 out:
2418         return ret_val;
2419 }
2420
2421 /**
2422  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2423  *  @hw: pointer to the HW structure
2424  *
2425  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2426  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2427  *  checksum and writes the value to the EEPROM.
2428  **/
2429 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2430 {
2431         s32 ret_val;
2432         u16 j, nvm_data;
2433         u16 nvm_offset;
2434
2435         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2436         if (ret_val) {
2437                 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2438                 goto out;
2439         }
2440
2441         if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2442                 /* set compatibility bit to validate checksums appropriately */
2443                 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2444                 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2445                                         &nvm_data);
2446                 if (ret_val) {
2447                         hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2448                         goto out;
2449                 }
2450         }
2451
2452         for (j = 0; j < 4; j++) {
2453                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2454                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2455                 if (ret_val)
2456                         goto out;
2457         }
2458
2459 out:
2460         return ret_val;
2461 }
2462
2463 /**
2464  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2465  *  @hw: pointer to the HW structure
2466  *
2467  *  Calculates the EEPROM section checksum by reading/adding each word of
2468  *  the EEPROM and then verifies that the sum of the EEPROM is
2469  *  equal to 0xBABA.
2470  **/
2471 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2472 {
2473         s32 ret_val = 0;
2474         u16 j;
2475         u16 nvm_offset;
2476
2477         for (j = 0; j < 4; j++) {
2478                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2479                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2480                                                                 nvm_offset);
2481                 if (ret_val != 0)
2482                         goto out;
2483         }
2484
2485 out:
2486         return ret_val;
2487 }
2488
2489 /**
2490  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2491  *  @hw: pointer to the HW structure
2492  *
2493  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2494  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2495  *  checksum and writes the value to the EEPROM.
2496  **/
2497 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2498 {
2499         s32 ret_val = 0;
2500         u16 j;
2501         u16 nvm_offset;
2502
2503         for (j = 0; j < 4; j++) {
2504                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2505                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2506                 if (ret_val != 0)
2507                         goto out;
2508         }
2509
2510 out:
2511         return ret_val;
2512 }
2513
2514 /**
2515  *  __igb_access_emi_reg - Read/write EMI register
2516  *  @hw: pointer to the HW structure
2517  *  @addr: EMI address to program
2518  *  @data: pointer to value to read/write from/to the EMI address
2519  *  @read: boolean flag to indicate read or write
2520  **/
2521 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2522                                   u16 *data, bool read)
2523 {
2524         s32 ret_val = E1000_SUCCESS;
2525
2526         ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2527         if (ret_val)
2528                 return ret_val;
2529
2530         if (read)
2531                 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2532         else
2533                 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2534
2535         return ret_val;
2536 }
2537
2538 /**
2539  *  igb_read_emi_reg - Read Extended Management Interface register
2540  *  @hw: pointer to the HW structure
2541  *  @addr: EMI address to program
2542  *  @data: value to be read from the EMI address
2543  **/
2544 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2545 {
2546         return __igb_access_emi_reg(hw, addr, data, true);
2547 }
2548
2549 /**
2550  *  igb_set_eee_i350 - Enable/disable EEE support
2551  *  @hw: pointer to the HW structure
2552  *
2553  *  Enable/disable EEE based on setting in dev_spec structure.
2554  *
2555  **/
2556 s32 igb_set_eee_i350(struct e1000_hw *hw)
2557 {
2558         s32 ret_val = 0;
2559         u32 ipcnfg, eeer;
2560
2561         if ((hw->mac.type < e1000_i350) ||
2562             (hw->phy.media_type != e1000_media_type_copper))
2563                 goto out;
2564         ipcnfg = rd32(E1000_IPCNFG);
2565         eeer = rd32(E1000_EEER);
2566
2567         /* enable or disable per user setting */
2568         if (!(hw->dev_spec._82575.eee_disable)) {
2569                 u32 eee_su = rd32(E1000_EEE_SU);
2570
2571                 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2572                 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2573                         E1000_EEER_LPI_FC);
2574
2575                 /* This bit should not be set in normal operation. */
2576                 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2577                         hw_dbg("LPI Clock Stop Bit should not be set!\n");
2578
2579         } else {
2580                 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2581                         E1000_IPCNFG_EEE_100M_AN);
2582                 eeer &= ~(E1000_EEER_TX_LPI_EN |
2583                         E1000_EEER_RX_LPI_EN |
2584                         E1000_EEER_LPI_FC);
2585         }
2586         wr32(E1000_IPCNFG, ipcnfg);
2587         wr32(E1000_EEER, eeer);
2588         rd32(E1000_IPCNFG);
2589         rd32(E1000_EEER);
2590 out:
2591
2592         return ret_val;
2593 }
2594
2595 /**
2596  *  igb_set_eee_i354 - Enable/disable EEE support
2597  *  @hw: pointer to the HW structure
2598  *
2599  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2600  *
2601  **/
2602 s32 igb_set_eee_i354(struct e1000_hw *hw)
2603 {
2604         struct e1000_phy_info *phy = &hw->phy;
2605         s32 ret_val = 0;
2606         u16 phy_data;
2607
2608         if ((hw->phy.media_type != e1000_media_type_copper) ||
2609             (phy->id != M88E1543_E_PHY_ID))
2610                 goto out;
2611
2612         if (!hw->dev_spec._82575.eee_disable) {
2613                 /* Switch to PHY page 18. */
2614                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2615                 if (ret_val)
2616                         goto out;
2617
2618                 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2619                                             &phy_data);
2620                 if (ret_val)
2621                         goto out;
2622
2623                 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2624                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2625                                              phy_data);
2626                 if (ret_val)
2627                         goto out;
2628
2629                 /* Return the PHY to page 0. */
2630                 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2631                 if (ret_val)
2632                         goto out;
2633
2634                 /* Turn on EEE advertisement. */
2635                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2636                                              E1000_EEE_ADV_DEV_I354,
2637                                              &phy_data);
2638                 if (ret_val)
2639                         goto out;
2640
2641                 phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2642                             E1000_EEE_ADV_1000_SUPPORTED;
2643                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2644                                                 E1000_EEE_ADV_DEV_I354,
2645                                                 phy_data);
2646         } else {
2647                 /* Turn off EEE advertisement. */
2648                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2649                                              E1000_EEE_ADV_DEV_I354,
2650                                              &phy_data);
2651                 if (ret_val)
2652                         goto out;
2653
2654                 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2655                               E1000_EEE_ADV_1000_SUPPORTED);
2656                 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2657                                               E1000_EEE_ADV_DEV_I354,
2658                                               phy_data);
2659         }
2660
2661 out:
2662         return ret_val;
2663 }
2664
2665 /**
2666  *  igb_get_eee_status_i354 - Get EEE status
2667  *  @hw: pointer to the HW structure
2668  *  @status: EEE status
2669  *
2670  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2671  *  been received.
2672  **/
2673 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2674 {
2675         struct e1000_phy_info *phy = &hw->phy;
2676         s32 ret_val = 0;
2677         u16 phy_data;
2678
2679         /* Check if EEE is supported on this device. */
2680         if ((hw->phy.media_type != e1000_media_type_copper) ||
2681             (phy->id != M88E1543_E_PHY_ID))
2682                 goto out;
2683
2684         ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2685                                      E1000_PCS_STATUS_DEV_I354,
2686                                      &phy_data);
2687         if (ret_val)
2688                 goto out;
2689
2690         *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2691                               E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2692
2693 out:
2694         return ret_val;
2695 }
2696
2697 static const u8 e1000_emc_temp_data[4] = {
2698         E1000_EMC_INTERNAL_DATA,
2699         E1000_EMC_DIODE1_DATA,
2700         E1000_EMC_DIODE2_DATA,
2701         E1000_EMC_DIODE3_DATA
2702 };
2703 static const u8 e1000_emc_therm_limit[4] = {
2704         E1000_EMC_INTERNAL_THERM_LIMIT,
2705         E1000_EMC_DIODE1_THERM_LIMIT,
2706         E1000_EMC_DIODE2_THERM_LIMIT,
2707         E1000_EMC_DIODE3_THERM_LIMIT
2708 };
2709
2710 #ifdef CONFIG_IGB_HWMON
2711 /**
2712  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2713  *  @hw: pointer to hardware structure
2714  *
2715  *  Updates the temperatures in mac.thermal_sensor_data
2716  **/
2717 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2718 {
2719         s32 status = E1000_SUCCESS;
2720         u16 ets_offset;
2721         u16 ets_cfg;
2722         u16 ets_sensor;
2723         u8  num_sensors;
2724         u8  sensor_index;
2725         u8  sensor_location;
2726         u8  i;
2727         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2728
2729         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2730                 return E1000_NOT_IMPLEMENTED;
2731
2732         data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2733
2734         /* Return the internal sensor only if ETS is unsupported */
2735         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2736         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2737                 return status;
2738
2739         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2740         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2741             != NVM_ETS_TYPE_EMC)
2742                 return E1000_NOT_IMPLEMENTED;
2743
2744         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2745         if (num_sensors > E1000_MAX_SENSORS)
2746                 num_sensors = E1000_MAX_SENSORS;
2747
2748         for (i = 1; i < num_sensors; i++) {
2749                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2750                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2751                                 NVM_ETS_DATA_INDEX_SHIFT);
2752                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2753                                    NVM_ETS_DATA_LOC_SHIFT);
2754
2755                 if (sensor_location != 0)
2756                         hw->phy.ops.read_i2c_byte(hw,
2757                                         e1000_emc_temp_data[sensor_index],
2758                                         E1000_I2C_THERMAL_SENSOR_ADDR,
2759                                         &data->sensor[i].temp);
2760         }
2761         return status;
2762 }
2763
2764 /**
2765  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2766  *  @hw: pointer to hardware structure
2767  *
2768  *  Sets the thermal sensor thresholds according to the NVM map
2769  *  and save off the threshold and location values into mac.thermal_sensor_data
2770  **/
2771 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2772 {
2773         s32 status = E1000_SUCCESS;
2774         u16 ets_offset;
2775         u16 ets_cfg;
2776         u16 ets_sensor;
2777         u8  low_thresh_delta;
2778         u8  num_sensors;
2779         u8  sensor_index;
2780         u8  sensor_location;
2781         u8  therm_limit;
2782         u8  i;
2783         struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2784
2785         if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2786                 return E1000_NOT_IMPLEMENTED;
2787
2788         memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2789
2790         data->sensor[0].location = 0x1;
2791         data->sensor[0].caution_thresh =
2792                 (rd32(E1000_THHIGHTC) & 0xFF);
2793         data->sensor[0].max_op_thresh =
2794                 (rd32(E1000_THLOWTC) & 0xFF);
2795
2796         /* Return the internal sensor only if ETS is unsupported */
2797         hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2798         if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2799                 return status;
2800
2801         hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2802         if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2803             != NVM_ETS_TYPE_EMC)
2804                 return E1000_NOT_IMPLEMENTED;
2805
2806         low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2807                             NVM_ETS_LTHRES_DELTA_SHIFT);
2808         num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2809
2810         for (i = 1; i <= num_sensors; i++) {
2811                 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2812                 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2813                                 NVM_ETS_DATA_INDEX_SHIFT);
2814                 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2815                                    NVM_ETS_DATA_LOC_SHIFT);
2816                 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2817
2818                 hw->phy.ops.write_i2c_byte(hw,
2819                         e1000_emc_therm_limit[sensor_index],
2820                         E1000_I2C_THERMAL_SENSOR_ADDR,
2821                         therm_limit);
2822
2823                 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2824                         data->sensor[i].location = sensor_location;
2825                         data->sensor[i].caution_thresh = therm_limit;
2826                         data->sensor[i].max_op_thresh = therm_limit -
2827                                                         low_thresh_delta;
2828                 }
2829         }
2830         return status;
2831 }
2832
2833 #endif
2834 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2835         .init_hw              = igb_init_hw_82575,
2836         .check_for_link       = igb_check_for_link_82575,
2837         .rar_set              = igb_rar_set,
2838         .read_mac_addr        = igb_read_mac_addr_82575,
2839         .get_speed_and_duplex = igb_get_link_up_info_82575,
2840 #ifdef CONFIG_IGB_HWMON
2841         .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2842         .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2843 #endif
2844 };
2845
2846 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2847         .acquire              = igb_acquire_phy_82575,
2848         .get_cfg_done         = igb_get_cfg_done_82575,
2849         .release              = igb_release_phy_82575,
2850         .write_i2c_byte       = igb_write_i2c_byte,
2851         .read_i2c_byte        = igb_read_i2c_byte,
2852 };
2853
2854 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2855         .acquire              = igb_acquire_nvm_82575,
2856         .read                 = igb_read_nvm_eerd,
2857         .release              = igb_release_nvm_82575,
2858         .write                = igb_write_nvm_spi,
2859 };
2860
2861 const struct e1000_info e1000_82575_info = {
2862         .get_invariants = igb_get_invariants_82575,
2863         .mac_ops = &e1000_mac_ops_82575,
2864         .phy_ops = &e1000_phy_ops_82575,
2865         .nvm_ops = &e1000_nvm_ops_82575,
2866 };
2867