Linux 3.9-rc8
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41
42 #include "igb.h"
43
44 struct igb_stats {
45         char stat_string[ETH_GSTRING_LEN];
46         int sizeof_stat;
47         int stat_offset;
48 };
49
50 #define IGB_STAT(_name, _stat) { \
51         .stat_string = _name, \
52         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
53         .stat_offset = offsetof(struct igb_adapter, _stat) \
54 }
55 static const struct igb_stats igb_gstrings_stats[] = {
56         IGB_STAT("rx_packets", stats.gprc),
57         IGB_STAT("tx_packets", stats.gptc),
58         IGB_STAT("rx_bytes", stats.gorc),
59         IGB_STAT("tx_bytes", stats.gotc),
60         IGB_STAT("rx_broadcast", stats.bprc),
61         IGB_STAT("tx_broadcast", stats.bptc),
62         IGB_STAT("rx_multicast", stats.mprc),
63         IGB_STAT("tx_multicast", stats.mptc),
64         IGB_STAT("multicast", stats.mprc),
65         IGB_STAT("collisions", stats.colc),
66         IGB_STAT("rx_crc_errors", stats.crcerrs),
67         IGB_STAT("rx_no_buffer_count", stats.rnbc),
68         IGB_STAT("rx_missed_errors", stats.mpc),
69         IGB_STAT("tx_aborted_errors", stats.ecol),
70         IGB_STAT("tx_carrier_errors", stats.tncrs),
71         IGB_STAT("tx_window_errors", stats.latecol),
72         IGB_STAT("tx_abort_late_coll", stats.latecol),
73         IGB_STAT("tx_deferred_ok", stats.dc),
74         IGB_STAT("tx_single_coll_ok", stats.scc),
75         IGB_STAT("tx_multi_coll_ok", stats.mcc),
76         IGB_STAT("tx_timeout_count", tx_timeout_count),
77         IGB_STAT("rx_long_length_errors", stats.roc),
78         IGB_STAT("rx_short_length_errors", stats.ruc),
79         IGB_STAT("rx_align_errors", stats.algnerrc),
80         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
81         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
82         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
83         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
84         IGB_STAT("tx_flow_control_xon", stats.xontxc),
85         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
86         IGB_STAT("rx_long_byte_count", stats.gorc),
87         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
88         IGB_STAT("tx_smbus", stats.mgptc),
89         IGB_STAT("rx_smbus", stats.mgprc),
90         IGB_STAT("dropped_smbus", stats.mgpdc),
91         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
92         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
93         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
94         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
95         IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
96         IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
97 };
98
99 #define IGB_NETDEV_STAT(_net_stat) { \
100         .stat_string = __stringify(_net_stat), \
101         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
102         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
103 }
104 static const struct igb_stats igb_gstrings_net_stats[] = {
105         IGB_NETDEV_STAT(rx_errors),
106         IGB_NETDEV_STAT(tx_errors),
107         IGB_NETDEV_STAT(tx_dropped),
108         IGB_NETDEV_STAT(rx_length_errors),
109         IGB_NETDEV_STAT(rx_over_errors),
110         IGB_NETDEV_STAT(rx_frame_errors),
111         IGB_NETDEV_STAT(rx_fifo_errors),
112         IGB_NETDEV_STAT(tx_fifo_errors),
113         IGB_NETDEV_STAT(tx_heartbeat_errors)
114 };
115
116 #define IGB_GLOBAL_STATS_LEN    \
117         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
118 #define IGB_NETDEV_STATS_LEN    \
119         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
120 #define IGB_RX_QUEUE_STATS_LEN \
121         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
122
123 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
124
125 #define IGB_QUEUE_STATS_LEN \
126         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
127           IGB_RX_QUEUE_STATS_LEN) + \
128          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
129           IGB_TX_QUEUE_STATS_LEN))
130 #define IGB_STATS_LEN \
131         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
132
133 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
134         "Register test  (offline)", "Eeprom test    (offline)",
135         "Interrupt test (offline)", "Loopback test  (offline)",
136         "Link test   (on/offline)"
137 };
138 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
139
140 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
141 {
142         struct igb_adapter *adapter = netdev_priv(netdev);
143         struct e1000_hw *hw = &adapter->hw;
144         u32 status;
145
146         if (hw->phy.media_type == e1000_media_type_copper) {
147
148                 ecmd->supported = (SUPPORTED_10baseT_Half |
149                                    SUPPORTED_10baseT_Full |
150                                    SUPPORTED_100baseT_Half |
151                                    SUPPORTED_100baseT_Full |
152                                    SUPPORTED_1000baseT_Full|
153                                    SUPPORTED_Autoneg |
154                                    SUPPORTED_TP |
155                                    SUPPORTED_Pause);
156                 ecmd->advertising = ADVERTISED_TP;
157
158                 if (hw->mac.autoneg == 1) {
159                         ecmd->advertising |= ADVERTISED_Autoneg;
160                         /* the e1000 autoneg seems to match ethtool nicely */
161                         ecmd->advertising |= hw->phy.autoneg_advertised;
162                 }
163
164                 if (hw->mac.autoneg != 1)
165                         ecmd->advertising &= ~(ADVERTISED_Pause |
166                                                ADVERTISED_Asym_Pause);
167
168                 if (hw->fc.requested_mode == e1000_fc_full)
169                         ecmd->advertising |= ADVERTISED_Pause;
170                 else if (hw->fc.requested_mode == e1000_fc_rx_pause)
171                         ecmd->advertising |= (ADVERTISED_Pause |
172                                               ADVERTISED_Asym_Pause);
173                 else if (hw->fc.requested_mode == e1000_fc_tx_pause)
174                         ecmd->advertising |=  ADVERTISED_Asym_Pause;
175                 else
176                         ecmd->advertising &= ~(ADVERTISED_Pause |
177                                                ADVERTISED_Asym_Pause);
178
179                 ecmd->port = PORT_TP;
180                 ecmd->phy_address = hw->phy.addr;
181         } else {
182                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
183                                      SUPPORTED_FIBRE |
184                                      SUPPORTED_Autoneg);
185
186                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
187                                      ADVERTISED_FIBRE |
188                                      ADVERTISED_Autoneg |
189                                      ADVERTISED_Pause);
190
191                 ecmd->port = PORT_FIBRE;
192         }
193
194         ecmd->transceiver = XCVR_INTERNAL;
195
196         status = rd32(E1000_STATUS);
197
198         if (status & E1000_STATUS_LU) {
199
200                 if ((status & E1000_STATUS_SPEED_1000) ||
201                     hw->phy.media_type != e1000_media_type_copper)
202                         ethtool_cmd_speed_set(ecmd, SPEED_1000);
203                 else if (status & E1000_STATUS_SPEED_100)
204                         ethtool_cmd_speed_set(ecmd, SPEED_100);
205                 else
206                         ethtool_cmd_speed_set(ecmd, SPEED_10);
207
208                 if ((status & E1000_STATUS_FD) ||
209                     hw->phy.media_type != e1000_media_type_copper)
210                         ecmd->duplex = DUPLEX_FULL;
211                 else
212                         ecmd->duplex = DUPLEX_HALF;
213         } else {
214                 ethtool_cmd_speed_set(ecmd, -1);
215                 ecmd->duplex = -1;
216         }
217
218         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
219
220         /* MDI-X => 2; MDI =>1; Invalid =>0 */
221         if (hw->phy.media_type == e1000_media_type_copper)
222                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
223                                                       ETH_TP_MDI;
224         else
225                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
226
227         if (hw->phy.mdix == AUTO_ALL_MODES)
228                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
229         else
230                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
231
232         return 0;
233 }
234
235 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
236 {
237         struct igb_adapter *adapter = netdev_priv(netdev);
238         struct e1000_hw *hw = &adapter->hw;
239
240         /* When SoL/IDER sessions are active, autoneg/speed/duplex
241          * cannot be changed */
242         if (igb_check_reset_block(hw)) {
243                 dev_err(&adapter->pdev->dev,
244                         "Cannot change link characteristics when SoL/IDER is active.\n");
245                 return -EINVAL;
246         }
247
248         /*
249          * MDI setting is only allowed when autoneg enabled because
250          * some hardware doesn't allow MDI setting when speed or
251          * duplex is forced.
252          */
253         if (ecmd->eth_tp_mdix_ctrl) {
254                 if (hw->phy.media_type != e1000_media_type_copper)
255                         return -EOPNOTSUPP;
256
257                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
258                     (ecmd->autoneg != AUTONEG_ENABLE)) {
259                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
260                         return -EINVAL;
261                 }
262         }
263
264         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
265                 msleep(1);
266
267         if (ecmd->autoneg == AUTONEG_ENABLE) {
268                 hw->mac.autoneg = 1;
269                 hw->phy.autoneg_advertised = ecmd->advertising |
270                                              ADVERTISED_TP |
271                                              ADVERTISED_Autoneg;
272                 ecmd->advertising = hw->phy.autoneg_advertised;
273                 if (adapter->fc_autoneg)
274                         hw->fc.requested_mode = e1000_fc_default;
275         } else {
276                 u32 speed = ethtool_cmd_speed(ecmd);
277                 /* calling this overrides forced MDI setting */
278                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
279                         clear_bit(__IGB_RESETTING, &adapter->state);
280                         return -EINVAL;
281                 }
282         }
283
284         /* MDI-X => 2; MDI => 1; Auto => 3 */
285         if (ecmd->eth_tp_mdix_ctrl) {
286                 /*
287                  * fix up the value for auto (3 => 0) as zero is mapped
288                  * internally to auto
289                  */
290                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
291                         hw->phy.mdix = AUTO_ALL_MODES;
292                 else
293                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
294         }
295
296         /* reset the link */
297         if (netif_running(adapter->netdev)) {
298                 igb_down(adapter);
299                 igb_up(adapter);
300         } else
301                 igb_reset(adapter);
302
303         clear_bit(__IGB_RESETTING, &adapter->state);
304         return 0;
305 }
306
307 static u32 igb_get_link(struct net_device *netdev)
308 {
309         struct igb_adapter *adapter = netdev_priv(netdev);
310         struct e1000_mac_info *mac = &adapter->hw.mac;
311
312         /*
313          * If the link is not reported up to netdev, interrupts are disabled,
314          * and so the physical link state may have changed since we last
315          * looked. Set get_link_status to make sure that the true link
316          * state is interrogated, rather than pulling a cached and possibly
317          * stale link state from the driver.
318          */
319         if (!netif_carrier_ok(netdev))
320                 mac->get_link_status = 1;
321
322         return igb_has_link(adapter);
323 }
324
325 static void igb_get_pauseparam(struct net_device *netdev,
326                                struct ethtool_pauseparam *pause)
327 {
328         struct igb_adapter *adapter = netdev_priv(netdev);
329         struct e1000_hw *hw = &adapter->hw;
330
331         pause->autoneg =
332                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
333
334         if (hw->fc.current_mode == e1000_fc_rx_pause)
335                 pause->rx_pause = 1;
336         else if (hw->fc.current_mode == e1000_fc_tx_pause)
337                 pause->tx_pause = 1;
338         else if (hw->fc.current_mode == e1000_fc_full) {
339                 pause->rx_pause = 1;
340                 pause->tx_pause = 1;
341         }
342 }
343
344 static int igb_set_pauseparam(struct net_device *netdev,
345                               struct ethtool_pauseparam *pause)
346 {
347         struct igb_adapter *adapter = netdev_priv(netdev);
348         struct e1000_hw *hw = &adapter->hw;
349         int retval = 0;
350
351         adapter->fc_autoneg = pause->autoneg;
352
353         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
354                 msleep(1);
355
356         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
357                 hw->fc.requested_mode = e1000_fc_default;
358                 if (netif_running(adapter->netdev)) {
359                         igb_down(adapter);
360                         igb_up(adapter);
361                 } else {
362                         igb_reset(adapter);
363                 }
364         } else {
365                 if (pause->rx_pause && pause->tx_pause)
366                         hw->fc.requested_mode = e1000_fc_full;
367                 else if (pause->rx_pause && !pause->tx_pause)
368                         hw->fc.requested_mode = e1000_fc_rx_pause;
369                 else if (!pause->rx_pause && pause->tx_pause)
370                         hw->fc.requested_mode = e1000_fc_tx_pause;
371                 else if (!pause->rx_pause && !pause->tx_pause)
372                         hw->fc.requested_mode = e1000_fc_none;
373
374                 hw->fc.current_mode = hw->fc.requested_mode;
375
376                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
377                           igb_force_mac_fc(hw) : igb_setup_link(hw));
378         }
379
380         clear_bit(__IGB_RESETTING, &adapter->state);
381         return retval;
382 }
383
384 static u32 igb_get_msglevel(struct net_device *netdev)
385 {
386         struct igb_adapter *adapter = netdev_priv(netdev);
387         return adapter->msg_enable;
388 }
389
390 static void igb_set_msglevel(struct net_device *netdev, u32 data)
391 {
392         struct igb_adapter *adapter = netdev_priv(netdev);
393         adapter->msg_enable = data;
394 }
395
396 static int igb_get_regs_len(struct net_device *netdev)
397 {
398 #define IGB_REGS_LEN 739
399         return IGB_REGS_LEN * sizeof(u32);
400 }
401
402 static void igb_get_regs(struct net_device *netdev,
403                          struct ethtool_regs *regs, void *p)
404 {
405         struct igb_adapter *adapter = netdev_priv(netdev);
406         struct e1000_hw *hw = &adapter->hw;
407         u32 *regs_buff = p;
408         u8 i;
409
410         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
411
412         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
413
414         /* General Registers */
415         regs_buff[0] = rd32(E1000_CTRL);
416         regs_buff[1] = rd32(E1000_STATUS);
417         regs_buff[2] = rd32(E1000_CTRL_EXT);
418         regs_buff[3] = rd32(E1000_MDIC);
419         regs_buff[4] = rd32(E1000_SCTL);
420         regs_buff[5] = rd32(E1000_CONNSW);
421         regs_buff[6] = rd32(E1000_VET);
422         regs_buff[7] = rd32(E1000_LEDCTL);
423         regs_buff[8] = rd32(E1000_PBA);
424         regs_buff[9] = rd32(E1000_PBS);
425         regs_buff[10] = rd32(E1000_FRTIMER);
426         regs_buff[11] = rd32(E1000_TCPTIMER);
427
428         /* NVM Register */
429         regs_buff[12] = rd32(E1000_EECD);
430
431         /* Interrupt */
432         /* Reading EICS for EICR because they read the
433          * same but EICS does not clear on read */
434         regs_buff[13] = rd32(E1000_EICS);
435         regs_buff[14] = rd32(E1000_EICS);
436         regs_buff[15] = rd32(E1000_EIMS);
437         regs_buff[16] = rd32(E1000_EIMC);
438         regs_buff[17] = rd32(E1000_EIAC);
439         regs_buff[18] = rd32(E1000_EIAM);
440         /* Reading ICS for ICR because they read the
441          * same but ICS does not clear on read */
442         regs_buff[19] = rd32(E1000_ICS);
443         regs_buff[20] = rd32(E1000_ICS);
444         regs_buff[21] = rd32(E1000_IMS);
445         regs_buff[22] = rd32(E1000_IMC);
446         regs_buff[23] = rd32(E1000_IAC);
447         regs_buff[24] = rd32(E1000_IAM);
448         regs_buff[25] = rd32(E1000_IMIRVP);
449
450         /* Flow Control */
451         regs_buff[26] = rd32(E1000_FCAL);
452         regs_buff[27] = rd32(E1000_FCAH);
453         regs_buff[28] = rd32(E1000_FCTTV);
454         regs_buff[29] = rd32(E1000_FCRTL);
455         regs_buff[30] = rd32(E1000_FCRTH);
456         regs_buff[31] = rd32(E1000_FCRTV);
457
458         /* Receive */
459         regs_buff[32] = rd32(E1000_RCTL);
460         regs_buff[33] = rd32(E1000_RXCSUM);
461         regs_buff[34] = rd32(E1000_RLPML);
462         regs_buff[35] = rd32(E1000_RFCTL);
463         regs_buff[36] = rd32(E1000_MRQC);
464         regs_buff[37] = rd32(E1000_VT_CTL);
465
466         /* Transmit */
467         regs_buff[38] = rd32(E1000_TCTL);
468         regs_buff[39] = rd32(E1000_TCTL_EXT);
469         regs_buff[40] = rd32(E1000_TIPG);
470         regs_buff[41] = rd32(E1000_DTXCTL);
471
472         /* Wake Up */
473         regs_buff[42] = rd32(E1000_WUC);
474         regs_buff[43] = rd32(E1000_WUFC);
475         regs_buff[44] = rd32(E1000_WUS);
476         regs_buff[45] = rd32(E1000_IPAV);
477         regs_buff[46] = rd32(E1000_WUPL);
478
479         /* MAC */
480         regs_buff[47] = rd32(E1000_PCS_CFG0);
481         regs_buff[48] = rd32(E1000_PCS_LCTL);
482         regs_buff[49] = rd32(E1000_PCS_LSTAT);
483         regs_buff[50] = rd32(E1000_PCS_ANADV);
484         regs_buff[51] = rd32(E1000_PCS_LPAB);
485         regs_buff[52] = rd32(E1000_PCS_NPTX);
486         regs_buff[53] = rd32(E1000_PCS_LPABNP);
487
488         /* Statistics */
489         regs_buff[54] = adapter->stats.crcerrs;
490         regs_buff[55] = adapter->stats.algnerrc;
491         regs_buff[56] = adapter->stats.symerrs;
492         regs_buff[57] = adapter->stats.rxerrc;
493         regs_buff[58] = adapter->stats.mpc;
494         regs_buff[59] = adapter->stats.scc;
495         regs_buff[60] = adapter->stats.ecol;
496         regs_buff[61] = adapter->stats.mcc;
497         regs_buff[62] = adapter->stats.latecol;
498         regs_buff[63] = adapter->stats.colc;
499         regs_buff[64] = adapter->stats.dc;
500         regs_buff[65] = adapter->stats.tncrs;
501         regs_buff[66] = adapter->stats.sec;
502         regs_buff[67] = adapter->stats.htdpmc;
503         regs_buff[68] = adapter->stats.rlec;
504         regs_buff[69] = adapter->stats.xonrxc;
505         regs_buff[70] = adapter->stats.xontxc;
506         regs_buff[71] = adapter->stats.xoffrxc;
507         regs_buff[72] = adapter->stats.xofftxc;
508         regs_buff[73] = adapter->stats.fcruc;
509         regs_buff[74] = adapter->stats.prc64;
510         regs_buff[75] = adapter->stats.prc127;
511         regs_buff[76] = adapter->stats.prc255;
512         regs_buff[77] = adapter->stats.prc511;
513         regs_buff[78] = adapter->stats.prc1023;
514         regs_buff[79] = adapter->stats.prc1522;
515         regs_buff[80] = adapter->stats.gprc;
516         regs_buff[81] = adapter->stats.bprc;
517         regs_buff[82] = adapter->stats.mprc;
518         regs_buff[83] = adapter->stats.gptc;
519         regs_buff[84] = adapter->stats.gorc;
520         regs_buff[86] = adapter->stats.gotc;
521         regs_buff[88] = adapter->stats.rnbc;
522         regs_buff[89] = adapter->stats.ruc;
523         regs_buff[90] = adapter->stats.rfc;
524         regs_buff[91] = adapter->stats.roc;
525         regs_buff[92] = adapter->stats.rjc;
526         regs_buff[93] = adapter->stats.mgprc;
527         regs_buff[94] = adapter->stats.mgpdc;
528         regs_buff[95] = adapter->stats.mgptc;
529         regs_buff[96] = adapter->stats.tor;
530         regs_buff[98] = adapter->stats.tot;
531         regs_buff[100] = adapter->stats.tpr;
532         regs_buff[101] = adapter->stats.tpt;
533         regs_buff[102] = adapter->stats.ptc64;
534         regs_buff[103] = adapter->stats.ptc127;
535         regs_buff[104] = adapter->stats.ptc255;
536         regs_buff[105] = adapter->stats.ptc511;
537         regs_buff[106] = adapter->stats.ptc1023;
538         regs_buff[107] = adapter->stats.ptc1522;
539         regs_buff[108] = adapter->stats.mptc;
540         regs_buff[109] = adapter->stats.bptc;
541         regs_buff[110] = adapter->stats.tsctc;
542         regs_buff[111] = adapter->stats.iac;
543         regs_buff[112] = adapter->stats.rpthc;
544         regs_buff[113] = adapter->stats.hgptc;
545         regs_buff[114] = adapter->stats.hgorc;
546         regs_buff[116] = adapter->stats.hgotc;
547         regs_buff[118] = adapter->stats.lenerrs;
548         regs_buff[119] = adapter->stats.scvpc;
549         regs_buff[120] = adapter->stats.hrmpc;
550
551         for (i = 0; i < 4; i++)
552                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
553         for (i = 0; i < 4; i++)
554                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
555         for (i = 0; i < 4; i++)
556                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
557         for (i = 0; i < 4; i++)
558                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
559         for (i = 0; i < 4; i++)
560                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
561         for (i = 0; i < 4; i++)
562                 regs_buff[141 + i] = rd32(E1000_RDH(i));
563         for (i = 0; i < 4; i++)
564                 regs_buff[145 + i] = rd32(E1000_RDT(i));
565         for (i = 0; i < 4; i++)
566                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
567
568         for (i = 0; i < 10; i++)
569                 regs_buff[153 + i] = rd32(E1000_EITR(i));
570         for (i = 0; i < 8; i++)
571                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
572         for (i = 0; i < 8; i++)
573                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
574         for (i = 0; i < 16; i++)
575                 regs_buff[179 + i] = rd32(E1000_RAL(i));
576         for (i = 0; i < 16; i++)
577                 regs_buff[195 + i] = rd32(E1000_RAH(i));
578
579         for (i = 0; i < 4; i++)
580                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
581         for (i = 0; i < 4; i++)
582                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
583         for (i = 0; i < 4; i++)
584                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
585         for (i = 0; i < 4; i++)
586                 regs_buff[223 + i] = rd32(E1000_TDH(i));
587         for (i = 0; i < 4; i++)
588                 regs_buff[227 + i] = rd32(E1000_TDT(i));
589         for (i = 0; i < 4; i++)
590                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
591         for (i = 0; i < 4; i++)
592                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
593         for (i = 0; i < 4; i++)
594                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
595         for (i = 0; i < 4; i++)
596                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
597
598         for (i = 0; i < 4; i++)
599                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
600         for (i = 0; i < 4; i++)
601                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
602         for (i = 0; i < 32; i++)
603                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
604         for (i = 0; i < 128; i++)
605                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
606         for (i = 0; i < 128; i++)
607                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
608         for (i = 0; i < 4; i++)
609                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
610
611         regs_buff[547] = rd32(E1000_TDFH);
612         regs_buff[548] = rd32(E1000_TDFT);
613         regs_buff[549] = rd32(E1000_TDFHS);
614         regs_buff[550] = rd32(E1000_TDFPC);
615
616         if (hw->mac.type > e1000_82580) {
617                 regs_buff[551] = adapter->stats.o2bgptc;
618                 regs_buff[552] = adapter->stats.b2ospc;
619                 regs_buff[553] = adapter->stats.o2bspc;
620                 regs_buff[554] = adapter->stats.b2ogprc;
621         }
622
623         if (hw->mac.type != e1000_82576)
624                 return;
625         for (i = 0; i < 12; i++)
626                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
627         for (i = 0; i < 4; i++)
628                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
629         for (i = 0; i < 12; i++)
630                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
631         for (i = 0; i < 12; i++)
632                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
633         for (i = 0; i < 12; i++)
634                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
635         for (i = 0; i < 12; i++)
636                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
637         for (i = 0; i < 12; i++)
638                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
639         for (i = 0; i < 12; i++)
640                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
641
642         for (i = 0; i < 12; i++)
643                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
644         for (i = 0; i < 12; i++)
645                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
646         for (i = 0; i < 12; i++)
647                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
648         for (i = 0; i < 12; i++)
649                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
650         for (i = 0; i < 12; i++)
651                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
652         for (i = 0; i < 12; i++)
653                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
654         for (i = 0; i < 12; i++)
655                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
656         for (i = 0; i < 12; i++)
657                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
658 }
659
660 static int igb_get_eeprom_len(struct net_device *netdev)
661 {
662         struct igb_adapter *adapter = netdev_priv(netdev);
663         return adapter->hw.nvm.word_size * 2;
664 }
665
666 static int igb_get_eeprom(struct net_device *netdev,
667                           struct ethtool_eeprom *eeprom, u8 *bytes)
668 {
669         struct igb_adapter *adapter = netdev_priv(netdev);
670         struct e1000_hw *hw = &adapter->hw;
671         u16 *eeprom_buff;
672         int first_word, last_word;
673         int ret_val = 0;
674         u16 i;
675
676         if (eeprom->len == 0)
677                 return -EINVAL;
678
679         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
680
681         first_word = eeprom->offset >> 1;
682         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
683
684         eeprom_buff = kmalloc(sizeof(u16) *
685                         (last_word - first_word + 1), GFP_KERNEL);
686         if (!eeprom_buff)
687                 return -ENOMEM;
688
689         if (hw->nvm.type == e1000_nvm_eeprom_spi)
690                 ret_val = hw->nvm.ops.read(hw, first_word,
691                                             last_word - first_word + 1,
692                                             eeprom_buff);
693         else {
694                 for (i = 0; i < last_word - first_word + 1; i++) {
695                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
696                                                     &eeprom_buff[i]);
697                         if (ret_val)
698                                 break;
699                 }
700         }
701
702         /* Device's eeprom is always little-endian, word addressable */
703         for (i = 0; i < last_word - first_word + 1; i++)
704                 le16_to_cpus(&eeprom_buff[i]);
705
706         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
707                         eeprom->len);
708         kfree(eeprom_buff);
709
710         return ret_val;
711 }
712
713 static int igb_set_eeprom(struct net_device *netdev,
714                           struct ethtool_eeprom *eeprom, u8 *bytes)
715 {
716         struct igb_adapter *adapter = netdev_priv(netdev);
717         struct e1000_hw *hw = &adapter->hw;
718         u16 *eeprom_buff;
719         void *ptr;
720         int max_len, first_word, last_word, ret_val = 0;
721         u16 i;
722
723         if (eeprom->len == 0)
724                 return -EOPNOTSUPP;
725
726         if (hw->mac.type == e1000_i211)
727                 return -EOPNOTSUPP;
728
729         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
730                 return -EFAULT;
731
732         max_len = hw->nvm.word_size * 2;
733
734         first_word = eeprom->offset >> 1;
735         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
736         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
737         if (!eeprom_buff)
738                 return -ENOMEM;
739
740         ptr = (void *)eeprom_buff;
741
742         if (eeprom->offset & 1) {
743                 /* need read/modify/write of first changed EEPROM word */
744                 /* only the second byte of the word is being modified */
745                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
746                                             &eeprom_buff[0]);
747                 ptr++;
748         }
749         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
750                 /* need read/modify/write of last changed EEPROM word */
751                 /* only the first byte of the word is being modified */
752                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
753                                    &eeprom_buff[last_word - first_word]);
754         }
755
756         /* Device's eeprom is always little-endian, word addressable */
757         for (i = 0; i < last_word - first_word + 1; i++)
758                 le16_to_cpus(&eeprom_buff[i]);
759
760         memcpy(ptr, bytes, eeprom->len);
761
762         for (i = 0; i < last_word - first_word + 1; i++)
763                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
764
765         ret_val = hw->nvm.ops.write(hw, first_word,
766                                      last_word - first_word + 1, eeprom_buff);
767
768         /* Update the checksum over the first part of the EEPROM if needed
769          * and flush shadow RAM for 82573 controllers */
770         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
771                 hw->nvm.ops.update(hw);
772
773         igb_set_fw_version(adapter);
774         kfree(eeprom_buff);
775         return ret_val;
776 }
777
778 static void igb_get_drvinfo(struct net_device *netdev,
779                             struct ethtool_drvinfo *drvinfo)
780 {
781         struct igb_adapter *adapter = netdev_priv(netdev);
782
783         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
784         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
785
786         /*
787          * EEPROM image version # is reported as firmware version # for
788          * 82575 controllers
789          */
790         strlcpy(drvinfo->fw_version, adapter->fw_version,
791                 sizeof(drvinfo->fw_version));
792         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
793                 sizeof(drvinfo->bus_info));
794         drvinfo->n_stats = IGB_STATS_LEN;
795         drvinfo->testinfo_len = IGB_TEST_LEN;
796         drvinfo->regdump_len = igb_get_regs_len(netdev);
797         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
798 }
799
800 static void igb_get_ringparam(struct net_device *netdev,
801                               struct ethtool_ringparam *ring)
802 {
803         struct igb_adapter *adapter = netdev_priv(netdev);
804
805         ring->rx_max_pending = IGB_MAX_RXD;
806         ring->tx_max_pending = IGB_MAX_TXD;
807         ring->rx_pending = adapter->rx_ring_count;
808         ring->tx_pending = adapter->tx_ring_count;
809 }
810
811 static int igb_set_ringparam(struct net_device *netdev,
812                              struct ethtool_ringparam *ring)
813 {
814         struct igb_adapter *adapter = netdev_priv(netdev);
815         struct igb_ring *temp_ring;
816         int i, err = 0;
817         u16 new_rx_count, new_tx_count;
818
819         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
820                 return -EINVAL;
821
822         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
823         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
824         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
825
826         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
827         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
828         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
829
830         if ((new_tx_count == adapter->tx_ring_count) &&
831             (new_rx_count == adapter->rx_ring_count)) {
832                 /* nothing to do */
833                 return 0;
834         }
835
836         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
837                 msleep(1);
838
839         if (!netif_running(adapter->netdev)) {
840                 for (i = 0; i < adapter->num_tx_queues; i++)
841                         adapter->tx_ring[i]->count = new_tx_count;
842                 for (i = 0; i < adapter->num_rx_queues; i++)
843                         adapter->rx_ring[i]->count = new_rx_count;
844                 adapter->tx_ring_count = new_tx_count;
845                 adapter->rx_ring_count = new_rx_count;
846                 goto clear_reset;
847         }
848
849         if (adapter->num_tx_queues > adapter->num_rx_queues)
850                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
851         else
852                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
853
854         if (!temp_ring) {
855                 err = -ENOMEM;
856                 goto clear_reset;
857         }
858
859         igb_down(adapter);
860
861         /*
862          * We can't just free everything and then setup again,
863          * because the ISRs in MSI-X mode get passed pointers
864          * to the tx and rx ring structs.
865          */
866         if (new_tx_count != adapter->tx_ring_count) {
867                 for (i = 0; i < adapter->num_tx_queues; i++) {
868                         memcpy(&temp_ring[i], adapter->tx_ring[i],
869                                sizeof(struct igb_ring));
870
871                         temp_ring[i].count = new_tx_count;
872                         err = igb_setup_tx_resources(&temp_ring[i]);
873                         if (err) {
874                                 while (i) {
875                                         i--;
876                                         igb_free_tx_resources(&temp_ring[i]);
877                                 }
878                                 goto err_setup;
879                         }
880                 }
881
882                 for (i = 0; i < adapter->num_tx_queues; i++) {
883                         igb_free_tx_resources(adapter->tx_ring[i]);
884
885                         memcpy(adapter->tx_ring[i], &temp_ring[i],
886                                sizeof(struct igb_ring));
887                 }
888
889                 adapter->tx_ring_count = new_tx_count;
890         }
891
892         if (new_rx_count != adapter->rx_ring_count) {
893                 for (i = 0; i < adapter->num_rx_queues; i++) {
894                         memcpy(&temp_ring[i], adapter->rx_ring[i],
895                                sizeof(struct igb_ring));
896
897                         temp_ring[i].count = new_rx_count;
898                         err = igb_setup_rx_resources(&temp_ring[i]);
899                         if (err) {
900                                 while (i) {
901                                         i--;
902                                         igb_free_rx_resources(&temp_ring[i]);
903                                 }
904                                 goto err_setup;
905                         }
906
907                 }
908
909                 for (i = 0; i < adapter->num_rx_queues; i++) {
910                         igb_free_rx_resources(adapter->rx_ring[i]);
911
912                         memcpy(adapter->rx_ring[i], &temp_ring[i],
913                                sizeof(struct igb_ring));
914                 }
915
916                 adapter->rx_ring_count = new_rx_count;
917         }
918 err_setup:
919         igb_up(adapter);
920         vfree(temp_ring);
921 clear_reset:
922         clear_bit(__IGB_RESETTING, &adapter->state);
923         return err;
924 }
925
926 /* ethtool register test data */
927 struct igb_reg_test {
928         u16 reg;
929         u16 reg_offset;
930         u16 array_len;
931         u16 test_type;
932         u32 mask;
933         u32 write;
934 };
935
936 /* In the hardware, registers are laid out either singly, in arrays
937  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
938  * most tests take place on arrays or single registers (handled
939  * as a single-element array) and special-case the tables.
940  * Table tests are always pattern tests.
941  *
942  * We also make provision for some required setup steps by specifying
943  * registers to be written without any read-back testing.
944  */
945
946 #define PATTERN_TEST    1
947 #define SET_READ_TEST   2
948 #define WRITE_NO_TEST   3
949 #define TABLE32_TEST    4
950 #define TABLE64_TEST_LO 5
951 #define TABLE64_TEST_HI 6
952
953 /* i210 reg test */
954 static struct igb_reg_test reg_test_i210[] = {
955         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
956         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
957         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
958         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
959         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
960         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
961         /* RDH is read-only for i210, only test RDT. */
962         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
963         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
964         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
965         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
966         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
967         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
968         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
969         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
970         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
971         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
972         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
973         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
974         { E1000_RA,        0, 16, TABLE64_TEST_LO,
975                                                 0xFFFFFFFF, 0xFFFFFFFF },
976         { E1000_RA,        0, 16, TABLE64_TEST_HI,
977                                                 0x900FFFFF, 0xFFFFFFFF },
978         { E1000_MTA,       0, 128, TABLE32_TEST,
979                                                 0xFFFFFFFF, 0xFFFFFFFF },
980         { 0, 0, 0, 0, 0 }
981 };
982
983 /* i350 reg test */
984 static struct igb_reg_test reg_test_i350[] = {
985         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
986         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
987         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
988         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
989         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
990         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
991         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
992         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
993         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
994         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
995         /* RDH is read-only for i350, only test RDT. */
996         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
997         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
998         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
999         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1000         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1001         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1002         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1003         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1004         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1005         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1006         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1007         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1008         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1009         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1010         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1011         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1012         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1013         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1014                                                 0xFFFFFFFF, 0xFFFFFFFF },
1015         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1016                                                 0xC3FFFFFF, 0xFFFFFFFF },
1017         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1018                                                 0xFFFFFFFF, 0xFFFFFFFF },
1019         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1020                                                 0xC3FFFFFF, 0xFFFFFFFF },
1021         { E1000_MTA,       0, 128, TABLE32_TEST,
1022                                                 0xFFFFFFFF, 0xFFFFFFFF },
1023         { 0, 0, 0, 0 }
1024 };
1025
1026 /* 82580 reg test */
1027 static struct igb_reg_test reg_test_82580[] = {
1028         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1029         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1030         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1031         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1032         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1035         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038         /* RDH is read-only for 82580, only test RDT. */
1039         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1040         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1041         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1042         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1043         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1044         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1045         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1046         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1047         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1048         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1049         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1050         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1051         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1052         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1053         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1054         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1055         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1056         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1057                                                 0xFFFFFFFF, 0xFFFFFFFF },
1058         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1059                                                 0x83FFFFFF, 0xFFFFFFFF },
1060         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1061                                                 0xFFFFFFFF, 0xFFFFFFFF },
1062         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1063                                                 0x83FFFFFF, 0xFFFFFFFF },
1064         { E1000_MTA,       0, 128, TABLE32_TEST,
1065                                                 0xFFFFFFFF, 0xFFFFFFFF },
1066         { 0, 0, 0, 0 }
1067 };
1068
1069 /* 82576 reg test */
1070 static struct igb_reg_test reg_test_82576[] = {
1071         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1073         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1074         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1075         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1078         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1079         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1081         /* Enable all RX queues before testing. */
1082         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1083         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1084         /* RDH is read-only for 82576, only test RDT. */
1085         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1086         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1087         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1088         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1089         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1090         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1091         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1092         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1096         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1097         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1098         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1099         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1100         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1101         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1102         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1103         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1104         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1105         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1106         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1107         { 0, 0, 0, 0 }
1108 };
1109
1110 /* 82575 register test */
1111 static struct igb_reg_test reg_test_82575[] = {
1112         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1113         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1114         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1115         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1116         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1117         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1118         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1119         /* Enable all four RX queues before testing. */
1120         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1121         /* RDH is read-only for 82575, only test RDT. */
1122         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1123         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1124         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1125         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1126         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1127         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1128         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1130         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1131         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1132         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1133         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1134         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1135         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1136         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1137         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1138         { 0, 0, 0, 0 }
1139 };
1140
1141 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1142                              int reg, u32 mask, u32 write)
1143 {
1144         struct e1000_hw *hw = &adapter->hw;
1145         u32 pat, val;
1146         static const u32 _test[] =
1147                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1148         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1149                 wr32(reg, (_test[pat] & write));
1150                 val = rd32(reg) & mask;
1151                 if (val != (_test[pat] & write & mask)) {
1152                         dev_err(&adapter->pdev->dev,
1153                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1154                                 reg, val, (_test[pat] & write & mask));
1155                         *data = reg;
1156                         return 1;
1157                 }
1158         }
1159
1160         return 0;
1161 }
1162
1163 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1164                               int reg, u32 mask, u32 write)
1165 {
1166         struct e1000_hw *hw = &adapter->hw;
1167         u32 val;
1168         wr32(reg, write & mask);
1169         val = rd32(reg);
1170         if ((write & mask) != (val & mask)) {
1171                 dev_err(&adapter->pdev->dev,
1172                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1173                         (val & mask), (write & mask));
1174                 *data = reg;
1175                 return 1;
1176         }
1177
1178         return 0;
1179 }
1180
1181 #define REG_PATTERN_TEST(reg, mask, write) \
1182         do { \
1183                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1184                         return 1; \
1185         } while (0)
1186
1187 #define REG_SET_AND_CHECK(reg, mask, write) \
1188         do { \
1189                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1190                         return 1; \
1191         } while (0)
1192
1193 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1194 {
1195         struct e1000_hw *hw = &adapter->hw;
1196         struct igb_reg_test *test;
1197         u32 value, before, after;
1198         u32 i, toggle;
1199
1200         switch (adapter->hw.mac.type) {
1201         case e1000_i350:
1202                 test = reg_test_i350;
1203                 toggle = 0x7FEFF3FF;
1204                 break;
1205         case e1000_i210:
1206         case e1000_i211:
1207                 test = reg_test_i210;
1208                 toggle = 0x7FEFF3FF;
1209                 break;
1210         case e1000_82580:
1211                 test = reg_test_82580;
1212                 toggle = 0x7FEFF3FF;
1213                 break;
1214         case e1000_82576:
1215                 test = reg_test_82576;
1216                 toggle = 0x7FFFF3FF;
1217                 break;
1218         default:
1219                 test = reg_test_82575;
1220                 toggle = 0x7FFFF3FF;
1221                 break;
1222         }
1223
1224         /* Because the status register is such a special case,
1225          * we handle it separately from the rest of the register
1226          * tests.  Some bits are read-only, some toggle, and some
1227          * are writable on newer MACs.
1228          */
1229         before = rd32(E1000_STATUS);
1230         value = (rd32(E1000_STATUS) & toggle);
1231         wr32(E1000_STATUS, toggle);
1232         after = rd32(E1000_STATUS) & toggle;
1233         if (value != after) {
1234                 dev_err(&adapter->pdev->dev,
1235                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1236                         after, value);
1237                 *data = 1;
1238                 return 1;
1239         }
1240         /* restore previous status */
1241         wr32(E1000_STATUS, before);
1242
1243         /* Perform the remainder of the register test, looping through
1244          * the test table until we either fail or reach the null entry.
1245          */
1246         while (test->reg) {
1247                 for (i = 0; i < test->array_len; i++) {
1248                         switch (test->test_type) {
1249                         case PATTERN_TEST:
1250                                 REG_PATTERN_TEST(test->reg +
1251                                                 (i * test->reg_offset),
1252                                                 test->mask,
1253                                                 test->write);
1254                                 break;
1255                         case SET_READ_TEST:
1256                                 REG_SET_AND_CHECK(test->reg +
1257                                                 (i * test->reg_offset),
1258                                                 test->mask,
1259                                                 test->write);
1260                                 break;
1261                         case WRITE_NO_TEST:
1262                                 writel(test->write,
1263                                     (adapter->hw.hw_addr + test->reg)
1264                                         + (i * test->reg_offset));
1265                                 break;
1266                         case TABLE32_TEST:
1267                                 REG_PATTERN_TEST(test->reg + (i * 4),
1268                                                 test->mask,
1269                                                 test->write);
1270                                 break;
1271                         case TABLE64_TEST_LO:
1272                                 REG_PATTERN_TEST(test->reg + (i * 8),
1273                                                 test->mask,
1274                                                 test->write);
1275                                 break;
1276                         case TABLE64_TEST_HI:
1277                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1278                                                 test->mask,
1279                                                 test->write);
1280                                 break;
1281                         }
1282                 }
1283                 test++;
1284         }
1285
1286         *data = 0;
1287         return 0;
1288 }
1289
1290 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1291 {
1292         *data = 0;
1293
1294         /* Validate eeprom on all parts but i211 */
1295         if (adapter->hw.mac.type != e1000_i211) {
1296                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1297                         *data = 2;
1298         }
1299
1300         return *data;
1301 }
1302
1303 static irqreturn_t igb_test_intr(int irq, void *data)
1304 {
1305         struct igb_adapter *adapter = (struct igb_adapter *) data;
1306         struct e1000_hw *hw = &adapter->hw;
1307
1308         adapter->test_icr |= rd32(E1000_ICR);
1309
1310         return IRQ_HANDLED;
1311 }
1312
1313 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1314 {
1315         struct e1000_hw *hw = &adapter->hw;
1316         struct net_device *netdev = adapter->netdev;
1317         u32 mask, ics_mask, i = 0, shared_int = true;
1318         u32 irq = adapter->pdev->irq;
1319
1320         *data = 0;
1321
1322         /* Hook up test interrupt handler just for this test */
1323         if (adapter->msix_entries) {
1324                 if (request_irq(adapter->msix_entries[0].vector,
1325                                 igb_test_intr, 0, netdev->name, adapter)) {
1326                         *data = 1;
1327                         return -1;
1328                 }
1329         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1330                 shared_int = false;
1331                 if (request_irq(irq,
1332                                 igb_test_intr, 0, netdev->name, adapter)) {
1333                         *data = 1;
1334                         return -1;
1335                 }
1336         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1337                                 netdev->name, adapter)) {
1338                 shared_int = false;
1339         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1340                  netdev->name, adapter)) {
1341                 *data = 1;
1342                 return -1;
1343         }
1344         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1345                 (shared_int ? "shared" : "unshared"));
1346
1347         /* Disable all the interrupts */
1348         wr32(E1000_IMC, ~0);
1349         wrfl();
1350         msleep(10);
1351
1352         /* Define all writable bits for ICS */
1353         switch (hw->mac.type) {
1354         case e1000_82575:
1355                 ics_mask = 0x37F47EDD;
1356                 break;
1357         case e1000_82576:
1358                 ics_mask = 0x77D4FBFD;
1359                 break;
1360         case e1000_82580:
1361                 ics_mask = 0x77DCFED5;
1362                 break;
1363         case e1000_i350:
1364         case e1000_i210:
1365         case e1000_i211:
1366                 ics_mask = 0x77DCFED5;
1367                 break;
1368         default:
1369                 ics_mask = 0x7FFFFFFF;
1370                 break;
1371         }
1372
1373         /* Test each interrupt */
1374         for (; i < 31; i++) {
1375                 /* Interrupt to test */
1376                 mask = 1 << i;
1377
1378                 if (!(mask & ics_mask))
1379                         continue;
1380
1381                 if (!shared_int) {
1382                         /* Disable the interrupt to be reported in
1383                          * the cause register and then force the same
1384                          * interrupt and see if one gets posted.  If
1385                          * an interrupt was posted to the bus, the
1386                          * test failed.
1387                          */
1388                         adapter->test_icr = 0;
1389
1390                         /* Flush any pending interrupts */
1391                         wr32(E1000_ICR, ~0);
1392
1393                         wr32(E1000_IMC, mask);
1394                         wr32(E1000_ICS, mask);
1395                         wrfl();
1396                         msleep(10);
1397
1398                         if (adapter->test_icr & mask) {
1399                                 *data = 3;
1400                                 break;
1401                         }
1402                 }
1403
1404                 /* Enable the interrupt to be reported in
1405                  * the cause register and then force the same
1406                  * interrupt and see if one gets posted.  If
1407                  * an interrupt was not posted to the bus, the
1408                  * test failed.
1409                  */
1410                 adapter->test_icr = 0;
1411
1412                 /* Flush any pending interrupts */
1413                 wr32(E1000_ICR, ~0);
1414
1415                 wr32(E1000_IMS, mask);
1416                 wr32(E1000_ICS, mask);
1417                 wrfl();
1418                 msleep(10);
1419
1420                 if (!(adapter->test_icr & mask)) {
1421                         *data = 4;
1422                         break;
1423                 }
1424
1425                 if (!shared_int) {
1426                         /* Disable the other interrupts to be reported in
1427                          * the cause register and then force the other
1428                          * interrupts and see if any get posted.  If
1429                          * an interrupt was posted to the bus, the
1430                          * test failed.
1431                          */
1432                         adapter->test_icr = 0;
1433
1434                         /* Flush any pending interrupts */
1435                         wr32(E1000_ICR, ~0);
1436
1437                         wr32(E1000_IMC, ~mask);
1438                         wr32(E1000_ICS, ~mask);
1439                         wrfl();
1440                         msleep(10);
1441
1442                         if (adapter->test_icr & mask) {
1443                                 *data = 5;
1444                                 break;
1445                         }
1446                 }
1447         }
1448
1449         /* Disable all the interrupts */
1450         wr32(E1000_IMC, ~0);
1451         wrfl();
1452         msleep(10);
1453
1454         /* Unhook test interrupt handler */
1455         if (adapter->msix_entries)
1456                 free_irq(adapter->msix_entries[0].vector, adapter);
1457         else
1458                 free_irq(irq, adapter);
1459
1460         return *data;
1461 }
1462
1463 static void igb_free_desc_rings(struct igb_adapter *adapter)
1464 {
1465         igb_free_tx_resources(&adapter->test_tx_ring);
1466         igb_free_rx_resources(&adapter->test_rx_ring);
1467 }
1468
1469 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1470 {
1471         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1472         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1473         struct e1000_hw *hw = &adapter->hw;
1474         int ret_val;
1475
1476         /* Setup Tx descriptor ring and Tx buffers */
1477         tx_ring->count = IGB_DEFAULT_TXD;
1478         tx_ring->dev = &adapter->pdev->dev;
1479         tx_ring->netdev = adapter->netdev;
1480         tx_ring->reg_idx = adapter->vfs_allocated_count;
1481
1482         if (igb_setup_tx_resources(tx_ring)) {
1483                 ret_val = 1;
1484                 goto err_nomem;
1485         }
1486
1487         igb_setup_tctl(adapter);
1488         igb_configure_tx_ring(adapter, tx_ring);
1489
1490         /* Setup Rx descriptor ring and Rx buffers */
1491         rx_ring->count = IGB_DEFAULT_RXD;
1492         rx_ring->dev = &adapter->pdev->dev;
1493         rx_ring->netdev = adapter->netdev;
1494         rx_ring->reg_idx = adapter->vfs_allocated_count;
1495
1496         if (igb_setup_rx_resources(rx_ring)) {
1497                 ret_val = 3;
1498                 goto err_nomem;
1499         }
1500
1501         /* set the default queue to queue 0 of PF */
1502         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1503
1504         /* enable receive ring */
1505         igb_setup_rctl(adapter);
1506         igb_configure_rx_ring(adapter, rx_ring);
1507
1508         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1509
1510         return 0;
1511
1512 err_nomem:
1513         igb_free_desc_rings(adapter);
1514         return ret_val;
1515 }
1516
1517 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1518 {
1519         struct e1000_hw *hw = &adapter->hw;
1520
1521         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1522         igb_write_phy_reg(hw, 29, 0x001F);
1523         igb_write_phy_reg(hw, 30, 0x8FFC);
1524         igb_write_phy_reg(hw, 29, 0x001A);
1525         igb_write_phy_reg(hw, 30, 0x8FF0);
1526 }
1527
1528 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1529 {
1530         struct e1000_hw *hw = &adapter->hw;
1531         u32 ctrl_reg = 0;
1532
1533         hw->mac.autoneg = false;
1534
1535         if (hw->phy.type == e1000_phy_m88) {
1536                 if (hw->phy.id != I210_I_PHY_ID) {
1537                         /* Auto-MDI/MDIX Off */
1538                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1539                         /* reset to update Auto-MDI/MDIX */
1540                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1541                         /* autoneg off */
1542                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1543                 } else {
1544                         /* force 1000, set loopback  */
1545                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1546                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1547                 }
1548         }
1549
1550         /* add small delay to avoid loopback test failure */
1551         msleep(50);
1552
1553         /* force 1000, set loopback */
1554         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1555
1556         /* Now set up the MAC to the same speed/duplex as the PHY. */
1557         ctrl_reg = rd32(E1000_CTRL);
1558         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1559         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1560                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1561                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1562                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1563                      E1000_CTRL_SLU);    /* Set link up enable bit */
1564
1565         if (hw->phy.type == e1000_phy_m88)
1566                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1567
1568         wr32(E1000_CTRL, ctrl_reg);
1569
1570         /* Disable the receiver on the PHY so when a cable is plugged in, the
1571          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1572          */
1573         if (hw->phy.type == e1000_phy_m88)
1574                 igb_phy_disable_receiver(adapter);
1575
1576         mdelay(500);
1577         return 0;
1578 }
1579
1580 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1581 {
1582         return igb_integrated_phy_loopback(adapter);
1583 }
1584
1585 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1586 {
1587         struct e1000_hw *hw = &adapter->hw;
1588         u32 reg;
1589
1590         reg = rd32(E1000_CTRL_EXT);
1591
1592         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1593         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1594                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1595                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1596                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1597                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1598
1599                         /* Enable DH89xxCC MPHY for near end loopback */
1600                         reg = rd32(E1000_MPHY_ADDR_CTL);
1601                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1602                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1603                         wr32(E1000_MPHY_ADDR_CTL, reg);
1604
1605                         reg = rd32(E1000_MPHY_DATA);
1606                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1607                         wr32(E1000_MPHY_DATA, reg);
1608                 }
1609
1610                 reg = rd32(E1000_RCTL);
1611                 reg |= E1000_RCTL_LBM_TCVR;
1612                 wr32(E1000_RCTL, reg);
1613
1614                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1615
1616                 reg = rd32(E1000_CTRL);
1617                 reg &= ~(E1000_CTRL_RFCE |
1618                          E1000_CTRL_TFCE |
1619                          E1000_CTRL_LRST);
1620                 reg |= E1000_CTRL_SLU |
1621                        E1000_CTRL_FD;
1622                 wr32(E1000_CTRL, reg);
1623
1624                 /* Unset switch control to serdes energy detect */
1625                 reg = rd32(E1000_CONNSW);
1626                 reg &= ~E1000_CONNSW_ENRGSRC;
1627                 wr32(E1000_CONNSW, reg);
1628
1629                 /* Unset sigdetect for SERDES loopback on
1630                  * 82580 and i350 devices.
1631                  */
1632                 switch (hw->mac.type) {
1633                 case e1000_82580:
1634                 case e1000_i350:
1635                         reg = rd32(E1000_PCS_CFG0);
1636                         reg |= E1000_PCS_CFG_IGN_SD;
1637                         wr32(E1000_PCS_CFG0, reg);
1638                         break;
1639                 default:
1640                         break;
1641                 }
1642
1643                 /* Set PCS register for forced speed */
1644                 reg = rd32(E1000_PCS_LCTL);
1645                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1646                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1647                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1648                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1649                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1650                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1651                 wr32(E1000_PCS_LCTL, reg);
1652
1653                 return 0;
1654         }
1655
1656         return igb_set_phy_loopback(adapter);
1657 }
1658
1659 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1660 {
1661         struct e1000_hw *hw = &adapter->hw;
1662         u32 rctl;
1663         u16 phy_reg;
1664
1665         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1666         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1667         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1668         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1669                 u32 reg;
1670
1671                 /* Disable near end loopback on DH89xxCC */
1672                 reg = rd32(E1000_MPHY_ADDR_CTL);
1673                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1674                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1675                 wr32(E1000_MPHY_ADDR_CTL, reg);
1676
1677                 reg = rd32(E1000_MPHY_DATA);
1678                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1679                 wr32(E1000_MPHY_DATA, reg);
1680         }
1681
1682         rctl = rd32(E1000_RCTL);
1683         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1684         wr32(E1000_RCTL, rctl);
1685
1686         hw->mac.autoneg = true;
1687         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1688         if (phy_reg & MII_CR_LOOPBACK) {
1689                 phy_reg &= ~MII_CR_LOOPBACK;
1690                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1691                 igb_phy_sw_reset(hw);
1692         }
1693 }
1694
1695 static void igb_create_lbtest_frame(struct sk_buff *skb,
1696                                     unsigned int frame_size)
1697 {
1698         memset(skb->data, 0xFF, frame_size);
1699         frame_size /= 2;
1700         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1701         memset(&skb->data[frame_size + 10], 0xBE, 1);
1702         memset(&skb->data[frame_size + 12], 0xAF, 1);
1703 }
1704
1705 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1706                                   unsigned int frame_size)
1707 {
1708         unsigned char *data;
1709         bool match = true;
1710
1711         frame_size >>= 1;
1712
1713         data = kmap(rx_buffer->page);
1714
1715         if (data[3] != 0xFF ||
1716             data[frame_size + 10] != 0xBE ||
1717             data[frame_size + 12] != 0xAF)
1718                 match = false;
1719
1720         kunmap(rx_buffer->page);
1721
1722         return match;
1723 }
1724
1725 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1726                                 struct igb_ring *tx_ring,
1727                                 unsigned int size)
1728 {
1729         union e1000_adv_rx_desc *rx_desc;
1730         struct igb_rx_buffer *rx_buffer_info;
1731         struct igb_tx_buffer *tx_buffer_info;
1732         u16 rx_ntc, tx_ntc, count = 0;
1733
1734         /* initialize next to clean and descriptor values */
1735         rx_ntc = rx_ring->next_to_clean;
1736         tx_ntc = tx_ring->next_to_clean;
1737         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1738
1739         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1740                 /* check rx buffer */
1741                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1742
1743                 /* sync Rx buffer for CPU read */
1744                 dma_sync_single_for_cpu(rx_ring->dev,
1745                                         rx_buffer_info->dma,
1746                                         IGB_RX_BUFSZ,
1747                                         DMA_FROM_DEVICE);
1748
1749                 /* verify contents of skb */
1750                 if (igb_check_lbtest_frame(rx_buffer_info, size))
1751                         count++;
1752
1753                 /* sync Rx buffer for device write */
1754                 dma_sync_single_for_device(rx_ring->dev,
1755                                            rx_buffer_info->dma,
1756                                            IGB_RX_BUFSZ,
1757                                            DMA_FROM_DEVICE);
1758
1759                 /* unmap buffer on tx side */
1760                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1761                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1762
1763                 /* increment rx/tx next to clean counters */
1764                 rx_ntc++;
1765                 if (rx_ntc == rx_ring->count)
1766                         rx_ntc = 0;
1767                 tx_ntc++;
1768                 if (tx_ntc == tx_ring->count)
1769                         tx_ntc = 0;
1770
1771                 /* fetch next descriptor */
1772                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1773         }
1774
1775         netdev_tx_reset_queue(txring_txq(tx_ring));
1776
1777         /* re-map buffers to ring, store next to clean values */
1778         igb_alloc_rx_buffers(rx_ring, count);
1779         rx_ring->next_to_clean = rx_ntc;
1780         tx_ring->next_to_clean = tx_ntc;
1781
1782         return count;
1783 }
1784
1785 static int igb_run_loopback_test(struct igb_adapter *adapter)
1786 {
1787         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1788         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1789         u16 i, j, lc, good_cnt;
1790         int ret_val = 0;
1791         unsigned int size = IGB_RX_HDR_LEN;
1792         netdev_tx_t tx_ret_val;
1793         struct sk_buff *skb;
1794
1795         /* allocate test skb */
1796         skb = alloc_skb(size, GFP_KERNEL);
1797         if (!skb)
1798                 return 11;
1799
1800         /* place data into test skb */
1801         igb_create_lbtest_frame(skb, size);
1802         skb_put(skb, size);
1803
1804         /*
1805          * Calculate the loop count based on the largest descriptor ring
1806          * The idea is to wrap the largest ring a number of times using 64
1807          * send/receive pairs during each loop
1808          */
1809
1810         if (rx_ring->count <= tx_ring->count)
1811                 lc = ((tx_ring->count / 64) * 2) + 1;
1812         else
1813                 lc = ((rx_ring->count / 64) * 2) + 1;
1814
1815         for (j = 0; j <= lc; j++) { /* loop count loop */
1816                 /* reset count of good packets */
1817                 good_cnt = 0;
1818
1819                 /* place 64 packets on the transmit queue*/
1820                 for (i = 0; i < 64; i++) {
1821                         skb_get(skb);
1822                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1823                         if (tx_ret_val == NETDEV_TX_OK)
1824                                 good_cnt++;
1825                 }
1826
1827                 if (good_cnt != 64) {
1828                         ret_val = 12;
1829                         break;
1830                 }
1831
1832                 /* allow 200 milliseconds for packets to go from tx to rx */
1833                 msleep(200);
1834
1835                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1836                 if (good_cnt != 64) {
1837                         ret_val = 13;
1838                         break;
1839                 }
1840         } /* end loop count loop */
1841
1842         /* free the original skb */
1843         kfree_skb(skb);
1844
1845         return ret_val;
1846 }
1847
1848 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1849 {
1850         /* PHY loopback cannot be performed if SoL/IDER
1851          * sessions are active */
1852         if (igb_check_reset_block(&adapter->hw)) {
1853                 dev_err(&adapter->pdev->dev,
1854                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1855                 *data = 0;
1856                 goto out;
1857         }
1858         *data = igb_setup_desc_rings(adapter);
1859         if (*data)
1860                 goto out;
1861         *data = igb_setup_loopback_test(adapter);
1862         if (*data)
1863                 goto err_loopback;
1864         *data = igb_run_loopback_test(adapter);
1865         igb_loopback_cleanup(adapter);
1866
1867 err_loopback:
1868         igb_free_desc_rings(adapter);
1869 out:
1870         return *data;
1871 }
1872
1873 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1874 {
1875         struct e1000_hw *hw = &adapter->hw;
1876         *data = 0;
1877         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1878                 int i = 0;
1879                 hw->mac.serdes_has_link = false;
1880
1881                 /* On some blade server designs, link establishment
1882                  * could take as long as 2-3 minutes */
1883                 do {
1884                         hw->mac.ops.check_for_link(&adapter->hw);
1885                         if (hw->mac.serdes_has_link)
1886                                 return *data;
1887                         msleep(20);
1888                 } while (i++ < 3750);
1889
1890                 *data = 1;
1891         } else {
1892                 hw->mac.ops.check_for_link(&adapter->hw);
1893                 if (hw->mac.autoneg)
1894                         msleep(5000);
1895
1896                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1897                         *data = 1;
1898         }
1899         return *data;
1900 }
1901
1902 static void igb_diag_test(struct net_device *netdev,
1903                           struct ethtool_test *eth_test, u64 *data)
1904 {
1905         struct igb_adapter *adapter = netdev_priv(netdev);
1906         u16 autoneg_advertised;
1907         u8 forced_speed_duplex, autoneg;
1908         bool if_running = netif_running(netdev);
1909
1910         set_bit(__IGB_TESTING, &adapter->state);
1911         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1912                 /* Offline tests */
1913
1914                 /* save speed, duplex, autoneg settings */
1915                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1916                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1917                 autoneg = adapter->hw.mac.autoneg;
1918
1919                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1920
1921                 /* power up link for link test */
1922                 igb_power_up_link(adapter);
1923
1924                 /* Link test performed before hardware reset so autoneg doesn't
1925                  * interfere with test result */
1926                 if (igb_link_test(adapter, &data[4]))
1927                         eth_test->flags |= ETH_TEST_FL_FAILED;
1928
1929                 if (if_running)
1930                         /* indicate we're in test mode */
1931                         dev_close(netdev);
1932                 else
1933                         igb_reset(adapter);
1934
1935                 if (igb_reg_test(adapter, &data[0]))
1936                         eth_test->flags |= ETH_TEST_FL_FAILED;
1937
1938                 igb_reset(adapter);
1939                 if (igb_eeprom_test(adapter, &data[1]))
1940                         eth_test->flags |= ETH_TEST_FL_FAILED;
1941
1942                 igb_reset(adapter);
1943                 if (igb_intr_test(adapter, &data[2]))
1944                         eth_test->flags |= ETH_TEST_FL_FAILED;
1945
1946                 igb_reset(adapter);
1947                 /* power up link for loopback test */
1948                 igb_power_up_link(adapter);
1949                 if (igb_loopback_test(adapter, &data[3]))
1950                         eth_test->flags |= ETH_TEST_FL_FAILED;
1951
1952                 /* restore speed, duplex, autoneg settings */
1953                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1954                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1955                 adapter->hw.mac.autoneg = autoneg;
1956
1957                 /* force this routine to wait until autoneg complete/timeout */
1958                 adapter->hw.phy.autoneg_wait_to_complete = true;
1959                 igb_reset(adapter);
1960                 adapter->hw.phy.autoneg_wait_to_complete = false;
1961
1962                 clear_bit(__IGB_TESTING, &adapter->state);
1963                 if (if_running)
1964                         dev_open(netdev);
1965         } else {
1966                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1967
1968                 /* PHY is powered down when interface is down */
1969                 if (if_running && igb_link_test(adapter, &data[4]))
1970                         eth_test->flags |= ETH_TEST_FL_FAILED;
1971                 else
1972                         data[4] = 0;
1973
1974                 /* Online tests aren't run; pass by default */
1975                 data[0] = 0;
1976                 data[1] = 0;
1977                 data[2] = 0;
1978                 data[3] = 0;
1979
1980                 clear_bit(__IGB_TESTING, &adapter->state);
1981         }
1982         msleep_interruptible(4 * 1000);
1983 }
1984
1985 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1986 {
1987         struct igb_adapter *adapter = netdev_priv(netdev);
1988
1989         wol->supported = WAKE_UCAST | WAKE_MCAST |
1990                          WAKE_BCAST | WAKE_MAGIC |
1991                          WAKE_PHY;
1992         wol->wolopts = 0;
1993
1994         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
1995                 return;
1996
1997         /* apply any specific unsupported masks here */
1998         switch (adapter->hw.device_id) {
1999         default:
2000                 break;
2001         }
2002
2003         if (adapter->wol & E1000_WUFC_EX)
2004                 wol->wolopts |= WAKE_UCAST;
2005         if (adapter->wol & E1000_WUFC_MC)
2006                 wol->wolopts |= WAKE_MCAST;
2007         if (adapter->wol & E1000_WUFC_BC)
2008                 wol->wolopts |= WAKE_BCAST;
2009         if (adapter->wol & E1000_WUFC_MAG)
2010                 wol->wolopts |= WAKE_MAGIC;
2011         if (adapter->wol & E1000_WUFC_LNKC)
2012                 wol->wolopts |= WAKE_PHY;
2013 }
2014
2015 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2016 {
2017         struct igb_adapter *adapter = netdev_priv(netdev);
2018
2019         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2020                 return -EOPNOTSUPP;
2021
2022         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2023                 return wol->wolopts ? -EOPNOTSUPP : 0;
2024
2025         /* these settings will always override what we currently have */
2026         adapter->wol = 0;
2027
2028         if (wol->wolopts & WAKE_UCAST)
2029                 adapter->wol |= E1000_WUFC_EX;
2030         if (wol->wolopts & WAKE_MCAST)
2031                 adapter->wol |= E1000_WUFC_MC;
2032         if (wol->wolopts & WAKE_BCAST)
2033                 adapter->wol |= E1000_WUFC_BC;
2034         if (wol->wolopts & WAKE_MAGIC)
2035                 adapter->wol |= E1000_WUFC_MAG;
2036         if (wol->wolopts & WAKE_PHY)
2037                 adapter->wol |= E1000_WUFC_LNKC;
2038         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2039
2040         return 0;
2041 }
2042
2043 /* bit defines for adapter->led_status */
2044 #define IGB_LED_ON              0
2045
2046 static int igb_set_phys_id(struct net_device *netdev,
2047                            enum ethtool_phys_id_state state)
2048 {
2049         struct igb_adapter *adapter = netdev_priv(netdev);
2050         struct e1000_hw *hw = &adapter->hw;
2051
2052         switch (state) {
2053         case ETHTOOL_ID_ACTIVE:
2054                 igb_blink_led(hw);
2055                 return 2;
2056         case ETHTOOL_ID_ON:
2057                 igb_blink_led(hw);
2058                 break;
2059         case ETHTOOL_ID_OFF:
2060                 igb_led_off(hw);
2061                 break;
2062         case ETHTOOL_ID_INACTIVE:
2063                 igb_led_off(hw);
2064                 clear_bit(IGB_LED_ON, &adapter->led_status);
2065                 igb_cleanup_led(hw);
2066                 break;
2067         }
2068
2069         return 0;
2070 }
2071
2072 static int igb_set_coalesce(struct net_device *netdev,
2073                             struct ethtool_coalesce *ec)
2074 {
2075         struct igb_adapter *adapter = netdev_priv(netdev);
2076         int i;
2077
2078         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2079             ((ec->rx_coalesce_usecs > 3) &&
2080              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2081             (ec->rx_coalesce_usecs == 2))
2082                 return -EINVAL;
2083
2084         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2085             ((ec->tx_coalesce_usecs > 3) &&
2086              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2087             (ec->tx_coalesce_usecs == 2))
2088                 return -EINVAL;
2089
2090         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2091                 return -EINVAL;
2092
2093         /* If ITR is disabled, disable DMAC */
2094         if (ec->rx_coalesce_usecs == 0) {
2095                 if (adapter->flags & IGB_FLAG_DMAC)
2096                         adapter->flags &= ~IGB_FLAG_DMAC;
2097         }
2098
2099         /* convert to rate of irq's per second */
2100         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2101                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2102         else
2103                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2104
2105         /* convert to rate of irq's per second */
2106         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2107                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2108         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2109                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2110         else
2111                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2112
2113         for (i = 0; i < adapter->num_q_vectors; i++) {
2114                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2115                 q_vector->tx.work_limit = adapter->tx_work_limit;
2116                 if (q_vector->rx.ring)
2117                         q_vector->itr_val = adapter->rx_itr_setting;
2118                 else
2119                         q_vector->itr_val = adapter->tx_itr_setting;
2120                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2121                         q_vector->itr_val = IGB_START_ITR;
2122                 q_vector->set_itr = 1;
2123         }
2124
2125         return 0;
2126 }
2127
2128 static int igb_get_coalesce(struct net_device *netdev,
2129                             struct ethtool_coalesce *ec)
2130 {
2131         struct igb_adapter *adapter = netdev_priv(netdev);
2132
2133         if (adapter->rx_itr_setting <= 3)
2134                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2135         else
2136                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2137
2138         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2139                 if (adapter->tx_itr_setting <= 3)
2140                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2141                 else
2142                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2143         }
2144
2145         return 0;
2146 }
2147
2148 static int igb_nway_reset(struct net_device *netdev)
2149 {
2150         struct igb_adapter *adapter = netdev_priv(netdev);
2151         if (netif_running(netdev))
2152                 igb_reinit_locked(adapter);
2153         return 0;
2154 }
2155
2156 static int igb_get_sset_count(struct net_device *netdev, int sset)
2157 {
2158         switch (sset) {
2159         case ETH_SS_STATS:
2160                 return IGB_STATS_LEN;
2161         case ETH_SS_TEST:
2162                 return IGB_TEST_LEN;
2163         default:
2164                 return -ENOTSUPP;
2165         }
2166 }
2167
2168 static void igb_get_ethtool_stats(struct net_device *netdev,
2169                                   struct ethtool_stats *stats, u64 *data)
2170 {
2171         struct igb_adapter *adapter = netdev_priv(netdev);
2172         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2173         unsigned int start;
2174         struct igb_ring *ring;
2175         int i, j;
2176         char *p;
2177
2178         spin_lock(&adapter->stats64_lock);
2179         igb_update_stats(adapter, net_stats);
2180
2181         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2182                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2183                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2184                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2185         }
2186         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2187                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2188                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2189                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2190         }
2191         for (j = 0; j < adapter->num_tx_queues; j++) {
2192                 u64     restart2;
2193
2194                 ring = adapter->tx_ring[j];
2195                 do {
2196                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2197                         data[i]   = ring->tx_stats.packets;
2198                         data[i+1] = ring->tx_stats.bytes;
2199                         data[i+2] = ring->tx_stats.restart_queue;
2200                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2201                 do {
2202                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2203                         restart2  = ring->tx_stats.restart_queue2;
2204                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2205                 data[i+2] += restart2;
2206
2207                 i += IGB_TX_QUEUE_STATS_LEN;
2208         }
2209         for (j = 0; j < adapter->num_rx_queues; j++) {
2210                 ring = adapter->rx_ring[j];
2211                 do {
2212                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2213                         data[i]   = ring->rx_stats.packets;
2214                         data[i+1] = ring->rx_stats.bytes;
2215                         data[i+2] = ring->rx_stats.drops;
2216                         data[i+3] = ring->rx_stats.csum_err;
2217                         data[i+4] = ring->rx_stats.alloc_failed;
2218                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2219                 i += IGB_RX_QUEUE_STATS_LEN;
2220         }
2221         spin_unlock(&adapter->stats64_lock);
2222 }
2223
2224 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2225 {
2226         struct igb_adapter *adapter = netdev_priv(netdev);
2227         u8 *p = data;
2228         int i;
2229
2230         switch (stringset) {
2231         case ETH_SS_TEST:
2232                 memcpy(data, *igb_gstrings_test,
2233                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2234                 break;
2235         case ETH_SS_STATS:
2236                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2237                         memcpy(p, igb_gstrings_stats[i].stat_string,
2238                                ETH_GSTRING_LEN);
2239                         p += ETH_GSTRING_LEN;
2240                 }
2241                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2242                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2243                                ETH_GSTRING_LEN);
2244                         p += ETH_GSTRING_LEN;
2245                 }
2246                 for (i = 0; i < adapter->num_tx_queues; i++) {
2247                         sprintf(p, "tx_queue_%u_packets", i);
2248                         p += ETH_GSTRING_LEN;
2249                         sprintf(p, "tx_queue_%u_bytes", i);
2250                         p += ETH_GSTRING_LEN;
2251                         sprintf(p, "tx_queue_%u_restart", i);
2252                         p += ETH_GSTRING_LEN;
2253                 }
2254                 for (i = 0; i < adapter->num_rx_queues; i++) {
2255                         sprintf(p, "rx_queue_%u_packets", i);
2256                         p += ETH_GSTRING_LEN;
2257                         sprintf(p, "rx_queue_%u_bytes", i);
2258                         p += ETH_GSTRING_LEN;
2259                         sprintf(p, "rx_queue_%u_drops", i);
2260                         p += ETH_GSTRING_LEN;
2261                         sprintf(p, "rx_queue_%u_csum_err", i);
2262                         p += ETH_GSTRING_LEN;
2263                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2264                         p += ETH_GSTRING_LEN;
2265                 }
2266 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2267                 break;
2268         }
2269 }
2270
2271 static int igb_get_ts_info(struct net_device *dev,
2272                            struct ethtool_ts_info *info)
2273 {
2274         struct igb_adapter *adapter = netdev_priv(dev);
2275
2276         switch (adapter->hw.mac.type) {
2277         case e1000_82575:
2278                 info->so_timestamping =
2279                         SOF_TIMESTAMPING_TX_SOFTWARE |
2280                         SOF_TIMESTAMPING_RX_SOFTWARE |
2281                         SOF_TIMESTAMPING_SOFTWARE;
2282                 return 0;
2283         case e1000_82576:
2284         case e1000_82580:
2285         case e1000_i350:
2286         case e1000_i210:
2287         case e1000_i211:
2288                 info->so_timestamping =
2289                         SOF_TIMESTAMPING_TX_SOFTWARE |
2290                         SOF_TIMESTAMPING_RX_SOFTWARE |
2291                         SOF_TIMESTAMPING_SOFTWARE |
2292                         SOF_TIMESTAMPING_TX_HARDWARE |
2293                         SOF_TIMESTAMPING_RX_HARDWARE |
2294                         SOF_TIMESTAMPING_RAW_HARDWARE;
2295
2296                 if (adapter->ptp_clock)
2297                         info->phc_index = ptp_clock_index(adapter->ptp_clock);
2298                 else
2299                         info->phc_index = -1;
2300
2301                 info->tx_types =
2302                         (1 << HWTSTAMP_TX_OFF) |
2303                         (1 << HWTSTAMP_TX_ON);
2304
2305                 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2306
2307                 /* 82576 does not support timestamping all packets. */
2308                 if (adapter->hw.mac.type >= e1000_82580)
2309                         info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2310                 else
2311                         info->rx_filters |=
2312                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2313                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2314                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2315                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2316                                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2317                                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2318                                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2319
2320                 return 0;
2321         default:
2322                 return -EOPNOTSUPP;
2323         }
2324 }
2325
2326 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2327                                  struct ethtool_rxnfc *cmd)
2328 {
2329         cmd->data = 0;
2330
2331         /* Report default options for RSS on igb */
2332         switch (cmd->flow_type) {
2333         case TCP_V4_FLOW:
2334                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2335         case UDP_V4_FLOW:
2336                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2337                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2338         case SCTP_V4_FLOW:
2339         case AH_ESP_V4_FLOW:
2340         case AH_V4_FLOW:
2341         case ESP_V4_FLOW:
2342         case IPV4_FLOW:
2343                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2344                 break;
2345         case TCP_V6_FLOW:
2346                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2347         case UDP_V6_FLOW:
2348                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2349                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2350         case SCTP_V6_FLOW:
2351         case AH_ESP_V6_FLOW:
2352         case AH_V6_FLOW:
2353         case ESP_V6_FLOW:
2354         case IPV6_FLOW:
2355                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2356                 break;
2357         default:
2358                 return -EINVAL;
2359         }
2360
2361         return 0;
2362 }
2363
2364 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2365                            u32 *rule_locs)
2366 {
2367         struct igb_adapter *adapter = netdev_priv(dev);
2368         int ret = -EOPNOTSUPP;
2369
2370         switch (cmd->cmd) {
2371         case ETHTOOL_GRXRINGS:
2372                 cmd->data = adapter->num_rx_queues;
2373                 ret = 0;
2374                 break;
2375         case ETHTOOL_GRXFH:
2376                 ret = igb_get_rss_hash_opts(adapter, cmd);
2377                 break;
2378         default:
2379                 break;
2380         }
2381
2382         return ret;
2383 }
2384
2385 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2386                        IGB_FLAG_RSS_FIELD_IPV6_UDP)
2387 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2388                                 struct ethtool_rxnfc *nfc)
2389 {
2390         u32 flags = adapter->flags;
2391
2392         /* RSS does not support anything other than hashing
2393          * to queues on src and dst IPs and ports
2394          */
2395         if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2396                           RXH_L4_B_0_1 | RXH_L4_B_2_3))
2397                 return -EINVAL;
2398
2399         switch (nfc->flow_type) {
2400         case TCP_V4_FLOW:
2401         case TCP_V6_FLOW:
2402                 if (!(nfc->data & RXH_IP_SRC) ||
2403                     !(nfc->data & RXH_IP_DST) ||
2404                     !(nfc->data & RXH_L4_B_0_1) ||
2405                     !(nfc->data & RXH_L4_B_2_3))
2406                         return -EINVAL;
2407                 break;
2408         case UDP_V4_FLOW:
2409                 if (!(nfc->data & RXH_IP_SRC) ||
2410                     !(nfc->data & RXH_IP_DST))
2411                         return -EINVAL;
2412                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2413                 case 0:
2414                         flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2415                         break;
2416                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2417                         flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2418                         break;
2419                 default:
2420                         return -EINVAL;
2421                 }
2422                 break;
2423         case UDP_V6_FLOW:
2424                 if (!(nfc->data & RXH_IP_SRC) ||
2425                     !(nfc->data & RXH_IP_DST))
2426                         return -EINVAL;
2427                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2428                 case 0:
2429                         flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2430                         break;
2431                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2432                         flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2433                         break;
2434                 default:
2435                         return -EINVAL;
2436                 }
2437                 break;
2438         case AH_ESP_V4_FLOW:
2439         case AH_V4_FLOW:
2440         case ESP_V4_FLOW:
2441         case SCTP_V4_FLOW:
2442         case AH_ESP_V6_FLOW:
2443         case AH_V6_FLOW:
2444         case ESP_V6_FLOW:
2445         case SCTP_V6_FLOW:
2446                 if (!(nfc->data & RXH_IP_SRC) ||
2447                     !(nfc->data & RXH_IP_DST) ||
2448                     (nfc->data & RXH_L4_B_0_1) ||
2449                     (nfc->data & RXH_L4_B_2_3))
2450                         return -EINVAL;
2451                 break;
2452         default:
2453                 return -EINVAL;
2454         }
2455
2456         /* if we changed something we need to update flags */
2457         if (flags != adapter->flags) {
2458                 struct e1000_hw *hw = &adapter->hw;
2459                 u32 mrqc = rd32(E1000_MRQC);
2460
2461                 if ((flags & UDP_RSS_FLAGS) &&
2462                     !(adapter->flags & UDP_RSS_FLAGS))
2463                         dev_err(&adapter->pdev->dev,
2464                                 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2465
2466                 adapter->flags = flags;
2467
2468                 /* Perform hash on these packet types */
2469                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2470                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2471                         E1000_MRQC_RSS_FIELD_IPV6 |
2472                         E1000_MRQC_RSS_FIELD_IPV6_TCP;
2473
2474                 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2475                           E1000_MRQC_RSS_FIELD_IPV6_UDP);
2476
2477                 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2478                         mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2479
2480                 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2481                         mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2482
2483                 wr32(E1000_MRQC, mrqc);
2484         }
2485
2486         return 0;
2487 }
2488
2489 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2490 {
2491         struct igb_adapter *adapter = netdev_priv(dev);
2492         int ret = -EOPNOTSUPP;
2493
2494         switch (cmd->cmd) {
2495         case ETHTOOL_SRXFH:
2496                 ret = igb_set_rss_hash_opt(adapter, cmd);
2497                 break;
2498         default:
2499                 break;
2500         }
2501
2502         return ret;
2503 }
2504
2505 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2506 {
2507         struct igb_adapter *adapter = netdev_priv(netdev);
2508         struct e1000_hw *hw = &adapter->hw;
2509         u32 ipcnfg, eeer;
2510
2511         if ((hw->mac.type < e1000_i350) ||
2512             (hw->phy.media_type != e1000_media_type_copper))
2513                 return -EOPNOTSUPP;
2514
2515         edata->supported = (SUPPORTED_1000baseT_Full |
2516                             SUPPORTED_100baseT_Full);
2517
2518         ipcnfg = rd32(E1000_IPCNFG);
2519         eeer = rd32(E1000_EEER);
2520
2521         /* EEE status on negotiated link */
2522         if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2523                 edata->advertised = ADVERTISED_1000baseT_Full;
2524
2525         if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2526                 edata->advertised |= ADVERTISED_100baseT_Full;
2527
2528         if (eeer & E1000_EEER_EEE_NEG)
2529                 edata->eee_active = true;
2530
2531         edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2532
2533         if (eeer & E1000_EEER_TX_LPI_EN)
2534                 edata->tx_lpi_enabled = true;
2535
2536         /* Report correct negotiated EEE status for devices that
2537          * wrongly report EEE at half-duplex
2538          */
2539         if (adapter->link_duplex == HALF_DUPLEX) {
2540                 edata->eee_enabled = false;
2541                 edata->eee_active = false;
2542                 edata->tx_lpi_enabled = false;
2543                 edata->advertised &= ~edata->advertised;
2544         }
2545
2546         return 0;
2547 }
2548
2549 static int igb_set_eee(struct net_device *netdev,
2550                        struct ethtool_eee *edata)
2551 {
2552         struct igb_adapter *adapter = netdev_priv(netdev);
2553         struct e1000_hw *hw = &adapter->hw;
2554         struct ethtool_eee eee_curr;
2555         s32 ret_val;
2556
2557         if ((hw->mac.type < e1000_i350) ||
2558             (hw->phy.media_type != e1000_media_type_copper))
2559                 return -EOPNOTSUPP;
2560
2561         ret_val = igb_get_eee(netdev, &eee_curr);
2562         if (ret_val)
2563                 return ret_val;
2564
2565         if (eee_curr.eee_enabled) {
2566                 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2567                         dev_err(&adapter->pdev->dev,
2568                                 "Setting EEE tx-lpi is not supported\n");
2569                         return -EINVAL;
2570                 }
2571
2572                 /* Tx LPI timer is not implemented currently */
2573                 if (edata->tx_lpi_timer) {
2574                         dev_err(&adapter->pdev->dev,
2575                                 "Setting EEE Tx LPI timer is not supported\n");
2576                         return -EINVAL;
2577                 }
2578
2579                 if (eee_curr.advertised != edata->advertised) {
2580                         dev_err(&adapter->pdev->dev,
2581                                 "Setting EEE Advertisement is not supported\n");
2582                         return -EINVAL;
2583                 }
2584
2585         } else if (!edata->eee_enabled) {
2586                 dev_err(&adapter->pdev->dev,
2587                         "Setting EEE options are not supported with EEE disabled\n");
2588                         return -EINVAL;
2589                 }
2590
2591         if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2592                 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2593                 igb_set_eee_i350(hw);
2594
2595                 /* reset link */
2596                 if (!netif_running(netdev))
2597                         igb_reset(adapter);
2598         }
2599
2600         return 0;
2601 }
2602
2603 static int igb_ethtool_begin(struct net_device *netdev)
2604 {
2605         struct igb_adapter *adapter = netdev_priv(netdev);
2606         pm_runtime_get_sync(&adapter->pdev->dev);
2607         return 0;
2608 }
2609
2610 static void igb_ethtool_complete(struct net_device *netdev)
2611 {
2612         struct igb_adapter *adapter = netdev_priv(netdev);
2613         pm_runtime_put(&adapter->pdev->dev);
2614 }
2615
2616 static const struct ethtool_ops igb_ethtool_ops = {
2617         .get_settings           = igb_get_settings,
2618         .set_settings           = igb_set_settings,
2619         .get_drvinfo            = igb_get_drvinfo,
2620         .get_regs_len           = igb_get_regs_len,
2621         .get_regs               = igb_get_regs,
2622         .get_wol                = igb_get_wol,
2623         .set_wol                = igb_set_wol,
2624         .get_msglevel           = igb_get_msglevel,
2625         .set_msglevel           = igb_set_msglevel,
2626         .nway_reset             = igb_nway_reset,
2627         .get_link               = igb_get_link,
2628         .get_eeprom_len         = igb_get_eeprom_len,
2629         .get_eeprom             = igb_get_eeprom,
2630         .set_eeprom             = igb_set_eeprom,
2631         .get_ringparam          = igb_get_ringparam,
2632         .set_ringparam          = igb_set_ringparam,
2633         .get_pauseparam         = igb_get_pauseparam,
2634         .set_pauseparam         = igb_set_pauseparam,
2635         .self_test              = igb_diag_test,
2636         .get_strings            = igb_get_strings,
2637         .set_phys_id            = igb_set_phys_id,
2638         .get_sset_count         = igb_get_sset_count,
2639         .get_ethtool_stats      = igb_get_ethtool_stats,
2640         .get_coalesce           = igb_get_coalesce,
2641         .set_coalesce           = igb_set_coalesce,
2642         .get_ts_info            = igb_get_ts_info,
2643         .get_rxnfc              = igb_get_rxnfc,
2644         .set_rxnfc              = igb_set_rxnfc,
2645         .get_eee                = igb_get_eee,
2646         .set_eee                = igb_set_eee,
2647         .begin                  = igb_ethtool_begin,
2648         .complete               = igb_ethtool_complete,
2649 };
2650
2651 void igb_set_ethtool_ops(struct net_device *netdev)
2652 {
2653         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2654 }