igb: update to allow reading/setting MDI state
[firefly-linux-kernel-4.4.55.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40
41 #include "igb.h"
42
43 struct igb_stats {
44         char stat_string[ETH_GSTRING_LEN];
45         int sizeof_stat;
46         int stat_offset;
47 };
48
49 #define IGB_STAT(_name, _stat) { \
50         .stat_string = _name, \
51         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52         .stat_offset = offsetof(struct igb_adapter, _stat) \
53 }
54 static const struct igb_stats igb_gstrings_stats[] = {
55         IGB_STAT("rx_packets", stats.gprc),
56         IGB_STAT("tx_packets", stats.gptc),
57         IGB_STAT("rx_bytes", stats.gorc),
58         IGB_STAT("tx_bytes", stats.gotc),
59         IGB_STAT("rx_broadcast", stats.bprc),
60         IGB_STAT("tx_broadcast", stats.bptc),
61         IGB_STAT("rx_multicast", stats.mprc),
62         IGB_STAT("tx_multicast", stats.mptc),
63         IGB_STAT("multicast", stats.mprc),
64         IGB_STAT("collisions", stats.colc),
65         IGB_STAT("rx_crc_errors", stats.crcerrs),
66         IGB_STAT("rx_no_buffer_count", stats.rnbc),
67         IGB_STAT("rx_missed_errors", stats.mpc),
68         IGB_STAT("tx_aborted_errors", stats.ecol),
69         IGB_STAT("tx_carrier_errors", stats.tncrs),
70         IGB_STAT("tx_window_errors", stats.latecol),
71         IGB_STAT("tx_abort_late_coll", stats.latecol),
72         IGB_STAT("tx_deferred_ok", stats.dc),
73         IGB_STAT("tx_single_coll_ok", stats.scc),
74         IGB_STAT("tx_multi_coll_ok", stats.mcc),
75         IGB_STAT("tx_timeout_count", tx_timeout_count),
76         IGB_STAT("rx_long_length_errors", stats.roc),
77         IGB_STAT("rx_short_length_errors", stats.ruc),
78         IGB_STAT("rx_align_errors", stats.algnerrc),
79         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83         IGB_STAT("tx_flow_control_xon", stats.xontxc),
84         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85         IGB_STAT("rx_long_byte_count", stats.gorc),
86         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87         IGB_STAT("tx_smbus", stats.mgptc),
88         IGB_STAT("rx_smbus", stats.mgprc),
89         IGB_STAT("dropped_smbus", stats.mgpdc),
90         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94 };
95
96 #define IGB_NETDEV_STAT(_net_stat) { \
97         .stat_string = __stringify(_net_stat), \
98         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102         IGB_NETDEV_STAT(rx_errors),
103         IGB_NETDEV_STAT(tx_errors),
104         IGB_NETDEV_STAT(tx_dropped),
105         IGB_NETDEV_STAT(rx_length_errors),
106         IGB_NETDEV_STAT(rx_over_errors),
107         IGB_NETDEV_STAT(rx_frame_errors),
108         IGB_NETDEV_STAT(rx_fifo_errors),
109         IGB_NETDEV_STAT(tx_fifo_errors),
110         IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112
113 #define IGB_GLOBAL_STATS_LEN    \
114         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN    \
116         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122 #define IGB_QUEUE_STATS_LEN \
123         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124           IGB_RX_QUEUE_STATS_LEN) + \
125          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126           IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131         "Register test  (offline)", "Eeprom test    (offline)",
132         "Interrupt test (offline)", "Loopback test  (offline)",
133         "Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139         struct igb_adapter *adapter = netdev_priv(netdev);
140         struct e1000_hw *hw = &adapter->hw;
141         u32 status;
142
143         if (hw->phy.media_type == e1000_media_type_copper) {
144
145                 ecmd->supported = (SUPPORTED_10baseT_Half |
146                                    SUPPORTED_10baseT_Full |
147                                    SUPPORTED_100baseT_Half |
148                                    SUPPORTED_100baseT_Full |
149                                    SUPPORTED_1000baseT_Full|
150                                    SUPPORTED_Autoneg |
151                                    SUPPORTED_TP);
152                 ecmd->advertising = (ADVERTISED_TP |
153                                      ADVERTISED_Pause);
154
155                 if (hw->mac.autoneg == 1) {
156                         ecmd->advertising |= ADVERTISED_Autoneg;
157                         /* the e1000 autoneg seems to match ethtool nicely */
158                         ecmd->advertising |= hw->phy.autoneg_advertised;
159                 }
160
161                 ecmd->port = PORT_TP;
162                 ecmd->phy_address = hw->phy.addr;
163         } else {
164                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
165                                      SUPPORTED_FIBRE |
166                                      SUPPORTED_Autoneg);
167
168                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
169                                      ADVERTISED_FIBRE |
170                                      ADVERTISED_Autoneg |
171                                      ADVERTISED_Pause);
172
173                 ecmd->port = PORT_FIBRE;
174         }
175
176         ecmd->transceiver = XCVR_INTERNAL;
177
178         status = rd32(E1000_STATUS);
179
180         if (status & E1000_STATUS_LU) {
181
182                 if ((status & E1000_STATUS_SPEED_1000) ||
183                     hw->phy.media_type != e1000_media_type_copper)
184                         ethtool_cmd_speed_set(ecmd, SPEED_1000);
185                 else if (status & E1000_STATUS_SPEED_100)
186                         ethtool_cmd_speed_set(ecmd, SPEED_100);
187                 else
188                         ethtool_cmd_speed_set(ecmd, SPEED_10);
189
190                 if ((status & E1000_STATUS_FD) ||
191                     hw->phy.media_type != e1000_media_type_copper)
192                         ecmd->duplex = DUPLEX_FULL;
193                 else
194                         ecmd->duplex = DUPLEX_HALF;
195         } else {
196                 ethtool_cmd_speed_set(ecmd, -1);
197                 ecmd->duplex = -1;
198         }
199
200         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
201
202         /* MDI-X => 2; MDI =>1; Invalid =>0 */
203         if (hw->phy.media_type == e1000_media_type_copper)
204                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
205                                                       ETH_TP_MDI;
206         else
207                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
208
209         if (hw->phy.mdix == AUTO_ALL_MODES)
210                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
211         else
212                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
213
214         return 0;
215 }
216
217 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
218 {
219         struct igb_adapter *adapter = netdev_priv(netdev);
220         struct e1000_hw *hw = &adapter->hw;
221
222         /* When SoL/IDER sessions are active, autoneg/speed/duplex
223          * cannot be changed */
224         if (igb_check_reset_block(hw)) {
225                 dev_err(&adapter->pdev->dev, "Cannot change link "
226                         "characteristics when SoL/IDER is active.\n");
227                 return -EINVAL;
228         }
229
230         /*
231          * MDI setting is only allowed when autoneg enabled because
232          * some hardware doesn't allow MDI setting when speed or
233          * duplex is forced.
234          */
235         if (ecmd->eth_tp_mdix_ctrl) {
236                 if (hw->phy.media_type != e1000_media_type_copper)
237                         return -EOPNOTSUPP;
238
239                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
240                     (ecmd->autoneg != AUTONEG_ENABLE)) {
241                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
242                         return -EINVAL;
243                 }
244         }
245
246         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
247                 msleep(1);
248
249         if (ecmd->autoneg == AUTONEG_ENABLE) {
250                 hw->mac.autoneg = 1;
251                 hw->phy.autoneg_advertised = ecmd->advertising |
252                                              ADVERTISED_TP |
253                                              ADVERTISED_Autoneg;
254                 ecmd->advertising = hw->phy.autoneg_advertised;
255                 if (adapter->fc_autoneg)
256                         hw->fc.requested_mode = e1000_fc_default;
257         } else {
258                 u32 speed = ethtool_cmd_speed(ecmd);
259                 /* calling this overrides forced MDI setting */
260                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
261                         clear_bit(__IGB_RESETTING, &adapter->state);
262                         return -EINVAL;
263                 }
264         }
265
266         /* MDI-X => 2; MDI => 1; Auto => 3 */
267         if (ecmd->eth_tp_mdix_ctrl) {
268                 /*
269                  * fix up the value for auto (3 => 0) as zero is mapped
270                  * internally to auto
271                  */
272                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
273                         hw->phy.mdix = AUTO_ALL_MODES;
274                 else
275                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
276         }
277
278         /* reset the link */
279         if (netif_running(adapter->netdev)) {
280                 igb_down(adapter);
281                 igb_up(adapter);
282         } else
283                 igb_reset(adapter);
284
285         clear_bit(__IGB_RESETTING, &adapter->state);
286         return 0;
287 }
288
289 static u32 igb_get_link(struct net_device *netdev)
290 {
291         struct igb_adapter *adapter = netdev_priv(netdev);
292         struct e1000_mac_info *mac = &adapter->hw.mac;
293
294         /*
295          * If the link is not reported up to netdev, interrupts are disabled,
296          * and so the physical link state may have changed since we last
297          * looked. Set get_link_status to make sure that the true link
298          * state is interrogated, rather than pulling a cached and possibly
299          * stale link state from the driver.
300          */
301         if (!netif_carrier_ok(netdev))
302                 mac->get_link_status = 1;
303
304         return igb_has_link(adapter);
305 }
306
307 static void igb_get_pauseparam(struct net_device *netdev,
308                                struct ethtool_pauseparam *pause)
309 {
310         struct igb_adapter *adapter = netdev_priv(netdev);
311         struct e1000_hw *hw = &adapter->hw;
312
313         pause->autoneg =
314                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
315
316         if (hw->fc.current_mode == e1000_fc_rx_pause)
317                 pause->rx_pause = 1;
318         else if (hw->fc.current_mode == e1000_fc_tx_pause)
319                 pause->tx_pause = 1;
320         else if (hw->fc.current_mode == e1000_fc_full) {
321                 pause->rx_pause = 1;
322                 pause->tx_pause = 1;
323         }
324 }
325
326 static int igb_set_pauseparam(struct net_device *netdev,
327                               struct ethtool_pauseparam *pause)
328 {
329         struct igb_adapter *adapter = netdev_priv(netdev);
330         struct e1000_hw *hw = &adapter->hw;
331         int retval = 0;
332
333         adapter->fc_autoneg = pause->autoneg;
334
335         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
336                 msleep(1);
337
338         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
339                 hw->fc.requested_mode = e1000_fc_default;
340                 if (netif_running(adapter->netdev)) {
341                         igb_down(adapter);
342                         igb_up(adapter);
343                 } else {
344                         igb_reset(adapter);
345                 }
346         } else {
347                 if (pause->rx_pause && pause->tx_pause)
348                         hw->fc.requested_mode = e1000_fc_full;
349                 else if (pause->rx_pause && !pause->tx_pause)
350                         hw->fc.requested_mode = e1000_fc_rx_pause;
351                 else if (!pause->rx_pause && pause->tx_pause)
352                         hw->fc.requested_mode = e1000_fc_tx_pause;
353                 else if (!pause->rx_pause && !pause->tx_pause)
354                         hw->fc.requested_mode = e1000_fc_none;
355
356                 hw->fc.current_mode = hw->fc.requested_mode;
357
358                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
359                           igb_force_mac_fc(hw) : igb_setup_link(hw));
360         }
361
362         clear_bit(__IGB_RESETTING, &adapter->state);
363         return retval;
364 }
365
366 static u32 igb_get_msglevel(struct net_device *netdev)
367 {
368         struct igb_adapter *adapter = netdev_priv(netdev);
369         return adapter->msg_enable;
370 }
371
372 static void igb_set_msglevel(struct net_device *netdev, u32 data)
373 {
374         struct igb_adapter *adapter = netdev_priv(netdev);
375         adapter->msg_enable = data;
376 }
377
378 static int igb_get_regs_len(struct net_device *netdev)
379 {
380 #define IGB_REGS_LEN 739
381         return IGB_REGS_LEN * sizeof(u32);
382 }
383
384 static void igb_get_regs(struct net_device *netdev,
385                          struct ethtool_regs *regs, void *p)
386 {
387         struct igb_adapter *adapter = netdev_priv(netdev);
388         struct e1000_hw *hw = &adapter->hw;
389         u32 *regs_buff = p;
390         u8 i;
391
392         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
393
394         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
395
396         /* General Registers */
397         regs_buff[0] = rd32(E1000_CTRL);
398         regs_buff[1] = rd32(E1000_STATUS);
399         regs_buff[2] = rd32(E1000_CTRL_EXT);
400         regs_buff[3] = rd32(E1000_MDIC);
401         regs_buff[4] = rd32(E1000_SCTL);
402         regs_buff[5] = rd32(E1000_CONNSW);
403         regs_buff[6] = rd32(E1000_VET);
404         regs_buff[7] = rd32(E1000_LEDCTL);
405         regs_buff[8] = rd32(E1000_PBA);
406         regs_buff[9] = rd32(E1000_PBS);
407         regs_buff[10] = rd32(E1000_FRTIMER);
408         regs_buff[11] = rd32(E1000_TCPTIMER);
409
410         /* NVM Register */
411         regs_buff[12] = rd32(E1000_EECD);
412
413         /* Interrupt */
414         /* Reading EICS for EICR because they read the
415          * same but EICS does not clear on read */
416         regs_buff[13] = rd32(E1000_EICS);
417         regs_buff[14] = rd32(E1000_EICS);
418         regs_buff[15] = rd32(E1000_EIMS);
419         regs_buff[16] = rd32(E1000_EIMC);
420         regs_buff[17] = rd32(E1000_EIAC);
421         regs_buff[18] = rd32(E1000_EIAM);
422         /* Reading ICS for ICR because they read the
423          * same but ICS does not clear on read */
424         regs_buff[19] = rd32(E1000_ICS);
425         regs_buff[20] = rd32(E1000_ICS);
426         regs_buff[21] = rd32(E1000_IMS);
427         regs_buff[22] = rd32(E1000_IMC);
428         regs_buff[23] = rd32(E1000_IAC);
429         regs_buff[24] = rd32(E1000_IAM);
430         regs_buff[25] = rd32(E1000_IMIRVP);
431
432         /* Flow Control */
433         regs_buff[26] = rd32(E1000_FCAL);
434         regs_buff[27] = rd32(E1000_FCAH);
435         regs_buff[28] = rd32(E1000_FCTTV);
436         regs_buff[29] = rd32(E1000_FCRTL);
437         regs_buff[30] = rd32(E1000_FCRTH);
438         regs_buff[31] = rd32(E1000_FCRTV);
439
440         /* Receive */
441         regs_buff[32] = rd32(E1000_RCTL);
442         regs_buff[33] = rd32(E1000_RXCSUM);
443         regs_buff[34] = rd32(E1000_RLPML);
444         regs_buff[35] = rd32(E1000_RFCTL);
445         regs_buff[36] = rd32(E1000_MRQC);
446         regs_buff[37] = rd32(E1000_VT_CTL);
447
448         /* Transmit */
449         regs_buff[38] = rd32(E1000_TCTL);
450         regs_buff[39] = rd32(E1000_TCTL_EXT);
451         regs_buff[40] = rd32(E1000_TIPG);
452         regs_buff[41] = rd32(E1000_DTXCTL);
453
454         /* Wake Up */
455         regs_buff[42] = rd32(E1000_WUC);
456         regs_buff[43] = rd32(E1000_WUFC);
457         regs_buff[44] = rd32(E1000_WUS);
458         regs_buff[45] = rd32(E1000_IPAV);
459         regs_buff[46] = rd32(E1000_WUPL);
460
461         /* MAC */
462         regs_buff[47] = rd32(E1000_PCS_CFG0);
463         regs_buff[48] = rd32(E1000_PCS_LCTL);
464         regs_buff[49] = rd32(E1000_PCS_LSTAT);
465         regs_buff[50] = rd32(E1000_PCS_ANADV);
466         regs_buff[51] = rd32(E1000_PCS_LPAB);
467         regs_buff[52] = rd32(E1000_PCS_NPTX);
468         regs_buff[53] = rd32(E1000_PCS_LPABNP);
469
470         /* Statistics */
471         regs_buff[54] = adapter->stats.crcerrs;
472         regs_buff[55] = adapter->stats.algnerrc;
473         regs_buff[56] = adapter->stats.symerrs;
474         regs_buff[57] = adapter->stats.rxerrc;
475         regs_buff[58] = adapter->stats.mpc;
476         regs_buff[59] = adapter->stats.scc;
477         regs_buff[60] = adapter->stats.ecol;
478         regs_buff[61] = adapter->stats.mcc;
479         regs_buff[62] = adapter->stats.latecol;
480         regs_buff[63] = adapter->stats.colc;
481         regs_buff[64] = adapter->stats.dc;
482         regs_buff[65] = adapter->stats.tncrs;
483         regs_buff[66] = adapter->stats.sec;
484         regs_buff[67] = adapter->stats.htdpmc;
485         regs_buff[68] = adapter->stats.rlec;
486         regs_buff[69] = adapter->stats.xonrxc;
487         regs_buff[70] = adapter->stats.xontxc;
488         regs_buff[71] = adapter->stats.xoffrxc;
489         regs_buff[72] = adapter->stats.xofftxc;
490         regs_buff[73] = adapter->stats.fcruc;
491         regs_buff[74] = adapter->stats.prc64;
492         regs_buff[75] = adapter->stats.prc127;
493         regs_buff[76] = adapter->stats.prc255;
494         regs_buff[77] = adapter->stats.prc511;
495         regs_buff[78] = adapter->stats.prc1023;
496         regs_buff[79] = adapter->stats.prc1522;
497         regs_buff[80] = adapter->stats.gprc;
498         regs_buff[81] = adapter->stats.bprc;
499         regs_buff[82] = adapter->stats.mprc;
500         regs_buff[83] = adapter->stats.gptc;
501         regs_buff[84] = adapter->stats.gorc;
502         regs_buff[86] = adapter->stats.gotc;
503         regs_buff[88] = adapter->stats.rnbc;
504         regs_buff[89] = adapter->stats.ruc;
505         regs_buff[90] = adapter->stats.rfc;
506         regs_buff[91] = adapter->stats.roc;
507         regs_buff[92] = adapter->stats.rjc;
508         regs_buff[93] = adapter->stats.mgprc;
509         regs_buff[94] = adapter->stats.mgpdc;
510         regs_buff[95] = adapter->stats.mgptc;
511         regs_buff[96] = adapter->stats.tor;
512         regs_buff[98] = adapter->stats.tot;
513         regs_buff[100] = adapter->stats.tpr;
514         regs_buff[101] = adapter->stats.tpt;
515         regs_buff[102] = adapter->stats.ptc64;
516         regs_buff[103] = adapter->stats.ptc127;
517         regs_buff[104] = adapter->stats.ptc255;
518         regs_buff[105] = adapter->stats.ptc511;
519         regs_buff[106] = adapter->stats.ptc1023;
520         regs_buff[107] = adapter->stats.ptc1522;
521         regs_buff[108] = adapter->stats.mptc;
522         regs_buff[109] = adapter->stats.bptc;
523         regs_buff[110] = adapter->stats.tsctc;
524         regs_buff[111] = adapter->stats.iac;
525         regs_buff[112] = adapter->stats.rpthc;
526         regs_buff[113] = adapter->stats.hgptc;
527         regs_buff[114] = adapter->stats.hgorc;
528         regs_buff[116] = adapter->stats.hgotc;
529         regs_buff[118] = adapter->stats.lenerrs;
530         regs_buff[119] = adapter->stats.scvpc;
531         regs_buff[120] = adapter->stats.hrmpc;
532
533         for (i = 0; i < 4; i++)
534                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
535         for (i = 0; i < 4; i++)
536                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
537         for (i = 0; i < 4; i++)
538                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
539         for (i = 0; i < 4; i++)
540                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
541         for (i = 0; i < 4; i++)
542                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
543         for (i = 0; i < 4; i++)
544                 regs_buff[141 + i] = rd32(E1000_RDH(i));
545         for (i = 0; i < 4; i++)
546                 regs_buff[145 + i] = rd32(E1000_RDT(i));
547         for (i = 0; i < 4; i++)
548                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
549
550         for (i = 0; i < 10; i++)
551                 regs_buff[153 + i] = rd32(E1000_EITR(i));
552         for (i = 0; i < 8; i++)
553                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
554         for (i = 0; i < 8; i++)
555                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
556         for (i = 0; i < 16; i++)
557                 regs_buff[179 + i] = rd32(E1000_RAL(i));
558         for (i = 0; i < 16; i++)
559                 regs_buff[195 + i] = rd32(E1000_RAH(i));
560
561         for (i = 0; i < 4; i++)
562                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
563         for (i = 0; i < 4; i++)
564                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
565         for (i = 0; i < 4; i++)
566                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
567         for (i = 0; i < 4; i++)
568                 regs_buff[223 + i] = rd32(E1000_TDH(i));
569         for (i = 0; i < 4; i++)
570                 regs_buff[227 + i] = rd32(E1000_TDT(i));
571         for (i = 0; i < 4; i++)
572                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
573         for (i = 0; i < 4; i++)
574                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
575         for (i = 0; i < 4; i++)
576                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
577         for (i = 0; i < 4; i++)
578                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
579
580         for (i = 0; i < 4; i++)
581                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
582         for (i = 0; i < 4; i++)
583                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
584         for (i = 0; i < 32; i++)
585                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
586         for (i = 0; i < 128; i++)
587                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
588         for (i = 0; i < 128; i++)
589                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
590         for (i = 0; i < 4; i++)
591                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
592
593         regs_buff[547] = rd32(E1000_TDFH);
594         regs_buff[548] = rd32(E1000_TDFT);
595         regs_buff[549] = rd32(E1000_TDFHS);
596         regs_buff[550] = rd32(E1000_TDFPC);
597
598         if (hw->mac.type > e1000_82580) {
599                 regs_buff[551] = adapter->stats.o2bgptc;
600                 regs_buff[552] = adapter->stats.b2ospc;
601                 regs_buff[553] = adapter->stats.o2bspc;
602                 regs_buff[554] = adapter->stats.b2ogprc;
603         }
604
605         if (hw->mac.type != e1000_82576)
606                 return;
607         for (i = 0; i < 12; i++)
608                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
609         for (i = 0; i < 4; i++)
610                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
611         for (i = 0; i < 12; i++)
612                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
613         for (i = 0; i < 12; i++)
614                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
615         for (i = 0; i < 12; i++)
616                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
617         for (i = 0; i < 12; i++)
618                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
619         for (i = 0; i < 12; i++)
620                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
621         for (i = 0; i < 12; i++)
622                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
623
624         for (i = 0; i < 12; i++)
625                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
626         for (i = 0; i < 12; i++)
627                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
628         for (i = 0; i < 12; i++)
629                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
630         for (i = 0; i < 12; i++)
631                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
632         for (i = 0; i < 12; i++)
633                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
634         for (i = 0; i < 12; i++)
635                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
636         for (i = 0; i < 12; i++)
637                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
638         for (i = 0; i < 12; i++)
639                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
640 }
641
642 static int igb_get_eeprom_len(struct net_device *netdev)
643 {
644         struct igb_adapter *adapter = netdev_priv(netdev);
645         return adapter->hw.nvm.word_size * 2;
646 }
647
648 static int igb_get_eeprom(struct net_device *netdev,
649                           struct ethtool_eeprom *eeprom, u8 *bytes)
650 {
651         struct igb_adapter *adapter = netdev_priv(netdev);
652         struct e1000_hw *hw = &adapter->hw;
653         u16 *eeprom_buff;
654         int first_word, last_word;
655         int ret_val = 0;
656         u16 i;
657
658         if (eeprom->len == 0)
659                 return -EINVAL;
660
661         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
662
663         first_word = eeprom->offset >> 1;
664         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
665
666         eeprom_buff = kmalloc(sizeof(u16) *
667                         (last_word - first_word + 1), GFP_KERNEL);
668         if (!eeprom_buff)
669                 return -ENOMEM;
670
671         if (hw->nvm.type == e1000_nvm_eeprom_spi)
672                 ret_val = hw->nvm.ops.read(hw, first_word,
673                                             last_word - first_word + 1,
674                                             eeprom_buff);
675         else {
676                 for (i = 0; i < last_word - first_word + 1; i++) {
677                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
678                                                     &eeprom_buff[i]);
679                         if (ret_val)
680                                 break;
681                 }
682         }
683
684         /* Device's eeprom is always little-endian, word addressable */
685         for (i = 0; i < last_word - first_word + 1; i++)
686                 le16_to_cpus(&eeprom_buff[i]);
687
688         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
689                         eeprom->len);
690         kfree(eeprom_buff);
691
692         return ret_val;
693 }
694
695 static int igb_set_eeprom(struct net_device *netdev,
696                           struct ethtool_eeprom *eeprom, u8 *bytes)
697 {
698         struct igb_adapter *adapter = netdev_priv(netdev);
699         struct e1000_hw *hw = &adapter->hw;
700         u16 *eeprom_buff;
701         void *ptr;
702         int max_len, first_word, last_word, ret_val = 0;
703         u16 i;
704
705         if (eeprom->len == 0)
706                 return -EOPNOTSUPP;
707
708         if (hw->mac.type == e1000_i211)
709                 return -EOPNOTSUPP;
710
711         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
712                 return -EFAULT;
713
714         max_len = hw->nvm.word_size * 2;
715
716         first_word = eeprom->offset >> 1;
717         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
718         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
719         if (!eeprom_buff)
720                 return -ENOMEM;
721
722         ptr = (void *)eeprom_buff;
723
724         if (eeprom->offset & 1) {
725                 /* need read/modify/write of first changed EEPROM word */
726                 /* only the second byte of the word is being modified */
727                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
728                                             &eeprom_buff[0]);
729                 ptr++;
730         }
731         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
732                 /* need read/modify/write of last changed EEPROM word */
733                 /* only the first byte of the word is being modified */
734                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
735                                    &eeprom_buff[last_word - first_word]);
736         }
737
738         /* Device's eeprom is always little-endian, word addressable */
739         for (i = 0; i < last_word - first_word + 1; i++)
740                 le16_to_cpus(&eeprom_buff[i]);
741
742         memcpy(ptr, bytes, eeprom->len);
743
744         for (i = 0; i < last_word - first_word + 1; i++)
745                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
746
747         ret_val = hw->nvm.ops.write(hw, first_word,
748                                      last_word - first_word + 1, eeprom_buff);
749
750         /* Update the checksum over the first part of the EEPROM if needed
751          * and flush shadow RAM for 82573 controllers */
752         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
753                 hw->nvm.ops.update(hw);
754
755         igb_set_fw_version(adapter);
756         kfree(eeprom_buff);
757         return ret_val;
758 }
759
760 static void igb_get_drvinfo(struct net_device *netdev,
761                             struct ethtool_drvinfo *drvinfo)
762 {
763         struct igb_adapter *adapter = netdev_priv(netdev);
764
765         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
766         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
767
768         /*
769          * EEPROM image version # is reported as firmware version # for
770          * 82575 controllers
771          */
772         strlcpy(drvinfo->fw_version, adapter->fw_version,
773                 sizeof(drvinfo->fw_version));
774         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
775                 sizeof(drvinfo->bus_info));
776         drvinfo->n_stats = IGB_STATS_LEN;
777         drvinfo->testinfo_len = IGB_TEST_LEN;
778         drvinfo->regdump_len = igb_get_regs_len(netdev);
779         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
780 }
781
782 static void igb_get_ringparam(struct net_device *netdev,
783                               struct ethtool_ringparam *ring)
784 {
785         struct igb_adapter *adapter = netdev_priv(netdev);
786
787         ring->rx_max_pending = IGB_MAX_RXD;
788         ring->tx_max_pending = IGB_MAX_TXD;
789         ring->rx_pending = adapter->rx_ring_count;
790         ring->tx_pending = adapter->tx_ring_count;
791 }
792
793 static int igb_set_ringparam(struct net_device *netdev,
794                              struct ethtool_ringparam *ring)
795 {
796         struct igb_adapter *adapter = netdev_priv(netdev);
797         struct igb_ring *temp_ring;
798         int i, err = 0;
799         u16 new_rx_count, new_tx_count;
800
801         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
802                 return -EINVAL;
803
804         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
805         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
806         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
807
808         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
809         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
810         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
811
812         if ((new_tx_count == adapter->tx_ring_count) &&
813             (new_rx_count == adapter->rx_ring_count)) {
814                 /* nothing to do */
815                 return 0;
816         }
817
818         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
819                 msleep(1);
820
821         if (!netif_running(adapter->netdev)) {
822                 for (i = 0; i < adapter->num_tx_queues; i++)
823                         adapter->tx_ring[i]->count = new_tx_count;
824                 for (i = 0; i < adapter->num_rx_queues; i++)
825                         adapter->rx_ring[i]->count = new_rx_count;
826                 adapter->tx_ring_count = new_tx_count;
827                 adapter->rx_ring_count = new_rx_count;
828                 goto clear_reset;
829         }
830
831         if (adapter->num_tx_queues > adapter->num_rx_queues)
832                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
833         else
834                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
835
836         if (!temp_ring) {
837                 err = -ENOMEM;
838                 goto clear_reset;
839         }
840
841         igb_down(adapter);
842
843         /*
844          * We can't just free everything and then setup again,
845          * because the ISRs in MSI-X mode get passed pointers
846          * to the tx and rx ring structs.
847          */
848         if (new_tx_count != adapter->tx_ring_count) {
849                 for (i = 0; i < adapter->num_tx_queues; i++) {
850                         memcpy(&temp_ring[i], adapter->tx_ring[i],
851                                sizeof(struct igb_ring));
852
853                         temp_ring[i].count = new_tx_count;
854                         err = igb_setup_tx_resources(&temp_ring[i]);
855                         if (err) {
856                                 while (i) {
857                                         i--;
858                                         igb_free_tx_resources(&temp_ring[i]);
859                                 }
860                                 goto err_setup;
861                         }
862                 }
863
864                 for (i = 0; i < adapter->num_tx_queues; i++) {
865                         igb_free_tx_resources(adapter->tx_ring[i]);
866
867                         memcpy(adapter->tx_ring[i], &temp_ring[i],
868                                sizeof(struct igb_ring));
869                 }
870
871                 adapter->tx_ring_count = new_tx_count;
872         }
873
874         if (new_rx_count != adapter->rx_ring_count) {
875                 for (i = 0; i < adapter->num_rx_queues; i++) {
876                         memcpy(&temp_ring[i], adapter->rx_ring[i],
877                                sizeof(struct igb_ring));
878
879                         temp_ring[i].count = new_rx_count;
880                         err = igb_setup_rx_resources(&temp_ring[i]);
881                         if (err) {
882                                 while (i) {
883                                         i--;
884                                         igb_free_rx_resources(&temp_ring[i]);
885                                 }
886                                 goto err_setup;
887                         }
888
889                 }
890
891                 for (i = 0; i < adapter->num_rx_queues; i++) {
892                         igb_free_rx_resources(adapter->rx_ring[i]);
893
894                         memcpy(adapter->rx_ring[i], &temp_ring[i],
895                                sizeof(struct igb_ring));
896                 }
897
898                 adapter->rx_ring_count = new_rx_count;
899         }
900 err_setup:
901         igb_up(adapter);
902         vfree(temp_ring);
903 clear_reset:
904         clear_bit(__IGB_RESETTING, &adapter->state);
905         return err;
906 }
907
908 /* ethtool register test data */
909 struct igb_reg_test {
910         u16 reg;
911         u16 reg_offset;
912         u16 array_len;
913         u16 test_type;
914         u32 mask;
915         u32 write;
916 };
917
918 /* In the hardware, registers are laid out either singly, in arrays
919  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
920  * most tests take place on arrays or single registers (handled
921  * as a single-element array) and special-case the tables.
922  * Table tests are always pattern tests.
923  *
924  * We also make provision for some required setup steps by specifying
925  * registers to be written without any read-back testing.
926  */
927
928 #define PATTERN_TEST    1
929 #define SET_READ_TEST   2
930 #define WRITE_NO_TEST   3
931 #define TABLE32_TEST    4
932 #define TABLE64_TEST_LO 5
933 #define TABLE64_TEST_HI 6
934
935 /* i210 reg test */
936 static struct igb_reg_test reg_test_i210[] = {
937         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
938         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
939         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
940         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
941         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
942         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
943         /* RDH is read-only for i210, only test RDT. */
944         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
945         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
946         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
947         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
948         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
949         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
950         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
951         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
952         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
953         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
954         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
955         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
956         { E1000_RA,        0, 16, TABLE64_TEST_LO,
957                                                 0xFFFFFFFF, 0xFFFFFFFF },
958         { E1000_RA,        0, 16, TABLE64_TEST_HI,
959                                                 0x900FFFFF, 0xFFFFFFFF },
960         { E1000_MTA,       0, 128, TABLE32_TEST,
961                                                 0xFFFFFFFF, 0xFFFFFFFF },
962         { 0, 0, 0, 0, 0 }
963 };
964
965 /* i350 reg test */
966 static struct igb_reg_test reg_test_i350[] = {
967         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
968         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
969         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
970         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
971         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
972         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
973         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
974         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
975         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
976         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
977         /* RDH is read-only for i350, only test RDT. */
978         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
979         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
980         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
981         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
982         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
983         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
984         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
985         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
986         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
987         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
988         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
989         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
990         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
991         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
992         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
993         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
994         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
995         { E1000_RA,        0, 16, TABLE64_TEST_LO,
996                                                 0xFFFFFFFF, 0xFFFFFFFF },
997         { E1000_RA,        0, 16, TABLE64_TEST_HI,
998                                                 0xC3FFFFFF, 0xFFFFFFFF },
999         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1000                                                 0xFFFFFFFF, 0xFFFFFFFF },
1001         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1002                                                 0xC3FFFFFF, 0xFFFFFFFF },
1003         { E1000_MTA,       0, 128, TABLE32_TEST,
1004                                                 0xFFFFFFFF, 0xFFFFFFFF },
1005         { 0, 0, 0, 0 }
1006 };
1007
1008 /* 82580 reg test */
1009 static struct igb_reg_test reg_test_82580[] = {
1010         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1011         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1012         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1013         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1014         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1015         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1016         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1017         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1018         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1019         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1020         /* RDH is read-only for 82580, only test RDT. */
1021         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1022         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1023         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1024         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1025         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1026         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1027         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1028         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1029         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1032         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1033         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1035         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1036         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1037         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1038         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1039                                                 0xFFFFFFFF, 0xFFFFFFFF },
1040         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1041                                                 0x83FFFFFF, 0xFFFFFFFF },
1042         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1043                                                 0xFFFFFFFF, 0xFFFFFFFF },
1044         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1045                                                 0x83FFFFFF, 0xFFFFFFFF },
1046         { E1000_MTA,       0, 128, TABLE32_TEST,
1047                                                 0xFFFFFFFF, 0xFFFFFFFF },
1048         { 0, 0, 0, 0 }
1049 };
1050
1051 /* 82576 reg test */
1052 static struct igb_reg_test reg_test_82576[] = {
1053         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1054         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1055         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1056         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1057         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1058         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1060         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1063         /* Enable all RX queues before testing. */
1064         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1065         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1066         /* RDH is read-only for 82576, only test RDT. */
1067         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1068         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1070         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1071         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1072         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1073         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1074         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1075         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1076         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1077         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1078         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1079         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1080         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1081         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1082         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1083         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1084         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1085         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1086         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1087         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1088         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1089         { 0, 0, 0, 0 }
1090 };
1091
1092 /* 82575 register test */
1093 static struct igb_reg_test reg_test_82575[] = {
1094         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1096         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1097         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1098         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1099         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1100         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1101         /* Enable all four RX queues before testing. */
1102         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1103         /* RDH is read-only for 82575, only test RDT. */
1104         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1105         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1106         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1107         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1108         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1109         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1110         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1111         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1112         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1113         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1114         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1115         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1116         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1117         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1118         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1119         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120         { 0, 0, 0, 0 }
1121 };
1122
1123 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1124                              int reg, u32 mask, u32 write)
1125 {
1126         struct e1000_hw *hw = &adapter->hw;
1127         u32 pat, val;
1128         static const u32 _test[] =
1129                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1130         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1131                 wr32(reg, (_test[pat] & write));
1132                 val = rd32(reg) & mask;
1133                 if (val != (_test[pat] & write & mask)) {
1134                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1135                                 "failed: got 0x%08X expected 0x%08X\n",
1136                                 reg, val, (_test[pat] & write & mask));
1137                         *data = reg;
1138                         return 1;
1139                 }
1140         }
1141
1142         return 0;
1143 }
1144
1145 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1146                               int reg, u32 mask, u32 write)
1147 {
1148         struct e1000_hw *hw = &adapter->hw;
1149         u32 val;
1150         wr32(reg, write & mask);
1151         val = rd32(reg);
1152         if ((write & mask) != (val & mask)) {
1153                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1154                         " got 0x%08X expected 0x%08X\n", reg,
1155                         (val & mask), (write & mask));
1156                 *data = reg;
1157                 return 1;
1158         }
1159
1160         return 0;
1161 }
1162
1163 #define REG_PATTERN_TEST(reg, mask, write) \
1164         do { \
1165                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1166                         return 1; \
1167         } while (0)
1168
1169 #define REG_SET_AND_CHECK(reg, mask, write) \
1170         do { \
1171                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1172                         return 1; \
1173         } while (0)
1174
1175 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1176 {
1177         struct e1000_hw *hw = &adapter->hw;
1178         struct igb_reg_test *test;
1179         u32 value, before, after;
1180         u32 i, toggle;
1181
1182         switch (adapter->hw.mac.type) {
1183         case e1000_i350:
1184                 test = reg_test_i350;
1185                 toggle = 0x7FEFF3FF;
1186                 break;
1187         case e1000_i210:
1188         case e1000_i211:
1189                 test = reg_test_i210;
1190                 toggle = 0x7FEFF3FF;
1191                 break;
1192         case e1000_82580:
1193                 test = reg_test_82580;
1194                 toggle = 0x7FEFF3FF;
1195                 break;
1196         case e1000_82576:
1197                 test = reg_test_82576;
1198                 toggle = 0x7FFFF3FF;
1199                 break;
1200         default:
1201                 test = reg_test_82575;
1202                 toggle = 0x7FFFF3FF;
1203                 break;
1204         }
1205
1206         /* Because the status register is such a special case,
1207          * we handle it separately from the rest of the register
1208          * tests.  Some bits are read-only, some toggle, and some
1209          * are writable on newer MACs.
1210          */
1211         before = rd32(E1000_STATUS);
1212         value = (rd32(E1000_STATUS) & toggle);
1213         wr32(E1000_STATUS, toggle);
1214         after = rd32(E1000_STATUS) & toggle;
1215         if (value != after) {
1216                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1217                         "got: 0x%08X expected: 0x%08X\n", after, value);
1218                 *data = 1;
1219                 return 1;
1220         }
1221         /* restore previous status */
1222         wr32(E1000_STATUS, before);
1223
1224         /* Perform the remainder of the register test, looping through
1225          * the test table until we either fail or reach the null entry.
1226          */
1227         while (test->reg) {
1228                 for (i = 0; i < test->array_len; i++) {
1229                         switch (test->test_type) {
1230                         case PATTERN_TEST:
1231                                 REG_PATTERN_TEST(test->reg +
1232                                                 (i * test->reg_offset),
1233                                                 test->mask,
1234                                                 test->write);
1235                                 break;
1236                         case SET_READ_TEST:
1237                                 REG_SET_AND_CHECK(test->reg +
1238                                                 (i * test->reg_offset),
1239                                                 test->mask,
1240                                                 test->write);
1241                                 break;
1242                         case WRITE_NO_TEST:
1243                                 writel(test->write,
1244                                     (adapter->hw.hw_addr + test->reg)
1245                                         + (i * test->reg_offset));
1246                                 break;
1247                         case TABLE32_TEST:
1248                                 REG_PATTERN_TEST(test->reg + (i * 4),
1249                                                 test->mask,
1250                                                 test->write);
1251                                 break;
1252                         case TABLE64_TEST_LO:
1253                                 REG_PATTERN_TEST(test->reg + (i * 8),
1254                                                 test->mask,
1255                                                 test->write);
1256                                 break;
1257                         case TABLE64_TEST_HI:
1258                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1259                                                 test->mask,
1260                                                 test->write);
1261                                 break;
1262                         }
1263                 }
1264                 test++;
1265         }
1266
1267         *data = 0;
1268         return 0;
1269 }
1270
1271 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1272 {
1273         *data = 0;
1274
1275         /* Validate eeprom on all parts but i211 */
1276         if (adapter->hw.mac.type != e1000_i211) {
1277                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1278                         *data = 2;
1279         }
1280
1281         return *data;
1282 }
1283
1284 static irqreturn_t igb_test_intr(int irq, void *data)
1285 {
1286         struct igb_adapter *adapter = (struct igb_adapter *) data;
1287         struct e1000_hw *hw = &adapter->hw;
1288
1289         adapter->test_icr |= rd32(E1000_ICR);
1290
1291         return IRQ_HANDLED;
1292 }
1293
1294 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1295 {
1296         struct e1000_hw *hw = &adapter->hw;
1297         struct net_device *netdev = adapter->netdev;
1298         u32 mask, ics_mask, i = 0, shared_int = true;
1299         u32 irq = adapter->pdev->irq;
1300
1301         *data = 0;
1302
1303         /* Hook up test interrupt handler just for this test */
1304         if (adapter->msix_entries) {
1305                 if (request_irq(adapter->msix_entries[0].vector,
1306                                 igb_test_intr, 0, netdev->name, adapter)) {
1307                         *data = 1;
1308                         return -1;
1309                 }
1310         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1311                 shared_int = false;
1312                 if (request_irq(irq,
1313                                 igb_test_intr, 0, netdev->name, adapter)) {
1314                         *data = 1;
1315                         return -1;
1316                 }
1317         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1318                                 netdev->name, adapter)) {
1319                 shared_int = false;
1320         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1321                  netdev->name, adapter)) {
1322                 *data = 1;
1323                 return -1;
1324         }
1325         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1326                 (shared_int ? "shared" : "unshared"));
1327
1328         /* Disable all the interrupts */
1329         wr32(E1000_IMC, ~0);
1330         wrfl();
1331         msleep(10);
1332
1333         /* Define all writable bits for ICS */
1334         switch (hw->mac.type) {
1335         case e1000_82575:
1336                 ics_mask = 0x37F47EDD;
1337                 break;
1338         case e1000_82576:
1339                 ics_mask = 0x77D4FBFD;
1340                 break;
1341         case e1000_82580:
1342                 ics_mask = 0x77DCFED5;
1343                 break;
1344         case e1000_i350:
1345         case e1000_i210:
1346         case e1000_i211:
1347                 ics_mask = 0x77DCFED5;
1348                 break;
1349         default:
1350                 ics_mask = 0x7FFFFFFF;
1351                 break;
1352         }
1353
1354         /* Test each interrupt */
1355         for (; i < 31; i++) {
1356                 /* Interrupt to test */
1357                 mask = 1 << i;
1358
1359                 if (!(mask & ics_mask))
1360                         continue;
1361
1362                 if (!shared_int) {
1363                         /* Disable the interrupt to be reported in
1364                          * the cause register and then force the same
1365                          * interrupt and see if one gets posted.  If
1366                          * an interrupt was posted to the bus, the
1367                          * test failed.
1368                          */
1369                         adapter->test_icr = 0;
1370
1371                         /* Flush any pending interrupts */
1372                         wr32(E1000_ICR, ~0);
1373
1374                         wr32(E1000_IMC, mask);
1375                         wr32(E1000_ICS, mask);
1376                         wrfl();
1377                         msleep(10);
1378
1379                         if (adapter->test_icr & mask) {
1380                                 *data = 3;
1381                                 break;
1382                         }
1383                 }
1384
1385                 /* Enable the interrupt to be reported in
1386                  * the cause register and then force the same
1387                  * interrupt and see if one gets posted.  If
1388                  * an interrupt was not posted to the bus, the
1389                  * test failed.
1390                  */
1391                 adapter->test_icr = 0;
1392
1393                 /* Flush any pending interrupts */
1394                 wr32(E1000_ICR, ~0);
1395
1396                 wr32(E1000_IMS, mask);
1397                 wr32(E1000_ICS, mask);
1398                 wrfl();
1399                 msleep(10);
1400
1401                 if (!(adapter->test_icr & mask)) {
1402                         *data = 4;
1403                         break;
1404                 }
1405
1406                 if (!shared_int) {
1407                         /* Disable the other interrupts to be reported in
1408                          * the cause register and then force the other
1409                          * interrupts and see if any get posted.  If
1410                          * an interrupt was posted to the bus, the
1411                          * test failed.
1412                          */
1413                         adapter->test_icr = 0;
1414
1415                         /* Flush any pending interrupts */
1416                         wr32(E1000_ICR, ~0);
1417
1418                         wr32(E1000_IMC, ~mask);
1419                         wr32(E1000_ICS, ~mask);
1420                         wrfl();
1421                         msleep(10);
1422
1423                         if (adapter->test_icr & mask) {
1424                                 *data = 5;
1425                                 break;
1426                         }
1427                 }
1428         }
1429
1430         /* Disable all the interrupts */
1431         wr32(E1000_IMC, ~0);
1432         wrfl();
1433         msleep(10);
1434
1435         /* Unhook test interrupt handler */
1436         if (adapter->msix_entries)
1437                 free_irq(adapter->msix_entries[0].vector, adapter);
1438         else
1439                 free_irq(irq, adapter);
1440
1441         return *data;
1442 }
1443
1444 static void igb_free_desc_rings(struct igb_adapter *adapter)
1445 {
1446         igb_free_tx_resources(&adapter->test_tx_ring);
1447         igb_free_rx_resources(&adapter->test_rx_ring);
1448 }
1449
1450 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1451 {
1452         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1453         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1454         struct e1000_hw *hw = &adapter->hw;
1455         int ret_val;
1456
1457         /* Setup Tx descriptor ring and Tx buffers */
1458         tx_ring->count = IGB_DEFAULT_TXD;
1459         tx_ring->dev = &adapter->pdev->dev;
1460         tx_ring->netdev = adapter->netdev;
1461         tx_ring->reg_idx = adapter->vfs_allocated_count;
1462
1463         if (igb_setup_tx_resources(tx_ring)) {
1464                 ret_val = 1;
1465                 goto err_nomem;
1466         }
1467
1468         igb_setup_tctl(adapter);
1469         igb_configure_tx_ring(adapter, tx_ring);
1470
1471         /* Setup Rx descriptor ring and Rx buffers */
1472         rx_ring->count = IGB_DEFAULT_RXD;
1473         rx_ring->dev = &adapter->pdev->dev;
1474         rx_ring->netdev = adapter->netdev;
1475         rx_ring->reg_idx = adapter->vfs_allocated_count;
1476
1477         if (igb_setup_rx_resources(rx_ring)) {
1478                 ret_val = 3;
1479                 goto err_nomem;
1480         }
1481
1482         /* set the default queue to queue 0 of PF */
1483         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1484
1485         /* enable receive ring */
1486         igb_setup_rctl(adapter);
1487         igb_configure_rx_ring(adapter, rx_ring);
1488
1489         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1490
1491         return 0;
1492
1493 err_nomem:
1494         igb_free_desc_rings(adapter);
1495         return ret_val;
1496 }
1497
1498 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1499 {
1500         struct e1000_hw *hw = &adapter->hw;
1501
1502         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1503         igb_write_phy_reg(hw, 29, 0x001F);
1504         igb_write_phy_reg(hw, 30, 0x8FFC);
1505         igb_write_phy_reg(hw, 29, 0x001A);
1506         igb_write_phy_reg(hw, 30, 0x8FF0);
1507 }
1508
1509 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1510 {
1511         struct e1000_hw *hw = &adapter->hw;
1512         u32 ctrl_reg = 0;
1513         u16 phy_reg = 0;
1514
1515         hw->mac.autoneg = false;
1516
1517         switch (hw->phy.type) {
1518         case e1000_phy_m88:
1519                 /* Auto-MDI/MDIX Off */
1520                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1521                 /* reset to update Auto-MDI/MDIX */
1522                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1523                 /* autoneg off */
1524                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1525                 break;
1526         case e1000_phy_82580:
1527                 /* enable MII loopback */
1528                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1529                 break;
1530         case e1000_phy_i210:
1531                 /* set loopback speed in PHY */
1532                 igb_read_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1533                                         &phy_reg);
1534                 phy_reg |= GS40G_MAC_SPEED_1G;
1535                 igb_write_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1536                                         phy_reg);
1537                 ctrl_reg = rd32(E1000_CTRL_EXT);
1538         default:
1539                 break;
1540         }
1541
1542         /* force 1000, set loopback */
1543         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1544
1545         /* Now set up the MAC to the same speed/duplex as the PHY. */
1546         ctrl_reg = rd32(E1000_CTRL);
1547         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1548         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1549                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1550                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1551                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1552                      E1000_CTRL_SLU);    /* Set link up enable bit */
1553
1554         if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1555                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1556
1557         wr32(E1000_CTRL, ctrl_reg);
1558
1559         /* Disable the receiver on the PHY so when a cable is plugged in, the
1560          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1561          */
1562         if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1563                 igb_phy_disable_receiver(adapter);
1564
1565         udelay(500);
1566
1567         return 0;
1568 }
1569
1570 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1571 {
1572         return igb_integrated_phy_loopback(adapter);
1573 }
1574
1575 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1576 {
1577         struct e1000_hw *hw = &adapter->hw;
1578         u32 reg;
1579
1580         reg = rd32(E1000_CTRL_EXT);
1581
1582         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1583         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1584                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1585                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1586                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1587                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1588
1589                         /* Enable DH89xxCC MPHY for near end loopback */
1590                         reg = rd32(E1000_MPHY_ADDR_CTL);
1591                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1592                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1593                         wr32(E1000_MPHY_ADDR_CTL, reg);
1594
1595                         reg = rd32(E1000_MPHY_DATA);
1596                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1597                         wr32(E1000_MPHY_DATA, reg);
1598                 }
1599
1600                 reg = rd32(E1000_RCTL);
1601                 reg |= E1000_RCTL_LBM_TCVR;
1602                 wr32(E1000_RCTL, reg);
1603
1604                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1605
1606                 reg = rd32(E1000_CTRL);
1607                 reg &= ~(E1000_CTRL_RFCE |
1608                          E1000_CTRL_TFCE |
1609                          E1000_CTRL_LRST);
1610                 reg |= E1000_CTRL_SLU |
1611                        E1000_CTRL_FD;
1612                 wr32(E1000_CTRL, reg);
1613
1614                 /* Unset switch control to serdes energy detect */
1615                 reg = rd32(E1000_CONNSW);
1616                 reg &= ~E1000_CONNSW_ENRGSRC;
1617                 wr32(E1000_CONNSW, reg);
1618
1619                 /* Set PCS register for forced speed */
1620                 reg = rd32(E1000_PCS_LCTL);
1621                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1622                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1623                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1624                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1625                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1626                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1627                 wr32(E1000_PCS_LCTL, reg);
1628
1629                 return 0;
1630         }
1631
1632         return igb_set_phy_loopback(adapter);
1633 }
1634
1635 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1636 {
1637         struct e1000_hw *hw = &adapter->hw;
1638         u32 rctl;
1639         u16 phy_reg;
1640
1641         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1642         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1643         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1644         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1645                 u32 reg;
1646
1647                 /* Disable near end loopback on DH89xxCC */
1648                 reg = rd32(E1000_MPHY_ADDR_CTL);
1649                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1650                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1651                 wr32(E1000_MPHY_ADDR_CTL, reg);
1652
1653                 reg = rd32(E1000_MPHY_DATA);
1654                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1655                 wr32(E1000_MPHY_DATA, reg);
1656         }
1657
1658         rctl = rd32(E1000_RCTL);
1659         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1660         wr32(E1000_RCTL, rctl);
1661
1662         hw->mac.autoneg = true;
1663         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1664         if (phy_reg & MII_CR_LOOPBACK) {
1665                 phy_reg &= ~MII_CR_LOOPBACK;
1666                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1667                 igb_phy_sw_reset(hw);
1668         }
1669 }
1670
1671 static void igb_create_lbtest_frame(struct sk_buff *skb,
1672                                     unsigned int frame_size)
1673 {
1674         memset(skb->data, 0xFF, frame_size);
1675         frame_size /= 2;
1676         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1677         memset(&skb->data[frame_size + 10], 0xBE, 1);
1678         memset(&skb->data[frame_size + 12], 0xAF, 1);
1679 }
1680
1681 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1682 {
1683         frame_size /= 2;
1684         if (*(skb->data + 3) == 0xFF) {
1685                 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1686                    (*(skb->data + frame_size + 12) == 0xAF)) {
1687                         return 0;
1688                 }
1689         }
1690         return 13;
1691 }
1692
1693 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1694                                 struct igb_ring *tx_ring,
1695                                 unsigned int size)
1696 {
1697         union e1000_adv_rx_desc *rx_desc;
1698         struct igb_rx_buffer *rx_buffer_info;
1699         struct igb_tx_buffer *tx_buffer_info;
1700         struct netdev_queue *txq;
1701         u16 rx_ntc, tx_ntc, count = 0;
1702         unsigned int total_bytes = 0, total_packets = 0;
1703
1704         /* initialize next to clean and descriptor values */
1705         rx_ntc = rx_ring->next_to_clean;
1706         tx_ntc = tx_ring->next_to_clean;
1707         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1708
1709         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1710                 /* check rx buffer */
1711                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1712
1713                 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1714                 dma_unmap_single(rx_ring->dev,
1715                                  rx_buffer_info->dma,
1716                                  IGB_RX_HDR_LEN,
1717                                  DMA_FROM_DEVICE);
1718                 rx_buffer_info->dma = 0;
1719
1720                 /* verify contents of skb */
1721                 if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1722                         count++;
1723
1724                 /* unmap buffer on tx side */
1725                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1726                 total_bytes += tx_buffer_info->bytecount;
1727                 total_packets += tx_buffer_info->gso_segs;
1728                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1729
1730                 /* increment rx/tx next to clean counters */
1731                 rx_ntc++;
1732                 if (rx_ntc == rx_ring->count)
1733                         rx_ntc = 0;
1734                 tx_ntc++;
1735                 if (tx_ntc == tx_ring->count)
1736                         tx_ntc = 0;
1737
1738                 /* fetch next descriptor */
1739                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1740         }
1741
1742         txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1743         netdev_tx_completed_queue(txq, total_packets, total_bytes);
1744
1745         /* re-map buffers to ring, store next to clean values */
1746         igb_alloc_rx_buffers(rx_ring, count);
1747         rx_ring->next_to_clean = rx_ntc;
1748         tx_ring->next_to_clean = tx_ntc;
1749
1750         return count;
1751 }
1752
1753 static int igb_run_loopback_test(struct igb_adapter *adapter)
1754 {
1755         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1756         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1757         u16 i, j, lc, good_cnt;
1758         int ret_val = 0;
1759         unsigned int size = IGB_RX_HDR_LEN;
1760         netdev_tx_t tx_ret_val;
1761         struct sk_buff *skb;
1762
1763         /* allocate test skb */
1764         skb = alloc_skb(size, GFP_KERNEL);
1765         if (!skb)
1766                 return 11;
1767
1768         /* place data into test skb */
1769         igb_create_lbtest_frame(skb, size);
1770         skb_put(skb, size);
1771
1772         /*
1773          * Calculate the loop count based on the largest descriptor ring
1774          * The idea is to wrap the largest ring a number of times using 64
1775          * send/receive pairs during each loop
1776          */
1777
1778         if (rx_ring->count <= tx_ring->count)
1779                 lc = ((tx_ring->count / 64) * 2) + 1;
1780         else
1781                 lc = ((rx_ring->count / 64) * 2) + 1;
1782
1783         for (j = 0; j <= lc; j++) { /* loop count loop */
1784                 /* reset count of good packets */
1785                 good_cnt = 0;
1786
1787                 /* place 64 packets on the transmit queue*/
1788                 for (i = 0; i < 64; i++) {
1789                         skb_get(skb);
1790                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1791                         if (tx_ret_val == NETDEV_TX_OK)
1792                                 good_cnt++;
1793                 }
1794
1795                 if (good_cnt != 64) {
1796                         ret_val = 12;
1797                         break;
1798                 }
1799
1800                 /* allow 200 milliseconds for packets to go from tx to rx */
1801                 msleep(200);
1802
1803                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1804                 if (good_cnt != 64) {
1805                         ret_val = 13;
1806                         break;
1807                 }
1808         } /* end loop count loop */
1809
1810         /* free the original skb */
1811         kfree_skb(skb);
1812
1813         return ret_val;
1814 }
1815
1816 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1817 {
1818         /* PHY loopback cannot be performed if SoL/IDER
1819          * sessions are active */
1820         if (igb_check_reset_block(&adapter->hw)) {
1821                 dev_err(&adapter->pdev->dev,
1822                         "Cannot do PHY loopback test "
1823                         "when SoL/IDER is active.\n");
1824                 *data = 0;
1825                 goto out;
1826         }
1827         if ((adapter->hw.mac.type == e1000_i210)
1828                 || (adapter->hw.mac.type == e1000_i210)) {
1829                 dev_err(&adapter->pdev->dev,
1830                         "Loopback test not supported "
1831                         "on this part at this time.\n");
1832                 *data = 0;
1833                 goto out;
1834         }
1835         *data = igb_setup_desc_rings(adapter);
1836         if (*data)
1837                 goto out;
1838         *data = igb_setup_loopback_test(adapter);
1839         if (*data)
1840                 goto err_loopback;
1841         *data = igb_run_loopback_test(adapter);
1842         igb_loopback_cleanup(adapter);
1843
1844 err_loopback:
1845         igb_free_desc_rings(adapter);
1846 out:
1847         return *data;
1848 }
1849
1850 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1851 {
1852         struct e1000_hw *hw = &adapter->hw;
1853         *data = 0;
1854         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1855                 int i = 0;
1856                 hw->mac.serdes_has_link = false;
1857
1858                 /* On some blade server designs, link establishment
1859                  * could take as long as 2-3 minutes */
1860                 do {
1861                         hw->mac.ops.check_for_link(&adapter->hw);
1862                         if (hw->mac.serdes_has_link)
1863                                 return *data;
1864                         msleep(20);
1865                 } while (i++ < 3750);
1866
1867                 *data = 1;
1868         } else {
1869                 hw->mac.ops.check_for_link(&adapter->hw);
1870                 if (hw->mac.autoneg)
1871                         msleep(4000);
1872
1873                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1874                         *data = 1;
1875         }
1876         return *data;
1877 }
1878
1879 static void igb_diag_test(struct net_device *netdev,
1880                           struct ethtool_test *eth_test, u64 *data)
1881 {
1882         struct igb_adapter *adapter = netdev_priv(netdev);
1883         u16 autoneg_advertised;
1884         u8 forced_speed_duplex, autoneg;
1885         bool if_running = netif_running(netdev);
1886
1887         set_bit(__IGB_TESTING, &adapter->state);
1888         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1889                 /* Offline tests */
1890
1891                 /* save speed, duplex, autoneg settings */
1892                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1893                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1894                 autoneg = adapter->hw.mac.autoneg;
1895
1896                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1897
1898                 /* power up link for link test */
1899                 igb_power_up_link(adapter);
1900
1901                 /* Link test performed before hardware reset so autoneg doesn't
1902                  * interfere with test result */
1903                 if (igb_link_test(adapter, &data[4]))
1904                         eth_test->flags |= ETH_TEST_FL_FAILED;
1905
1906                 if (if_running)
1907                         /* indicate we're in test mode */
1908                         dev_close(netdev);
1909                 else
1910                         igb_reset(adapter);
1911
1912                 if (igb_reg_test(adapter, &data[0]))
1913                         eth_test->flags |= ETH_TEST_FL_FAILED;
1914
1915                 igb_reset(adapter);
1916                 if (igb_eeprom_test(adapter, &data[1]))
1917                         eth_test->flags |= ETH_TEST_FL_FAILED;
1918
1919                 igb_reset(adapter);
1920                 if (igb_intr_test(adapter, &data[2]))
1921                         eth_test->flags |= ETH_TEST_FL_FAILED;
1922
1923                 igb_reset(adapter);
1924                 /* power up link for loopback test */
1925                 igb_power_up_link(adapter);
1926                 if (igb_loopback_test(adapter, &data[3]))
1927                         eth_test->flags |= ETH_TEST_FL_FAILED;
1928
1929                 /* restore speed, duplex, autoneg settings */
1930                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1931                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1932                 adapter->hw.mac.autoneg = autoneg;
1933
1934                 /* force this routine to wait until autoneg complete/timeout */
1935                 adapter->hw.phy.autoneg_wait_to_complete = true;
1936                 igb_reset(adapter);
1937                 adapter->hw.phy.autoneg_wait_to_complete = false;
1938
1939                 clear_bit(__IGB_TESTING, &adapter->state);
1940                 if (if_running)
1941                         dev_open(netdev);
1942         } else {
1943                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1944
1945                 /* PHY is powered down when interface is down */
1946                 if (if_running && igb_link_test(adapter, &data[4]))
1947                         eth_test->flags |= ETH_TEST_FL_FAILED;
1948                 else
1949                         data[4] = 0;
1950
1951                 /* Online tests aren't run; pass by default */
1952                 data[0] = 0;
1953                 data[1] = 0;
1954                 data[2] = 0;
1955                 data[3] = 0;
1956
1957                 clear_bit(__IGB_TESTING, &adapter->state);
1958         }
1959         msleep_interruptible(4 * 1000);
1960 }
1961
1962 static int igb_wol_exclusion(struct igb_adapter *adapter,
1963                              struct ethtool_wolinfo *wol)
1964 {
1965         struct e1000_hw *hw = &adapter->hw;
1966         int retval = 1; /* fail by default */
1967
1968         switch (hw->device_id) {
1969         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1970                 /* WoL not supported */
1971                 wol->supported = 0;
1972                 break;
1973         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1974         case E1000_DEV_ID_82576_FIBER:
1975         case E1000_DEV_ID_82576_SERDES:
1976                 /* Wake events not supported on port B */
1977                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1978                         wol->supported = 0;
1979                         break;
1980                 }
1981                 /* return success for non excluded adapter ports */
1982                 retval = 0;
1983                 break;
1984         case E1000_DEV_ID_82576_QUAD_COPPER:
1985         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1986                 /* quad port adapters only support WoL on port A */
1987                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1988                         wol->supported = 0;
1989                         break;
1990                 }
1991                 /* return success for non excluded adapter ports */
1992                 retval = 0;
1993                 break;
1994         default:
1995                 /* dual port cards only support WoL on port A from now on
1996                  * unless it was enabled in the eeprom for port B
1997                  * so exclude FUNC_1 ports from having WoL enabled */
1998                 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1999                     !adapter->eeprom_wol) {
2000                         wol->supported = 0;
2001                         break;
2002                 }
2003
2004                 retval = 0;
2005         }
2006
2007         return retval;
2008 }
2009
2010 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2011 {
2012         struct igb_adapter *adapter = netdev_priv(netdev);
2013
2014         wol->supported = WAKE_UCAST | WAKE_MCAST |
2015                          WAKE_BCAST | WAKE_MAGIC |
2016                          WAKE_PHY;
2017         wol->wolopts = 0;
2018
2019         /* this function will set ->supported = 0 and return 1 if wol is not
2020          * supported by this hardware */
2021         if (igb_wol_exclusion(adapter, wol) ||
2022             !device_can_wakeup(&adapter->pdev->dev))
2023                 return;
2024
2025         /* apply any specific unsupported masks here */
2026         switch (adapter->hw.device_id) {
2027         default:
2028                 break;
2029         }
2030
2031         if (adapter->wol & E1000_WUFC_EX)
2032                 wol->wolopts |= WAKE_UCAST;
2033         if (adapter->wol & E1000_WUFC_MC)
2034                 wol->wolopts |= WAKE_MCAST;
2035         if (adapter->wol & E1000_WUFC_BC)
2036                 wol->wolopts |= WAKE_BCAST;
2037         if (adapter->wol & E1000_WUFC_MAG)
2038                 wol->wolopts |= WAKE_MAGIC;
2039         if (adapter->wol & E1000_WUFC_LNKC)
2040                 wol->wolopts |= WAKE_PHY;
2041 }
2042
2043 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2044 {
2045         struct igb_adapter *adapter = netdev_priv(netdev);
2046
2047         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2048                 return -EOPNOTSUPP;
2049
2050         if (igb_wol_exclusion(adapter, wol) ||
2051             !device_can_wakeup(&adapter->pdev->dev))
2052                 return wol->wolopts ? -EOPNOTSUPP : 0;
2053
2054         /* these settings will always override what we currently have */
2055         adapter->wol = 0;
2056
2057         if (wol->wolopts & WAKE_UCAST)
2058                 adapter->wol |= E1000_WUFC_EX;
2059         if (wol->wolopts & WAKE_MCAST)
2060                 adapter->wol |= E1000_WUFC_MC;
2061         if (wol->wolopts & WAKE_BCAST)
2062                 adapter->wol |= E1000_WUFC_BC;
2063         if (wol->wolopts & WAKE_MAGIC)
2064                 adapter->wol |= E1000_WUFC_MAG;
2065         if (wol->wolopts & WAKE_PHY)
2066                 adapter->wol |= E1000_WUFC_LNKC;
2067         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2068
2069         return 0;
2070 }
2071
2072 /* bit defines for adapter->led_status */
2073 #define IGB_LED_ON              0
2074
2075 static int igb_set_phys_id(struct net_device *netdev,
2076                            enum ethtool_phys_id_state state)
2077 {
2078         struct igb_adapter *adapter = netdev_priv(netdev);
2079         struct e1000_hw *hw = &adapter->hw;
2080
2081         switch (state) {
2082         case ETHTOOL_ID_ACTIVE:
2083                 igb_blink_led(hw);
2084                 return 2;
2085         case ETHTOOL_ID_ON:
2086                 igb_blink_led(hw);
2087                 break;
2088         case ETHTOOL_ID_OFF:
2089                 igb_led_off(hw);
2090                 break;
2091         case ETHTOOL_ID_INACTIVE:
2092                 igb_led_off(hw);
2093                 clear_bit(IGB_LED_ON, &adapter->led_status);
2094                 igb_cleanup_led(hw);
2095                 break;
2096         }
2097
2098         return 0;
2099 }
2100
2101 static int igb_set_coalesce(struct net_device *netdev,
2102                             struct ethtool_coalesce *ec)
2103 {
2104         struct igb_adapter *adapter = netdev_priv(netdev);
2105         int i;
2106
2107         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2108             ((ec->rx_coalesce_usecs > 3) &&
2109              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2110             (ec->rx_coalesce_usecs == 2))
2111                 return -EINVAL;
2112
2113         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2114             ((ec->tx_coalesce_usecs > 3) &&
2115              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2116             (ec->tx_coalesce_usecs == 2))
2117                 return -EINVAL;
2118
2119         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2120                 return -EINVAL;
2121
2122         /* If ITR is disabled, disable DMAC */
2123         if (ec->rx_coalesce_usecs == 0) {
2124                 if (adapter->flags & IGB_FLAG_DMAC)
2125                         adapter->flags &= ~IGB_FLAG_DMAC;
2126         }
2127
2128         /* convert to rate of irq's per second */
2129         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2130                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2131         else
2132                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2133
2134         /* convert to rate of irq's per second */
2135         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2136                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2137         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2138                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2139         else
2140                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2141
2142         for (i = 0; i < adapter->num_q_vectors; i++) {
2143                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2144                 q_vector->tx.work_limit = adapter->tx_work_limit;
2145                 if (q_vector->rx.ring)
2146                         q_vector->itr_val = adapter->rx_itr_setting;
2147                 else
2148                         q_vector->itr_val = adapter->tx_itr_setting;
2149                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2150                         q_vector->itr_val = IGB_START_ITR;
2151                 q_vector->set_itr = 1;
2152         }
2153
2154         return 0;
2155 }
2156
2157 static int igb_get_coalesce(struct net_device *netdev,
2158                             struct ethtool_coalesce *ec)
2159 {
2160         struct igb_adapter *adapter = netdev_priv(netdev);
2161
2162         if (adapter->rx_itr_setting <= 3)
2163                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2164         else
2165                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2166
2167         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2168                 if (adapter->tx_itr_setting <= 3)
2169                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2170                 else
2171                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2172         }
2173
2174         return 0;
2175 }
2176
2177 static int igb_nway_reset(struct net_device *netdev)
2178 {
2179         struct igb_adapter *adapter = netdev_priv(netdev);
2180         if (netif_running(netdev))
2181                 igb_reinit_locked(adapter);
2182         return 0;
2183 }
2184
2185 static int igb_get_sset_count(struct net_device *netdev, int sset)
2186 {
2187         switch (sset) {
2188         case ETH_SS_STATS:
2189                 return IGB_STATS_LEN;
2190         case ETH_SS_TEST:
2191                 return IGB_TEST_LEN;
2192         default:
2193                 return -ENOTSUPP;
2194         }
2195 }
2196
2197 static void igb_get_ethtool_stats(struct net_device *netdev,
2198                                   struct ethtool_stats *stats, u64 *data)
2199 {
2200         struct igb_adapter *adapter = netdev_priv(netdev);
2201         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2202         unsigned int start;
2203         struct igb_ring *ring;
2204         int i, j;
2205         char *p;
2206
2207         spin_lock(&adapter->stats64_lock);
2208         igb_update_stats(adapter, net_stats);
2209
2210         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2211                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2212                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2213                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2214         }
2215         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2216                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2217                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2218                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2219         }
2220         for (j = 0; j < adapter->num_tx_queues; j++) {
2221                 u64     restart2;
2222
2223                 ring = adapter->tx_ring[j];
2224                 do {
2225                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2226                         data[i]   = ring->tx_stats.packets;
2227                         data[i+1] = ring->tx_stats.bytes;
2228                         data[i+2] = ring->tx_stats.restart_queue;
2229                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2230                 do {
2231                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2232                         restart2  = ring->tx_stats.restart_queue2;
2233                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2234                 data[i+2] += restart2;
2235
2236                 i += IGB_TX_QUEUE_STATS_LEN;
2237         }
2238         for (j = 0; j < adapter->num_rx_queues; j++) {
2239                 ring = adapter->rx_ring[j];
2240                 do {
2241                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2242                         data[i]   = ring->rx_stats.packets;
2243                         data[i+1] = ring->rx_stats.bytes;
2244                         data[i+2] = ring->rx_stats.drops;
2245                         data[i+3] = ring->rx_stats.csum_err;
2246                         data[i+4] = ring->rx_stats.alloc_failed;
2247                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2248                 i += IGB_RX_QUEUE_STATS_LEN;
2249         }
2250         spin_unlock(&adapter->stats64_lock);
2251 }
2252
2253 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2254 {
2255         struct igb_adapter *adapter = netdev_priv(netdev);
2256         u8 *p = data;
2257         int i;
2258
2259         switch (stringset) {
2260         case ETH_SS_TEST:
2261                 memcpy(data, *igb_gstrings_test,
2262                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2263                 break;
2264         case ETH_SS_STATS:
2265                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2266                         memcpy(p, igb_gstrings_stats[i].stat_string,
2267                                ETH_GSTRING_LEN);
2268                         p += ETH_GSTRING_LEN;
2269                 }
2270                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2271                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2272                                ETH_GSTRING_LEN);
2273                         p += ETH_GSTRING_LEN;
2274                 }
2275                 for (i = 0; i < adapter->num_tx_queues; i++) {
2276                         sprintf(p, "tx_queue_%u_packets", i);
2277                         p += ETH_GSTRING_LEN;
2278                         sprintf(p, "tx_queue_%u_bytes", i);
2279                         p += ETH_GSTRING_LEN;
2280                         sprintf(p, "tx_queue_%u_restart", i);
2281                         p += ETH_GSTRING_LEN;
2282                 }
2283                 for (i = 0; i < adapter->num_rx_queues; i++) {
2284                         sprintf(p, "rx_queue_%u_packets", i);
2285                         p += ETH_GSTRING_LEN;
2286                         sprintf(p, "rx_queue_%u_bytes", i);
2287                         p += ETH_GSTRING_LEN;
2288                         sprintf(p, "rx_queue_%u_drops", i);
2289                         p += ETH_GSTRING_LEN;
2290                         sprintf(p, "rx_queue_%u_csum_err", i);
2291                         p += ETH_GSTRING_LEN;
2292                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2293                         p += ETH_GSTRING_LEN;
2294                 }
2295 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2296                 break;
2297         }
2298 }
2299
2300 static int igb_ethtool_begin(struct net_device *netdev)
2301 {
2302         struct igb_adapter *adapter = netdev_priv(netdev);
2303         pm_runtime_get_sync(&adapter->pdev->dev);
2304         return 0;
2305 }
2306
2307 static void igb_ethtool_complete(struct net_device *netdev)
2308 {
2309         struct igb_adapter *adapter = netdev_priv(netdev);
2310         pm_runtime_put(&adapter->pdev->dev);
2311 }
2312
2313 #ifdef CONFIG_IGB_PTP
2314 static int igb_ethtool_get_ts_info(struct net_device *dev,
2315                                    struct ethtool_ts_info *info)
2316 {
2317         struct igb_adapter *adapter = netdev_priv(dev);
2318
2319         info->so_timestamping =
2320                 SOF_TIMESTAMPING_TX_HARDWARE |
2321                 SOF_TIMESTAMPING_RX_HARDWARE |
2322                 SOF_TIMESTAMPING_RAW_HARDWARE;
2323
2324         if (adapter->ptp_clock)
2325                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2326         else
2327                 info->phc_index = -1;
2328
2329         info->tx_types =
2330                 (1 << HWTSTAMP_TX_OFF) |
2331                 (1 << HWTSTAMP_TX_ON);
2332
2333         info->rx_filters =
2334                 (1 << HWTSTAMP_FILTER_NONE) |
2335                 (1 << HWTSTAMP_FILTER_ALL) |
2336                 (1 << HWTSTAMP_FILTER_SOME) |
2337                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2338                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2339                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2340
2341         return 0;
2342 }
2343
2344 #endif
2345 static const struct ethtool_ops igb_ethtool_ops = {
2346         .get_settings           = igb_get_settings,
2347         .set_settings           = igb_set_settings,
2348         .get_drvinfo            = igb_get_drvinfo,
2349         .get_regs_len           = igb_get_regs_len,
2350         .get_regs               = igb_get_regs,
2351         .get_wol                = igb_get_wol,
2352         .set_wol                = igb_set_wol,
2353         .get_msglevel           = igb_get_msglevel,
2354         .set_msglevel           = igb_set_msglevel,
2355         .nway_reset             = igb_nway_reset,
2356         .get_link               = igb_get_link,
2357         .get_eeprom_len         = igb_get_eeprom_len,
2358         .get_eeprom             = igb_get_eeprom,
2359         .set_eeprom             = igb_set_eeprom,
2360         .get_ringparam          = igb_get_ringparam,
2361         .set_ringparam          = igb_set_ringparam,
2362         .get_pauseparam         = igb_get_pauseparam,
2363         .set_pauseparam         = igb_set_pauseparam,
2364         .self_test              = igb_diag_test,
2365         .get_strings            = igb_get_strings,
2366         .set_phys_id            = igb_set_phys_id,
2367         .get_sset_count         = igb_get_sset_count,
2368         .get_ethtool_stats      = igb_get_ethtool_stats,
2369         .get_coalesce           = igb_get_coalesce,
2370         .set_coalesce           = igb_set_coalesce,
2371         .begin                  = igb_ethtool_begin,
2372         .complete               = igb_ethtool_complete,
2373 #ifdef CONFIG_IGB_PTP
2374         .get_ts_info            = igb_ethtool_get_ts_info,
2375 #endif
2376 };
2377
2378 void igb_set_ethtool_ops(struct net_device *netdev)
2379 {
2380         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2381 }